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Abstract 

Sensible heat flux (QH) is a critical driver of surface and boundary layer meteorological processes, especially in urban 

areas. Aerodynamic resistance methods (ARM) to model QH are promising because, in principle, all that is needed is 

surface temperature (T0), air temperature (TA) and an aerodynamic resistance term (rH). There are significant challenges in 

urban areas however, due to uncertainties in satellite-derived land surface temperatures (LST), logistical challenges to 

obtain high-resolution air temperatures, and limited understanding of spatial and temporal variability of rH and associated 

variables (e.g. thermal roughness length). This work uses an extensive LST dataset covering six years (2011-2016) in 

central London and a long-term in situ observation network to analyse variability of LST and rH variables. Results show 

that LST is spatially correlated with building and vegetation land cover with coherent thermal structures at length scales 

less than 500-1000 m. Additionally, satellite-observed LST varies with average building height (up to 10% cooler in areas 

with tall buildings). The rH term and associated variables are observed to vary on daily and seasonal cycles and findings 

are used to model QH using five variations of an ARM-based approach on a 100 m pixel basis. Modelled QH is compared 

to observations from three scintillometer paths and an eddy covariance flux tower. We find generally good agreement 

between observations and models, though there is uncertainty in all methods (mean absolute error ranges from 58.1-129.3 

W m-2) due to challenges in determining high-resolution meteorological and surface inputs, particularly LST and friction 

velocity (u*). Additional complexity in evaluating modelled QH arises from anthropogenic heat sources: long-term tower-

based observations show that TA and radiometer-derived T0 are warmer during working weekdays than non-working days 

(up to 0.7C) and that there is an observed lag (2-3 hours) between energy consumption and observed warming and QH.  

 

Keywords: urban meteorology, surface energy balance, remote sensing, observations 

 

1. Introduction 

Turbulent sensible heat flux (QH, W m-2) is a dominant component of surface-atmosphere energy exchange in many cities 

due to relative lack of moisture and vegetation compared to non-urban environments. Knowledge of QH is important for 

modelling dynamic processes in the urban atmosphere and partitioning net energy exchange between additional surface 

energy balance processes. QH is also a fundamental driver of urban boundary layer growth and hence a primary control on 

variations in urban air quality. 

 

Recent progress in modelling urban surfaces has highlighted uncertainties in determining QH using both multi-layer 

canopy and bulk models (Grimmond et al. 2011). Additionally, characterization of sub-kilometre variability of urban 

physical characteristics and its impact on energy fluxes is an ongoing challenge to parameterise urban turbulent flux terms 

for meso-scale models (Barlow et al., 2017). Alternative techniques that can calculate high-resolution (<1 km) QH are 

needed to compare with urban land surface models. 

  

An aerodynamic resistance method (ARM) is a common approach for modelling surface fluxes and this technique 

continues to be used in current meso-scale numerical weather prediction models (Mahrt 1996, Chen et al. 2010). However, 

high-resolution (e.g. sub-city scale) application of this technique has been limited in cities due to the extreme 

heterogeneity of the urban surface at numerous length scales.  

 

The bulk aerodynamic resistance approach is based on surface layer similarity theory where QH is calculated as: 

     (1) 

where cp is heat capacity of air (J kg-1 K-1), ρ is air density (kg m-3), T0 is the aerodynamic surface temperature (K), TA is 

air temperature (K), and rH is the bulk aerodynamic resistance for heat (s m-1) of the complete 3D urban surface. 

The aerodynamic surface temperature (T0) is the air temperature extrapolated logarithmically to the height level zd + zH, 

where zd is displacement height and zH is the roughness length for heat (e.g. Kanda et al. 2007). Practically, T0 is difficult 

to measure and is often replaced in eq. 1 with some other surface temperature, such as satellite-observed land surface 

temperature (LST), the radiative surface temperature (TR) calculated from measurements of upwelling longwave radiation, 

or area-weighted facet-based complete surface temperatures from some combination of thermal camera measurements 

(Voogt and Grimmond 2000) and 3D surface models (Morrison et al. 2018). 
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Large diurnal variations in zH have been observed previously in urban areas (Voogt and Grimmond 2000, Moriwaki 

and Kanda 2006, Kanda et al. 2007), as well as in bare soil and vegetated environments (Verhoef et al. 1997). Brutsaert 

and Sugita (1996) attribute this variation to changes in solar angle which leads to vertical movement of the heat source in 

the canopy through the day. A relation between zH and solar angle was observed in a light industrial area of Vancouver, 

Canada (Voogt and Grimmond 2000), but not over a 1:5 scale urban model for a full year (Kanda et al. 2007). Other 

explanations for zH variation include use of inappropriate surface temperatures (Kanda et al. 2007) or anisotropic effects of 

canopy vegetation (e.g. Qualls and Hopson 1998). Overall, these large diurnal variations are difficult to interpret and there 

is significant uncertainty in zH derived from observations due to accumulated measurement and source area uncertainties. 

In a traditional Monin-Obukhov similarity theory (MOST) framework, the aerodynamic resistance term rH (eq. 1) can be 

defined as (Verma, 1989): 

 (2) 

where z0 is the roughness length for momentum, z’= zm - zd (zm is measurement height), ψh is a similarity theory stability 

function, L is the Obukhov Length, k is von Karman’s constant (0.4), and u* is friction velocity. For convenience, the ratio 

between z0 and zH is often defined as (Owen and Thomson 1963): 

     (3) 

Determining bulk values of rH is challenging in urban areas due to the complex geometry and heterogeneous 

thermal properties of urban materials. Several studies have used observed QH, TA, and TR to solve for rH using eq. 1. (e.g. 

Voogt and Grimmond 2000, Kanda et al. 2007, Lee et al. 2016). There are several sources of uncertainty using this 

approach: i) observed QH obtained from eddy covariance (EC) observations is thought to be typically underestimated by 

EC given the lack of energy balance closure (Wilson et al. 2001), ii) observations from EC sensors and radiometers are 

representative of different source areas (Schmid et al. 1991, Schmid 1994), and iii) errors are introduced to TR calculations 

from choice of bulk emissivity values and radiometer bias towards vertically-facing roof and street surfaces (Voogt and 

Grimmond 2000). Furthermore, the rH value is expected to vary in space and time through variability in u*, z0, and zH. 

Brutsaert (1982) used a theoretical relation to relate kB-1 (eq. 3) to the roughness Reynold’s number (Re*) for rough 

natural surfaces: 

                                     (4) 

where:    

          (5) 

where ν is kinematic viscosity (1.46 x 10-5 m2 s-1) and α is an empirical constant. Kanda et al. (2007) experimentally 

determined an urban value for α (1.6) using observations over a scale model of bluff body cubes. To our knowledge, only a 

few studies have used LST and an aerodynamic resistance approach to derive QH in cities (Kato and Yamaguchi 2005, 

Weng et al. 2014). These studies have produced realistic flux values; however, they are based on relatively few images and 

lack a measurement network with which to compare results. Overall, there remain challenges with using ARM in urban 

areas for several reasons: i) uncertainties from satellite-derived measurements from satellite view bias and variable surface 

bulk emissivity in cities, ii) challenges to resolve spatial variations in air temperature and other meteorological and surface 

variables needed to calculate resistance in eq. 2, and iii) incomplete theoretical understanding of how rH, kB-1, and zH vary 

in space and time under different flow and surface forcing conditions. 

In this work, we attempt to calculate high-resolution QH based on a large dataset of EO-derived LST measurements 

and assess uncertainties with using an aerodynamic resistance approach. First, we analyse spatial LST patterns and 

characterize temporal variability of relevant variables, including rH, kB-1, and zH, based on in situ observations at an eddy 

covariance tower. Next, five different variations to calculate rH based on observations and statistical relations from the 

literature are tested and compared. Model uncertainty is evaluated using a Monte Carlo sampling approach of input 

variables. Central London is used as the test area for developing our methodology because of the presence of a long-term 

observation network of scintillometers and EC to enable direct comparison of observed and modelled QH. 

 

2. Methods 

2.1 Study domain  

The focus of this study is London, UK; the most populous city in Europe (~8.9 million in Greater London Area 

[GLA, 2017]) and one of three study sites for the H2020 UrbanFluxes project (Chrysoulakis et al. 2015). The spatial 

domain is a 21.5 km x 21.4 km area encompassing central London (273591.1-295091.1 m E, 5701474-5722874 m N, 

UTM zone 31, WGS84, Figure 1). All analysis is performed on a 100 m x 100 m pixel basis to conform to Landsat-8 TIRS 

sensor resolution (Section 2.3). 

Physically, the study domain is characterized by high built (building and paved land cover) density in central 

London near the River Thames and higher vegetation land cover fraction away from the city centre (Figure 1). Overall 

combined impervious (building and paved) land cover is 45%. Average building heights in the entire domain are around 

10 m with areas of high rise buildings in the City of London and Canary Wharf areas with individual building heights up 

to 310 m.  
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Vegetation is more abundant outside of the city centre and in several large parks (Figure 1). Overall vegetation land 

cover (V) fraction in the domain is 51% (25% grass and shrubs <2.0 m and 26% trees above 2.0 m). Most trees (58%) are 

deciduous species which follow an annual cycle of leaf-on in northern hemisphere spring (April-May) and senescence and 

leaf-off in autumn (October-November). Overall, water coverage is 3%, with the city bisected West-East by the River 

Thames and a system of reservoirs in the Northeast quadrant. 

 
Figure 1. Land cover (2.5 m pixels) and mean building height (100 m pixels) of the study domain with sensible heat flux (QH) 

observation network of scintillometers (lines) and eddy covariance (red circle). The significant water bodies (e.g. River Thames) 

(black) and extensive vegetated areas (e.g. parks) (green) are outlined. Land cover data are derived from multi-spectral Landsat 

satellite images (2012) and building heights are from a LiDAR digital surface model (Section 2.5). Land cover categories are 

‘V.NoHt’ (vegetation without height information), ‘V.Con’ (coniferous vegetation > 2.0 m height), ‘V.Dec’ (deciduous vegetation > 

2.0 m height), ‘V.Low’ (vegetation < 2.0 m height), ‘Soil’, ‘Water’, ‘Road’, and ‘Bldg’ (building). Terrain elevation contours 

measured during the LiDAR scan are overlaid on (b) (30 m intervals, white lines).  

 

2.2 London measurement network 

A unique feature of this study is the availability of an extensive in situ measurement network in central London. 

Observations from the network are used to develop empirical models of rH, provide inputs to calculate QH and turbulent 

flux source areas, and to evaluate gridded QH calculation results (Figure 1).  

Turbulent sensible heat flux and radiation measurements are available from the eddy covariance (EC) tower at 

King’s College London (KCL). The EC instrumentation consists of a CSAT3 (Campbell Scientific, Logan, UT, USA) 

sonic anemometer and Li-7500 (Li-Cor, Lincoln, NE, USA) open-path gas analyzer mounted at 60.9 m asl (50.3 m agl). 

Three-dimensional wind velocities, virtual acoustic air temperature, and water vapour mixing ratios are recorded at 10 Hz 

and flux processing is performed in 30-minute intervals. Detailed description of the EC site and data processing is found in 

Kotthaus and Grimmond (2014). Incoming (K↓) and outgoing (K↑) solar radiation, and incoming (L↓) and outgoing (L↑) 

longwave radiation are measured at a height of 60.9 m asl (50.3 m agl) (CNR4 net radiometer, Kipp & Zonen). 

A network of three scintillometers provide additional observations of area-averaged QH in the study domain (Table 

1, Figure 1). Scintillometers use path-integrated measurements of perturbations to a beam of infrared light to derive QH 

based on surface layer similarity theory. These instruments provide spatially-integrated measurements from much larger 

areas than EC. Full description of instrumentation and data processing details for the scintillometer network are found in 

Crawford et al. (2017). 

Satellite overpasses to measure LST occur between 10:52 and 11:02 UTC and calculated QH at the overpass times is 

directly compared with simultaneous measurements from the scintillometers and EC system. To ensure measurements are 

representative of the satellite overpass time, interpolated values between two 30-minute averaged measurement periods 

(10:30-11:00 and 11:00-11:30 UTC) are used for comparison. 

In general, there is uncertainty in the observed-model comparison due to uncertainties with QH observations. Eddy 

covariance has been shown to have typical hourly uncertainty of 8-10% during daytime periods (Hollinger and 

Richardson, 2005). This uncertainty comes from a combination of sources including systematic and random sensor errors, 

vertical flux divergence, and lack of energy balance closure. Scintillometers in complex areas such as central London have 

typical uncertainty on the order of 20% due to variable meteorological inputs, surface conditions, instrument height, and 

surface layer similarity theory assumptions (Crawford et al. 2017, Ward 2017). 

An additional source of uncertainty in the comparison comes from the use of source area models to weight 

calculated QH surface means (Heidbach et al. 2017). It is generally understood that source area models do not account for 

complexities in urban areas resulting from flow channelling in the canopy layer or the influence of heat point sources or 

plumes (e.g. Crawford and Christen 2014). The individual processes contributing to this uncertainty have not yet been 

quantified rigorously in an urban setting, but previous sensitivity analysis has shown the scintillometer source area 
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averaged land cover fractions to be insensitive (<1%) to changes in source area size of -50% to +20% in central London 

(Crawford et al. 2017).  

 

There is also uncertainty because radiometer source areas differ from turbulent EC source areas. This is important 

because rH is calculated using observed TR and EC QH at KCL (eq. 1). At KCL, the 90% view factor of the radiometer 

(50.3 m agl) source area extends to a radius approximately 150 m away from the tower (eq. 3 in Schmid et al. 1991). This 

extent does not include the River Thames (190 m away from the tower), so the River has only a minimal influenced on TR 

measurements. In contrast, the EC measurements have a different and more dynamic source area (i.e. the location changes, 

not just solar geometry). At times, more vegetation and water are included in the EC source areas, depending on stability 

and wind direction (over 50% water land cover during neutral conditions with winds from 175-195, Kotthaus and 

Grimmond 2014, Kent et al. 2017). This means the River may enhance (depress) QH during night (day) given the relatively 

warm (cool) water surface, causing a mismatch between observed T (TR-TA) and QH. This uncertainty is expected to be 

largest overnight when turbulent conditions are weak and the EC source area dimensions extend further to include the 

river. 

 
Table 1. Scintillometer and eddy covariance network in central London. The effective beam height is the path-weighted mean height of 

the beam above the surface, including buildings and trees (Crawford et al., 2017). 

 P1 P2 P3 EC 

Sensor type 

Scintec BLS 

900 

Kipp & Zonen 

LAS MkII 
Kipp & Zonen LAS MkII 

Campbell 

Scientific, Inc. 

CSAT 3d sonic 

anemometer 

Effective height (m agl) 111.6 140.7 98.7 50.3 

Path (P) length (m) 2358 3197 1097 - 

 

2.3 EO-derived LST 

Observations from the Enhanced Thematic Mapper Plus (ETM+) and the Thermal Infrared Sensor (TIRS) aboard the 

Landsat 7 and 8 satellites, respectively, are used to calculate LST for 26 individual periods from 7 April 2011 – 26 Aug 

2016. All scenes have been acquired between 10:52 and 11:02 UTC and processed using the ATCOR algorithm by the 

German aerospace centre DLR (DLR 2012, Marconcini et al. 2017). As original ETM+ and TIRS thermal bands are 30 m 

and 100 m resolution, respectively, all LST products were resampled to 100 m spatial resolution. This procedure also 

includes image corrections for radiometric, atmospheric, and topographic effects and uses a constant surface emissivity 

value (ε=0.98) (see Section 2.5.4 for discussion of uncertainty related to emissivity). Individual pixels are masked during 

processing from cloud coverage or instrument malfunction impacts. Images are included in this study if pixel retrieval in 

the study domain is >60%. ETM+ and TIRS sensor field of view is 15 so the viewing angle for individual pixels is within 

7.5 off-nadir. 

Landsat-8 images have a known problem of banding due to additional stray light from outside the sensor field of 

view influencing observations (Montanaro 2014). This additional radiation has been shown to enhance LST measurements 

by 1-2 K (in TIRS Band 10). A correction has been developed by Gerace and Montanaro (2017), but this current work was 

completed before the corrected images became available. However, errors from the stray light problem are considered 

during uncertainty analysis and results (Section 2.5.4 and Section 3.5-3.6). 

 

2.4 Geospatial surface data 

Surface morphology parameters (building height [zb], z0, and zd) are determined from a high-resolution (1 m) LiDAR-

based digital surface model from 2008 (Lindberg and Grimmond, 2011). Morphological variables are calculated for each 

100 m pixel and z0 and zd vary according to wind direction (every 5°) using methods developed by Kanda et al. (2013) as 

implemented in the UMEP software package (Kent et al., 2017, Lindberg et al. 2018). 

Land cover has been classified at 2.5 m based on multi-temporal resolution satellite imagery (SPOT and 

WorldView) from 2012 and the LiDAR DSM data (Marconcini et al., 2017). Five land cover categories are defined: 

buildings (λB), paved surfaces (λP), water (λW), bare soil (λS), and vegetation (λV). Vegetation is further categorised as low 

vegetation (<2.0 m), deciduous vegetation (>2.0 m), coniferous vegetation (>2.0 m), and vegetation with no height 

information. This 2.5 m resolution land cover data are aggregated to 100 m resolution and land cover fractions range from 

0-1 for each category. 

 

2.5 Aerodynamic resistance method 

2.5.1 Reference height scaling  

Gridded geospatial data (z0, zd, λV) and atmospheric variables (TA, u*, L) are required at the same resolution as LST 

to calculate QH using aerodynamic resistance methods. Atmospheric variables, such as wind speed and u*, are height-

dependent and respond to surface characteristics of an upwind fetch that typically extend beyond individual 100 m x 100 

m grid cells of LST images. Additionally, corresponding surface variables (z0, zd, v) for an elevated atmospheric 

measurement are representative of a larger source area than individual grid cells.  

Given the need for appropriate heights for the atmospheric variables and characterisation of the surface, a reference 

height for the calculations is defined. In this study, a reference height of 3zb (where zb is the mean building height) is 
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selected. Three is chosen to provide a reasonable likelihood of being above the RSL (Roth 1999, Grimmond and Oke 

2000, Grimmond et al. 2004, Kastner-Klein et al. 2004) but recognizing the limitation of the depth the urban surface layer 

(Rotach 1999). 

 

2.5.2 Air temperature and wind fields 

Air temperatures from an in situ network of meteorological stations are used to generate a TA field at 100 m 

resolution. Currently, observations from a single tower-mounted, shielded, and passively ventilated thermometer (Vaisala, 

Inc., WXT520) at 50.3 m agl are used across the entire domain. Temperatures are height-adjusted in each pixel to a 

reference height of 3zb (Section 2.4) using an environmental lapse rate of 6.5x10-3 K m-1. 

During model development, TA fields were interpolated from distributed networks of air temperature observations 

(e.g. NetAtmo, WeatherUnderground). However, these datasets introduce additional uncertainty in the current application 

because of i) uneven spatial distribution of sensors, ii) lack of reliable location metadata for many stations, and iii) lack of 

evaluation with co-located observations (Gabey et al. 2018). Other TA measurements in central London are available from 

the London Urban Meteorological Archive (LUMA), but no consistent set of stations are available for the entire 2011-

2016 study period. So, to ensure consistency across the study period, we opted to use a single, high-quality measurement 

(KCL) as TA reference at the expense of higher spatial resolution. This procedure introduces some uncertainty because we 

are unable to resolve phenomena such as urban heat or cool islands (Theeuwes et al. 2015). 

This simplification is justified because spatial variability of TA across the study domain at the reference height (3zb) 

is expected to be much less than that of LST. This means TA is essentially spatially constant relative to LST and that spatial 

variations in LST dominate the (TA-LST) term in Eq. 1. To further assess uncertainty with TA, other long-term monitoring 

stations (e.g. airports) located outside the study domain are also used in Section 2.5.4.  

Gridded u and L values are required as inputs to Eqs. 1-2 to determine rH. Results from a sensitivity analysis 

(Section 3.5) show that QH is relatively insensitive to L, so L is taken from KCL sonic observations and assumed spatially 

constant across the domain. The gridded u field is determined by the following procedure:  

Observed wind speed (U), friction velocity (u*), and Obukhov length (LKCL) are measured by the KCL sonic anemometer 

(zm, KCL= 50.3 m agl, approximately 3zb (2012-2016)). The corresponding roughness parameters  and 

(Section 2.4) are used in the stability-adjusted (ψ) logarithmic wind profile (using the sign convention of positive ψ as in 

Stull, 2012): 

  (6)  

 

The measured wind speed is then extrapolated to an arbitrary reference height of 200 m asl (zref, selected to be frequently 

well above the RSL and reasonably assume a spatially homogeneous reference wind speed, Uref) assuming vertically 

constant :  

𝑈𝑟𝑒𝑓 = 𝑈
[𝑙𝑛(

𝑧𝑟𝑒𝑓−𝑧𝑑,𝐾𝐶𝐿

𝑧0,𝐾𝐶𝐿
)+𝜓(

𝑧𝑟𝑒𝑓−𝑧𝑑,𝐾𝐶𝐿

𝐿𝐾𝐶𝐿
)]

[𝑙𝑛(
𝑧𝑚,𝐾𝐶𝐿−𝑧𝑑,𝐾𝐶𝐿

𝑧0,𝐾𝐶𝐿
)+𝜓(

𝑧𝑚,𝐾𝐶𝐿−𝑧𝑑,𝐾𝐶𝐿
𝐿𝐾𝐶𝐿

)]
 (7) 

The standardised reference wind speed Uref is then applied across the domain and scaled to the reference height for 

each grid cell to calculate pixel-specific U’. This uses the roughness parameters estimated for a particular location and 

assumes spatially consistent stability (i.e. L) across the domain: 

𝑈′ = 𝑈𝑟𝑒𝑓
[𝑙𝑛(

3𝑧𝑏−𝑧𝑑
𝑧0

)+𝜓(
3𝑧𝑏−𝑧𝑑
𝐿𝐾𝐶𝐿

)]

[𝑙𝑛(
𝑧𝑟𝑒𝑓−𝑧𝑑,𝐾𝐶𝐿

𝑧0,𝐾𝐶𝐿
)+𝜓(

𝑧𝑟𝑒𝑓−𝑧𝑑,𝐾𝐶𝐿

𝐿𝐾𝐶𝐿
)]

      (8) 

 

2.5.3 Aerodynamic resistance parameter 

The aerodynamic resistance term (rH) is calculated (eq. 2) using MOST. It varies both temporally and spatially. In this 

work, five approaches to calculate rH are compared (Table 2, also see Appendix Table A.2). Three approaches use 

empirical relations derived for the central London KCL flux site and two are generalized statistical relations for urban 

areas based on scale model and urban flux measurements. Additional methods of Jurges (1924), Rowley (1930), and 

Harman (2004) were also tested preliminarily, however these methods all require a parameterization of high-resolution 

canopy layer wind speed which is beyond the scope of this work to generate with high confidence. 

 
Table 2. Five methods to determine aerodynamic resistance in central London on a pixel basis.  

Method Method source Description 

R1 This paper Constant rH, based on observations at KCL (eq. 1) 

R2 This paper Empirical relation between zH and solar elevation () 

R3 This paper Empirical relation between zH and u 

R4 Kanda et al. (2007) Empirical relation between kB-1 and Re* at urban scale model (eq. 4) 

R5 Kawai et al. (2009) Empirical relation between  and land cover in real cities (eq. 8) 
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2.5.3.1 R1-R3 from central London observations 

Three methods rely on findings from KCL tower (central London) observations. These are described from simplest to most 

complex. The empirical relations are derived using daytime observations (K↓>10 W m-2), non-stable (EC QH>20 W m-2), 

dry surface conditions (time since precipitation>12 hours) to correspond to general conditions during satellite image 

acquisition. The observation results for these methods are in Section 3.2-3.3. 

The R1 method uses rH calculated from Eq. 1 and observed QH, TA, and substituting radiometric surface 

temperature (TR) for T0. The TR is calculated using the Stefan-Boltzmann equation with observed longwave radiation 

upward and downward components and an assumed bulk emissivity of 0.95 for an urban setting (Arnfield 1982, Kawai et 

al. 2009, Kotthaus et al. 2014). In general, there is uncertainty in using TR as a proxy for T0 arising from i) the choice of 

emissivity value, ii) lack of atmospheric correction, iii) source area differences between the radiometer and eddy 

covariance instruments, and iv) radiometer view bias. 

The mean rH value of 40 s m-1 for all periods in 2015 for 10:30-11:30 UTC is used (approximate time of satellite 

overpass) for all images. This is a simple approximation that assumes spatially constant rH and does not account for 

variations in atmospheric conditions (u*, L) nor surface land cover and roughness spatial variations. 

The R2 method calculates zH based on an empirical relation between solar elevation (,  above horizon) and zH 

observed at the central London eddy covariance tower (Section 3.3). The zH is found by first solving for rH using Eq.1 and 

then solving for zH in Eq. 2, using available tower-based (50.3 m agl) meteorological observations (u*, L, TA), surface 

parameters (z0 and zd) calculated in 10° wind direction increments (Kanda et al. 2013, Crawford et al. 2017), and 

substituting radiometric surface temperature (TR) for T0. Solar elevation is calculated for the day of year and time of each 

overpass (Meeus 1991, NOAA 2017). 

The R3 method uses zH determined from a linear relation between mean wind speed (U) and zH observed at the 

KCL tower (Section 3.3). The zH is calculated as described for R2 and wind speed varies spatially (Section 2.5.2) 

depending on surface roughness (Section 2.4) and reference height (Section 2.1).  

For R2-R3, the rH value is calculated for each pixel using Eq. 2 once zH has been determined. The stability function 

for heat (ψh) used for unstable conditions in Eq. 2 is (van Ulden and Holtslag, 1985): 

               (9) 

where (Högström, 1988): 

(10) 

where z’=zm - zd and zm is the measurement height. 

The u* and L values in Eq. 2 are assumed spatially constant and set to observed values at KCL. This simplification 

is necessary to make the problem more tractable, though the assumption of spatial homogeneity is likely not physically 

realistic across this study domain and artificially decouples QH from spatial variations in L and u* (e.g. Su 2002). Our 

approach instead is to quantify uncertainty resulting from this simplification (Section 3.5). 

During model development, an iterative approach using linked, spatially dynamic u*, L, and QH values was 

explored. However, u* and L values were not well-constrained and this iterative procedure resulted in greater model 

uncertainty and poorer comparison to observations than the simpler approach. Overall, QH results are found to be relatively 

insensitive to variations in L and more sensitive to u* (Section 3.5). 

 

2.5.3.2 Literature based methods (R4-R5) 

Empirical relations from observations at KCL (R1-R3) are compared to established methods described in the urban 

climate literature. The R4 method uses Kanda et al.’s (2007) ‘urban’  parameter (1.29) for Eq. 4 based on observations 

over the COSMO urban scale model in Japan (Figure 2). The difference from the  value used for rough-bluff natural 

surfaces (2.46) is attributed to differences in mean flow regimes and different surface roughness of the urban model 

compared to bluff natural surfaces (Kanda et al. 2007). It is important to note that i) the COSMO model has neither 

vegetation nor anthropogenic heat (QF) sources (both will influence kB-1 and observed QH values) and ii) the original R4 

model formulation is designed for non-vegetated urban surfaces. Therefore, R4 results are expected to differ from R1-R3 

(empirical models tuned for this specific site). R4 inclusion is intended as a relevant benchmark; therefore, ‘Observed - 

R4’ differences provide potential constraints on the influence of QF and vegetation. 

During implementation, Re* is determined based on u* and z0 for each pixel. For pixels in the London domain with 

water or vegetation land cover fractions >0.8, the  value is set to 2.46 of ‘natural’ rough-bluff surfaces.  
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Figure 2. Statistical relations from a) physical urban scale model (COSMO, Kanda et al., 2007) and b) local-scale urban observation 

sites (Kawai et al. 2009) used to calculate the aerodynamic resistance term (rH). For b) ‘COSMO’ scale model (Kanda et al. 2007), 

Vancouver-light industrial (‘VG’, Voogt and Grimmond 2000), Tokyo Kugahara (‘KU’, Moriwaki and Kanda 2006), Tokyo 

business district (‘SU’, Sugawara 2001), Basel-Sperrstrasse (‘U1’), and Basel-Spalenring (‘U2’) (Christen and Vogt, 2004) are those 

used by Kawai et al. (2009). Results from central London (‘KCL’, Kotthaus and Grimmond 2014), Swindon (Ward et al., 2013), 

Vancouver-Sunset (‘Van-ST’, Crawford and Christen, 2015), Baltimore (‘Bal’, Crawford et al. 2011), and University of Reading 

reference grass site (‘Reading’) are added in this work. These sites are shown for contrasting meteorological seasons (DJF, MAM, 

JJA, SON), and average summertime vegetation land cover fractions. 

 

The R5 method allows rH to vary spatially with changes in vegetation land cover (λv) as proposed by Kawai et al. 

(2009) (Figure 2b). The original findings use data from five local-scale urban EC measurement campaigns with a 

vegetated land cover fraction range of 0-0.3. The  value in Eq. 4 is found to decrease as vegetation land cover fraction 

increases: 

  (11) 

where au (1.2) and b (0.29) are empirical coefficients and aL is set to 0.3 based on  found experimentally in completely 

vegetated ecosystems. The R5 method permits the urban fraction within grids of numerical weather prediction to vary. The 

application here is an extension beyond the original purpose to determine if i) the observed relation holds for vegetation 

land cover fraction values greater than 0.3 and ii) whether this can be applied at higher resolutions and evaluated against 

measurements in real cities. 

Here, the urban vegetation land cover range is expanded to 0-0.8 by adding four additional sites: Vancouver-Sunset, 

Canada (Crawford and Christen, 2015); London-KCL, UK (Kotthaus and Grimmond, 2014); Swindon, UK (Ward et al. 

2013); and Baltimore, USA (Crawford et al. 2011).  

For each site, the  value is found by rearranging Eqs. 1-2 to solve for kB-1 and then plotting kB-1 against observed 

Re*. At each site, meteorological variables (u*, L, TA) are observed, TR is calculated and used as a substitute for T0 

(Section 2.5.1), and surface parameters (z0 and zd) are determined for 20° wind sectors using anemometric methods in 

neutrally stable conditions (Grimmond and Oke, 1999). Additionally, data are stratified by season (DJF, MAM, JJA, SON) 

to assess variability from changing canopy and weather conditions and by wind sector (for Baltimore and Vancouver-

Sunset) to distinguish between source areas with contrasting vegetation land cover fractions.  

The overall trend described by Kawai et al. (2009) is supported by the additional observations (Figure 2b), though 

there is scatter about the trend line (mean absolute deviation = 0.18). A physical explanation for this trend is that 

momentum transfer is enhanced relative to heat transfer due to increased pressure drag from dominance of bluff bodies in 

less vegetated urban environments. This increases , thus also kB-1 and rH values. As vegetated land cover fraction 

increases, the canopy becomes more porous, pressure drag is reduced, and heat transfer efficiency is enhanced by the 

intricate vegetation canopy 3D surface. Values for  determined experimentally for rough, porous vegetated canopies such 

as pine forest and savannah scrub are approximately 0.3 (Kawai et al. 2009 and references therein). 

London-KCL appears as an outlier in this figure with lower  values than expected (0.45) based on vegetation 

fraction (0.09). A possible explanation for this could be that closely packed buildings in central London place this site 

more towards the skimming flow regime where form drag from bluff buildings is diminished. Another explanation is the 

influence of the River Thames on EC measurements and differing source areas between TR (radiometer) and QH (EC) used 

to derive rH, kB-1, and  (Section 2.2). 

To implement R5, pixel-specific  is derived using λv and Eq. 11. Then kB-1 is calculated using Eq. 4. For water or 

vegetation land cover fractions >0.8, the  value is set to 2.46 of ‘natural’ rough surfaces. 

 



Crawford B, CSB Grimmond, A Gabey, M Marconcini, HC Ward, CW Kent  2018: Variability of urban surface temperatures and 

implications for aerodynamic energy exchange in unstable conditions QJRMS 

8 

 

2.5.4 Quantifying uncertainty 

To quantify model uncertainty, a modified Monte Carlo approach is used to sample the parameter space of input 

meteorological and surface variables. The model is run with 20 unique sets of inputs within a prescribed range from the 

original observed or calculated value (Table 3). Values within this range are generated using quasi-random numbers. For 

each run, each variable is sampled at a unique location in the allowed range. The quasi-random numbers are generated 

assuming a uniform distribution and this conceptually represents a systematic bias which affects all individual grid cells 

(i.e. individual grid cell uncertainties are not independent). 

The range for each variable was determined using a variety of approaches. For LST, we consider three independent 

sources of error: surface emissivity (), sensor bias, and satellite view bias. For , the uncertainty interval is determined by 

calculating TR from KCL radiometer measurements with bulk emissivity set to 0.9 and 1.0 as physically reasonable upper 

and lower constraints. The resulting sensitivity of TR to this ε range is on average 1.2 K (0.6 K) for all hours at 11:00 

UTC from 2012-2016. The KCL TR during each overpass (with =0.98) is compared directly to extracted LST values 

(weighted mean of pixels surrounding the KCL tower to approximate the radiometer source area) and LST is on average 

0.8 K higher than TR. This is comparable to the LST bias (0.67 K) found between application of constant and variable 

emissivity values to multispectral satellite images in an urban area (Mitraka et al. 2012).  

The sensor bias is the reported average absolute error estimate due to the stray light problem (+1 to +2 K) (Gerace 

and Montanaro 2017). For satellite view bias, LST is likely underestimated relative to the complete surface temperature by 

0 to -2.5 K at 11:00 UTC (which acts to offset the stray light sensor bias), if we assume a nadir viewing angle. This is 

based on thermal camera measurements in an urban neighbourhood (Adderley and Christen 2015) and a physical scale 

urban model (Roberts 2010) that found maximum differences between nadir and complete surface temperatures at solar 

noon (2.2-2.5 K) and near-zero difference at 10:30 local time (Adderley and Christen 2015). This error is expected to vary 

spatially and generally increase with building height and canyon aspect ratio as the proportion of walls to the total 3D 

urban surface area changes (Krayenhoff and Voogt, 2016). Additional errors result from the actual off-nadir view angle 

(7.5), satellite azimuth angle, and thermal anisotropy of the surface. There are likely further sources of error in LST 

observations, such as neglecting urban aerosols during atmospheric correction, that are not quantified.  

For TA, the uncertainty range is the mean difference between KCL and Heathrow airport on the outskirts of central 

London for 10:30-11:30 UTC; this is taken to be the likely maximum air temperature difference within the spatial domain 

during the overpass times. For wind speed, the average difference between predicted wind speeds using the methods 

described in Section 2.5 and actual measurements from two stations in the London network (BCT, IMU) are used. For z0 

and zd, the range is based on analysis of several morphometric and anemometer-based methods to determine their values in 

central London (Kent et al. 2017). For  in Eq. 9, the value is the mean absolute difference between the fit model curve 

and observation points in Figure 2b. The ranges of u* and L are set to the standard deviation of measurements at the KCL 

flux tower at 10:30-11:30 UTC during an entire year (2016), essentially substituting observed temporal variability for 

spatial variability. The solar elevation uncertainty is based on variations in overpass time (10:52-11:02 UTC) and from 

simplified orbital calculations. 

Vegetation fraction uncertainty is set to the 100 m pixel difference (0.1, includes 95% of 100 m pixels) between 

land cover determined for this project and that from the UK Ordnance Survey MasterMap (Ordance Survey 2017) in a 

subset of the modelling domain. For elevation, uncertainty is estimated from a comparison between LiDAR-derived 

elevation datasets from 2008 and 2015 for a spatial subset where there is overlap between the datasets. LiDAR 

instrumentation errors are <1 m and uncertainty primarily is from changes due to building construction. Between 2008 

and 2015, 99% of 100 m pixels are within 4 m elevation difference (though roughness element heights are on average 0.5 

m taller in 2015 compared to 2008). 

It should be noted that there are likely other sources of uncertainty in individual pixels resulting from process that 

have not been quantified. For example, complexities related to sub-pixel heterogeneity are not considered explicitly and 

advection from cool grid cells (e.g. parks, rivers) to warmer adjacent pixels could enhance micro-scale sensible heat fluxes 

by increasing micro-scale vertical temperature gradients. 

 
Table 3. Input variables to calculate QH and their estimated uncertainty range used for the Monte Carlo and sensitivity analyses. 

Variable Description Estimated 

uncertainty 

range () 

How uncertainty range is determined 

LST EO-observed from Landsat-8 satellite 

based on thermal infrared radiation 

2 K Combined uncertainty from: i) surface 

emissivity, ii) sensor bias, iii) view-angle 

bias. 

TA Air temperature spatially interpolated 

from observation network 

0.5 K Mean difference between central London and 

Heathrow airport at 11:00 UTC. 

U Reference mean wind speed observed 

at KCL tower, spatially calculated 

using log law 

3 m s-1 Mean difference between predicted and 

observed values at 2 stations in central 

London. 

u* Friction velocity observed at KCL 

tower, assumed spatially constant 

0.15 m s-1 IQR of measured values for a full year at 

KCL at 11:00 UTC 

zd Displacement height calculated from 

DSM using Kanda et al. (2013) 

method, varies by wind direction 

10 m Based on analysis of morphometric and 

anemometer-based approaches in central 

London (Kent et al. 2017) 
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z0 Roughness length calculated from 

DSM using Kanda et al. (2013) 

method, varies by wind direction 

2 m Based on analysis of morphometric and 

anemometer-based approaches in central 

London (Kent et al. 2017) 

z Reference height determined LiDAR 

observed DSM from 2008 

4 m Comparison between 2008 and 2015 LiDAR 

elevation datasets. 

L Obukhov Length observed at KCL 

tower, assumed spatially constant 

300 m IQR of measured values for a full year at 

KCL at 11:00 UTC 

V Vegetation land cover fraction from 

remote sensing 

0.1 Estimate based on comparison between two 

land cover datasets. 

 Alpha value in Eqs. 4 and 8 to 

calculate kB-1 

0.18 Mean absolute deviation of observed values 

about the model curve in Figure 2b. 

 Solar elevation angle 3 Based on variations in overpass time and 

reference time of 11:00 UTC and orbital 

simplifications in solar model. 

 

Thus 20 ensemble members are generated for each pixel and each method, for each LST image. The uncertainty range for 

each method is estimated from the median absolute difference between the 10% and 90%ile QH values calculated for each 

pixel. The median value of this matrix is then interpreted as the average uncertainty range for each method across the 

spatial domain (both absolute W m-2 and relative to median QH for all images).  

 

3 Results 

3.1 EO-derived LST 

Median LST in the study domain derived from EO measurements follows an expected annual course with highest values in 

summer and lowest in winter (Figure 3a). The median LST values for each scene are generally higher than the TR range 

(5th-95th %ile) observed at KCL from 2012-2016 because the EO scenes are from cloud-free periods and do not include 

overcast and rainy times. LST values are also all warmer than air temperatures, implying unstable atmospheric conditions 

and positive QH. 

 
Figure 3. Annual course of 

a) EO-derived LST, tower-

observed radiometric 

temperature (TR) and air 

temperature (TA) and b) 

tower-observed and 

modelled QH (R1). Observed 

TR and TA in a) and observed 

and modelled QH in b) are at 

the same time as each LST 

overpass. The 5th-95th %ile 

ranges of observed TR values 

(grey shading) is shown for 

all days from 2012-2016 at 

11:00 UTC with a 10-day 

smoothing filter. For 

observed TR (a), the range of 

values includes emissivity 

variations from 0.90-1.0. For 

QH (b), observed values are 

from the three 

scintillometers and EC 

system (Figure 1). 
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Spatially, coolest temperatures are generally found in more vegetated areas and for the surface of water bodies. LST tends 

to increase with higher building land cover fraction (B) (Figure 4a). The greatest rate of increase in LST is when B ranges 

from 0-0.5, above which LST remains constant (5-7% above spatial mean). In winter, LST is relatively high (10% above 

mean) in areas with high building fractions (>0.8), possibly due to anthropogenic heating, however there are few data 

points from winter (n=2). In this analysis, pixel LST is normalized relative to the spatial mean (<LST>) for each scene 

(LST/<LST>) and only pixels with water land cover fractions <0.5 are used. The normalized LST pixels are binned in land 

cover fraction increments of 0.1. The relation between vegetation land cover and LST is the inverse (not shown), i.e. LST 

decreases as vegetation fraction increases. 

Though LST increases as building land cover increases, measured LST tends to be cooler in areas with tall buildings 

(Figure 4b). Pixels with tallest buildings (>120 m on average) are in general 10% cooler than the spatial average. In this 

analysis, only pixels with vegetation and water land cover fractions <0.5 are selected and normalized LST pixels are 

binned in 10 m building height increments. 

This cooling trend is evident for various classes of building land cover fractions. For example, LST is relatively low 

when B < 0.2, yet LST still decreases as mean building height increases. Another notable trend is that when buildings are 

shorter (<80 m), LST increases with increasing B, consistent with Figure 4a. However, when buildings are taller (>110 m), 

this pattern reverses and LST tends to decrease with B.  

When buildings are shorter, the positive correlation between LST and B can intuitively be explained due to the 

greater fraction of buildings and their rooftops at the expense of cooler grass and tree vegetation, with a satellite view bias 

towards warm rooftops (at the 11:00 UTC overpass time). In the tall building regime, the apparent cooling as building 

density increases could result from several explanations: i) increased surface shading and reduced sky view factor from tall 

buildings, ii) increased proportion of shaded walls that are included in off-nadir satellite view, iii) reduced emissivity of 

building materials such as glass and steel present in higher proportions in areas with tallest buildings. 

 
Figure 4. Normalized LST for all available Landsat images binned by a) building land cover fraction with medians for meteorological 

season (coloured dots) and b) mean building height with medians for building land cover fraction (coloured dots). In a) only pixels 

with water < 0.5 are used and in b) only pixels with vegetation and water <0.5 are selected. 

 

Four images from contrasting periods (summer day, summer night, winter day, and winter night) are chosen as 

representative examples for comparison. Based on these images, daytime LST has higher spatial variance (s.d.=2.67 K on 8 

June 2013 11:00 UTC) whereas nighttime LST is more uniform (s.d.=0.12 on 8 June 2011 21:43 UTC) (Figure 5). During 

winter (not shown), daytime variability is less than in summer (s.d.=1.08 K on 16 Feb 2016), though nighttime variability 

between seasons is similar (s.d.=0.13 K on 25 Dec 2014 21:44 UTC). 

 LST patterns also exhibit spatial structure correlated with vegetation and building land cover fraction. Variograms 

for the four contrasting periods show spatial autocorrelation across a range of spatial scales (Figure 6). Low variance is 

associated with homogenous surfaces and high variance with heterogeneity. 

Summer daytime has highest variance at all scales, while summer and winter nights have the lowest. For all images 

however, variance increases up to 500 m where there is an inflection and the variance curve becomes relatively flat. This 

implies the spatial surface temperature structures are more homogenous (i.e. less variance) at length scales less than 500 

m. In contrast, a field of uniformly distributed random numbers has a flat variance curve across the entire range of length 

scales. Vegetation and building land cover fractions also exhibit an inflection at around 500 m, suggesting observed LST 

patterns are linked to the built and vegetated structure in the area. 
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Figure 5. Summer EO-derived LST for representative a) day and b) night periods. Daytime images are from Landsat satellite and 

nighttime images are from the ASTER satellite. Parks (green), water bodies (blue), and the central London QH observation network 

are also shown (coloured lines and black circle). 

 
Figure 6. Variogram of LST from four contrasting time periods. A field of uniformly distributed random data is shown for comparison. 

Both axes are logarithmic. 

 

3.2 Temporal variability of rH  

To assess temporal variability of rH and variables used to calculate rH, we use continuous observations from the KCL EC 

tower for a full year (2015). Observed QH and T (TR-TA) follow expected diurnal and seasonal courses, with highest 

values during spring-summer (MAM-JJA) and midday periods and lowest values during winter (DJF) and overnight 

(Figure 7a-b). QH tends to be highest during spring (MAM, >200 W m-2 from 1100-1500 h), though T is highest during 

summer (>8C from 1000-1300 h). This is consistent with prior observations at this site that found highest QH in 

springtime when there is relatively plentiful energy input from Q*, but vegetation evapotranspiration is not yet at full 

strength to partition energy towards QE (Kotthaus and Grimmond 2014). For Figure 7a-f, daytime (K>10 W m-2) data 

from unstable periods (QH>20 W m-2) with a dry surface (time since rain > 12 h) in 2015 are used.  

The thermal resistance (rH) calculated (Eq. 1) at KCL for all hours in 2015 using measurements of QH, TA, and TR 

(=0.95) has a clear diurnal pattern (Figure 7c). The highest median rH values occur during midday (36.9 s m-1 from 1000-

1400 h) and lowest overnight (median, 10.0 s m-1 from 2100-0500 h). There is considerable variability (mean of the s.d. 

for all binned hours is 52.4 s m-1). Seasonally, median values are highest in summer (peak at 55.6 s m-1 at 1100 h) and 

lowest during winter (peak 23.1 s m-1 at 1200 h). Seasonal differences in rH are likely due to a combination of seasonal 
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differences in vegetation canopy state and anthropogenic heat flux (QF). Constant rH at 10:30-11:30 (40 s m-1) is used for 

the R1 method to model rH (Section 2.5).  

It is somewhat counterintuitive that rH is largest during the day, when QH and T are highest. This differs from the 

diurnal pattern when rH is modelled directly using MOST (Eq. 2) with kB-1 from eq. 4 ( set to 0.45, Figure 2b). The 

modelled diurnal cycle shows rH is lowest during midday when QH and u* are highest, and highest overnight (also see 

Appendix 1 Figure A1, Table A2). During daytime, modelled and ‘observed’ rH values are comparable, however, 

differences occur overnight (up to 30 s m-1). A reason for this discrepancy could be due to source area differences between 

the radiometer and turbulent EC source areas at KCL, particularly overnight (Section 2.2). Though this undoubtedly 

introduces uncertainty to estimates of rH from measurements at KCL, the same diurnal pattern of rH as Figure 7 is also 

found when using both i) QH from the P2 scintillometer to solve for rH (along with TA from IMU and TR from KCL), which 

is affected much less by the river and ii) EC QH filtered by wind direction (300 - 45) to avoid the river’s influence. 

Additionally, there is overall greater uncertainty during nighttime both because EC measurements have greater uncertainty 

due to less vigorous vertical mixing and MOST assumptions begin to break down (e.g. Best and Grimmond 2015). 

Magnitudes of rH observed at the KCL tower are slightly higher than observed from the scintillometer source areas. 

The scintillometer rH is estimated using observed QH, TA, and scintillometer source area-weighted LST in Eq. 2. Mean 

values for satellite overpass times range from 32.6 – 39.2 s m-1 (-18.5% to -2.0% difference from KCL). Differences are 

likely due to land cover and urban form differences between scintillometer and EC source areas, differences between LST 

and TR, and from satellite overpass bias towards clear-sky conditions.  

The same diurnal and seasonal cycles as rH are evident in hourly median kB-1 values for 2015 at KCL (Figure 7d). 

The kB-1 term is calculated using Eq. 2 with rH determined from observations (Eq. 1), measurements from KCL (u*, L), 

and z0 and zd calculated for 10 wind sectors using the Kanda et al. (2013) method (Section 2). Physically, this can be 

interpreted as enhanced momentum transfer relative to heat transfer during midday. Momentum transfer is enhanced by 

form drag in urban areas, while heat transfer is influenced more by molecular diffusion near the surface and thus tends to 

encounter greater aerodynamic resistance (Kanda et al. 2007). This interpretation is also supported by observation of 

higher u* and lower zH values during afternoon. We have higher confidence in these diurnal patterns of kB-1 and zH than in 

rH because they generally agree with modelled diurnal cycles using Eqs. 3-4 (though the modelled range of values is much 

smaller than measurement-derived values). 
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Figure 7. Diurnal course of hourly a) EC QH, b) TR-TA, c) rH, d) kB-1, e) zH, and f) u* from KCL measurements during 2015 or calculated 

using Eq. 2-3. Seasonal (DJF, MAM, JJA, SON) medians (coloured dots) are shown within the boxplot which are based on all 2015 

data. Note e) y-axis scale is logarithmic. For c-e), boxplots and dots are derived from KCL measurements and are compared to 

hourly median (dashed line) and IQR (dotted line) results from the other methods (Appendix 1 Figure A1, Table A2). 

 

 

3.3 Temporal variability of zH  

Median hourly zH values are small throughout the day but vary across several orders of magnitude (Figures 7e, 8). Here, zH 

is calculated using Eq. 3, based on kB-1 determined from observations (Eq. 2, using rH calculated from measurements [Eq. 

1]), with z0 calculated for 10 wind sectors using the Kanda et al. (2013) method (Section 2). The diurnal cycle of zH in 

Figure 7e generally agrees with that calculated using Eqs. 3 and 4 (though this range of values is much smaller). Highest 

values are found overnight (up to 2.9 m at 00:00 h) and lowest during midday (1.3 x 10-4 m at 12:00 h).  

In central London, zH is found to vary with solar angle above the horizon, consistent with results from Vancouver 

(Voogt and Grimmond 2000), but in contrast to findings over the COSMO scale model (Kanda et al. 2007). There is a 

possibility of a spurious correlation between solar angle and zH due to turbulence, which also is expected to vary with solar 

angle. However, we find similar patterns during both neutral (<-0.1<z’/L<0.1) and unstable (z’/L<-0.1) conditions. This 

relation is the basis for method R2 (Section 2.5). 

We also find zH varies with wind speed (R3, Section 2.5), turbulence (standard deviation of 10 Hz vertical wind 

speed, W, measured by the KCL sonic anemometer), and stability (z’/L). As mean wind speed and W increase, zH tends to 

decrease and median zH is lower (higher) during unstable (neutral) conditions (Figure 8). Here, only daytime (K>10 W m-

2), non-stable (QH>20 W m-2), dry surface conditions (time since rain >12 h) are analysed to avoid uncertainties during 

overnight, reduced mixing periods. 

These observations can be explained conceptually by analogy with a surface boundary layer. By definition, zH is the 

height at which T0=TA. When there are unstable conditions and vigorous turbulence, cool air is mixed downwards into the 

thin layer between the surface and zH. This acts to lower zH, and overall heat transfer is enhanced by turbulent transport 
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above zH. In contrast, during neutral or stable conditions with minimal turbulence, the zH height grows as QH from the 

surface acts to warm the air in contact with the surface via molecular diffusion.  

This is somewhat contradicted however by the observed relation between increasing surface bulk heat transfer 

coefficient (CH) and increasing zH; calculated (Kanda et al. 2007): 

  (12) 

A possible explanation for this trend is related to the different source areas influencing radiometers and turbulent EC 

measurements (as indicated for rH in Figure 7). 

Overall, it remains difficult to interpret the large diurnal variations in zH and their physical basis. These variations 

could be an artefact of the measurements used to derive zH. For example, the apparent relation between zH and solar angle 

may be due to differences in LST and the effective surface temperature (TE). According to Kanda (2005), TE is the 

operative driver of QH and is formulated as the average of individual facets’ surface temperatures weighted by a local bulk 

transfer coefficient. Differences between TE and practical substitutes such as TR or LST used in Eq. 1 vary diurnally 

according to solar angle and resulting thermal anisotropy of the 3d urban surface and are thus manifested in derived zH. In 

general, targeted, controlled experiments may offer a more suitable approach for more in-depth investigation of zH. 

However, this requires more detailed surface temperature measurements than can be obtained currently by EO and is the 

driver behind other ongoing work (e.g. Morrison et al. 2018). 

 

 
 
Figure 4. Normalized LST for all available Landsat images binned by a) building land cover fraction with medians for meteorological 

season (coloured dots) and b) mean building height with medians for building land cover fraction (coloured dots). In a) only 

pixels with water < 0.5 are used and in b) only pixels with vegetation and water <0.5 are selected.  

 

3.4 Influence of QF 
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Another factor affecting in situ observations with implications for the ARM method is the influence of QF. It is well-

known that scintillometers and EC QH observations in cities also include a portion of QF (e.g. Crawford et al. 2017). 

Modelling work in central London suggests that between 2/3 (Bohnenstengel et al. 2014) and 80% (Iamarino et al. 2012) 

of QF is expressed as QH, with the remainder partitioned towards L↑, latent heat flux (QE), storage heat flux (QS), and 

waste water. This contribution will vary by time of day, day of week, and season according to local energy consumption 

for space heating, vehicle transportation, and lighting, etc. 

In terms of the ARM approach, the overall effect of QF is complex. Direct QF emissions to the atmosphere (e.g. 

from vehicle exhaust or building chimneys) will warm the atmosphere as a function of the urban boundary layer (UBL) 

height (with dynamic feedback) and QF input. A simple calculation assuming a well-mixed UBL shows that for a constant 

100 W m-2 QF directly emitted to the atmosphere over 30 minutes, warming would range from 0.10-0.75 K for UBL 

heights of 1000 m and 200 m, respectively. This agrees with modelling work that estimates an increase of up to 1.5 K in 

screen-level air temperature from QF during winter nights (Bohnenstengel et al. 2014). 

In an ARM context, an increase in daytime air temperature alone would decrease QH by reducing the vertical 

gradient between T0 and TA. We would expect some corresponding increase in T0 from QF to counteract this, but the 

location, timing, and magnitude of the surface warming is less well understood. Bohnenstengel et al. (2014) show that 

approximately 1/3 of QF goes into surface heating (and thus outgoing longwave radiation), but that there is a delay of 

several hours due to the thermal mass of the urban fabric and diffusion of indoor heating sources outwards to exterior 

building surfaces. Where this warming occurs also has implications for EO-observed LST. If building warming is 

preferentially directed towards external vertical walls rather than roofs, this may not be captured by downward facing EO 

sensors with a view-bias towards horizontal rooftops.  

To assess whether there are thermal differences in an urban setting attributable to QF, observations from the flux tower at 

KCL in central London data are sorted into working (M-F) and non-working days (S-S and public holidays). Friday 

evenings (after 19:00 h) are defined as ‘non-working’ and Sunday evenings (after 19:00 h) as ‘working’ (Björkegren and 

Grimmond 2016). Three winter seasons (DJF 2013-14, 2014-15, 2015-16) are used for analysis because QF inputs are 

expected to be highest relative to Q* and more easily detected than during other seasons. The 30-minute analysis data are 

also controlled for K (so that hourly median working and non-working day’s K values are all within 5 W m-2) to 

minimize differences in surface solar energy input. 

This analysis shows small but detectable differences in mean hourly air temperature and surface temperature 

between working and non-working days (Figure 9). Working weekdays tend to have slightly warmer TR (up to 0.7 K) and 

air temperatures (up to 0.5 K) compared to weekends and holidays. Working days are generally warmer during daytime 

with largest differences at midday (1100-1200 UTC). Overnight, weekends and holidays are warmer than working days. 

This translates to TR-TA differences between working and non-working days as well, with highest differences up to 

0.4 K (up to 66%). This vertical gradient equates to QH differences of around 20 W m-2 during daytime, assuming an rH 

value of 25 s m-1 representative of winter daytime conditions (Figure 7c). This is comparable to observed eddy covariance 

QH differences of 4.2 – 20.6 W m-2 (0900-1800 UTC). 

The diurnal cycles of observed temperature differences are compared to the diurnal cycle of QF as modelled by the new 

version of the GreaterQF model (Iamarino et al. 2012): GQF (Gabey et al. 2018) within UMEP (Lindberg et al. 2018). The 

shape of the model diurnal QF cycle is based on energy consumption statistics and varies by season, day of week and 

combination of building sources within an area (Gabey et al. 2018); i.e. KCL tower measurement source areas. Energy 

consumption statistics demonstrate that QF is dominated by building sources and indoor space heating from natural gas 

combustion. To directly compare the shape of the diurnal course between observed temperature differences and modelled 

QF, both are plotted on the same figure with different y-axes (Figure 9). 

From this comparison, we see that modelled QF differences follow a diurnal pattern with higher working day (non-

working day) values during day (night). Modelled energy consumption differences peak at 09:00 UTC, while peak 

observed TA differences occur at 11:00 UTC and TR differences are at 12:00 UTC. This suggests a lag of 2-3 hours 

between energy consumption (QF emissions) and when external air and surface warming occurs.  

There are several implications resulting from this lag. The first is that QF emissions are embedded in observed LST 

and TA, and thus also QH when using ARM; though instantaneous LST (as observed from satellite-platforms) and TA will 

not necessarily reflect the actual timing of QF emissions. The magnitude of the QF contribution to QH will depend on the 

city location and time of day and year and may often only be a minor energy source, especially relative to uncertainties in 

other aspects with determining QH with ARM (Section 3.3-3.4). In principle, this suggests using a residual approach to 

determine QF based on remote sensing is possible (e.g. Chrysoulakis et al. 2015), though current uncertainties in 

determining QH are on the same order of magnitude as the QF signal (Section 3.3-3.4). 
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Figure 9. Working (weekday) and non-working (weekend) average differences for a) TA, b) TR, c) TR-TA, and d) eddy covariance QH. All 

data are from the KCL flux tower for 2013-2015 DJF seasons. Results from the energy inventory-based GQF (Iamarino et al. 

2012, Gabey et al. 2018, Lindberg et al. 2018) model are shown for reference using second y-axis (dashed line). Note the 

temperature y-axis ranges for (a)-(c) differ. 

 

3.5 QH using ARM 

 

Domain QH is calculated with an aerodynamic resistance method (ARM) using observed LST, TA, and calculated rH 

(Section 2.5). A single LST scene (2 Oct 2015, 11:00 UTC) is used as a case study to exemplify results and allow a more 

detailed spatial view (Figure 10). This period is selected because of high image coverage (97% cloud free) during the 

satellite overpass and availability of observations from the measurement network for comparison. The day was a working 

weekday (Friday) with clear skies and mild temperatures (observed 15.7 °C at KCL tower at 11:00 UTC). There was a 

small amount of precipitation (0.04 mm) recorded the previous day at 15:00 h, but the surface is assumed to have dried by 

the time of the overpass because this occurred more than 12 hours earlier (Kotthaus and Grimmond 2014). Winds were 

calm (2.6 m s-1) and from the NE (78°), typical of high-pressure anti-cyclonic synoptic conditions. Sunrise was at 6:02 

UTC and solar elevation at the time of the overpass was approximately 30° above the horizon. The previous night was 

generally clear and calm, allowing for enhanced radiative cooling of the surface overnight. 

At the 11:00 UTC overpass, EO-derived LST ranged from 14-28 °C, with cooler temperatures measured generally 

in vegetated park areas, water bodies, and city centre areas with tallest buildings. TA varies within a much smaller range 

(15.6-16.2 °C) compared to LST with cooler values in the city centre associated with higher building heights and thus 

higher reference height.  

Spatial patterns of LST (and input meteorological values) are also manifested in rH and QH. Excluding parks and 

water bodies, all QH methods (R1-R5) show similar spatial pattern of lower values in the city centre and highest values in 

more vegetated, less densely built areas. This spatial pattern is somewhat counterintuitive as it was expected that highest 

QH would be found in areas with highest built densities with associated higher Bowen ratios and higher QF releases 

compared to less densely built and populated areas. This primarily results from observed LST patterns in central London 

(Figures 3-6). 

Although spatial patterns are similar, there are notably different distributions of pixel-scale QH values between the 

methods. R5 tends to predict highest values compared to the other versions for individual pixels away from the city centre. 

These values (30% >500 W m-2 for all 25 scenes) are associated with higher vegetation land cover fractions that result in 

lower , lower kB-1, and lower rH. Whereas, QH values determined using R4 appear low for an urban area (25% from 50-

100 W m-2). This is not unexpected given differences in form (vegetation) and function (QF) between the physical model 

on which R4 is based and the study area, and in Section 3.6 we take advantage of this difference to constrain QF estimates. 
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Figure 10. a) LST-TA, b) rH, and c) QH for 11:00 UTC, 2 October 2015 for the R3 method (Table 2). R3 is used as representative of R1-

R3 methods (techniques based on central London flux tower observations). Other symbols and outlines are as in Figure 1. Cloud 

pixels are masked (grey).  

 

To quantify sensitivity of QH results to individual input variables for each method, QH is modelled with each input variable 

perturbed individually, while all other variables remain constant (Figure 11). Each variable is perturbed by both a constant 

10% and the uncertainty ranges listed in Table 3. The case study date (2 Oct 2015) is analysed as representative. 

Unsurprisingly, all methods are most sensitive to perturbations in LST (50-70%) and to a lesser extent TA (40-

60%) (Figure 11). QH is also very sensitive to u* for methods R2, R4, and R5, as this is used to determine kB-1 and gridded 

wind speed. The R3 method, which uses wind speed as a primary input, is also moderately sensitive to z0 and zd. The R5 

method is very sensitive to  and V as this determines kB-1 and rH. Results are relatively insensitive to L and surface 

variables z and zd. 

 

 
Figure 11. Percentage difference in QH for five methods (Tables 2, A2) with individually perturbed input variables and parameters 

relative to a control run. Each input is perturbed by a) 10% and by b) prescribed ranges given in Table 3. Also see Table 3 for 

definition of variables. Note that some methods do not require all variables (Table A.2). 

 

3.6 Comparison to measurements 

Each method (R1-R5, Section 2) is compared to observations, to assess the uncertainties and associated assumptions of 

each. The goal is to understand the urban system based on the entire suite of models, rather than to assign a relative 

ranking of the models.  

Overall, when QH is modelled using five methods for all 25 available images, there is an expected annual cycle with 

highest values generally in the spring (~300-400 W m-2, April-May) and lowest values in the autumn and winter (<150 W 

m-2, October-February) (Figure 3b). Individual R1-R5 results are compared to observations from the three scintillometers 

and EC station using turbulent flux source area models which vary by observed wind direction and atmospheric conditions 

(u*, L, V) at KCL. The source area model of Kormann and Meixner (2001) is used and full details for implementation and 

weighting along the scintillometer path are described in Crawford et al. (2017). The source area weights for each 

instrument (100 m resolution) are multiplied by the 100 m QH pixels to determine the source area weighted average QH to 

compare with observations. 
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Overall, R1-R3 (i.e. based on London observations) QH compares expectedly reasonably well to observations, 

though there is scatter about the 1:1 line (Figure 12). For all observations, the lowest mean absolute error (MAE) relative 

to observations is for R1 (58.1 W m-2) (Table 4). The R4 method (Kanda et al. 2007) tends to underestimate observed QH 

by 129.3 W m-2, on average (Table 4). This too is somewhat expected given differences between the model and real city. 

We interpret this result as a useful reference or baseline representing QH from a non-vegetated city with no active QF 

sources. From this perspective, we can attempt to attribute and constrain contributions of additional energy sources in a 

real city.  

There are likely two primary reasons for the R4-observed difference: 1) vegetation in the real city which acts to 

lower kB-1 and rH and thus increase QH, and 2) QF which is embedded in QH observations from live cities and therefore 

also the empirical models based on these observations. Additional physical differences between the model and real world 

(i.e. building orientation, spacing, and alignment) are less likely to have an appreciable effect. This is based on COSMO 

model tests with different configurations that demonstrate R4 is applicable over a range of building geometries and 

alignments (Kanda and Moriizumi, 2009). For vegetation, λv in central London is relatively sparse (~0.09) and actual  

and kB-1 values are lower than expected based purely on this vegetation fraction (Figure 2b).  

The primary reason for the discrepancy then may be anthropogenic heat flux (QF). The R4 method is based on EC 

observations from a scale model city with no QF sources, whereas the other methods are based on EC observations from 

real cities which include a portion of QF embedded in QH measurements. Thus, the R4 method may account for the form 

but not the functioning of a city and thus underestimates QH measurements which include a portion of QF in real cities. 

To assess if the difference between R4 results and observations could be used to constrain QF estimates, total QF 

values were calculated for a subset of overpass times using an independent energy model for spatial areas within the 

measurement source areas (Gabey et al. 2018). Approximately 80% of total QF is expected to be manifest as QH, (as noted 

in Section 3.4; L↑, QE, QS, and waste water also account for the remainder). The GQF model QF expressed as QH ranges 

from 111 – 180 W m-2 and agrees well with the 129.3 W m-2 MAE between the R4 QH model and observations. The same 

approach also works using the difference between modelled R1 QH (constant rH) and R4 (123.3 W m-2). Thus, it appears 

that the R4 method calculates non-anthropogenic QH with no added QF component and may have potential as another tool 

to constrain QF, in combination with QH observations.  

The difference in magnitude of QH calculated using winter-observed rH and summer-observed rH may also be useful 

to provide a constraint on QF. This is tested with a simple calculation assuming constant (TR-TA) of 4 C and typical mid-

day winter and summer values of rH (20 and 50 s m-1, respectively: Figure 7c). This leads to a difference in mid-day QH of 

144 W m-2, similar in magnitude to modelled GQF QF. The result implies a more efficient heat transfer in winter, but it is 

unclear if this is from increased QF magnitude (but without a corresponding observed change in TR-TA) or from seasonal 

differences in turbulence regimes and surface conditions. 

Though there is scatter in the comparisons (coefficient of determination R2 range from 0.42 [R5] to 0.59 [R4]), 80% 

of all values fall within the 80% uncertainty range (Figure 12) determined from the Monte Carlo sampling technique 

(Section 2). This implies modelling results are within realistic range of observations, given limitations of the accuracy and 

resolution of input variables. 

 
Table 4. Observed and source area-averaged model (R1-R5) comparison mean absolute error (MAE) for QH. MAE values (W m-2) are 

calculated relative to observations for each sensor and all sensors combined. N = 25 images/time periods. 

 P1 P2 P3 EC All 

R1 35.1 56.2 34.2 75.6 58.1 

R2 81.6 22.8 45.5 82.9 66.8 

R3 47.4 53.2 68.6 73.7 64.5 

R4 166.9 97.9 112.8 130.6 129.3 

R5 52.8 75.6 62.5 83.6 73.0 

R4-5 avg. 33.9 77.9 54.8 64.5 59.3 

 

Based on Monte Carlo analysis of input variables (Table 5), R5 has a broad distribution of values (i.e. more uncertain 

prediction) because the method relies on several input variables with relatively high degrees of associated uncertainty, 

particularly u*, , and vegetation land cover fraction (Table 3, Section 3.5). R3 has relatively high overall uncertainty due 

to uncertainties in calculating spatial wind speed variations, which also depend on u* and z0. Probability distributions of 

R1 and R4 are relatively narrow (i.e. more precise prediction, though not necessarily more accurate) due to reliance on 

fewer input variables. 

Overall, relative uncertainty tends to increase with vegetation land cover fraction (V), particularly for R5 (Figure 

13). This is due to the dependence of this method on V to determine , kB-1, and rH. Correlation with land cover is less 

evident with other methods, though the overall uncertainty with R3 is consistently high and R2 and R4 are relatively low.  

Based on this analysis, we conclude the Kanda et al. (2007) method (R4) performs well at QH predictions based on 

physical form of the city and using an aerodynamic approach. It is of a generalized form for use in a range of cities and is 

relatively insensitive to variations in meteorological and morphological inputs. However, it is important to note that it is 

calibrated to a scale model city without QF sources (nor vegetation), so predictions are likely of QH without additional QF 

inputs found in real cities. Thus, it tends to underestimate observed QH in cities which also include a portion of imbedded 

QF. From this perspective, the method also has potential to serve as a baseline reference to assess additional sources of 

urban energy exchange. 
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Figure 12. Source area-averaged model QH and observations from the scintillometer network (coloured points) and EC tower (white 

points) with 80% model probability intervals generated for each method (Table 3) from Monte Carlo analysis (grey shaded area). 

Horizontal error bars are measurement uncertainties (Section 2.2). Comparison statistics are given in Table 4. 

 
Table 5. Absolute and relative QH uncertainties for each method (R1-R5, Table 2) for the entire model domain based on Monte Carlo 

analysis. These values are the mean range of 80% of values for each pixel for each scene based on 20 model runs with varied 

input parameters. 

 R1 R2 R3 R4 R5 

Absolute (W m-2) 52.8 56.7 78.6 28.2 27.7 

Relative (%) 26 46 68 48 51 

 

 
Figure 13. Absolute and relative uncertainty (probability) intervals for ARM-modelled QH. The probability interval encloses 80% of QH 

values generated for each pixel based on Monte Carlo analysis for all 25 images. Relative probability interval is defined as the 

absolute 80% interval range divided by the median for each pixel. Pixels are sorted by vegetation fraction (0.05 bin width) and the 

interquartile range (shaded area) and median (points) of probability intervals are shown for each resistance method (R1-R5). 
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4 Conclusions 

  In this work, we analyse an EO-derived LST dataset spanning six years to assess the challenges of using an 

aerodynamic resistance approach to generate high spatial resolution (100 m) estimates of urban QH. A unique feature of 

this study is the presence of a QH measurement network of scintillometers and eddy covariance with which to compare 

modelled QH.  

LST spatial patterns are linked with the distribution of vegetation and buildings at the surface. Areas with tall 

buildings are cooler than average (up to 10%) in LST images, but it remains to be seen if this is due to increased shading 

and reduced sky-view factors or from uncertainties with surface bulk surface emissivity values or satellite view angle bias 

and thermal anisotropy. 

Analysis of TR and TA also demonstrates an anthropogenic influence with implications for ARM QH. Working 

weekday TR and TA are warmer than weekends and holidays during daytime and there is a lag of 2-3 hours between QF 

emissions (based on energy consumption inventory models) and observed external surface and air warming. This also 

highlights a shortcoming of using EO-LST data: it provides a high spatial resolution snapshot of conditions at a single 

instant but only provides low temporal resolution. 

To determine QH from LST, five thermal resistance methods are compared. Three (R1-R3) are based on empirical 

relations observed at a central London EC tower: i) observed diurnal cycle of rH, ii) a linear relation between measured 

wind speed and zH, and iii) a linear relation between solar elevation and zH.  

Analysis to derive these relations demonstrate that rH, kB-1, and zH vary on diurnal and seasonal timescales. 

Diurnally, rH and kB-1 are greatest, and zH is least, during mid-day periods. This is reasoned to be because momentum 

transfer is enhanced relative to heat transfer in urban areas due to pressure drag from bluff bodies. Although QH is also 

greatest during mid-day periods, the momentum transfer is comparatively greater. In general, observations of zH in urban 

areas are rare and its variability is poorly understood. Here we show zH varies diurnally according to wind speed, 

turbulence, solar angle and atmospheric stability. 

Observations and models of QH using these methods are in general agreement, though there is scatter in the linear 

comparisons. Model results are found to be sensitive to uncertainties in T0 and input meteorological variables needed to 

estimate rH (u, u*, TA). However, based on Monte Carlo sampling of these variables within prescribed ranges, 80% of 

comparisons are within 80% confidence intervals. 

Two previously published empirical relations are also tested, derived from observations based on: i) a physical 

scale urban model (R4) (Kanda et al. 2007) and ii) from several real cities (R5) (Kawai et al. 2009). For the R4 method, 

differences between observations are most likely due to the influence of QF on observations. Since the model coefficients 

are calibrated to a scale model with no QF sources, results using this method may underestimate QH observations in a real 

city, which include a portion of QF. Thus, this method may have potential to act as a baseline reference and constrain 

estimates of energy partitioning between QH and QF.  

For the R5 method, pixels with greater vegetation land cover tend to produce unrealistically high QH values. This is 

largely due to uncertainties in determining kB-1 parameters across the full spectrum of urban forms and neighbourhood 

types.  

In general, R4 (Kanda et al. 2007) is suitable to calculate rH because of its generalized urban form and high 

precision due to reliance on relatively few input variables. This work also highlights the need for further measurements in 

contrasting urban environments: particularly in areas with tall, dense buildings and neighbourhoods with high vegetation 

density. Ideally a range of observations that include a range of urban form (e.g. denser/lighter building materials; 

smaller/larger buildings) and function (e.g. more/less QF) with changing wind flow regimes (i.e. roughness element 

packing) would allow a systematic assessment of the controls on rH prior to adding the vegetation effects. 

Overall, an aerodynamic resistance approach remains a useful, conceptually straight-forward way to estimate bulk 

QH in urban areas. However, the approach is sensitive to several input variables (e.g. u*), so practical challenges remain in 

resolving spatial variations in urban surface and meteorological conditions in urban areas. Thus, in future studies a more 

probabilistic approach to modelling urban energy fluxes may be advantageous in the face of these uncertainties. 
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