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Predicting I/O Performance in HPC Using Artificial Neural

Networks

Jan Fabian Schmid1, Julian M. Kunkel2

c© The Authors 2016. This paper is published with open access at SuperFri.org

The prediction of file access times is an important part for the modeling of supercomputer’s

storage systems. These models can be used to develop analysis tools which support the users at

integrating efficient I/O behavior.

In this paper, we analyze and predict the access times of a Lustre file system from the client

perspective. For this purpose, we measured file access times in various test series and develop

different models for predicting access times. The evaluation shows that in models utilizing artificial

neural networks the average prediciton error is about 30% smaller than in linear models. One

phenomenon in the distribution of file access times is of particular interest: File accesses with

identical parameters show several typical access times.

The typical access times usually differ by orders of magnitude and can be explained with a different

processing of the file accesses in the storage system – an alternative I/O path.

We investigate a method to automatically determine the alternative I/O path and quantify the

significance of knowledge about the internal processing. It is shown that the prediction error is

improved significantly with this approach.

Keywords: file system, performance, modeling I/O, artificial neural networks.

Introduction

Tools are demanded that help users of HPC-facilities to implement efficient Input/Output

(I/O) in their programs. It is difficult to find the best access parameters and patterns due to the

complexity of parallel storage systems. The processing of file accesses in a storage system can

be viewed as a task that is sequentially propagated along an I/O path in the storage system.

Starting at the invoking processor, the storage system is searching for the data, going further

and further through the memory hierarchy, until all data is found, so it can be returned to the

processor.

Currently, users have to optimize their programs for each system individually without much

assistance. To develop tools which support the implementation of efficient I/O, computational

models of the storage system are important. For instance, a tool could estimate the I/O path and

classify accesses as outliers if they behave abnormally. For single hard disk systems such a model

can be derived analytically [11]; however, for the complex storage system of a supercomputer,

these models become too difficult to configure [13].

In this paper, we evaluate predictors of I/O performance using machine learning with arti-

ficial neural networks (ANNs). In our analysis, we use ANNs with different input information

for the prediction of access times. Additionally, we evaluate strategies to identify the I/O path

without a-priori (expert) knowledge of it.

Because of the strong linear correlation between access time and access size, the problem

seems to fit linear models. However, our results show that the relation of file access parameters

to access time is not sufficiently represented by linear models. ANNs achieve significantly better

results than linear models. Our analysis suggests that the I/O path used by the storage system

considerably influences the file access time. Therefore, it becomes key for a good model of access
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times to derive knowledge about I/O paths. Unfortunately, I/O paths are difficult to deal with,

as it is unknown which path was used for a file access.

This paper is organized as follows: Related work is provided in Section 1. In Section 2, we

explain our analysis of file access times. Firstly, we develop a simplified model of the I/O path.

Next, a method for approximating I/O paths with derived classes from the error of a prediction

model is proposed. At last, we introduce a set of models for access time prediction. Afterwards,

in Section 3, we evaluate our analysis of the storage system by measuring access times in various

test series, studying the obtained access times and the predictions of our models to them. In the

end, the final Section summarizes the paper and suggests future work.

1. Related work

Generally, storage systems are modeled in two different ways for access time prediction;

either using white-box modeling or black-box modeling [4].

• White-box modeling: The storage system itself is simulated. Details of hardware com-

ponents like rotation speed of the magnetic disk in a hard drive are considered. The

processing of a file access can then be simulated in the model and the resulting access time

is then used as prediction for the actual system. Processing and resulting performance can

be analyzed in detail on the model.

• Black-box modeling: The model abstracts from the real storage system. System per-

formance is approximated without considering the causes. This procedure corresponds to

an emulation of a storage system. In contrast to the white-box model, processing of file

accesses can’t be analyzed on the model itself.

These two ways of modeling are fundamentally different and have to be differentiated.

1.1. White-box modeling versus black-box modeling

For the in-depth analysis of reasoning for behavior of a storage system, a white-box-model

is desirable. On the one hand, the modeled system is represented in the model. Thus it, can

be examined. On the other hand, these models can be very precise if modeled correctly [11].

There are important limitations of white-box modeling, however. For every system an individual

model has to be created and a model becomes quite intricate for single hard drives already [4]. To

approach the complexity of white-box modeling, Ruemmler and Wilkes analyzed the relevance of

different hard drive components for the model deviation to save effort for insignificant parts [11].

However, white-box modeling is usually used for simple systems like a single hard drive. For

these hard drives white-box-modeling is already very demanding, hence for the complex parallel

storage system of a supercomputer it’s not a feasible approach [13].

The application of black-box-modeling is easier and more flexible as it’s independent from

the individual system. Stochastic approaches coupled with data mining methods are mostly

used for black-box modeling; for example, a combination of regression trees can be used [6], or

selective bagging classification and regression trees [13].

1.2. Prediction of I/O performance with ANNs

Computability of ANNs was researched by Rojas [10] and Cybenko [5]; they demonstrated

the possibility of modeling non-linear systems. Cybenko also proved the universal approximation
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theorem, which states that feed-forward networks with sufficient complexity can approximate

any continuous functions on compact subsets of Rn. Therefore, ANNs should be sufficient for

predicting I/O performance as long as there are no contradictions in behavior. However, no

statement can be made about the necessary structure of the network for this task.

Crume et al. developed a method using ANNs which exploits periodic patterns in sequences

of file access times [4]. A Fourier analysis is used to determine the most important frequencies,

which are then used as input information for the ANNs. In a following publication [3] they

move away from Fourier analysis, but instead use additional sine waves as input for the ANNs.

This seems to be a promising approach for predicting access times of single hard drives, where

the rotational characteristics of the magnetic disk are an essential consideration. It is, however,

difficult to extrapolate behavior from a single disk to a distributed storage system consisting of

thousands of disks that utilizes several optimization mechanisms.

1.3. I/O performance prediction in HPC

Performance analysis in HPC is an important task to examine and improve system efficiency.

For instance Liu et al. simulated scheduling algorithms for research [9]. The simulation used the

white-box modeling tool DiskSim for a prediction of occurring file accesses [1].

There are a few simulators for parallel storage systems, for example CODES [2] utilizes a

scalable infrastructure to investigate relevant research issues, such as the importance of burst-

buffers. PIOSimHD is a simulator that is able to replay (MPI) application traces on a generic

I/O system [8].

Analytical and machine learning models for predicting performance are another choice to

optimize performance. Kunkel et al. utilized access time prediction with decision trees for vary-

ing parameterizations of ROMIO for access of non-contiguous data [7]. Instead of searching for

optimal parameters by testing, they were able to find good values through estimating perfor-

mance.

2. Modeling I/O Access Times

2.1. Characteristics of the Data

We used a synthetic benchmark in which identical measurements for random or sequential

I/O are performed and the access time is measured for each operation individually. The resulting

timings are stored together with file access parameters in a file that is then used to build and

validate the models. This approach allows for an in-depth analysis of system behavior for different

use cases from the perspective of a single client. The stored parameters are:

• Access size: Number of bytes to read or write.

• Access type: Differentiates reading and writing.

Directly measurable or derivable attributes are:

• Offset: Distance of file beginning to the starting point of access.

• Delta-Offset: Can be calculated for file access i as Offset[i] - (Offset[i-1] + access size[i-1]).

• Access time: Time for performing the I/O.

Knowledge of internal aspects of the system about the current system utilization or about the

storage media that have to be addressed are not used by the model.
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2.2. Model of the I/O path

The internal processing of a file access in the storage system can be viewed using the I/O

path. The I/O path of a file access is the interaction between all components that are involved in

the transfer of data read or written for its execution. For example, for a node local file system this

includes operating system, memory and storage device/medium. Remote systems add network

traffic and generally server sided components. Usually, in parallel file systems the I/O of the

client is transferred through operating system, client side file system modules, network, file

system servers, storage devices and ultimately media. In several of these steps, data may be

cached in memory and optimizations can take place.

The resulting access time depends on the depth of this I/O path, because with increasing

distance the storage media along the path is slower. While the first levels in memory hierarchy

(CPU caches) are the fastest volatile storage, the main memory is already an order of magnitude

slower; the same applies for the step into the parallel storage system, that is deployed as servers

connected via network to the computer nodes. Reading file accesses are more severely affected by

varying depths of I/O paths than writing file accesses, which can be deferred using write-behind

and propagated lazily to the disk drives.

2.2.1. I/O path for access time prediction

Due to the exponential decay of processing speed in the hierarchy, file accesses with similar

access parameters, but varying I/O path, can be easily differentiated by a step in the magnitude

of access time. As the access time is dominated by the slowest component along the I/O path, a

step in the measured access time occurs between the I/O paths of diverging length. In Figure 1,

measurements of sequential read accesses are shown. The different groups of measurements with

equal access parameters (points with the same color) are clearly visible. For a few access sizes,

some clusters are observable, this step in the magnitude of access time and can be explained

with varying I/O paths (this figure will be discussed in further detail in the following chapters).

Figure 1. Time series for sequential reads; access sizes increase from left to right and all mea-

surements with equal access parameter values have the same color

2.3. Estimating the I/O path using error classes

We utilize a concept that we call error classes. Each class is supposed to approximate an

I/O path based on the error (residuum) of the observed access times to a baseline model. The

baseline model is constructed as a function of the file access parameters.
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At a first consideration, one could come up with the idea of simply clustering the data

seen in Fig. 1, because the groups of measurements with varying I/O paths might be correctly

differentiated by it. However, it is not a good approach. One would have to cluster for every

set of measurements with identical access parameters individually, as access time is strongly

dependent on the access size. In a real application scenario, a large number of different access

parameters with only very few instances occur, which makes this approach unfeasible.

Another idea might be to use the difference of an arbitrary value to the measured file access

time as a parameter for the clustering. Such a value would not be appropriate for all magnitudes

of access time occurring in the data. I/O paths with only a small difference in their typical access

time might not be found with this approach, because the gap between them doesn’t matter at

the scale of the chosen value.

Our approach uses the residues of a model like linear regression that can’t differentiate be-

tween measurements with equal access parameter values. Basically, the linear regression predicts

an average access time for the measurements of any given size. The deviation of an individual

measurement for these access parameters to the predicted average value is then characteristic

for the I/O path. Clustering the residues with a k-Means algorithm allows us then to assign

each measurement to a specific cluster, which is the approximation of its I/O path. We call the

retrieved clusters error classes. We use the absolute error of linear regression as a clustering

parameter, so that one cluster can, for example, represent a positive deviation of 1 millisecond.

Ideally, it might be the case that file accesses independent of the access parameters that took 1

millisecond longer than usual are processed on the same I/O path. In that case error classes are

directly corresponding to I/O paths. However, this has to be investigated.

We use error classes to quantify the importance of knowledge about I/O paths for access

time prediction. For the actual prediction of access times, error classes can’t be used, because

a measured access time is required to determine the error class of measurement. However, the

method could be used for a tool, which analyses the execution time of I/O on the client side

made during application of a program and assign the observed time to the error class and, thus,

the I/O path. It could analyze whether file accesses were slower than expected and therefore

unfavorable I/O paths were used during their execution. If a direct correlation of error class to

I/O paths were found, such a tool might be able to inform about percentages of used I/O paths.

2.4. Models

Access times of file accesses can be predicted using various models. While we evaluated sev-

eral models for this paper, only a few relevant models are described; more models are described

in [12]. Each model seeks to correlate its known file access parameters to the corresponding

access time. Linear regression is used as a baseline model with a simple mapping of access size

to access time. Additionally, three models with different input information utilizing ANNs are

used:

• The most simple ANN-model only receives information about access sizes, delta-offsets

and access types as input.

• The second ANN-model is called ema-model. Additionally to the parameters of the pre-

vious model, it receives information about the past data throughputs of the system. This

can be used to exploit time dependencies of the I/O performance.

• The third ANN-model, called error-class-model, receives error classes in addition to the

access parameters of the first ANN-model.
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Figure 2. Small sequence of read accesses

with periodic peaks in access time

Figure 3. Small sequence of read accesses

with sporadic peaks in access time

The error-class-model is used as described in Section 2.3 to examine the potential improve-

ments for access time prediction due to knowledge about I/O paths. Therefore, we evaluate how

much the prediction of access times of a model using error classes improves compared to a model

without.

The idea of the ema-model is to exploit periodic changes in the performance of the storage

system. Our analysis of measurements as well as the work of Crume et al. [4] indicate that

periodic phenomena of access times in sequences of files accesses can be exploited for access

time prediction. Figure 2 shows a small series of measurements of sequentially read file accesses.

The peaks in access time are occurring periodically in this particular sequence. Such behavior

appears only partially, often access times fluctuate without observable periodicity as in Figure 3.

An occurrence of a periodic pattern could be explained with a processing of the storage system in

which a larger amount of data is loaded into the cache at the same time as soon as a cache-miss

happens.

With knowledge about the periods of peaks a model could make better access time pre-

dictions. The ema-model is supposed to use its input information of previous data throughput

for that. The data throughput has peaks in the same period as the access time. We use the

data throughput instead of the access times of measurements, because an analysis of the data

throughput could find periodic behavior of system performance even in a sequence with differ-

ent access sizes. Internally the model calculates the exponential moving average (EMA) of data

throughput of measurement i as:

EMA(i) = 0.5 · t(i) + 0.5 · EMA(i− 1) (1)

With t(i) the access time of measurement i. The influence of data throughput of a measurement

is exponentially decreasing in the series of EMAs. In Figure 4 the EMA-function for a function

with periodic peaks can be seen. The ema-model can use EMA(n−1) for the prediction of access

time of measurement n. If the model is able to find threshold values of the EMA-function after

which another peak follow, it can use this input information for better access time predictions

on sequences with periodic peaks in access time. Depending on how relevant periodic behavior of

access times is in our measurements, this additional input information could improve the model.

Additional models that were examined in [12], but won’t be analyzed in further detail in

this paper, are summarized in the following list:
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Figure 4. Exponential moving average (in red) for a function with periodic peaks

• Using multiple linear regression, we analyzed the performance of other baseline models.

We used access size and delta-offset as tuple and also access size, delta-offset and access

type as triple to find a mapping to access time. Despite having more information to work

with both models achieve equal or worse deviations to the measured access times than the

simple linear regression which only considers access size. If access type and delta-offset have

a meaningful correlation to the access time of a file access, they require more sophisticated

tools than linear regression to be exploited.

• An ANN-model receiving knowledge about the previous measurement was examined as

well. Additionally to the input information of the simple ANN-model the access size, the

access type, the delta-offset and also the access time of the previous file access was given

as input for this model. Conceptually this model might be able to compare the actual

performance on the previous file access with its own prediction for it. If the actual perfor-

mance deviates from the predicted performance this model could exploit this knowledge

to adapt its prediction for the following file access. In case of a prolonged period of high

workload this adaptation might have positive effect on the predictions. The results of this

model, however, were throughout worse compared to the simple ANN-model which has

less information to work with, even though quite complex network structures were used

in the learning process (16 hidden layers with 17 neurons each for the sequential access

pattern and 14 hidden layers with 17 neurons each for the random access pattern achieved

the best results). Therefore we conclude that the performance of the direct predecessor of

a file access can’t or is too complicated to be exploited for an improved prediction.

• An ANN-model similar to the error-class-model described above, using error classes ob-

tained from the residues of the simple ANN-model instead of residues from the linear re-

gression, was examined as well. This approach lead to very similar prediction performance

to the model using error classes from linear regression. On the data set of sequential file

accesses this model achieved with 2.4 · 10−5 to 2.0 · 10−5 a slightly worse and on measure-

ments with random access pattern with 8.9 · 10−4 to 10.3 · 10−4 a slightly better mean

average error.

3. Evaluation

The execution and results of analysis are summarized in the following way. First, the test

system used for measurements and the strategy for systematic measurement are presented. Next,

we explain the computation of error classes. Finally, the quality of predictions of the different

models are examined.
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3.1. Test system

The measurements were done on the supercomputer Mistral (phase 1 system) of the DKRZ

(Deutsches Klimarechenzentrum)3. The phase 1 system of Mistral operates with the parallel

distributed file system Lustre (Lustre 2.5, Seagate’s edition) and consists of over 1500 compute

nodes and 30 Petabyte storage. Each compute node consists of two E5-2680v3 with a clock

rate of 2.5 GHz and 30 MiB L3 Cache. Measurements were done during daily operation, typical

fluctuations in workload may have influenced the execution of benchmarks.

3.2. Benchmarking

We created a simple benchmark (io-model) that used POSIX read/write() and measured

time for each I/O individually. In this paper, it is executed on one node with one processor using

a single stripe (one OST) to study the quality of the predictions. Each series of measurements

follows a certain pattern to study system behavior systematically.

Sequential and random I/O patterns are measured, each with reading and writing file ac-

cesses. Our test file has a size of 10 GiB which theoretically fits in the main memory of computer

nodes, but measurements and observations from Lustre’s /proc statistics suggest that caching

is not effective for this configuration (sequential reads are improved by read-ahead, though).

Occasional access of hard drives in the parallel storage system is likely. Most series of measure-

ments contain 10 000 file accesses with a certain access size, only series with sequential access

and an access size of greater than 2 MiB have fewer measurements as the end of our 10 GiB file

is reached. Every series with specific access pattern, access size and access type is repeated three

times. Access sizes are varying from 1 B to 16 MiB (in detail: 1 B, 4 B, 16 B, 64 B, 256 B, 1 KiB,

4 KiB, 8 KiB, 16 KiB, 64 KiB, 256 KiB, 512 KiB, 1 MiB, 2 MiB, 4 MiB, 8 MiB and 16 MiB).

3.3. Analysis of measurements

The measured access times for the four different cases are summarized in Table 1.

Table 1. Overview of file access times for the different cases

Case Min. value 1. Quartile Median Arith. mean 3. Quartile Max. value

Sequential reading 6.2e-06 6.9e-06 9.7e-06 3.8e-04 1.3e-04 5.6e-02
Sequential writing 7.5e-06 8.4e-06 1.6e-05 4.3e-04 2.2e-04 3.0e-02

Random reading 6.5e-06 1.4e-05 1.8e-03 7.4e-03 1.3e-02 5.3e-01
Random writing 1.1e-05 2.6e-04 4.5e-04 3.8e-03 2.2e-03 2.1e+00

As expected, sequential file accesses are on average much faster than random accesses espe-

cially for the reading case, also random reads are slower than writes. In Table 2, we consider the

correlations between file access parameters and the resulting access time, a strong correlation

can be exploited for access time prediction.

Table 2. Correlations between file access parameters

and access time

Attribute Sequential access pattern Random access pattern

Access size 0.973 0.3291
Delta-offset NA 0.0069
Access type 0.018 -0.1068

3http://www.vi4io.org/hpsl/2016/de/dkrz/start
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Note that sequential access leads to a constant delta-offset of 0.

Sequential file accesses have with 97.3% a clear correlation to access time, this is with only

32.91% to a lesser degree still true for the random accesses. This is why linear regression can

be expected to have acceptable results for access time prediction, especially for the sequential

access case.

To study the distribution of measured file access times we display them as follows: All mea-

surements with equal access size have the same color, access sizes of file accesses are increasing

in the graphs from left to right. The resulting graphs can be seen in the Figures 5 to 8. Note

that they use logarithmic scale.

For readability, the slowest and fastest 1% of measurements are purged and only every 25th

measurement is plotted in the figures.

The correlation between access size and access time can be easily identified. As described in

chapter 2.2.1 the split of measurements with identical access parameter values, that occurs in

particular in the cases of sequential file accesses, can be explained with a processing in the

storage system along different I/O paths. It is worth mentioning that the groups of access time

for different access sizes are partially at the same range of magnitude. This indicates as well

that the splits are caused by varying I/O paths as one I/O path has a typical access time, which

only changes slightly for different access sizes.

The phenomenon of these splits clarifies why despite the strong correlation of access size

to access time a linear model might produce sub-optimal predictions. Even for identical access

parameter, it is difficult to predict which I/O path will be used as the storage system decides the

I/O path based on the system state (e.g., is the data available in the client’s cache). In Figure 7,

the importance of knowledge about I/O paths for the access time prediction can be seen: For

example, file accesses of only 1 B can be processed as slow as accesses with 16 MiB if the longest

Figure 5. Measurements of sequential reads Figure 6. Measurements of sequential writes

Figure 7. Measurements of random reads Figure 8. Measurements of random writes
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I/O path is used. For writing file accesses the splits only occur occasionally and they are less

drastic. These measurements might be well represented with a linear model.

3.4. Analysis of error classes

Error classes are calculated as clusters applying the k-means algorithm on the residues of

the linear regression model. As an estimation of possible I/O paths we classify into 10 clusters.

In Figure 9, the predictions of linear regression on the random reads can be seen as blue points.

Since a linear model predicts the mean value for all measurements with identical arguments, it

cannot distinguish between the different I/O paths and may not even predict a valid value (e.g.,

the median).

Figure 9. Predicted access times of the linear

regression model as blue points

Figure 10. Residues of the linear regres-

sion model, colors are corresponding to error

classes

For identifying the error classes, the difference between the prediction of linear regression

and actual access time is used as input for the clustering algorithm. In Figure 10, the residues

for all measurements are shown. The different colors correspond to the computed clusters, which

are our error classes. Note that due to the random initialization of k-Means, different runs may

result in different clusters 4.

The clusters are differentiated along horizontal lines in the graphs. Without going into

further details, one can recognize from the graphs that the error classes are not perfectly ap-

proximating the I/O paths. The measurements with the smallest access sizes (on the far left)

are only differentiated into two different error classes. However, the two error classes mainly

represent measurements with positive errors, and close to 0 or negative error, what seems to be

a reasonable approximation of I/O paths.

The computed error classes can be examined in further detail with the data from Table 3.

Ideally for a good correlation of I/O paths to error classes, each error class should represent one

particular value of data throughput that would be characteristic for the slowest storage medium

occurring in the I/O path. This is mostly true for the error classes. The classes 4, 5 and 6,

however, have with 5.5 · 107, 6.1 · 107 and 5.8 · 107 very similar average throughput values, which

might be a hint for overfitting error classes.

The vast majority of measurements were assigned to error class 3, which is the error class that

covers the range around a prediction error of 0. Therefore, most access times can be predicted

sufficiently by the linear regression model.

4We will consider more robust algorithms in the future.
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Table 3. Characteristics of computed error classes for random file accesses in detail

averaged values prediction error
Error class Throughput (B/s) Access size (B) Access time (s) Min (s) Avg (s) Max (s) # of members

1 1.4e+09 1.5e+07 0.0130 -0.0210 -0.0090 -0.0069 9467
2 9.9e+08 9.1e+06 0.0101 -0.0069 -0.0047 -0.0036 54371
3 2.3e+08 1.4e+06 0.0024 -0.0036 -0.0025 0.0036 825974
4 5.5e+07 1.2e+06 0.0143 0.0036 0.0096 0.0156 85462
5 6.1e+07 2.3e+06 0.0276 0.0156 0.0216 0.0366 37862
6 5.8e+07 4.0e+06 0.0598 0.0366 0.0516 0.0976 4695
7 3.2e+07 4.7e+06 0.1528 0.0977 0.1438 0.2066 1443
8 4.5e+06 1.2e+06 0.2741 0.2067 0.2696 0.4728 567
9 3.0e+05 1.6e+05 0.6956 0.4822 0.6923 1.0063 123

10 9.4e+02 1.0e+03 1.3627 1.0396 1.3597 2.1216 36

One sign for correct approximation of I/O paths are error classes which have equal access

sizes but different access times. In such cases a differentiation of measurements with equal access

parameters takes place. This occurs for example with the error classes 4 and 8. Both classes

have an average access size of 1.2 · 106 Bytes, but with 0.0143 and 0.2741 seconds very different

average access times. The error classes of sequential file accesses display similar characteristics

as the analyzed random file accesses. However, since sequential accesses are not able to stress

all different I/O paths, this result is more interesting.

3.5. Prediction of file accesses

Next, we study the results of our models. To investigate overfitting and the accuracy of the

models, we split the available data into a training set and a test set. The test set consists of all

measurements that weren’t used for training. The parameters for the ANN-models are varied

to explore appropriate configurations; they are trained with a wide span of different parameter

values for the number of hidden layers and the number of neurons per layer. They had 1000

randomly chosen measurements for each pair of access size and access type as training set. In

total, that are 34 000 measurements which should be a significant amount of data to avoid the

situation, in which too few data points are available to train the system.

In Tables 4 and 5 characteristics of the ANNs with the smallest average prediction error can

be seen. The models for the sequential data set had in general bigger network structures. We do

not completely understand the reason, as we naively expect that random I/O is more complex

than sequential I/O. Presumably, the system uses additional layers to adjust for rare events or,

for example, to differentiate read-ahead and write behind cases.

Table 4. Characteristics of the most successful ANN-models for seq. file accesses

Model Hidden layers Neurons per layer Computing iterations Training duration (s)

simple ANN-model 12 8 1934 1444
ema-model 11 8 1878 1379

error-class-model 15 27 1551 8655

Table 5. Characteristics of the most succesful ANN-models for random file accesses

Model Hidden layers Neurons per layer Computing iterations Training duration (s)

simple ANN-model 4 5 1310 222
ema-model 7 5 1106 461

error-class-model 9 22 283 1201
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We used the following metrics to quantify the error:

• MAE: Mean average error.

• Avg-MAPE: The mean absolute percentage error averaged about 12 instances of ANNs

with equal parameter values, but different (random) initial network weights.

• Train-MAPE: The mean absolute percentage error on the training set.

• MAPE: The mean absolute percentage error (on the test set).

• MSPE: Mean squared percentage error.

• RQ3: Third quartile of prediction errors, which means that three quarters of the test set

were predicted with smaller deviation to the true value that this.

• PMax: The biggest prediction error in percent.

The prediction errors of our models can be found in the Tables 6 and 7. Listed values refer to

the model with the smallest average prediction error. We can observe that for all models values

for Avg-MAPE, Train-MAPE and MAPE are close to each other. This means that the training

set was representative for the test set with little overfitting, and also the model behavior was

stable and did not depend so much on the random initiation of network weights.

Table 6. Results of our models on the sequential file accesses

Model MAE (s) Avg-
MAPE (%)

Train-
MAPE (%)

MAPE (%) MSPE (%) RQ3 (%) PMax (%)

error-class-model 2.0e-05 9 7.7 8.6 14 10 275
ema-model 5.7e-05 14 13.2 13.7 22 18 2336
simple ANN-model 6.0e-05 14 13.6 14.1 22 18 295
Linear regression 7.6e-05 NA NA 50.8 59 73.7 326

Table 7. Results of our models on the random file accesses

Model MAE (s) Avg-
MAPE (%)

Train-
MAPE (%)

MAPE (%) MSPE (%) RQ3 (%) PMax (%)

error-class-model 0.00103 32 32 31 119 27 4272
simple ANN-model 0.00313 106 104 103 530 70 21786
ema-model 0.00305 421 87 86 619 62 45320
Linear regression 0.00476 NA NA 5578.4 14185 1158.1 46941

It becomes clear that linear regression is sub-optimal for the prediction of file access times

for random file accesses, where its MAPE is about 5578.4 %. For the sequential case the results

are better, but still with more than three times higher average percentage error.

The second thing one can take from the results is that the ema-model did not work as

intended. Its error values are very close to the simple ANN-model which had less input informa-

tion to work with. Going a little bit more into detail it is notable that the MAPE is smaller for

the ema-models compared to the model without EMA-values. Thus, the additional knowledge

was in general useful for better prediction; however, the MSPE and PMax values are higher for

the ema-model which means that some predictions were significantly misguided by the EMA-

function value. The reason is that the I/O path does not change in a well predictable way (at

least from the perspective of a client).

In contrast, the error-class-model worked excellently. The mean average error compared to

the model without error classes has been reduced to a third for both use cases. This is a strong

confirmation for the thesis that knowledge about I/O paths is crucial for access time prediction.

However, it is also clear that the additional parameter of the error class improves the overall

performance of the predictor, because it contains knowledge about the measured access times.
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To investigate this further, we have to analyze measurements in more detail. To have a

further look at the difference that error classes make on the access time prediction, we analyze

the predictions of the two models for the case of random reads in Figure 11 and 12.

The model without knowledge about I/O paths is forced to predict some kind of average

access time for each set of measurements with equal access parameter values. Therefore, its

predictions are in between the two main groups of access time for the higher access sizes. With

knowledge about our approximations of I/O paths the error-class-model can discriminate mea-

surements with equal access parameter values and achieve more accurate predictions that way.

Figure 11. Predicted access times of the sim-

ple ANN-model as blue points

Figure 12. Predicted access times of the

error-class-model as blue points

Conclusion and future work

In this paper, we analyzed the performance of a supercomputer’s storage system. Using a

machine learning approach with artificial neural networks, we developed different models for file

access time prediction. Through our study of measured file access times and model results we

were able to gain knowledge about the behavior of the storage system. We found out that linear

models are not feasible for access time prediction despite the strong correlation of access time

to access size. Our models utilizing ANNs achieved much better results than linear regression.

The hypothesis that knowledge about the internal processing of a file access in form of I/O

paths is essential for access time prediction was supported by our data. This is because file

accesses with equal access parameters can produce strongly deviating access times depending

on the I/O path. The model of deriving knowledge about I/O paths by exploiting periodic

performance of the storage system was not successful. The additional input information did not

lead to a significant improvement of access time predictions.

However, with our method of clustering residues of linear regression for approximations of

I/O paths as error classes, we were able to illustrate the importance of I/O paths for access

time prediction. The ANN-model with additional input information of error classes was able

to reduce its average prediction error to a third compared to the ANN-model with only access

parameter values as input information.

For future work a more elaborate approach for exploitation of the periodic storage perfor-

mance could be used. Crume et al. had success on access time prediction for single hard drives

using Fourier analysis [4] or additional sinusoids as input for ANNs [3].
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We will research the method to estimate the I/O path based on client measurements further.

Residues of other models than linear regression could be used and one could try to assign error

classes to I/O paths in a real system – the administrator would have to investigate the error

classes and define them according to the storage technology. The method could also be a starting

point to develop a tool that provides information on the effectiveness of the used I/O during

execution of a program.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.
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