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ABSTRACT

The process of electrodeposition can be described in terms of a reaction-diffusion PDE sys-
tem that models the dynamics of the morphology profile and the chemical composition. Here we fit
such a model to the different patterns present in a range of electrodeposited and electrochemically
modified alloys using PDE constrained optimization. Experiments with simulated data show how
the parameter space of the model can be divided into zones corresponding to the different phys-
ical patterns by examining the structure of an appropriate cost function. We then use real data
to demonstrate how numerical optimization of the cost function can allow the model to fit the
rich variety of patterns arising in experiments. The computational technique developed provides a
potential tool for tuning experimental parameters to produce desired patterns.

KEYWORDS
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1. Introduction

This paper presents the first example of the fitting of an experimental electrochemical morphochem-
ical distribution with a mathematical model of pattern formation, with corresponding parameter
estimation. The pattern formation model (see below for details) is a reaction-diffusion (RD) partial
differential equation (PDE) model, developed by some of the co-authors, expressing the coupling
between the 3D growth morphology resulting from electrochemical phase formation and the sur-
face chemistry controlled by electrochemical adsorption. The experimental patterns are optical and
scanning electron micrographs derived from studies that have been recently published or reviewed
by the authors.

In order to place our contribution in context, it is worth noting that mathematical models of
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electrochemical dynamics and of related pattern formation processes have been typically derived
within the framework of activator-inhibitor mechanism in view of rationalising electrocatalytic
processes [1, 2, 3]. As far as pattern formation in electrodeposition is concerned, instead, the
focus has generally been on experimental aspects (e.g. [4], [5]) and, even though sophisticated
physical justifications of the process have been proposed (see [6] and [7] for comprehensive reviews
of this issue), no dedicated PDE-based models accounting for the actual material growth have been
reported before [6]. Instead the mathematical description of these phenomena has been developed
within the reaction-diffusion modelling approach, with the rather artificial ansatz of considering
exclusively concentrations of the reactive species as state variables for the electrodeposition models
[8]–[12], thus neglecting to describe the electrochemical phase formation process, that is the single
most evident observable characterizing the process. In a series of papers developing the seminal work
of [6], the reaction-diffusion modelling approach was extended by incorporating the more natural
state variable representing the morphology (surface profile) together with the surface chemistry
(composition) considered in as far as it controls the growth process ([13]–[21], [22] and [23]). The
respective source terms represent nonlinear coupling of morphology and chemistry (morphochemical
coupling) through physically transparent, classical electrokinetic, mass-transport and adsorption
equations. The resulting two-variable nonlinear reaction-diffusion system - leading to the formation
of Turing patterns and of transition front waves - allows us to follow accurately the phenomenology
expressed in 3D electrocrystallisation. The ansatz of this specific research is this RD-PDE model,
that will be employed for parameter estimation and some aspects of which are briefly summarised
below.

In [6], it was shown by extensive numerical simulations that the RD-PDE model is extremely
flexible in accounting for typical electrokinetic control phenomena and includes all spatio-temporal
organisation forms that are known in the experimental literature. In [21] it was proved theoretically
that on the one hand the RD model supports spatial pattern initiation, because of Turing’s diffusion-
driven instability, and on the other hand it can exhibit a variety of spatio-temporal phenomena,
owing to the possibility of both transcritical and supercritical Hopf bifurcation modes. Of course, the
simultaneous appearance of Turing instability, which leads to steady spatial structures, with Hopf
instability, which gives rise to temporal oscillations, is of great interest because these bifurcations
are responsible for the breaking of spatial and temporal symmetries, respectively. Moreover, in
[21] it was shown that the spatio-temporal phenomenology occurring in the neighbourhood of a
codimension-two Turing-Hopf (TH) bifurcation point [24, 25] can be further enriched as a result
of a Turing-type destabilisation of the limit cycle generated by a supercritical Hopf bifurcation.
In [26] this mechanism is referred to as Turing-Hopf instability or diffusive instability of the Hopf
limit cycle and represents a different way in which Turing and Hopf instabilities can interact.

Although the properties of this model have been studied in depth in the aforementioned
papers, there has been little previous work to fit such a model to the variety of electrochemical
patterns arising from experiments. In a recent paper [27] the authors compared the non-stationary
solutions of the RD model to experimental maps using a technique based on the Singular Value
Decomposition (SVD) that estimated the optimal transient time of the model for a fixed set of
parameters. In the current study we use parameter estimation techniques to provide a quantitative
comparison of the RD model with stationary experimental data. Parameter estimation through op-
timization constrained by ODEs or PDEs is a well-established technique in many areas of science
and engineering, such as oil recovery, aircraft design and environmental sciences (see, for exam-
ple, [28, 29, 30] for ODEs and [31], [32], [33], [34] for PDEs). In the context of reaction-diffusion
equations, such as studied here, applications of these techniques include the biological modelling
of cell motility [35, 36]) and tumour growth [37]. In some bio-medical applications the parameters
could also be spatially dependent functions, like in [38, 39] where the birth rate of proliferative cells
in colon cancer is estimated. Recent studies on parameter estimation in the context of biological
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pattern formation ([40], [41], [42]) have concentrated on development of the methodology, including
demonstration of well-posedness and efficiency of solution methods. Here we apply parameter esti-
mation methods using gradient descent algorithms in order to analyse the behaviour of our model
of electrochemical pattern formation in different parameter regimes. The method developed also
provides a tool that can guide the experimental design for the production of different patterns. For
the purpose of this study we restrict the numerical results to stationary experimental maps, which
correspond to parameters in the Turing region. This is discussed further in Section 5.

The paper is set out as follows. In the next section we discuss the RD-PDE mathematical
model and discuss some of its main properties. Sections 3 and 4 describe the computational method-
ology for parameter estimation in the continuous and discrete frameworks. Numerical results are
then presented for synthetic data in Section 5 and true data in Section 6, before we summarise the
conclusions in Section 7.

2. The mathematical model

As more extensively discussed in the Introduction, the key idea behind the reaction-diffusion (RD)
model proposed in [6, 21, 22], is the coupling of one equation for the morphology ηpx, y, tq with one
for the surface chemistry θpx, y, tq. η P R is adimensional and expresses the instantaneous increment
of the electrodeposit thickness during the electrochemical process. The actual 3D electrodeposit
morphology can be obtained as

hpx, y, tq “

ż t

0
ηpx, y, τqdτ ô ηpx, y, tq “ η0px, yq `

dhpx, y, tq

dt
(1)

where η0px, yq “ ηpx, y, 0q is the initial profile of the electrode.
0 ď θpx, y, tq ď 1 is the surface coverage with a functionally key adsorbed chemical species.
The RD-PDE system in adimensional form is given by:

$
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Bη

Bt
“ ∆η ` ρfpη, θq,

Bθ

Bt
“ d∆θ ` ρgpη, θq,

(2)

where ∆ is the two-dimensional Laplace operator, d “ Dθ{Dη is the ratio of the diffusion coeffi-
cients for the individual chemical and morphological processes, respectively, and ρ ą 0 is a scaling
parameter playing the role of a coefficient weighting the area of the integration domain gauging the
relative strength of the reaction terms (as detailed in [44]).
The nonlinear source terms that account for generation (deposition) and loss (corrosion) of the
relevant material are given by

fpη, θq “ A1 p1 ´ θq η ´ A2η
3 ´ B pθ ´ αq ,

gpη, θq “ C p1 ` k2 ηq p1 ´ θq r1 ´ γ p1 ´ θqs ´ D p1 ` k3ηqθ p1 ` γθq .
(3)

Model (2)-(3) is defined for px, y, tq P Ω ˆ r0, T s, Ω “ r0, Lxs ˆ r0, Lys with Lx, Ly characteristic
lengths of the electrode and T a characteristic time of the electrodeposition process. We also require
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(2)-(3) to be supplemented by zero-flux boundary conditions and the following initial conditions:

ηpx, y, 0q “ η0px, yq, θpx, y, 0q “ θ0px, yq, px, yq P Ω. (4)

The physical meaning of the source terms (3) is briefly described here; full details are provided in
[6, 21]. The term A1p1 ´ θqη accounts for the charge-transfer rate at sites free from adsorbates;
A2η

3 describes mass-transport limitations to the electrodeposition process. The term ´Bpθ ´ αq
quantifies the effect of adsorbates on the electrodeposition rate. The parameter 0 ă α ď 1 takes
into account the fact that adsorbates can have both inhibiting and enhancing effects.
The source term g can be regarded as gpη, θq “ C gadspη, θq ´ D gdespη, θq such that it features
adsorption (parameter C) and desorption (parameter D) terms including both chemical (expanded
to second order) and electrochemical (first order) contributions.

For simplicity and without appreciable loss of generality, we make the following assumptions
about parameters: (i) all the constants are taken as real positive or equal to zero, with 0 ă γ ď 1;
(ii) k3 ă k2, meaning that adsorption is the dominating chemical contribution to growth; (iii) the
adsorbates enhance the growth rate and the adsorption and desorption rates are mutually propor-

tional, i.e. D 9C, in particular D “
Cp1 ´ αqp1 ´ γ ` γαq

αp1 ` γαq
.

Substituting condition (2) in to (3) implies that the PDE model (2) supports a multiplicity of
spatially uniform equilibria, i.e. real solutions pη˚, θ˚q of the algebraic system composed of the two
reaction terms. In particular, condition (2) ensures that: (i) the parameter C has no role in deciding
the number and the numerical value of spatially uniform equilibria; (ii) for a specific choice of the
other parameter values, it is easy to see that the number of spatially uniform equilibria pη˚, θ˚q
changes by varying the parameter B (see [21]); (iii) in any case, Pe “ pηe, θeq “ p0, αq is a spatially
independent equilibrium for any choice of all parameter values.
Since Pe is characterised by ηe “ 0, it corresponds to a flat electrode surface, from which corru-
gation and morphology can develop. For this reason, the related stability properties and possible
destabilization mechanisms are particularly relevant from the physical point of view.

Theoretical as well as numerical investigations have systematically corroborated the extreme flex-
ibility of the nonlinear reaction diffusion system (2)-(3) in accounting for the great variety of
spatio-temporal patterns found in the experimental electrochemical literature. It is worth recalling
here a selection of the most representative achievements in this respect.

In [21], the problem of spatial pattern formation has been considered by focusing on the diffusion-
driven or Turing instability mechanism: by using the classical methods of linear stability, conditions
for the onset of Turing instability have been derived and a region in the parameter space has been
determined, where spatially inhomogeneous solutions with some structure called Turing patterns
are expected. In [21], the occurrence of a supercritical Hopf bifurcation for the local kinetics of
the system has also been proved. This feature has two main dynamical implications. (a) Complex
spatio-temporal behaviour can occur for the PDE system (2)-(3) when the choice of parameters
corresponds to an oscillatory regime. This result can be explained with the capability of our system
to support spiral wave behaviour as well as an interesting mechanism of spiral break up as discussed
in [22, 46]. (b) The intriguing interplay between Hopf and Turing instability has been recognised
to be responsible for the arising of a rich class of spatio-temporal patterns in the model in the
neighbourhood of a codimension-two Turing-Hopf (TH) bifurcation point. In particular, it is worth
noting that, as a result of the specific choice of the parameter values, two kinds of TH instabili-
ties are possible for the homogeneous periodic solution: weak or strong TH. Weak instabilities are
characterised by dominant inhomogeneous steady patterns superimposed to slightly time-periodic
oscillations with the same frequency of the limit cycle. Strong instabilities instead imply the inter-
mittent switching between the spatial inhomogeneous pattern and its complementary one.
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Figure 1. Bifurcation diagram in the parameter space pC,Bq for d “ 20. The values for the other pa-
rameters are: α “ 0.5; γ “ 0.2; k2 “ 2.5; k3 “ 1.5; A1 “ 10. For this choice of the parameter val-
ues, the codimension-two bifurcation points TH and TB have coordinates pCTH , BTHq “ p2.8061, 109.13q,
pCTB , BTBq “ p2.8061, 19.7979q. RT is the Turing region where conditions for the Turing spatial pattern
formation are satisfied.

2.1. Bifurcation diagram

In this subsection, we briefly summarise the bifurcation analysis detailed in the above cited papers
in order to pinpoint more clearly the variety of morphochemical pattern types that can be generated
by changing the values of only two key parameters, that is the parameters B and C in (3). It is these
two parameters that we will seek to identify later in the paper in order to solve the related inverse
problem and thus describe different experimental patterns. Following the analysis in [21], when all
the other parameters in (2)-(3) are fixed to d “ 20, α “ 0.5, γ “ 0.2, k2 “ 2.5, k3 “ 1.5, A1 “ 10,
the bifurcation diagram in Figure 1 can be obtained. It is worth noting that the values of A2 and ρ

do not affect the geometrical boundaries of the bifurcation diagram (see [21]). The diagram depicted
in Figure 1 summarises qualitatively the variety of solutions present in the electrodeposition model,
that is stationary and oscillating Turing patterns as well as spiral waves (as proved in [22]).

Linear stability analysis straightforwardly shows that there are two specific bifurcation pathways
by which, in presence of diffusion, the spatially homogeneous and physically sound equilibrium
Pe “ p0, αq can lose the stability it exhibits in the absence of diffusion. One is the transcritical
bifurcation, where the attracting equilibrium Pe loses its stability because it exchanges its stability
properties with those of another equilibrium. If Je “ Jpηe, θeq is the Jacobian of the reaction part
evaluated at the equilibrium Pe, at the bifurcation value, Pe becomes non-hyperbolic since one real
eigenvalue of Je vanishes. Hence, the transcritical bifurcation can be detected by requiring δe “
detpJpηe, θeqq “ 0. The other bifurcation mode involved is the Hopf bifurcation, where the attracting
equilibrium Pe loses its stability because a pair of complex conjugate eigenvalues of Je crosses the
imaginary axis. The Hopf bifurcation can then be detected by requiring τe “ trpJpηe, θeqq “ 0 and
δe ą 0.

Figure 1 shows the corresponding bifurcation lines in the parameter space pC,Bq for the
above choice of the other parameter values: the vertical and horizontal lines are the Hopf and
the transcritical lines, respectively. The regions on the right-hand side of the Hopf line and above
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the transcritical line are characterized by τe ă 0 and δe ą 0, so that, in the spatially uniform
case, the homogeneous equilibrium Pe is unconditionally stable. For parameter choices below the
transcritical bifurcation line, δe ă 0 holds, so that Pe can be destabilized by small homogeneous
perturbations and the system trajectories tend toward a different stable steady state (see also [43]
for a detailed discussion on this point). Moreover, in the region on the left of the Hopf line and above
the transcritical one, Pe is unstable and we expect homogeneous oscillations due to the presence of
a stable limit cycle, caused by a supercritical Hopf bifurcation.

When diffusion mechanisms are considered, Pe can destabilise in the parameter region called
RT in Figure 1 where conditions for the Turing instability are satisfied: the formation of stationary
spatial patterns is hence expected because of the interaction between the nonlinear reaction terms
and the diffusion process. The specific typologies of Turing patterns and hence their spatial structure
have been found solving the direct problem by means of several numerical simulations performed
by sampling the RT region with several values of the parameter couples pC,Bq, as reported in
[21]. In Figure 1 the intersections between the two bifurcation lines is a point called TB, while
their intersection points with the Turing region are called TH (Turing-Hopf) and TT (Turing-
Transcritical), respectively. For the choice of the parameter values reported in the figure caption, the
codimension-two bifurcation points TH and TB have coordinates pCTH , BTHq “ p2.8061, 109.13q,
pCTB, BTBq “ p2.8061, 19.7979q. Figure 1 shows the Turing region RT in the parameter space
pC,Bq corresponding to the diffusion parameter d “ 20; it is worth noting that the size of the
Turing region RT increases for larger values of d. Recently, the results concerning Turing pattern
formation for the morphochemical model have been extended in [44] to the case of the RD-PDE
system defined on a sphere, and in [45] to account for cross-diffusion terms.

3. Identification Problems

In this paper we look for a quantitative validation of the mathematical model (2)-(3) based on
parameter identification for a comprehensive set of experimental morphochemical maps covering
the key patterns supported by it. As detailed in the papers cited above, during electrodeposition
experiments it is possible to collect a range of different types of images, that pinpoint peculiar
geometric and compositional aspects, that can be straightfowardly and quantitatively related to
the morphology profile hpx, y, tq in (1) and to the chemical distributions θpx, y, tq. Examples of
qualitative comparisons between experiments and simulations of our model have been provided in
[6] for a selection of OM (Optical Microscopy) and SEM (Scanning Electron Microscopy) images of
structured patterns present in the literature (including target and spiral waves) and in the paper
[7] for soft-X ray fluorescence maps that can be regarded as unstructured patterns.

It is worth noting that in many cases the experimental morphological and compositional
distributions resulting from an electrochemical process represent the final configuration of a non-
stationary process that has been stopped after a certain time. With limited loss of generality, in this
paper we focus on a selection of experimental structured maps that can be considered as stationary
electrodeposits: this implies that limtÑ8 η “ η̄ and limtÑ8 θ “ θ̄ where η̄, θ̄ are time-independent.
Hence, of course, hptq “ η̄ ¨ t, i.e. hptq does not change its shape as time lapses. The methodological
reason of this choice is that we shall compare experimental data with stationary Turing patterns
that are steady state solutions of the RD-PDE model (2)-(3). In this sense we are dealing with an
inverse problem that we formulate as a nonlinear fitting problem for parameter estimation where
the PDE model is the given constraint for the optimization problem. Hence, as a side result of
parameter estimation, we shall introduce a mathematical tool yielding quantitative comparisons
between experimental maps and simulations.
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In view of achieving these goals, we shall consider our parameter identification problem for
values in the Turing region RT . In this initial study we consider only the case where we have a
data map M˚ corresponding to the chemical distribution θ. Hence, to express the above concept
of comparison formally we formulate the following identification problem.

Parameter Identification Problem (PIP):
Given an experimental map M˚ P R

nˆm, the time integration interval r0, T s and the initial
conditions pη0px, yq, θ0px, yqq in (4),
FIND a suitable parameter set p˚ P R

r for the model (2) such that θpx, y, T q « M˚, where θ is the
solution of the RD-PDE system (2)-(3)-(4).

We take the standard approach of fitting the model to the data in a least squares sense,
which is the approach used in many of the studies cited in the Introduction (see also the books
[47] and [48]). Hence we formulate the PIP problem as follows:

FIND the parameters p˚ P R
r such that

Jpp˚q “ min
p

Jppq,

with

Jppq “
1

2

ż

Ω
wpx, yqpθpx, y, T q ´ M˚q2dx dy, (5)

where wpx, yq ą 0 is a suitable weighting function and the solution θ ” θppq of the RD-PDE
system (2)-(3)-(4) at the final time T depends on the parameters p.

In this work, we particularly wish to associate the experimental maps to different parts of the
pC,Bq-bifurcation diagram associated to the RD model reported in Figure 1. Hence, we concentrate
on the estimation of the parameters B and C, assuming that all other parameters in the model are
fixed. In fact, as discussed above, in [21, 22] several numerical simulations were performed varying
mainly B and C, that are also the more meaningful parameters from the electrochemical point of
view. In some cases, the role of A2 and ρ on pattern formation has been shown in [21, 44]. In this
paper the main aim is to address in quantitative way the comparison with true experimental data.
For this reason here we start to solve the inverse problem as a PIP in the simplest meaningful case,
that is by considering only two constant parameters.

The case of non-constant parameters, for example when B and C are space and/or time
dependent functions is also interesting for the electrodeposition model. This would be a harder
problem and here we present just a first step in this direction. Current research is devoted to the
case of variable parameters, that would imply also new analytical studies for the pattern formation
problem.

Hence, the PIP in (5) can be expressed as follows:

FIND pC˚, B˚q P R
2 such that

JpC˚, B˚q “ min
C,B

JpC,Bq
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where

JpC,Bq “
1

2

ż

Ω
wpx, yqpθpx, y, T q ´ M˚q2dx dy (6)

where wpx, yq ą 0 is a suitable weighting function and θ is the solution of the RD-PDE system
(2)-(3)-(4) at the final time T .

To solve (6), we follow the well-known discretize-then-optimize approach. Hence in the next
section we consider the discrete form of this problem.

4. Discrete identification problem

The PDE system (2)-(3)-(4) is solved numerically on a spatial meshgrid pxi, yjq, i “ 1, . . . , n,
j “ 1, . . . ,m on Ω Ă R

2, as described in Appendix. We write the numerical solutions at discrete
times tk “ kht, where ht is the model time step, as ηkij « ηpxi, yj , tkq, θkij « θpxi, yj , tkq. For the
purpose of expressing the identification problem it is convenient to consider the two dimensional
spatial fields mapped on to a vector. We indicate with the vector η̂k P R

nmˆ1 and θ̂k P R
nmˆ1 these

numerical solutions at time tk.

We introduce the notation M̂˚ P R
nmˆ1 to indicate the 2-dimensional experimental map M˚

mapped to a vector. Then the PIP discrete formulation is:

PIP

Given an experimental map M̂˚ P R
nmˆ1, initial conditions η̂0 P R

nmˆ1, θ̂0 P R
nmˆ1 and the final

time of integration T ą 0
FIND the parameters p˚ “ pC˚, B˚q that minimize the functional

JpC,Bq “ ||θ̂T pC,Bq ´ M̂˚||2W , (7)

subject to the discrete model

rη̂T , θ̂T s “ ST pη̂0, θ̂0, C,Bq, (8)

where ST indicates the solution operator (numerical method) yielding the discrete version of the
RD-PDE system (2) from time zero to time T . In (7) ||x||2W “ xTWx and W P R

nmˆnm is a
weighting matrix. The choice of this matrix is discussed in section 4.2.

The initial conditions in (8) are fixed and are taken to be a perturbation of the equilibrium
solution, of the form

η̂0 “ η̂e ` ceXη, (9)

θ̂0 “ θ̂e ` ceXθ, (10)

where η̂e, θ̂e are given equilibrium values, Xη and Xθ are perturbation vectors and ce is a scalar
parameter. Such initial conditions guarantee the generation of patterns in the Turing region when
pη̂e, θ̂eq ” Pe “ p0, αq, that is the spatially homogeneous solution of the electrodeposition model
discussed in Section 2.1. We note that, for the reasons expounded in Section 3, the final time T must
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be specified a priori. Since we assume that the data map corresponds to a steady-state solution
then this choice should not be too problematic, as it is sufficient to specify a final time that is long
enough for the PDE steady state to be reached. We will discard possible optimal solutions that
are not steady state PDE solutions. This will be done by an a posteriori check on the stabilization
dynamics of the space mean value

xθptqy “ |Ω|´1

ż

Ω
θpx, y, tqdx dy (11)

and on the increment between the times tn`1 and tn, i.e. }θ̂n`1 ´ θ̂n}2 ď tol (see, for example,
section 6.1).

4.1. Solution procedure

As discussed in the previous Section, Turing instability in reaction-diffusion systems means that
in the model parameter space there exists a region where the PDE solutions exhibit some kind of
pattern structure, that typically is found by numerical simulations.

For the DIB model, we refer to the Turing region RT shown Figure 1. The Turing analytical
study implies that in RT we can have subregions that correspond to classes of solutions, that is
labyrinths, spots, holes, etc and we do not know a priori whether these zones are empty or where
they are located.

On the other hand, in the inverse problem for the given target pattern M˚, we know by visual
inspection that it belongs to one of these classes. Therefore, our PIP (7)-(8) is indeed a two-step
inverse problem because we want to identify:
i) first of all, the “position” in the parameter space of the right “given” pattern class;
ii) then the unique or an optimal solution in this class/ subregion.

In this paper, our idea is to consider appropriate approaches to deal separately with the
above points (i) and (ii). To tackle the point (i), we propose a (two-norm) cost function (7) without
regularization such that its lowest values can identify numerically the subregion (connected or not)
of the Turing space, say ST , where qualitatively similar solutions are present. A plot of this cost
function over a sample of values of the parameters B and C will allow us to identify this subregion,
as well as an approximate location pC0, B0q of the possible minimum value(s). Hence, this will be a
numerical tool to locate the subregion of parameters corresponding to the class of patterns similar
to the target one. We note that the position of these subregions will depend on the chosen value of
the parameter A2. In future work it would be interesting to also optimize for this parameter. For
this study we fix the value of A2 so as to ensure that the cost function has well-defined subregions.

To solve the above point (ii), we test the addition of a classical Tikhonov regularization term
(see [50, Chap. 5], [40]) to the cost function (7), centered on values pCr, Brq in the subregion ST

found by PIP(i). Thus the original cost function (7) is replaced by the function

JpC,Bq “ ||θ̂T pC,Bq ´ M̂˚||2W ` γB||B ´ Br||22 ` γC ||C ´ Cr||22, (12)

where γB, γC are weighting parameters to be chosen.

This regularized cost function is then optimized using an iterative minimization algorithm,
starting from a suitable starting guess, to identify a well-posed optimal solution of the PIP in the
pattern class identified by the subregion ST . In the absence of any other information, the values
pCr, Brq are the current best estimate of the solution and so these values are used as the starting
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guess. However, in some of the discussion below we also report on experiments where the starting
guess was taken to be further away. Several methods for choosing the appropriate regularization
parameters, such as the L-curve or the discrepancy principle, have been developed for linear least
squares problems with a single regularization parameter [50]. For a nonlinear least-squares problem
with multiple parameters, such as the one studied here, the classical methods cannot be applied
exactly. There has been recent work on how to extend the standard methods to these cases (e.g.
[51], [52], [53]), but detailed application of these is beyond the scope of this study. In the numerical
results we choose the parameters γB and γC in (12) to give sufficient weighting with respect to the
data term in the cost function.

In solving PIP(ii), optimization of the cost function is performed using the Polack-Ribiere
flavour of a conjugate gradient method [54, Sec 5.2]. This is a gradient-based method that requires
the gradient of the objective function with respect to the parameters on each iteration. For many
large-scale optimization problems the gradient information is obtained from the adjoint equations.
By introducing Lagrange multipliers and forming the discrete Euler-Lagrange equations it can be
shown that the gradient of the objective function with respect to its parameters can be found
efficiently from just one simulation of the discrete adjoint equation (see, for example, [55]). When
using the discretize-then-optimize approach we need the gradient of the discrete cost function, which
requires the adjoint of the discrete nonlinear model. In practice this can easily be derived directly
from the source code of the nonlinear model, in a process known as automatic differentiation (e.g.
[56]). This is the approach that we follow here.

The minimization is terminated when the norm of the gradient vector relative to the initial
norm falls below a specified tolerance. We note that, in common with other gradient based methods
that are often used in inverse problems, the conjugate gradient method is only guaranteed to
converge to a local minimum. The speed and accuracy of convergence of this method is bounded by
the condition number of the Hessian of the problem [57]. The two-step procedure used here enables
a local minimum point in the correct zone to be found. It is worth noting that in applications
involving experimental data, solving PIP(i) is necessary, in order to locate regions of the parameter
space corresponding to the pattern class to which the target pattern belongs, while solving PIP(ii)
and removing potential ill-posedness are required only to refine the matching between the parameter
values and the target pattern. In fact, in a physical investigation sometimes it can be enough to
identify a range of parameters generating any pattern in the given target class, or to regularize
around a set of parameter values having a specific physico-chemical meaning.

Before presenting numerical results for simulated and true data, we examine in more detail
the choice of the weighting matrix W in (7).

4.2. Choice of weighting matrix

The weighting matrix W serves to give importance to different parts of the data map in the
optimization problem, allowing the model to fit some parts better than others. In the absence of
any other information about the map then it is natural to choose W as the identity matrix. However
other choices may be more appropriate if more information is available. If the measurements at
different parts of the map are known to have different variances, then W may be chosen as a
diagonal matrix containing the inverses of these variances. In this case the optimization problem
can be interpreted statistically as a maximum likelihood problem [49, Sec. 3.2]. This approach may
be extended if correlations between errors in different parts of the data map are known, by including
these correlations in the off-diagonal elements of W .

In the experiments below we investigate the use of a weighting matrix based on the data
values themselves, that is we choose W as a diagonal matrix with entries dependent on the values
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of the map M̂˚. In particular, in Section 6.4, we use this technique to identify parameters for a data
map consisting of an almost homogeneous field with scattered holes. By giving more importance
to the pixels of the map where the holes are present (lower absolute values), we aim to emphasise
the fit to the patterns evident in the data.

5. Numerical results: simulated data

In this section, we present some numerical results obtained by solving the parameter identification
problem (7)-(8) for the two parameters B and C. At each step of the optimization algorithm, the
discrete model in (8) has been obtained by solving the PDE reaction-diffusion system (2)-(3) by
means of the ADI-ECDF method described in the Appendix.

We decide to present our numerical simulations for a comprehensive selection of data maps
M˚, to show that we are able to associate each class of data to an appropriate subregion of the
bifurcation diagram in Figure 1. This will be the main result of our paper, because
(i) by solving the inverse problem we are able to recover the rich scenario of solutions provided by
the model presented in [6, 21, 44];
(ii) on the other hand this approach gives a quantitative association between data and numerical
simulations and so yields a stronger physical validation of our PDE morphochemical model;
(iii) this association between typology of experimental data with a theoretical bifurcation diagram
can in principle be useful to control an electrodeposition process by tuning the parameters B

and C that correspond to specific values of the process parameters that can be straightforwardly
manipulated by applying appropriate electrochemical control and/or by selecting a suitable bath
chemistry.

In this section, we fix all the parameters of the PDE in (2)-(3), except B and C, as described
in the caption of Figure 1, including also the values of d, ce, ρ. We choose the values of the parameter
A2 and of the final time T according to the typology of data, as discussed below; we choose the
scaling factor ρ “ 1 and the domain of integration fixed to be Ω “ r0, 50s ˆ r0, 36s.

In each simulation we normalize the data map M˚, because we are interested in the shape
of the experimental pattern independently from its numerical values, so the comparisons will be
made with the model solution θpx, y, T q normalized between 0 and 1 which, with a slight abuse of
notation, we continue to refer to as θ.

Hence, we can study and represent the cost function (7) without regularization terms by
contour plots in a subdomain of the bifurcation diagram, say R“ rC1, C2s ˆ rB1, B2s. We will
study Turing patterns that are labyrinths, reversed spots (holes), reversed spots and worms, mixed
spots and stripes (as described in [21, 44]), that is solutions inhomogeneous in space with a well-
identified texture. Based on the numerical results in [21], we decide first of all to work on data that
are generated synthetically, that is M˚ is indeed obtained by solving numerically the direct problem
corresponding to known parameter values pC˚, B˚q P RT in the Turing region.

Hence, first of all, in the next subsection we study the corresponding cost function (7) in
the Turing zone, where of course JpC,Bq will have an absolute minimum, but in addition its
form around this minimum will segment the bifurcation diagram into subregions corresponding to
different patterns. Since we know [21] that in the Turing-Hopf zone solutions oscillating both in
space and time are present, exhibiting different amplitudes and frequencies depending from the
parameter values, we decide to investigate the PIP problem in this zone in future research, devoted
to the analysis of experimental maps that are non stationary and with a non well-identified texture
in space that cannot straightforwardly be classified according to the pattern categories listed in
subsection 5.2. (see [7] for qualitative comparisons in this case).
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(a) Reversed spots/Holes: A2 “ 1, pC,Bq “ p3, 30q, T “ 60
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Figure 2. Simulated data. On the left: Turing patterns for the surface chemistry θpx, y, T q in the electrodeposition model (2)
at the final time T of integration. On the right: time behaviour of the corresponding mean space integral in (11).

5.1. Parameter optimization

As initial guess for the PDE model we consider a perturbation of the homogeneous steady state
(9)-(10), where Xη and Xθ are random matrices of fixed size Nx ˆ Ny. Here, ce “ 1e-5 is fixed. In
the Turing zone RT we consider the cost function for two types of solutions, labyrinths and reversed
spots/ holes, corresponding to the true parameters pCt, Btq “ p3, 66q and p3, 30q respectively. For
the labyrinths and for the reversed spots/holes we fix A2 “ 1. Since Turing patterns are stationary
solutions obtained for long time, we fix a sufficiently large integration time T . For the labyrinths
we choose T “ 20, while for the holes we choose T “ 60. We solve the PDE model by means of
the ADI-ECDF method (see the Appendix for more details) of order p “ 2 and using ht “ 0.01
as timestep. The meshpoints in space are Nx “ Ny “ 70 for these simulations. We note that by
changing the meshgrid size we can obtain slightly different patterns but all belonging to the same
class (see discussion below). (In fact, the variation of Nx, Ny implies changing both the discretized
initial conditions and the size of the ODE system corresponding to the space semidiscretization,
see Appendix). The simulated patterns at the end of the integration are shown in Figure 2 (a), (b)
left plots, for the holes and the labyrinth, respectively. In the same figure, right plots, we show the
time dynamics of an approximation of the mean space integral xθptqy in (11) : it is evident in both
cases (a) and (b) that a constant value is obtained for final times, as an indicator that a stationary
pattern has been attained at time T .

The corresponding contour plots of the cost function JpC,Bq in (7) are shown in Figure 3, with
that for the reversed spots/holes in panel (a) and for the labyrinth in panel (b). In Figure 3 we show
also the boundary of the Turing region by white curves. Hence, we can solve the PIP(i) identifying
the subregions ST of patterns with similar structure as follows. For the case of the holes, we find for
values of B between 25 and 35, one smaller area ST of low function values around the minimum for
C up to around 4. Instead, for the labyrinth we find ST as a long valley around the true minimum
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(b) Labyrinth: pCtr, Btrq “ p3, 66q, T “ 20

Figure 3. PIP cost functions JpC,Bq (unweighted W “ Id) when M˚ in (6) corresponds to simulated data in Figure 2 (a)
and (b), respectively

pCtr, Btrq, indicating a large region of parameters yielding labyrinth-like structures.

In both plots we identify the same region of high, flat values of the cost function in the lower
right part of the pictures. Numerical simulations show that in that region the holes disappear and
a spatially homogeneous solution appears whose value is θss “ 0.5969. This is different from the
equilibrium value of θe and corresponds to another steady-state equilibrium of the model (see [43]
and Figure 1 in [21]). On the other hand, the similar flat regions present in the upper right part of
the figures correspond to the homogeneous steady state θe “ 0.5 in Pe that we are considering.

To show the convergence properties of the optimization algorithm presented in the previous section,
we solve the PIP(i) and PIP(ii) steps in the case of the simulated labyrinth with noisy data. The
synthetic observation is generated from the model field at time T=20, with unbiased, random,
Gaussian noise added. In practice we expect the standard deviation of the noise on the experimental
data to be of the order of a few percent [58], [59]. Here, for the synthetic normalized data, we
present results where the standard deviation of the noise is taken to be 0.1, representing 10% of
the maximum value of the field. Similar results have also been obtained with a higher noise level
of 20% (not shown). In Figure 4 top left plot we show the cost function for the noisy data. A
comparison with Figure 3(b) shows a very similar pattern to the perfect observation case, with one
zone of low cost function values.

We choose as initial guess pC0, B0q “ p2.9, 80q, a point far from the minimum value, and we
show the corresponding numerical solution of the model used as first guess pattern in Figure 4,
upper right subplot. The obtained convergence history in shown in the lower left subplot of Figure 4,
where the tolerance on the relative gradient is set to tol “ 1e-5 and maxiter“ 20.

The optimized pattern attained by the descent algorithm is shown in Figure 4, lower middle subplot.
We find the following relative errors with respect to the true solution:
for the patterns: relerr0 “ 0.3225, relerr˚ “ 0.1955 are the relative errors in the Frobenius norm of
the first guess θ0px, y, T q and the optimal map θ˚px, y, T q with respect to the simulated noisy one
(shown in Figure 4 upper middle subplot), respectively;

for the parameters: relerrB “ |B˚´Btr|
|Btr| “ 0.008, relerrC “ |C˚´Ctr|

|Ctr| “ 0.0175. For this case the

condition number of the Hessian is approximately 7.4e4. In further experiments with a Tikhonov
regularization of the form (12), with values pC0, B0q “ p5, 60q, the final values obtained are very
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Figure 4. Simulated labyrinth for pCtr, Btrq “ p3, 66q with 10% noise: : optimization results. The upper panels show the
cost function (left), simulated observation (middle) and first guess pattern θ0px, y, T q for pC0, B0q “ p2.9, 80q (right) The lower
panels show the convergence of the cost function and gradient norm (left), the optimal pattern solution θ˚px, y, T q after 12

iterations (middle) and the absolute error map (right). The relative errors in the Frobenius norm of the first guess θ0px, y, T q
and the optimal map θ˚px, y, T q wrt the simulated one are relerr0 “ 0.3225, relerr˚ “ 0.1995, respectively, and the maximum
absolute error in the optimized solution is maxerr“ 0.3744. The relative errors on the parameters is given by relerrB “ 0.008,

relerrC “ 0.0175.

.

similar, with the relative error norm identical to 5 decimal places. Since the zone of minimum values
is well-defined even with the noisy data, the algorithm is able to find a solution that is much better
than the initial starting point, both in terms of error norm and the pattern produced.

5.2. Segmentation of the Turing region

Information collected from the above cost functions and from further simulations with parameters
in the area R“ r2, 6s ˆ r20, 80s of the bifurcation diagram in Figure 1 show interesting features.
We synthesize these results in Figure 5, where we show a segmentation of the Turing region in
significant parts. We identify six subregions, that we call R0, R1 . . . , R5 that are highlighted in
Figure 5 with different colours. In each subregion we consider a selection of parameter values
pC,Bq to describe the different kinds of patterns present. In Figure 5, we report these choices of
parameters by different symbols and we associate a small letter from a to m to each of them. Each
letter identifies the corresponding (stationary) pattern shown on the right.

Hence, for decreasing values of B the Ri, i “ 0, . . . , 5 subregions are given by:
R0: is all the zone above the Turing boundary. Here the solutions tend to the homogeneous equi-
librium equal to θe and Turing instability disappears.
R1 mixed-spots-stripes: is the interior zone of the Turing region near its boundary. Here the
stationary solutions are mixed spot-stripes patterns. There is a predominance of spots near the
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Figure 5. Segmentation of the Turing region: six subregions R0, R1 . . . , R5 from top to bottom are identified in the bifurcation
diagram of Figure 1. In each subregion we report a selection of parameter couples pC,Bq, indicated by a symbol and a letter.
Each letter from a to m identifies the corresponding (stationary) pattern shown on the right part of the figure. The parameter

couples XXa and XXb (red cross and circle) and the (smaller) patterns reported on the left of the Hopf line are the simulated
labyrinth and holes analyzed in Figure 2. For further details on the classification of the zones Ri, i “ 0, . . . , 5 see the main text.

boundary (see pattern a) and more stripes far from the boundary (see patterns b, c). We note that
in [21] we find similar solutions for B “ 90, C “ 3, that is near the border with the Turing-Hopf
region, in the “cuspidal” zone of the bifurcation diagram.
R2 labyrinths: the blue zone is full of solutions similar to the simulated labyrinth reported in
Figure 2b. Patterns d, e, f show labyrinths with different arrangements of their arms, that tend to
be longer and better aligned for increasing values of C.
R3 reversed spots & worms: the yellow zone is between the labyrinth and holes regions. This
is like a transition zone where for decreasing values of B the labyrinths are flattened and the arms
are fragmented in reversed spots and worms that are in fact holes of these particular shapes. The
worms become longer and predominant for increasing values of C (patterns g, h, i).
R4 reversed spots/holes: this zone was identified thanks to the cost function in Figure 3(a).
The simulated pattern is reported in the small picture on the left of the Hopf line (bottom). These
spots are indeed holes on a flat surface. The number of holes increases for increasing values of C
(patterns j, k)
R5: this region is just above the transcritical line. Here even if inside the Turing region, the station-
ary solution is not a Turing pattern, but the destabilization of the equilbrium θe leads to another
spatially homogeneous equilibrium θss ‰ θe. For pC,Bq values on the boundary shared with the
R4 zone we show the pattern m corresponding to an almost flat surface with few spots entering
“from” the border.

In conclusion, in the Turing zone we find subregions where parameters can describe several
types of structured data. Furthermore, these subregions are found to be contiguous and topologically
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simply connected. In this section, we have shown that, by using the PIP cost function with synthetic
data as a quantitative tool, we can classify the rich variety of solutions that the model can produce,
splitting the bifurcation diagram into subregions corresponding to different types of solutions.

Remark 5.1. It is worth noting that: (i) the segmentation has been obtained for A2 “ 1 and
Nx “ Ny “ 70 meshpoints in all simulation snapshots; (ii) each pattern snapshot has been obtained
for a final time T (value not reported) such that the steady state of the PDE model has been reached,
in particular longer transient dynamics arises for parameter values towards the curved boundary
of the Turing region, that is in R1; (iii) for different values of Nx, Ny, that is the size of the
discretization in (8) and hence the number of constraints in PIP, slightly different patterns could
be obtained, in any case each one belongs to the same corresponding subregion Ri, i “ 0, . . . , 5; (iv)
for increasing values of A2 the scenario in the lower part of the Turing region changes, that is the
regions R3, R4, R5 disappear and the R2 region of labyrinths of different shapes englobes them. A
theoretical analysis on the role of the parameter A2 deserves further studies; a qualitative discussion
on this point was already given in [21].

In the next section we demonstrate how we can use these results to inform the parameter identifi-
cation problem PIP to deal with true experimental data maps.

6. True data

Thanks to the segmentation obtained for the Turing region in the bifurcation diagram of our
model, we decide to solve the PIP problem for four different kinds of experimental maps from
recent literature in electrochemistry that by visual inspection correspond to data patterns in the
subregions R1-mixed spots-stripes, R2-labyrinths, R3-reversed spots and worms, R4-reversed spots.
In particular, we extract them from the references indicated below and we assume that they exhibit
stationary electrodeposit morphologies. As for the simulated data in the previous section, also here
we normalize the data map M˚ because we are interested in the shape of the experimental pattern
independently from its numerical values, so the comparisons will be done with the solutions of the
morphochemical model normalized between 0 and 1.

In all following examples, we calculate the PIP cost function in the Turing zone for ICs of the
PDE model that are perturbations of the equilibrium Pe such that in (9)-(10) Xη, Xθ are the
data normalized and then vectorized. We consider in all examples ce “ 1e-5 and the integration
domain is now square given by Ω “ r0, 50s ˆ r0, 50s. If not otherwise stated, we fix the scaling
parameter ρ “ 1 and A2 “ 1. Each cost function will be calculated on a coarse grid of a subdomain
R “rC1, C2s ˆ rB1, B2s of the Turing region. For this reason, its plot will indicate the parameter
zones where patterns more similar to the data are present so suggesting where an initial guess for
the optimization could be chosen.

In all simulations, we fix the following values for the numerical discretization of the electrodeposition
PDE model (see Appendix): timestep ht “ 0.01, space meshsize Nx “ Ny “ 100 (corresponding to
the pixel size of the given data image).

6.1. R1-mixed-spots-stripes

In this example, the data map M1 P RNˆN , N “ 100 pixels is extracted by [6] (Supplementary
Information, p.1, Ag/Sb alloy ref [3] therein). We report the data indicated as θobpx, yq “ M1 in
Figure 7, upper right corner. As we have seen for the construction of the Turing zone segmentation,
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Figure 6. R1-mixed-spots-stripes: Cost function for A2 “ 1, T “ 600 on R“ r2, 10s ˆ r35, 80s (left); cost function for
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Figure 7. R1-mixed-spots-stripes. Top line: true data map (left); simulated solution θ˚px, y, T q for the minimum value
pC˚, B˚q “ p4.7914, 19.5127q obtained by the optimization algorithm starting from pC0, B0q “ p5, 20q localized by the PIP cost
function in Figure 6 (right). Bottom line: dynamics of the corresponding spatial mean ă θptq ą(left); absolute error map wrt

the data which maximum value is maxerr=0.8542.

mixed-spots-stripes can be obtained for long-time simulations of the electrodeposition model. More-
over, it is difficult to stabilize the pattern when the parameter values pC,Bq are near the boundary
of the Turing region. In this section, we show that this behaviour is reflected also for the true data.
For this reason we fix the final time as T “ 600. We solve the first step PIP(i) and then we calculate
the PIP cost function (7) on a coarse grid onR“ r2, 10sˆr35, 80s and we show in Figure 6, left panel,
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that multiple local minima are present near the Turing boundary. For 20 ď B ď 35, high values
of the cost function are obtained, including a flat subzone where a spatially homogeneous solution
different form θe is obtained. The lowest minimum here identified is pCmin, Bminq “ p7, 50q, such
that Jmin “ 708.43. Indeed, by performing the simulation of the model for this set of parameter
we see that the dynamics is still in the transient and a minimum is attained because the solution is
still near the initial condition of the PDE model, that is θpx, y, T q » θ0px, yq. On the other hand,
if we look at the simulation for parameter values near pCmin, Bminq, for example pC,Bq “ p4.5, 65q
where JpC,Bq “ 1000.2, we obtain stationary stripes but with very large errors with respect to the
data.

In conclusion, we can say that PIP is ill-posed and ill-conditioned in this setting, with multiple
disconnected zones of low cost function values. Hence, motivated by the remark on the role of A2

highlighted at the end of the previous section, and also discussed in [21], we change the value of
A2 from one to 30. For this choice, we calculate the PIP cost function JpC,Bq on a coarse grid on
R“ r2, 10s ˆ r20, 80s and we report it in Figure 6, right panel.

We note that there are now two disctinct and clearly-defined zones of low cost function values.
Here it is evident that there exists a minimum near pC˚, B˚q “ p5, 20q far from the Turing curved
boundary but in the lower part of the bifurcation diagram, thus confirming Remark 5.1(iv). The
corresponding pattern θ˚px, y, T q generated using these parameter values results in a relative error
in the Frobenius norm of relerr˚ “ 0.438. If we solve PIP(ii) by using p5, 20q as the first guess of the
optimization algorithm without regularization, then the algorithm converges immediately to values
of pC˚, B˚q “ p4.7914, 19.5127q, with a small improvement in the solution. The corresponding
pattern θ˚px, y, T q is shown in Figure 7, upper right subplot. In Figure 7, lower left plot, the time
dynamics of the space mean integral xθ˚ptqy for the optimal solution shows that the stationary
state is attained at T “ 20. In Figure 7, lower right plot we show the spatial (absolute) error map
Err “ |θobpx, yq ´ θ˚px, y, T q| which has a maximum value maxerr“ 0.8542 (attained in very few
pixels), while the corresponding relative error in the Frobenius norm is relerr˚ “ 0.435. We note
that this optimized solution actually lies below the transcritical line.

It is worth noting that, as already noticed in the previous section, this confirms that the
parameter conditions to define the Turing region are necessary conditions. This means that patterns
below the transcritical line can exist due to the diffusion-driven instability of another equilibrium
of the DIB model different from Pe “ p0, 0.5q. A discussion on this point is reported in[43].

For this case the problem is very well posed, with the condition number of the Hessian being
of order 10. A Tikhonov regularization around the point p5, 20q does not lead to any improvement.
However, we note that if we start the minimization from the point p8, 40q, which lies in the other
zone of low cost function values, then the iterates remain in that other zone and the algorithm
converges to a local minimum of p13.6249, 25.8221q, with error norm 0.440. This is the case even
with a modest Tikhonov regularization, for example using γB “ γC “ 5. Hence we see the advantage
of the two-step PIP procedure used here, where first the correct zone ST is identified and then the
optimization is started from a point within that zone.

6.2. R2-labyrinths

In this example, the data map M2 P RNˆN , N “ 100 pixels is extracted by [6] (Supplementary
Information, p.2, entangled labyrinth Ag/Sb alloy ref [4] therein). Hence, in the PIP problem we
have again Nx “ Ny “ 100. We report the data θobpx, yq “ M2 in Figure 8a, upper left subplot.
We fix A2 “ 30 and T “ 20. We solve the first step PIP(i) by calculating numerically the PIP cost
function in R=r2, 10s ˆ r20, 70s on a rough meshgrid and we report it in Figure 8b, left subplot.
The minimum zone ST is located in the lower part of the Turing region. We decide to start the

18



(a) Top line: true data map (left); first guess pattern θ0px, y, T q corresponding to pC0, B0q “
p3, 66q(right). Bottom line: optimal pattern θ˚px, y, T q obtained for pC˚, B˚q “ p9.0598, 18.8177q(left);
absolute error map Err (right) which maximum is maxerr= 0.9104, while the relative errors in Frobe-

nius norm of the first guess and of the optimal pattern are relerr0 “ 0.6609, relerr˚ “ 0.3108, respec-
tively.
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(b) From left to right: contours of cost function; convergence of the cost function; convergence of the norm of the gradient

Figure 8. R2-Labyrinths

optimization algorithm from the parameter couple pC0, B0q “ p3, 66q far from the ST identified but
that for different A2 and Ω yielded a labyrinthine-like structure (compare with Figure 2b). The
first guess pattern θ0 is shown in Figure 8a, upper right subplot. By applying the optimization
algorithm, we find the optimal parameter set pC˚, B˚q “ p9.0598, 18.8177q; the corresponding
optimal Turing pattern θ˚px, y, T q is shown in Figure 8a, lower left subplot. The absolute error
map Err “ |θobpx, yq´θ˚px, y, T q| is reported in Figure 8a, lower right subplot. Its maximum value
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is maxerr“ 0.9104 attained in few spatial zones of the pattern. We calculate also the relative errors
in Frobenius norm of the first guess θ0px, y, T q and of the optimal pattern θ˚px, y, T q with respect
to the data. They are given by relerr0 “ 0.6609 and relerr˚ = 0.3108, respectively, showing that a
good improvement is obtained by using the optimization procedure.

In Figure 8b we show also the convergence history of the minimizing algorithm: in the middle
subplot the behaviour of the PIP cost function JpC,Bq against the iterations and in the right
subplot the corresponding convergence of the norm of the gradient. Here and in the next examples,
we set tol “ 1e-5 and maxiter “ 20 for the stopping criteria of the optimization algorithm. We
see that for this case in 14 iterations the gradient norm does reduce by 5 orders of magnitude as
required, while the value of the function converges to a value of just over 600. When trying to fit
experimental data we do not expect the value of J to go to zero, as happened in the synthetic data
case, since even at the exact minimum there will be a mismatch between the experimental data
and the model prediction.

As for the case of the true data R1, there are two zones of low cost function values in the
parameter space. If we evaluate the approximate condition number of the Hessian at the starting
point p3, 66q, we find it is quite is quite high, of order 105. Despite this, even without regularization
we converge to a solution that gives a much lower relative error norm than the first guess. We note
that, as for the data R1, the optimized values lie below the transcritical line, indicating that we
have converged to a solution that is the instability of a different equilibrium.

If we include a Tikhonov regularization around the point p7, 21q, then the behaviour depends
heavily on the weighting given to the regularization terms. With γB “ γC “ 0.01 we converge
to a slightly improved solution (in terms of the relative error norm), but in the parameter space
below the transcritical line. However, for γB “ 0.001, γC “ 0.1 (chosen so both terms have a
similar magnitude), then the algorithm converges to a local minimum in the other zone of low cost
function values. However the patterns arising from these solutions do not resemble the labyrinth
in the data. If the minimization is started from the point p7, 21q, then it converges quickly, with or
without regularization, to values pC˚, B˚q “ p7.5460, 20.3527q and the relative error norm is given
by relerr˚ = 0.3237.

6.3. R3- reversed spots & worms

In this example, the data map M3 P RNˆN , N “ 100 pixels is extracted by [6] (Supplementary
Information, p.2, spots & worms Ag/Sn alloy ref [41] therein). Hence, in the PIP problem we have
again Nx “ Ny “ 100. We report the data θobpx, yq “ M3 in Figure 9a, upper left corner. We fix the
values of A2 “ 5 and T “ 30 as in Fig.6 of [21] (see also the discussion on the role of A2 therein).

The PIP cost function on R=r2, 10s ˆ r20, 80s is reported in Figure 9b (left), where on a
rough meshgrid the minimum is attained at pC,Bq “ p8, 28q and JpC,Bq “ 615.9517. The op-
timization starting near this value from pC0, B0q “ p7, 25q attains the minimum at pC˚, B˚q “
p8.5096, 28.2614q. The pattern corresponding to the first guess and the optimal pattern are shown
in Figure 9a, upper right subplot and lower left subplot, respectively. In Figure 9a, lower right
subplot, we report the (absolute) error map Err “ |θobpx, yq ´ θ˚px, y, T q|, its maximum value is
maxerr “ 0.9935 attained in few spatial zones of the data map. This can be quantified by esti-
mating the relative errors in Frobenius norm of the first guess and of the optimal pattern, that are
given by relerr0 “ 0.5478 and relerr˚ “ 0.4895, respectively, showing that a slight improvement is
indeed obtained. The convergence history of the optimization procedure is reported in Figure 9b:
in the middle subplot we show the convergence of the PIP cost function JpC,Bq and in the right
subplot we show the corresponding convergence of the gradient norm. Since for this cost function
there is only one zone of low values, the problem is well-posed (condition number of order 20) and
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(a) Top line: true data map (left); first guess θ0px, y, T q for the optimization starting from pC0, B0q “
p7, 25q. Bottom line: optimal pattern obtained for pC˚, B˚q “ p8.5096, 28.2614q (left); absolute error

map Err (right) wrt the data, its maximum is maxerr “ 0.9935, while the relative errors of the first
guess and of the optimal pattern are relerr0 “ 0.5478, relerr˚ “ 0.4895
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(b) From left to right: contours of cost function; convergence of the cost function; convergence of the norm of the gradient

Figure 9. R3- reversed spots& worms

the minimization converges with or without regularization.

6.4. R4- reversed spots (holes)

In this example, the data map M4 P RNˆN , N “ 100 pixels correspond to original data, so in the
PIP problem we have again Nx “ Ny “ 100. The sample is an ASTM A705 Type 630 (17-4 PH
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(a) Left: Unweighted PIP cost function JpC,Bq. Right: Weighted PIP cost function JpC,Bq.

(b) Left: true data map M4. Middle: pattern θ0px, y, T q corresponding to the unweighted minimum pC0, B0q “ p8, 34q of the
cost function in Figure 10a, left. Right: pattern θW px, y, T q for the weighted minimum pCW , BW q “ p5, 30q in Figure 10a, right.

The corresponding relative errors in Frobenius norm are relerr0 “ 0.3797 and relerrW “ 0.4112, respectively.

(c) Left: optimal solution θ˚

W
px, y, T q of weighted PIP for pC˚

W
, B˚

W
q “ p5.2665, 29.9633q obtained starting the

minimization algorithm by pCW , BW q “ p5, 30q. Right: Corresponding absolute error map Err, the relative error
in Frobenius norm is now relerr˚

W
“ 0.3797.

Figure 10. R4-reversed spots (holes)

precipitation hardening martensitic stainless steel) coupon, tested for pitting resistance according
to the ASTM G61 protocol in 20, 000 ppm chloride solution at 60˝C. The image has been acquired
as an in-plane SEM micrograph. We report the data θobpx, yq “ M4 in Figure 10b, left subplot. We
fix the value A2 “ 1 as in the case of simulated reverse spots reported in Section 5. Nevertheless,
here we fix the scaling parameter ρ “ 0.25, because a few large holes are present in the data. In
fact, as outlined in [44], this parameter is related to the effective domain size for pattern selection
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and it is able to tune the size of pattern features (e.g. holes/spots dimension, labyrinth width).
Moreover, smaller values of ρ imply slower time dynamics in the reaction-diffusion model. For this
reason, we consider the final time of integration as T “ 300 such that a stationary pattern can be
attained.

The PIP cost function JpC,Bq in (7) calculated on the subdomain R=r2, 10s ˆ r20, 40s is reported
in Figure 10a, left. On the rough meshgrid used for this computation, the minimum is attained at
pC0, B0q “ p8, 34q where JpC0, B0q “ 618.4774. The corresponding pattern θ0px, y, T q is shown in
Figure 10b (middle). We note that, a pattern of holes is obtained, but they are in wrong places with
respect to the true holes. In part this is due to the fact that we are minimizing in the Frobenius
norm. Hence a predicted hole in the wrong location will receive the same weight in the objective
function, whether it is close to the true hole or not. Hence, in order to emphasise the fit to the
spatial location of the holes, we aim to give more importance to the pixels of the data map where
the holes are present (lower absolute values). For this reason, we investigate the use of the data
values themselves as the weighting matrix for the cost function in (7). Hence, we choose W as
a diagonal matrix with entries dependent on the values of the map M4, in particular we choose
diagpW q “ p1 ` M̂2

4 q´1. The weighted cost function obtained is reported in Figure 10a, right. On
the rough meshgrid used for the computation, the minimum is now attained at pCW , BW q “ p5, 30q
and JpCW , BW q “ 526.5055. The corresponding pattern θW px, y, T q is shown in Figure 10b (right).
Moreover, the relative errors in Frobenius norm of θ0px, y, T q and θW px, y, T q with respect to the
data map are relerr0 “ 0.3892 and relerrW “ 0.4112, respectively.

Starting the optimization of the weighted PIP by pCW , BW q “ p5, 30q, after 12 iterations the
algorithms stops at pC˚

W , B˚
W q “ p5.2665, 29.9633q with JpC˚

W , B˚
W q “ 520.587. The corresponding

optimal pattern θ˚
W px, y, T q and its absolute error map are shown in Figure 10c, on the left and on

the right, respectively. The relative error in the Frobenius norm with respect to the data map is
reduced to relerr˚

W “ 0.3797.

7. Conclusions

In this study we have demonstrated how the approach of parameter estimation can be used to fit a
model of morphological electrodeposition to experimental data. Previous work had shown that the
model could support many of the different patterns seen in experiments [6, 21]. The work presented
here has shown how the model-data comparison can be made in a more quantitative way. In the first
part of the study, presented in Section 5, experiments with simulated noisy data not only validated
the methodology, but provided a method for objectively dividing the bifurcation diagram of the
RD-PDE system into different regions. An examination of the structure of the cost function of the
estimation problem for different types of patterns showed well-defined minima in specific regions of
parameter space. By examining the structure of these minima we were able to define the zones of
the bifurcation diagram corresponding to the different patterns. Thus the methodology presented
was able to indicate an appropriate segmentation of the bifurcation diagram.

In the second part of the study, presented in Section 6, the method of parameter estimation
was used to fit the RD-PDE model to patterns arising from true experimental data. As for the
simulated data, an examination of the structure of the cost function by solving the first step PIP(i)
then indicated the area ST of parameter space where particular patterns could be generated. This
was used to provide a good first estimate of the appropriate parameters to generate the pattern seen
in the data. Optimization of the cost function in the second step PIP(ii), using a gradient descent
method and starting from this first estimate, was then able to retrieve appropriate parameters to
produce a PDE model solution that closely fitted the data. As far as we are aware, this is the first
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demonstration of objectively fitting an electrodeposition model to such a variety of patterns arising
from experiments.

The parameters with respect to which the optimization was performed correspond to well-
defined choices within an experiment for metal growth. Thus the method presented here provides
an objective tool to begin to guide experimental design to produce a desired pattern. However,
this is only a first step towards such a tool. This work could be extended in many ways. Here we
have estimated only the two most influential parameters. However, it would also be interesting to
estimate other parameters, for example A2 and ρ, as part of the algorithm. A sensitivity analysis
of the different model parameters is currently under study. We could also envisage treating the
parameters as functions of time and space, though this implies the need for new analytical studies
for the pattern formation problem in this case. For the example of the reversed spots in Section 6.4
we showed that for certain data it was not appropriate to use an identity weighting matrix within
the cost function. Here we used a simple weight based on the values of the data, but other weights
could be considered. In particular, if something is known about the statistics of the errors in the
data, then the variances of these errors could be used as a diagonal weighting matrix, and even
covariance information could be used. This may help improve the match to the data values. We
have also only considered fitting the RD-PDE model to the surface chemistry θ. In practice we also
have measurements of the 3D morphology profile hpx, y, tq in (1) (see for example [27]) and these
data could also be used to further constrain the fit.

Furthermore, this study was restricted to the stationary patterns generated within the Turing
region. The fitting of non-stationary patterns associated with the Turing-Hopf region presents
further challenges associated with the oscillatory nature of the PDE model solutions. A first PIP
study with time oscillation data for the ODE morphochemical model has been performed in [30].
The extension of our approach to time and space oscillating patterns will be considered in future
research.

Appendix: Numerical approximation of the RD-PDE system

In order to solve the reaction-diffusion PDE system on the 2D spatial domain Ω “ r0, Lxs ˆ r0, Lys
and for t P r0, T s we apply the Extended Central Difference Formulas (ECDF) for semi-
discretization in space coupled with the Alternating Direction Implicit (ADI) method in time that
approximate implicitly the diffusion term and explicitly the reaction terms. ADI-ECDF schemes
of order p “ 2, 4, 6 have been recently introduced in [23] to deal with the approximation of Turing
patterns that are stationary solutions of the PDE system in an accurate and efficient way with a
flexible choice of integration stepsizes both in space and time. This task is challenging from the
computational point of view because high accuracy is required both in space, to capture the pat-
tern structure, and in time, to attain the stationary pattern in a stable way. Moreover, in [60] this
approach has been successfully applied to deal with the case of oscillating Turing patterns arising
from the superimposition of an external forcing term in the source, representing sinusoidally mod-
ulated electrochemical control resulting in a notable smoothing effect. For these reasons in [21], we
approximated the model (2)-(3) with zero Neumann boundary conditions for sets of parameters
corresponding to Turing and Turing-Hopf regions, where stationary patterns and patterns oscillat-
ing in space and time are expected, respectively. Moreover, for parameters in the (green) region
indicated in Figure 1, we applied these schemes also in [22] for the numerical approximation of
spiral waves. In the main text of this paper, the PDE simulations involved in several steps of opti-
mization algorithm minimizing the PIP cost function (7) have been obtained by using ADI-ECDF
with moderate stepsizes both in space and time with consequently reduced computational costs.
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Moreover, to allow a more straightforward presentation of the numerical results, in all simu-
lations we calculate two auxiliary quantities:
i) }θr`1 ´ θr}2: the difference in norm between two consecutive patterns, i.e. the numerical approx-
imations at the times tr`1 and tr along the time integration. This quantity evaluates the tendency
of the solution to reach a stationary pattern: in this case this difference should tend to zero (we
can stop the time integration when this value is less than an appropriate threshold); for sake of
exposition, in this paper we calculated this indicator but we do not report it in the numerical
results.
ii) xθptqy: an approximation of the space integral 1

|Ω|

ş

Ω θpx, y, tqdx dy. This second indicator is a

spatial mean value that, for longtime integration, allows us to discriminate between stationary and
oscillating patterns. In fact, if xθptqy reaches an approximately constant value, a stationary pattern
tends to be attained, while an asymptotic oscillatory behaviour of xθptqy indicates an oscillating
pattern. This indicator has been used in the main text of this paper when it was important to check
that the dynamics of the PDE model reached the stationary Turing pattern expected.
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