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Methane emissions from natural wetlands and carbon release from permafrost thaw have 16 

a positive feedback on climate, yet are not represented in most state-of-the-art climate 17 

models. Furthermore, a fraction of the thawed permafrost carbon is released as methane, 18 

enhancing the combined feedback strength. We present simulations with an intermediate 19 

complexity climate model which follow prescribed global warming pathways to 20 

stabilisation at 1.5°C or 2.0°C above pre-industrial levels by the year 2100, and that 21 

incorporates a state-of-the-art global land surface model with updated descriptions of 22 

wetland and permafrost carbon release. We demonstrate that the climate feedbacks from 23 

those two processes are substantial. Specifically, permissible anthropogenic fossil fuel 24 

CO2 emission budgets are reduced by 17-23% (47-56 GtC) for stabilisation at 1.5°C, and 25 

9-13% (52-57 GtC) for 2.0°C stabilisation. In our simulations these feedback processes 26 

respond faster at temperatures below 1.5°C, and the differences between the 1.5°C and 27 

2°C targets are disproportionately small. This key finding is due to our interest in 28 



transient emission pathways to the year 2100 and does not consider the longer term 29 

implications of these feedback processes. We conclude that natural feedback processes 30 

from wetlands and permafrost must be considered in assessments of transient emission 31 

pathways to limit global warming. 32 

Background 33 

The 2009 meeting of the United Nations’ Framework Convention on Climate Change 34 

(UNFCCC) in Copenhagen formalised the aspiration to stabilise global warming at no more 35 

than 2°C above pre-industrial levels1. The subsequent UNFCCC Paris Agreement in 2015 36 

raised the additional possibility of aiming for an even lower upper warming threshold of 1.5°C2. 37 

These targets will require large reductions in anthropogenic greenhouse gas (GHG) emissions, 38 

with sustained decreases of ~3% per annum3,4 and development of technologies to remove 39 

carbon dioxide (CO2) from the atmosphere. This is because the equilibrium global warming for 40 

current GHG concentrations may already be near 1.5°C5. Given the anticipated difficulty in 41 

keeping below the 1.5°C threshold, two key questions are being asked. First, what are the 42 

implications in terms of allowable anthropogenic emissions to keep warming below 1.5°C 43 

rather than 2.0°C? Second, what is gained climatically or environmentally by keeping below 44 

1.5°C, i.e. are unwelcome climate impacts potentially avoided?  45 

The climate change observed during recent decades has been strongly linked to human 46 

influences on atmospheric GHG composition, leading the 5th IPCC assessment to state: “it is 47 

extremely likely that human influence has been the dominant cause of the observed warming 48 

since the mid-20th century”6. However atmospheric GHG levels are affected both directly (via 49 

anthropogenic GHG emissions) and indirectly by human activity. Indirect effects include 50 

climate change-induced adjustments to the land-atmosphere and/or ocean-atmosphere GHG 51 

exchange fluxes. This was first modelled for the global carbon cycle by [7] who predicted a 52 



significant flux of carbon to the atmosphere via increased plant and soil respiration under 53 

warming for a business-as-usual scenario. Similar analyses have been undertaken separately 54 

for additional methane (CH4) release from wetlands8,9 and additional carbon released from the 55 

long-term permafrost store10-12. The increase in global warming may be under-estimated for a 56 

prescribed anthropogenic emissions trajectory if these processes are not considered. In 57 

reference to policy objectives, the anthropogenic fossil fuel emission budgets (AFFEBs) to 58 

limit global warming to 1.5°C or 2.0°C may be significantly reduced from current 59 

assessments6,13,14. 60 

This research focusses on two key feedback processes which were not included in most models 61 

in the fifth phase of the Coupled Model Intercomparison Project (CMIP5)15 and will only be 62 

included in a small fraction of models participating the sixth phase (CMIP6). These are the 63 

effects of carbon release from the long-term permafrost store as CO2 and the increased CH4 64 

emissions from natural wetlands, and the coupling between the two effects where carbon from 65 

thawed permafrost is also released as CH4
16,17. These are particularly pertinent issues given that 66 

CH4 has a larger Global Warming Potential (GWP) by equivalent weight than CO2, and the 67 

recent resurgent growth in atmospheric CH4
18. 68 

In contrast to CMIP5 simulations, which modelled climatic and environmental responses to 69 

prescribed pathways in atmospheric concentrations, the objective here is to estimate the 70 

anthropogenic response to meet a specified global warming target. We develop an inverted 71 

form of climate model to follow prescribed temperature trajectories19 and calculate the 72 

corresponding AFFEBs13, including the two aforementioned feedback effects. The modelling 73 

framework is based on the coupled Joint UK Land Environment Simulator (JULES20,21) and 74 

Integrated Model Of Global Effects of climatic aNomalies (IMOGEN22,23) system (Methods). 75 

The approach taken is generic and may be employed in further research to answer a number of 76 

environmental policy related questions in terms of meeting specified warming thresholds. 77 



Model Setup 78 

We use JULES version 4.8 release, with the addition of a 14 layered soil column for both 79 

hydro-thermal24 and carbon25 dynamics (Methods). The JULES configuration includes 80 

representations of land-use and land-use change (LULUC) and ozone damage on plant stomata 81 

to address policy-relevant warming scenarios outside the scope of this paper. Full JULES 82 

details are given in Methods. 83 

The major advancement in the IMOGEN configuration used for this study is the prescription 84 

of evolving global temperature trajectories. Following this inverted form (Figure SI.1b; 85 

Methods), changes in radiative forcing, ΔQ, are calculated as a function of the time-history of 86 

global warming which are then ascribed to compatible atmospheric compositions of GHGs. 87 

The anthropogenic contribution to atmospheric CO2 is calculated whilst taking in to account 88 

changes to the land and ocean carbon stores, together with prescription or calculation of non-89 

CO2 greenhouse gases. Additional IMOGEN enhancements for this analysis include the 90 

calculation of atmospheric CH4 concentration and effective radiative forcing, capturing the 91 

climate impacts on CH4 release from natural wetlands (Methods). 92 

Critical to our analysis is understanding emission pathways available to stabilise at either 1.5°C 93 

or 2.0°C of warming since pre-industrial times. As this will be strongly influenced by 94 

anthropogenic perturbation of the climate system to present day, we constrain the historical 95 

global temperature (ΔTG) to the HadCRUT4 observational record26 and atmospheric 96 

composition to the Representative Concentration Pathway (RCP) record27 for the period 1850-97 

2015. Future projections of the non-CO2 atmospheric composition is taken from the IMAGE-98 

3.0 implementation of Shared-Socioeconomic-Pathway (SSP) version 2 under RCP2.6 99 

(SSP2_RCP-2.6_IMAGE)28 (Methods). 100 



We select three possible global warming pathways to stabilisation at the 1.5°C or 2.0°C targets 101 

by 2100 (Figure 1a and Figure SI.2), which are described using the formulation in [19] 102 

(Methods). Two of the considered trajectories follow the more traditional scenario of reaching 103 

asymptotes at 1.5°C and 2.0°C from below. The third asymptotes to 1.5°C after an overshoot 104 

to 1.75°C, representing far greater attempts of decarbonisation of the atmosphere towards the 105 

end of the 21st century. The overshoot trajectory allows investigation into hysteresis effects 106 

which may have path-dependent impact on temperature stabilisation, e.g. carbon release due to 107 

permafrost thaw.  108 

Discussion 109 

The atmospheric CO2 concentrations and derived anthropogenic emission pathways from our 110 

control runs (i.e. with no natural wetland CH4 nor permafrost carbon feedbacks) are displayed 111 

in Figure 1. Using this “standard” configuration of JULES, we estimate the interquartile range 112 

of the AFFEBs for 2015-2100 as 464-568 GtC to meet the 2°C target, and 227-283 GtC or 227-113 

288 GtC to meet the 1.5°C target with or without the overshoot, respectively (Table 1). The 114 

AFFEBs are broadly linear in ΔTG across the three scenarios, i.e. 378-480 GtC °C-1 and 421-115 

516 GtC °C-1 for the 1.5°C and 2°C scenarios, respectively. These results agree with previous 116 

estimates of AFFEBs using different methods13. 117 

The 2°C scenario allows close to “business as usual” emissions for the coming decade followed 118 

by extensive emission reductions of 3.5-4.1% per year between 2030 and 2100. However, if 119 

society were to act more immediately, the AFFEB could be met with year-on-year reductions 120 

of 2.2-2.7% from 2020. The 1.5°C scenario with no overshoot indicates a near immediate peak 121 

in annual emissions followed by 3.5-4.3% year-on-year reductions from 2020. Despite the 122 

similarity of the AFFEB for the two 1.5°C scenarios, the overshoot scenario places larger 123 

pressure on future generations. This pathway implies that anthropogenic activities are a net 124 



311-377 GtC source of CO2 until the early-2050s, then must become a net sink, capturing 90.4-125 

101 GtC. These estimates go further than previous attempts to quantify AFFEB13,14 as they 126 

provide an AFFEB for each GCM, and the transient pathway, to meet the specified stabilised 127 

temperature. 128 

The role of permafrost thaw in modulating the AFFEB is measured as the amount of carbon 129 

that was in the pre-industrial permafrost carbon store that is lost to the atmosphere. We define 130 

permafrost as soil layers within grid cells which JULES simulates as perennially frozen. We 131 

find our estimates of present day permafrost extent and loss rate to agree with the models 132 

assessed in [11] (Figure SI.3). Furthermore, a comparison with an observation dataset29 133 

demonstrates that our simulations reproduce a reasonable present day spatial coverage of 134 

permafrost (Figure SI.4). By 2100, the model ensemble estimates a median 138 Mha loss of 135 

permafrost area at 3m depth for the 1.5°C asymptote pathway and a median 239 Mha loss for 136 

the 2.0°C pathway (Figure 2a and Table SI.3). This degradation of permafrost results in an 137 

additional 40.0-46.3, 45.6-51.2 and 61.9-72.0 GtC of pre-industrial permafrost carbon which 138 

is no longer perennially frozen, relative to 2015, for the three temperature scenarios. Between 139 

20% and 30% of this newly “thermally active” carbon has been released to the atmosphere, 140 

reducing AFFEBs by 11.6-13.8 GtC across the three scenarios (Figure 2d and Table 1– blue 141 

boxes in first column). The uncertainty range presented here is the interquartile range of the 142 

climate ensemble. We use a model configuration very close to the upper extreme of the process 143 

uncertainty presented in [10], hence our estimates represent an upper limit to the potential 144 

permafrost feedback. Applying the findings of [10] implies that a lower limit to the permafrost 145 

feedback would be roughly half of what is presented here (~5-7 GtC). 146 

The differences in permafrost loss between scenarios appears less than previous estimates30. 147 

However, our estimates represent a transient snapshot at 2100 and not equilibrium conditions 148 

which will not be met for several centuries. The permafrost is not in equilibrium by 2100, 149 



particularly the deeper soil layers which show a lagged response to changes in the surface air 150 

temperature (Figure 2a and 2b). This behaviour is similarly observed in the pre-industrial 151 

permafrost carbon stocks which are still being significantly depleted by year 2100 (Figure 2c 152 

and 2d). The loss-rate of pre-industrial permafrost carbon to the atmosphere is still increasing 153 

by 2100 as the total pool of soil carbon to respire continues to grow despite the stabilisation of 154 

surface air temperature. This highlights the time-scales involved in permafrost processes and 155 

indicates that permafrost thaw will continue to have large implications on anthropogenic 156 

emissions into the 22nd century even if temperatures have stabilised. 157 

The response of the AFFEB to permafrost thaw is non-linear with respect to ΔTG, i.e. 19.3-21.7 158 

GtC °C-1 for the 1.5°C scenarios and 11.6-12.5 GtC °C-1 for the 2°C scenario. This implies that 159 

the permafrost feedback is faster at lower temperature changes, and keeping temperatures 160 

below 1.5°C, rather than 2°C, does not make large differences to AFFEBs to 2100. However, 161 

this behaviour is primarily a feature of our interest in the AFFEB to 2100 and the additional 162 

carbon released in the 2°C scenario will continue to have implications into the 22nd century.  163 

The impact of the natural wetland CH4 feedback on the AFFEBs is the sum of reduced carbon 164 

uptake of the atmosphere, ocean and land due to a higher atmospheric CH4 concentration. The 165 

magnitude and distribution of the JULES natural wetland CH4 emissions are driven primarily 166 

by wetland area and the soil temperature and carbon content (Methods). Our estimates of 167 

wetland extent and zonal distribution for the present day are within the range of state-of-the-168 

art observation datasets31,32 (Figure SI.4). To encapsulate a range of methanogenesis process 169 

uncertainty we include a temperature sensitivity ensemble by varying Q10 in Equation 1 170 

(Methods). We use Q10 values calibrated to represent two wetland types identified in [33] 171 

(“poor-fen” and “rich-fen”) and a third “low-Q10” which gave increased importance to high 172 

latitude emissions (Methods). Our ensemble spread sufficiently describes the magnitude and 173 

distribution of present day CH4 emissions from natural wetlands according to the models 174 



assessed in a recent intercomparison study34 (Figure SI.5). That said, there is still much 175 

uncertainty in natural wetland CH4 emissions and future work will look to improve our model 176 

via more rigorous comparisons with observational datasets. 177 

The global mean atmospheric CH4 concentrations are increased by 3-9% and 6-15% (w.r.t. the 178 

control simulation) when the natural CH4 feedback is included for the 1.5°C and 2°C target, 179 

respectively (Figure 3a for the “poor-fen” parameterisation and supplementary Figure SI.6 for 180 

the other parameterisations). The major driver of increased to CH4 emissions is increased soil 181 

temperatures as changes in wetland extent and soil carbon content are not consistent globally 182 

(Figure SI.7). The increased atmospheric CH4 concentrations imply reduced atmospheric CO2 183 

concentrations to ensure that simulations follow the prescribed temperature pathway (Figure 184 

3b). The reduced atmospheric CO2 concentrations result in reduced CO2 fertilisation of 185 

vegetation and a slower oceanic drawdown of CO2. Additionally, the increased ozone due to 186 

increased CH4 (Methods) limits productivity further still. The AFFEBs are hence lowered by 187 

33-51 GtC for the full temperature sensitivity ensemble (yellow cells in Table 1 and Figure 188 

3d).  189 

Similar to the permafrost feedback, the natural CH4 feedback is non-linear with respect to ΔTG, 190 

i.e. 55-71 GtC °C-1 for the 1.5°C scenario and 34-46 GtC °C-1 for the 2°C scenario. The effects 191 

of the natural CH4 feedbacks are 13-21% larger for the 2°C scenario than the 1.5°C scenarios 192 

despite a temperature increase that is 83% larger, from present day. Furthermore, we found that 193 

this non-linear behaviour was maintained for the three temperature sensitivities considered in 194 

our uncertainty analysis (Figure 3d). Therefore, in the context of the natural wetland feedback 195 

strength, we conclude that constraining warming to less than 1.5°C, rather than 2°C, has a 196 

disproportionately small impact on the AFFEB. 197 



The natural CH4 feedback strength is slightly reduced for the 1.5°C with overshoot in 198 

comparison to the 1.5°C asymptote pathway (Figure 3a). The two scenarios have similar 199 

atmospheric CH4 concentrations by 2100 (median difference < 5ppb) hence the atmospheric 200 

CO2 sinks in year 2100 are similar. However, the overshooting pathway has higher atmospheric 201 

CO2 concentrations during the 21st Century, hence the ocean and land sinks are not reduced by 202 

as much. This implies that an overshooting pathway may be more robust to the natural CH4 203 

feedback as the land and ocean sinks are more effective. Given that the magnitude of this 204 

difference is small, 1-2 GtC, it is difficult to generalise this behaviour. 205 

Our simulations show little interaction (where thawed permafrost is released as CH4) between 206 

the feedback processes, i.e. the difference between the sum of the AFFEB differences and 207 

AFFEB difference from the simulation including both feedback processes < 2 GtC. The amount 208 

of CH4 released from the thawed permafrost carbon is 0.2-0.6 TgCH4 per year, where the upper 209 

limit corresponds to the “low-Q10” parameterisation (Figure SI.8a) which gave a greater 210 

emphasis to CH4 emissions from cooler regions (methods). This is ~0.16-0.56 % of global CH4 211 

emissions in 2015, decreasing to ~0.12-0.46% in 2100 (Figure SI.8b). Similarly, the fraction 212 

of permafrost carbon released as CH4 is 0.15-0.59% (Figure SI.8c). The additional atmospheric 213 

CH4 translates to changes of global atmospheric CO2 of the order 0.1 ppmv, which has little 214 

impact on the absolute atmospheric carbon sink nor the uptake of carbon by the land and ocean. 215 

Hence, in the context of our estimates of AFFEBs to meet the UNFCC targets (200-500 GtC), 216 

the interplay of these two feedback schemes is largely negligible. However, our modelling 217 

framework does not account for thermokarst lakes created via ground subsidence following 218 

permafrost thaw. To provide an estimate of uncertainty regarding this omission we emulate the  219 

behaviour offline by linearly increasing wetland extent in permafrost regions through the 21st 220 

Century, from a factor of 1 in year 2000 to a factor of 2 in year 2100 (Figure SI.10). The 221 

increased CH4 emissions reduces the AFFEB by a further 0.8-2.5 GtC. However, we see this 222 



as an over-estimate as the emulation does not consider the reduced aerobic respiration due to 223 

increased saturated soil which has been shown to outweigh the increased CH4 emissions16. 224 

Conclusions 225 

The combined effect of these feedback processes has large implications on AFFEBs, 16.7-226 

23.2% (46.6-55.7 GtC) and 9.5-13% (51.4-64.6 GtC) reductions for the 1.5°C and 2°C 227 

scenarios from the control runs, respectively (Table 1 – green cells). In terms of mitigation 228 

pathways this corresponds to 4.6-5.4% year-on-year reductions in anthropogenic emissions 229 

beginning in 2020 to meet the 1.5°C emission budget. To meet the 2°C warming target, the 230 

allowable emissions would require year-on-year reductions of 3.9-4.5% beginning in 2030, or 231 

2.4-3.0% starting in 2020. This represents a 1-1.5% increase in reduction rates for the 1.5°C 232 

and only a 0.3-0.6% increase in reduction rates for the 2°C. The 1.5°C overshoot pathway 233 

indicates that total allowable anthropogenic emissions would need to be no more than 292-351 234 

GtC prior to the mid-2050s followed by a removal of 101-118 GtC. 235 

We find that to fulfil a 1.5°C warming threshold with no overshoot, increased CH4 emissions 236 

from natural wetlands reduce the AFFEB between now and year 2100 by 12-17%. Carbon 237 

released from the long-term permafrost store reduces the AFFEB by an additional 4.1-5.3%, 238 

and the interplay between the two processes a further 0.5-1 %. This leaves AFFEBs of 175-239 

235 GtC to 2100, a total reduction of 17-23%. Allowing for an overshoot to 1.75°C, but still 240 

leading ultimately to 1.5°C warming, makes little difference to the AFFEB, 172-240 GtC to 241 

2100. However, such an eventuality would require significant developments of carbon capture 242 

technologies in the second half of the 21st century during which the net anthropogenic 243 

contribution to the carbon cycle would have to be a 101-118 GtC sink. The reduction in AFFEB 244 

for stabilisation at 2.0°C is, in absolute terms, similar to the reductions required to meet the 245 

1.5°C target, 51.4-64.6 GtC. However, this is a much lower fraction of the AFFEB, 9.5-13.0%. 246 



Our overall findings are that the natural climate feedbacks considered here are non-linear with 247 

respect to the AFFEB to meet a given temperature target by year 2100. Therefore, the role of 248 

the natural CH4 and permafrost thaw feedback processes become increasingly more important 249 

when considering the lower stabilisation temperature target of 1.5°C. 250 
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Methods 388 

(1) The JULES model20,21.  389 

(a) Model version and configuration 390 

JULES is a process-based land surface model that simulates energy, water and carbon fluxes 391 

at the land-atmosphere boundary. JULES can be run as a standalone model using given 392 

meteorological driving variables or as the land surface component of climate modelling 393 

systems of varying degrees of complexity, e.g. Earth System Models35 or  IMOGEN18. We use 394 

the JULES version 4.8 release with the addition of a 14 layered soil column over 3m for both 395 

hydro-thermal24 and carbon dynamics25. Burke et al.,25 demonstrated that modelling the soil 396 

carbon fluxes as a multi-layered scheme improves estimates of soil carbon stocks and net 397 

ecosystem exchange. In addition to the vertically discretised respiration and litter input terms, 398 

the soil carbon balance also includes a diffusivity term which represents 399 

cryoturbation/bioturbation processes. The freeze-thaw processes of cryoturbation is 400 

particularly important in cold permafrost type soils10. 401 

The multi-layered methanogenesis scheme improves the representation of high latitude CH4 402 

emissions where previous studies underestimated production at cold permafrost sites during 403 

“shoulder seasons”36. The multi-layered scheme allows an insulated sub-surface layer of active 404 

methanogenesis to continue after the surface has frozen. These model developments not only 405 

improve the seasonality of the emissions, but more importantly for this study capture the release 406 

of carbon as CH4 from deep soil layers, including thawed permafrost. The formulation of the 407 

multi-layered scheme gives the local land-atmosphere CH4 flux, ECH4 (kg C m-2 s-1), as: 408 

𝐸𝐶𝐻4 = 𝑘 ∙ 𝑓𝑤𝑒𝑡𝑙 ∙ ∑ 𝜅𝑖 ∙ ∑ 𝑒−𝛾𝑧𝐶𝑠𝑖,𝑧
∙ 𝑄10(𝑇𝑠𝑜𝑖𝑙𝑧

)
0.1(𝑇𝑠𝑜𝑖𝑙𝑧−𝑇0)

𝑧=3m

𝑧=0m

𝑖

𝐶𝑠 𝑝𝑜𝑜𝑙𝑠

 
Equation 1 



Where z is the depth in soil column (in m), 𝑖 is the soil carbon pool, fwetl (-)is the fraction of 409 

wetland area in the gridcell, κi (s
-1) is the specific respiration rate of each pool (Table 8 of [21]), 410 

Cs (kg m-2) is soil carbon, Tsoil (K) is the soil temperature. γ (= 0.4 m-1) is a constant that 411 

describes the reduced contribution of CH4 emission at deeper soil layers due to inhibited 412 

transport and increased oxidation through overlaying soil layers. This is a simplification, 413 

however previous work which explicitly represented these processes showed little to no 414 

improvement when compared with in-situ observations37. The four soil carbon pools (i) in 415 

JULES are decomposable plant material, resistant plant material, microbial biomass, and 416 

humus. As JULES is a processed based model, the carbon emitted as CH4 is therefore removed 417 

from the soil carbon stock. Furthermore, as described in [38], soil respiration is non-zero in 418 

fully saturated soils, hence in anaerobic conditions JULES produces CO2 in addition to CH4. 419 

fwetl is calculated using the JULES implementation of TOPMODEL39 as the integral of a 420 

normalised gamma distribution of a prescribed topographic index dataset40, G(τ), between a 421 

critical, τcrit (ln(m)), and maximum, τmax (ln(m)), topographic index, i.e.: 422 

𝑓𝑤𝑒𝑡𝑙 = ∫ 𝐺(𝜏)𝑑𝜏
𝜏𝑚𝑎𝑥

𝜏𝑐𝑟𝑖𝑡

, 
Equation 2 

τcrit is dependent on the local water table as: 423 

𝜏𝑐𝑟𝑖𝑡 = 𝑙𝑛 (
Ψ(0)

Ψ(𝑧𝑤̅̅̅̅ )
) + 𝜏̅, Equation 3 

where Ψ(0) and Ψ(𝑧𝑤̅̅̅̅ ) (m2s-1) are the transmissivities of entire soil column and the soil column 424 

below the mean water table depth, 𝑧𝑤̅̅̅̅  (m). The τmax limit excludes regions where the water 425 

table is sufficiently high enough for stream flow and hence assumed to be a negligible emitter 426 

of CH4. It is calculated as: 427 

𝜏𝑚𝑎𝑥 = 𝜏𝑐𝑟𝑖𝑡 + 𝜏𝑟𝑎𝑛𝑔𝑒 , Equation 4 

where τrange (= 2.0) is a global tuning parameter. 428 



𝑧𝑤̅̅̅̅  is incrementally updated based on the balance of water flux processes on each JULES 429 

timestep. When 𝑧𝑤̅̅̅̅  is in the deep store (a singular 15 m below the 14 modelled layers) it is 430 

updated as the balance between the infiltration water, IDeep, and the baseflow, BDeep, as:  431 

𝜌𝜃𝑠𝑎𝑡

𝑑(𝑧𝑤̅̅̅̅ )

𝑑𝑡
= 𝐼𝐷𝑒𝑒𝑝 − 𝐵𝐷𝑒𝑒𝑝, Equation 5 

where ρ is the density of water and θsat is the saturated volumetric water content. If the deep 432 

layer is fully saturated 𝑧𝑤̅̅̅̅  is calculated diagnostically to be in the deepest unsaturated model 433 

soil layer. The water content of each layer, j, is updated on each time step as the balance of the 434 

vertical flux processes (infiltration, Ij, and Evapotranspiration, Ej), and, for layers below 𝑧𝑤̅̅̅̅ , a 435 

horizontal baseflow flux, Bj, i.e.: 436 

∆𝑧𝑗𝜌
𝑑(𝜃𝑗)

𝑑𝑡
= 𝐼𝑗 − 𝐸𝑗 − 𝐵𝑗 , Equation 6 

where ∆𝑧𝑗 is the thickness and 𝜃𝑗  is the volumetric water content of jth soil layer. For full details 437 

of the process based JULES hydrology please refer to [20] and [39]. 438 

In addition, the JULES configuration includes prescribed land-use and land-use change 439 

(LULUC), where land used for agriculture can only grow C3 and C4 grasses to represent crops 440 

and pasture. The land-use mask consists of an annual fraction of agricultural land in each grid 441 

cell. Historical LULUC is based on the HYDE 3.1 dataset41, and future LULUC is based on 442 

the SSP2_RCP-2.6_IMAGE28. When natural vegetation is converted to managed agricultural 443 

land, the removed vegetation carbon is placed into woody product pools that decay at various 444 

rates back into the atmosphere35. The carbon flux from LULUC is therefore not lost from the 445 

system.  446 

We use a JULES configuration including ozone deposition damage to plant stomata, which 447 

then affects land-atmosphere CO2 exchange42. JULES requires surface atmospheric ozone 448 

concentrations, O3 (ppb), for the duration of the simulation period (1850-2100). Here, we use 449 



two sets of monthly O3 concentration fields calculated using the HADGEM3-A GA4.0 model 450 

for low (1285 ppbv) and high (2062 ppbv) global mean atmospheric CH4 concentrations43. We 451 

regrid these fields (1.875x1.25 horizontal grid) to the spatial grid of IMOGEN-JULES 452 

(3.75x2.5 horizontal grid). We then linearly interpolate between the respective months in the 453 

regridded O3 fields using the global annual atmospheric CH4 concentration. The CH4 454 

concentration is taken from the prescribed SSP2_RCP-2.6_IMAGE plus the natural CH4 455 

modulation when the interactive scheme is in use. 456 

(b) Wetland CH4 emission scheme calibration 457 

We calibrate the temperature sensitivity of the multi-layered methanogenesis scheme (k and 458 

Q10(Tsoil)= Q10^[T0/Tsoil] in Equation 1) for each CMIP5 model in the IMOGEN ensemble to 459 

ensure the wetland CH4 production rates match present day observations33,34. [33] fit observed 460 

surface CH4 fluxes, ECH4, against temperature to Equation 7 using data from 71 sites: 461 

𝐸𝐶𝐻4_𝑇𝑢𝑟𝑒𝑡𝑠𝑘𝑦 = 𝐴𝑇𝑢𝑟𝑒𝑡𝑠𝑘𝑦 × 𝑄10_𝑇𝑢𝑟𝑒𝑡𝑠𝑘𝑦
0.1𝑇𝑠𝑜𝑖𝑙−10𝑐𝑚 , Equation 7 

where Tsoil-10cm is the temperature of the top 10 cm of soil.  462 

To capture temperature sensitivity uncertainty we calibrate Q10 in Equation 1 against Equation 463 

7 for 2 of the wetland types identified in [33] (“Poor Fen” and “Rich Fen”) using the daily output 464 

from the JULES-simulations at the year 2000 for each GCM. We select Q10 values which 465 

maximise the Pearson’s correlation coefficient. k is then calculated such that the global total 466 

for the year 2000 is 180 TgCH4 to match our assumptions of the atmospheric growth rate of 467 

CH4 in the IMOGEN CH4 feedback calculations (see IMOGEN description below). We 468 

selected the “Poor Fen” and “Rich Fen” parameterisations for our ensemble as these gave the 469 

best representation of the global distribution of CH4 emissions when compared with the output 470 

from [34] (Figure SI.9). A “Bog” parameterisation was ruled out as this tended towards 471 

unrealistically high tropical emissions, a “Swamp” parameterisation was ruled out due to the 472 



high levels of uncertainty reported in [33]. The optimised parameter values are given in Table 473 

SI.2 of the Supplementary Information. In addition to the two calibrated parameterisations we 474 

include a “lowQ10” (Q10=2.0, k=1.625x10-9) parameterisation which gave a larger fraction of 475 

global emissions to lower temperature regions (Figure SI.9).  476 

 (2) IMOGEN, EBM Inversion and the CMIP5 models selected for its calibration. 477 

(a) IMOGEN23 is a climate-carbon cycle model of intermediate complexity that uses “pattern-478 

scaling” of the seven meteorological variables required to drive JULES. Huntingford, et al. 23 479 

assume that changes in local temperature, precipitation, humidity, wind-speed, surface 480 

shortwave and longwave radiation and pressure are linear in global warming. Patterns are 481 

multiplied by the amount of global warming over land,  TL, to give local monthly predictions 482 

of climate change. When using IMOGEN in forward mode, TL is calculated with an Energy 483 

Balance Model (EBM) as a function of the overall changes in radiative forcing, Q (W m-2). 484 

Q is the sum of the atmospheric greenhouse gas contributions44, updated on a yearly timestep.  485 

Our simulations include a CH4 feedback system that captures the climate impacts on CH4 486 

emissions from natural wetland sources. The approach here follows that of [8] where prescribed 487 

CH4 concentrations, which assume a non-varying natural wetland CH4 component28, are 488 

perturbed using the anomaly in modelled natural wetland CH4 emission. To ensure consistency 489 

with the observed atmospheric CH4 growth rate we calibrate our model to produce 180 TgCH4 490 

per year for the year 2000, as detailed in the model calibration description above. The 491 

increased/reduced atmospheric CH4 concentration will have corresponding longer/short 492 

atmospheric lifetime, λ, than the prescribed concentration pathway. We account for changes in 493 

λ following the formulation and parameterisation of [45], i.e. λ=8.4 yr-1 for an atmospheric CH4 494 

concentration of 1745ppb. The changes in radiative forcing were calculated using the 495 

formulation in [44]. There is large uncertainty in the natural wetland contribution to global CH4 496 



emissions, for this study we scale to 180 TgCH4 per year, approximation based on a recent 497 

model intercomparison study34 (Figure SI.6). Additionally, the effect of increased atmospheric 498 

CH4 concentrations on tropospheric ozone levels is also accounted for, both in terms of 499 

radiative forcing and the impact on surface functioning through stomatal damage (see JULES 500 

description in Methods section 1a). 501 

Previous IMOGEN studies23,10 used 22 of the Earth System models (ESMs) involved in CMIP3 502 

(phase 3 of the Coupled Model Intercomparison Project). Here, we update and extend 503 

IMOGEN to use Earth System models (ESMs) involved in CMIP5. We downloaded CMIP5 504 

data from the mirror database held on the UK JASMIN computer during Autumn 2015. Table 505 

SI.1 lists every model for which historical monthly surface temperature fields were available. 506 

The key criteria for inclusion of the output from a given CMIP5 GCM simulation is as follows 507 

(see Supplementary Information and Table SI.1): 508 

1. Availability for the internal Energy Balance Model of surface temperature, top of the 509 

atmosphere (TOA) incoming shortwave radiation, outgoing TOA shortwave and longwave 510 

radiation; 511 

2. Availability of meteorological parameters to drive JULES: surface temperature, 512 

precipitation, surface relative humidity, surface downward shortwave radiation, surface 513 

downward longwave radiation, surface wind speeds and surface pressure 514 

3. Availability of two RCP scenarios for calibration and testing 515 

(b) Energy Balance Model (EBM) Inversion. The EBM was inverted such that a change in 516 

radiative forcing, ΔQ, is calculated as a function of a change in the global temperature, ∆𝑇𝑔 517 

(K), re-ordering of Equation (10) from Huntingford and Cox 22 gives: 518 

 
Δ𝑄(𝑡) = 𝑓 [Δ𝑇𝑜 [

(1 − 𝑓)𝜆𝑙𝜈

𝑓
+ 𝜆𝑜] − 𝜅

𝜕Δ𝑇𝑜,𝑠

𝜕𝑧
|

𝑧=0
], Equation 8 



Where ΔQ (t ) is the change in radiative forcing (W m-2) at time t, f is the fraction of Earth that 519 

is ocean, λl and λo are the climate sensitivities over land and ocean, respectively (W m-2 K-1), ν 520 

is the land-sea contrast and κ is the ocean diffusivity (W m-1 K-1). The values of the parameters 521 

f, λl, λo, ν and κ are unique to each GCM in the ensemble and are listed in the Supplementary 522 

Information, Table SI.2.  523 

The change in the depth-dependent ocean temperature (ΔTO) (K) must satisfy the diffusivity 524 

equation: 525 

 
𝑐𝑝

𝜕∆𝑇𝑜,𝑠

𝜕𝑡
= 𝜅

𝜕2∆𝑇𝑜,𝑠

𝜕𝑧2
, Equation 9 

where cp is (J K-1 m-3) is the specific heat capacity of salt water and z (m) is ocean depth 526 

(positive downwards). The change in the global mean surface ocean temperature (z=0) is then 527 

calculated from the global temperature,ΔTG as 22: 528 

 
∆𝑇𝑂 =

∆𝑇𝐺

[𝑓 + 𝜈 − 𝑓𝜈]
. Equation 10 

The global mean land temperature, ΔTL, required for the “pattern scaling” was calculated as: 529 

 Δ𝑇𝐿 = 𝜈Δ𝑇𝑂 Equation 11 

(c) Etminan CO2 Radiative Forcing Inversion.  530 

Etminan et al.44 present a formulation to calculate the change in radiative forcing, ∆𝑄𝐶𝑂2
, from 531 

a given change in the global mean atmospheric CO2 concentration. There is no exact solution 532 

for the inverse of this, i.e. to calculate the change in CO2 for a given ∆𝑄𝐶𝑂2
. We find the solution 533 

iteratively using Equation 3: 534 

𝐶𝑂2𝑖+1
= 𝐶𝑂2REF

× 𝑒
[

∆𝑄𝐶𝑂2

𝑎1(𝐶𝑂2𝑖−𝐶𝑂2REF)
2

+𝑏1(𝐶𝑂2𝑖−𝐶𝑂2REF)+𝑐1�̅�+5.36
]

 Equation 12 



We assume convergence has occurred if the CO2 concentration changes by less than 0.001 535 

ppm. The initial CO2 concentration for the iteration is taken to be the CO2 concentration for 536 

the previous year. We typically find that no more than 5 iterations are required for a change of 537 

10 ppm from the starting concentration. 538 

(d) Q non-CO2 calculation. Changes in radiative forcing, Δ𝑄 (Wm-2), calculated by the 539 

inverted IMOGEN EBM must be ascribed to changes in the atmospheric composition of GHGs. 540 

For this simplified description we consider two forcing contributions. The CO2 forcing, ΔQCO2 541 

(Wm-2), and the forcing of all other agents, ΔQnonCO2 (Wm-2). In the simplest case (not 542 

considering interactive CH4), a prescribed ΔQnonCO2, is removed from ΔQ to give ΔQCO2 as: 543 

∆𝑄C𝑂2 = ∆𝑄 − ∆𝑄𝑛𝑜𝑛 CO2. Equation 13 

The non-CO2 composition is taken from the SSP2_RCP-2.6_IMAGE pathway28. The 544 

SSP2_RCP-2.6_IMAGE pathway was chosen as it assumes very high GHG mitigation and the 545 

global warming pathway is reasonably close to the 1.5C or 2.0C targets of interest (i.e. 1.8 546 

C by 2100). This prescribed non-CO2 radiative forcing is subtracted from ΔQ to give the CO2 547 

radiative forcing (ΔQCO2 = ΔQ – ΔQnon CO2). The CO2 concentration is then derived using an 548 

iterated inversion of the CO2 radiative forcing equation in Etminan et al.44 (Methods). For a 549 

given ΔQnon CO2, we then estimate the CO2 concentration iteratively, as described above, using 550 

Equation 3. 551 

Each of the 34 GCMs that IMOGEN emulates has a different set of EBM parameters - λl, λo, ν, 552 

κ and f. Hence each GCM has a different ΔQ estimate for a given ΔTG (t) pathway. When 553 

IMOGEN is driven with a historical record of ΔTG the range of ΔQ for the present day (2015) 554 

is 1.13 W m-2 (Supplementary Information Figure SI.5a). For this work, we require the 555 

historical period, 1850-2015, to match observations of both ΔTG and atmospheric composition 556 

for all GCMs. We, therefore, attribute the spread in ΔQ to uncertainty in ΔQnon CO2, particularly 557 



the atmospheric aerosol contribution which has an uncertainty range of -0.5 to -4 Wm-2 6. Given 558 

this, and to ensure continuous functions of ΔQCO2 and ΔQnon CO2, we calculated the contributions 559 

as: 560 

∆𝑄CO2(𝑡) = {
∆𝑄CO2(t)𝑆𝑆𝑃,    

∆𝑄(𝑡) − ∆𝑄non 𝐶𝑂2(𝑡),
          

𝑡 ≤ 2015
𝑡 > 2015

 

 

∆𝑄non 𝐶𝑂2(𝑡) = {
∆𝑄(𝑡) − ∆𝑄𝐶𝑂2(𝑡)𝑆𝑆𝑃,

∆𝑄non CO2(𝑡)𝑆𝑆𝑃  + 𝑐(GCM),
     

𝑡 ≤ 2015
𝑡 > 2015

 

 
Equation 14 

where the subscript SSP indicates the value is sourced from SSP2_RCP-2.6_IMAGE. c (Wm-561 

2) is a GCM specific offset which ensured continuous ΔQCO2 or ΔQnon CO2 and was calculated 562 

at the transitional year (2015) as: 563 

𝑐(𝐺𝐶𝑀) = ∆𝑄non 𝐶𝑂2(2015) − ∆𝑄non CO2(2015)𝑆𝑆𝑃  Equation 15 

Figure SI.5 in the supplementary information shows the allocation of the ΔQ and the resultant 564 

atmospheric CO2 concentration pathways for the 2°C stabilisation temperature. We include the 565 

GCM specific 2015 aerosol-offsets in Table SI.2 in the Supplementary Information. 566 

(3) Temperature Profile Formulation. [19] provides a framework to create temperature 567 

trajectories based on two parameters which model the efforts of humanity to limit emissions 568 

and, if necessary, capture atmospheric carbon, i.e.: 569 

 Δ𝑇(𝑡) = Δ𝑇0 + 𝛾𝑡 + (1 − 𝑒−𝜇(𝑡)𝑡)[𝛾𝑡 − (Δ𝑇Lim − Δ𝑇0)] Equation 16 

where, ΔT (t ) is the change in temperature from pre-industrial levels at year t, ΔT0 is the 570 

temperature change at a given initial point (in this case ΔT0 = 0.89°C for 2015), ΔTLim is the 571 

final prescribed warming limit and: 572 

 𝜇(𝑡) = 𝜇0 + 𝜇1𝑡, Equation 17 



𝛾 = 𝛽 − 𝜇0(Δ𝑇Lim − Δ𝑇0). 

Where β (= 0.00128) is the current rate of warming and the 𝜇0 and 𝜇1 are tuning parameters 573 

which describe anthropogenic attempts to stabilise global temperatures19. The selected 574 

parameterisation of the three trajectories are based on comparisons with CMIP5 simulations 575 

for the RCP2.6 scenario (grey lines in Figure SI.2). The parameter values used for the three 576 

profiles selected are shown below. 577 

Profile ΔTlim μ0 μ1 

1.5°C 1.5 0.1 0.0 

1.5°C (overshoot) 1.5 -0.01 0.00085 

2°C 2.0 0.08 0.0 

 578 

(4) Code and Data Availability 579 

The data that support the findings of this study are available from the corresponding author 580 

upon request. The IMOGEN patterns and the model output required to produce the resulted 581 

presented herein will shortly be made publicly available for download on the EIDC. 582 

JULES is an open-source model and the branch used in this work is available from the met-583 

office science repository using the following URL (registration required): 584 

https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/edwardcomynplatt/vn4.8585 

_1P5_DEGREES?rev=11764 586 

The parameterisations used here are also permanently stored on the met-office science 587 

repository. Given the complexities in accessing the specific revision and machine 588 

configuration, these will be made available upon request to the corresponding author. 589 

  590 

https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/edwardcomynplatt/vn4.8_1P5_DEGREES?rev=11764
https://code.metoffice.gov.uk/trac/jules/browser/main/branches/dev/edwardcomynplatt/vn4.8_1P5_DEGREES?rev=11764
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Figure 1 Time-series for the control model ensemble. Blue is the 1.5°C asymptote pathway, yellow is the 1.5°C overshoot 

pathway and red is the 2°C asymptote pathway. Faint lines are the individual GCMs, bold lines represent the ensemble 

median, and the colours are consistent across the panels. (a) Temperature pathways; (b) simulated atmospheric CO2 

concentrations; (c) derived allowable anthropogenic emissions. 

 

Figure 2 The response of the permafrost soil column to warming through the 21st century. (a) Areal extent of permafrost 

within the top 1m of soil column; (b) areal extent of permafrost within the top 3m of soil column; (c) the amount of pre-

industrial permafrost carbon still perennially frozen; (d) the amount of pre-industrial carbon lost to the atmosphere. 

Blue is the 1.5°C asymptote pathway, yellow is the 1.5°C overshoot pathway and red is the 2°C asymptote pathway 
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Figure 3 Summary results for the natural methane feedback experiment. (a) Time-series of atmospheric CH4 when the 

interactive natural CH4 is included (“poor fen” parameterisation) for the three temperature pathways. The black line is 

the control simulation atmospheric CH4. (b) The reduction in atmospheric CO2 (from control simulation) to follow the 

prescribed temperature pathway. (c) The reduction in anthropogenic fossil fuel emissions due to reduced atmosphere, 

land and ocean sinks. (d) The reduction in AFFEB for the temperature sensitivity uncertainty ensemble. Blue is the 1.5°C 

asymptote pathway, yellow is the 1.5°C overshoot pathway and red is the 2°C asymptote pathway. 



Tables 599 

 600 

Total Anthropogenic CO2 emissions (GtC) 

  
Standard 

Methane  

Feedback Difference 

1.5°C 
Standard 265 (226-283) 226 (187-249) 39.6 (33.1-42.1)    

Permafrost 

Feedback 
254 (214-276) 214 (175-235) 40.1 (34.7-42.4)    

Difference 11.9 (11.6-12.2) 12.5 (11.9-14.0) 
52.1 (46.6-54.2) 

19.4 % (16.7-22.9 %) 

1.5°C 

overshoot 
Standard 271 (227-288) 232 (185-254) 40.2 (33.6-42.8)   

Permafrost 

Feedback 
258 (214-276) 218 (172-240) 40.6 (36.3-43.1)  

Difference 12.5 (12.1-13.0) 13.0 (12.4-14.3) 
53.5 (47.4-55.7) 

19.5 % (16.6-23.2 %) 

2°C 
Standard 527 (464-568) 504 (417-528) 47.4 (37.3-51.0)   

Permafrost 

Feedback 
514 (451-554) 467 (404-514) 47.8 (38.6-51.3)   

Difference 13.3 (12.8-13.8) 13.6 (13.0-15.0) 
61.1 (51.4 -64.6) 

11.4 % (9.5-13.0 %) 

Table 1 Emission budgets from the factorial experiment and the changes due to the introduction of the feedback 

processes. White cells represent the absolute emission budget for the 2015-2100 period, blue cells represent the 

change due to inclusion of carbon released from the permafrost store, yellow cells represent the change due to 

inclusion of an interactive CH4 scheme and green cells represent the change due to inclusion of both permafrost 

and interactive CH4 feedbacks. Bold values give the climate ensemble median for the “poor fen” CH4 

parameterisation. Bracketed values represent the spread of the climate ensemble interquartile ranges for the 3 

temperature sensitivity experiments (i.e. the full spread of the boxes in Figure 3b). 

 


