“Pop-on and pop-off” surface chemistry of alanine on Ni\{111\} under elevated hydrogen pressures

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.
Published version at: http://dx.doi.org/10.1021/acs.jpcc.8b00186
To link to this article DOI: http://dx.doi.org/10.1021/acs.jpcc.8b00186

Publisher: ACS Publications
CentAUR
Central Archive at the University of Reading
Reading's research outputs online
Supporting Information

"Pop-on and Pop-off" Surface Chemistry of Alanine on Ni{111} under Elevated Hydrogen Pressures.

Richard E. J. Nicklin, †,‡ Andrey Shavorskiy, ¶,§ Funda Aksoy Akgul, ¶,∥ Zhi Liu, ¶,⊥ Roger A. Bennett, † Marco Sacchi, # and Georg Held*, †,‡

†Department of Chemistry, University of Reading, Reading RG6 6AD, UK
‡Diamond Light Source Harwell Science and Innovation Campus, Didcot OX11 0QX, UK
¶Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
§MAX IV Laboratory, Lund University, 225 04 Lund, Sweden
∥Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
⊥ShanghaiTech University, School of Physical Science and Technology, Pudong, Shanghai, 201210, China

#Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK

E-mail: g.held@reading.ac.uk
Phone: +44 (0)118 3786347. Fax: +44 (0)118 3786331
NEXAFS

Data Analysis

NEXAFS spectra were fitted as the sum of two Gaussian functions, superimposed on a linear background and an arctan function to capture the step:\(^1\)

\[
f(E) = BO + BS(E - SP) + \frac{SH}{\pi} \left[\arctan \left(\frac{E - SP}{G_{\pi \sigma}^c 0.2 SW} \right) + \frac{\pi}{2} \right] + G_H^\pi \cdot \exp \left[- \left(\frac{E - G_{\pi}^c 0.60 GH}{G_{\pi \sigma}^c} \right)^2 \right] + G_H^\sigma \cdot \exp \left[- \left(\frac{E - G_{\sigma}^c 0.60 GH}{G_{\pi \sigma}^c} \right)^2 \right]
\]

(1)

where \(f\) is the NEXAFS fitting function, \(E\) the photon energy, \(BO\) and \(BS\) the offset and slope of the background, \(SH, SP, SW\) the height, position and width of the step function and \(G_H^\pi, G_P^\pi, G_W^\pi, G_H^\sigma, G_P^\sigma, G_W^\sigma\) the height, position and width of the Gaussian functions for modelling the \(\pi^*\) and \(\sigma^*\) resonances.

As the main concern of the analysis was the angular dependence of the \(\pi\) resonance, no specific attempts were made to correct for energy calibration or intensity offset. Also, the \(\sigma\) resonance feature was only fitted with one broad peak, ignoring the structure within this feature. The abundance of structure with apparent angular dependence results in a step position that is particularly hard to define. For all spectra, most effort has been devoted to obtaining good fits for the low photon energy region near to the \(\pi^*\) resonance, as this is the strongest, sharpest feature and will convey most accurately information regarding the orientation of the adsorbed alanine molecule.

For fitting purposes, the absorption step edge was fixed between 533.5 and 534.0 eV. The fitting was done in two steps. First, the spectra for both angles were fitted independently for each set of spectra. For each layer, the average values over the two angles were calculated for all fit parameters, except the peak heights and background. These were fixed and only the peak heights and background were allowed to be optimised in the second step. The ratio of peak heights was then used to determine the molecular orientation. Two angles are mathematically sufficient to determine the angle \(\alpha\) between the plane of the COO group and
a surface with three fold symmetry via a the equation:¹

\[
I = I_v = A \left[P \cdot \cos^2 \vartheta \cdot \left(1 - \frac{3}{2} \sin^2 \alpha \right) + \frac{1}{2} \sin^2 \alpha \right]
\]

(2)

where \(\vartheta \) is the angle of incidence of the photon beam with respect to the surface plane (i.e. angle of X-ray polarization with respect to surface normal), and \(P \) the polarization of the beam (\(P \approx 1 \) at these photon energies).
C K-edge NEXAFS

C K-edge NEXAFS were recorded under equivalent conditions to those for the O K-edge spectra presented in the main body of the paper, and these results are shown below in Figure S1. These spectra show significant structure below the step edge, with is due to contamination of the beamline optical components. As a result, we did not attempt fitting of these NEXAFS data.

Figure S1: Auger yield NEXAFS spectra of L-alanine on Ni\{111\} at the C K-edge.
N K-edge NEXAFS

N K-edge NEXAFS were recorded under equivalent conditions to those for the O and N K-edge spectra presented in the main body of the paper, and these results are shown below in Figure S2.

Figure S2: Auger yield NEXAFS spectra of L-alanine on Ni{111} at the N K-edge.
DFT Structures of Anionic Alanine

Figure S3 shows the most stable monomer and dimer structures of anionic alanine (alaninate). The angles of the carboxylate groups with respect to the surface plane are 30.7° for the monomer and 28.6°/33.1° for the dimer.

References