Predicting the impacts of anthropogenic disturbances on marine populations

Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open access

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1111/conl.12563

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Predicting the impacts of anthropogenic disturbances on marine populations

Jacob Nabe-Nielsen, Floris M van Beest, Volker Grimm, Richard M Sibly, Jonas Teilmann, Paul M Thompson

Abstract
Marine ecosystems are increasingly exposed to anthropogenic disturbances that cause animals to change behavior and move away from potential foraging grounds. Here we present a process-based modeling framework for assessing population consequences of such sub-lethal behavioral effects. It builds directly on how disturbances influence animal movements, foraging and energetics, and is therefore applicable to a wide range of species. To demonstrate the model we assess the impact of wind farm construction noise on the North Sea harbor porpoise population. Subsequently, we demonstrate how the model can be used to minimize population impacts of disturbances through spatial planning. Population models that build on the fundamental processes that determine animal fitness have a high predictive power in novel environments, making them ideal for marine management.

KEYWORDS
agent-based model, anthropogenic disturbances, cumulative effects, displacement, harbor porpoise, individual-based modeling, marine spatial planning, movement model, Phocoena phocoena

1 INTRODUCTION
Human impacts on marine ecosystems are increasing globally (Halpern et al., 2015), and fisheries bycatch and anthropogenic noise in particular pose a growing threat to many species (Lewison, Crowder, Read, & Freeman, 2004; Slabbe koorn et al., 2010; Shannon et al., 2016). Whereas bycatch directly influences animal survival, noise from offshore activities is more likely to cause animals to change behavior, thereby reducing their foraging performance and fitness (Figure 1; DeRuiter et al., 2013; Francis & Barber, 2013; Pirotta, Brookes, Graham, & Thompson, 2014). Although such impacts on animal behavior are increasingly recognized, it is not yet well understood how different human activities jointly influence the persistence of wildlife populations. This continues to be a major question in ecological research and a serious obstacle for sustainable environmental management (Sutherland & Freckleton, 2012).

A key challenge in this research field has been to develop models that maintain their predictive power when applied in novel environments. This requires process-based models that build on the mechanisms that determine system behavior (Evans et al., 2013; Stillman, Railsback, Giske, Berger, & Grimm, 2015). Because impacts of anthropogenic disturbances are largely mediated by their effects on animal movement and foraging, these processes should be at the core...
of models used for predicting cumulative impacts of disturbances on marine populations. One class of models that facilitates this process-based approach is agent-based models (ABMs). In ABMs, population dynamics and other system-level properties emerge from interactions among autonomous individuals (or “agents”) that respond to the environment as animals do in nature (Grimm & Railsback, 2005; Grimm et al., 2005). ABMs are typically spatially explicit, which makes them ideal both for marine spatial planning aimed at minimizing population impacts of anthropogenic activities, and for environmental impact assessments.

Here we present a spatially explicit modeling framework for predicting impacts of anthropogenic disturbances on marine populations based on their influence on animal movement and fitness. We use the North Sea harbor porpoise (Phocoena phocoena) population as a case study, and demonstrate how the framework can be used to evaluate the impact of offshore wind farm construction noise. This type of noise is increasingly prevalent due to the high demand for green energy (Gibson, Wilman, & Laurance, 2017), and currently there are >900 offshore wind farms at various stages of development in Europe alone (https://www.4coffshore.com/windfarms/). Porpoises are strictly protected in European waters (EU, 1992), so assessing the impacts of construction noise is critical for regulators. We demonstrate how the framework can be used for spatial planning to partly mitigate population impacts of disturbances.

2 METHODS

We constructed a model, termed DEPONS, to simulate individual animals’ movements, energetics and survival in realistic landscapes. It builds on existing models of porpoise movement and energetics, where home ranges and population dynamics emerge from the animals’ competition for food (Nabe-Nielsen, Tougaard, Teilmann, Lucke, & Forchhammer, 2013; Nabe-Nielsen, Sibly, Tougaard, Teilmann, & Sveegaard, 2014), but introduces a direct relationship between noise and the extent to which simulated animals are deterred.

In the following we present a summary description of the model. The TRACE document (Schmolke, Thorbek, DeAngelis, & Grimm, 2010) in the online Supporting Information (SI) presents additional evidence that our model was thoughtfully designed, correctly implemented, thoroughly tested, well understood, and appropriately used for its intended purpose.

2.1 Modeling fine-scale movements and population dynamics

Animal movements are modeled using a combination of correlated random walk and spatial memory (Codling, Plank, & Benhamou, 2008; Fagan et al., 2013; Smouse et al., 2010), where the spatial memory enables animals to return to patches where they previously found food. This behavior gradually becomes prevailing when animals find little food using undirected movements. Jointly, these mechanisms enable animals to optimize their foraging behavior and produce movements that closely resemble those of satellite-tracked harbor porpoises (Nabe-Nielsen et al., 2013).

Population dynamics are linked to the individual animals’ ability to maintain high energy levels. As animals move through the landscape, they use energy at a constant rate and obtain energy from food patches they pass through. Given the absence of direct data on spatial variation in prey availability, we follow the approach used in previous studies of wide-ranging marine top predators and assume that patches with higher food availability occur in those parts of the landscape where observed population densities are high (Biuw et al., 2007; Robinson et al., 2012). Porpoise densities were modeled from survey data (see Gilles et al., 2016), with a relatively high degree of uncertainty, particularly in poorly sampled areas. Food gradually replenishes in patches that animals have visited. The animals’ energy levels do not affect their chance of becoming pregnant, which is related to their age and time of the year, but low energy levels make them more likely to abandon lactating calves or die. Population dynamics therefore emerge from a balance between reproduction and mortality.
2.2 | Modeling responses to noise

Simulated animals change behavior when noise increases above a threshold level T, which, in nature, would depend on the background noise level (Ellison, Southall, Clark, & Frankel, 2012). We assume that they respond by being biased away from the sound source and let the relationship between the bias and the part of the noise which exceeds T be determined by a deterrence coefficient c (Figure 2a). Far from the source, noise hardly biases the animals’ movements, but close to the source it causes them to move almost directly away if $c \gg 0$. The sound source level and T jointly determine the response distance, which is the maximum distance at which animals react to a given noise.

To ensure that animal energetics is influenced realistically by noise, T and c must be calibrated to make simulated animals respond to noise like real animals do. In the case of harbor porpoises, this movement response cannot be observed directly. Instead we monitored the population density during construction of Gemini, a Dutch offshore wind farm, by recording the echolocation sounds that porpoises use for navigating (see Williamson et al., 2016). Afterwards we created a virtual Gemini landscape where wind turbines were built in the same order, and generating the same amount of noise, as in the wind farm where porpoises had been monitored. This landscape was used for running scenarios to select the values of T and c that resulted in the most realistic local population recovery rates at different distances from the wind farm (Figure 2c). These values cause simulated porpoises to be deterred by pile-driving noise, and hence to be scared away from potential foraging grounds, in a realistic manner.

2.3 | Simulating large-scale movements

Animals occasionally switch between movement modes which enables them to make optimal use of resources in different parts of the landscape (Owen-Smith, Fryxell, & Merrill, 2010). To mimic such behavioral switching, we equipped simulated animals with a persistent memory of the net energy intake rate previously attained in different areas, which allows them to disperse towards the most profitable area when their energy stores decrease. After calibrating the animals’ preferred dispersal distance, the model produced home
ranges that resembled those observed for satellite-tracked porpoises in the North Sea (see Figure S10 in SI).

2.4 | Noise scenarios

To assess the impact of wind farm construction noise on the North Sea porpoise population we developed a range of scenarios. All scenarios except the noise-free baseline scenario included pile-driving noise from 3,900 turbines distributed on 65 wind farms (Figure 3). These were placed at random in 15–40 m water depth, with a number per country corresponding to the EU 2020 renewable energy target (EU, 2009). Scenarios included three different construction schedules: (1) wind farms built in random order; (2) wind farms built in eastern North Sea first, then in the west; (3) construction order as in the first scenario, but with a 1-day break between consecutive piling events instead of the 2-day break used in the other scenarios. Each schedule was used in combination with either a response distance of 8.9 km (realistic deterrence, based on calibrated values of T and c; Figure 2b) or a response distance of 200 km. This extreme distance was used to amplify the population’s response to the choice of construction schedule to better demonstrate how impacts of disturbances can be reduced using spatial planning.

3 | RESULTS

Assuming that noise influenced porpoise movements as observed by the Gemini wind farm, the North Sea porpoise population was not affected by construction of 65 wind farms as required to meet the EU renewable energy target. Local population densities around the Gemini wind farm recovered 2–6 hours after piling, and similar recovery rates were obtained in the model after calibrating the individual animals’ response to noise (Figure 2c). At the North Sea scale, population dynamics were indistinguishable from those in the noise-free baseline scenario when porpoises reacted to noise up to 8.9 km from the construction sites, as in Gemini (Figure 4). Wind farm construction noise only influenced population dynamics in the North Sea landscape when simulated animals were assumed to respond at distances exceeding 20–50 km from the wind farms (Figure 4). In these scenarios, the population effect of noise was more strongly related to the distance at which animals reacted to noise than to the deterrence coefficient c, or to the amount of time animals remained deterred after the noise stopped (residual disturbance; Merchant, Faulkner, & Martinez, 2017. See sensitivity analysis in SI).

Wind farm construction schedules and the length of the breaks between individual piling events influenced the
population effects of noise. When the best foraging grounds in the western North Sea were continuously exposed to noise for several years, as in the “ordered” scenario (Figure 3), the effect of noise was larger and more persistent than when wind farms were constructed in random order. Similarly, when wind farm construction involved near continuous pile driving, as in the “fast” scenario, the population effects were larger than when local densities had more time to recover between consecutive pileings. This demonstrates how the modeling framework can be used for spatial planning to help mitigate population effects of disturbances.

4 | DISCUSSION

We present a mechanistically realistic framework for assessing population effects of anthropogenic disturbances in marine environments. We used harbor porpoise and offshore wind farm construction noise as an example. However, the processes that lie at the core of the framework, with autonomous individuals that strive to forage optimally, but become energetically stressed when deterred by noise, are general and not restricted to particular environmental conditions or species. Models that build on such general relationships are likely to maintain their predictive power under changing environmental conditions (Grimm & Berger 2016; Stillman et al., 2015), which makes them valuable to support environmental management. This contrasts with models that are based on statistical relationships among parameters (Evans et al., 2013), such as a direct relationship between population growth and noise, because statistical relationships may implicitly rely on factors that change under novel conditions. The modeling framework presented here is one of the first to link population effects of disturbances directly to the impacts that these have on animal movements and energetics (but see Costa et al., 2016), and we hope it will inspire a new direction for marine management.

Mechanistic models also have the advantage that they can be used for pinpointing processes that a species is particularly sensitive to, and therefore require further research. Dynamics of the harbor porpoise population were, for example, most sensitive to the distance at which animals responded to pile driving noise, and it is therefore important to collect data from more wind farm construction sites to test whether the response distance we found for Gemini is representative. In our study, population effects only became discernible when the response distance exceeded 20–50 km. This finding is, however, sensitive to how fast food replenishes after being eaten, and the impact of noise is smaller if food replenishes faster (Figure S18 in SI). In our study the food replenishment rate was estimated based on satellite tracking data, with a large degree of uncertainty (see Section 4.4 in SI). Population dynamics were also sensitive to other parameters related to energetics. Future research should therefore focus on gathering more data on animal energetics and the dynamics of their food, and particularly on investigating at which distance they respond to noise.

Our results show how ABMs can be used in spatial planning to reduce population effects of disturbances. Wind farm construction affected the population most strongly when important foraging grounds were continuously exposed to noise for several years (the “Ordered, slow” scenario, assuming response distances of 200 km; Figure 3). This continuous noise exposure caused most animals to move out of the profitable foraging areas, which resulted in substantial population declines. By the time wind farm construction had terminated in the profitable areas, few surviving animals remembered them, so instead animals dispersed at random from the areas where construction now commenced. This caused the population to decline further. The importance of allowing sufficient
time for local populations to recover was also visible in sce-

narios using a fast piling schedule. Such effects of wind farm
construction schedule could not have been detected if impacts
had been calculated by combining population density maps
and noise pressure maps (e.g., Maxwell et al., 2013; Mer-
chant et al., 2017), as this method ignores the animals’ abil-
ity to avoid noise by temporarily moving away, which is what
causes the population impacts to be relatively small in the
“Random slow” scenario. The complex, yet realistic, effects
of varying the timing and spatial distribution of disturbances
demonstrated here can only be adequately investigated using
movement-based mechanistic frameworks.

The DEPONS model resembles other models of marine
species in that a number of simplifying assumptions have been
introduced to maintain model tractability and due to uncer-
tainty in the available data (see Pirotta et al., 2018). One of
the key assumptions in our study is that population density
is a good proxy for food availability. Although this assump-
tion is likely to hold true for harbor porpoises, as they rely
on a continuously high food intake (Kastelein, Helder-Hoek,
& Jennings, 2018; Wisniewska et al., 2016), lack of suitable
fish survey data and uncertainty over the factors affecting prey
availability prevent empirical testing of this assumption. The
study also assumes that the satellite-tracked porpoises used
for parameterizing movement are representative for North Sea
animals, as animal home range sizes influence their access
to resources. Further, it assumes that the animals’ reaction
to noise is accurately captured by variations in their echolocation
activity. For porpoises, changes in echolocation activity are
mirrored in aerial survey data (Dähne et al., 2013; Williamson
et al., 2016), but the validity of the assumption should be
reconsidered when using the model for other species.

Our model builds on general relationships between pop-
ulation regulation and resource availability (Goss-Custard
et al., 2006; Sinclair, 2003), which makes it applicable to
a wide range of species, provided that movement data are
available. This includes several species of birds, cetaceans,
and possibly fish, which are groups that have been reported
to be displaced by noise (Gibson et al., 2017; Shannon
et al., 2016). It differs from previous models developed for
assessing impacts of anthropogenic disturbances in marine
environments (Langton, Davies, & Scott, 2014; Topping &
Petersen 2011; Warwick-Evans, Atkinson, Walkington, &
Green, 2018) in explicitly considering the links between dis-
turbances/noise, animal movement, fitness and population
dynamics. The generality of the processes included in the
model should, in principle, allow realistic population dynam-
ics to emerge, but lack of independent data currently precludes
corroboration of model predictions. Therefore the support for
our model being realistic enough for its intended purpose
relies on the rationale of pattern-oriented modeling (POM;
Grimm & Railsback, 2012, Grimm et al., 2005). In POM,
patterns observed in reality at different scales and levels
of organization are used to reject unrealistic models and/or
parameter values. The more patterns a model reproduces
simultaneously, the more likely it validly represents reality.
In our case, we made the model reproduce three different pat-
tterns (Section 6 in SI), suggesting a quite high level of struc-
tural realism, notwithstanding the uncertainties mentioned
above.

Arguably the most useful feature of spatially explicit,
process-based models is that they can capture the cumula-
tive impacts of different kinds of anthropogenic disturbances,
including noise, bycatch, and commercial use of potential
food resources, and take account of when and where the dis-
turbances occur. This, combined with their capacity to directly
incorporate the mechanisms that regulate wildlife populations,
is critical for predicting dynamics of populations in
human influenced environments (Zurell et al., 2015). Popu-
lation persistence—or not—depends on the responses of indi-
vidual animals to all these pressures, so process-based mod-
els will be increasingly important in protecting vulnerable
wildlife populations as human impacts on marine environ-
ments continue to increase.

ACKNOWLEDGMENTS

We thank the team at Section for Marine Mammal Research
at Aarhus University that assisted with fieldwork. Tag-
ning of harbor porpoises was carried out under permissions
from the Danish Forestry and Nature Agency (SN 343/SN
0008) and the Animal Welfare Division (Ministry of Jus-
tice, 1995-101-62). This study is part of the DEPONS project
(www.depons.au.dk) funded by the offshore wind developers:
Vattenfall, Forewind, ENECO Luchterduinen, Ørsted, and
Scottish Power Renewables.

ORCID

Jacob Nabe-Nielsen http://orcid.org/0000-0002-0716-9525

REFERENCES

Biuw, M., Boehme, L., Guinet, C., Hindell, M., Costa, D., Charrassin,
conditions. Proceedings of the National Academy of Sciences of the
United States of America, 104, 13705–13710.

Costa, D. P., Schwarz, L., Robinson, P., Schick, R. S., Morris, P. A.,
Condit, R., … Kilpatrick, A. M. (2016). A bioenergetics approach to
understanding the population consequences of disturbance: Elephant
seals as a model system. Eff. Noise Aquat. Life II, Advances in

Dähne, M., Gilles, A.,Lucke, K., Peschko, V., Adler, S., Krügel, K.,
… Siebert, U. (2013). Effects of pile-driving on harbour porpoises
(Phocoena phocoena) the first offshore wind farm in Germany. Environmental Research Letters, 8, 25002.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Nabe-Nielsen J, van Beest FM, Grimm V, Sibly RM, Teilmann J, Thompson PM. Predicting the impacts of anthropogenic disturbances on marine populations. Conserv Lett. 2018:e12563. https://doi.org/10.1111/conl.12563