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Abstract  
The ability to provenance crop remains from archaeological sites remains an outstanding 
research question in archaeology. Archaeobotanists have previously identified the movement 
of cereals on the basis of regional variations in the presence of cereal grain, chaff and weed 
seeds (the consumer-producer debate), and the use of weed seeds indicative of certain 
geological areas, principally at Danebury hillfort. Whilst the former approach has been heavily 
criticised over the last decade, the qualitative methods of the latter have not been evaluated.  

The first interregional trade in cereals in Britain is currently dated to the Iron Age hillfort societies 
of the mid first millennium BC. Several centuries later, the development of urban settlements in 
the Late Iron Age and Roman period contained residents reliant on food produced elsewhere. 
Using the case study of central-southern Britain, centred on the oppidum and civitas capital of 
Silchester, this paper presents the first regional quantitative analysis of arable weed seeds in 
order to identify cereal origin. Analysis of the weed seeds present alongside the fine-sieving 
by-products of the glume wheat Triticum spelta (spelt wheat) shows that the weed floras of 
samples from diverse geological areas can be separated on the basis of the geological 
preferences of individual taxa. A preliminary finding is that rather than being supplied with 
cereals from the wider landscape of the Hampshire Downs, crops were produced within close 
proximity of Late Iron Age Silchester. The method presented here requires further high quality 
samples to evaluate this, and other instances of cereal movement in the past. 
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1. Introduction 
The movement of agricultural resources is a key aspect in the consideration of the socio-

economic organisation of past societies (Erdkamp 2008; Hill 2011; Moore 2007). The 

emergence of hillforts, oppida and Roman towns during the first millenniums BC and AD, has 

long been associated with the long-distance movement of cereal crops (Jones 1981; Van der 

Veen and O’Connor 1998). However, archaeological food provenancing studies have primarily 

focussed on animal resources, such as the sourcing of pigs for Iron Age feasting (Madgwick 

and Mulville 2015), the movement of Iron Age horse and cattle (Bendrey et al. 2009; Minniti et 

al. 2014), and the supply of animals to the Roman fortress at Caerleon (Madgwick et al. 2017). 

Inferences on the origin of cereals have so far been drawn from qualitative assessments of 

charred arable weeds identified alongside charred cereal grains and chaff (Helbaek 1964; 

Jones M 1984). In light of recent developments in the application of stable isotope analysis of 

charred cereal grains in order to provenance cereals (Bogaard et al. 2014; Lightfoot and 

Stevens 2012), it is timely to evaluate whether a rigorous quantitative regional analysis of pre-

existing charred weed data can provide insights into the regional movement of crops, or 

whether future research should focus on the application of these isotopic techniques. 

 

Households are widely understood as the building blocks of Iron Age society (Hill 2011). It is 

now accepted that households and communities did not form independent productive units in 

later prehistory, but were linked through various social and material exchanges (Davis 2013; 

Moore 2007). Pioneering archaeobotanical studies at Danebury, a large multivallate Iron Age 

hillfort in central-southern Britain, made a key contribution to the idea that hillforts acted as 

places for the redistribution of cereals between surrounding settlements (Cunliffe 1984). 

Amongst the weed seeds identified alongside charred cereal grains from storage pits, Carex 

spp., Eleocharis palustris and Mentha sp., were defined as a group of damp ground taxa, and 

Chrysanthemum segetum and Rumex acetosella were classified as acid ground taxa (Jones, 

M. 1984: 488). Due to the distributions of soil types in the surrounding region, Jones suggested 

that crops were grown on both damp riverside loams and acidic gravel terraces associated with 

the nearby River Test, drawing the conclusion that “the hillfort was receiving cereal crops from 

throughout its territory at all stages of its development” (Jones, M. 1984: 493). This finding was 

incorporated into Cunliffe’s redistributive model of Iron Age society (Cunliffe 1984). No 

quantitative analysis of the crop or weed content of specific samples was undertaken and Jones 

considered the weed seeds to have been derived from several harvests (Jones 1984: 49). 

Without first establishing that the weeds and crop items within charred samples derived from 

the same activity, it is possible that the weeds were introduced to the samples via other activities, 

such as dung (Charles 1998) or turf burning (Hall 2003). Also without first establishing that the 

charred cereals and weeds derive from the same crop-processing stage, it cannot be known 

whether any variation in the types of weed seeds present is derived from contrasts in past field 

conditions, or is taphonomic in origin (Bogaard 2004: 64-66). Despite the limitations of Jones’ 
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analysis, his conclusions continue to be repeated (Davis 2013: 367; Jones 1985: 120; Jones 

2007: 144; Lightfoot and Stevens 2012: 657). 

 

The development of oppida in Late Iron Age southern Britain from 100 BC onwards is heavily 

debated, with origins identified in both external and internal factors (Haselgrove 1982; Pitts 

2010). The movement of cereal crops across the landscape has occasionally been built into 

narratives of settlement development. For instance, it has been suggested that agricultural 

produce was sent from agricultural settlements on the Hampshire Downs to the oppida at 

Chichester and Silchester (Cunliffe 2012: 19; Sharples 2010: 173). Furthermore, the pastoral, 

rather than arable, activities taking place at oppida have been emphasised (Creighton 2000: 

72; Moore 2012: 411; Lodwick 2017). The arrival of the Roman military in AD43, and the 

subsequent development of towns, resulted in much larger non-agricultural populations, 

requiring the import of plant and animal foods from rural areas in Britain and beyond. However 

the source of these cereals has only been debated on a foreign versus local basis (Fulford 

2000; Sauer 2002), with the food supply for towns presumed to originate from the surrounding 

hinterlands (Roskams 1999). Tested techniques to source charred cereal remains would 

enable a more detailed discussion of the sources of cereals for oppida, the military and urban 

populations.  

 

Plant taxa with different ecological characteristics grow under different environmental 

conditions (Jones et al. 2010: 494). Whilst some modern studies of the floristic composition of 

arable fields have shown that variations in cultivation intensity has a greater effect on the weed 

flora than any geographical variation (Jones et al. 1999), a recent weed survey of cereal farming 

in Haute Provence, France, showed that variation in climate and soil types within the study area 

had a greater influence on floristic variation than differences in cultivation practices (Bogaard 

et al. 2016). The floristic composition of arable fields could provide insights into the location 

where cereals were grown, and hence any regional movement of crops in Iron Age and Roman 

Britain. For instance, the analysis of charred plant remains from Iron Age Ashkelon, Israel, used 

the modern day distributions of selected plant taxa to identify the location of past cereal fields 

(Weiss and Kislev 2004). Considering the substantial dataset of charred plant remains available 

from Iron Age and Roman Britain (Van der Veen et al. 2007), and recent calls for more detailed 

analysis of arable weeds (Van der Veen 2014), it is timely to undertake such quantitative 

analysis of arable weed seeds found alongside charred cereal remains in order to assess 

whether the geographical origin of cereal crops can be established. This paper first identifies 

charred cereal samples representing unmixed crop-processing by-products which can provide 

a good reflection of the field conditions in which the cereal crops were grown, despite the 

retention of some large weeds seeds, such as Agrostemma githago, with the harvested crop. 

Autecological values of weed taxa present in these samples are then used to evaluate field 
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conditions, and the resulting finds discussed in terms of the archaeobotanical and 

archaeological context. 

 

2. Material and methods 

The selected case study region is focussed on the Late Iron Age oppidum and Roman town of 

Silchester (Calleva Atrebatum) in central-southern Britain. Late Iron Age Silchester was a 

territorial oppidum, with an occupation area of 32ha within a series of enclosures. Following the 

Claudian invasion, Silchester became a civitas capital (Fulford and Timby 2000). A radius of 

40km around Silchester was selected as the regional study area, extending north to the river 

terraces of the Upper Thames Valley at Abingdon, south to Winchester, west to the Hampshire 

Downs at Basingstoke and east to Staines (Fig. 1). The selected region contains contrasting 

geological areas, where differences in arable weed seeds can be expected, and numerous 

archaeological sites spanning the Iron Age and Roman period, when the movement of cereal 

crops across the landscape has been hypothesised to have taken place. 

 

Fig. 1 Modern location of Silchester and the regional study area. Contains OS data © Crown 

copyright and database right 2017. 

This area falls within the temperate-oceanic climatic group (Kottek et al. 2006). There is little 

regional variation in precipitation, with average rainfall of 60-100mm in January, and 40-80mm 

in July (Met Office 2015). The most significant geographical variation is in basal and superficial 

geology. Silchester is sited on a gravel terrace of the river Kennet, overlying an area of tertiary 

deposits consisting of various clays and sands (Mathers and Smith 2000), referred to as the 

Thames Basin Heaths (Natural England 2014). The varied geology of this region results in 

areas of free draining acidic soils, heavy stony soils and free draining loam soils (Branch and 
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Green 2004). To the northwest is a band of cretaceous chalk, the Berkshire Downs, continuing 

to the south of Silchester as the Hampshire Downs. In places the chalk is capped with boulder 

clay deposits (Cunliffe and Poole 2000). These areas have thin calcareous soils today. The 

river Thames flows from west to east through the study area. The Upper Thames Valley, to the 

north of the Goring Gap, consists of gravel terraces composed of limestone gravel, bounded 

by clay soils. The floodplain of the Mid Thames Valley, to the south, is also covered by alluvial 

soils overlying gravel terraces composed of flint, producing acidic free draining soils (Booth et 

al. 2007: 7). Hence there are three distinct areas of sandy acidic and clay soils (Thames Basin 

Heaths), calcareous soils (Hampshire Downs) and alluvial soils overlying gravel (Thames 

Valley). 

 

This region has undergone intensive archaeobotanical investigation since the late 1970s due 

to both excavations in advance of gravel extraction and urban expansion (Robinson 1992), and 

research excavations on the Hampshire Downs (Campbell 2000a; 2008a). The charred plant 

remains from Silchester originate from the Late Iron Age phases of occupation at Insula IX 

(Lodwick 2015). Regional archaeobotanical data were collected from published sources and 

available grey-literature from contexts dated by ceramics and stratigraphy to the Middle Iron 

Age – Late Roman period. Semi-quantified samples and assemblages where modern  

contamination had been highlighted were excluded (Pelling et al. 2015).  

 

This process resulted in 987 charred samples from 159 site phases (Table 1, ESM Table 1). 

Several steps of data standardisation of cereals and wild taxa were undertaken (ESM Table 2), 

due to the necessity of producing archaeobotanical taxa which were frequent enough in the 

dataset to be included in correspondence analysis (5%). Seeds identified to genus level were 

proportionately reallocated to the species within that genus present in the same sample. 

Samples from the same contexts were combined. Triticum spelta (spelt wheat) and T. dicoccum 

(emmer wheat) were combined, as they are both glume wheats which behave the same way 

during crop-processing and spelt wheat was always the dominant glume wheat within samples. 

Samples with fewer than 100 crop and arable items per sample were removed in order to retain 

those with a higher likelihood of reflecting the original sample (Van der Veen and Fieller 1982). 
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Table 1 Summary of number of regional site phases used in this study. The number of 
charred samples are indicated in brackets. 

 

Samples for which the crop-content (grain and glume bases for glume wheats; grain and rachis 

for free-threshing cereals) was composed of at least 70% of one crop type (glume wheat or 

free-threshing cereal) were classified as unmixed samples. Each sample was assigned to a 

crop-processing stage based initially on ratios (Table 2). Discriminant analysis was undertaken 

following Jones (1991). Weed seeds were categorised based on characteristics relevant to their 

behaviour during crop-processing (small vs big, headed vs free, heavy vs light) (Jones, G. 1984; 

Van der Veen 1992), with a size boundary of 2mm in width set between ‘small’ and ‘big’ weed 

seeds. The discriminant scores were obtained by running a discriminant analysis in IBM SPSS 

Statistics Version 21 using the Amorgos ethnographic data as control groups. Archaeobotanical 

samples were entered that contained at least ten seeds that had been categorised into one of 

Jones’ groups. These were then classified using the discriminant scores. P values of ≥ 0.9 were 

classified as high probability results (Bogaard 2011: 155). The results from ratio and 

discriminant analysis have been combined to assign a single crop-processing stage to each 

sample (ESM Table 3). On some occasions, ratio analysis classified a sample as a fine-sieve 

by-product (FSBP), and DA produced the result of fine-sieve product (FSP). Such samples are 

often described as ‘pre-sieved FSBP’. These most likely represent fine-sieve by-products from 

the dehusking of spikelets which had previously been sieved to remove most small weeds. The 

possibility of ‘pre-sieved’ spikelets was raised initially by Stevens (Stevens 2003: 69-71), and 

the potential variation between clean spikelets and un-sieved spikelets has been supported 

(Bogaard 2011: 152; Van der Veen and Jones 2006: 110). 

 

 
 
 
 
 

 Hampshire 
Downs 

Middle Thames 
Valley 

Thames Basin 
Heaths 

Upper Thames 
Valley 

Mid Iron Age 22 (131) 4 (11) 3 (8) 11 (162) 

Late Iron Age 10 (46) 1 (5) 2 (24) 4 (13) 

Early Roman 15 (73) 9 (80) 1 (52) 10 (80) 

Mid Roman 10 (18) 5 (20) 2 (4) 3 (14) 

Late Roman 13 (75) 6 (19) 2 (6) 6 (51) 

Roman 6 (20) 4 (6) 1 (2) 4 (11) 

Iron Age/Roman 2 (5) 1 (2) 0 (0) 2 (49) 
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Table 2 Crop-processing analysis criteria and results. 

 
 

Crop items were not included in the analysis, leaving only the arable taxa. Correspondence 

analysis was performed using CANOCO version 4.5 and results plotted using CANODRAW 

version 4.1 (Ter Brak and Ŝmilauer 2002). Samples were classified by archaeological and 

geographical factors, including National Character Area groupings (Natural England 2014). 

Nomenclature is based on Stace (2010). The ecological attributes of each archaeobotanical 

taxa were established from regional (Brewis et al. 1996; Crawley 2005) and national flora (Stace 

2010) and the PLANTATT database (Hill et al. 2004). This technique is a form of autecology; 

extrapolating the tolerance of modern weed taxa to certain environmental conditions to 

archaeobotanical weed taxa. The risk that the ecology of individual taxa will have shifted 

through time (Bogaard 2004: 7) was lessened by the incorporation of the majority of weed taxa 

present per sample into the correspondence analysis (Van der Veen 1992: 108). 

 

3. Results 

3.1 Sample selection 

Of the 291 samples entered into ratio and discriminant analysis (Table 2) the most common 

crop-processing stage identified was spelt fine-sieving products and pre-sieved fine-sieve by-

products, which contained a very restricted range of arable weeds, mainly Avena spp., Bromus 

spp., Fallopia convolvulus and Galium aparine. These taxa have limited affinities for different 

geological areas and, as predicted, the plot of this correspondence analysis (Fig 2.) 

Crop-processing 
stage 

Sample contents Results of 
discriminant 
analysis 

Number of samples 

Barley fine-sieve 
product 

Over 70% of crop items barley. 

Ratio of barley grain/barley rachis 

> 0.5. 

FSP 24 

Spelt wheat fine-sieve 
product 

Over 70% of crop items spelt or 
emmer wheat. 

Ratio of spelt grain/spelt glume 
bases > 1.5. 

FSBP 34 

Spelt wheat spikelets 

 

Over 70% of crop items spelt or 
emmer wheat. 

Ratio of spelt grain/spelt glume 
bases 0.8-1.5. 

FSBP 

 

FSP 

3 

 

17 (sieved) 

Spelt wheat fine-sieve 
by-product 

Over 70% of crop items spelt or 
emmer wheat. 
Ratio of spelt grain/spelt glume 
bases < 0.8. 

FSBP 

 

FSP 

54 

 

105 (sieved) 

Mixed Under 70% of crop items of a single 
crop type. 

various 54 
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demonstrated that the main variation was between autumn sown (characterised by Bromus 

spp.) and spring sown (characterised by Avena spp.) crops (Bogaard et al. 2001; Campbell 

2000a). Thus, spelt fine-sieve by-products were selected as the unit for the regional crop-

sourcing analysis, due to the wider range of archaeobotanical weed taxa present. Samples 

from 16 sites were classified as unmixed spelt fine-sieve by-products, which contained spelt 

glume bases and small free and heavy arable weed seeds. These sites are listed in Table 3 

and sample level meta data is provided in ESM Table 3. 

 

Fig 2. Correspondence analysis plot of arable weeds from samples classified as spelt FSP, 

sample pies classified by flowering onset and duration. 1st (horizontal) and 2nd (vertical) axis. 

132 samples, 29 taxa. 

 

Table 3 List of sites with samples identified as spelt fine-sieve by-products which were utilised 
in the correspondence analysis. 
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Site Location Period Site type Number 
of 
samples 

Abbreviation Reference 

Houghton Down Hampshire 
Downs 

Mid Iron Age Enclosed settlement 2 HTD Campbell 2008d 

Lains Farm Hampshire 
Downs 

Middle Iron Age Enclosed settlement 1 LNF Carruthers 1991 

Rowbury Farm Hampshire 
Downs 

Middle Iron Age Enclosed settlement 1 RWF Campbell 2008e 

Suddern Farm Hampshire 
Downs 

Middle Iron Age Enclosed settlement 1 SDF Campbell 2000b 

Abingdon 
Vineyard 

Upper 
Thames 
Valley 

Middle Iron Age  Oppidum 4 AVY Stevens 1996 

Grateley Hampshire 
Downs 

Late Iron Age Enclosure 1 GRT Campbell 2008c 

Silchester, 
Insula IX 

Thames Basin 
Heaths 

Late Iron Age Oppida 3 SIX Lodwick 2015 

Thruxton Hampshire 
Downs 

Late Iron Age Enclosed settlement 1 TRX Summers and Campbell 2008 

Abingdon 
Vineyard 

Upper 
Thames 
Valley 

Iron Age/Roman Oppidum 3 AVY Stevens 1996 

Abingdon 
Vineyard 

Upper 
Thames 
Valley 

Early Roman Oppidum 7 AVY Stevens 1996 

All Souls Farm Middle 
Thames 
Valley 

Early Roman Open settlement 2 ASF McKenna 2012 

Brighton Hill 
South 

Hampshire 
Downs 

Early Roman Enclosed settlement 1 BHS Carruthers 1995 

Denchworth 
Road 

Upper 
Thames 
Valley 

Early Roman Roadside settlement 2 DWR Fairbairn and Austin 2001 

Winchester 
Northgate 
House.  

Hampshire 
Downs 

Early Roman Major town 1 WNH Carruthers 2011 

Denchworth 
Road 

Upper 
Thames 
Valley 

Mid Roman Roadside settlement 1 DWR Fairbairn and Austin 2001 

Perry Oaks Middle 
Thames 
Valley 

Middle Roman Enclosed settlement 1 PRO Carruthers 2010 

Grateley Hampshire 
Downs 

Middle Roman Villa 1 GRT Campbell 2008c 

Grateley Hampshire 
Downs 

Late Roman Villa 1 GRT Campbell 2008c 

Bagnor Road Thames Basin 
Heaths 

Late Roman Rural settlement 3 BGR Ede 2000 

Barton Court 
Farm 

Upper 
Thames 
Valley 

Late Roman Villa 2 BCF Jones and Robinson 1984 



	 10 

 

 

Compared to the large number of site phases consulted (159), and the large dataset of 

samples obtained (987), a relatively small number of samples (54 before the removal of 

outliers) were entered into the analysis. The relatively low number of samples identified as 

spelt FSBPs is due to two factors. First, the character of the archaeobotanical record in this 

period and region. Densities of charred plant remains are often low and sample size has not 

always been adjusted to account for this, meaning samples contain insufficient numbers of 

items, and the composition of many samples are mixtures of crops, or fine-sieve products and 

pre-sieved fine-sieve by-products where small weeds are absent (Table 2). Second, practices 

of sampling and analysis have often resulted in relatively small numbers of samples per site, 

with low numbers of items (<100) per sample (Van der Veen et al. 2007).  

3.2 The arable weeds present 

50 archaeobotanical weed taxa were present in these samples, listed in Table 4. The majority 

of these taxa, such as Bromus subg. Bromus and Avena spp. do not have strong tolerances for 

particular geological areas and differences in their quantities reflect variation in sowing time 

(Bogaard et al. 2001; Campbell 2000a). However, some taxa do have geological preferences, 

such as those found mainly on calcareous soils. Valerianella dentata is an annual herb, found 

today on cornfields and rough ground. It is widespread and locally frequent on calcareous soils, 

occurring rarely on other soil types (Brewis et al. 1996: 227; Crawley 2005: 800). Anthemis 

arvensis is an annual herb present on arable land, waste and rough ground (Stace 2010: 755). 

Locally, it is frequent on calcareous areas in Berkshire and Hampshire (Crawley 2005: 963), 

only occurring casually on sandy soils (Brewis et al. 1996: 244). Hyoscyamus niger and 

Sherardia arvensis are both found on calcareous grassland. Other arable weeds are 

calciphobus. Spergula arvensis is an annual herb of acidic sandy cultivated ground (Stace 

2010: 467), and locally avoids pure chalk soil (Brewis et al. 1996: 118). Rumex acetosella is a 

perennial herb found on cultivated ground, acidic grassland and heathland (Stace 2010: 446). 

In chalk grassland, it is restricted to ant-hills and superficial acidic deposits (Brewis et al. 1996: 

122). 

 

One taxon, Anthemis cotula, an annual herb of arable land, waste and rough ground (Stace 

2010: 755), is most common on heavy clay and clay loam soils (Kay 1971a). Anthemis cotula 

Denchworth 
Road 

Upper 
Thames 
Valley 

Late Roman Roadside settlement 1 DWR Fairbairn and Austin 2001 

Fullerton Hampshire 
Downs 

Late Roman Villa 1 FLT Campbell 2008b 

Marnel Park Hampshire 
Downs 

Roman Rural settlement 4 MRP Pelling 2009 
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is often seen as an indicator of the past cultivation of heavy clay soils (Jones, 1981). However, 

it can occur on clay-with-flints overlying chalk, and on heavier chalk soils (Kay 1971, 625). 

Today it is common on both clay and chalk soils in northern Hampshire (Brewis et al. 1996: 

244), and used to be locally frequent on arable fields on the chalk in Berkshire (Crawley 2005: 

964). Other taxa are not tolerant of clay soil conditions. Papaver argemone (prickly poppy) is 

an annual herb of dry arable fields and waste ground, but only on light soils (Stace, 2010: 88), 

and locally on chalk or sand soils (Brewis et al. 1996: 105; Crawley 2005: 361). Aphanes 

arvensis is an annual herb, found on cultivated and open ground which is well drained (Stace 

2010: 267). Locally, A. arvensis has been reported as absent from clay soils (Crawley 2005: 

587) and found especially on basic soils (Brewis et al. 1996: 163). Arenaria serpyllifolia grows 

only on well-drained soils (Stace 2010: 456). Rumex acetosella is restricted to sandy and 

gravelly soils (Brewis et al. 1996: 122) and Spergula arvensis also avoids damp clay soils 

(Crawley 2005: 414). Overall, it must be stressed that these are not strict geological tolerances 

but tendencies for plants to be more common on certain soil types. 

Table 4 Summary of nomenclature, and the tolerance of calcareous and clay soils of the 
arable weed taxa included in the analysis. 

Taxa Common name Calcareous 
soils 

Clay soils Key references 

Agrostemma githago L. Corncockle - - Firbank 1988 

Anthemis arvensis L. Corn Chamomile Yes - Kay 1971a 

Anthemis cotula L. Stinking Mayweed - Yes Kay 1971b 

Aphanes arvensis L. Parsley-piert - No  

Arenaria serpyllifolia L. Thyme-leaved Sandwort - No  

Atriplex sp. Oraches - -  

Avena sp. Oats - -  

Brassica sp. Cabbages/Mustards - -  

Bromus Subg. Bromus Bromes - -  

Carex sp. Sedges - -  

Centaurea cyanus L. Cornflower - -  

Cerastium sp. Mouse-ears - -  

Chenopodium album L. Fat-hen - -  

Eleocharis palustris (L.) Roem. & 
Schult. 

Common Spike-rush - -  

Fallopia convolvulus L. Black-bindweed - -  

Fumaria sp. Fumitories - -  

Galium album/verum/palustre Bedstraws - -  

Galium aparine L. Cleaver - -  
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Hyoscyamus niger L. Henbane Yes -  

Juncus indet. Rush - -  

Lapsana communis L. Nipplewort - -  

Medicago lupulina L. Black Medick - -  

Medicago/Trifolium Medicks/Clovers - -  

Montia fontana L. Blinks - -  

Odontites vernus (Bellardi) Dumort. Red Bartsia - -  

Papaver argemone L. Prickly Poppy - No  

Papaver rhoeas type Common Poppy - -  

Papaver somniferum L. Opium Poppy - -  

Persicaria lapathifolia/maculosa Pale Persicaria/Redshank - -  

Plantago lanceolata/media Ribwort/Hoary Plantain - -  

Plantago major L.  Greater Plantain - -  

Polygonum aviculare agg. Knotgrass - -  

Potentilla sp. Cinquefoils - -  

Prunella vulgaris L. Selfheal - -  

Ranunculus acris/repens/bulbosus Buttercups - -  

Rumex acetosella agg. Sheep’s Sorrel No No  

Rumex sp. Docks - -  

Sherardia arvensis L. Field Madder Yes -  

Silene sp. Campions - -  

Spergula arvensis L. Corn Spurrey No No New 1961 

Stellaria graminea/palustris Lesser/Marsh Stichwort - -  

Stellaria media (L.) Vill. Common Chickweed - -  

Torilis sp. Hedge-parsleys - -  

Trifolium sp. Clovers - -  

Tripleurospermum inodorum L. Scentless Mayweed - -  

Urtica dioica L. Common Nettle - -  

Urtica urens L. Small Nettle - -  

Valerianella dentata L. Narrow-fruited Cornsalad Yes - - 

Veronica arvensis L. Wall Speedwell - -  

Vicia/Lathyrus Vetch/Peas - -  
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3.3 Comparison of the arable weed content 

45 samples and 50 archaeobotanical taxa were entered into correspondence analysis. The 

samples were distributed along both axes (Fig. 3). Samples from sites located on the 

Hampshire Downs are located towards the positive end of axis 1 or the positive end of axis 2. 

Samples from the Mid Thames and Thames Basin Heaths are located towards the negative 

end of Axis 1, and most samples from the Upper Thames are located towards the negative 

ends of both axes. No classification by site type or period explained the variation in this plot 

(ESM Fig 1 and 2). Sites were placed into one of three groups consisting of individual or 

combined National Character Areas with broadly similar geographic characteristics, and this 

classification did explain the variation (Fig. 3). 

 

Fig. 3 Correspondence analysis plot of arable weeds from regional spelt FSBP samples, 
samples classified by NCA (National Character Area). 1st (horizontal) and 2nd (vertical) axis. 
45 samples, 50 taxa. SIX refers to samples from Silchester Insula IX. 
 

The correspondence analysis plot of arable weeds (Fig 4) shows distinctive groupings of taxa 

which map on to the sample plot (Fig 3), with several taxa located near the origin. Some 

samples from the Hampshire Downs are located towards the positive end of axis 1 and are 

characterised by Anthemis arvensis, Cerastium sp., Papaver argemone, Papaver rhoeas 

type, Urtica dioica, Valerianella dentata. Other samples from the Hampshire Downs are 

located towards the positive end of axis 2 and are characterised by Brassica sp., Papaver 



	 14 

somniferum, Rumex sp. and Silene sp. A range of taxa plot in between. Samples from the Mid 

Thames Valley and the Thames Basin Heath are characterised by Agrostemma githago, 

Anthemis cotula, Avena sp., Centaurea cyanus, Eleocharis palustris, and Odontites vernus. 

Samples from the Upper Thames are characterised by Chenopodium album, Galium 

album/verum/palustre, Juncus indet., Montia fontana, Persicaria lapathifolia/maculosa, 

Rumex acetosella, Spergula arvensis, Trifolium sp. and Vicia/Lathyrus. The fact that variation 

on axis 1 is explained successfully by geographical location means that groups of weed taxa 

are associated with different broad soil types. 

 

Fig. 4 Correspondence analysis plot of arable weeds from regional spelt FSBP samples, taxa 
plot. 1st (horizontal) and 2nd (vertical) axis. 45 samples, 50 taxa. S indicates the location of 
samples from Silchester. 

	
When the composition of each sample is displayed as a pie chart, this pattern is more visible. 

Samples located towards the positive end of axis 1 and 2 contain taxa associated with 

calcareous soils (Anthemis arvensis, Hyoscyamus niger, Sherardia arvensis, Valerianella 

dentata) (Fig. 5), and 0-12% seeds from taxa which grow on light soils (chalk or sand) rather 

than clay soils (Fig. 6). Samples located towards the negative end of axis 2 contain 0-29% 

seeds from taxa that are rarely found on calcareous soils today (Rumex acetosella and 

Spergula arvensis) (Fig. 6). Samples located towards the negative end of axis 1 contain 1-25% 

seeds from taxa that are clay tolerant (Anthemis cotula) (Fig. 5). 
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Fig. 5 Correspondence analysis plot of arable weeds from regional spelt FSBP samples, taxa 
classified by preference for calcareous soil. 1st (horizontal) and 2nd (vertical) axis. 45 
samples, 50 taxa. S indicates the location of samples from Silchester. 
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Fig. 6 Correspondence analysis plot of arable weeds from regional spelt FSBP samples, taxa 
classified by preference for clay soil. 1st (horizontal) and 2nd (vertical) axis. 45 samples, 50 
taxa. 

	
Now that it has been established that the arable weeds present within spelt wheat fine-sieve 

by-products are broadly distinguished by their geographical origin, the implications for individual 

sites can be assessed. Samples from Silchester Insula IX were located close to the origin of 

axis 2 (Fig. 3). This reflects the mixed geology of the area surrounding Silchester, with various 

clay, sandy, and stony soils. Whilst this cannot rule out the option that spelt wheat was being 

transported to Late Iron Age Silchester from agricultural settlements located on similar 

geologies, the arable weeds present alongside spelt fine-sieving by-products at Silchester are 

not consistent with those found alongside crop remains in samples from settlements located on 

the calcareous soils of the Hampshire Downs. The number of samples from Late Iron Age 

Silchester Insula IX in the reduced dataset is only three, and there are few contemporary sites 

from the surrounding region. The results can therefore not be considered as representative of 

the whole of Late Iron Age and Roman Silchester. However, the pattern is considered to be 

genuine as the majority of samples from Iron Age settlements located closest to Silchester, on 

the edge of the Hampshire Downs around modern day Basingstoke (Brighton Hill South; Marnel 

Park), plot in the area of “calcareous” taxa on axis 1 and 2 (Fig. 3). The dissimilarity between 

the weed flora from these sites and from Silchester means it is unlikely that Silchester was 

receiving cereals cultivated at these settlements. The single Early Roman sample from 
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Winchester Northgate House is plotted towards the positive end of axis 2, amongst samples 

from sites on the Hampshire Downs (Fig. 3). This suggests that crops were sourced for this 

Roman town from the local calcareous region, but more samples are needed to evaluate this 

pattern. 

 

3.4 Presence of archaeophytes 

 

 

Fig. 7 Frequency of Agrostemma githago and Anthemis cotula from all sites in the regional 
study area with charred plant remains. Number in brackets refers to the number of sites per 
period. 

 

A key limitation to this method is that two of the taxa located towards the negative end of axis 

1 are considered to be archaeophytes, non-native taxa introduced prior to AD 1500 (Preston et 

al. 2004). Agrostemma githago and Anthemis cotula are usually classified at Roman or 1st 

millennium BC introductions (Preston et al. 2004; Robinson 1981: 275). Their 

presence/absence in a sample may be indicative of the absence of this taxa from the local seed 

bank, rather than an avoidance of clay soils. However, an assessment of the presence of these 

taxa at sites in the regional study area (ESM Table 1) shows that a substantial number of 

identifications have been made from deposits dated by ceramics to the Middle and Late Iron 

Age. Fig. 7 shows that A. githago was present from the Middle Iron Age in this region, recorded 

at 5% of Middle Iron Age sites and increases to 40% of Late Roman sites, yet there is no major 

increase in any period. Similarly, Anthemis cotula was present at 25% of Middle Iron Age sites, 

12% of Late Iron Age sites, increasing to 44% of Late Roman sites (Fig. 7). Again, whilst there 

is a general increase in frequency over time, there is no marked Roman introduction. If a low 

occurrence of these taxa is used as an argument for the lack of recognition of the cultivation of 

clay soils in the Iron Age, then the same can be said for the Roman period. It is important here 

to state that Agrostemma githago seeds would usually be present in a higher proportion in the 
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fine-sieve product, and hence would be under-represented in the analysis of fine-sieving by-

products presented in this paper. 

 

Fig. 8 Correspondence analysis plot of arable weeds from regional spelt FSBP samples, 
without Anthemis cotula and Agrostemma githago, samples classified by NCA. 

1st (horizontal) and 2nd (vertical) axis. 45 samples, 48 taxa. 

 

Some of these Iron Age records of archaeophyte could, of course, be intrusive Roman material 

(cf. Pelling et al. 2015). All sites with Mid Iron Age records of Anthemis cotula also have 

archaeobotanical evidence from Late Iron Age and Roman periods, other than Easton Lane 

and Lains Farm (ESM Table 1). Furthermore, all Iron Age records of A. cotula are present as 7 

or fewer seeds per sample, with over half as single identifications, and all but one record of A. 

githago is of 5 or fewer seeds per sample. However, the presence of numerous pre-Roman 

finds makes it likely that there is a genuine Iron Age introduction of A. cotula and A. githago. 

The increased application of radiocarbon dating to Iron Age settlements (Hamilton et al. 2015), 

especially archived archaeobotanical remains, would enable this finding to be evaluated in the 

future. Returning to the correspondence analysis plot of arable weeds from fine-sieving by-

products, the removal of A. cotula and A. githago shows that the distribution of samples by their 

geographical region is very similar before (Fig. 3) and after (Fig. 8), as is the distribution of taxa 

(Fig. 9). The samples located towards the positive end of axis 1 and 2 are the same as before 

the removal of A. cotula and A. githago. The only difference is that samples plotted towards the 

negative end of axis 1, from sites in the Mid Thames, Thames Basin Heaths, and Upper Thames, 

are now less distinct from other samples on the negative end of axis 1. 
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Fig. 9 Correspondence analysis plot of arable weeds from sample classified as spelt fine-

sieve by-products, taxa plot. 1st (horizontal) and 2nd (vertical) axis. 45 samples, 48 taxa. 

 

4. Discussion 

4.1 Archaeobotanical context 

This analysis has indicated that the range of arable weeds present alongside charred spelt 

glume bases recovered from Insula IX, Silchester, are distinct from those found at settlements 

on the calcareous soils of the Hampshire Downs, albeit based on a small number of samples. 

Hence, it is unlikely that Late Iron Age and Early Roman Silchester was reliant on farming 

settlements on the Hampshire Downs for the supply of cereals as suggested (Cunliffe 2012: 

19; Sharples 2010: 173). The lack of evidence for cereal import to Silchester agrees with other 

aspects of the archaeobotanical record from Late Iron Age Insula IX, showing that agricultural 

activities were taking place on-site (Lodwick 2017), and new flavourings and fruits were being 

imported rather than staple foods (Lodwick 2014). This evidence also fits with the recent 

characterisation of oppida as examples of low-density urban sites, which were agriculturally 

self-sufficient (Moore 2017). In terms of the development of Silchester, this evidence suggests 

that the nucleation of local farming communities may have played a role in the development of 

this oppidum. This fits the internal model of oppida development, whereby new communities 

moved into new areas of the landscape and continued to cultivate the same crops (Hill 2007). 

The subsequent agricultural developments of hay meadow management and animal stabling, 

as evidenced at Silchester, can be understood as a reaction to this settlement nucleation 

(Lodwick 2017). 
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Archaeobotanical evidence from the region does indicate later large-scale cereal movement. 

From the Mid Roman period, high density deposits of charred, and often germinated, cereal 

grains, spelt glume bases and coleoptiles have been recovered from corndriers, indicating the 

parching of cereals in advance of dehusking or their preparation for malt (Van der Veen 1989). 

Corndriers are present near Silchester at settlements at the edge of the Hampshire Downs at 

modern day Basingstoke (Coles et al., 2011; Wright et al., 2009), further west in the area around 

Danebury (Cunliffe and Poole, 2008) and also at the southern foot of the Berkshire Downs 

around Newbury (Birbeck 2000). It is likely that cereals were being processed in bulk before 

being transported to towns, and beyond. 

 

4.2 Archaeological context 

There is also much archaeological evidence indicating the large-scale storage and movement 

of crops across the landscape in the wider Iron Age and Roman period. In the Iron Age, storage 

pits and four-post structures indicate the large-scale storage of cereal crops. Yet whilst these 

have previously been held as evidence for cereal redistribution systems at Danebury (Jones, 

M. 1984), it now appears more likely that the cereals were being consumed at feasting events 

within the hillfort itself (Van der Veen and Jones 2006). Evidence of Late Iron Age cereal trade 

is largely based on the literary evidence of Strabo (Geography 4.5.2), whereby cereals, cattle 

and slaves were suggested as exports to the Roman world in exchange for glassware, ceramics 

and amphorae-born goods (Haselgrove 1982). 

  

Shipwrecks, literary sources and the presence of granaries shows that cereals were being 

mobilised on a large-scale in the Roman world (Bowman and Wilson 2013; Erdkamp 2012). 

Whilst most towns and cities would have been sustained with cereals from their immediate 

hinterland, written sources describe how cereal grain was sourced from Egypt, Africa and Sicily 

for Rome (Aldrete and Mattingly 1999). In Rome, and many other towns and cities, large-scale 

wharves and warehouses evidence the transportation and storage of high volumes of cereals 

(Aldrete and Mattingly 1999). Written records related to Roman Britain are restricted to the 

export of cereal grain to the mid fourth century AD Roman military on the Rhine frontier 

(Mattingly 2006: 505). This range of evidence makes it vital that the analysis of the weed 

composition of fine-sieving by-products as undertaken in this paper is widened in scope, to 

identify the scale of cereal exchange through the Iron Age and Roman periods. In order for this 

technique to be applied more widely, sampling strategies must be designed to ensure 

sufficiently large samples are taken from across feature types to produce assemblages of 

charred crops and weeds of sufficient size and character.  
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4.3 Archaeobotanical and isotopic evidence for crop movement 

Whilst this study has not provided any archaeobotanical evidence for regional crop movements, 

there are Roman sites where the presence of weed taxa far beyond their normal distribution 

indicate cereal trade. At Coney Street, York, a large deposit of charred spelt wheat from a 

warehouse just outside of the Colonia contained a number of archaeophytes; Delphinium spp., 

Consolida spp. and Lathyrus aphaca, indicating a continental origin (Williams 1979). A deposit 

of charred cereal grain at Caerleon contained seeds of Lathyrus aphaca, Lathyrus nissolia, 

Lathyrus cicera and Lens culinaris (Helbaek 1964), implying a southern European or 

Mediterranean origin. In London, the trading hub for Roman Britain in the first century AD, a 

large deposit of charred spelt wheat was recovered from a building located at the Roman Forum, 

burnt down in AD60/61. A Mediterranean or Near Eastern origin was suggested due to the 

presence of Triticum monococcum (einkorn) grains and the weed seeds A. githago, Lens 

culinaris, Vicia ervilia (Davis 2004; Straker 1987). However, there are also numerous examples 

of large grain deposits where the weed seeds are entirely consistent with a local source, such 

as at Verulamium (Fryer 2006), and South Shields granary (Van der Veen 1994), and others 

where too few weed seeds were present to draw any conclusions on the origin of the grain. 

 

Beyond Britain, archaeobotanical evidence has also demonstrated the long distance movement 

of cereals in this period. A late second century AD shipwreck, found near to the fort of Laurium 

on the Lower Rhine, contained 14,650 clean Triticum dicoccum (emmer) wheat grains. These 

were transported loose in the boat’s hull and were infested with various grain pests (Pals and 

Hakbijl 1992). Early first century AD charred cereals from Arras, northern France were 

considered to be imported due to the presence of Agrostemma githago, Centaurea cyanus and 

Lithospermum arvense, all rare occurrences in the Iron Age region (Derreumaux and Lepetz 

2008: 61). 

 

The type of weed seeds present can only provide indirect evidence of the provenance of cereal 

crops. Recent developments in isotope analysis have begun to identify areas of crop origin 

based on direct analysis of cereal grains. The only study available for Britain analysed the ratios 

of δ13C and δ15N of charred cereal grains of hulled barley and spelt wheat from two pits in 

Danebury hillfort. The ranges of δ13C were 4.0‰ in both spelt wheat and barley, and of δ15N 

5.2‰ and 4.1‰ for wheat and barley. This was beyond the variations recorded within both 

single plants and harvests, leading to the conclusion that the cereals had been harvested from 

a wide range of ecological zones (Lightfoot and Stevens 2012). Elsewhere, the results of carbon 

isotope analysis have suggested areas of the landscape from which crops may have been 

sourced, based on the δ13C values of charred cereal grains and experimental values for water 

availability (Wallace et al. 2015). The use of strontium isotope ratios to source plant foods is at 

a preliminary stage (Fiorentino et al. 2014: 220). Experimental work at Çatalhöyük has analysed 

strontium isotope ratios (87Sr/86Sr) from modern plant samples. Higher values were recorded 
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from the alluvial plain samples compared to the limestone terrace samples (Bogaard et al. 

2014). Further modern studies in Iraqi Kurdistan have shown that 87Sr/86Sr isotope ratios vary 

in modern plant remains sourced from the alluvium flood plain and limestone foothills, albeit 

based on small sample sizes (Elliot et al. 2015). 

 

5. Conclusion 

This paper presents a quantitative regional analysis of arable weed seeds from selected crop-

processing by-products in Iron Age-Roman Britain. This analysis has shown that the geological 

region has a strong influence on the range of arable weed seeds present alongside charred 

cereals. No evidence for crop-movement between geological regions was detected, indicating 

that the Late Iron Age oppidum at Silchester was unlikely to have been reliant on the calcareous 

Hampshire Downs for cereals. Rather, this suggests the oppida may have been agriculturally 

self-sufficient, and that nucleation of local farming communities played a role in the 

development of the oppidum. Establishing mechanisms of food supply to the town in the Roman 

period requires much more extensive analysis of samples from these phases and surrounding 

settlements in order to further evaluate the pattern identified in this paper. 

It is considered that the comparative analysis of arable weeds across geologically distinctive 

regions is a useful tool for identifying the regional source of cereal crops. Given the 

archaeological evidence for Late Iron Age and Roman crop movements, this technique should 

be used in combination with the analysis of regional variations in the density of charred cereals, 

and crop isotope analysis. The low occurrence of samples representing unmixed free-threshing 

cereal (barley and free-threshing wheat) products and by-products in the study region means 

that the method will be largely restricted to the glume wheats; spelt wheat and, if present in 

dominant quantities, emmer wheat. In the future, the adjustment of sampling strategies to 

produce assemblages with large numbers of samples, containing high number of items, in 

combination with the standardisation of archaeobotanical weed taxa between specialists, would 

provide a more robust dataset for such analyses. 
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