

Frequency and working memory effects in incidental learning of a complex agreement pattern

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Denhovska, N., Serratrice, L. ORCID: https://orcid.org/0000-0001-5141-6186 and Payne, J. (2018) Frequency and working memory effects in incidental learning of a complex agreement pattern. Lingua, 207. pp. 49-70. ISSN 00243841 doi: 10.1016/j.lingua.2018.02.009 Available at https://centaur.reading.ac.uk/76938/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>. Published version at: http://dx.doi.org/10.1016/j.lingua.2018.02.009 To link to this article DOI: http://dx.doi.org/10.1016/j.lingua.2018.02.009

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

- 1 Frequency and working memory effects in incidental learning of a complex agreement 2 pattern 3 4 Abstract 5 Complex grammatical structures have been assumed to be best learned implicitly (Krashen, 1982, 1994; Reber, 1989). However, research to date has failed to support 6 7 this view, instead finding that explicit training has overarching beneficial effects. The 8 present study attempted to elucidate this issue by examining how type and token 9 frequencies in incidental learning input and individual differences in the learner's working 10 memory (WM) combine to affect the receptive and productive learning of a complex 11 agreement pattern in a novel language. The findings indicated that type frequency 12 significantly enhanced receptive knowledge acquisition even more than explicit 13 instruction. Performance on the productive knowledge retrieval task was poor under all 14 learning conditions but most accurate under the explicit learning condition. WM was not 15 implicated in incidental learning, possibly indicating that all learners experience high
- 16 cognitive demand imposed by the target structure regardless of variation in WM
- 17 capacity.

18 Keywords: L2 grammar, linguistic complexity, incidental learning, frequency, working 19 memory 20 1. Introduction 21 22 A subject of long-standing debate has been whether a complex grammatical pattern can be more successfully learned under implicit (Krashen, 1982, 1994; 23 24 Reber, 1989) rather than explicit learning conditions (Hulstijn & de Graaff, 1994). To date, extensive second language acquisition (SLA) research has determined that 25 explicit training/classroom instruction is generally more beneficial than implicit training 26 for learning a complex structure in L2 (DeKeyser, 1995; N. Ellis, 1993; Norris & Ortega, 27 2000; Robinson, 1996; Spada & Tomita, 2010). However, it may be that it is the 28 29 combined effects of multiple factors that trigger successful knowledge acquisition in 30 incidental learning contexts, a facet we currently know little about. Importantly, with regard to considering incidental learning, Hulstijn (2005) highlighted that it is essential to 31 32 understand the interactions among the following factors rather than studying each factor 33 in isolation: 1) the complexity of the system underlying the data; 2) the frequency with 34 which the linguistic structures are presented to the learners in the input; and 3) learners'

individual differences with respect to knowledge, skills, and information processing (p.
133).

37	The linguistic complexity of the structure is often associated with cognitive
38	complexity or learning difficulty (DeKeyser, 2005; Housen, 2014; Marsden, Williams, &
39	Liu, 2013), which is affected in turn by individual differences in cognitive abilities,
40	including working memory (WM) capacity variability (Grey, Williams, & Rebuschat,
41	2015; Juffs & Harrington, 2011; Tagarelli, Ruiz-Hernandez, Vega & Rebuschat, 2016).
42	In addition, it has been posited that the complexity of a linguistic structure interacts with
43	its input-related properties, such as the frequency of the occurrence of the structure in
44	the input, making it more or less accessible for acquisition (Housen & Simoens, 2016).
45	Hence, frequency may mediate adult incidental learning by creating a more or a less
46	effective learning context. For L1 acquisition of complex morphologies, type and token
47	frequencies are known to be vital (Tomasello, 2000, 2008). The present study thus
48	attempts to understand the effects of type and token frequencies on adult acquisition of
49	a complex L2 pattern and the extent to which the manipulation of type and token
50	frequencies in the incidental learning condition impacts the effectiveness of learning
51	such a structure. In particular, this paper focuses on the acquisition of a complex noun-

52	adjective agreement pattern in a richly inflected language (Russian) by adult novice
53	learners (who are speakers of an L1 with a less rich morphology) in terms of
54	comprehension and production modalities. Further, this paper examines how individual
55	differences in learners' WM mediate this acquisition under different learning conditions.
56	L2 morphology is known to be one of the major stumbling blocks for the novice
57	adult learner, particularly if the learner's L1 does not share the feature to be acquired in
58	L2 (DeKeyser, 2005; Larsen-Freeman, 2010). Although numerous studies have
59	examined the acquisition of inflectional morphology (Brooks, Kempe & Donachie, 2011;
60	Kempe, Brooks & Kharkhurin, 2010; Kempe & McWhinney, 1998), few have devoted
61	attention to its incidental acquisition (Brooks & Kempe, 2013; Rogers, Revesz, &
62	Rebuschat, 2015), and to our knowledge, no studies have explored the combined effect
63	of frequency and WM during the incidental learning of such complex systems.
64	
65	2. Background
66	2.1. Definition of terminology
67	First, it is important to introduce the applicable terminology. Although the terms

68 incidental learning and implicit learning are used interchangeably in the literature,

69	implicit learning is typically understood as a process of acquiring a target structure
70	without intention and awareness that results in the accumulation of implicit knowledge
71	(Williams, 2009). By contrast, explicit learning is a process during which the learner is
72	consciously involved in the processing of the stimulus input. The term incidental
73	learning is used to denote the experimental condition in which the learner is directed to
74	the meaning rather than to the grammatical structure of interest and is not informed
75	regarding any testing to follow (Rebuschat & Williams, 2012). Accordingly, learning
76	under such conditions may or may not result in implicit knowledge. The present paper
77	does not address the issue of conscious/unconscious knowledge developed under
78	these conditions. Sometimes, the notion of the "implicit learning condition" is used to
79	refer to a similar experimental paradigm (Morgan-Short et al., 2010, 2012). In the
80	present study, we follow Rebuschat and Williams (2012) and adopt the definition of
81	incidental learning as a training condition. In contrast, we use the term explicit learning
82	condition to refer to a condition where knowledge acquisition is fostered by providing
83	metalinguistic information about the target structure (Spada & Tomita, 2010; Robinson,
84	1996).

86	We begin the paper by reviewing the literature on the incidental learning of
87	complex structures, frequency and WM. We then present and discuss our investigation
88	of the incidental learning of a number agreement pattern in a novel natural and fusional
89	language (Russian) that simultaneously marks gender and case.
90	
91	2.2. Acquisition of complex grammatical patterns under incidental learning conditions
92	
93	Various studies have employed different understandings of complexity, including
94	pedagogical, linguistic and psycholinguistic complexities (Collins, Trofimovich, White et
95	al., 2009; see Spada & Tomita, 2010 for meta-analysis). Most commonly, however,
96	research has adopted the absolute or the relative approach to defining the complexity of
97	language structure. The present study utilizes the absolute (Dahl, 2004; McWhorter,
98	2001, 2007) or structural approach (Bulte & Housen, 2012; Miestamo, 2008; Pallotti,
99	2015), which asserts that the more parts a system has, the more complex it is. Based
100	on this definition, a morphological pattern similar to the subject of the present study,
101	which has inflectional markers signalling agreement based on number, gender and
102	case, would be considered complex as opposed to a morphological pattern that factors

103	in only one of these features. The relative approach (Kusters, 2003), in contrast, defines
104	complexity in terms of processing costs and difficulty for language users, predicting that
105	linguistically complex structures also demand that more cognitive resources be
106	expended by the learner.
107	DeKeyser (2005) further distinguishes formal structural complexity, which
108	emphasizes the complexity of the form, such as the number of forms in a paradigm, and
109	suggests – consistent with the taxonomic model of L2 complexity (Bulte & Housen,
110	2012) – that morphological systems are more complex in richly inflected languages.
111	Consequently, scholars have noted that features in L2 that are different from the
112	learner's L1 are difficult to learn from input either implicitly or explicitly because
113	morphology is a weak cue during the initial stages of language learning.
114	Conversely, Krashen (1982) introduced the distinction between complex
115	structures that are easy to acquire [implicit] but difficult to learn [via explicit instruction]
116	and simple structures that are easy to learn but difficult to acquire, which led to several
117	experimental studies (de Graaff, 1997; DeKeyser, 1995; Robinson, 1996; Tagarelli,
118	Ruiz-Hernandez, Vega & Rebuschat, 2016; Van Daele, 2005). Research that directly
119	compared knowledge attainment of different L2 grammar structures (e.g., word order,

120	plural marking, passives, and gender agreement) generally found similar retention
121	levels under both implicit and explicit conditions (Andringa, De Glopper, & Hacquebord,
122	2011; de Graaff, 1997; DeKeyser, 1995; Morgan-Short et al., 2010, 2012; Robinson,
123	1996; Williams & Evans, 1998). Similar findings were obtained by research in classroom
124	settings that employed implicit (meaning-focused) and explicit (form-focused) instruction
125	for learning grammar structures in L2 French that were simple (i.e., negation) and
126	complex (i.e., passive constructions) (Van Daele, 2005). This trend was partially
127	confirmed in more recent research by Tagarelli et al. (2016), who used syntactic
128	structures of different complexity modelled on German word order in a semi-artificial
129	language to study how complexity interacts with implicit/explicit learning conditions.
130	Higher learning effects were found for all structures in the explicit learning condition.
131	Nevertheless, previous research has generally overlooked the role of factors
132	such as frequency that may mediate incidental learning, which may explain why such
133	research has failed to find the benefits of incidental learning over explicit training in
134	acquiring complex structures. The subsequent section outlines the importance of the
135	frequency factor in incidental learning and reviews the experimental literature on the
136	role of frequency in grammatical knowledge acquisition.

139	Frequency constitutes the nucleus of implicit learning, as implicit learning is
140	understood as a process of tracking the frequencies of the items co-occurring in the
141	input and storing them in memory (Johnstone & Shanks, 2001; Knowlton & Squire,
142	1994; Knowlton, Ramus, & Squire, 1992; Perruchet & Pacteau, 1990). Many theoretical
143	models – such as the usage-based approach to grammar (Bybee, 1998; Goldberg,
144	2006; Langacker, 1987) and connectionist models of language learning and processing
145	(Christiansen & Chater, 1999, Elman, 1991; MacWhinney, 1998) – credit frequency with
146	a fundamental role in learning. While assuming that the acquisition of grammar is a
147	piecemeal accumulation of specific constructions and frequency-based abstractions of
148	regularities within them, the usage-based approach distinguishes the different roles of
149	type and token frequencies (Bybee, 1985, 2010; Ellis, 2002, 2006; Hulstijn, 2005;
150	Tomasello, 2000, 2008). Token frequency is believed to play a significant role in
151	strengthening new representations of specific schemas and is important during the
152	initial stages of learning, whereas type frequency has a privileged role in subsequent
153	knowledge abstraction. Although having been extensively studied from the perspective
154	of L1 acquisition and processing (Abbot-Smith, Lieven, & Tomasello, 2004; Arnon &

155	Snider, 2010; Lieven & Tomasello, 2008; Tomasello, 2003) and greatly emphasized in
156	terms of L2 acquisition (Gass & Mackey, 2002; Ellis, 2002; Ellis & Ferreira-Junior,
157	2009), experimental evidence remains limited at present with regard to the effects of
158	type and token frequencies in adult incidental learning of complex morphology.
159	The theoretical motivation for understanding the roles of type and token
160	frequencies in the incidental learning of L2 complex morphology stems from the debate
161	whether the same or different mechanisms underlie L1/L2 acquisition (Abutalebi &
162	Green, 2008; Perani & Abutalebi, 2005; Ullman, 2004). If the same mechanisms that
163	guide L1 grammatical development are available in adulthood, then the incidental
164	learning of L2 grammar in post-puberty learners should be promoted by type and token
165	frequencies in a similar manner. An alternative theoretical perspective stipulating that L2
166	grammar learning is fundamentally different from L1 (Bley-Vroman, 1989) and largely
167	relies on declarative rather than procedural mechanisms (Ullman, 2004) also relies on
168	the importance of frequency. Pursuant to this approach, frequency may be the trigger
169	that initiates the shift towards the recruitment of procedural mechanisms by providing
170	more experience (practice) with language (Ullman, 2001). With regard to the acquisition
171	of complex L2 structures, some approaches propose developmental timing as a function

172	of the structure complexity, positing that it requires more time to master complex
173	features (Pienemann, 1989; Collins, Trofimovich, White, Cardozo, & Horst, 2009). This
174	view implies that frequency might be one of the tools that bridges the gap between the
175	emergence and mastery of such structures.
176	As noted by Bulte and Housen (2014), complexity is rarely investigated for its
177	own sake but instead with the aim of diagnosing learning success. Therefore, it is
178	important to examine the effects of high/low frequency (both type and token) with the
179	attempt to understand what fosters learning of complex structures under incidental
180	exposure.
181	From previous research, it is known that constructions appearing in the input with
182	high frequency are acquired faster than with low frequency (Bybee, 2006; Ellis, 2001,
183	2009; Ellis & Collins, 2009; Ellis & Ferreira-Junior, 2009). Experimental research on the
184	role of token frequency in the incidental learning of L2 grammar demonstrated that it
185	
	does promote learning to some extent (Robinson, 1996, 2005). For instance, Robinson
186	does promote learning to some extent (Robinson, 1996, 2005). For instance, Robinson (2005) found that although novice learners (L1 Japanese speakers) failed to generalize
186 187	

189	MacWhinney, and Tokowicz (2014) is directly relevant to the present research. The
190	authors compared the effectiveness of learning under a condition in which metalinguistic
191	explanations of the rule were provided to another condition where no such information
192	was provided, both conditions being enhanced by token frequency. The authors
193	employed intentional rather than incidental learning conditions triggered by frequency
194	but found that training with the provided metalinguistic information was more beneficial
195	for learning French gender morphology among L1 English speakers. The present study
196	extends a step further, as in the current study we manipulate both type and token
197	frequencies under incidental learning conditions in order to examine their effects on the
198	acquisition of a complex morphological agreement pattern and to compare the learning
199	effect in such conditions to the explicit learning condition.
200	
201	2.4. Working memory
202	
203	The relationship between structure complexity and the training conditions may be
204	mediated by a third factor – the learner's WM capacity. From extensive research, we
205	know that WM – understood as a system of temporary storage and manipulation of
206	information during complex cognitive activities such as language comprehension and

207	learning (Baddeley, 2010) – is a predictor of L2 learning success (Hummel, 2009; Juffs
208	& Harrington, 2011; Linck, Osthus, Koeth, & Bunting, 2014; Mackey, Philp, Egi, Fujii, &
209	Tatsumi, 2002; Martin & N. Ellis, 2012; Williams, 2012; Speciale, Ellis, & Bywater,
210	2004). However, despite the overarching effect of IDs in cognitive abilities found in L2
211	morpho-syntactic acquisition (Michael & Gollan, 2005; Miyake & Friedman, 1998;
212	Sagarra, 2007), including grammatical agreement (Keating, 2009; Kempe, Brooks, &
213	Kharkhurin, 2010; Sagarra, 2007; Sagarra & Herschensohn, 2010, 2012), the traditional
214	view holds that WM is not implicated in implicit learning (Conway, Baurnschmidt,
215	Huang, & Pisoni, 2010; Kaufman et al., 2010) or in the incidental acquisition of
216	knowledge (Brooks and Kempe, 2013; Grey, Williams, & Rebuschat, 2015; Tagarelli et
217	al., 2011).
218	Accepted in the field, this perspective is nonetheless contradicted by several
219	studies that demonstrate a relationship with WM (Author, XXX; Janacsek & Nemeth,
220	2013; Bo et al., 2011; Robinson, 2005; Weitz et al., 2011; Williams & Lovatt, 2003).
221	Such mixed findings might be attributed to the interaction between the nature of the
222	target stimulus being acquired and the learning context, different tasks being used for

measuring WM and implicit learning, and the L2 learning domain (e.g. comprehension
vs. production) being tested.

225	With regard to the nature of the stimulus, we know that complex items are more
226	difficult to process than simple items (Hunter, Ames, & Koopman, 1983), while it is also
227	known that inflectional morphology has repeatedly been found to be difficult for adult L2
228	learners (Jiang, 2004, 2007). While the acquisition of complex structures depends on
229	individual differences in WM, the manner in which such a dependency interacts with
230	other factors in the learning context cannot be ignored. For instance, research suggests
231	that high token frequency mediates the availability of items in memory, leading to less
232	effort for processing (Ellis, 1996, 2001; Just & Carpenter, 1992; Melton, 1963).
233	Understanding how the learner's WM capacity mediates the acquisition of a
234	complex morphological pattern under different incidental learning conditions in which
235	frequency is manipulated would provide insights into whether incidental exposure, at
236	large, leads to a more successful acquisition of complex grammatical structures. The
237	present paper thus aims to further examine the combined effects of WM and frequency
238	on the successful acquisition of a complex pattern under incidental exposure.

3. The present study

242	The present study focuses on the acquisition of a complex noun-adjective
243	agreement pattern in Russian singular and plural noun phrases by novice adult learners
244	under the three incidental learning conditions, where type and token frequencies are
245	manipulated and there is an explicit learning condition. Following Ellis (2011), we
246	adopted the following definitions of type and token frequencies: 1) token frequency
247	refers to how often a particular form with a specific lexical item appears in the input, and
248	2) type frequency accounts for the number of distinct lexical items that can be
249	substituted in a given construction.
250	In English, number is the major agreement category and bears an explicit
251	morphological marker <i>-s</i> added to the noun's root (Eberhard, Cutting & Bock, 2005),
252	whereas in more fusional languages, such as Russian, both the adjective and the noun
253	are inflectionally marked not only for number but also for gender and case (Lorimor et
254	al., 2008). This study uses a natural language with a complex morphology as a stimulus
255	input. It also includes measures of both receptive and productive knowledge attainment.
256	Finally, understanding the extent to which WM is engaged in incidental learning of such

257	a structure is particularly important because, for the L2 learner with a relatively poor L1
258	morphology, acquiring fusional morphological pattern is a challenging task (Kempe and
259	MacWhinney, 1998; McDonald, 1987) that will potentially draw on available cognitive
260	resources.
261	We address several research questions. (1) How do type and token frequencies
262	affect the acquisition of receptive and productive knowledge of a complex agreement
263	pattern under incidental learning conditions? (2) Do incidental learning conditions with a
264	manipulated frequency effect lead to more effective acquisition of a complex agreement
265	structure than an explicit learning condition? (3) Is a mediating effect of WM on
266	receptive and productive knowledge acquisition observable under different learning
267	conditions?
268	
269	4. Method
270	
271	A between-subjects design was employed such that the learners were assigned
272	to one of the incidental learning conditions or the explicit learning condition. In L2
273	research, implicit/incidental learning research training conditions are often manipulated

274	on a continuum from explicit learning conditions, in which learners are provided with
275	metalinguistic information (e.g., pedagogical rules) (DeKeyser, 1995; Norris & Ortega,
276	2000; Robinson, 1996), to implicit learning conditions, in which participants are asked to
277	focus on meaning and are not informed about the testing that will follow (Rebuschat $\&$
278	Williams, 2012; Tagarelli et al., 2011). Following the implications of the findings by
279	Presson et al. (2014) and the vision that the rule-search condition allows for a certain
280	degree of implicitness during learning, we employed metalinguistic explanations of the
281	rule as a method of training in the explicit learning condition. The amount of time spent
282	by participants during training in the explicit and the incidental learning conditions was
283	similar. Performance accuracy was measured using both comprehension and
284	production tasks.
285	
286	4.1. Participants
287	
288	Eighty adult native speakers of English (age range: 18-45, <i>M</i> age = 21) without
289	knowledge or exposure to Russian (or any other Slavic language) were included in the
290	study (males: $n = 21$; females: $n = 59$). Following Leung and Williams (2011),
291	participants with advanced knowledge of a language other than English were excluded

292	from the study. The participants were students of humanities ($n = 48$), social sciences (n
293	= 12), or natural sciences (n = 15) or were members of the administrative staff (n = 5) at
294	a large university and were randomly allocated to one of the four learning conditions (<i>n</i>
295	= 20 per condition). Participants received either course credit or monetary
296	compensation for their participation.
297	
298	4.2. Materials
299	
300	The set for vocabulary pre-training included Russian words, specifically, six
301	nouns and four adjectives (see Appendix for the full list of stimuli) three prepositions (k
302	'towards', <i>ot</i> 'away from', <i>s</i> 'with'), a particle (<i>eto</i> 'this'), as well as colour pictures
303	compiled using ClipArt. Only adjectives that could be easily identified in the context of
304	the pictures (e.g., small, white, old) were selected. All nouns were concrete nouns
305	depicting animate stereotypical story characters (e.g., karlik or 'dwarf') of either feminine
306	or masculine natural gender. The stimuli were matched based on the number of
307	syllables. Nouns contained two or three syllables, and all adjectives were disyllabic. To
308	maintain a consistent pattern, only nouns and adjectives that belonged to the inflectional
309	paradigm represented in Table 1 were chosen. For instance, feminine nouns that ended

310	with <i>-ek</i> in the genitive case plural, such as <i>babushka</i> 'grandmother' (pl. <i>babushek</i>),
311	were excluded.
312	
313	TABLE 1
314	
315	The set of training sentences contained noun-adjective agreement phrases in
316	nominative, dative, instrumental, and genitive cases for singular and plural forms of the
317	noun, and each adjective was paired with only one noun to create a novel phrase. The
318	four cases were selected based on how easy it would be to create a short story. Each
319	story depicted feminine or masculine characters and consisted of eight slides presented
320	sequentially, (four that corresponded to the agreement in the singular (nominative,
321	dative, instrumental and genitive) and four that correspond to agreement in the plural
322	(nominative, dative, instrumental and genitive)) presented sequentially. Each slide
323	contained a picture and a Russian sentence, as illustrated in Figure 1 and Table 2.
324	There were 7 novel stories in the high type frequency condition and 3 - in the low type
325	frequency condition. A token represented the repetition of a particular story and
326	therefore of the specific noun-adjective phrase in a certain agreement form (e.g.,
327	malomu karliku 'towards the short dwarf; masculine, dative, singular). Thus, there were

328	7 repetitions of each story in the high token frequency condition and 3 in the low token
329	frequency condition (see Table 3 for the breakdown of trials in each condition).
330	Therefore, on the basis of this there were the following conditions created and
331	participants were allocated to the following groups: high type/low token frequency, low
332	type/high token frequency and low type/low token frequency.
333	
334	TABLE 2
335	FIGURE 1
336	TABLE 3
337	
338	4.3. WM testing
339	
340	An operation span task (Unsworth, Heitz, Schrock, & Engle, 2005) was used to
341	measure WM. This task was obtained from the Attention and WM Lab at Georgia
342	Institute of Technology and has been previously used in several studies (Redick et al.,
343	2012; Turner & Engle, 1989; Unsworth & Engle, 2008). The operation span task (Juffs &

Harrington, 2011) is a complex WM span task that measures both the storage and

345 processing components of WM.

346	In this task, participants were presented with simple arithmetical operations, such
347	as $(2 \times 1) + 1 = 3$, and were asked to judge their correctness as quickly as possible by
348	mouse-clicking a true or false box on the computer screen. Immediately after each
349	operation was judged, an English letter appeared on the screen, and participants were
350	instructed to memorize the letters in the order in which they were presented. Following
351	Unsworth et al. (2005), the OSpan score was calculated as the sum of all set sizes that
352	were perfectly recalled, considering the order of presentation. The highest possible
353	score was 75.
354	
355	4.4. Procedure
356	
357	Participants first completed the WM test, then a pretraining phase, followed by
358	the training and the testing phases. The testing phase consisted of two immediate post-
359	tests that measured receptive and productive knowledge.
260	

361 4.4.1. Pretraining

362	For the vocabulary test, participants were instructed to memorize the six target
363	Russian nouns, four adjectives, three prepositions, and the particle <i>eto</i> (see Appendix)
364	while reading through the slides on their computer screens at their own pace. Each slide
365	contained a Russian word (transliterated into the Latin alphabet), its English translation,
366	and a matching picture. The adjectives were presented in the masculine gender,
367	nominative case, and singular form. Following the memorization phase, participants
368	completed the vocabulary test. They saw a picture and a transliterated Russian word
369	presented via E-Prime 2 (Psychology Software Tools, Pittsburgh, PA) and were asked
370	to press 1 (match) or 2 (mismatch) on the keyboard to indicate whether the word
371	matched the picture. After their response, either Correct or Incorrect, together with the
372	overall percentage score, appeared on the computer screen. Participants had to score
373	at least 85% on the vocabulary test to proceed to the training phase.
374	
375	4.4.2. Training in incidental learning conditions

376 Participants in the incidental learning conditions were not informed about the377 linguistic structure or that there would be a testing phase. These participants were

378	randomly assigned to one of the three incidental learning conditions (low type/high
379	token, low type/low token, high type/low token frequency). Depending on the condition,
380	they were presented with varying numbers of types and tokens for the training items
381	(see Table 3). Participants were informed that they were going to view stories about
382	different characters and that their task was to look at the pictures, read the Russian
383	sentences silently and try to understand the meaning. Participants received the
384	following instructions: "Now you will see stories about different characters. Please, look
385	at the picture, read the sentence to yourself and try to understand its meaning". In each
386	condition, as presented on the computer screen via E-Prime 2 (Psychology Software
387	Tools, Pittsburgh, PA), participants viewed sequences of pictures about stereotypical
388	story characters of masculine and feminine grammatical gender overlapping with their
389	biological gender and written Russian sentences containing the agreement pattern in
390	singular and plural forms. Each sequence contained eight pictures that were presented
391	for 3000 <i>ms</i> each in the following order: nominative (singular, plural); dative (singular,
392	plural); instrumental (singular, plural); and genitive cases (singular, plural) (see Figure
393	1). Each slide contained a Russian sentence with embedded noun-adjective agreement
394	in singular or plural form and a picture representing a boy going towards, with or away

from a stereotypical story character or characters of a feminine or a masculine gender
 (e.g., dwarf). The presentation of each sequence was randomized.

397

398 *4.4.3. Training in the explicit learning condition*

399

400 During training, participants in the explicit learning condition were provided with metalinguistic information about noun-adjective agreement and were informed that they 401 402 would be tested on their acquisition of this knowledge. Agreement according to number, 403 gender and case was explained using two examples for each agreement rule. Each example was represented by a slide containing a Russian sentence that was 404 405 transliterated into the Latin alphabet with adjectival and noun endings highlighted in bold, an English translation written underneath the transliteration and a semantically 406 407 corresponding picture similar to the pictures presented to participants in the incidental 408 learning conditions. After receiving metalinguistic explanations regarding the agreement 409 rules, participants were given 15 minutes to examine the slides again at their own pace 410 and to memorize the morphological pattern.

4.4.4. Testing

413	For all the conditions, the participants completed a recognition and a production
414	task immediately after training. The recognition task was a number decision task that
415	tested their receptive knowledge of the agreement pattern in all its possible variations.
416	Such a task draws more upon implicit processing than a grammaticality judgement task
417	(GJT) (Anton-Mendez, 1999). The researchers assessed whether the learner could
418	abstract the notion of plurality/singularity expressed by the complex pattern of
419	inflectional markers different across the masculine and feminine agreement
420	constructions in different cases that were presented during training. Participants were
421	told that they would next see sentences similar to those they had previously seen, and
422	they were asked to press 1 to indicate that the sentence described one character or 2 if
423	the sentence described more than one character. The test consisted of 28 grammatical
424	Russian sentences. There were 14 old items, i.e., sentences presented during training,
425	and 14 new items, i.e., sentences composed of previously unseen nouns and
426	adjectives. If no response was recorded, each stimulus would time out after 3000 <i>ms</i> .
427	Sentences presented during training and containing familiar adjectival phrases were
428	included to test whether the learning was based on memorization, whereas new items

429	were included to test whether participants could generalize acquired knowledge to new
430	instances. The same factors that were controlled in the training items were controlled in
431	the new items. Accuracy of the participant response and reaction time (RT) on each
432	item were collected during the recognition task via E-Prime 2.
433	After completing the recognition task, participants were asked to complete a fill-
434	in-the-blank production task that consisted of 28 slides containing pictures and
435	grammatical Russian sentences (14 old and 14 new). In each block, half of the stimuli
436	consisted of agreement in the singular and half consisted of agreement in the plural.
437	Across the blocks, there were seven items with agreement in the feminine singular,
438	seven in the feminine plural, seven in the masculine singular, and seven in the
439	masculine plural. Participants had to fill in a blank for the adjectival ending (e.g., <i>Idu k</i>
440	<i>mal karliku</i> 'I am going towards the small dwarf'); accuracy for each item were
441	recorded. Production and recognition tasks were counterbalanced across the
442	participants, with half of the participants completing a recognition task first, and half – a
443	production task first. All tasks were completed in one session, which lasted between 60
444	and 90 minutes.

447	The data were analysed using logistic and linear regression models in R,
448	version 3.2.3, by applying a Generalized Linear Model (GLM) in the R Commander
449	software package (R Development Core Team, 2015). We checked for normality and
450	homogeneity by visual inspections of the plots of residuals against fitted values. A
451	backwards model selection procedure was employed that began with a full model
452	including all parameters and then excluded the parameters one at a time. An ANOVA
453	function was used to determine whether the parameter significantly improved the model
454	(Baayen, 2008). When fitting the model, all fixed effects of theoretical interest were
455	retained in the models, even if they were non-significant. For a summary of model
456	coefficients, see Table 4. Throughout the paper, MCMC-estimated p values that are
457	considered significant at the α = 0.05 level are presented.
458	
459	5.1. Explicit vs incidental learning
460	
461	The responses were scored for accuracy. A response was coded as correct if the

462 learner was able to recognize the number agreement or produce the complete

463	appropriate ending for the agreement pattern. Each participant received a maximum of
464	28 points for correct responses in calculating their accuracy scores (see Table 5 for the
465	overall accuracy and WM scores). Although general performance for comprehension
466	accuracy was above chance (see Figure 2 for mean scores per condition), production
467	levels under all conditions were low (Figure 3).
468	
469	FIGURE 2
470	FIGURE 3
471	
472	First, a logistic regression with <i>glmer</i> model function was run to analyse the
473	accuracy of comprehension of the agreement pattern under both explicit and incidental
474	learning conditions. Condition (explicit learning, high type/low token; low type/high
475	token; low type/low token frequency), block (old items, new items; with old items used
476	as a reference category) and the operation span score were included in the model as
477	fixed effects, and item was entered as a random effect. The data were treatment-coded
478	for learning condition. To compare the effectiveness of the learning condition on
479	knowledge retention, the explicit learning condition was used as the reference category.

480	As presented in Table 7, participants in the high type/low token frequency (incidental
481	learning) condition exhibited higher accuracy for comprehension of the agreement
482	pattern than participants in the explicit learning condition. Individual reaction times (<i>RT</i> s)
483	collected during the recognition task exceeding ± 2 SD were eliminated. The mean error
484	rate was 0.2%. We then ran a linear regression with <i>glmer</i> model function with
485	condition (explicit learning, high type/low token; low type/high token; low type/low token
486	frequency), block (old items, new items) and operation span score as fixed effects and
487	with item as the random effect to investigate the differences in <i>RT</i> s. Significantly shorter
488	<i>RT</i> s were found for the participants in the low type/low token frequency condition than
489	for those in the explicit learning condition; moreover, participants in the latter group also
490	performed less accurately in agreement comprehension. However, with respect to
491	comprehension accuracy and RT s, no difference between old and new items was
492	found, and there was no effect of WM on either comprehension accuracy or RT s.
493	
494	FIGURE 4
495	TABLE 6
496	

497	Participants' responses to the fill-in-the blank task were coded for accuracy such
498	that 1 indicated that the participant produced a complete adjectival ending in a relevant
499	position and 0 indicated that the participant produced either no ending or an inaccurate
500	ending. The same model used in the analysis of comprehension accuracy was run to
501	determine production accuracy. The analysis revealed that participants in the explicit
502	learning condition significantly outperformed participants engaged in all of the incidental
503	learning conditions in the production of complete endings. Moreover, it was determined
504	that participants correctly answered questions regarding old items significantly more
505	than new items. Finally, in contrast to production, there was an effect of WM on
506	productive knowledge retrieval.
507	
508	TABLE 7
509	
510	5.2. Frequency and knowledge acquisition under incidental learning conditions
511	
512	To further explore the effect of frequency on incidental learning, we ran the same model
513	but included only the incidental conditions. The model included condition (high type/low

515 with old items as a reference category) and operation span scores as fixed effects and 516 item as a random effect. 517 518 5.2.1. Frequency and receptive knowledge 519 520 The analysis using the model with the high type/low token frequency condition as a reference category revealed that participants in the low type/high token condition (M =521 522 84.50%, SD = 11.50%, $\beta = -3.83$, *Wald z* = -2.05, SE = 1.87, *p* = .04) and the low 523 type/low token frequency (M = 70.50%, SD = 27.80%) condition recognized the agreement pattern less accurately than participants in the high type/low token frequency 524 condition (M = 89.50%, SD = 5.90%; $\beta = -1.17$, Wald z = -6.74, SE = 1.74, p < .001). 525 We then ran the same model using the low type/low token frequency condition as a 526 reference category and found that participants in the low type/high token frequency 527 528 condition performed significantly better than participants in the low type/low token 529 frequency condition (β = 7.88, *Wald z* = 5.21, *SE* = 1.51, *p* < .001). No significant 530 difference between old vs new items with respect to participant accuracy was found (β =

532	To analyse <i>RT</i> s, a linear regression model was run with the same variables as
533	those used for the analysis of comprehension accuracy. There was no significant
534	difference between participants' response times for those in the high type/low token
535	condition ($M = 1014.58$, $SD = 20.76$) and those in the low type/high token frequency
536	condition (<i>M</i> = 1034.64, <i>SD</i> = 23.20, <i>β</i> = 6.97, <i>t value</i> = .20, <i>SE</i> = 37.02, <i>p</i> = .84).
537	However, the response times for those in the low type/low token frequency condition
538	were significantly shorter than the response times for those in the high type/low token
539	condition (β = -132.52, <i>t value</i> = -3.76, <i>SE</i> = 35.26, <i>p</i> < .001). When running the model
540	for the low type/low token frequency condition ($M = 896.50$, $SD = 27.50$) as the
541	reference category, it was found that participants' <i>RT</i> s in the low type/high token
542	frequency condition (β = 139.50, <i>t value</i> = 4.12, <i>SE</i> = 33.90, <i>p</i> < .001) were also
543	significantly longer than the <i>RT</i> s for participants in the low type/low token frequency
544	condition. No significant difference was found in participants' accuracy between old and
545	new items (β = -49.65, <i>t value</i> =48, <i>SE</i> = 103.54, <i>p</i> = .63), and no WM effect was
546	found for either comprehension accuracy (β = 8.58, <i>Wald z</i> = 1.58, <i>SE</i> = 5.43, <i>p</i> = .11)
547	or <i>RT</i> s (<i>β</i> = 1.60, <i>t value</i> = 1.49, <i>SE</i> = 1.07, <i>p</i> = .14).
548	

5.2.2. Frequency and productive knowledge

551	The same logistic regression model used for the analysis of comprehension
552	accuracy was employed for investigating production accuracy. First, the model was run
553	with high type/low token frequency as a reference level and determined that participants
554	in the low type/high token frequency condition were more likely to recall the correct
555	adjectival ending (M = 13.90%, SD = 14.9%) than participants in the high type/low token
556	frequency condition (<i>M</i> = 8.60%, <i>SD</i> = 9.90%, β = 5.46, <i>Wald z</i> = 2.62, <i>SE</i> = 2.08, p =
557	.009). Production accuracy performance did not differ between participants in the low
558	type/low token frequency condition (M = 9.80%, SD = 10.50%) and the high type/low
559	token frequency condition (β = 1.14, <i>Wald z</i> = .52, <i>SE</i> = 2.22, <i>p</i> = .61). The analysis of
560	the low type/low token frequency condition as a reference category indicated that
561	participants in the low type/high token frequency condition recalled endings more
562	accurately than those in the low type/low token frequency condition (β = 4.39, <i>Wald z</i> =
563	2.25, SE = 1.95, p = .02). Participants also recalled significantly more correct endings
564	for old items than for new items (β = 1.95, <i>Wald z</i> = 2.94, <i>SE</i> = 6.63, <i>p</i> = .03). Finally,
565	with respect to comprehension, the analysis revealed that WM had no significant effect
566	on production (β = 7.85, <i>Wald z</i> = 1.20, <i>SE</i> = 6.57, <i>p</i> = .23).

568	6. Discussion
569	
570	This study aimed to investigate the roles of type and token frequencies in the
571	incidental acquisition of a complex noun-adjective agreement pattern and the mediating
572	effect of individual differences in learners' WM. We were interested in examining the
573	extent to which the combined effects of frequency in the incidental input and the
574	learner's WM might help to override the lack of explicit instruction when acquiring a
575	complex structure.
576	Our findings indicate that even during the initial stages of learning under
577	incidental exposure, <mark>speakers of an L1</mark> with a relatively poor morphological system were
578	sensitive to morphological cues and could successfully recognize plurality represented
579	by a complex morphological pattern. This confirms previous research on languages with
580	less fusional morphology, such as in L2 Spanish and French (De Garavito & White,
581	2002; McCarthy, 2008; White et al., 2004), and on languages with a high fusional
582	agreement morphology, such as Russian (Brooks, Kempe, & Sionov, 2006; Kempe et
583	al., 2010), as well as incidental learning studies regarding the acquisition of complex

584	morphological systems (Brooks & Kempe, 2013; Rogers, Revesz, & Rebuschat, 2015).
585	The accessibility of the concept of plurality, based on the dichotomous distinction
586	between one and more than one referent (Dispaldro, Ruggiero, & Scali, 2014) may
587	provide an additional contribution to the learning of such complex morphological
588	patterns. Although grammaticalized in English, number is believed to be prelinguistic in
589	nature and more semantically salient (Dispaldro, Ruggiero, & Scali, 2014; Eberhard,
590	1999).
591	Moreover, the complexity of the stimulus itself may facilitate its proneness to
592	being better captured by the implicit learning mechanisms. Even within the artificial
593	language learning paradigm, research demonstrates a stronger learning effect when the
593 594	language learning paradigm, research demonstrates a stronger learning effect when the input was complex and contained multiple levels of regularities as opposed to when it
594	input was complex and contained multiple levels of regularities as opposed to when it
594 595	input was complex and contained multiple levels of regularities as opposed to when it was simplified (Saffran & Wilson, 2003; Thiessen & Saffran, 2009). Since natural
594 595 596	input was complex and contained multiple levels of regularities as opposed to when it was simplified (Saffran & Wilson, 2003; Thiessen & Saffran, 2009). Since natural languages are believed to be inherently richer in cues and complexity than artificial
594 595 596 597	input was complex and contained multiple levels of regularities as opposed to when it was simplified (Saffran & Wilson, 2003; Thiessen & Saffran, 2009). Since natural languages are believed to be inherently richer in cues and complexity than artificial language systems (Erickson & Thiessen, 2015), when employing a natural language as

601	learning (Ettlinger et al., 2016; Robinson, 2010), scholars, nevertheless, underscore the
602	importance of employing more natural language stimuli in current incidental learning
603	research (Erickson & Thiessen, 2015). To date, only a few studies used natural
604	languages as a material (Brooks & Kempe, 2013; Godfroid, 2016). The present study,
605	therefore, adds to this trend and extends the existing artificial language learning
606	research by utilizing a natural language within the incidental learning paradigm.
607	Some incidental learning conditions in the present study appeared to be more
608	effective at promoting learning at the level of recognition of a complex linguistic pattern
609	than the explicit learning condition where knowledge acquisition was fostered by
610	metalinguistic information. This finding is consistent with the theoretic stipulation that
611	incidental exposure bestows a greater advantage on learning a complex grammatical
612	structure (Krashen, 1982, 1994; Reber, 1989), and it also confirms the existent research
613	that provides evidence of higher knowledge attainment under incidental learning
614	conditions as opposed to intentional learning conditions (DeKeyser, 1995; Robinson,
615	1996) in adult L2 learners. It is widely acknowledged in the literature that L2 inflectional
616	morphology represents the greatest challenge for learners compared to other areas of
617	morpho-syntax (DeKeyser, 2005; Larsen-Freeman, 2010). This premise is confirmed by

618	research that compares different types of grammatical knowledge and finds fewer errors
619	in word order acquisition compared to morphology (Grey et al., 2014). Moreover, during
620	the post-critical period age, such knowledge must be acquired explicitly and be
621	triggered by declarative mechanisms, as some theories suggest (Ullman, 2004).
622	Therefore, the high learning effect obtained in the present study under the incidental
623	learning condition and enhanced by type frequency supports both the assumption that
624	incidental exposure can help adults to override maturational constraints on learning and
625	Krashen's claim (Krashen, 1982, 1994), with the correction, however, that an incidental
626	learning mode requires additional triggers. The role of frequency, as one such trigger, is
627	generally consistent with the cognitive-associative view of L2 acquisition (N. Ellis, 2002;
628	2012) and the research that demonstrates the positive frequency impact on L2
629	morphology learning (Bowden, Gelfand, Sanz, & Ullman, 2010).
630	Overall, as our findings suggest, although the participants in the explicit learning
631	conditions exhibited higher production accuracy than those in the incidental learning
632	conditions, the explicit learning mode was not effective for acquiring a complex pattern.
633	In the present study, performance, even in production domain, that is dependent on
634	higher order processes (Keenen & MacWhinney, 1987) and conscious knowledge

635	remained below chance in all learning conditions, including the explicit learning
636	condition. Future research may consider ways to improve such performance in a
637	longitudinal study. Perhaps adopting a paradigm in which training is conducted over
638	multiple sessions would help to identify those factors involved in successful productive
639	knowledge acquisition and the exposure mode that is most beneficial.
640	
641	6.1. Frequency and incidental learning
642	
643	As demonstrated by the results of the present study, frequency interacts with the
644	learning condition and provides interesting and differential effects for the productive and
645	receptive acquisition of a complex pattern under incidental exposure. Receptive
646	knowledge acquisition is affected by type frequency, whereas productive knowledge
647	acquisition is affected by token frequency. According to Bybee (1985), type frequency
648	promotes the generalization of grammatical structures. Thus, for successful recognition,
649	the learner must develop an abstract schema by collecting a sizeable number of types
650	of a given construction (Bybee & Thompson, 2000; N. Ellis, 2002; Plunkett &
651	Marchman, 1991). Our findings indicate that the larger the number of different lexical

652	items appearing within a	complex stimulus	pattern during training.	the more accurate
			[·····································	

653 the identification and generalization of the agreement structure.

654	For productive knowledge acquisition, frequency interacts differently with the
655	incidental learning condition and the complex stimulus input, providing a higher learning
656	effect under the condition with high token frequency. This indicates that the item-based
657	learning trend is similar to L1 acquisition, where a learner begins with memorizing the
658	pattern based on specific construction examples (Braine and Brooks, 1995; Brooks,
659	Tomasello, Dodson and Lewis, 1999; Tomasello, 2000, 2008). The item-based learning
660	effect is also supported by the finding that participants performed better on old items
661	than on new items with respect to production but not with respect to comprehension.
662	Such a discrepancy in frequency effects for learning incidentally between
663	production and comprehension reinforces the general assumption that comprehension
664	precedes production in language acquisition (e.g., learning of morphology in children)
665	(Clark & Hecht, 1982); the acquisition of singular-plural constructions (Fraser, Bellugi, &
666	Brown, 1963), and the L2 adult learning of inflectional morphology (Fenson, Dale,
667	Reznick, Bates, et al., 1994). It also reflects the differences in the sub-processes
668	involved in production and comprehension (Tanner, Nicol & Brehm, 2014).

669	To better understand how frequency impacts the acquisition of a complex
670	structure under incidental exposure in different modalities and the extent to which we
671	can examine effective learning in the production domain, a more extended study may
672	be insightful. For instance, providing enhanced training over several sessions or
673	manipulating different degrees of frequency in the input would yield a more
674	comprehensive picture.
675	
676	6.2. Working Memory
677	Finally, we also aimed to explore the mediating effect of WM on the acquisition of
678	a complex structure under different incidental learning conditions enhanced by type and
679	token frequencies. The null WM effect indicates that it is the frequency alone that
680	shapes the learning of a linguistically complex structure. One possible explanation,
681	which is also consistent with the assumption of automaticity and the effortless nature of
682	the implicit learning process (Shiffrin and Schneider, 1977), is that when the stimulus is
683	sufficiently complex, implicit learning mechanisms underpin such learning without
684	relying on cognitive resources.

685	To support this assumption, previous research on adult implicit learning provides
686	ample evidence suggesting that WM is not implicated. This applies to those studies
687	focusing on the relationship between WM and grammatical knowledge acquisition under
688	incidental learning conditions (Tagarelli et al., 2011, 2016; Yang & Li, 2012), to studies
689	employing sequence learning (Conway et al., 2011; Kaufman et al., 2010), and to
690	research focusing on the productive acquisition of a Russian case-marking system
691	(Brooks and Kempe, 2013).
692	An alternative interpretation of the null WM effect could relate to the nature of the
693	agreement structure used in the present study. It might be the case that plurality itself
694	may induce a processing cost (Tanner et al., 2014) or that the linguistic complexity of
695	the morphological system, which factors in several agreement variables, places a high
696	cognitive demand on knowledge retrieval, thus hindering access to WM (Caplan and
697	Waters, 1999; Hopp, 2006, 2010; McDonald, 2006). This line of thinking may suggest
698	that the structure employed in the current study was, in principle, too complex to be
699	acquired, regardless of individual variations among learners with respect to their WM
700	capacity. For instance, Sagarra (2007), who investigated agreement processing in L2,
701	found that WM was engaged when the complexity of the target structure was low but

702	that WM was not involved in the processing of more complex structures. WM was found
703	to be a predictor for understanding sentences with within-phrase gender agreement
704	violations (e.g., La mujer lava la blusa * <u>blanco</u> en la cocina 'The woman washes the
705	*white (masc) blouse (fem) in the kitchen') by English L2 learners of Spanish but was
706	not a predictor for sentences that contained gender agreement violations across
707	clauses, which represents a more challenging task for the learner. In this sense, the
708	linguistic complexity of the structure under investigation taps into cognitive complexity.
709	The null correlation with WM may indicate that the present pattern is more cognitively
710	demanding for all language learners (Housen & Simoens, 2016) when it is to be
711	acquired without intention and awareness.
712	In spite of the positive results reported herein, one possible limitation of the
713	present study involves the comparability between explicit and incidental learning
714	conditions. The rationale behind choosing the metalinguistic explanation training rather
715	than employing a <mark>rule-search</mark> condition involves the robust learning effect typically
716	reported in the literature in the explicit learning conditions where metalinguistic
717	information about the target structure was provided to the learner. Another potential
718	limitation of the study was the difficulty in teasing apart the categories of gender, case

719	and number when testing the acquisition of a complex agreement pattern. <mark>A similar</mark>
720	<mark>challenge</mark> was recorded by Brooks, Kempe and Sionov (2006) and attributed to the
721	inflectional syncretism of the Russian language. However, obtaining information about
722	how well each of the grammatical category was learned by future research might
723	provide a better understanding about acquisition of complex systems. Finally, exploring
724	how other factors, such as stereotypical gender (Molinaro, Su & Carreiras, 2016;
725	Siyanova-Chanturia, Pesciarelli & Cacciari, 2012) of the stimuli used in the present
726	study, may foster learning of a morphological pattern could be another potential trend of
727	research. Despite its limitations, nevertheless, the advantage of the current research is
728	its contribution to the growing understanding of L2 grammatical acquisition and its use
729	of a natural language system. Studies of the incidental learning of natural language
730	grammars are limited because research traditionally used artificial languages. Despite
731	providing control over confounding factors, artificial languages present a much-
732	simplified version of natural language (Hulstijn et al., 2014).
733	

7. Conclusion

735	Overall, the present findings confirm that learning effects emerge from the
736	complex synergies of the complexity of the target structure being acquired and the
737	learning context with available facilitating factors. This study offers evidence that the
738	incidental learning condition can be more beneficial for receptive acquisition of a
739	complex structure if fostered by type frequency <mark>. It shows that within the receptive</mark>
740	domain a complex grammatical structure can be acquired incidentally more effectively,
741	even when compared to the explicit learning mode. This evidence is in line with the
742	theoretical claim that a complex grammatical structure is best to be learned
743	incidentally/implicitly (Krashen, 1982, 1994; Reber, 1989). Moreover, our study also
744	provide empirical evidence for the suggestion that in order to better understand the
745	acquisition of complex structures incidentally it is necessary to study the interaction
746	between the learning condition and the role of other facilitating factors – such as
747	frequency – in the input (<mark>Hulstijn, 2005). However, further research is needed to</mark>
748	illuminate productive acquisition. Generally, our findings add to the existing incidental
749	learning research and to the usage-based approach to second language acquisition (N.
750	<mark>Ellis, 2002, 2012).</mark>

7	5	2
1	J	7

References

- Andringa, S., De Glopper, K., & Hacquebord, H. (2011). Effects of explicit and implicit
- instruction on free written response task performance. Language Learning, 61, 868 –
- **903**.
- Arnon, I., & Snider, N. (2010). More than words: Frequency effects for multi-word
- phrases. *Journal of Memory & Language, 62*, 67–82.
- 759 Baddeley, A. (2010). Working memory. *Current Biology, 20* (4), 136-140.
- 760 Barber, H., & Carreiras, (2005). Grammatical gender and number agreement in
- 761 Spanish: An ERP comparison. *Journal of Cognitive Neuroscience, 17,* 137-153.
- 762 Baayen, R. (2008). Analyzing Linguistic Data. A Practical Introduction to Statistics Using
- 763 *R*. Cambridge University Press.
- 764 Blackwell, A., & Bates, E. (1995). Inducing agrammatic profiles in normals: Evidence for
- the selective vulnerability of morphology under cognitive resource limitation. *Journal*
- 766 *of Cognitive Neuroscience, 7,* 228–257.

767	Bo, J., Jennett, S., & Seidler, R. (2011). Working memory capacity correlates with
768	implicit serial reaction time task performance. Experimental Brain Research, 214 (1),
769	73-81.

- Bock, K. (1987). An effect of the accessibility of word forms on sentence structures.
- *Journal of Memory & Language, 26*, 119-137.
- Bock, K, & Irwin, D. (1980). Syntactic effects of information availability in sentence
- production. *Journal of Verbal Learning & Verbal Behavior, 19*, 467-484.
- Bock, K., & Warren, R. (1985). Conceptual accessibility and syntactic structure in
- sentence formulation. *Cognition, 21*, 47-67.
- Bowden, H., Gelfand, M., Sanz, C., & Ullman, M. (2010). Verbal inflectional morphology
- in L1 and L2 Spanish: A frequency effects study examining storage versus
- composition. *Language Learning*, *60* (1), 44-87.
- Braine, M., & Brooks, P. (1995). Verb argument structure and the problem of avoiding
- an overgeneral grammar. In Tomasello, M., & Merriman, W (eds.) *Beyond Names*
- *for Things: Young Children's Acquisition of Verbs*. Hillsdale, NJ: Erlbaum, 352–376.
- 782 Brooks, P, & Kempe, V. (2013). Individual differences in adult foreign language learning:
- The mediating effect of metalinguistic awareness. *Memory & Cognition 41*, 281-296.

784	Brooks, I	Ρ.,	Tomasello,	Μ.,	Dodson,	Κ,	& Le	wis, L.	(1999)). Young	children'	's

overgeneralizations with fixed transitivity verbs. *Child Development, 70*, 1325–1337.

Bulté, B., & Housen, A. (2012). Defi ning and operationalising L2 complexity. In A.

- Housen, F. Kuiken, & I. Vedder (Eds.), *Dimensions of L2 performance and profi*
- *ciency—investigating complexity, accuracy and fl uency in SLA* (pp. 21 46).
- 789 Amsterdam/Philadelphia: John Benjamins.
- 790 Bulté, B., & Housen, A. (2014). Conceptualizing and measuring short-term changes in

L2 writing complexity. *Journal of Second Language Writing*, *26*, 42-65.

- 792 Bybee, J. (1985). *Morphology: A Study of the Relation Between Meaning and Form.*
- 793 Philadelphia, PA: John Benjamins.
- 794 Bybee, J, & Thompson, S. (2000). Three frequency effects in syntax. *Berkeley Linguistic*
- 795 *Society*, *23*, 378–388.
- 796 Caplan, D., & Waters, G. (1999). Verbal working memory and sentence comprehension.
- 797 *Behavioral Brain Science, 22,* 77–94.
- 798 Christiansen, M., & Chater, N. (1999). Towards a connectionist model of recursion in
- human linguistic performance. *Cognitive Science, 23,* 157–205.

- 800 Clark, E., & Hecht, B. (1983). Comprehension, production, and language
- 801 acquisition. *Annual Review of Psychology, 34,* 325-349.
- 802 Collins, L. (2004). The particulars on universals: A comparison of the acquisition of
- 803 tense-aspect morphology among Japanese and French-speaking learners of
- 804 English. *Canadian Modern Language Review, 61,* 251-274.
- 805 Collings, L., Trofimovich, P., White, J., Cardoso, W., & Horst, M. (2009). Some input on
- 806 the easy/difficult grammar question: An empirical study. *The Modern Language*
- 807 Journal, 93, 336-353.
- 808 Conway, C., Baurnschmidt, A., Huang, S., & Pisoni, D. (2011). Implicit statistical
- learning in language processing: Word predictability is the key. *Cognition, 114*, 356-
- 810 371.
- 811 Dahl, Ö. (2004). *The Growth and Maintenance of Linguistic Complexity*. John
- 812 Benjamins Publishing.
- de Graaff, R. (1997). The eXperanto experiment: Effects of explicit instruction on
- second language acquisition. *Studies in Second Language Acquisition, 19*, 249–297.
- 815 DeKeyser, R. (1995). Learning second language grammar rules: An experiment with a
- 816 miniature linguistic system. *Studies in Second Language Acquisition, 17*, 379-410.

817	DeKeyser,	R.	(2000)	The	robustness	of	critical	period	effects	; in	second	l la	ngua	ge

- 818 acquisition. *Studies in Second Language Acquisition*, 22, 499–533.
- 819 DeKeyser, R. (2005). What makes learning second-language grammar difficult? A
- 820 review of issues. *Language Learning*, *55*, 1-25.
- 821 DeKeyser, R., & Sokalski, K. (1996). The differential role of comprehension and
- 822 production practice. *Language Learning, 46,* 613–642.
- 823 De Vincenzi, M., & Di Domenico, E. (1999). A distinction among features: the role of
- gener and number in the retrieval of pronoun antecendents. *Rivista di linguística*, 11,
- 825 41-74.
- 826 Dornyei, Z. (2005). *The Psychology of the Language Learner*. Hillsdale, NJ: Erlbaum
- 827 Associates.
- 828 Eberhard, K. (1999). The accessibility of conceptual number to the processes of
- subject-verb agreement in English. *Journal of Memory and Language, 41,* 560-578.
- 830 Eberhard, K, Cutting, J, & Bock, K. (2005). Making syntax of sense: number agreement
- in sentence production. *Psychological Review*, *112*, 531.
- 832 Ellis, N. (1993). Rules and instances in foreign language learning: interactions of implicit
- and explicit knowledge. *European Journal of Cognitive Psychology, 5*, 289-318.

834	Ellis, N. (2002). Frequency effects in language processing: A review with implications
835	for theories of implicit and explicit language acquisition. Studies in Second Language
836	Acquisition, 24, 143-188.
837	Ellis, N. (2005). At the interface: dynamic interactions of explicit and implicit language
838	knowledge, Studies in Second Language Acquisition, 27, 305–352.
839	Ellis, N. (2006). The associative-cognitive CREED. In VanPatten, B., & Williams, J.
840	(eds). Theories in Second Language Acquisition: An introduction. Cambridge: CUP.
841	Ellis, N. (2012). Formulaic language and second language acquisition: Zipf and the
842	phrasal teddy bear. Annual Review of Applied Linguistics, 32, 17-44.
843	Ellis, N., & Ferreira-Junior, F. (2009). Construction learning as a function of frequency,
844	frequency distribution, and function. The Modern Language Journal, 93, 370-385.
845	Ellis, N., Frey, E., & Jalkanen, I. (2008). The psycholinguistic reality of collocation and
846	semantic prosody: Lexical access. In: Romer, U., & Schulze, R. (eds.) Exploring the
847	Lexis-grammar Interface. Amsterdam, the Netherlands: John Benjamins.
848	Ellis, N., O'Donnell, M., & Romer, U. (2014). The processing of verb-argument
849	constructions is sensitive to form, function, frequency, contingency and
850	prototypicality. Cognitive Linguistics, 25, 55-98.

- 851 Elman, J. (1991). Distributed representations, simple recurrent networks, and
- grammatical structure. *Machine Learning, 7,* 195–225.
- 853 Erickson, L., & Thiessen, E. (2015). Statistical learning of language: theory, validity, and
- 854 predictions of a statistical learning account of language acquisition. *Developmental*
- 855 *Review*, *37*, 66-108.
- Ettlinger, M., Morgan-Short, K., Faretta-Stutenberg, M., & Wong, P. (2016). The
- relationship between artificial and second language learning. *Cognitive*
- science, 40(4), 822-847.
- 859 Godfroid, A. (2016). The effects of implicit instruction on implicit and explicit knowledge
- 860 development. *Studies in Second Language Acquisition*, *38*(2), 177-215.
- Grey, S., Williams, J. N., & Rebuschat, P. (2014). Incidental exposure and L3 learning
- of morphosyntax. *Studies in Second Language Acquisition, 36*, 1–34.
- 863 Hopp, H. (2006). Syntactic features and reanalysis in near-native processing. Second
- 864 *Language Research, 22*, 369–397.
- 865 Hopp, H. (2010). Ultimate attainment in L2 inflection: Performance similarities between
- 866 non-native and native speakers. *Lingua*, *120*, 901–931.

868 instruction. <i>The Encyclopedia of Applied Linguistics</i> , 1-7.	
869 Housen, A., Pierrard, M., & Van Daele, S. (2005). Structure complexity and the ef	ficacy
of explicit grammar instruction. In Housen, A., & Pierrard, M. (eds.) <i>Investig</i>	gations
871 <i>in Instructed Second Language Acquisition.</i> Berlin and New York: Mouton	de
872 Gruyter, 235–270.	
873 Housen, A., & Simoens, H. (2016). Introduction: Cognitive perspectives on difficul	ty and
874 complexity in L2 acquisition. <i>Studies in Second Language Acquisition, 38,</i>	163 –
875 175.	
876 Hulstijn, J. (2005) Theoretical and empirical issues in the study of implicit and exp	licit
877 second-language learning. <i>Studies in Second Language Acquisition, 27,</i> 12	29-
878 140.	
879 Hulstijn J, & de Graaff, R. (1994). Under what conditions does explicit knowledge	of a
second language facilitate the acquisition of implicit knowledge? A research	
881 proposal. <i>AILA Review, 11</i> , 97-112.	
882 Hummel, K. (2009). Aptitude, phonological memory, and second language proficie	ency in
883 non-novice adult learners. <i>Applied Psycholinguistics</i> , <i>30</i> , 225–249.	

884	Hunter,	M., Ames,	E., &	Koopman,	R.	(1983).	Effects	of stimulus	complexity	and
-----	---------	-----------	-------	----------	----	---------	---------	-------------	------------	-----

- familiarization time on infant preferences for novel and familiar
- stimuli. *Developmental Psychology*, *19*(3), 338-352.
- Janacsek, K., & Nemeth, D. (2013). Implicit sequence learning and working memory:
- 888 correlated or complicated? *Cortex*, *49* (8), 2001-2006.
- Jiang, N. (2004). Morphological insensitivity in second language processing. *Applied*
- 890 *Psycholinguistics*, 25, 603–634.
- Jiang, N. (2007). Selective integration of linguistic knowledge in adult second language
- learning. *Language Learning*, 57, 1–33.
- Jiang, N., & Nekrasova, T. (2007). The processing of formulaic sequences by second
- language speakers. *The Modern Language Journal, 91*, 433-445.
- Juffs, A., & Harrington, M. (2011). Aspects of working memory and L2 learning.
- *Language Teaching*, *44*, 137 166.
- Johnson, J., & Newport, E. (1989). Critical period effects in second language learning:
- 898 The influence of maturational state on the acquisition of English as a second
- 899 language. *Cognitive Psychology*, *21* (1), 60-99.

- Just, M., & Carpenter, P. (1992). A capacity theory of comprehension: Individual
- 901 differences in working memory. *Psychological Review, 99,* 122-149.
- 902 Kaufman, S., Deyoung, C., Gray, J., Jiménez, L., Brown, J., & Mackintosh, N. (2010).
- 903 Implicit learning as an ability. *Cognition, 116*, 321-340.
- 804 Kempe, V., Brooks, P., & Kharkhurin, A. (2010). Cognitive predictors of generalization of
- 905 Russian grammatical gender categories. *Language Learning, 60*, 127–153.
- 906 Kempe, V., & MacWhinney, B. (1998). The acquisition of case marking by adult learners
- 907 of Russian and German. *Studies in Second Language Acquisition, 20,* 543-587.
- 908 Keenan, J. M., & MacWhinney, B. (1987). Understanding the Relationship between
- 909 Comprehension and Production. In H. W. Dechert & M Raupach (Eds.),
- 910 Psycholinguistic Models of Production (pp. 149–155). Norwood, N.J.: Ablex
- 911 Publishing Corporation.
- 912 Krashen, S. (1982). *Principles and Practive in Second Language Acquisition.* Oxford:
- 913 Pergamon.
- Krashen, S. (1994). The input hypothesis and its rivals. In Ellis N (eds.) *Implicit and*
- 915 *Explicit Learning of Languages*. London: Academic Press, 45-77.
- 916 Kusters, W. (2003). *Linguistic Complexity*. Netherlands Graduate School of Linguistics.

- 917 Larsen-Freeman, D. (2010). Not so fast: A discussion of L2 morpheme processing and
- 918 acquisition. *Language Learning, 60,* 221-230.
- Linck, J., Osthus, P., Koeth, J., & Bunting, M. (2014). Working memory and second
- 920 language comprehension and production: A meta-analysis. *Psychonomic Bulletin &*
- 921 *Review*, *21*, 861–883.
- Lorimor, H., Bock, K., Zalkind, E., Sheyman, A., & Beard, R. (2008). Agreement and
- 923 attraction in Russian. *Language and Cognitive Processes, 23,* 769-799.
- Marsden, E., Williams, J., & Liu, X. (2013). Learning novel morphology: The role of
- 925 meaning and orientation of attention at initial exposure. *Studies in Second Language*
- 926 *Acquisition, 35,* 619 654.
- 927 McCarthy, C. (2008). Morphological variability in the comprehension of agreement: an
- 928 argument for representation over computation. Second Language Research, 24,
- 929 **459–486**.
- 930 McDonald, J. (2006). Beyond the critical period: Processing-based explanations for poor
- 931 grammaticality judgment performance by late second language learners. *Journal of*
- 932 *Memory and Language, 55,* 381–401.

933	McDonald, J., Bock, K., & Kelly, M. (1993). Word and world order: Semantic,
934	phonological, and metrical determinants of serial position. Cognitive Psychology, 25,
935	188-230.
936	MacDonald, M., Just, M., & Carpenter, P. (1992). Working memory constraints on the
937	processing of syntactic ambiguity. <i>Cognitive Psychology, 24,</i> 56–98.
938	MacWhinney, B. (1998). Models of the emergence of language. Annual Review of
939	<i>Psychology, 49,</i> 199–227.
940	Martin, K. & Ellis, N. (2012). The roles of phonological short-term memory and working
941	memory in L2 grammar and vocabulary learning. Studies in Second Language
942	Acquisition, 34, 379-413.
943	McWhorter, J. (2001). The world's simplest grammars are creole grammars. <i>Linguistic</i>
944	<i>typology</i> , <i>5</i> (2), 125-166.
945	McWhorter, J. (2007). Language Interrupted: Signs of Non-native Acquisition in
946	Standard Language Grammars. Oxford University Press.
947	Melton, A. (1963). Implications of short-term memory for a general theory of
948	memory. Journal of Memory and Language, 2, 1-28.

949	Miestamo, M. (2008). Grammatical complexity in a cross-linguistic perspective. In M.
950	Miestamo, K. Sinnemaki, & F. Karlsson (Eds.), Language complexity: Typology,
951	contact, change (pp. 23 – 42). Amsterdam and Philadelphia: Benjamins.
952	Miyake, A., & Friedman, N. (1998). Individual differences in second language
953	proficiency: Working memory as "language aptitude". In Healy, A., & Bourne, L.
954	(eds.) Foreign Language Learning: Psycholinguistic Studies on Training and
955	Retention. Mahwah, NJ: Lawrence Erlbaum, 339–364.
956	Molinaro, N., Su, J., & Carreiras, M. (2016). Stereotypes override grammar: Social
957	knowledge in sentence comprehension. Brain and Language, 155, 36-43.
958	Morgan-Short, K., Sanz, C., Steinhauer, K., & Ullman, M. (2010). Second language
959	acquisition of gender agreement in explicit and implicit training conditions: An event-
960	related potential study. Language Learning, 60, 154-193.
961	Nakamura, D. (2012). Input skewedness, consistency, and order of frequent verbs in
962	frequency-driven second language construction learning: A replication and extension
963	of Casenhiser and Goldberg (2005) to adult second language acquisition. IRAL, 50,
964	1-37.
965	Norris, J., & Ortega, L. (2000). Effectiveness of L2 instruction: A research synthesis
966	and quantitative meta-analysis. Language Learning, 50, 417-528.

967 Pallotti, G. (2015). A simple view of linguistic complexity. Second Language Research,

968 <i>31,</i> 117 – 13	34.
-------------------------	-----

- 969 Pienemann, M. (1989). Is language teachable? Psycholinguistic experiments and
- 970 hypotheses. *Applied Linguistics, 10,* 52–79.
- 971 Plunkett, K., & Marchman, V. (1991). U-Shaped learning and frequency effects in a
- 972 muitilayered perceptron: Implications for child language acquisition. *Cognition, 38,*
- **43-102**.
- 974 Presson, N., MacWhinney, B., & Tokowicz, N. (2014). Learning grammatical gender:
- 975 The use of rules by novice learners. *Applied Psycholinguistics, 35,* 709-737.
- 976 Reali, F., & Christiansen, M. (2009). Sequential learning and the interaction between
- biological and linguistic adaptation in language evolution. *Interaction Studies, 10*, 5–
- 978 **30**.
- 979 Reber, A. (1989). Implicit learning and tacit knowledge. *Journal* of *Experimental*
- 980 *Psychology: General 118,* 219-235.
- 981 Rebuschat, P., & Williams, J. (2012). Implicit and explicit knowledge in second language
- 982 acquisition. *Applied Psycholinguistics, 33,* 1-28.

983	Robinson, P. (1996). Learning simple and complex second language rules under
984	implicit, incidental, rule-search and instructed conditions. Studies in Second
985	Language Acquisition, 18, 27-67.
986	Robinson, P. (2005). Cognitive abilities, chunk-strength, and frequency effects in implicit
987	artificial grammar and incidental L2 learning: Replications of Reber, Walkenfeld, and
988	Hernstadt (1991) and Knowlton, and Squire (1996) and their relevance for SLA.
989	Studies in Second Language Acquisition, 27, 235-268.
990	Robinson, P. (2010). Implicit artificial grammar and incidental natural second language
991	learning: How comparable are they? Language Learning, 6 (2), 245-263.
992	Roehr, K. (2008). Linguistic and metalinguistic categories in second language learning.
993	Cognitive Linguistics, 19, 67-106.Rogers, J., Revesz, A., & Rebuschat, P. (2015).
994	Implicit and explicit knowledge of inflectional morphology. Applied Psycholinguistics,
995	1-32.
996	Saffran, J., & Wilson, D. (2003). From syllables to syntax: Multilevel statistical learning
997	by 12-month-old infants. <i>Infancy</i> , 4 (2), 273–284.
998	Sagarra, N. (2007). Online processing of gender agreement in low proficient English-
999	Spanish late bilinguals. In: Cabrera MJ, CamachoJ, Deprez V, Flores N, and

- 1000 Sanchez L (Eds.) Romance linguistics 2006: Selected papers from the 36th
- 1001 Linguistic Symposium on Romance Languages. Amsterdam: John Benjamins, 240-1002 253.
- 1003 Sagarra, N. & Herschensohn, J. (2010). The role of proficiency and working memory in
- 1004 gender and number agreement processing in L1 and L2 Spanish. *Lingua, 120,* 2022-1005 2039.
- 1006 Sagarra, N., & Herschensohn, J. (2012). Processing of gender and number agreement

in late Spanish bilinguals. *International Journal of Bilingualism, 17,* 607-627.

1008 Shiffrin, R., & Schneider, W. (1977). Controlled and automatic human information

1009 processing: II Perceptual learning, automatic attending and general theory.

- 1010 *Psychological Review, 84,* 127-190.
- 1011 Slobin, D. (1985). Crosslinguistic evidence for the language making capacity. In: D.
- 1012 Slobin (Eds.) *The Crosslinguistic Study of Language Acquisition.* Hillsdale, NJ:
- 1013 Erlbaum, 1157–1249.
- 1014 Spada, N., & Tomita, Y. (2010). Interactions between type of instruction and type of
- 1015 language features: A meta-analysis. *Language Learning, 60*, 263–308.

- 1016 Speciale, G., Ellis, N., & Bywater, T. (2004). Phonological sequence learning and short-
- 1017 term store capacity determine second language vocabulary acquisition. *Applied*

1018 *Psycholinguistics, 25*, 293–321.

- 1019 Siyanova-Chanturia, A., Pesciarelli, F., & Cacciari, C. (2012). The electrophysiological
- 1020 underpinnings of processing gender stereotypes in language. *PLoS One*, 7 (12), 11021 11.
- 1022 Tagarelli, K., Borges-Mota, M., & Rebuschat, P. (2011). The role of WM in implicit and
- 1023 explicit language learning, 2061-2066.
- 1024 Tagarelli, K. M., Ruiz-Hernández, S., Vega, J. L. M., & Rebuschat, P. (2016). Variability
- in second language learning: The roles of individual differences, learning conditions,
- and linguistic complexity. Studies in Second Language Acquisition, 38 (2), 293 -
- 1027 **316**.
- 1028 Taguchi, N. (2007). Chunk learning and the development of spoken discourse in a

1029 Japanese as a foreign language classroom. Language Teaching Research, 11, 433–

- 1030 457.
- 1031 Tanner, D., Nicol, J., & Brehm, L. (2014). The time-course of feature interface in
- agreement comprehension: Multiple mechanisms and asymmetrical attraction.
- 1033 *Journal of Memory and Language, 76,* 195-215.

1034	Thiessen, E.	., & Sa	iffran, J. ((2003).	When	cues	collide:	Use c	of stress	and	statistical	cues
------	--------------	---------	--------------	---------	------	------	----------	-------	-----------	-----	-------------	------

- 1035 to word boundaries by 7-to 9-month–old infants. *Developmental Psychology*, 39(4),
- 1036 706–716.
- 1037 Tomasello, M. (2000). The item-based nature of children's early syntactic development.
- 1038 *Trends in Cognitive Sciences, 4,* 156-163.
- 1039 Tomasello, M. (2008). *Origins of Human Communication.* Cambridge: The MIT Press.
- 1040 Unsworth, N., Heitz, R., Schrock, J., & Engle, R. (2005). An automated version of the
- 1041 operation span task. *Behavior Research Methods*, *37*, 498-505.
- 1042 Waters G, Caplan, D., & Yampolsky, S. (2003). On-line syntactic processing under
- 1043 concurrent memory load. *Psychonomic Bulletin and Review, 10,* 88–95.
- 1044 Weitz, D., O'Shea, G., Zook, N., & Needham, W. (2011). Working memory and
- 1045 sequence learning in the Hebb digits task: Awareness is predicted by individual
- 1046 differences in operation span. *The American Journal of Psychology, 124* (1): 49-62.
- 1047 Williams, J. (2012). Working memory and SLA. In S. M. Gass & A. Mackey (Eds.), The
- 1048 *Routledge handbook of second language acquisition* (pp. 427–441). New York, NY:

1049 Routledge.

1050	Williams, J. & Evans, J. (1998). What kind of focus and on which forms? In: Doughty C
1051	and Williams J (eds.) Focus on Form in Classroom Second Language Acquisition.
1052	Cambridge: Cambridge University Press, 139–155.
1053	Williams, J. & Lovatt, P. (2003). Phonological memory and rule learning. Language
1054	<i>Learning</i> , <i>53</i> , 67–121.
1055	Yang, J. & Li, P. (2012) Brain networks of explicit and implicit learning. PLOSONE 7: 1–
1056	9.
1057	
1058	
1059	
1060	
1061	
1062	
1063	
1064	
1065	
1066	

1068 Appendix 1069 Vocabulary Training and Test Adjective Preposition Noun vedma – witch krasniy – red Idu k... - I am going towards karlik-dwarf jeltiy - yellow Idu s... - I am going with nevesta – bride lisiy – bald Idu ot... – I am going from maliy – small vdova – widow pojarnik - firefighter begun – runner 1070 1071 1072 Training Sentences 1073 Masculine singular 1074 Eto seriy pojarnik/ This is a grey firefighter 1075 Idu k seromu pojarniku/ I am going towards the grey firefighter Idu s serim pojarnikom/ I am going with the grey firefighter 1076 Idu ot serogo pojarnika/ I am going away from the grey firefighter 1077 1078

1079 Eto maliy karlik/ This is a small dwarf

- 1080 Idu k malomu karliku/ I am going towards the small dwarf
- 1081 Idu s malim karlikom/ I am going with the small dwarf
- 1082 Idu ot malogo karlika / I am going away from the small dwarf
- 1083
- 1084 Eto jeltiy begun/ This is a yellow runner
- 1085 Idu k jeltomu begun/ I am going towards the yellow runner
- 1086 Idu s jeltim begunom/ I am going with the yellow runner
- 1087 Idu ot jeltogo beguna/ I am going away from the yellow runner
- 1088
- 1089 Eto yuniy shkolnik/ This is a young schoolboy
- 1090 Idu k yunomu shkolniku/ I am going towards the young schoolboy
- 1091 Idu s yunim shkolnikom/ I am going with the young schoolboy
- 1092 Idu ot yunogo shkolnika/ I am going away from the young schoolboy
- 1093
- 1094 Eto lisiy letchik/ This is a bald pilot
- 1095 Idu k lisomu letchiku/ I am going towards the bald pilot
- 1096 Idu s lisim letchikom/ I am going with the bald pilot

1097	ldu ot lisogo letchika/	I am going away	from the bald pilot
------	-------------------------	-----------------	---------------------

1099	Eto temniy fokusnik	This is a brunette	e conjurer

- 1100 Idu k temnomu fokusniku/ I am going towards the brunette conjurer
- 1101 Idu s temnim fokusnikom/ I am going with the brunette conjurer
- 1102 Idu ot temnogo fokusnika/ I am going away from the brunette conjurer
- 1103
- 1104 Eto krupniy ohotnik/ This is a big hunter
- 1105 Idu k krupnomu ohotniku/ I am going towards the big hunter
- 1106 Idu s krupnim ohotnikom/ I am going with the big hunter
- 1107 Idu ot krupnogo ohotnika/ I am going away from the big hunter
- 1108

1109 Masculine plural

- 1110 Eto serie pojarniki/ These are grey firefighters
- 1111 Idu k serim pojarnikam/ I am going towards the grey firefighters
- 1112 Idu s serimi pojarnikami/ I am going with the grey firefighters
- 1113 Idu ot serih pojarnikov/ I am going away from the grey firefighters

- 1115 Eto malie karliki/ These are small dwarves
- 1116 Idu k malim karlikam/ I am going towards the small dwarves
- 1117 Idu s malimi karlikami/ I am going with the small dwarves
- 1118 Idu ot malih karlikov/ I am going away from the small dwarves

- 1120 Eto jeltie beguni/ These are yellow runners
- 1121 Idu k jeltim begunam/ I am going towards the yellow runners
- 1122 Idu s jeltimi begnami/ I am going with the yellow runners
- 1123 Idu ot jeltih begunov/ I am going away from the yellow runners
- 1124
- 1125
- 1126 Eto yunie shkolniki/ These are young schoolboys
- 1127 Idu k yunim shkolnikam/ I am going towards the young schoolboys
- 1128 Idu s yunimi shkolnikami/ I am going with the young schoolboys
- 1129 Idu ot yunih shkolnikov/ I am going away from the young schoolboys

- 1131 Eto lisie letchiki/ These are a bald pilots
- 1132 Idu k lisim letchikam/ I am going towards the bald pilots

1133	Idu s lisimi letchikami/	I am going	with the	bald pilots
------	--------------------------	------------	----------	-------------

- 1134 Idu ot lisih letchikov/ I am going away from the bald pilots
- 1135
- 1136 Eto temnie fokusniki/ These are brunette conjurers
- 1137 Idu k temnim fokusnikam/ I am going towards the brunette conjurers
- 1138 Idu s temnimi fokusnikami/ I am going with the brunette conjurers
- 1139 Idu ot temnih fokusnikov/ I am going away from the brunette conjurers

- 1141 Eto krupnie ohotniki/ These are big hunters
- 1142 Idu k krpnim ohotnikam/ I am going towards the big hunters
- 1143 Idu s krpnimi ohotnikami/ I am going with the big hunters
- 1144 Idu ot krpnih ohotnikov/ I am going away from the big hunters
- 1145
- 1146 Feminine singular
- 1147 Eto grustnaya vdova/ This is a sad widow
- 1148 Idu k grustnoy vdove/ I am going towards the sad widow
- 1149 Idu s grustnoy vdovoy/ I am going with the sad widow

1150 Idu ot grustnoy vdovi/ I am going away from the sad widow

1151

- 1152 Eto belaya nevesta/ This is an white bride
- 1153 Idu k beloy neveste/ I am going towards the white bride
- 1154 Idu s beloy nevestoy/ I am going with the white bride
- 1155 Idu ot beloy nevesti/ I am going away from the white bride

1156

- 1157 Eto hudaya stryapuha/ This is a thin cook
- 1158 Idu k hudoy stryapuhe/ I am going towards the thin cook
- 1159 Idu s hudoy stryapuhoy/ I am going with the thin cook
- 1160 Idu ot hudoy stryapuhi/ I am going away from the thin cook

1161

- 1162 Eto svetlaya podruga/ This is a blonde friend
- 1163 Idu k svetloy podruge/ I am going towards the blonde friend
- 1164 Idu s svetloy podrugoy/ I am going with the blonde friend
- 1165 Idu ot svetloy podrugi/ I am going away from the blonde friend

- 1167 Eto tolstaya tkachiha/ This is a fat weaver
- 1168 Idu k tolstoy tkachihe/ I am going towards the fat weaver
- 1169 Idu s tolstoy tkachihoy/ I am going with the fat weaver
- 1170 Idu ot tolstoy tkachihi/ I am going away from the fat weaver

- 1172 Eto staraya portniha/ This is an old dressmaker
- 1173 Idu k staroy portnihe/ I am going towards the old dressmaker
- 1174 Idu s staroy portnihoy/ I am going with the old dressmaker
- 1175 Idu ot staroy portnihi/ I am going away from the old dressmaker

1176

- 1177 Eto chernaya plovchiha/ This is a black swimmer
- 1178 Idu k chernoy plovchihe/ I am going towards the black swimmer
- 1179 Idu s chernoy plovchihoy/ I am going with the black swimmer
- 1180 Idu ot chernoy plovchihe/ I am going away from the black swimmer

1181

1182 Feminine plural

1183 Eto grustnie vdovi/ These are sad widows

1184	Idu k grustnim vdovam/ I am going towards the sad widows
1185	Idu s grustnimi vdovami/ I am going with the sad widows
1186	Idu ot grustnih vdov/ I am going away from the sad widows
1187 1188	
1189	Eto belieie nevesti/ These are white brides
1190	Idu k beieim nevestam/ I am going towards the white brides
1191	Idu s belimii nevestami/ I am going with the white brides
1192	Iduu ot belih nevest/ I am going away from the white brides
1193	
1194	Eto hudie stryapuhi/ These are thin cooks
1195	Idu k hudim stryapuham/ I am going towards the thin cooks
1196	Idu s hudimi stryapuhami/ I am going with the thin cooks
1197	Idu ot hudih stryapuh/ I am going away from the thin cooks
1198	
1199	Eto svetlie podrugi/ These are blonde friends
1200	Idu k svetlim podrugam/ I am going towards the blonde friends
1201	Idu s svetlimi podrugami/ I am going with the blonde friends
1202	Iduu ot svetlih podrug/ I am going away from the blonde friends

1203	
1204	Eto tolstie tkachihi/ These are fat weavers
1205	Idu k tolstim tkachiham/ I am going towards the fat weavers
1206	Idu s tolstimi tkachihami/ I am going with the fat weavers
1207	Idu ot tolstih tkachih/ I am going away from the fat weavers
1207	Indi of toistin trachini/ I am going away norm the lat weavers
1208	
1209	Eto starie portnihi/ These are old dressmakers
1210	Idu k starim portniham/ I am going towards the old dressmakers
1011	Idu a starimi partnihami/ I am gaing with the old drosomakara
1211	Idu s starimi portnihami/ I am going with the old dressmakers
1212	Idu ot starih portnih/ I am going away from the old dressmakers
1213	
1214	
1215	Eto chernie plovchihi/ These are black swimmers
1016	
1216	Idu k chernim plovchiham/ I am going towards the black swimmers
1217	Idu s cherntimi plovchihami/ I am going with the black swimmers
1218	Idu ot chernih plovchih/ I am going away from the black swimmers
1219	
1220	

Table 1

1224 1225 Inflectional Paradigm in Russian for the Adjective and the Noun According to Number, Gender and Case

SingularPluralSingularPluralAdj.NAdj.NAdj.NNominative-iyØ-ie-i-aya-aDative-omu-u-im-am-oy-e-imInstrumental-im-om-imi-ami-oy-oy-imi	Case		M	asculine			Fer	ninine	
Nominative -iy Ø -ie -i -aya -a -ie -i Dative -omu -u -im -am -oy -e -im -ar Instrumental -im -om -imi -ami -oy -oy -imi -an		Sin	gular	Р			ular	Plura	
Dative -omu -u -im -am -oy -e -im -ar Instrumental -im -om -imi -ami -oy -oy -imi -an		Adj.	Ν	Adj.	N	Adj.	N	Adj.	N
Instrumental -im -om -imi -ami -oy -oy -imi -an	Nominative	-iy	Ø	-ie	-i	-aya	-a	-ie	-i
	Dative	-omu	-u	-im	-am	-oy	-е	-im	·am
Genitive -ogo -a -ih -ov -oy -i -ih (Instrumental	-im	-om	-imi	-ami	-oy	-oy	-imi -	am
	Genitive	-ogo	-a	-ih	-OV	-oy	-i	-ih	Ø

1246 Table 2

	Case	Masculine singular	Masculine plural
	Nominative	Eto maliy karlik- This is a small dwarf	Eto malie karliki- These are small dwarves
		<i>Eto mal-iy karlik-Ø</i> This Ø-cop small-M.NOM.SG dwarf-M.NOM.SG	<i>Eto mal-ie karlik-i</i> These Ø-cop small-M.NOM.PL dwarf-M.NOM.PL
	Dative	Idu k malomu karliku- I am going towards the small dwarf	Idu k malim karlikam- I am going towards the small dwarves
		<i>Idu k mal-omu karliku</i> I am going towards small-M.DAT.SG dwarf- M.DAT.SG	Idu k mal-im karlik-am I am going towards small-M.DAT.PL dwarf- M.DAT.PL
	Instrumental	Idu s malim karlikom- I am going with the small dwarf	Idu s malimi karlikami- I am going with the small dwarves
		Idu s mal-im karlik-om I am going with small-M.INST.SG dwarf- M.INST.SG	Idu s mal-imi karlikami I am going with small-M.INST.PL dwarf- M.INST.PL
	Genitive	Idu ot malogo karlika- I am going away from the small dwarf	Idu ot malih karlikov- I am going away from the small dwarves
		<i>Idu ot mal-ogo karlik-a</i> I am going away from small-M.GEN.SG dwarf- M.GEN.SG	Idu ot mal-ih karlik-ov I am going away from small-M.GEN.PL dwarf- M.GEN.PL
48	<i>Note:</i> Stereo stimuli	typical story characters rather than stere	eotypical gender characters were included
49 50	Sumun		
	sumun		
50	sumun		
50 51 52	sumun		
50 51 52 53	sumun		
50 51	sumun		
50 51 52 53 54	sumun		
50 51 52 53 54 55	sumun		
50 51 52 53 54 55 56	sumun		
50 51 52 53 54 55 56 57	sumun		

1247 Examples of Training Sentences Presented to Participants

1262 Table 3

1263 Distribution of Types and Tokens during Training

	Incidenal learning condition	Feminine gender	Masculine gender	Case	Number	Repeated	N of trials
	high type/low token frequency	7 stories	7 stories	4 cases	2 (singular, plural)	3 times.	336
	low type/high token frequency	3 stories	3 stories	4 cases	2 (singular, plural)	7 times	336
	low type/low token frequency	3 stories	3 stories	4 cases	2 (singular, plural)	3 times	144
264							
265							
266							
267							
268							
69							
70							
'1							
2							
3							
4							
5							
5							

1282 Table 4

1283 Model Selection

Predictor	AIC	BIC	Pr (>Chisq)
Condition	1536.88	1553.16	<i>p</i> < .001
Operation Span	1536.37	1558.07	.113
Block (old vs. new)	1537.30	1564.43	.548
Number	1539.30	1571.86	.759
Gender	1542.87	1586.28	.810
Case	1538.57	1598.26	.133
Condition x block	1536.52	1607.07	.062
Condition x number	1540.01	1621.41	.724
Number x gender	1543.82	1636.07	.903
Block x number	1544.61	1642.29	.272

Full model: Condition, Operation Span, Block, Number, Gender, Case.

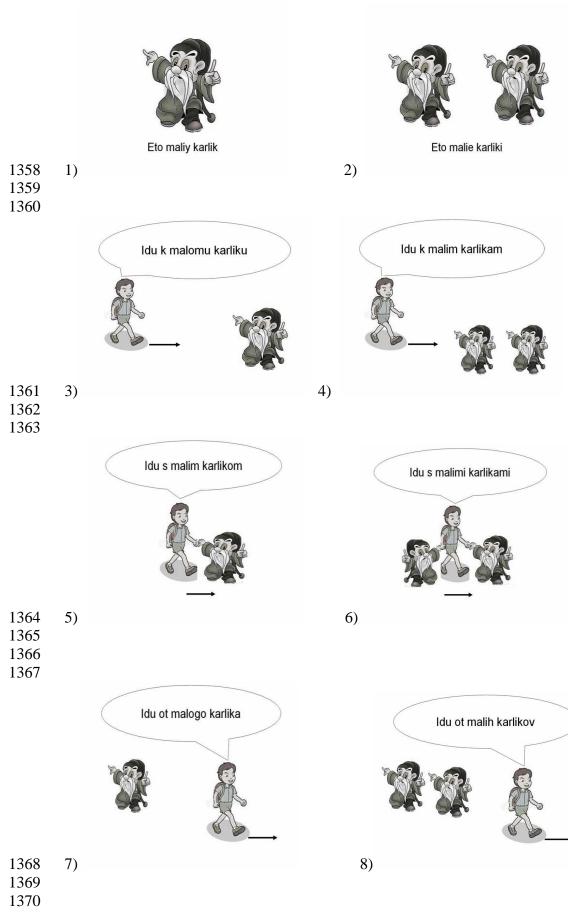
1285	Condition X Block,	Condition X Number,	Number X Gender,	Block X Number
------	--------------------	---------------------	------------------	----------------

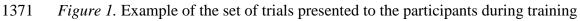
1297 Table 5

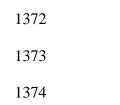
1298 Descriptive Statistics for Participants' Accuracy and WM Scores

High type/low token51.7014.2225.051.642.402.7Low type/high token59.9013.6723.653.233.904.		W	/M	Compre	hension	Proc	luction
High type/low token59.9013.6723.653.233.904.Low type/low token60.7510.5219.757.772.752.9	Condition	М	SD	М	SD	М	SL
Low type/high token59.9013.6723.653.233.904.Low type/low token60.7510.5219.757.772.752.9	High type/low token	51.70	14.22	25.05	1.64	2.40	2.7
		59.90	13.67	23.65	3.23	3.90	4.1
Note: M and SD represent raw scores	Low type/low token	60.75	10.52	19.75	7.77	2.75	2.9
	Note: M and SD represent r	aw scores					

1319 Table 6

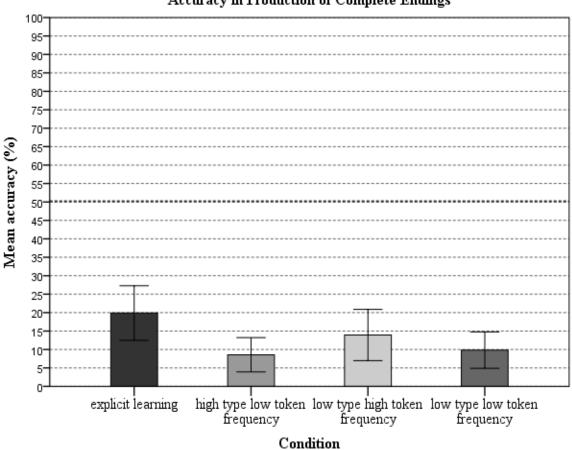

1320 Explicit Learning Condition vs. Incidental Learning Conditions for Comprehension


Condition High type/low token frequency Low type/high token frequency	Std. Error 1.76	Wald z	p value	Std. Error		
frequency Low type/high token	1.76				t value	p value
		3.30	< .001***	33.25	0.67	0.51
	1.60	0.74	0.46	33.26	0.94	0.34
Low type/low token frequency	1.45	-4.64	<.001***	33.35	-3.24	0.001**
Block (old vs. new)	4.35	0.34	0.66	88.43	0.25	0.80
Operation span	4.14	0.29	0.77	0.86	1.56	0.12

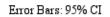

1337 Table 7

	Production accuracy		
Condition	Std. Error	Wald z	p value
High type/low token frequency	0.19	-5.53	<.001**
Low type/high token frequency	0.16	-3.50	<.001**
Low type/low token frequency	0.17	-5.43	<.001**
Block (old vs. new)	0.40	-1.94	0.05*
peration span	0.00	2.16	0.03*

1338 Explicit vs. Incidental Learning for Production


Mean accuracy (%) 40[.] 20[.] 15-high type low token low type high token low type low token frequency frequency frequency explicit learning Condition

Accuracy in Comprehension


Error Bars: 95% CI

- 1376

Figure 2. Accuracy performance by percentages of participants in the explicit learning and incidental learning conditions on the recognition task

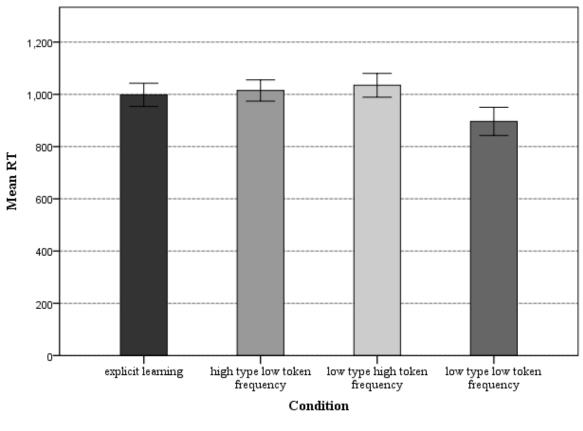

Accuracy in Production of Complete Endings

Figure 3. Accuracy in production of endings (%) by participants in the explicit learning andincidental learning conditions on the fill-in-the-blank task

- - - -

RTs in Comprehension

Error Bars: 95% Cl

Figure 4. Mean *RT*s of participants in the explicit learning and incidental learning conditions on

- 1406 the recognition task