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2D versus 3D human induced pluripotent
stem cell-derived cultures for
neurodegenerative disease modelling
Eduarda G Z Centeno1,2, Helena Cimarosti2* and Angela Bithell3*

Abstract

Neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD)
and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic
cures available. Even though animal and histological models have been of great aid in understanding disease
mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is
still a critical need for systems that can provide more predictive and physiologically relevant results. One possible
avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human
induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These
systems contain key genetic information from the donors, and therefore have enormous potential as tools in the
investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing
platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D
models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived
hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture
systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current
perspectives in the field.
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Background
Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD) and amyotrophic lateral
sclerosis (ALS) are all neurodegenerative disorders
characterized by abnormal protein deposition and
progressive loss of specific neuronal populations,
leading to their specific clinical manifestations [1–3].
These diseases affect millions of people every year and
so far, there are no therapeutic cures available. Most
current treatments are not disease modifying, but
instead provide only some symptomatic relief to the
patients. Looking at pharmaceuticals success rates, the
probability of a drug for a neurodegenerative disease
progressing from Phase 1 trials to US Food and Drug

Administration approval is around 10% [4]. Reasons for
this low success rate include the difficulty in identifying
disease aetiology, the gap in translation between animal
and human studies and a lack of appropriate human
models to determine underlying mechanisms of action
and for pre-clinical testing [5]. In order to find more
effective treatments, there is a critical need for better
experimental models that can provide more predictive
and physiologically relevant results. To this end, one
possible avenue is the development of human induced
pluripotent stem cell (iPSC)-derived models for use in
parallel with animal models to better understand
disease mechanism and discover the best targets to take
forward into clinical trials.

Pluripotent stem cells (PSCs) such as embryonic stem
cells (ESCs) are undifferentiated cells with self-renewal
capability and the potential to differentiate into any cell
type of the body, providing the possibility to model
human cells and tissues in vitro. Before 2007, the only
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source of human PSCs for research was ESCs. In 2006,
Takahashi and Yamanaka generated iPSCs from mouse
somatic cells, later repeated with human cells, known as
hiPSCs [6, 7]. The advent of hiPSC technology has
opened up new possibilities for biomedical research.
This breakthrough gave scientists access to human
embryonic-like stem cells, while avoiding many of the
ethical limitations related to the use of human embryos
in scientific research. Importantly, hiPSCs can be
obtained directly from any individual, including patients
carrying important disease-specific genetic information,
which is essential for the study of diseases that are
exclusively monogenic (e.g. HD), and pathologies that
can be found in both familial or sporadic forms of
disease (e.g. AD, PD, ALS) [8–10]. Therefore, patient-
derived hiPSCs have the potential to increase accuracy
in drug discovery and precision in diagnosis.

In the developing and adult human central nervous
system (CNS), neural stem cells (NSCs) and neural pro-
genitor cells (NPCs) receive a range of spatiotemporal
instructive cues that guide their maintenance, differenti-
ation into specialised neurons and glia, and subsequent
behaviour [11, 12]. To generate physiologically relevant
models of the human brain in vitro, stem cell-based
systems thus often aim to recapitulate in vivo conditions,
including pathophysiological mechanisms observed in
vivo, to provide more accurate and reliable systems for
understanding disease, drug testing or diagnostics [13].
Conventional two-dimensional (2D) cell culture systems
have been an extremely valuable tool that have provided
important knowledge for more than 100 years, offering
simplified and low-cost methods for modelling CNS dis-
eases [14, 15]. However, scientists argue that 2D models
do not mimic human brain complexity, creating a need
for more physiologically relevant models. For example,
in 2D models for AD, changing the culture medium
regularly can remove the secreted amyloid beta (Aβ)
species secreted into the cell culture media, thus inter-
fering with and biasing the analysis of Aβ aggregation.
Three-dimensional (3D) systems might better mimic the
restrictive environment of human brain, allowing Aβ de-
position and aggregation by limiting the diffusion of se-
creted Aβ into the cell culture medium and enabling the
formation of niches that accumulate high concentrations
of Aβ [16–18]. 3D models have been proposed as a way
to more closely recapitulate in vivo CNS architecture
and are thus more realistic models that could fulfil an
existing gap between 2D cell culture and animal models.
Indeed, 3D cultures have already been shown to be su-
perior to 2D in investigating cell-ECM interaction, cell
differentiation, cell-cell connections and electrophysio-
logical network properties [15, 19, 20].

This review will focus on the use of stem cells, particu-
larly hiPSCs, to model neurodegenerative diseases. In

brief, we will cover the available stem cells types, types
of 2D and 3D culture systems and materials, existing
disease models, obstacles to model diseases such as AD,
HD, PD and ALS in vitro, and current perspectives in
the field.

Main text
Pluripotent stem cells
Stem cells can decrease the need for using animal
models, avoiding several concerns regarding animal well-
being in scientific research. These can be divided into
PSCs (ESCs and iPSCs), and adult/tissue-specific stem
cells (multipotent and unipotent stem cells) [21–24].
PSCs have an indefinite self-renewal capability and can
differentiate in all cell types of the three germ layers,
including neural cell types [21]. Such cells have been
widely used for disease modelling [10, 25–28], tissue
engineering [29, 30] and regenerative medicine [31].
ESCs derived from the inner cell mass of a developing
blastocyst were the only available PSCs until the discov-
ery of iPSC technology. This now means that PSCs can
be obtained from somatic cells through reprogramming
using specific factors including the original ‘Yamanaka
factors’: OCT3/4, SOX2, C-MYC and KLF4 [6, 24]. At
first, iPSCs were obtained by methods that would leave
residual transgene sequences from the reprogramming
vectors, which could lead to unwanted or unpredictable
effects in cell behaviour [23, 30–32]. In the last few
years, new protocols have been developed (e.g. use of
Sendai virus, RNA-based methods and episomes) using
vectors or reagents that do not integrate or leave any
residual sequences into iPSCs genome, and therefore
create footprint-free iPSCs [32]. The discovery of iPSCs
also has major implications for the ethical concerns
surrounding the use of human ESCs, circumventing the
need for human embryos in PSC research. Nowadays,
iPSCs are widely studied and many protocols are avail-
able to differentiate them into a wide range of cell types,
including CNS cells [8, 10, 33–36].

During embryonic development in mammals, all neu-
rons and glia of the CNS (except microglia) are derived
from NSCs of neuroectodermal origin (also known as
neuroepithelial cells) [37, 38]. Knowledge of in vivo
developmental programmes and interactions that lead
to the subsequent generation of specific types of neu-
rons and glia can be used to direct the differentiation of
human PSCs (and their progeny) into mature CNS cell
types in vitro, such as cortical neurons [39], dopamin-
ergic neurons [40], astrocytes [41] and oligodendrocytes
[42, 43] (see also [44] for a recent review and further
discussion below). In the adult CNS, NSCs can be
found in two neurogenic niches: the subgranular zone
(SGZ) of the hippocampal dentate gyrus, and the sub-
ventricular zone (SVZ) of the lateral wall of the lateral
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ventricle [12, 45–47]. These are sometimes referred to
as neurovascular niches due to the close association
and importance of associated vasculature [48]. In both
niches, NSCs give rise to a range of differentiated neu-
rons and glia via specific intermediates [49, 37, 49, 50].
The niches provide essential nutritional and structural
support, as well as maintain NSCs and influence subse-
quent cell fate and function; these factors are controlled
by extracellular and physical cues, including (but not
limited to) growth factors (e.g. brain-derived neuro-
trophic factor (BDNF) and nerve growth factor (NGF)),
morphogens (e.g. Notch and bone morphogenic
proteins), and both cell-cell and cell-ECM interactions
[12, 13, 47]. Understanding normal CNS development
and the role of NSC niches can thus provide important
knowledge that can be exploited to develop and
improve human PSC and other stem cell-based in vitro
models to better mimic the in vivo microenvironment
and cell behaviour. The more realistic the model, the
better it is expected to function as an accurate and
robust system for the elucidation of CNS function and
dysfunction, drug screening or interrogation of under-
lying mechanisms of various neuropathologies, includ-
ing neurodegenerative diseases.

In vitro models
Although animal models offer the possibility to study
both physiological and behavioural mechanisms (which
most other alternatives do not), they do not always
provide translatable results in pre-clinical drug screening
for humans due to inter-species differences [51, 52].
Human post-mortem material also plays an important
role for studying diseases, providing important pathohis-
tological information. However, this tissue has limited
availability, lacks important information such as cell
function and behaviour due to tissue degeneration, and
does not allow the observation of disease progression
[53]. Thus, in vitro models, especially patient-derived
iPSCs, can be used in parallel with animal models and
post-mortem material to study CNS disorders. These
models can also provide a relatively inexpensive research
tool and offers scientists the opportunity to observe dis-
ease progression in vitro, understand underlying mecha-
nisms and identify new therapeutic targets.

2D models
Conventional 2D cultures became possible in 1907 [54].
This type of model consists of cells plated directly on a
rigid substrate (e.g. polystyrene or glass), usually coated
with substrates that mimic ECM composition, promote
cell adhesion and can support desired cell behaviour
such as proliferation or differentiation [20, 55, 56]. For
example, laminin, poly-ornithine, poly-lysine and fibro-
nectin are standard coating substrates for cell culture

[56, 57]. They foster cell adhesion through integrin
receptors [58], contribute to NSC differentiation via
extracellular signal-regulated kinase (ERK) ERK signal-
ling [59], facilitate cell attachment due to electrostatic
attraction with the cell surface [60, 61], coordinate
synaptogenesis and synaptic activity [62], and regulate
neural cell migration and neurite outgrowth by interact-
ing with different proteins, e.g. integrins and tenascins
(major component of CNS ECM) [15, 58, 62–67].
Despite the unquestionable importance of traditional 2D
models, especially considering that they provide a rela-
tively cheap and reproducible tool to be used in parallel
with animal models, they do not mimic real brain tissue
complexity and organization, limiting interaction
between cells to only side-by-side contact and lacking
nutrient/oxygen diffusion and waste removal dynamics
[20, 55]. These modelling limitations can impact on cell
morphology [68], survival [69], proliferation and differ-
entiation [70], and thus on disease mechanisms [71].
This led to efforts to develop more complex platforms
including 3D models.

3D models5
There are two main approaches to develop 3D cultures:
scaffold-free techniques and scaffold-based techniques.
The first can be generated by growing cells in 3D self-
assembled spherical clusters (sometimes referred to as
cell aggregates or spheroids), which do not contain
added biomaterials and the ECM present is produced
only by cells themselves [19, 72]. Conversely, scaffold-
based 3D cultures can be obtained by seeding/dispersing
cells into 3D solid or liquid matrices made from either
natural or synthetic materials (e.g. Matrigel™, Alvetex®)
and using the material to provide cell-matrix interaction
and guide cell behaviour [19, 72]. Both techniques
present pros and cons that have been well summarised
in other reviews [73, 74] and have already been used to
create CNS in vitro models [15, 75, 76], including
models using iPSCs [71, 77–79]. A summary for
comparison with 2D culture methods, advantages and
disadvantages is shown in Table 1 and discussed further
below.

The CNS microenvironment is dynamic and mechan-
ical and chemical changes are continuously occurring
due to cell-cell and cell-ECM interactions. These con-
stant changes directly influence cell behaviour and the
different combinations of chemical and mechanical cues
are responsible for guiding correct neurodevelopment by
controlling cell proliferation, differentiation, neural cir-
cuit integration, or can also be responsible for inducing
neurodegeneration [12, 13, 34, 47, 58, 65, 80]. Taking
into consideration the mutual interaction between cells
and their microenvironment, there have been consider-
able research efforts to create more realistic, tissue-like
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in vitro models for a range of neuroscience applications.
In scaffold-free models, spheroid structures can produce
their own ECM, therefore replicating natural develop-
ment of the cellular niche as it happens in vivo [19, 81].
Whereas in scaffold-based approaches the material
provides the appropriate physical and/or chemical cues
to allow cell adhesion, proliferation, differentiation and
survival, as well as permitting cells to alter and interact
with ECM components [15, 82, 83]. Permeability for
nutrients and oxygen, permittivity for electrical conduct-
ance, cost-effectiveness, easy manipulation and reprodu-
cibility are other essential features for scaffold-based
models that could also allow angiogenesis and not
trigger immunological responses [15, 55, 82–84].

Hydrogels are good candidates for scaffold-based 3D
CNS models. These cross-linked polymer networks,
made from different natural (e.g. agarose, collagen, silk,
chitosan, cellulose and Matrigel™) and synthetic (e.g.
poly 2-hydroxyethyl methacrylate, polyethylene glycol)
substrates, [57, 83, 85] are nutrient and oxygen perme-
able, mechanically similar to CNS tissue, hydrophilic,
and show low cytotoxicity [15, 83, 85, 86]. They are also
tuneable by changes in polymer mesh and functionalisa-
tion with different components such as adhesion pro-
teins, enzymes and growth factors [83]. They have been
widely used with NSCs [87–90] and show great potential
due to their versatility as 3D scaffolds, providing important

answers on how physical cues such as stiffness and top-
ology can directly affect 3D cell culture [71, 87, 90–92]. A
number of studies with hydrogels have shown that stiffness,
topology, pore size and material composition can directly
affect cell behaviour [71, 87, 90–92]. For example, work by
Wang and colleagues [55] explored three different chitosan
biomaterials (films, porous scaffolds and multimicrotubule
conduits) to investigate the influence of topology on NSC
fate, showing that cell proliferation and differentiation were
directly influenced by different topologies and confirming
the importance of biomaterial design in cell culture. An-
other study [88] showed that 3D interferon (IFN)-γ-immo-
bilized hydrogels drive NSCs cultured in basic medium to a
more neuronal committed differentiation. Their 3D model
was superior to their 2D model, whereby with the highest
IFN-γ surface concentration, approximately 73% of cells
were βIII-tubulin-positive neurons in 3D in comparison to
60% in 2D [88, 89]. These examples show how several
factors such as mechanical and chemical cues, must be
taken into consideration to generate models that recapitu-
late CNS complexity and provide physiologically relevant
results.

Hydrogels can also be integrated with other technolo-
gies to improve cell culture, for example in association
with microfluidic technologies, providing platforms that
present rudimental vascularization in vitro, and with
organoid 3D technology, supporting tissue formation

Table 1 Summary comparison of 2D and 3D methods, advantages and disadvantages

2D 3D

Techniques Cells are cultured on flat, adherent surfaces, typically made of
plastic or glass, and usually coated with substrates (e.g. laminin,
PDL) to enhance cell adhesion and/or direct differentiation

Scaffold-based systems based on a solid or liquid matrix of either
natural or synthetic material (e.g. inert electrospun scaffolds, natural
and synthetic hydrogels). Cells are typically seeded onto/into
scaffold materials
Scaffold-free systems (e.g. self-assembled spheroids, organoids or
cell aggregates).

Advantages Simplicity of use (e.g. for less experienced users and typically
not requiring specialist equipment)
Inexpensive
Homogenous culture
Reproducible
Well-established technique (e.g. for comparison with existing
data)
Ease of access to cells for downstream applications and for
visualisation techniques (e.g. microscopy)

Allow more complex interactions between cells
Allow cell-ECM interaction
Can provide better spatial organization
Higher degree of complexity for more relevant models of in vivo
environment and tissues
Scaffold-based systems can be designed to provide specific
chemical and physical cues (e.g. functionalisation, changes in
pore size and stiffness)

Disadvantages Not a good representation of the in vivo, physiological
environment
Cell-cell interaction largely limited to side-by-side contact
Lack of predictive ability for in vivo events
Lack of relevant cell-ECM interactions
Results in cell flattening/altered morphology
Leads to altered gene expression

Can be expensive (particularly in comparison to 2D)
Can present a greater challenge for visualisation/microscopy
techniques and other parallel methodologies (e.g. patch clamp
electrophysiology)
Can be challenging for homogeneous distribution of components
(e.g. oxygen and nutrients), leading to necrotic areas, cell death or
heterogeneity
May require specialised and expensive equipment (e.g. bioreactors)
and expert handling and optimisation
Potential for reduced reproducibility, including variability of natural
scaffold materials
Scaffold-based approaches must take into consideration material
properties (e.g. biodegradability, pore size, chemical composition)
Scaffold-based platforms can increase the difficulty of retrieving
cells for downstream applications
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[93–97]. Organoids are 3D cultures that use the basic
knowledge of scaffold-free techniques (i.e. letting cells
self-organize and generate tissue structure) in combin-
ation with scaffold-based advantages (i.e. using a matrix
to provide structure and external cues) to form organ-
like structures [97]. Recent studies have shown that
brain organoids, which can survive up to 10 months in
bioreactors and can be obtained from patient-derived
stem cells, have the potential to mimic mammalian neu-
rodevelopmental mechanisms, CNS spatial organization
and cell-ECM interactions [97–99]. The use of Matrigel™
is often essential for organoid culture, providing physico-
chemical cues for correct tissue organization [97, 100,
101], though some spheroid methods report alternative,
simplified methods [102]. Organoids can mimic CNS
complex organization, including development of various
brain regions organized in independent domains,
recapitulation of aspects of human cortical development,
and exhibition of radial glial cells typical behaviour and
morphology. Due to these advantages they are consid-
ered to show greater potential for CNS modelling when
compared to other 2D and 3D protocols such as neural
rosettes and neurospheres. So far, cerebral organoids
have been used to study early brain development and
neurodevelopmental disorders, as well as neurodegener-
ative diseases, and modelling different regions of the
brain including cortex and midbrain [79, 97–109]. Raja
et al. [110] showed an important advance in using orga-
noid technology for late-stage disease modelling. They
were able to recapitulate fAD phenotypes such as signifi-
cantly raised levels of secreted Aβ, amyloid aggregation,
hyperphosphorylated Tau protein and abnormal
endosomes using organoids derived from hiPSCs. They
also observed age-dependent increases in phenotypes
and that amyloid pathology preceded Tau pathology.
Similar success has been described with use of human
neuroepithelial cells to generate organised, functionally
active midbrain models suitable for modelling PD, as
well as using patient-derived iPSC-based organoids to
investigate PD pathology in and outside of the brain
[108, 109]. The generation of brain organoids using
iPSCs from patients that present late-onset diseases can
therefore provide an invaluable tool to obtain further
insight into pathology progression, as well as aid in
developing new treatments. Another recent study
building on spheroid/organoid technology generated
subdomain-specific neural spheroids, representing the
dorsal or ventral forebrain, and then assembled them
together in culture in order to study migration of
GABAerigc interneurons from the ventral to dorsal
forebrain, including in cultures from patient-derived
hiPSCs carrying mutations leading to Timothy Syn-
drome, a neurodevelopmental disorder with defects in
such migration [111]. Such models can therefore not

only represent disease-relevant regions of the brain
(such as cortex for AD or midbrain for PD) but can also
interrogate inter-regional interactions in the brain as
well as interaction between cell types within a brain
region.

hiPSCs as models for neurodegenerative diseases
In vitro models are valuable tools for studying CNS
diseases. Although human CNS cells can be derived
from ESCs, until recently this was not possible for
specific individuals, except post-mortem or on occasion
where tissue samples are surgically obtained [26]. Hence,
the advent of hiPSCs provided an invaluable alternative,
with the now relatively simple task of generating
patient-derived iPSCs by reprogramming that can then
be differentiated into specific neural subtypes [112].
Different 2D and 3D models using hiPSCs have since
been developed to elucidate the pathological mecha-
nisms underlying neurodegenerative diseases and
provide insights for new therapeutic strategies. Below we
briefly discuss existing models for specific disease that
are summarised in Table 2.

Alzheimer’s disease
First described in 1906 by Alois Alzheimer, AD is a
neurodegenerative disease characterized by the progres-
sive loss of memory and cognition, language impairment,
difficulties with problem-solving and eventual death. AD
is the most common neurodegenerative disorder and the
most prevalent type of dementia. In 2015 46.8 million
people worldwide were living with dementia, which
represented an economic burden of US$ 818 billion, and
by 2030 it is expected that 74.7 million people will be
affected, costing up to US$ 2 trillion worldwide [113].
AD’s aetiology is complex and still not well understood,
but Aβ plaques and Tau neurofibrillary tangles (NT) are
well known hallmarks of the disease. The amyloid
hypothesis postulates that gradual and excessive
accumulation of Aβ induces hyperphosphorylation of
Tau and NT formation, leading to neuron structural
destabilization and consequent death [114, 115]. How-
ever, despite the evidence supporting Aβ’s role in AD,
drugs to reduce Aβ levels have thus far failed and are
unable to reverse deficits in memory or to cease cogni-
tive decline in human clinical trials [116–118]. As a
consequence of these failures and the difficulty in find-
ing a link between cognitive impairment and Aβ levels,
research has started pursuing new targets (e.g. anti-Tau
approaches). However, no drug has been successful in
Phase III trials to date [118, 119]. Experts argue that
multi-target approaches could be more fruitful than
single-target drugs, increasing the likelihood that an ef-
fective AD treatment can be found [118, 120]. In paral-
lel, it is important to develop tools that provide higher
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Table 2 Summary of studies using hiPSC technology

Disease Type of
Culture

Main Findings Study

AD 2D Increased abnormal p-tau production
Gene expression patterns related to AD

Hossini et al. (2015) [134]

AD 2D Accumulation of Aβ oligomers in hiPSC-derived neurons and astrocytes Kondo et al. (2013) [131]

AD 2D and 3D hiPSCs neuro-spheroid model obtained from patient’s blood successfully
differentiated into neuronal culture
3D neurons showed less reduction of Aβ compared to 2D neurons in
same concentrations of BACE1 or γ-secretase inhibitors

Lee et al. (2016) [77]

AD 3D Aβ aggregation
Hyperphosphorylated tau protein
Endosome abnormalities
Reduction of amyloid and tau pathology using β- and γ-secretase inhibitors

Raja et al. (2016) [110]

AD 2D Higher Aβ42/Aβ40 ratio in PSEN-mutated cells Sproul et al. (2014) [133]

AD 2D Higher Aβ42/ Aβ40 ratio in diseased hiPSCs
Neurons responded to y-secretase inhibitors

Yagi et al. (2011) [132]

AD 2D and 3D 3D model was able to recapitulate AD pathology whilst 2D was not Zhang et al. (2014) [71]

ALS 2D Higher levels of soluble TDP-43
Increased cell death

Bilican et al. (2012) [159]

ALS 2D Recapitulated TDP-43 proteinopathy Burkhardt et al. (2013) [164]

ALS 2D Neurofilament aggregation and neurite degeneration Chen et al. (2014) [163]

ALS 2D C9orf72 mutations liked to dysregulation of calcium signalling and altered
proteostasis
Increased susceptibility to cell death

Dafinca et al. (2016) [166]

ALS 2D Dysregulation of neuronal synaptic activity Devlin et al.(2015) [167]

ALS Successful generation of hiPSC-derived motor neurons Dimos et al.(2008) [28]

ALS 2D Degeneration of astrocytes during disease progression Astrocytes unable
to support neurons

Hall et al. (2017) [169]

ALS 2D Aberrant gene expression in fALS motor neuron progenitor cells
Stress vulnerability in fALS motor neurons

Ichiyanagi et al. (2016) [161]

ALS 2D Suggests astrocyte role in neuron death by impairing autophagy mechanisms Madill et al. (2017) [170]

ALS 2D Recapitulated C9ORF72 repeat toxicity Sareen et al. (2013) [165]

ALS 2D Generation of motor neurons from hiPSCs
Neurons were electrically excitable
Increased neuron cell death in response to SOD1-mutated glia

Toli et al. (2015) [162]

ALS 2D Dysregulation of neuronal synaptic activity Wainger et al. (2014) [168]

ALS 2D Recapitulated TDP-43 proteinopathy Zhang et al. (2013) [160]

HD 2D Reverted HD phenotypes in hiPSCs using homologous recombination to replace
mutated sequence with normal one

An et al. (2012) [145]

HD 2D Generated several iPSC lines from homozygous and heterozygous HD patients
Significant increase in lysosomal activity in HD-iPSCs

Camnasio et al. (2012) [27]

HD 2D Proteomic analysis showing that HD-iPSCs are highly susceptible to oxidative stress Chae et al. (2012) [150]

HD 2D Recapitulated disease phenotype using hiPSCs Consortium (2012) [146]

HD 2D hiPSCs generated mostly GABAergic neurons (that are more susceptible to degeneration)
Behavioural recovery after transplantation of hiPSCs-derived neural precursors into rats

Jeon et al. (2012) [149]

HD 2D iPSC-derived astrocytes showed increased cytoplasmic vacuolation Juopperi et al. (2012) [147]

PD 2D Generation of ventral midbrain dopaminergic neurons from hiPSCs Cooper et al. (2010) [140]

PD 2D Generation of dopaminergic neurons from hiPSCs Successful transplantation into
rodent brain

Hargus et al. (2010) [142]

PD 3D Generation of mid-brain specific organoids containing organized groups of
dopaminergic neurons

Monzel et al. (2017) [109]

PD 3D Generation of dopaminergic neurons from hiPSCs Cells showed spontaneous
electrophysiological activity

Moreno et al. (2015) [78]
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accuracy in AD diagnosis, and focus on earlier interven-
tions to prevent irreversible CNS damage [118].

The most prevalent type of AD is sporadic AD (sAD),
accounting for 90–95% of cases, with familial AD (fAD)
making up the remaining 5–10% of AD cases. fAD has an
autosomal dominant inheritance pattern with early onset
(< 65 years) and mutations in genes that encode amyloid
precursor protein (APP), presenilin 1 (PSEN1) or preseni-
lin 2 (PSEN2), which increase Aβ production and accu-
mulation, considered to be causes of fAD [121–126]. sAD
is of late onset (> 65 years) and it is linked with both
genetic and environmental factors, making it harder to
study in vitro. AD genome-wide association studies have
identified putative risk genes for sAD, however only the
epsilon 4 allele of the apolipoprotein E gene (APOE ε4)
has been confirmed as a risk factor [127–130].

Despite the knowledge gained so far, the underlying
mechanisms that lead to AD are not well understood and
there is no disease-modifying treatment. From this per-
spective, iPSCs-derived 2D and 3D models are important
tools to investigate AD, increase knowledge of patho-
physiological mechanisms and facilitate drug discovery.

Several studies using AD patient-derived iPSCs in 2D
models have been reported [71, 77, 131–134]. For
example, iPSCs-derived neurons from fAD patients with
mutations in PSEN1 and PSEN2 show increased Aβ42
levels and are more susceptible to γ-secretase inhibitors,
indicating the potential of this culture system for drug
screening purposes [132]. Fibroblasts from affected and
unaffected individuals carrying PSEN1 mutations were
used to generate iPSCs and evaluate differences in Aβ42/
Aβ40 production ratio in a 2D model. Aβ40 and Aβ42 are
the most abundant Aβ species in the brain, representing
~ 90% and ~ 10%, respectively. Aβ42 is slightly longer than
Aβ40 and is more hydrophobic and fibrillogenic, therefore
being highly susceptible to form deposits in the brain. In
this study comparisons were made between control fibro-
blasts and iPSC-derived neural progenitor cells (NPCs)
and counterparts carrying a PSEN1 mutation. The results
showed that both lineages with the mutation in PSEN1
(PSEN1 fibroblasts and PSEN1 NPCs) produced greater
ratios of Aβ42 to Aβ40 than their control counterparts. In
addition, PSEN1 NPCs showed a higher Aβ42/Aβ40 ratio
compared to PSEN1 fibroblasts, indicating that the ratio
may be increased by neuronal differentiation [133]. In a

study using 2D cultures of iPSCs derived from an 82-year-
old sAD patient, researchers were able to achieve some
key AD features in vitro, including formation of abnor-
mally phosphorylated Tau protein, increased expression of
glycogen synthase kinase-3β (the protein kinase that
phosphorylates Tau) and up-regulation of genes linked to
oxidative stress response [134].

However, at the time this review was written, only
three studies were identified using 3D technology and
hiPSCs-derived cells to model AD [71, 77, 110]. One
study used self-assembling peptide hydrogel seeded with
hiPSC-derived neuroepithelial stem cells to show that
3D models were able to mimic AD’s in vivo like
responses, such as aberrant translocation of activated
P21-activated kinase and redistribution of the actin
stabilizing protein drebrin, not observed in 2D counter-
parts. P21-activated kinase and drebrin are important
for cytoskeleton dynamics and the former is considered
to play a central role in mechanotransduction pathways
and AD pathology [71]. The second study described an
AD 3D human neuro-spheroid model in which iPSCs
were obtained from patient’s blood and further differen-
tiated into neurons and astrocytes. After differentiation,
3D neurons were less susceptibility to secretase inhibi-
tors than 2D ones [77]. The third study, already
described in this review, was performed by Raja et al.
using a 3D organoid approach with iPSCs derived from
patients with fAD [110]. These examples show how AD
in vitro modelling is evolving, with ever more complex
3D-based approaches to model specific brain regions,
their interaction and local microenvironments. In the
future these are likely to provide greater insights into
underlying disease mechanisms (including increasing
interest in assessing the contribution of microglia) and
provide better platforms for drug discovery.

Parkinson’s disease
PD is characterized by the loss of dopaminergic neurons
in the substantia nigra pars compacta, compromising
patient motor function. The most common symptoms
include bradykinesia, rigidity, resting tremor and
postural impairment [135–137]. The aetiology of PD
remains unknown, but Lewy bodies, composed of aggre-
gated α-synuclein found inside surviving dopaminergic
neurons, are considered histopathological hallmarks [137,

Table 2 Summary of studies using hiPSC technology (Continued)

Disease Type of
Culture

Main Findings Study

PD 2D Generation of dopaminergic neurons from footprint-free hiPSCs Soldner et al. (2009) [40]

PD 3D Generation of neural organoids from patient-derived iPSCs with familial PD mutation
in LRRK2 gene

Son et al. (2017) [108]

Abbreviations: Aβ beta amyloid, BACE1 Beta-secretase 1, C9ORF72 chromosome 9 open reading frame 72, fALS familial amyotrophic lateral sclerosis, HD-iPSCs
induced pluripotent stem cells from patients with Huntington’s disease, hiPSCs human induced pluripotent stem cells, LRRK2 leucine-rich repeat kinase 2, PSEN
Presenilin, SOD1 superoxide dismutase 1, TDP-43 TAR DNA-binding protein 43
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138]. Sporadic PD represents 90–95% of cases, while
Mendelian inheritance is linked to the remaining 5–10%
of cases [137, 139]. Thus, similarly to AD, modelling PD is
challenging, but patient-derived iPSCs provide an import-
ant tool to study different forms of PD [26, 139].

Thus far, several groups have been able to generate
dopaminergic neurons from hiPSCs. In 2D models,
Cooper and colleagues (2010) reported successful gener-
ation of ventral midbrain dopaminergic neurons from
hiPSCs [140]. Degeneration of ventral midbrain neurons
is linked to motor problems in PD and the possibility to
study these cells in vitro is important for drug testing
and screening purposes. Soldner and colleagues gener-
ated iPSCs from patients with idiopathic PD. Their
protocol provided iPSCs free of reprogramming factors
and more similar to embryo-derived stem cells; these
were further differentiated into dopaminergic neurons
[40]. These footprint-free iPSCs provide a more suitable
tool for disease modelling and clinical use since the pres-
ence of residual transgenes can alter gene expression,
differentiation potential and cause genetic instability, lead-
ing to malignant transformation [40, 141]. Hargus and
colleagues (2010) were able to differentiate patient-derived
iPSCs into dopaminergic neurons in a 2D model and
further transplant cells into rodent brain, showing good
survival rates and behavioural improvement of the treated
rats [142].

In contrast to 2D models, three studies using 3D models
has been reported [78, 108, 109]. In a 3D strategy using
Matrigel™ with phase-guided microfluidics bioreactors,
Moreno and colleagues (2015) were able to differentiate
hiPSCs into dopaminergic neurons. After 30 days of differ-
entiation, immunocytochemistry showed that 78–90% of
cells were neurons, of which 11–19% were dopaminergic
neurons. Spontaneous electrophysiological activity with
propagation of action potential along neurites was also
reported. The authors claim that their model is robust,
cost efficient and shows biological fidelity for further use
in PD modelling and drug discovery [78]. In 2017, two
organoid approaches have been reported showing an
improvement in PD modelling in vitro using hiPSCs. Son
et al. were able to generate neural organoids from patient-
derived iPSCs. Their cells carried an LRRK2 mutation and
were differentiated into 3D structures and further evalu-
ated for gene expression. Results showed that LRRK2-
mutated cells had alterations in pathways linked to synap-
tic transmission [108]. Monzel et al. (2017) were able to
generate midbrain-specific cultures from neuroepithelial
stem cells. After neuronal differentiation they were able to
obtain dopaminergic neurons, astrocytes and oligodendro-
cytes. Neurons were able to secrete dopamine, form
spatially patterned and organized networks, and show
synaptic connections and spontaneous neuronal activity
[109]. These studies show how more advanced approaches

such as 3D cultures are able to provide more complex
results for disease modelling, for example, allowing
patterned cell organization and network formation, better
reflecting the in vivo tissue. As such, they may also be well
placed to better model the movement of α-synuclein
between cells, a mechanism that may contribute to spread
of disease pathology [143].

Huntington’s disease
HD is an inherited neurodegenerative disorder caused
by an expansion of CAG repeats in the Huntingtin
(HTT) gene, leading to an HTT protein with a long
polyglutamine expansion that is consequently more
susceptible to aggregate and accumulate. The threshold
for HD is 36 CAG repeats in HTT, and the number of
repeats is inversely correlated with age onset of disease
[144]. Cortical and striatal neurons are predominantly
affected and patients usually manifest progressive motor
impairment, decline in cognition, and psychiatric
problems [144–148]. Even though the genetic alteration
that causes HD has already been identified, no efficient
treatment exists and knowledge regarding the exact
pathological mechanisms remains incomplete. Thus,
relevant human in vitro models could further contribute
to understanding HD pathophysiology.

So far, only a few studies using iPSCs obtained from
patients carrying HD-causing mutations can be found in
the literature, all of them in 2D cultures and none in 3D
models [27, 145–147, 149, 150]. 2D studies so far present
interesting findings highlighted here. For example, one
study performed by An and colleagues (2012), successfully
corrected the mutation in HTT using genetic manipula-
tion techniques. The study was performed using patient-
derived iPSCs cultured on Matrigel™ coated plates, and
after replacing the mutated repeat with a normal one
using homologous recombination, pathogenic signalling
pathways were normalized and disease phenotypes such
as susceptibility to cell death, were reversed [145]. This
capability to reverse HD phenotypes can be an advance in
disease modelling towards a platform for investigation of
disease pathway mechanisms and drug screening. It would
also allow the comparison between corrected and disease
lineages, and perhaps in the future could be considered
for cell replacement therapy and repopulation of the stri-
atum in vivo. Another group also obtained interesting re-
sults using iPSCs by linking phenotypic alterations in
astrocytes with HD [147]. Juopperi and colleagues (2012)
used iPSCs derived from a father and a daughter with 50
and 109 CAG repeats, respectively, cultured in a 2D
model to investigate astrocyte dysfunction in HD. Interest-
ingly, when HD-iPSCs were differentiated into neurons a
normal phenotype was observed, whereas iPSC-derived
astrocytes showed increased cytoplasmic vacuolation, an
alteration observed in blood lymphocytes from individuals
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with HD. The authors suggest that this could be a new
feature for HD investigation, and that perhaps cellular
vacuolation may be a disease-associated finding that could
be used as a biomarker [147]. Given these findings and
those discussed elsewhere in this review, future develop-
ments in hiPSC-based HD modelling able to generate 3D
cultures to better investigate interactions between neurons
and glia of the cortex and striatum (e.g. using spheroids
and/or microfluidics-based technologies [151]) will no
doubt offer further insights into the disease.

Amyotrophic lateral sclerosis
ALS is a neurodegenerative disease characterized by loss
of upper and lower motor neurons, causing gradual loss
of motor functions, muscular atrophy, paralysis and
death [152–154]. Most patients have a life expectancy of
3–5 years after diagnosis and die from respiratory failure
due to bulbar impairment and loss of diaphragm control
[154–156]. ALS aetiology remains unknown and most
cases are sporadic, occurring due to complex multifac-
torial interactions between environmental factors and
genes. The familial form (fALS) represents about 10% of
the cases and, so far, mutations have been identified in
genes coding for Superoxide dismutase 1 (SOD1 gene),
Ubiquilin-2 (UBQLN2 gene), C9ORF72 (C9ORF72 gene),
TAR DNA-Binding Protein 43 (TDP-43, encoded by
TARDBP) and Fused in sarcoma (FUS gene), considered
key causative factors in fALS [154, 156, 157]. Mutations
in C9ORF72, SOD1, TARDP and FUS are also present in
~ 1–7% of sporadic ALS cases [158].

Regarding the use of patient-derived iPSCs to model
ALS, the successful generation of iPSC-derived motor
neurons from ALS patients has been reported [28].
Several other studies have also shown that ALS-related
pathological mechanisms could be reproduced in vitro,
including cell vulnerability to mutations [159–162],
neurofilament aggregation and neurite degeneration [163],
TDP-43 proteinopathy [159, 160, 164], C9ORF72 repeat
toxicity [165, 166], and dysregulation of neuronal synaptic
activity [167, 168]. Additional studies have also been able
to show how astrocytes are also involved in ALS and de-
generate during disease progression, losing their capacity
to support neurons [169, 170]. All of these studies were
performed in 2D and have provided important insights in
ALS comprehension; however, no study using 3D models
could be found. Future 3D approaches have the capacity
to further improve models and bring new insight into ALS
pathophysiology. For example, as briefly mentioned above,
2D hiPSC-derived models of ALS have also shown the
contribution of astrocytes to non-cell autonomous effects
on motor neurons [169, 170]. However, it is likely scaffold
and non-scaffold-based 3D models will present another
step forward in permitting more appropriate astrocyte
morphology [171], maturity [104] and recapitulation of

complex interactions that occur between astrocytes and
neurons in brain networks such as those recently
described in 3D ‘asteroids’ [172].

Limitations of iPSC-derived models for studying
neurodegenerative diseases
Although patient-derived hiPSC in vitro models can be
a powerful platform for disease modelling and drug
discovery, there are some concerns regarding the lack
of standardized protocols, the consequences of repro-
gramming protocols, and the possibility of epigenetic
memory interference leading to great variability
between clones and lineages and consequent doubts
about reliability [40, 141, 173–175]. However, there are
strategies that may help to overcome these issues that
include: obtaining cells from sources that contain less
accumulated genetic mutations (i.e. younger tissues
instead of aged ones); using safer reprogramming
protocols (i.e. those that do not integrate into the iPSC
genome or retain transgene sequences), detecting and
monitoring variations in iPSC lineages, executing
extensive characterization of cell lines, and standardiz-
ing protocols between laboratories [173].

Another relevant limitation for a number of 3D culture
models, including organoids, is the lack of vascularization
and restricted circulation of nutrients/extracellular factors.
In vivo, blood vessels have an essential role in gaseous
exchange, nutrient supply and waste removal. In vitro,
their absence can be limiting, for example causing cell
death in the core of larger spheroids or organoids such as
shown in hiPSC-derived cerebral organoids [98, 100].
Future developments will need to overcome such limita-
tions, with examples of possible strategies including
combining mesenchymal cells and endothelial cells with
tissue-specific cells to promote vascularisation [176] or
use of microfluidics technology to facilitate circulation of
nutrients through the 3D culture as has been shown to be
effective for culture of thick brain slices [177].

Absence of microglia in in vitro models has also been
considered an important limitation. Microglia are resident
macrophages in the CNS responsible for adequate
immune responses to damaged or diseased brain. Acti-
vated microglia have been linked to AD, PD and ALS
probably due to accumulation of abnormal proteins and
neurodegeneration [178]. For instance, microglia are
considered to be a key player in Aβ clearance [17]. Now-
adays, highly efficient iPSCs-derived microglia models are
available in the literature. For example, in a study by
Haenseler et al. (2017), iPSC-derived microglia were co-
cultured with iPSC-derived cortical neurons. The results
showed that microglia were phagocytically competent,
able to downregulate pathogen-response pathways, could
upregulate homeostatic pathways, could promote anti-
inflammatory responses and were able to express key
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human microglia-specific markers and neurodegenerative
disease-relevant genes [179]. This means that it is now
possible to obtain and use laboratory-made or commer-
cially available microglia and incorporate these into 3D
neurodegenerative disease models, such as for AD [36].

Undoubtedly, 3D cultures have the potential to become
a significant tool for disease modelling, however,
techniques to evaluate these cultures must be further
improved. Examples of limitations include low optical
transparency during imaging techniques due to culture
thickness or due to scaffold limitations (e.g. silk fibroin
films treated with organic solvents) [15, 16, 180], potential
for decreased reproducibility due to batch-to-batch
variation of biological-based scaffold materials [181, 182]
such as Matrigel [183] and increased complexity and
heterogeneity of models, difficulties for use with specific
techniques such as patch clamp, due to low optical clarity
or difficulty in penetration of the glass micropipette
through the scaffold [15], and the necessity for expensive
and highly-specialized equipment to maintain cells in
cultures (e.g. bioreactors) [15, 16, 53]. A final limitation in
modelling neurodegenerative disorders is not specific to
3D cultures but concerns PSC-derived models more
generally and relates to the in vivo ‘age’ to which they are
equivalent. Many neurodegenerative conditions such as
AD, PD and ALS are age-dependent, often with late adult
onset and late-stage pathologies. However, in vitro models
derived from hiPSCs first often require long-term culture
to obtain more mature cell types or phenotypes, an ex-
ample of which was described by Sposito and colleagues
in a model of frontotemporal dementia (FTD) where an
extended, 365-day culture of hiPSC-derived cortical neu-
rons was required to obtain expression of the adult iso-
form of Tau (0N4R, [184]). Interestingly, a human NSC
3D culture model of AD showed higher expression of
adult Tau compared to 2D [18]. Protocols have been de-
veloped for more rapid differentiation of hiPSCs into ma-
ture CNS cells, including forced expression of key factors,
such as the generation of neurons from hiPSCs in under
2 weeks following overexpression of neurogenin 2 [185].
However, to model specific aspects of late-onset diseases,
further ageing processes that occur after maturation may
also be necessary (for a detailed review see [186]). As such,
a current focus in this field is in developing methods to
‘age’ cultures in order to obtain appropriate phenotypes,
examples of which include exposing cells to toxins (such
as reactive oxygen species) to simulate cellular changes
induced by stress [187] or exploiting knowledge from
premature ageing syndromes, such as overexpression of
progerin, shown to lead to more late-onset phenotypes in
an hiPSC-derived model of PD [188].

Notwithstanding the limitations described above, contin-
ued efforts from researchers across a range of disciplines to
overcome these challenges will no doubt see further

advances in hiPSC-derived 3D culture technologies that in
turn make significant contributions to future neurodegen-
erative disease research.

Perspectives
The use of stem cells, in particular iPSC-derived cells, to
study neurodegenerative diseases has the potential to
reduce (and possibly replace) the use of animals, and will
continue to provide important insights into disease
mechanisms, and to accelerate the discovery of more
effective treatments. Furthermore, patient-derived iPSCs
could be used for personalised medicine, for example
allowing physicians to check the efficacy of a specific
drug in vitro before administering it to the patient,
therefore providing a more accurate and tailored treat-
ment (Fig. 1). There are also new technologies being
considered to improve cell culture, such as microfluidic
platforms. This technology provides systems of tens to
hundreds of micron dimensions that can be integrated
with 2D and 3D cultures and offers the possibility to
work with high density or single cell cultures, temporal
and spatial control, channel and valves integration, fluid
flow and integration with systems such as multi-electrode
arrays for electrophysiological studies [93–95, 189, 190].
In fact, microfluidics have already been used in PD [78]
and AD [189, 191] modelling, showing promising results
regarding disease pathophysiology. In one study, a micro-
fluidic chamber was developed to culture AD transgenic
mouse neurons, allowing fluidic isolation due to the pres-
ence of a solid barrier between neuronal axons and soma.
Molecules (e.g. drugs, Aβ oligomers) can then be select-
ively applied to axons or the soma, allowing recapitulation
of in vivo characteristics, whereby specific neuronal
components are exposed to different microenvironments.
Using this model a link was established between BDNF
retrograde signalling and AD, in which Aβ oligomers
induced impaired BDNF transport and synaptic deficits,
affecting long-term potentiation (LTP), a key mechanism
for memory formation and learning [191]. In another
study designed to monitor AD progression, cortical
neurons from transgenic mice were cultured in a com-
partmentalized 2D model, separating soma from neurites.
One chamber was seeded with okadaic acid induced-
diseased cells and the other contained healthy cells,
revealing important insights into AD pathophysiology in
how disease cells can affect healthy neighbour cells and
the disease progression patterns [189]. A more complex
form of microfluidics with cell culture is the organ-on-a-
chip [93]. These are being considered as potential tools
for further studies on human physiology and disease,
providing the opportunity to form circuits that create a
fluid flow between different ‘miniorgans’. Although further
in-depth review of this area is outside the scope of this
review, it is important to note that for modelling the brain
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and associated disorders, there are already examples of
how coupling 3D culture with microfluidics can provide
benefits over 2D or use of 3D methods alone. These
include co-culture of different cell types to model
interaction between specific brain compartments/compo-
nents (such as the neurovascular niche [192]) and provid-
ing constant flow of fluids that can improve 3D spheroid
growth and disease phenotypes, as has been shown for a
‘brain-on-a-chip’ model for AD [193]. Perhaps in a not
so distant future, models that include patient-derived
cells for personalized medicine will provide systems in
which blood-brain barrier culture can be connected
with other brain and liver cultures, mimicking blood
flow between organs and as an approach to test drugs,
providing key pharmacokinetics and pharmacodynam-
ics information.

Conclusions
Even though 3D cultures using patient-derived iPSCs hold
great promise for neuroscience research as a tool for AD,
PD, HD, and ALS modelling, at the time this review was
written, only a few studies could be found using 3D
patient-derived cultures. All 3D models described in this

review were able to recapitulate key disease events, and
some displayed active neuronal networks that were orga-
nized in patterns, similar to in vivo tissue. This supports
the idea that this technology can provide additional advan-
tages above 2D counterparts. However, to improve 3D
culture and recreate reliable models, we still need better
understanding about cell-ECM and cell-cell interaction,
incorporation of microglia into models (co-culture of
neurons and glia), standardized protocols for iPSCs repro-
gramming to decrease variability between clones, and
advanced 3D models that are cost-effective and easy to
work with at the same time.
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2D: Two dimensional; 3D: Three dimensional; AD: Alzheimer’s disease;
ALS: Lateral sclerosis; APOE ε4: Epsilon 4 allele of apolipoprotein E;
APP: Amyloid precursor protein; Aβ: Amyloid beta; CNS: Central nervous
system; ECM: Extracellular matrix; ESCs: Embryonic stem cells; fAD: Familial
alzheimer’s disease; fALS: Familial amyotrophic lateral sclerosis; FUS: Fused in
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Fig. 1 Human induced pluripotent stem cells (hiPSCs) in neurodegenerative diseases modelling. Patient-derived somatic cells (SCs) can be
genetically reprogrammed to generate iPSCs. High-tech systems can be used to culture and differentiate iPSCs into brain cells such as oligodendrocytes,
astrocytes and different neuronal populations (NPs), providing the possibility to accurately study neurodegenerative diseases in vitro and to obtain essential
information about disease phenotype and pathology insights. This strategy provides the possibility of testing drugs in vitro and identifying new therapies
for incurable disorders such as Alzheimer’s (AD), Parkinson’s (PD), Huntington’s (HD) diseases and amyotrophic lateral sclerosis (ALS). (Illustrations obtained
from https://smart.servier.com/)
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