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lon Charge States and Potential Geoeffectiveness: The Role
of Coronal Spectroscopy for Space-Weather Forecasting
M. J. Owens’

, M. Lockwood" ', and L. A. Barnard'

'Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Reading, UK

Abstract severe space weather is driven by interplanetary coronal mass ejections (ICMEs), episodic
eruptions of solar plasma, and magnetic flux that travel out through the heliosphere and can perturb the
Earth’s magnetosphere and ionosphere. In order for space-weather forecasts to allow effective mitigating
action, forecasts must be made as early as possible, necessitating identification of potentially “geoeffective”
ICMEs close to the Sun. This presents two challenges. First, geoeffectiveness is primarily determined by the
magnetic field intensity and orientation, both of which are difficult to measure close to the Sun. Second,
the magnetic field evolves in transit between the Sun and the Earth, sometimes in a highly nonlinear way.
Conversely, solar wind ion charge states, such as the ratio of 0" to 0%*, are fixed by the electron temperature
at the coronal height where ion-electron collisions are last possible as the ICME erupts. After this point, they
are said to be “frozen in” as they do not evolve further as the ICME propagates through the solar wind. In
this study we show that ion charge states, while not geoeffective in and of themselves, act as strong markers
for the geoeffectiveness of the ICME. The probability of severe space weather is around 7 times higher in
“hot” ICMEs than “cold” ICMEs, as defined by 07*/0%". We suggest that coronal spectroscopy of ICMEs could
complement current forecasting techniques, providing valuable additional information about

potential geoeffectiveness.

1. Introduction

Predicting near-Earth solar wind conditions more than one day ahead is a major goal of space-weather
forecasting. Simple statistical approaches can make great strides, particularly toward forecasting the
quasi-steady component of the solar wind (Owens et al., 2013; Riley et al, 2017). But the most severe
space-weather conditions are the result of interplanetary coronal mass ejections (ICMEs), episodic eruptions
of solar plasma, and magnetic flux (Kilpua et al., 2017; Schwenn, 2006). The inherently transient nature of
ICMEs means that dynamical forecasting techniques are required, and for subsequent mitigation strategies
to be effective, these forecasts must be made as early as possible. As the typical ICME Sun-Earth transit time
is around two to five days (Gopalswamy et al., 2001), advanced forecasting requires identifying potentially
geoeffective ICMEs close to the Sun. ICME kinematics, an important component of the geoeffectiveness of
CMEs, can be estimated in the corona and inner heliosphere from white-light observations provided by
coronagraphs and heliospheric imagers (e.g., Davis et al., 2009, Yashiro et al., 2004). These estimates, however,
are subject to complications associated with viewing angles and line-of-sight integration of scattered light, as
well as assumptions about the CME geometry (Barnard et al., 2017). Nevertheless, these properties potentially
allow an estimate of the arrival time of ICMEs in near-Earth space (Tucker-Hood et al., 2015). But the impact on
the Earth system, the geoeffectiveness, is primarily determined by the strength and direction of the magnetic
field within the ICME, which is extremely difficult to measure remotely (DeForest et al., 2017). (This is usually
determined from in situ measurements by spacecraft in a halo orbit around the L1-Lagrange point as the ICME
passes over them—by which time warnings are usually less than 30 min in advance.) Even if the remote
observational challenges are overcome, there remains the issue of projecting near-Sun estimates to
near-Earth predictions, as in-transit effects can greatly influence the properties of ICMEs at 1 AU
(e.g., Gopalswamy et al., 2001; Manchester et al., 2017; Savani et al., 2010, and references therein).

lon charge states in the solar wind are set by the coronal electron temperature at a few solar radii and are
subsequently “frozen in” for the remainder of the flow (Feldman et al., 2005; Geiss et al., 1995; Gloeckler
et al,, 2003). Thus, coronal temperature, and hence ion charge states, is an observable coronal parameter
for which in-transit solar wind effects are negligible. Of course, ion charge states are of little direct interest
for space-weather forecasting. However, they can act as useful markers of different solar wind and ICME types
(Henke et al.,, 1998; Lepri et al., 2001; Lepri & Zurbuchen, 2004), which may in turn reveal an indirect
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relationship between coronal temperature and geoeffectiveness. This study introduces that relation first for
the solar wind as a whole, then looks in more details for ICMEs.

2. Data

The geoeffectiveness of solar wind structures is a combination of both their intrinsic physical properties in
near-Earth space and current state of the magnetosphere, including the relative orientation of the Earth'’s
magnetosphere to the heliographic system, which varies systematically as a function of time of day and year
(Rosenberg & Coleman, 1969; Russell & McPherron, 1973; Siscoe & Crooker, 1996). While the latter geometric
effects are important for space weather (Lockwood et al,, 2016), they are entirely deterministic and thus, in
principle, can be readily incorporated into any space-weather forecasting scheme if the arrival time of the
ICME at the magnetosphere is forecast accurately. Here these effects are removed from the analysis by exclu-
sively considering in situ spacecraft data in heliographic radial-tangential-normal coordinates. This allows
determination of the potential geoeffectiveness (G) of solar wind structures resulting solely from their intrin-
sic near-Earth properties. G is here defined as the potential of the solar wind to energize and perturb the mag-
netospheric system, for a fixed configuration of that system. A number of solar wind-magnetosphere
“coupling functions” have been proposed, which essentially parameterize the dayside magnetospheric
reconnection rate in terms of upstream solar wind conditions. We here use the Vasyliunas et al. (1982) formu-
lation, which is derived from physics-based arguments, and quantifies the net energy input from the solar
wind to the magnetosphere available to drive geomagnetic activity on a range of timescales. The terrestrial
space-weather indices that respond most directly and simply to energy input to the magnetosphere are
those which monitor the substorm cycle, in which extracted energy is stored in the geomagnetic tail during
the growth phase and subsequently deposited in the inner magnetosphere and ionosphere in the expansion.
Thus, these indices include the auroral electrojet indices, AU, AL, and AE, and convection indices such as
transpolar voltage and the polar cap index, but also midlatitude “range” indices am, aa, and ap (Lockwood,
2013). Other indices, such as Dst or total ring current particle content are related but complicated by other
factors and longer timescales (Lockwood et al., 2016). As we are interested only in the relative variation of
G, constants are excluded to give

G = np?3=IBZ) /3= 5in*(9/2) M

where np is the solar wind proton number density, Bis the heliospheric magnetic field (HMF; Owens & Forsyth,
2013) intensity, v is the solar wind speed, & is the nonradial clock angle of the HMF (i.e., @ = tan™'B;/By, where
Br and By are the tangential and normal components of the HMF, respectively), and =« is the coupling
exponent, empirically determined to be approximately 0.5 (Lockwood et al., 2017). For simplicity, we assume
that the alpha-to-proton ratio is constant. Again, as only relative variations are of interest, units are arbitrary
and values reported in this study are obtained from np in ecm 3, Bin nT, and v in km/s.

Using = = 0.5, G varies most strongly with B, followed by v, with only a weak dependence on np (thus, the
assumption of a constant alpha-to-proton ratio made in equation (1) is relatively unimportant). Most
importantly, the sin*(6/2) term acts as a half-wave rectifier, with G being rapidly reduced to zero when the
normal component of the HMF (Bp) is northward. Thus, to first order, G approximates the heliographic
dawn-to-dusk electric field, Ey, long used as a proxy for geomagnetic activity (Dungey, 1961).

The base data for G used in this study are 5-min averages of ACE solar wind magnetic field and plasma data
(McComas et al., 1998; Smith et al., 1998). Data were obtained from ftp://cdaweb.gsfc.nasa.gov and trans-
formed to radial-tangential-normal coordinates. The 5-min time resolution is used as a proxy for rapid fluctua-
tions, which can have space-weather implications, particularly on the power systems (e.g., Kappenman, 2003).
One-day averages are also considered. While ICME properties, particularly the magnetic field orientation, are
expected to vary significantly over such timescales, the largest geomagnetic storms are driven by persistent
solar wind energy input (Gonzalez et al., 1999), and thus, one-day averages are a useful timescale to consider.

Solar wind composition and ion charge state information are provided by the ACE Solar Wind lon
Composition Spectrometer (SWICS) instrument (Gloeckler et al., 1998), here taken from the 3-hr “merged”
data set at ftp://cdaweb.gsfc.nasa.gov/pub/data/ace/multi. We only show the oxygen charge state ratio,
07*/0%*, but we obtain qualitatively similar results using the carbon charge state ratio, C°*/C°", or average
O, G, or Fe charge states as markers of coronal temperature.
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Figure 1. Histograms of the daily occurrence of solar wind 07*/0%* ratio and potential geoeffectiveness, G, using the
entire ACE data set over the period 1998-2017. The top panels show <G>, daily means of G, while the bottom panels
show Gpax, the maximum 5-min value within a one-day window. The left panels show the raw occurrence distributions,
while the right panels have been normalized, so that minimum and maximum value in each 07*/0% bin is 0 and 1,
respectively. Note that both axes are on a logarithmic (base 10) scale.

3. Results

In order to give an overview of the data used in this study, Figure 1 shows the relation between charge state
and potential geoeffectiveness for all solar wind data from the 1998-2017 period. The data have been
divided into daily intervals, for which both the mean potential geoeffectiveness (<G>, top panels) and the
5-min peak value (Gpax, bottom panels) are calculated. The left-hand panels show occurrence histograms
for the whole data set. They are dominated by the 0”*/0° occurrence peak around 10~ to 107°7, that is,
07%/0° = 0.1-0.3, typical values for the slow wind (Zhao et al., 2009). In order to highlight trends within these
data, the right-hand panels show distributions normalized within each 0”*/0%* bin, to remove the occur-
rence bias. The <G> plot remains scattered, but for Gyax, there is a general decrease with 07*/0°%*, with a
break point around 0.1, approximately the fast/slow wind transition (Crooker & McPherron, 2012; Zhao
et al,, 2009). This is a simple result of slow solar wind being on average less geoffective than the fast wind
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Figure 2. Potential geoeffectiveness of ICMEs as a function of their charge state. The black crosses show individual ICMEs,
with the black circles indicating values outside the plotted range (discussed further in the main text). The red line shows data
binned by 07*/0%*. Each bin contains 15 ICMEs. Bins are “rolling”; thus, each adjacent bin has 14 ICMEs in common,
effectively smoothing the data. The error bars show one standard error on the mean. Left: Average G over the duration of an
ICME. Right: Maximum 5-min value over the duration of an ICME. The solid horizontal lines show the 90, 95, and 99
percentiles over the whole 5-min G distribution. The dashed vertical lines show the boundaries used to define low-, middle-,
and high-07*/0%" ICMEs.

due to the v'*® dependence of G. It is also clear that the spread in Gyay increases with 0”*/0%*, in agreement
with slow wind showing greater variability, particularly in B and np, than fast wind. ICMEs typically involve
average 0’*/0°" ratios between 0.3 and 1.5 (see Figure 2), giving log (O’*/0®*) in the range —0.5 to 0.2,
meaning they somewhat overlap with the “hottest” part of the slow solar wind at the right-hand side of
the plots in Figure 1. These highest 0”*/0%* values show the greatest spread in G, as here there is a mix of
ICME material, which is geoeffective, as will be demonstrated below, and the slowest solar wind, which is
rarely geoeffective. Similar trends are found for iron (Fe) charge states, as they are also elevated in slow
wind compared to fast wind.

While these solar wind relationships are significant, they do not order the data in a sufficient manner to be
useful for space-weather forecasting. ICMEs, however, are outliers to the steady state solar wind, in terms
of both their geoeffectiveness (Richardson et al.,, 2002) and their charge state properties (Henke et al.,
1998; Lepri et al., 2001; Lepri & Zurbuchen, 2004). For most of the solar cycle, ICMEs constitute only a small
fraction of the total solar wind observed in near-Earth space, though at the peak of solar maximum, the
ICME contribution has been estimated to reach approximately 50% (Cane & Richardson, 2003; Riley et al.,
2006). Despite ICMEs being minor constituents to the near-Earth solar wind by occurrence, they are almost
exclusively responsible for severe geomagnetic storms (Richardson et al.,, 2002). Thus, we now consider
ICMEs independent of the bulk solar wind.

In order to isolate periods of ICMEs from the steady state solar wind, we use the updated Cane and
Richardson (2003) ICME catalogue, available from http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmeta-
ble2.htm. Charge state properties are averaged over the entire ICME duration. While significant variations
in charge state properties are observed within individual ICMEs in near-Earth space (Akmal et al.,, 2001;
Lepri et al., 2012; Song et al., 2016), gross charge state properties are most amenable to remote observation
in the corona (Ciaravella et al.,, 2000; Hannah & Kontar, 2013; Lee et al., 2009), which would be necessary for
any forecast scheme (discussed further in section 4). Periods classified as ICME sheath regions are included in
the estimate of the associated G, but not in computing the average charge state of the ICME; sheath regions
are compressed solar wind and so their compositional and charge state signatures will be that of the ambient
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Figure 3. The statistical properties of potential geoeffectiveness, G, for different solar wind populations. Left and right
panels consider <G> and Gyax, respectively. The top panels show cumulative distribution functions (CDFs) for non-
ICME solar wind days (black dashed curve) and for ICMEs with Iow-/middle-/high-O”/O6+ charge state ratios (blue/black/
red lines), as defined in the text. The bottom panels show probability of exceeding a given G threshold (i.e., 1-CDF or the
“survival function”). The black vertical lines show the 90, 95, and 99 percentiles of the total 5-min G distribution.

solar wind, but their geoeffectiveness, particularly magnetic field intensity, is primarily a result of the speed of
the driving ICME (Owens et al., 2005).

Adequate charge state and potential geoeffectiveness data are available for 304 of the catalogued ICMEs,
which form the data set used in the remainder of the study. Figure 2 shows how mean G (<G>; left panels)
and 5-min maximum G (Guax; right panels) in ICMEs vary with charge state. The circles indicate outliers, with
the highest O”*/0°* value being 3.7, the highest/lowest <G> values being 3 x 10%/6 x 10% and the lowest
Gmax Value being 5 x 10°. The linear correlation coefficient between <G> (Gpax) and O”*/0% in ICMEs is
0.25 (0.32), which is relatively low, but for N = 304, the null hypothesis of no correlation can be rejected at
the 99% confidence level. It can also be seen that simple correlation does not tell the whole story: There is
a much greater range of G values at low 0”*/0%* than at high O”*/0%", with low G values largely excluded
at high 0”*/0°%*. To illustrate this, the red line shows 0”*/O°* bins defined to contain 15 ICMEs (i.e., approxi-
mately 5% of the data). Bins are “rolling,” such that adjacent bins contain 14 common ICMEs, essentially
smoothing the data with bins containing a constant number of points (rather than a constant parameter
range). The density of points and the size of the horizontal error bars show that O”*/0%* bins necessarily
cover a larger range at larger values (i, there are a great many more “cold” ICMEs with low O’*/0°* than
there are “hot” ICMEs with high 0”*/0%"). As quantified by the correlation coefficients, there is a good deal
of scatter, but there is a clear upward trend in binned data for both measures of G with 0’*/0°*. The spike
in G around an O”*/0%" value of 0.7 does not seem to be the result of a single outlying point. In order to
demonstrate how this relation could be used in a forecasting scenario, the ICMEs are grouped into three,
somewhat arbitrary, classifications: low, middle, and high 0”*/0%*, using thresholds of 0.55 and 1.4, shown
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Figure 4. Probability of exceeding a given (top) speed, V, or (bottom) magnetic field intensity, B, threshold for ICMEs with
Iow—/middle—/high—O7+/O6+ charge state ratios (blue/black/red lines). The black vertical lines show the 90, 95, and 99
percentiles of the total 5-min V and B distributions. High—O”/OsJr ICMEs show significantly elevated speed and magnetic
field intensities.

as the vertical dashed lines. This results in 187/102/15 low-/middle-/high-O”*/0%* ICMEs. In practice, these
thresholds would be set by the forecast application and the severity of geomagnetic activity that is of
concern. These thresholds have been purposely chosen not to contain equal number of events as
forecasting, for example, the top 5% of geomagnetic activity is far more critical than forecasting the top
33%. As will be seen below, there is a monotonic increase in G for Iow—/middle—/high—O”/O6+ ICMEs,
showing that the results presented are qualitatively robust to reasonable choice of thresholds.

Figure 3 shows the cumulative distribution functions (top) and the associated probabilities (bottom), some-
times called “survival functions,” of potential geoeffectiveness in different solar wind populations. The black
dashed lines show one-day intervals of the ambient solar wind with ICMEs excluded. The blue/black/red solid
lines show low-/middle-/high-O0”*/0%* ICMEs. The vertical dashed lines show the 90-, 95-, and 99-precentile
values of G from the whole 5-min ACE data set over the period 1998-2017. The shifting of the curves to the
right with increasing O”*/0°* shows an increased tendency for higher G values in ICMEs with hotter coronal
material. For example, the probability of Gyax exceeding the 99th percentile of the 5-min G distribution is
approximately 5% for the non-ICME solar wind, 30% for low-O”*/0%" ICMEs, 50% for mid-O”*/0%* ICMEs,
and 85% for high-O”*/0%" ICMEs. That is, there is almost a factor 3 increase in the probability of high G from
low- to high-O”*/0%* ICMEs. Similarly, considering the <G> distributions, an ICME having low or high 0”*/
0°* changes the probability of exceeding the 95th percentile of <G> from 7% to 50%, more than a factor
7 increase.
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4, Discussion and Conclusions

The geoeffectiveness of the near-Earth solar wind is determined by, in order of importance, the combined
strength and orientation of the HMF relative to the Earth’s own magnetic field, the solar wind speed, and
the solar wind density. (Note that although solar wind number density has limited direct effect on geoeffec-
tiveness, enhanced density results from solar wind compression, and deflection, which can also generate
strong, out-of-ecliptic HMFs. Thus, solar wind density can strongly correlate with geoeffectiveness without
being the causal parameter.) The greatest enhancements in HMF and solar wind speed are strongly
associated the interplanetary manifestations of coronal mass ejections (ICMEs) and their sheath regions
(e.g., Gosling, 1993; Richardson et al.,, 2002; Tsurutani et al., 1988). In order to make more “actionable”
space-weather predictions (i.e., more than 1-hr lead time), forecasts must be made early in the ICME lifetime,
which means while the structure is still close to the Sun. This presents difficulties both in terms of making the
necessary remote observations and in terms of projecting those observations to near-Earth space.

Using white light coronagraphs and heliospheric imagers, it is possible to estimate speed and density of
CMEs in the corona and inner heliosphere (e.g., Mishra et al., 2014; Yashiro et al., 2004), though they are sub-
ject to viewing and line-of-sight integration and viewing angle issues (Barnard et al., 2017). Remotely sensing
the magnetic field properties of CMEs close to the Sun remains extremely difficult, though recent observa-
tional advances potentially enable the approximate orientation and sense of rotation of the CME magnetic
field to be estimated (DeForest et al,, 2017). There may also be empirical “rules,” which can be exploited in
order to place limits on the magnetic field direction within CMEs (Palmerio et al., 2017; Savani et al., 2015).
Nevertheless, even taking an optimistic outlook that future observational and theoretical developments will
result in routine determination of the near-Sun CME magnetic fields, these properties (as with estimates of
CME speed and density) are subject to in-transit effects, such as compression, distortion, and rotation, and
thus are not simple to project to near-Earth space.

As discussed in section 1, ion charge state ratios within ICMEs (and the solar wind in general) are frozen in
once the electron collision rate with ions, and hence possibility of recombination, becomes negligible
(Feldman et al., 2005; Geiss et al., 1995; Gloeckler et al., 2003). This is typically around a few solar radii for most
ion species and coronal properties, though precise determination is sensitive to the assumed electron distri-
bution profile (Esser & Edgar, 2000). Coronal spectroscopy enables electron temperatures to be measured
within near-Sun CMEs (Ciaravella et al., 2000; Hannah & Kontar, 2013; Lee et al., 2009), and hence permits
an estimate of the associated elemental charge states, which will remain unchanged to near-Earth space,
regardless of in-transit processes. This study has highlighted that charge state ratios within ICMEs, particularly
07*/0%", act as a useful proxy of potential geoeffectiveness, at least in a probabilistic sense. We find an
approximately factor 7 increase in the probability of severe potential geoeffectiveness from low to high
07*/0°%" ICMEs when considering one-day means, which drive geomagnetic storms, and an approximately
factor 3 increase for severe 5-min peak values, which trigger more impulsive activity. A coronal
spectroscopy-based forecast system would require an independent estimate of ICME arrival time in near-
Earth space. Thus, it would run in tandem with the current state-of-the-art space-weather forecasting
scheme, namely, solar wind simulations initialized with photospheric magnetic field observations (Riley
et al, 2001) and with CME-like disturbances constrained by white-light coronagraphs and heliospheric ima-
ger observations (e.g., Mishra et al., 2014; Yashiro et al., 2004) used to initiate the modeling (Mays et al.,
2015). Self-consistent modeling of ion charge states within coronal and heliospheric simulations (Shen
et al,, 2017) may also enable such forecasting schemes to be self-consistently combined.

Of course, the ion charge states within ICMEs have no direct bearing on the geoeffectiveness of the structure,
but act as markers for other properties. Figure 4 shows that ICME charge states are correlated with both ICME
magnetic field intensity (B) and ICME speed (V). In particular, the ICMEs with highest ion charge states display
significantly elevated V; the probability of a high-O7*/0%* ICME exceeding the 95th percentile of solar wind
speed (630 km/s) is nearly 5 times higher than a low- and mid-0’*/0%* ICME. Middle- and low-O”*/0%* ICMEs,
however, show little difference in V.

There are two general ways in which these relations could arise and, more pertinently, affect the utility of
coronal temperature observations for space weather forecasting. The first possibility is causal: The physical
processes which act to elevate coronal electron temperatures (and hence charge states), also act to produce
high accelerations of the associated CMEs, which is likely the result of intense magnetic fields and
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reconnection (Lee et al., 2009). It has been proposed that this could be the result of flare heating of electrons
(Lepri & Zurbuchen, 2004). The second possibility is that of sampling: For magnetic clouds, ICMEs, which are
observed to contain a magnetic flux rope (Burlaga, 1988), the strongest B and out-out-heliographic magnetic
fields are encountered close to the center of the flux rope. Thus, “glancing blows” of ICMEs are expected to be
less geoeffective. This spatial sampling effect also results in the later arrival time of ICMEs in near-Earth space
(Owens & Cargill, 2004). It has also been proposed that charge state and composition signatures exhibit sys-
tematic spatial variation within CMEs (Aguilar-Rodriguez et al.,, 2006; Akmal et al., 2001; Henke et al., 1998;
Lepri et al., 2012; Song et al., 2016). Although even without significant spatial variation of charge state
signatures within ICMEs, spatial sampling of ICMEs could still potentially explain the reported results. ICMEs
originating at high latitudes are more likely to result in “glancing blows” in near-Earth space. Owing to the
preferential occurrence of slow solar wind (high 07*/0%") close to the equator and fast (low 0’*/0%") at
higher latitudes, it might be expected that glancing blows would be, on average, associated with lower
charge states. This will be further investigated in a future study. We do note, however, that V is expected
to be relatively constant with spacecraft closest approach to the flux rope axis, suggesting that spatial
sampling cannot fully explain the observed signatures. Of course, this interpretation relies on the paradigm
of ICMEs as large-scale, coherent magnetic flux ropes, which may not be realistic (Owens et al., 2017). Thus,
multispacecraft studies and global simulations are essential to fully understand the relation between ICME
geoeffectiveness and ion charge states.

If spatial sampling of ICMEs is the explanation for the observed relation between charge states and potential
geoeffectiveness, any forecast scheme may need to determine coronal temperatures localized along the
Earth-Sun line, which would benefit from fully stereoscopic spectroscopy, such as from joint observations
L5 and near-Earth space, or ideally, from L5 and L4. Nevertheless, coronal temperature diagnostics have
the capability to provide a useful, additional source of space-weather forecasting information.
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