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Abstract. Understanding the characteristics of data stored in data cen-
ters helps computer scientists in identifying the most suitable storage
infrastructure to deal with these workloads. For example, knowing the
relevance of file formats allows optimizing the relevant formats but also
helps in a procurement to define benchmarks that cover these formats.
Existing studies that investigate performance improvements and tech-
niques for data reduction such as deduplication and compression operate
on a small set of data. Some of those studies claim the selected data is
representative and scale their result to the scale of the data center. One
hurdle of running novel schemes on the complete data is the vast amount
of data stored and, thus, the resources required to analyze the complete
data set. Even if this would be feasible, the costs for running many of
those experiments must be justified.
This paper investigates stochastic sampling methods to compute and
analyze quantities of interest on file numbers but also on the occupied
storage space. It will be demonstrated that on our production system,
scanning 1% of files and data volume is sufficient to deduct conclusions.
This speeds up the analysis process and reduces costs of such studies
significantly. The contributions of this paper are: 1) the systematic
investigation of the inherent analysis error when operating only on a
subset of data, 2) the demonstration of methods that help future studies
to mitigate this error, 3) the illustration of the approach on a study for
scientific file types and compression for a data center.

Keywords: Scientific Data, Compression, Analyzing Data Properties

1 Introduction

Understanding the characteristics of data stored in the data center helps com-
puter scientists optimizing the storage. The quantities of interest could cover
proportions, i.e. the percentage of files with a certain property, or means of cer-
tain metrics such as achievable read/write performance, compression speed and
ratio. For example, knowing the relevance of file formats may shift the effort
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towards the most represented formats. When 80% of the capacity is utilized by
NetCDF4 files, performance analysis and optimization should target this file for-
mat first. Understanding the achievable compression ratio of available compres-
sion schemes helps in choosing not only the best one for user-specific compression
but also for file system compression as provided by ZFS.

Assessing the benefit of any modification in production systems requires to
either deploy those system-wide, or to evaluate its potential in advance on a
small data set. For data centers with storage capacity of tens of Petabytes and
file numbers in the order of hundreds of millions, it is not feasible to change the
production system frequently. Thus, prototyping and evaluation on small scale
is necessary. However, as a scientist involved in such prototyping, how can we
estimate the benefit from small scale to large scale? Usually, this is done by
picking a representative or relevant set of data for the evaluation and assuming
those values can be scaled up to the full system.

In the literature, studies can be found that investigate compression ratio, de-
duplication factor or improve performance of scientific middleware. Due to the
long running time to apply any improvement on large amounts of data, many
studies assume the benefit measured on a small data sample can be transferred
to the scale on the data center. However, usually these studies do not pay at-
tention if the data set is actually representative, with other words, they do not
take into account the fraction of the workload that can actually benefit from
the advancement. In statistics, the big field of sampling theory addresses this
issue. Due to the law of large numbers, there are methods to draw instances
appropriately and deduce properties from the sample set to the population with
high confidence. However, this process is non-trivial and a research discipline in
statistics by itself [1], [2].

This paper investigates statistical sampling to estimate file properties on
the scale of data centers using small data sets and statistical simulation. The
computation time used for this project was 517 core days. With 24 cores per
node, a complete system scan of DKRZ’s system would have needed about 475
node days which would have cost at least about 4000e1 – while not revealing
additional insight. Instead with 1% of scanned files or capacity, similar results
are achievable.

The paper is structured as follows: an excerpt to related studies analyzing
scientific data is given in Section 2. The method to create test data for this re-
search is described in Section 3. To show the variability of data and importance
of proper sampling, the data is explored in Section 4. It also describes some in-
teresting properties of DKRZ’s scientific data. The strategies to pick appropriate
samples for studies analyzing data by file count and by occupied space is given
in Section 5. Finally, the paper is concluded.

1 The value is an estimate based on the TCO of the system for 5 years. It is conservative
and does not include secondary costs such as jitter introduced to other models by
the caused I/O.
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2 State of the art

Existing research that analyzes properties of scientific data can be classified into
performance analysis, compression ratio and data deduplication. Effort that in-
vestigates and optimizes performance usually picks a certain workload to demon-
strate that the new approach is superior than existing strategies. A few studies
analytically analyze typical patterns and optimize for a large range of access
patterns. An example is the study in [3], which analyzes the access pattern for
several workloads and discusses general implications. Research for optimization
techniques, as far as known to the author, do not check how many people actually
benefit from these optimizations and the implications on system level.

In the field of compression, many studies have been conducted on pre-selected
workloads, for example, see [4–7]. Some of those studies are used to estimate
the benefit of the compression on the data center level, for example, Hübbe
et al. investigate the cost-benefit for long-term archival. Similarly in [6], the
compression ratio is investigated. However, in this case the selected data is a
particular volume from a small system.

Modern file systems such as BTRFS and ZFS offer compression on system-
side [8]. It is also considered to embed compression into storage devices such
as SSDs [9] and evaluate it for OLTP workloads. In [10], Jin et.al investigate
the benefit for compressing and de-duplicating data for virtual machines. They
created a diverse pool of 52 virtual images and analyze the impact.

The de-duplication study for data centers in [11], analyzes a larger fraction
of scientific data on different sites, but due to the long run-time did not manage
to analyze the full data set. When looking at all these studies, one may ask the
question how would those techniques behave on a full system?

3 Sampling of Test Data

To assess and demonstrate the impact of statistical sampling, firstly, a subset of
data of DKRZ’s supercomputer Mistral is scanned and relevant data properties
about data compression and scientific file types are extracted. The goal of the
following strategy was not to gain a completely representative sample, since this
is to be developed within this paper. Since the global Lustre file system hosts
about 320 million files and 12 Petabytes of space is occupied, only a subset is
scanned: 380k (0.12%) accounting for an (aggregated size) of 53.1 TiB of data
(0.44%). Note that the mean file size scanned is about 145 MiB but on our
single file system it is 38.8 MiB. The discrepancy is due to the fact that project
directories contain usually larger files compared to home directories that were
not scanned. To prevent data loss and ensure data privacy, the scanning process
is performed using a regular user account and, thus, it cannot access all files.
There are still 58 million files and 160 out of 270 project directories accessible.

The scanning process used as baseline in the paper works as follows:

1. Run a parallel scan for accessible files of each project directory independently
using find; store them in individual file lists.
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2. Select 10.000 files from each project directory randomly (or all, if less files
exist in a project directory) and merge them into a single file list.

3. Create a random permutation of the file list and partition the result into one
process list for each thread that shall be used.

4. Distribute the threads across different nodes, each thread processes its fixed
file list sequentially and writes an individual output file.

5. After 300k files have been scanned, the threads are prematurely terminated
and the resulting data from all threads is ingested into a SQLlite database.

The strategy increases the likelihood, that a representative sample of files is
chosen from accessible projects2. It is to be expected that projects differ in their
file characteristics as they may use different scientific simulations and analysis
workflows. From perspective of statisticians, this process creates a simple ran-
dom sample [1] but incorporates a systematic stratified sampling approach to
balance between projects. The limitations of this sampling strategy to investigate
properties based on occupied file size, will be shown later.

Processing of the threads: a few threads are started concurrently on the system,
to prevent overwhelming the file system and exploit compute time on interactive
nodes that is not utilized by users. Since the file list is created only once, but the
threads are executed over the course of several weeks, the processing ignores non-
existing files. A thread iterates through the file list, for each file it first copies it to
a temporary location – this prevents concurrent file modifications, then it runs: 1)
the CDO [12] command to identify the scientific file type, 2) the file command
to identify file types checking the file header, and 3) each compressor under
investigation (LZMA, GZIP, BZIP2, ZIP) in compression and de-compression
mode. The time command is used to capture runtime information of each step.
To assess compression speed, user time is extracted – this covers the actual
computing time and ignores system and I/O times as well as competing jobs.

4 Exploring Analyzed Data

In this section, we investigate several quantities of interest on the complete data
set, they are computed either on file count, i.e. each file is weighted identically,
or by weighting each file with its occupied size. This section will show that both
types of analyses lead to different results.

In Figure 1, the distribution of file sizes is shown. Fig 1a) shows a histogram
with logarithmic file sizes. In Fig. 1b) the relation between file size and file count
is illustrated; to construct the figure, files have been sorted by size in ascending
order and then the cumulative sum is computed. While the histogram suggests
similarities between size distribution and a normal distribution, this is due to
the logarithmic x-axis. In the cumulative view, it can be seen that aggregated

2 Obviously, if those 160 projects are not representative, deducing properties for the
full data is not valid. Still the introduced analysis and approaches are correct. The
number of 10k files was choosen as it would ensure to scan at most 0.5% of the files.
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(a) Histogram (b) Cumulative file sizes (y-axis in log scale)

Fig. 1. Distribution of file sizes

20% of files consume one millionth of storage space and 90% still consume less
than 10% space (these files are below 100 MiB in size). If a study takes small
files as representatives, those fail to represent the storage capacity. Similar large
file fail to represent the typical (small) file that must be handled by the storage.

4.1 Scientific File Formats

The usage of file formats is shown in Figure 2. The figure shows the relative
relevance in terms of occupied space and number of files of each file format.
About 60% of the number of files and 47% of aggregated file size is non-scientific
and cannot be resolved with the CDO tool. The dominant scientific formats
are NetCDF3, GRIB1 and NetCDF2. The file command cannot identify and
distinguish scientific formats as reliable as CDO but can shed light over the
distribution of the 60%. Looking at its output, the 60% of capacity seems to be
dominated by TAR (7%) and GZIP compressed files (5%)3 – it classifies 43%
of capacity as “data” and 40% as NetCDF (no version information provided).
Looking at the proportions in terms of file count, roughly 30% are classified as
data, 30% as text (e.g., code), 24% as NetCDF files, 4% as HDF5 and 3.5% as
images. Other file types are negligible.

3 From the GZIP files, the extension tar.gz is observed on 9% of files, representing
53% of GZIP data overall size. Thus most GZIP files are also TAR files.
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4.2 Compression Ratio

To evaluate compression ratio, files with a size below 4 KiB (about 15% of all
files) are not taken into consideration, as compressing them is not expected to
be beneficial because of the additional header and file system block size. As
metric we will use the inverse of the compression ratio that is the fraction the
compressed file occupies in comparison to the original, e.g., after compressing
a file might be down to 10% of its original size. For simplicity, we label this

metric as compressed %; it is computed as c%(f) =
compressed size(f)

file size(f)
. The

mean compression can be determined as the arithmetic mean ratio all files cfiles
(Eq. 1), i.e. averaging it by file number; or, by file size, i.e. considering the total
space saved csize (Eq. 2).

cfiles =

∑files
f=1

comp.size(f)
file size(f)

file count
(1)

csize =

∑
f compr.size(f)∑
f file size(f)

(2)

In Figure 3, both, the mean relative compression by count and by size is
shown for each compression scheme and file format. The column “all” shows the
reduction when compressing the full data set. In average, the compressors except
LZMA achieve similar results – but a compression scheme can be slightly better
than another on individual file sets. LZMA, performs much better on all data
except GRIB2. While overall the computation by file and by size is similar, there
are differences in details. For example, in average LZMA packs each file down
to 40% of its size, but in terms of overall storage space only 50% is saved. Thus,
smaller files typically compress better with LZMA than the larger files. This is
mainly caused by the fraction of non-scientific file formats (the unknowns) that
compress much worse in terms of capacity. For example, GZIP compressed files
occupy a significant portion of space.

(a) CDO types (b) File types

Fig. 2. Relative usage of file formats determined using CDO and file.
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Fig. 3. Arithmetic mean compression of the full data set for each scientific file
format computed on file number. The column “all” shows the mean values for
the whole data set. Yellow diamonds show compress % computed by file size.

4.3 Performance of Compression Algorithms

Fast compression and decompression speed and, thus, required computation
time, is crucial for embedding compression schemes into existing workflows with-
out delaying them. The performance spectrum across the files is shown in Fig-
ure 4. The boxplots show the median as black line; the box indicates the limits
of quartile 1 and quartile 3, whiskers can go up to 1.5 interquartile range. Many
outliers with faster performance are not visualized. While on average, BZIP2
does not perform much better than the other schemes on the data set, it is much
slower. LZMA achieved the best compression ratio but is much slower than gzip.
Again, the compression ratio by file count differs from the mean speed computed
by size. For LZMA, the mean is 38.4 and 21.7 MiB/s, computed by count and by
size, respectively. Thus the difference in decompression is roughly 50% as bigger
files need more time to compress and decompress.

(a) Compression (b) Decompression

Fig. 4. Boxplots showing compression/decompression speed per file, the arith-
metic means are shown as text under the plot.

4.4 Variance Between Different Projects

It is expected that scientific projects exhibit different data characteristics, for
example, they may utilize file formats differently. This makes it difficult to pick
a random sample from just a few projects. To investigate this issue, all projects
for which more than 1,000 files have been scanned were analyzed individually.
A few characteristics across the projects are shown in the boxplot in Figure 5:
The file count indicates how many files have been scanned for each project, how
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much storage is occupied by the files, the compression % of LZMA, proportion of
NetCDF and GRIB files in terms of the projects overall file count and occupied
size. It can be seen that while between 2,000 and 3,000 files have been scanned
due to random file selection, other metrics vary significantly. For example, some
projects have nearly 100% of NetCDF files while others use other formats. Thus,
it is very important to sample properly across projects.
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Fig. 5. Several quantities of interest, this barchart covers 125 individual projects.
Each point represents the arithmetic mean value computed on one project.

5 Stochastic Sampling of Data

The way the quantities of interest are computed are either by file count, i.e. we
predict properties of the population based on individual files, or by weighting
the individual files with their size. From the perspective of statistics, we analyze
variables for quantities that are continuous values or proportions, i.e. the fraction
of samples for which a certain property holds. To select the number of observa-
tions that allows inference about the population, statistics knows methods for
determining sample size. These methods require that we can make certain as-
sumptions about the distribution of values such as normally distributed data.
To determine the number of samples needed, the tolerable error between predic-
tion and real value must be chosen, it depends on the used analysis method and
distribution of values. Usually the error is defined by the size of an interval with
the predicted value as center in which is extremely likely (e.g., 95%), that the
true value resides. The interval is called confidence interval and the probability
is the confidence level.

For estimating proportions there are easy approaches – that work regardless
of probability distribution: With Cochran’s sample size formula, to achieve an
error bound of ±5% and ±1%, roughly 400 and 10000 samples are needed,
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respectively [1]. Note that the sample number does not increase even for large
population sizes.

Estimating a continuous variable, e.g., the arithmetic mean compression ra-
tio or performance, is more complex as sampling ratio is based on the expected
distribution of values. But we do not know it a-priori, and not necessarily the
property we are looking for is normally distributed. All these methods have in
common that they determine the mean value, i.e., the proportion in all files and
not weight them by occupied storage size. As the size is a-priori is unbounded,
it is not unlikely that file size distribution follows heavy-tailed distributions, in-
creasing the analysis of sample size determinination [13, 14]. The detailed analysis
is out of scope of this paper, but we will show that the means are converging for
typical use cases. The methods to obtain a representative sample are as follows.

Sampling method to compute by file count. When computing the proportion or
the mean of a variable for files, a strategy is to enumerate all files on the storage
system and then create a simple random sample, i.e., choose a number of files
for which the property is computed. For proportion variables, Cochran’s sample
size formula is applicable and the number of files can be easily deducted.

Sampling method to compute by file size. Estimating values and weighting them
based on file size requires to enumerate all files and determine their size, then
pick a random sample from the file list based on the probability defined by
filesize/totalsize. Draws from the list must be done with replacement, i.e., we
never remove any picked file. Once all chosen files are determined, the quantities
of interest are computed once for each unique file. Then, each time we have
chosen a file, we add our quantity of interest without weighting the file size, e.g.,
the arithmetic mean can be computed just across all samples. Thus large files
are more likely to be picked but each time their property is accounted identically
as for small files.

Evaluation for mean compressed file size and proportions of file types. To demon-
strate this approach, a simulation has been done by drawing a variable number
of samples from the data. The result is shown in Figure 6. It can be seen that this
quickly converges to the correct mean value of the full data. With 4096 samples,
that are slightly more than 1% of files, the value is close to the correct mean.

Robustness. To illustrate the stability of the approach, the simulation is repeated
100 times and a boxplot is rendered with the deviations. Naturally, the repeats
of a robust method should have little variance and converge towards the correct
mean value. The result for the proportion of GRIB files are given as an example
but the results for all variables behave similar. In Figure 7, it can be clearly seen
that the error becomes smaller but Cochran’s approximation is yield.

The sampling strategy to compute quantities on file size is shown in Fig-
ure 8b). Similarly, to the correct method for sampling by file count it converges
quickly. However, if we would simply use a file scanner to compute the met-
rics on size but it would choose files randomly without considering file sizes, we
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Fig. 6. Evaluating various metrics (proportions and compressed %) for an in-
creasing number of samples. Only one simulation is done for each count.
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would achieve highly unstable results (Figure 8a). Indeed the error margin with
even one fifth of all files (64k) is comparable to the correct sampling strategy
with only 1024 samples. Thus, it is vital to apply the right sampling method,
and, therefore, the initial approach used to gather the test data as described in
Section 3 is suboptimal.
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Fig. 7. Simulation of sampling by file count to compute compr.% by file count.
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Fig. 8. Simulation of sampling to compute proportions of types by size.

6 Summary & Conclusions

In this paper, sampling techniques from statistics are applied to estimate data
properties. These techniques are demonstrated to be useful approximate the
proportions of scientific file types, the compressed % and speed. The paper also
highlighted some interesting data properties of DKRZ’s data. It has been demon-
strated that a random file scanner is not efficient to estimate quantities that are
computed on file size. Instead, sampling with replacement and a probability
equal to the proportion of file size leads to stable results. Tools using such tech-
niques can estimate properties of data robust without the need to analyze the
huge data volumes of data centers. We will be working on such tools to evaluate
the benefit of optimization strategies.
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