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Abstract 

This paper first reports the outcomes of a one-year measurement campaign of a passive house built 

in the Mediterranean climate of Cesena (Italy) in terms of thermal comfort parameters temperature 

and relative humidity and Indoor Environmental Quality (IEQ) parameter CO2 concentrations. The 

design carried out with the help of the steady state Passive House Planning Package (PHPP) was 

able to guarantee good comfort conditions during the heating period, but on the other hand, 

overheating occurrences during the cooling season have been recorded for almost 50% time 

according to EN 15251 Standard. Further analyses conducted with the help of dynamic simulations 

in EnergyPlus allowed identifying the insulation levels and ventilation mode as the key design 

factors to change in order to reduce overheating to less than 20% of time while keeping a 

comfortable indoor environment in winter. 

The simplifications that can be made by reducing the insulation material thickness (up to a third of 

the original value) on the roof and on the walls, replacing triple-glazed windows with double-glazed 

windows and implementing a hybrid ventilation strategy instead of using Mechanical Ventilation 

with Heat Recovery (MVHR) alone could also lead to economic savings. These savings, due to both 

lower construction costs and operational energy savings, amount to 8755 euros in terms of Net 

Present Value (NPV) over 30 years’ time. 

The Passivhaus Standard can still be regarded as a good reference for designing low-energy and 

comfortable houses in a Mediterranean climate if some simplifications are made according to 

detailed building performance simulations. 

 

Keywords: passive house, thermal comfort, indoor environmental quality, monitoring campaign, 

dynamic simulation, scenario analysis 
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1. Introduction 

In the last twenty years, the building sector in Europe changed its framework with new legislative 

requirements, a different real estate consistency after the economic crisis and more energy 

retrofitting of existing buildings. Several researchers casted light on the relations between real estate 

market and building energy performance [1-4], as well as on building typologies and/or 

technologies and their thermal performances [5-9].  

As a driver to improve the building energy efficiency of both new and existing buildings, the EU 

approved the Directive 2002/91/CE (Energy Performance of Buildings Directive, ref. [10]) and its 

successive recast (Directive 2010/31/UE, also known as EPBD II [11]) that introduced the Nearly 

Zero Energy Building (NZEB) standard for all new constructions from 2020. This posed great 

challenges, especially for Southern Europe countries that are less prepared than Northern Europe 

ones in putting into effect the actions required to implement the NZEB standard at large scale [12].  

Presently, European Commission and European Parliament are working together on a further recast 

of the EPBD Directive, known as EPBD III, included in the proposal of the “Clean Energy of the 

Energy Union” [13]. The new EPBD Directive will introduce new targets to go “towards a low and 

zero emission building stock in the EU by 2050 underpinned by national roadmaps to decarbonize 

buildings; encourages the use of information and communication technology (ICT) and smart 

technologies to ensure buildings operate efficiently for example by introducing automation and 

control systems […]”. 

This step should be accompanied by a shift from an “Energy-Performance-Approach” to a “User-

Comfort-Approach” for new buildings design. In other words, beside energy performance metrics, 

building certification schemes should adopt Indoor Environmental Quality (IEQ) metrics and the 

related rating systems such as those provided in the categorization framework of EN 15251 

Standard [14]. 

Within this framework, building comfort classification could be made both ex ante, i.e. during 

building design with the help of software simulations following a dynamic approach instead of the 

commonly used steady-state method suggested in ISO 13790 Standard [15], and ex post (i.e. after 

building construction) by means of on-site indoor microclimate monitoring. 

In fact, as recently highlighted in a review paper of Djamila [16], the appraisal of thermal comfort 

predictions can be significantly affected by both uncertainties due to the choice of the correct input 

data for building simulation (mainly in terms of human’s behavior patterns) and by the use of 

simple calculation models. 

In this paper we further the knowledge about high-performing buildings first reporting on a one-

year measurement campaign of thermal comfort and IEQ parameters of a Passivhaus built in the 
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Mediterranean climate of Cesena (Italy) and designed according to the Passive House Planning 

Package (PHPP), a simplified version of the steady-state ISO 13790 method [17-20].  

Then, dynamic simulations are attempted to verify the design predictions of the PHPP and to run a 

scenario analysis of different technological solutions that can help solve the issues registered during 

the operation of the house. Linked to this, the weaknesses of the PHPP tool in capturing the 

transient phenomena mostly occurring in summer and transition periods are highlighted and 

commented, suggesting the use of more robust and detailed simulation tools for design purposes.  

The overarching aim is to assess if the well-established Passivhaus Standard, which typically aims 

at an energy reduction design approach prescribing minimum air-leakages, extra-insulation, 

Mechanical Ventilation with Heat Recovery (MVHR) and very efficient electric appliances, can be 

taken as a reference for a new user-comfort design approach according to the scheme provided by 

the EN 15251 Standard. An economic analysis that takes into account construction costs and 

operational energy needs reveals the money savings achievable.  

 

2. Previous monitoring studies on IEQ of passive houses 

From the introduction of the Passivhaus Standard in the early 1990s, several authors have reported 

on the energy performances achieved by passive houses during their operation. Experimental 

measurements have been carried out in order to see if the design goals of limiting the annual heating 

energy demand below 15 kWhm-2 and the primary energy consumption for heating, electricity and 

hot water production below 120 kWhm-2 are met. Cooling energy demand has been usually 

neglected, despite the delivery on 2007 of the outcomes of the passive-on project [21] that proposed 

the introduction – in dwellings where cooling is given mainly by means of mechanical systems – of 

a cooling demand threshold of 15 kWhm-2. The energy consumed for cooling purposes should be 

accounted for in the 120 kWhm-2 primary energy threshold as well. Broadly speaking, the aim of the 

passive-on project was to test, and modify where needed, the applicability of typical design 

solutions born in the cold continental climate of Germany to “warmer” conditions of countries such 

as UK, France, Italy, Spain and Portugal. However, the main design suggestions remain the same as 

in the original standard, except for the possibility to reduce the amount of insulation of the 

envelope, raise the air infiltrations up to 1 ACH and adopt additional typical passive design 

solutions like shading devices on south oriented windows and natural ventilation strategies during 

nighttime.  

The focus on the energy performances of the houses and on their indoor temperature distribution 

informed the biggest systematic measurement campaign conducted so far under the framework of 

the Cost Efficient Passive Houses as EUropean Standards (CEPHEUS) project [22]. More than 100 
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dwellings in Germany, Austria and Switzerland have been monitored and evaluated for compliance 

with the design goals set using the Passive House Planning Package (PHPP), showing overall a 

good agreement with the expected performances but also significant deviations due to incorrect 

realizations and occupants’ behavior.    

More in-depth studies on the relationships between energy performance and IEQ have been recently 

investigated in a literature review paper [23] that shows how, despite passive houses are usually 

able to meet the design goals set using the PHPP, sometimes issues arise in terms of: 

• Dry air conditions in winter when RH falls below 30%; 

• CO2 concentrations higher than 1000 ppm when cooking or more people are inside; 

• MVHR faults in delivering the right amount of fresh air; 

• Difficulties in meeting the 120 kWhm-2 primary energy consumption threshold if the house 

is not equipped with very efficient electrical appliances; 

• Overheating and windows operation.  

Focusing on the last point, there is a consistent literature reporting on the overheating issues in 

certified passive houses, irrespective of the climate conditions. As an example, Rohdin et al. [24] 

reported on summer overheating in nine passive houses in Sweden, mainly because the MVHR 

system was not able to get rid of internal gains. This led to classify the houses under Category II 

(normal level of expectations) according to EN 15251 Standard [14]. 

The monitoring of 18 apartments in a social housing project in the Austrian province of Tyrol [25] 

not only provides evidence of summer overheating (with 20.6% of yearly hours showing indoor 

temperatures higher than 25°C, against a threshold set to a maximum of 10% from the Passivhaus 

Institut), but also of winter overheating (around 5.6% of yearly hours). The authors attribute this to 

the lack of external shading devices – though residents reported on the use of internal blinds during 

hottest days – and to a non-optimal operation of the MVHR system. This last aspect led the 

occupants to perform natural ventilation in addition to mechanical ventilation also during winter 

because of odor removal, lack of fresh air and their consolidated habits. 

Ridley et al. [26] monitored the performances of two passive houses in Wales over two years, 

showing that the overheating risk for such very-insulated and airtight dwellings is higher than the 

one observed for the existing UK residential stock. In fact, despite the provision of slatted louvers 

manageable by the occupants, one of the dwelling failed to pass all the overheating tests set by 

CIBSE, PHPP and EN 15251 standards and guidelines.   

The same author also carried out a detailed study of the first certified passive house built in London 

[27]. Again, overheating issues are found in the kitchen and living room (the hours with indoor 

temperatures higher than 25°C are 22.5% and 33.5% of the time respectively), despite the presence 
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of both retractable external venetian blinds fit with an automatic solar control and of specifically 

designed inward-tilting windows for natural ventilation purposes. 

Similar issues have been reported also for the colder climates of Scotland [28] and Estonia [29], as 

well as for the continental one of Slovenia [30] and Romania [31]. 

 

3. Aims and objectives   

According to the previous sections, it appears evident that the delivery of comfortable and “high 

performing” houses by means of an energy savings design paradigm is neither obvious nor easy to 

obtain, even for a well-established design standard such as the Passivhaus. 

This paper tackles the issue of deepening the knowledge about the performances of a passive house 

located in a warm environment, and starts presenting the results of one year monitoring campaign of 

thermal and IEQ parameters of a multi-storey apartment house located in the Mediterranean climate 

of Cesena (Italy) certified as a passive house. Then, with the help of dynamic thermal simulations, 

the following research questions are addressed: 

1. Under Mediterranean climate conditions, does the Passivhaus standard provide adequate 

design solutions for delivering a high-quality environment throughout the year? 

2. What are the key design solutions and operational strategies that could be changed/adapted, 

and to what extent? 

3. Can these changes lead to money savings in terms of construction and running costs for 

heating and cooling energy consumption? 

This evidence-based approach is intended to help architects and engineers involved in the design of 

passive houses achieving the design goal of delivering a comfortable environment for the 

occupants. 

 

4. Methodology 

The outcomes of a monitoring campaign of thermal and IEQ parameters of the Fiorita passive house 

built in Cesena (Italy) are first reported and thoroughly commented. Then, a calibrated model in 

EnergyPlus is employed to run hourly simulations and perform a scenario analysis aimed at 

identifying the passive solutions that can help solve the issues recorded during the house operation.     

Finally, technical and economic considerations are discussed to deepen the understanding of the 

passive behavior of a Passivhaus placed in a Mediterranean climate. 
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4.1 Monitoring campaign 

The indoor monitoring campaign concerned the measurement of air temperature (°C), relative 

humidity (%), CO2 concentrations (ppm) and surface temperatures (°C) from 22/04/2016 to 

22/04/2017 at an hourly time step. 

The monitoring system adopted makes use of a series of probes and nodes located in the master 

bedroom of a duplex top floor apartment of the Fiorita multi-family passive house. The monitoring 

equipment, provided by Genesis Wireless Sensor Network Beeper (Beeper-WSN), is made up of: 

• Probes to measure the physical variables air temperature, relative humidity and CO2 

concentrations. Contact temperatures are recorded via thermocouples attached to the wall 

and roof surfaces (see Table 1 for instruments characteristics); 

• Beesper nodes provided with GPS sensors to collect data from the probes and to 

communicate the data to the Beesper Bridge via wireless connection; 

• Beesper Bridge to collect the data from Beesper nodes and forward it to a purpose created 

website via GPRS signal; 

• Web Beesper Console to allow for remote access, check and download the monitoring data. 

The location of the probes is described in the next section together with the construction details of 

the passive house. 

 

Table 1. 

 

4.2 Case Study Building  

The Fiorita passive house is a multi-story apartment building certified by the Passivhaus Institut 

(passive house ID 4086, new build) located in Cesena, in the Center-North part of Italy (see Figure 

1).  

The house has eight apartments of different size (four studio apartments, three apartments with 

three rooms and one two-room apartment). The monitored flat is the two-room apartment located at 

the top floor; it shows a net floor area of 49.95 m2 and internal stairs that connect the kitchen and 

the living room downstairs with the master bedroom and the bathroom upstairs. 

The monitoring campaign probes are located upstairs in the bedroom (see Figure 2), which is 3.5 x 

4.3 m2 large and 2.70 m high (net floor to ceiling height) for a resulting net floor area of 15 m2, and 

is provided with only one external glazed door towards the balcony (1.60 x 2.32 m2 in size). In the 

same Figure 2, the red circles identify the contact temperature sensors, the yellow circle shows the 

position of the probes used to measure indoor temperature, relative humidity and CO2 

concentrations, while the green cross refers to the beesper bridge location. 
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The bearing structure is made of Cross Laminated Timber (CLT), with the outer walls composed of 

(from the inner to the outer layer): 1.25 cm thick plasterboard, 1 cm air gap, 4 cm of rock wool 

insulation layer, 10 cm thick xlam panel, 10 cm of wood fiber and 10 cm of glass fiber insulating 

materials, 2 cm of air gap and an external wood cladding 2 cm thick (see Figure 3 left). The 

resulting thermal transmittance is U = 0.12 Wm-2K-1. 

The walkable roof is made of 1 cm thick PVC layer, a water proof membrane of 0.5 cm thickness, 4 

cm of cement screed, 32 cm of styrodur insulation material and 18 cm thick xlam panel (see Figure 

3 right), with a resulting U value of 0.10 Wm-2K-1. As for the windows, they are triple-glazed PVC 

framed with low-emissive coating on the inner panes resulting in a center-of-glass U value of 0.60 

Wm-2K-1 and a solar factor of 0.55. 

Moreover, the building has been tested with the Blower Door Test according to EN ISO 9972 

Standard [32] and the resulting number of Air Changes per Hour (ACH) at to 50 Pa pressure 

difference is n50= 0.41 h-1. 

 

Figure 1.  

 

Figure 2.  

 

Heating and cooling are provided by means of a centralized Variable Refrigerant Flow (VRF) 

system served by an air-to-air heat pump that supplies also the domestic hot water, whereas 

dedicated Mechanical Ventilation Heat Recovery systems (MVHR) serve each apartment for 

ventilation purposes. Every MVHR unit shows a maximum flow rate of 230 m3h-1, a flow rate at 

50% power equal to 161 m3h-1, a thermal efficiency of 90% and a Specific Power Input (SPI) of 

0.31 Wm-3h-1 calculated according to EU Regulation n.1254/2014 [33]. 

Finally, a photovoltaic system of 14 kW peak power is installed on the roof with the aim of 

covering the energy needed for running the central heat pump. When PV panels alone are not able 

to meet the required electric power, then the national electric grid covers the remaining demand. 

This configuration permits to meet the primary energy requirements set by the Passivhaus as 

calculated with PHPP software.  

 

 

Figure 3.  
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4.3 Thermal model and calibration process 

A detailed thermal model of the monitored apartment flat has been built in EnergyPlus v.8.4 [34]. In 

order to keep the model as simple as possible, adiabatic surfaces have been used for both party 

walls and floors adjoining with other flats, assuming these flats experience the same indoor 

conditions. Shading surfaces with a diffuse solar reflectance of 0.3 have been used to represent the 

horizontal PV panels installed on the roof, the balconies, and their vertical movable grids (see 

Figure 4). Moreover, interior shading in the form of curtains with a solar transmittance of 0.5 is also 

considered for the glazed openings during cooling period (defined as from April 16 to October 14 

according to [35-36]).  

Two people involved in sedentary activities (heat loss of 100 W per person) are supposed to occupy 

the living room from 18:00 to 23:00 and the bedroom from 23:00 to 7:00 throughout the year; 

during these periods, internal gains consist also of various electrical equipment with a resulting 

power density of 3.1 Wm-2. Finally, the entire apartment is served by a VRF system providing 

heating and cooling at every hour of the day (if needed) to keep indoor temperatures in the range of 

19 to 28°C.   

The calibration process aimed at comparing the measured bedroom temperatures from April 2016 to 

December 2016 with the simulated ones (by the time the paper has been written 2017 data was not 

yet available), obtained using a custom-made weather file with relevant weather data got from the 

local Cesena Urbana meteorological station [37].  

This task showed to be challenging, mainly because of uncertainties related with flat operation from 

the occupants in terms of heating and cooling set points, MVHR operation and windows opening. 

The results of the calibration exercise, reported in Figure 5 in the form of hourly temperature values 

for the bedroom only, reveal how the simulated temperatures (orange line) well follow the 

measured temperatures (blue line) for the entire year. 

 

Figure 4.  

 

Figure 5.  

 

The daily difference between the maximum and minimum temperatures reported in Figure 6 for the 

measured (black line) and simulated (red line) cases respectively allows to better estimate the 

fluctuations that are not easily readable from the previous analysis. Overall, a good agreement is 

found, being the maximum difference between measured and simulated temperatures as depicted by 
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the yellow area in the graph of slightly less than 1.5 °C, while the average annual difference 

amounts to just 0.39 °C. 

 

Figure 6  

 

The frequency distribution of the daily average error has been calculated as well and reported in 

Figure 7. Here it is possible to see how the average daily error is always within the range of -1.5 to 

2 °C, being within the range of -1 to 1 °C for 71% of the time and showing a mean error value of -

0.09 °C on an annual basis. This is considered a very positive result given the above-mentioned 

uncertainties of the model. 

 

Figure 7.  

 

Finally, to better substantiate the agreement between measured and simulated indoor temperatures, 

some statistical indicators such as the coefficient of determination R2, the Mean Bias Error MBE, 

the coefficient of variation CV and the Pearson coefficient have been calculated according to 

Equations (1-4): 
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here Mi and Si are the measured and simulated temperatures respectively, M  is the average 

measured temperature, n is the number of measurements, σMS is the covariance between measured 

and simulated temperatures and σM (σS) is the standard deviation of measured (simulated) 

temperatures respectively. 

The resulting values are reported in Table 2, and according to the hourly calibration method 

suggested by the ASHRAE Guideline 14-2014 [38] (though this document mainly pertains to the 

calibration of the simulated energy demand) a strong correlation is found so that the model can be 

considered well calibrated.  

 

Table 2. 

 

4.4 Scenario analysis and IEQ metrics 

Based on the outcomes of the monitoring campaign, different scenarios are simulated in EnergyPlus 

to further stress the passive behavior of the house and appraise the benefits that can arise from 

simplifying the existing layout, mainly in terms of insulation levels and ventilation strategy. In 

detail, the following scenarios are considered: 

a) Free running (with and without a natural ventilation strategy); 

b) Double-glazed windows with low-emissive coating are used in place of the existing triple-

glazed low-emissive ones (free running operation, natural ventilation implemented); 

c) Same as b) but with less insulation on the outer walls and on the roof; 

d) Same as c) but with the MVHR system in operation and a hybrid ventilation strategy 

implemented. 

In terms of natural ventilation, a basic control strategy is considered: the windows can be opened, 

throughout the year, when indoor temperature is higher than 19°C (which is the actual set point 

temperature for heating) and outdoor temperature is at least 2°C lower than inside. The maximum 

air change rate achievable has been set to 2ACH, deemed as a reasonable value when not 

performing more detailed CFD analysis [39]. This control strategy has been checked with 

preliminary simulations and it avoids overcooling occurrences in winter and transition periods. 

For what concerns scenarios b) and c), the existing construction components have been changed – 

by reducing the thickness of the insulation layers – in order to meet the minimum requirements set 
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by the Italian building codes in terms of U-values for buildings located in climate zone E, where 

Cesena pertains, to be built after January 2019 [40]. As a result, windows have a U-value of 1.40 

Wm-2K-1, while the roof and the outer walls have U-values of 0.22 Wm-2K-1 and of 0.26 Wm-2K-1 

respectively. 

The scenarios described above will be then compared in terms of indoor/operative air temperature 

distribution for the sake of classifying the house according to the three IEQ categories defined in 

EN 15251 Standard [14] (see Tables 3-4) and analyzing potential overheating issues. To this aim, 

different tests will be performed: the first one refers to the calculation of the hours when the 

operative temperature is higher than 27°C (i.e. above the upper threshold of Cat. III of comfort), the 

second one is conducted according to the Passivhaus overheating criterion (i.e. overheating occurs 

when indoor temperatures are higher than 25°C for more than 10% of the annual hours), and the last 

one by also considering the intensity of overheating by calculating the amount of degree hours 

above the previous thresholds. 

Finally, relative humidity and CO2 concentrations are analyzed for the monitoring campaign in 

order to see if and to what extent they represent an issue for the occupants, but given their strong 

dependency on human behavior and indoor sources generation they will not be further considered in 

the scenario analysis described above. 

 

Table 3. 

 

Table 4. 

 

5. Results  

5.1 Monitoring campaign: evidence of the issues recorded 

Indoor temperatures registered during the monitoring campaign kept well within the range of 19°C 

to 28°C, even when the outdoor temperature reached the summer peak of 38°C on July 12 and the 

winter peak of -3°C on December 19. The average winter temperature is 20.7°C, while the average 

summer temperature is 25.2°C. Furthermore, the amplitude of the oscillations is very low (see 

Figure 8), and this can be explained first because the very high level of insulation of the opaque 

envelope helps retaining the heat in winter and reduce the heat incoming in summer. Secondly, 

solar gains are well managed thanks to the optimal orientation of the building, the low windows U-

value and the good shading design (balconies and movable external panels namely). Finally, the 

airflow is strictly controlled thanks to the excellent airtightness of the envelope and to the MVHR 

system that modulates the required flow rate to meet thermostat requirements set by the occupants.  
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This last point is of particular interest because actually the occupants reported the opening of the 

windows sometimes for letting fresh air in and cooling the indoor when they deemed this as 

“suitable” (reasonably during late evening and night when outdoor temperature is lower), meaning 

that either MVHR was not well operating or they simply prefer to open the windows. 

Figure 8.  

 

The EN 15251 Standard states that indoor climate Category II should be used for new buildings 

assessment [14], as in this case. However, from the monitoring campaign it emerged – despite the 

house is designed and built according to the high quality requirements set by the Passivhaus – how 

seldom indoor temperatures fall within this category. In order to have a better understanding of this 

issue, Figure 9 reports IEQ classes achieved for the heating and cooling seasons separately 

according to the ranges shown in Table 3. What appeared is that during the heating season the IEQ 

is by far better than in the cooling season: in fact, indoor temperature is within the first two classes 

of quality for 45% of time during the heating period (from October 15 to April 15), against 24% of 

time of the cooling period (from April 16 to October 14). Furthermore, overheating (i.e. those 

occurrences when temperature is higher than the threshold of 27°C set for Cat. III) accounts for 

48% of the time meaning that occupants may not feel comfortable in such a time frame. For the 

remaining 2% of time temperature is tagged as “no cooling” period because it is lower than the 

threshold of 22°C (see Table 3).  

 

Figure 9.  

 

In terms of relative humidity, the recorded values shown in Figure 10 show how for most of the 

time they are within the band of 30 to 70%, with just few occurrences below (41 hours) and some 

above (1063 hours) this range. The maximum value is 77%, the minimum is 25% and the average is 

53% respectively. Overall, it can be stated that relative humidity is within the comfort boundaries 

for most of the time (around 81% of the monitored time) and does not represent an issue. 

 

Figure 10.  

 

According to Annex B of EN15251 Standard (ref. [14]), there are three methods for categorizing 

buildings in terms of ventilation air flow: i) method based on person and building component, ii) 
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method based on ventilation rate per person (or per m2 floor area) and iii) recommended values for 

CO2 dilution. In this work, we chose this last method (please see Table 4 for the relevant 

thresholds). 

In terms of CO2 concentrations, both the occupancy pattern and the operation of the MVHR system 

guarantee good indoor conditions: in fact, the bedroom is classified within Cat. I for 80% of the 

time, while being in Categories II and III for 8% of time each and in Cat. IV for just 4% of time (see 

Figure 11). It can be safely stated that, as for relative humidity values, indoor CO2 concentrations 

are not a problem.  

 

Figure 11.  

 

Finally, indoor surface temperatures have been analyzed to see if asymmetries characterize the 

indoor space, and are reported in Figure 12 as a red line for the ceiling and as a black line for the 

wall marked with the red point in Figure 2. Overall, it appears that the trends are quite similar, with 

ceiling temperatures being slightly higher than wall temperatures of 0.4°C on average (within the 

instrument accuracy range of 0.5°C) and of 1.1°C during peak conditions in summer and winter (the 

circle areas highlighted in Figure 12). This happens because the room monitored is just below the 

roof, so the solar radiation makes the incoming heat flux higher than that through walls despite the 

shading provided by PV panels.   

 

Figure 12.  

 

 

5.2 Scenario analysis  

The first scenario considers a purely free-running operation of the building, so the only difference 

with the existing case is the absence of the VRF and MVHR systems. The corresponding indoor 

temperatures have been plotted in Figure 13 with a green line: it is straightforward to notice how 

temperatures now span from 15°C in January to around 38°C in June and occasionally in October, 

with consistent overheating conditions according to the Passivhaus standard from April until late 

November. This behavior can be easily explained thanks to the super-insulated and airtight 

envelope that keeps the heat inside very well (indeed heating would be required just for few hours 

in January and February) but, on the other hand, cannot effectively dissipate it when it is too warm 

without a proper ventilation strategy. Following the Passivhaus design requirements, this task 
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should be accomplished by a MVHR system with a heat recovery efficiency of at least 0.75, but 

because this paper tries to fully exploit the potential of passive solutions the natural ventilation 

strategy described in Section 4.4 is considered instead.  

The outcomes of this scenario have been reported in the same Figure 13 with a blue line in order to 

easily compare the benefits achievable. Apart from showing the same behavior of the case without 

natural ventilation until middle of February, from this point onwards temperatures are consistently 

lower (up to 7°C less in transition periods such as May and October) and within the range of 15°C 

to 31°C. Noticeably, overcooling hours (i.e. those hours when indoor temperature is lower than 

18°C) accounts for only 6% of time, meaning that heating would be required for few hours in a year 

(around 500 hours in total). 

 

Figure 13.  

 

However, overheating is still an issue, so other passive measures have to be sought to render indoor 

conditions more comfortable and stable throughout the year. Building upon the free running case 

with natural ventilation implemented (hereafter called scenario a) described above, other two 

completely passive scenarios are considered: one makes use of double-glazed windows with low 

emissive coating (scenario b), and the other one couples these windows with a less insulated opaque 

envelope (scenario c). For the sake of clearness and brevity, the performances of these two 

scenarios will be presented in terms of IEQ classes for heating and cooling periods (see Figure 14) 

and of overheating analysis (see Figure 15) together with the outcomes of all the remaining 

scenarios. Annual indoor temperature distributions are not reported because the different trends 

would not be readable at this time scale.    

An additional scenario that considers insulation thickness reductions on the roof and on the walls 

while keeping the original triple-glazed windows was run as well, but the outcomes are almost 

identical to those achieved by scenario c) so we prefer to discuss only the latter. Further, the use of 

double-glazed windows can effectively reduce construction and running costs, as discussed later. 

The classification of IEQ conditions according to EN 15251 Standard reports interesting results 

worth of discussion. As far as the heating season is concerned (left hand side of Figure 14), the 

existing scenario shows the highest number of hours within Cat. I (25% of the heating hours), 

strictly followed by scenarios a) and b) with around 22% of time. Nonetheless, overcooling is 

experienced for 31% of time in the existing scenario while this figure drops down to 11% and 18% 

for scenarios a) and b) respectively. What changes among the existing, a) and b) scenarios is thus 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
the amount of hours experienced in overcooling and Cat. III classes, since the amount of hours 

spent in Cat. II is almost the same in all cases and amounts to around 5%. 

The other passive scenario, i.e. Scenario c), performs the worst in terms of overcooling (45% of 

time), being within the boundaries of Cat. I for 17% of time, of Cat. II for 7% of time and of Cat. III 

for the remaining 31% of time. 

Finally, scenario d) shows the lowest number of hours within Cat. I (only 6%), being for 6% of time 

in Cat. II and 88% of time in Cat. III but without experiencing any overcooling at all. 

 

Figure 14.  

 

On the contrary, during the cooling period the best performances are achieved by scenarios c) and 

d), with 35% of the time classified as Cat. I, 13% as Cat. II, 21% as Cat. III and 11% as “no 

cooling”. The authors have introduced this category to explicitly account for temperatures lower 

than 22°C (lower cooling threshold of Category III). However, for the remaining of the time 

(around 20% of cooling hours), the room will still suffer from overheating. 

The existing scenario behaves the worst in terms of operative temperature distribution, with 49% of 

the time tagged as overheated (see Figure 14 on the right hand side), 15% of time classified under 

Cat. I, 8% of time under Cat. II, 26% of time to Cat. III and the remaining 2% tagged as no cooling. 

Scenarios a) and b) behave pretty much the same, and in between the existing scenario (the worst) 

and scenarios c) and d) (the best).  

 

5.3 Overheating analysis  

Overheating issues have been assessed first calculating the number of hours in a year with indoor 

temperatures higher than 25°C as suggested by the Passivhaus standard, together with the number 

of hours when the threshold of 27°C for the operative temperature is exceeded (EN15251 Standard). 

This calculation is reported on the left side of Figure 15. According to the Passivhaus overheating 

criterion, all the scenarios analyzed report overheating issues because in every case the threshold of 

10% is largely exceeded. What is interesting to note is that all the scenarios analyzed using this 

criterion report a number of overheating hours that is higher (even more than double) than  what is 

predicted according to the EN 15251 methodology, except for the existing configuration. 

This can be likely explained by the radiant asymmetries recorded within the room (see Figure 12), 

which are likely due to the operation of the MVHR system that sometimes does not provide a 

sufficient amount of fresh air to effectively discharge the heat stored in the roof structure in the 
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existing configuration. In such cases, the indoor air temperature is a poor comfort indicator and 

should be put aside in favor of the operative temperature. 

Figure 15.  

 

To have also an idea of the magnitude of these overheating occurrences, the number of degree hours 

above the limit has been calculated as well and reported on the right side of Figure 15.  

What is worth to note is that the general trends keep consistent with the previous analysis, with the 

intensity of overheating predicted by using the operative temperature threshold of 27°C being by far 

lower than what is predicted using the indoor temperature threshold of 25°C as an indicator, except 

for the existing configuration. This can be explained noting that, despite the indoor temperature is 

higher than 25°C, it is seldom higher than 27°C for scenarios a) to d) and thus the operative 

temperature (which can be defined as the average between the indoor and mean radiant 

temperatures) exceeds the 27°C threshold for a few number of hours. Once again, it seems the 

operative temperature is a better indicator than the indoor air temperature for predicting 

overheating. 

 

5.4 Economic analysis  

The simulation exercise carried out on the study passive house showed that it is possible to achieve 

better thermal and IEQ conditions than actual ones by modifying the existing building layout. 

Moreover, the construction process can be significantly simplified by reducing the amount of 

insulation installed on the walls and on the roof, using double-glazed windows in place of triple-

glazed ones and avoiding the use of a MVHR system in favor of a completely passive natural 

ventilation strategy or low-energy systems such as fans. 

For both designers and occupants, it would be of interest to report on the economic savings 

achievable in terms of construction costs and running costs for heating and cooling energy 

consumption for each scenario discussed previously, and thus answering the third research question 

initially placed. Actual costs for the existing case, relative to the surveyed flat only, are compared 

with those obtained from the local specifications for public works for the latest year available in 

Cesena area (2016) and from direct communication with the house designer. As for the price of 

electricity, it is set to 0.19 €kWh-1 according to the Italian Authority for Energy and Environment 

Regulation (ARERA, ref. [41]). 

If looking at the results reported in Table 5, there appears that construction costs savings range from 

4251 € when MVHR is employed (scenario d, hybrid ventilation strategy) up to 10751 € for 

scenario c.  
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If considering running costs savings, a completely passive operation of the house (scenarios a, b and 

c) allows to save around 130 € per year on the electricity bill, which represents the running cost of 

the existing scenario for heating and cooling provision. On the other hand, when the MVHR system 

is run in conjunction with a natural ventilation strategy (scenario d), this figure drops down to 

around 10 € per year. 

This happens because, despite the insulation levels are worsened and heating consumption increases 

from 3.62 kWhm-2 to 6.11 kWhm-2, the cooling energy savings (from 10.01 kWhm-2 to 6.44 kWhm-

2) exceeds the heating penalties and allows for modest running costs savings. 

 

Table 5. 

 

To appraise the convenience of scenario d) in a long term perspective, the difference in Net Present 

Value (NPV) between this and the existing case has been calculated as well over 30 years’ time 

span. To this aim, an inflation rate of 1.1% according to the latest available report released by the 

Italian National Institute of Statistics (ISTAT, ref. [42]), and an interest rate of 2% as gathered from 

Bank of Italy historical data for year 2018 [43], have been used.  

The value thus obtained is positive and amounts to 8775 €, meaning that there is an economic 

convenience in choosing scenario d) over the existing baseline. The NPVs of the other scenarios 

have not been calculated because in spite they would guarantee much higher returns it is not 

realistic to assume the construction of a Passivhaus without any HVAC system in use.  

 

6. Discussion 

This paper analyzed thermal and IEQ conditions in a bedroom placed under the roof of a passive 

house located in the Mediterranean climate of Cesena (Italy). Because of its location (top floor of a 

multi-storey building), the overheating issues may be slightly bigger than those of a middle-storey 

room and not fully representative of an average behavior of the house, although the high roof 

insulation level and the shading provided by PV panels counterbalance this effect. Moreover, the 

building appears correctly oriented, with majority of the windows exposed due to south and well 

shaded by the balconies and by external shadings provided in the form of vertical movable panels. 

In a nutshell, it is possible to state that it follows the guidelines suggested by the passive-on project 

[21] and can be considered an example of good practice design. The outcomes of this study can thus 

be regarded as representative of the issues encountered when building a passive house in the 

Mediterranean climate, though more case studies are encouraged to draw conclusions that are more 

robust.  
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In order to answer the first research question, “does the Passivhaus standard provide adequate 

design solutions for delivering high-quality environments throughout the year?”, what emerges 

from the monitoring and scenario analysis presented above is that the use of the steady-state method 

implemented in the PHPP does not guarantee the achievement of good comfort conditions during 

the cooling season. Indeed, the use of a dynamic software such as EnergyPlus helped identify the 

key design solutions and operational strategies that could be changed/adapted (research question 2) 

in the insulation levels and ventilation strategies namely. In particular, using the insulation 

thicknesses strictly necessary to meet the prescriptions set by the Italian building codes for roofs 

and walls (10 cm and 8 cm respectively for the study construction packages) already allows 

reaching good comfort conditions in winter and lower indoor temperatures in summer, thus 

significantly reducing overheating occurrences from 50% to less than 20% of cooling time (see 

Figure 14). The use of double-glazed windows with a low-emissive coating on the inner pane points 

to the same direction. What appears trickier from a designer perspective is the provision of a good 

ventilation strategy to successfully get rid of the heat inside while satisfying the requirements for 

fresh air supply. As reported in Section 5.1, and confirmed by the occupants of the surveyed flat, 

windows were opened from time to time because the MVHR system was not deemed appropriate to 

satisfy their comfort needs. 

Furthermore, the economic analysis of Section 5.4 showed that reductions in the construction and 

running costs could be achieved by implementing these passive design measures. 

For all these reasons, it is in the authors’ opinion that it is safe to choose option d) because some 

heating and cooling is still needed throughout the year, but the MVHR system may be replaced with 

single split units working as heat pumps (one for the bedroom and one for the living room). Indeed, 

the unitary cost of a split unit with high Coefficient of Performance (COP) in the heating mode and 

Energy Efficiency Ratio (EER) in the cooling mode seldom exceeds 800 €, thus significantly 

increasing the economic savings achievable in terms of construction costs to around 9000 € while 

adding the benefits of an easier operation and electricity supply from PV panels.  

 

7. Conclusions 

The shift from an energy savings design approach to a comfort user design approach should be 

encouraged not only in light of the latest normative requirements set by the European Union, but 

also as a natural development of the broader architecture discourse.  

Among a variety of building design standards, the Passivhaus stands out as one of the more 

prominent and widely used since its born in the 1990s. Despite this, the literature reports on few 

studies focusing on IEQ conditions rather than on the merely energy performances of these passive 
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houses, especially in warm climates like the Mediterranean one. This paper addressed this gap by 

reporting on a one-year measurement campaign of indoor conditions for the Fiorita passive house, a 

multi-family apartment block located in Cesena (Italy). The outcomes revealed how the design 

carried out using a steady state tool such as the PHPP achieved the goal of delivering good comfort 

conditions during the winter period, with around 45% of heating hours falling within the first two 

Classes of comfort categorized by the EN 15251 Standard. On the other hand, despite the provision 

of shading devices and the operation of a MVHR system to get rid of excessive heat inside, the 

house failed to ensure high comfort levels in summer. In fact, overheating was experienced for 

almost 50% of time during the cooling period, an issue that has been analyzed in detail by means of 

dynamic simulations in EnergyPlus. 

The outcomes of the scenario analysis showed that overheating hours could be drastically reduced 

to less than 20% of time if lowering (up to a third) the insulating materials thickness applied to the 

roof and to the walls, as well as using double-glazed low-emissive windows in place of triple-glazed 

ones. Moreover, implementing hybrid or natural ventilation strategies instead of relying on the 

operation of the MVHR system alone adds additional benefits in terms of summer comfort and 

operational use. Indeed, it is not easy to achieve a flow rate balance able on the one hand to get rid 

of internal gains and on the other hand to satisfy the occupants’ needs of fresh air, usually achieved 

by opening the windows. 

The simplifications in the building layout that can be achieved if following these measures have a 

noticeable impact also on construction costs and running costs for heating and cooling provision for 

a surveyed apartment. In fact, the economic savings related to the reduced construction costs could 

range from 4251 € when using a hybrid ventilation strategy via the existing MVHR system up to 

10751 € under a completely passive operation of the flat. If taking into account also the operational 

costs due to heating and air conditioning over a time span of 30 years for the hybrid ventilation 

scenario analyzed, the NPV calculation is positive and amounts to 8775 €. This happens because 

economic savings are expected also from the electricity savings due to the measures proposed (from 

13.63 kWhm-2 of the existing scenario to 12.55 kWhm-2 of the hybrid ventilation scenario). 

In conclusion, although more case studies are encouraged to draw more robust conclusions, the 

implementation of the Passivhaus Standard under Mediterranean climate conditions poses 

challenges that can be successfully solved if more detailed building performance predictions are 

performed in the design stage using dynamic tools rather than the prescribed steady-state PHPP.  

 

Nomenclature  
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ACH  Air Changes per hours (h-1) 

CFD  Computational Fluid Dynamics  

CLT  Cross-laminated timber 

CMV  Controlled Mechanical Ventilation  

CV  Coefficient of Variation  

CV (RMSE) Coefficient of Variation (Root Mean Square Error) 

HVAC  Heating Ventilation and Air-Conditioning  

IEQ  Indoor Environmental Quality  

EIFS   Exterior Insulation and Finishing System 

EPBD   Energy Building Performance Directive 2002/91/CE 

EPBD II  Energy Building Performance Directive (recast) 2010/31/CE 

EPBD III Energy Building Performance Directive (proposal) 

MBE  Mean Bias Error 

MVHR Mechanical Ventilation and Heat Recovery 

n50  air change rate at 50Pa  

NPV  Net Present Value  

NZEB  Nearly Zero Energy Building  

PHPP  Passive House Planning Package 

PV  Photovoltaic  

R2   Coefficient of determination R2  

SPI  Specific power input (heat pump) 

VRF   Variable refrigerant flow (HVAC technology) 

 

Greek letters 

σ   covariance  

 

Acknowledgements  

The authors would like to thank the Zoffoli family living in the surveyed flat for their support 

during the monitoring campaign and data collection. 

 

References 

[1] S. Copiello, L. Gabrielli, Analysis of building energy consumption through panel data: The 
role played by the economic drivers, Energy Build. 145 (2017) 130–143. 
doi:10.1016/j.enbuild.2017.03.053. 

[2] S. Copiello, Achieving affordable housing through energy efficiency strategy, Energy Policy. 
85 (2015) 288–298. doi:10.1016/j.enpol.2015.06.017. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
[3] S. Copiello, P. Bonifaci, Green housing: Toward a new energy efficiency paradox?, Cities. 

49 (2015) 76–87. doi:10.1016/j.cities.2015.07.006. 

[4] K. Fabbri, L. Tronchin, V. Tarabusi, Real Estate market, energy rating and cost. Reflections 
about an Italian case study, Procedia Eng. 21 (2011) 303–310. 
doi:10.1016/j.proeng.2011.11.2019. 

[5] I. Ballarini, S.P. Corgnati, V. Corrado, Use of reference buildings to assess the energy saving 
potentials of the residential building stock: The experience of TABULA project, Energy 
Policy. 68 (2014) 273–284. doi:10.1016/j.enpol.2014.01.027. 

[6] G.V. Fracastoro, M. Serraino, A methodology for assessing the energy performance of large 
scale building stocks and possible applications, Energy Build. 43 (2011) 844–852. 
doi:10.1016/j.enbuild.2010.12.004. 

[7] T. Loga, B. Stein, N. Diefenbach, TABULA building typologies in 20 European countries—
Making energy-related features of residential building stocks comparable, Energy Build. 132 
(2016) 4–12. doi:10.1016/j.enbuild.2016.06.094. 

[8] C.A. Balaras, A.G. Gaglia, E. Georgopoulou, S. Mirasgedis, Y. Sarafidis, D.P. Lalas, 
European residential buildings and empirical assessment of the Hellenic building stock, 
energy consumption, emissions and potential energy savings, Build. Environ. 42 (2007) 
1298–1314. doi:10.1016/j.buildenv.2005.11.001. 

[9] P. Caputo, G. Costa, S. Ferrari, A supporting method for defining energy strategies in the 
building sector at urban scale, Energy Policy. 55 (2013) 261–270. 
doi:10.1016/j.enpol.2012.12.006. 

[10] European Commision, Directive 2002/91/EC of the European Parliament and of the Council 
of 16 December 2002 on the energy performance of buildings, Off. J. Eur. Union. (2002) 65–
71. doi:10.1039/ap9842100196. 

[11] EU, Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on 
the energy performance of buildings (recast), Off. J. Eur. Union. (2010) 13–35. 
doi:doi:10.3000/17252555.L_2010.153.eng. 

[12] S. Attia, P. Eleftheriou, F. Xeni, R. Morlot, C. Ménézo, V. Kostopoulos, M. Betsi, I. 
Kalaitzoglou, L. Pagliano, M. Cellura, M. Almeida, M. Ferreira, T. Baracu, V. Badescu, R. 
Crutescu, J.M. Hidalgo-Betanzos, Overview and future challenges of nearly zero energy 
buildings (nZEB) design in Southern Europe, Energy Build. 155 (2017) 439–458. 
doi:10.1016/j.enbuild.2017.09.043. 

[13] European Commission, Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT 
AND OF THE COUNCIL amending Directive 2010/31/EU on the energy performance of 
buildings, 381 (2016). 

[14] EN 15251, Indoor environmental input parameters for design and assessment of energy 
performance of buildings addressing indoor air quality, thermal environment, lighting and 
acoustic, UNI. (2008). 

[15] EN ISO 13790, Energy performance of buildings Calculation of energy use for space heating 
and cooling, Calcolo. (2008) 1–24. 

[16] H. Djamila, Indoor thermal comfort predictions: Selected issues and trends, Renew. Sustain. 
Energy Rev. 74 (2017) 569–580. doi:10.1016/j.rser.2017.02.076. 

[17] M. Mihai, V. Tanasiev, C. Dinca, A. Badea, R. Vidu, Passive house analysis in terms of 
energy performance, Energy Build. 144 (2017) 74–86. doi:10.1016/j.enbuild.2017.03.025. 

[18] F. Moran, T. Blight, S. Natarajan, A. Shea, The use of Passive House Planning Package to 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
reduce energy use and CO2emissions in historic dwellings, Energy Build. 75 (2014) 216–
227. doi:10.1016/j.enbuild.2013.12.043. 

[19] R. McLeod, M. Jaggs, B. Cheeseman, A. Tilford, K. Mead, Passivhaus primer: airtightness 
guide; airtightness and air pressure testing in accordance with the Passivhaus Standard, BRE 
Trust. (2014). http://www.passivhaus.org.uk/filelibrary/Primers/Passivhaus-Airtightness-
Guide.pdf. 

[20] R.S. McLeod, C.J. Hopfe, Y. Rezgui, A proposed method for generating high resolution 
current and future climate data for Passivhaus design, Energy Build. 55 (2012) 481–493. 
doi:10.1016/j.enbuild.2012.08.045. 

[21] Intelligent Energy Europe, Passive-On Project: Towards Passive Homes, (2007). 
doi:10.1017/CBO9781107415324.004. 

[22] J. Schnieders, A. Hermelink, CEPHEUS results: Measurements and occupants’ satisfaction 
provide evidence for Passive Houses being an option for sustainable building, Energy Policy. 
34 (2006) 151–171. doi:10.1016/j.enpol.2004.08.049. 

[23] Y. Wang, J. Kuckelkorn, F.-Y. Zhao, H. Spliethoff, W. Lang, A state of art of review on 
interactions between energy performance and indoor environment quality in Passive House 
buildings, Renew. Sustain. Energy Rev. 72 (2017) 1303–1319. 
doi:10.1016/j.rser.2016.10.039. 

[24] P. Rohdin, A. Molin, B. Moshfegh, Experiences from nine passive houses in Sweden - 
Indoor thermal environment and energy use, Build. Environ. 71 (2014) 176–185. 
doi:10.1016/j.buildenv.2013.09.017. 

[25] G. Rojas, W. Wagner, J. Suschek-Berger, R. Pfluger, W. Feist, Applying the passive house 
concept to a social housing project in Austria – evaluation of the indoor environment based 
on long-term measurements and user surveys, Adv. Build. Energy Res. 10 (2016) 125–148. 
doi:10.1080/17512549.2015.1040072. 

[26] I. Ridley, J. Bere, A. Clarke, Y. Schwartz, A. Farr, The side by side in use monitored 
performance of two passive and low carbon Welsh houses, Energy Build. 82 (2014) 13–26. 
doi:10.1016/j.enbuild.2014.06.038. 

[27] I. Ridley, A. Clarke, J. Bere, H. Altamirano, S. Lewis, M. Durdev, A. Farr, The monitored 
performance of the first new London dwelling certified to the Passive House standard, 
Energy Build. 63 (2013) 67–78. doi:10.1016/j.enbuild.2013.03.052. 

[28] J. Foster, T. Sharpe, A. Poston, C. Morgan, F. Musau, Scottish Passive House: Insights into 
environmental conditions in monitored Passive Houses, Sustain. 8 (2016). 
doi:10.3390/su8050412. 

[29] I. Raide, T. Kalamees, T. Mauring, Lessons learnt from the first public buildings in Estonia 
intended to be passive houses, Proc. Est. Acad. Sci. 64 (2015) 157. 
doi:10.3176/proc.2015.2.04. 

[30] J. Mlakar, J. Štrancar, Overheating in residential passive house: Solution strategies revealed 
and confirmed through data analysis and simulations, Energy Build. 43 (2011) 1443–1451. 
doi:10.1016/j.enbuild.2011.02.008. 

[31] V. Badescu, N. Laaser, R. Crutescu, Warm season cooling requirements for passive buildings 
in Southeastern Europe (Romania), Energy. 35 (2010) 3284–3300. 
doi:10.1016/j.energy.2010.04.013. 

[32] EN ISO, EN ISO 9972 Thermal performance of buildings - Determination of air permeability 
of buildings - Fan pressurization method, (n.d.). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
[33] EU, Commission delegated regulation (EU) No 639/2014 of 11 march 2014, Oj L. 57 (2014) 

31–35. 

[34] US Department of Energy, US Department of Energy, EnergyPlus Version 8.1, 2014 (Last 
accessed: February 2018) http://apps1.eere.energy.gov/buildings/energyplus, (2014). 

[35] DECRETO DEL PRESIDENTE DELLA REPUBBLICA 16 aprile 2013, n. 74, Regolamento 
recante definizione dei criteri generali in materia di esercizio, conduzione, controllo, 
manutenzione e ispezione degli impianti termici per la climatizzazione invernale ed estiva, 
(2013). 

[36] UNITS 11300 part 1 -Energy Performance of Buildings - Part 1: Evaluation of Energy Need 
for Space Heating and Cooling, (2014). 

[37] ARPAE Emilia Romagna, (Last accessed: January 2018) http://www.smr.arpa.emr.it/dext3r/, 
(2018). 

[38] A. Garrett, J. New, Suitability of ASHRAE guideline 14 metrics for calibration, ASHRAE 
Trans. 122 (2016) 469–477. 

[39] A. Consoli, V. Costanzo, G. Evola, L. Marletta, ScienceDirect Refurbishing an existing 
apartment block in Mediterranean climate : towards the Passivhaus standard, Energy 
Procedia. 111 (2017) 397-406. doi:10.1016/j.egypro.2017.03.201. 

[40] R. Emilia-Romagna, Deliberazione della Giunta Regionale 20 luglio 2015, N.967: 
Approvazione dell’atto di coordinamento tecnico regionale per la definizione dei requisiti 
minimi di prestazione energetica degli edifici (artt. 25 e 25-bis L.R. 26/2004 e s.m.), 2 (2015) 
1–90. 

[41] Italian Authority for Energy and Environment Regulation (ARERA) website (in Italian): 
https://www.arera.it/it/dati/ees5.htm# (last access on June 2018) 

[42] Italian National Institute of Statistics (ISTAT) website: 
https://www.istat.it/en/archive/inflation (last access on June 2018) 

[43] Bank of Italy website (in Italian): https://www.bancaditalia.it/pubblicazioni/moneta-
banche/index.html (last access on June 2018) 

  

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Table 1. Instruments characteristics  

Variable Accuracy range Measurement 
range 

Air temperature ±0.5 °C 0-50 °C 

Relative humidity ±3 % 20-80 % 

CO2 concentrations ±50 ppm 0-5000 ppm 

Contact temperatures ±0.5 °C 0-50 °C 
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Table 2. Statistical indicators from the calibration process 

R2 MBE CV PEARSON 

0.78 -0.46% 38.7% 0.88 
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Table 3. Recommended operative temperatures according to EN 15251 Standard [17]  

Type of building 
or space 

Category Temperature range for 
heating (°C) 

Clothing – 1.0 clo 

Temperature range for 
cooling (°C) 

Clothing – 0.5 clo 

Residential 
buildings 

Sedentary activity 
(~1.2 met) 

I 21.0-25.0 23.5-25.5 

II 20.0-25.0 23.0-26.0 

III 18.0-25.0 22.0-27.0 
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Table 4. Recommended CO2 concentrations according to EN 15251 Standard [17]  

Category Corresponding CO2 
above outdoors (ppm) 

I 350 

II 500 

III 800 

IV >800 
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Table 5. Construction and running costs savings of the different scenarios  

Scenario Insulation 
costs  

(roof surface 
of 25 
m2,wall 
surface of 60 
m2) 

Windows 
costs  

(windows 
surface of 
3.7 m2) 

MVHR 
costs 

Construction 
costs savings 

Electricity consumption Running 
costs 
savings  

(floor area 
of 49.95 
m2) 

     heating cooling total  

 

 

existing 60 € m-2 676 € m-2 6500 € - 3.62 
kWhm-2 

10.01 
kWhm-2 

13.63 
kWh m-2 

- 

a 60 € m-2 676 € m-2 - 6500 € - - - 129.35 € 

b 60 € m-2 400 € m-2 - 7521 € - - - 129.35 € 

c 22 € m-2 400 € m-2 - 10751 € - - - 129.35 € 

d 22 € m-2 400 € m-2 6500 € 4251 € 6.11 
kWhm-2 

6.44 
kWhm-2 

12.55 
kWhm-2 

10.25 € 
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Figure 1. Outdoor view of the Fiorita passive house 
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Figure 10. Indoor relative humidity values during the monitoring campaign 
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Figure 11. IEQ classes for CO2 concentrations 
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Figure 12. Ceiling and wall temperature trends during the measurement campaign (the highlighted 
zones identify major deviations) 
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Figure 13. Indoor tem
perature trends under free running operation (green line) and w

ith a natural 
ventilation strategy im

plem
ented (blue line) 
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Figure 14. IEQ classes for the different scenarios under the heating season (on the left) and cooling 
season (on the right) 
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Figure 15. Overheating hours (on the left) and degree hours above the limit (on the right) for the 
different scenarios according to the Passivahus (red bars) and EN15251 Standard (yellow bars) 
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Figure 2. Floor plan of the monitored flat (on the left) with the location of the monitoring 
instruments and placement of a contact temperature sensor on the external wall (on the right) 
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Figure 3. Construction layers of the external walls (on the left) and of the roof (on the right) 
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Figure 4. Axonometric view of the thermal model (shading surfaces in purple) 
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Figure 5. Comparison between monitored and simulated indoor temperatures for the bedroom 
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Figure 6. Daily difference between the maximum and minimum temperatures for the measured and 
simulated cases 
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Figure 7. Frequency distribution of the daily average error 
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Figure 8. Indoor and outdoor temperature trends during the measurement campaign 
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Figure 9. IEQ classes for indoor temperatures for the heating season (left side) and cooling season 
(right side) 
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• One-year monitoring campaign of IEQ parameters of a Passivhaus in Italy 

• It is recorded good comfort in winter but overheating in summer for 50% of time 

• Scenario analysis revealed insulation, windows and MVHR system should be changed 

• With these changes, IEQ conditions are improved and overheating strongly reduced  

• Economic savings as calculated by NPV over 30 years are 8775 euros for a flat 


