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Abstract
Healthcare systems worldwide are facing growing demands on their resources due to

an ageing population and increase in prevalence of chronic diseases. Innovative resi-

dential healthcare monitoring systems, using a variety of sensors are being developed

to help address these needs. Interpreting the vast wealth of data generated is key

to fully exploiting the benefits offered by a monitoring system. This thesis presents

the application of topic models, a machine learning algorithm, to detect behaviour

patterns in different types of data produced by a monitoring system. Latent Dirichlet

Allocation was applied to real world activity data with corresponding ground truth

labels of daily routines. The results from an existing dataset and a novel dataset

collected using a custom mobile phone app, demonstrated that the patterns found

are equivalent of routines. Long term monitoring can identify changes that could

indicate an alteration in health status. Dynamic topic models were applied to simu-

lated long term activity datasets to detect changes in the structure of daily routines.

It was shown that the changes occurring in the simulated data can successfully be

detected. This result suggests potential for dynamic topic models to identify changes

in routines that could aid early diagnosis of chronic diseases. Furthermore, chronic

conditions, such as diabetes and obesity, are related to quality of diet. Current re-

search findings on the association between eating behaviours, especially snacking,

and the impact on diet quality and health are often conflicting. One problem is the

lack of consistent definitions for different types of eating event. The novel appli-

cation of Latent Dirichlet Allocation to three nutrition datasets is described. The

results demonstrated that combinations of food groups representative of eating event

types can be detected. Moreover, labels assigned to these combinations showed good

agreement with alternative methods for labelling eating event types.
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Chapter 1

Introduction

There is a demand from the public, in countries across the globe, for affordable
access to high quality health care [1]. This goal poses many unprecedented challenges
that must be tackled. Several new approaches and initiatives are being considered
in an effort to address these needs, including the role of technology in healthcare
systems [2,3]. In particular, empowering people to monitor their health and well-being
at home is gaining increasing interest from interdisciplinary research communities [4].
Residential healthcare monitoring systems can generate a vast amount of data from
a variety of sensors. Interpreting this data is key to fully exploiting the benefits
offered by a monitoring system. Data fusion and machine learning techniques can be
employed to detect patterns and provide useful information to the end users.

This thesis explores high level data fusion for healthcare monitoring systems. The
main focus is on the use of the machine learning algorithm, topic models, originally
developed by the text processing community. The application of topic models to
detect behaviour patterns from different types of data produced by a residential
monitoring system is presented and the results are analysed and discussed.

1.1 Motivation

The UK’s National Health Service (NHS) is facing ever growing demands on its
resources in order to continue to be able to provide world class health care. One key
factor is the demographic change that is occurring. It is predicted that approximately
26% of the UK population will be aged 65 or over by 2061, compared with 17% in
2012, leading to a rise in the proportion of gross domestic product (GDP) that is
spent on health and social care [5]. In particular, it is projected that by 2065 age-
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related spending on health and long-term care will increase to 10.2% of GDP from
an estimated 8.4% in 2015 [6]. An expansion in morbidity is another contributing
factor. Although there may be an increase in the average healthy life expectancy it
is likely that the absolute amount of time spent in poor health and associated costs
will still increase overall [5].

Another critical factor is the increase in prevalence of chronic diseases and con-
ditions, such as depression, diabetes and heart failure. For example, approximately
4% of the UK population have diabetes and the treatment for this requires about
10% of the NHS budget [7]. Although this increase is in part related to the demo-
graphic change, it is also due to lifestyle and environmental changes, such as diet
and nutrition intake [8]. In fact, for current generations, chronic diseases and the
associated disabilities could well have a larger impact on healthcare systems than
age-specific disabilities [9]. This is an issue that resonates worldwide, as highlighted
by the Director General of the World Health Organisation in the 2010 World Health
Report [1]. Over the past 25 years, the global burden of neurological disorders, in-
cluding dementia, Parkinson’s disease and epilepsy, has substantially increased. This
group is the leading cause of disability, with stroke being the largest contributor [10].

Many chronic diseases are related to physical activity (PA) levels and these can
be a relevant indicator of a person’s health, particularly for COPD patients [11, 12].
Low levels of PA and corresponding energy expenditure are associated with greater
risk of hospital admission and mortality. Rehabilitation programs for pulmonary
diseases aim to increase and maintain PA levels over time, including when a patient
returns to their home after discharge [12]. Research has also shown that PA levels
are inversely related to cardio-metabolic risk factors in youth [13]. Furthermore,
PA is important for retaining the ability to conduct activities of daily living (ADL),
however the recommended guideline levels of PA are often not met by older adults [14].
Monitoring a person’s ADL, such as eating, showering and sleeping, can be used as
a measure of functional health [3, 15].

In addition to PA, chronic diseases are also often related to diet, such as diabetes
and obesity [16]. To help tackle such problems a variety of methods are employed,
including dietary interventions focussed on achieving a nutritionally well-balanced
diet. However, findings from nutrition research are often conflicting with regards to
the impact of snacking on diet quality and health. One problem with interpreting the
results of relevant studies is the lack of a clear, unified definition of snacking [16–18].
Various approaches have been used throughout the literature. Some studies focus
primarily on snacking, others consider what constitutes a meal and some researchers
use a more neutral definition of eating events or occasions, to include any ingestion
of food or drink. As well as the wide range of methods used in studies, the defini-
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tions themselves can often be based on cultural norms and hence be biased by the
experiences of the researcher [18]. This lack of agreement restricts the dissemination
of information to the public regarding the impact of snacking on health [16].

1.2 Long term healthcare monitoring in a
residential environment

Long term monitoring of chronic conditions can aid early diagnosis and enable them
to be managed more effectively [3, 11, 19, 20]. It is important to assess patients in a
clinical setting, however there are often severe time constraints and limited resources.
Therefore observations of a patient may only give a snapshot of their condition instead
of the full picture [21,22]. There is interest in developing monitoring systems that can
be used in a residential environment to help alleviate the strain on healthcare systems
across the globe [19, 23] and enable patients to remain independent in their own
home for longer, thus improving quality of life [24]. Moreover, a remote monitoring
system could be used to assist falls prevention and detect emergency events and hence
provide a rapid response [3]. This avoids scenarios where people are left lying on the
floor for hours or even days before they are found and hence reduces the risk of
further complications that result from not receiving care in a timely manner, such as
pneumonia [25].

The development of monitoring systems for use in a residential environment are
gaining interest across several multi-disciplinary research communities [3,4,14,23–26].
In general, monitoring systems are built up of a network of sensors, which can collect
a range of data about a person in their home. This can include wearable sensors,
that could be used to detect movement or even vital signs, such as heart rate [3].
Environmental sensors to monitor temperature, humidity, electricity usage, water
usage and movement can also be installed throughout the house [27]. Additionally,
RGB-D (visual image and depth) cameras may be used to detect a person’s motion
and activities [28]. The sensors in the network communicate with a central node
via wireless protocols, such as Bluetooth Low Energy (BLE) or Zigbee, or a wired
connection. The data can be fused and the results displayed on a user interface
and transmitted securely over the internet. This allows data to be shared with key
stakeholders, such as the individual, their family members, carers or clinicians [23].

The SPHERE (a Sensor Platform for HEalthcare in a Residential Environment)
IRC (Interdisciplinary Research Collaboration) is an EPSRC (Engineering and Phys-
ical Sciences Research Council) funded project, with which this PhD is associated.
The aim of the project is summed up in the project mission statement:
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“The vision of SPHERE is not to develop fundamentally-new sensor tech-
nology specifically for individual disease conditions but rather to impact
a range of healthcare needs simultaneously by employing data-fusion and
pattern-recognition from a common platform of largely non-medical/environmental
networked sensors in a home environment” [29]

The SPHERE IRC project commenced in October 2013 and had initial funding for
a duration of 5 years. The sensor platform developed was deployed in the homes of
members of the public in year 4 of the project. Additional funding has recently been
secured to continue the project until 2021.

The nature of the SPHERE IRC means that clinicians, engineers, computer scien-
tists, designers and many others have been collaborating on this challenge from day
one in order to develop a user friendly and effective system. In particular, the project
is exploring the use of energy harvesting techniques and low power wireless technolo-
gies to develop a wearable device that does not require batteries to be changed or
plugged in to charge. This makes the system easier to use in a long term monitoring
situation, particularly if the user is not able to easily interact with technology [29].

The project is using three main types of sensors: environmental sensors; video
and depth cameras and wearable sensors, such as accelerometers [29]. Each sensing
modality has its strengths and weaknesses but by combining the data from all of
them the best possible picture of a person’s activities within the house can be created
[30]. For example, there are privacy concerns related to the use of cameras in some
locations such as the bathroom or bedroom but these areas can be monitored through
wearable and environmental sensors that are less obtrusive. On the other hand, an
environmental sensor would not be able to detect what a person is eating but a
camera that is correctly aligned would be able to distinguish between different types
of food [31].

1.3 Research aims and challenges

The aim of the research conducted for this thesis is to detect behaviour patterns in
data collected by a residential healthcare monitoring system, such as being devel-
oped by the SPHERE IRC, in order to obtain information of a greater quality than
the raw sensor data. There are many research challenges in this area, including:
user acceptance, privacy concerns, data storage and processing, establishing ground
truth references, annotation, power requirements and cost to name a few. This sec-
tion highlights in more detail the research challenges and the corresponding research
questions identified as the focus for this thesis.
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Detection of daily routines for healthcare monitoring. A residential health-
care monitoring system can generate a vast wealth of data from a variety of sources.
This complex data is difficult to interpret and is not of direct use to clinicians, care-
givers or individuals being monitored. Recognising activities from the data reduces
the quantity and complexity to some degree but generally the discovered activities
are still at a low level of abstraction. Determining how these activities are struc-
tured together in higher level routines can facilitate efficient and effective extraction
of relevant information from the data. This knowledge can be used to inform decision
making processes related to health and well-being. Existing work has demonstrated
the successful use of topic models to detect daily routines from activity data, based
on seven days of real world data collected for one person wearing two accelerom-
eters [32]. To determine whether topic models are extendible to other real world
datasets with different activities and routines is a current research challenge. This
can be formulated as the first of three research questions:
Can patterns in a person’s daily activities that are representative of routines be de-
tected for a novel, real world activity dataset?

Identification of changes in routines over time. One key benefit of moni-
toring a person in their own home is that a more accurate picture of their state
of well-being and health can be acquired over an extended period of time. This is in
comparison to the information that can be gathered from a snapshot situation, such
as an outpatient appointment at a hospital or a visit to a GP. Current research in
long term monitoring and detection of changes in behaviour patterns has focussed
on variation in activities or intensity levels. This can result in too much information
to process efficiently if there are a lot of activities or the loss of important details if
the summary is at a high level. Changes over time in the structure of daily routines
has not previously been investigated. The benefit of this approach is that it enables
both a high level summary whilst still incorporating useful information from the more
detailed data. This challenge can be formulated as the second research question:
Can changes in the structure of daily routines over time be detected?

Understanding how foods are combined in eating events. The data gen-
erated by a residential healthcare monitoring system does not only relate to activities
of daily living. Other types of data can also be collected, such as nutrition data in the
form of dietary intake. Diet and eating behaviours can be linked with health outcomes
and the management of chronic diseases. Presently there are myriad definitions of
types of eating events, such as a meal or snack. This poses a significant barrier to
comparing results across different studies and establishing clear links between eating
behaviours and the impact on diet quality and health. The existing definitions are
limited and often influenced by language and cultural norms. Understanding how
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people actually combine foods in different types of eating events based on real data
could facilitate analysis of how eating behaviours and health outcomes are related.
This challenge can be formulated as the final research question:
Can the combinations of foods consumed together in different types of eating events
be automatically detected?

1.4 Contributions to knowledge

The contributions to knowledge for this thesis follow on from the research challenges
identified and the formulation of associated research questions. These contributions
are:

. Validation of application of topic models for detecting patterns in activities
reflective of daily routines for the UbiComp 08 dataset first published by Huynh
et al. [32].

. Development of a novel mobile phone application for logging activities of daily
living and associated routine labels. Knowledge gained through this was shared
with the wider SPHERE project to help develop a similar application for an-
notating datasets collected using the SPHERE sensor platform.

. Collection of novel activity and daily routine dataset for two participants with
16 days of data each.

. Application of topic models to detect patterns in activities reflective of daily
routines for a novel dataset.

. Method for implementation of dynamic topic models to activity data for de-
tecting changes in routines over time.

. Evaluation of impact of activity data properties on detecting changes in routines
over time using dynamic topic models applied to a simulated dataset with known
variations.

. Application of dynamic topic models to simulated activity dataset to detect
unknown changes in routines over time.

. Method for applying topic models to nutrition data to detect how food groups
are combined together in different types of eating events.

. Application of topic models to food diary data in the National Diet and Nu-
trition Survey Rolling Programme dataset and analysis of the resulting food
group combinations detected.
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. Evaluation of the impact of dataset properties on the combinations of food
groups found by topic models.

. Utilisation of the combinations of food groups consumed together in an eating
event to visualise underlying patterns in the dataset.

. Validation of the application of topic models to food diary data using the Na-
tional Diet and Nutrition Survey 2000 dataset, and comparing the resulting
food group combinations to those found using a manual rule-based approach.

. Validation of the application of topic models to food diary data using the Irish
National Adult Nutrition Survey, and comparing the resulting food group com-
binations with participant defined labels.

Part of this thesis, relating to the work presented in chapter 6, has been published
in the peer reviewed International Conference on Machine Learning and Applications
[33]. Journal publications are planned for the work detailed in chapters 5 and 7.
The literature review undertaken as part of this thesis, chapter 3, contributed to
a review paper published in the Medical Engineering and Physics Journal [34]. In
addition, the author contributed to the set-up of initial experiments to investigate
the minimum sensor separation of two accelerometers to achieve a specified signal
to noise ratio in the application of recognising human motions, published in IEEE
Sensors Journal [35].

1.5 Thesis structure

An outline of the structure of this thesis is given here to facilitate navigation of the
document.

Chapter 2 provides the reader with background information on probability theory
and machine learning, with a strong focus on topic models.

Chapter 3 reviews the literature in the field of data fusion techniques for appli-
cations related to healthcare monitoring in a residential environment. This includes
sections on detecting behaviour patterns in activity data synonymous with daily rou-
tines and their changes over time, as well as behaviour patterns relating to nutrition
data and definitions of eating event types.

Details of the implementation of topic models to detect daily routines in activity
data for an existing and a novel dataset and analysis of the results are given in chapter
4. The development of a mobile phone application to log activities of daily living and
corresponding routines and its implementation to collect a novel dataset is described.
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Chapter 5 presents the application of dynamic topic models to activity data to de-
tect changes in routines over time in terms of the probability of constituent activities.
The method is developed for simulated datasets with known changes and validated
using simulated datasets with variations that are unknown a priori.

The development of a method to apply topic models to nutrition data is outlined in
chapter 6 using the National Diet and Nutrition Survey Rolling Programme dataset.
The results revealing the structure of how foods are combined in different types of
eating events are presented and discussed.

The utilisation of the eating event types discovered using topic models to investi-
gate patterns of eating behaviour at the individual and population levels are explored
in chapter 7. The application of topic models for discovering eating event types are
validated for two further datasets. The results are compared with existing methods
for labelling eating event types.

Finally, conclusions of the research presented are drawn in chapter 8 and avenues
for future work are highlighted.
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Chapter 2

An Introduction to Topic Models

Extracting useful information from large collections of data, such as those generated
by a residential healthcare monitoring system, is difficult. Unsupervised machine
learning algorithms provide powerful tools for finding patterns and hidden structure
in data [36]. Moreover, probabilistic models enable uncertainty in the data and un-
derlying patterns to be modelled [37]. In particular, topic modelling algorithms,
originally developed to discover hidden themes in a large corpus of text documents,
have gained increasing popularity and have been used to find patterns in a vari-
ety of data sources. The resulting distributions discovered in the data can be used
for analysing, summarising, searching, clustering and exploring the original large,
complex dataset [36]. This chapter introduces the background theory on machine
learning, with a focus on topic models, that underpins the remainder of the work
presented in this thesis. These concepts are described here to facilitate the analysis
of the literature reviewed in chapter 3.

2.1 Background probability theory and concepts

This section outlines the key concepts involved in the understanding of topic models
and how they are applied. The Bayesian view of probability theory is contrasted
against the frequentist view and the underlying Dirichlet distribution used in topic
models is introduced. An invaluable tool, probabilistic graphical models, are intro-
duced as these will be used to represent topic models. Finally, a brief overview of the
concept behind topic models and the associated modelling assumptions are described.
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2.1.1 Probability theory and Dirichlet distribution

Probability theory is vital to machine learning as it provides a consistent framework
for dealing with uncertainty. There are two main views of probability. Firstly, the
frequentist view, where probabilities are in terms of the frequencies of random, re-
peatable events. Secondly, the more general Bayesian view that probabilities provide
a quantification of uncertainty. Generally it is more useful to adopt the Bayesian
interpretation of probability for machine learning problems. This approach allows
new evidence to be used to revise a quantification of uncertainty. The advantages
and disadvantages of each viewpoint are given below [38]:

Bayesian

+ Inclusion of prior knowledge occurs naturally
+ Deterministic approximation schemes allow use of techniques in large-scale

applications
– Often criticised that selection of prior is subjective
– Computationally expensive

Frequentist

+ Easy to compare models
– Can lead to extreme conclusions

Probabilities can follow different distributions over a random variable, such as the
binomial distribution for discrete variables and the Gaussian distribution for contin-
uous variables. The exact nature of these distributions are controlled by parameters,
for example the mean and variance for a Gaussian, hence they are examples of para-
metric distributions. Taking a Bayesian approach to determining suitable values for
the parameters for a particular dataset, a prior distribution can be placed over the
parameters. New evidence, in the form of observed data, can be incorporated by
applying Bayes’ theorem to compute the corresponding posterior distribution. This
Bayesian analysis can be greatly simplified by using conjugate priors, meaning that
the posterior distribution has the same functional form as the prior [38]. In par-
ticular, the Dirichlet distribution has the same functional form as the multinomial
distribution and is therefore the conjugate prior.

More specifically, consider a multinomial discrete variable as a vector of K mutu-
ally exclusive states ~x = (x1, x2, . . . , xK), such that only one state, xk, can equal 1 and
all other states are 0. For example, if a variable can take K = 4 states, ~x = (0, 1, 0, 0)
represents the observation of the variable in the state where x2 = 1. Let the parame-
ter µk be the probability that xk = 1, hence the vector of parameters can be written
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as ~µ = (µ1, µ2, . . . , µK) and satisfies the conditions µk > 0 and ∑K
k=1 µk = 1. Then for

N independent observations, ~x1:N , the number of observations of each state, xk = 1,
can be represented by mk = ∑N

n=1 xn,k. The multinomial distribution, equation 2.1,
is the joint distribution of the quantities mk, for k from 1 to K, conditioned on the
parameters ~µ and the total number of observations N [38].

Mult(m1,m2, . . . ,mK |~µ,N) =
(

N

m1m2 . . .mK

)
K∏
k=1

µmkk (2.1)

where
(

N
m1m2...mK

)
= N !

m1!m2!...mK ! .

Furthermore, the conjugate prior of the multinomial distribution is the Dirichlet
distribution over the parameters ~µ, which is confined to the open simplex of di-
mensionality K − 1, due to the summation constraint. The Dirichlet distribution,
equation 2.2, has hyperparameters ~α = (α1, α2, . . . , αK) which control the form of
the distribution [38].

Dir(~µ|~α) = Γ(∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

µαk−1
k (2.2)

where, Γ is the gamma function defined as Γ(x) ≡
∫∞

0 ux−1e−udu.

For a Dirichlet distribution over 3 variables, with all αk = 1, the K−1 simplex can
be visualised as a flat triangle, as shown in figure 2.1, where all points on the simplex
have equal probability of being sampled. The figure shows graphs of three potential
distributions that could be sampled from the Dirichlet and their corresponding loca-
tions on the simplex. It should be noted that the distributions corresponding to the
edge of the simplex cannot actually be achieved but can be arbitrarily close, that is,
no component of a distribution drawn from a Dirichlet will ever be zero. This is due
to the fact that the support of the Dirichlet is the open simplex [39, 40]. For αk < 1

Figure 2.1: Sample distributions from a Dirichlet with all αk = 1
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(a) αk = 0.1 (b) αk = 10

Figure 2.2: Dirichlet distributions with different values for the α hyperparameter
Taken from [38] under permission granted for non-commercial use.

the Dirichlet becomes much more sparse, as shown in figure 2.2a and for αk > 1 the
Dirichlet is peakier around the expectation of the distribution, as shown in figure
2.2b [41].

The Dirichlet Process (DP) provides a distribution on distributions over an arbi-
trary space, G ∼ DP (α,G0) where G is a random distribution over some space, α
is the precision parameter, a positive scalar and G0 is the known base distribution
over the same space as G. There are two important properties of the Dirichlet Pro-
cess. Firstly, draws from the DP are discrete, with positive probability mass at atoms
generated independently from G0. An atom is a measurable set which has positive
measure and contains no set of smaller positive measure [42]. A low value of α means
that there are a few dominant atoms, whilst a high value gives a discrete distribution
more similar to G0. Secondly, the clustering property means that draws from G, if
drawn itself from a DP, can be partitioned according to atoms they share [36].

2.1.2 Probabilistic graphical models

Probabilistic graphical models provide a diagrammatic representation of probability
distributions and are a very effective way of visualising and designing the structure of
probabilistic models, rather than just using algebraic manipulations. They provide
key insights into properties of a model, simply through inspection of the graph and
can help simplify inference problems [38]. Graphical models lie at the boundary of
graph theory and probability theory; providing a formalism for understanding and
generalising the development and application of statistical models [43]. There are
three main types of probabilistic graphical models: undirected graphs, directed graphs
and factor graphs, as shown in figure 2.3. All of these use nodes, representing random
variables, connected by edges, representing statistical dependencies between variables.
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(a) Undirected graph (b) Directed graph (c) Factor graph

Figure 2.3: Examples of the three main types of graphical models

Shaded nodes are observed variables and unshaded nodes are latent (hidden) variables
[44]. Each type of graphical model is better suited to expressing different aspects of
the model and it is possible to convert between them if required [38].

In this thesis, the focus is on directed acyclic graphs, also known as Bayesian net-
works or belief networks. The arrows in these graphs represent causal relationships.
The node at the start of the arrow is the parent, pa(i), and the node i at the head
is the child. For example, in the directed graph, figure 2.3b, node A is the parent
of node C and equivalently, node C is the child of node A. The absence of edges in
these graphs is significant as it conveys conditional independence between the random
variables. It should be noted that these graphs cannot contain any directed cycles.
It is possible to determine a factorisation of the joint probability distribution directly
from the graph [44]. For example, the factorisation for the directed graph in figure
2.3b is given in equation 2.3.

p(A,B,C,D,E) = p(A)p(B|A)p(C|A)p(D|A,B,C)p(E|C) (2.3)

In general the factorisation for a directed graph is given by equation 2.4 [44].

p(x1:N) =
N∏
i=1

p(xi|xpa(i)) (2.4)

where x1:N are the N nodes and xpa(i) are the parents of node i

Plates are another useful tool in graphical models, as they make the notation more
compact. They are boxes drawn around a group of one or more nodes, representing
that the nodes within the box are replicated a given number of times, which is stated
in the bottom right hand corner of the box. For example, observations yn from 1 to
N conditioned on A and B can be represented explicitly as shown on the right of
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Figure 2.4: Example of plate notation in graphical models

figure 2.4 or equivalently, using the more compact plate notation as shown on the
left [44, 45].

The models in figure 2.4 are equivalent to equation 2.5 [44].

p(y1:N , A,B) = p(A)p(B)
N∏
n=1

p(yn|A,B) (2.5)

2.1.3 Topic model concept

Topic models were originally developed to aid the understanding of large corpora of
text. They allow hidden topical patterns within a corpus to be uncovered using unsu-
pervised learning. This enables documents to be annotated automatically according
to the topics that are referred to in their content. This is particularly useful when
using optical character recognition to digitise archived material that has not been
given keyword labels. These annotations can be used to organise, summarise and
search the whole corpus in new and meaningful ways [36,41,46,47].

In order to discover the hidden topical patterns in a corpus it is required to model
the original creation of the documents that make up the corpus. The model does
not need to accurately reflect the process undertaken by a human when writing a
document but just describe a mathematical procedure that would give the relevant
outcome, given a set of assumptions. In particular, it is important to note that
the resultant document created using this process is just a bag of words, with no
ordering, and hence would be unreadable to a human. The probabilistic generative
model of creating a document is shown in figure 2.5. The process involves repeating
the following steps for every document in the corpus [41]:

1. Choose a distribution over topics from a Dirichlet distribution (topic propor-
tions for document, represented by the histogram in figure 2.5)

2. For each word:
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Figure 2.5: Model of probabilistic generative process for creating a document
Based on results published in [47]

• Draw a topic from this distribution (topic assignment, represented by a
coloured coin in figure 2.5)
• Draw a word from the topic (a distribution over the vocabulary, drawn

from a Dirichlet distribution)

The modelling assumptions are [41]:

• The vocabulary of words chosen is fixed for each model
• Topics are distributions over the vocabulary
• The are a fixed number of topics, K, chosen for each model
• The probability of each word varies for each topic
• Each document is a random mixture of corpus-wide topics
• Each word in a document is drawn from one topic

2.2 Latent Dirichlet Allocation (LDA)

This section formalises the mathematical model behind the concept of topic models,
known as Latent Dirichlet Allocation (LDA). Different inference methods to approx-
imate the posterior distribution are highlighted. The selected method of variational
inference and estimation of the model parameters are then presented in more detail.
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2.2.1 Probabilistic model

Figure 2.6: Graphical model for Latent Dirichlet Allocation (LDA)

In reality, the process of a document being created is not seen, it is only possi-
ble to observe the resultant documents. It is desired to infer the underlying topic
structure, that is to work out the distributions that could have been used to create
the documents. In order to achieve this it is helpful to model the whole concept
as a probabilistic graphical model, known as LDA [46], shown in figure 2.6. The
generative process of creating a corpus of documents defines a joint probability dis-
tribution over the observed words and the latent variables representing the topics,
topic proportions and topic assignments [48]. The joint distribution of all the hidden
and observed variables can be determined directly from the graph in figure 2.6 and
is given by equation 2.6 [47,48]. The dependencies between the variables represented
by the graphical model and mathematical equation are what defines LDA [48] and
match the statistical assumptions behind the generative process described.

p(~β1:K , ~θ1:D, z1:D,1:N , w1:D,1:N |~α, η) =(
K∏
k=1

p(~βk|η)
)(

D∏
d=1

p(~θd|~α)
(

N∏
n=1

p(zd,n|~θd)p(wd,n|zd,n, ~β1:K)
))

(2.6)

where
D is the number of documents in the corpus
N is the number of words in the dth document
K is the number of topics
~θd are the topic proportions for the dth document
zd,n is the topic assignment for the nth word in the dth document
wd,n is the nth observed word in the dth document and is an element of the fixed

vocabulary, which is of size V
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~βk is the kth topic and is a distribution over the fixed vocabulary
~α are the Dirichlet hyperparameters and η is the scalar topic hyperpararmeter

To establish the hidden topical structure it is necessary to compute the posterior
distribution, which is the conditional distribution of the topic structure given the
observed documents, as given by equation 2.7 [47,48].

p(~β1:K , ~θ1:D, z1:D,1:N |w1:D,1:N , ~α, η) = p(~β1:K , ~θ1:D, z1:D,1:N , w1:D,1:N |~α, η)
p(w1:D,1:N |~α, η) (2.7)

where p(w1:D,1:N |~α, η) =
∫
~β1:K

∫
~θ1:D

∑
z1:D,1:N p(~β1:K , ~θ1:D, z1:D,1:N , w1:D,1:N |~α, η) [47, 49]

The numerator is the joint distribution of all the variables, equation 2.6, and can
easily be evaluated for any setting of the hidden variables. However, the denominator,
which is the marginal probability of the observed words in the corpus under any topic
model, is intractable to compute. This is due to the fact that the number of possible
hidden topic structures, which have to be summed over to compute this value, is
exponentially large [46,48]. Therefore, it is required to use an approximate posterior
inference algorithm to estimate a solution [41,46].

Various approaches can be taken to perform approximate inference of the pos-
terior, including sampling-based algorithms and deterministic methods. The aim is
to estimate an approximation as close to the true posterior, equation 2.7, as possi-
ble [48]. Inference methods developed include collapsed Gibbs sampling, mean field
variational Bayesian inference, collapsed Bayesian inference and maximum a posteri-
ori estimation. Asuncion et al. compare the similarities and performance of different
methods [50]. They demonstrate that the choice of hyperparameters has as large
an impact on the results as the choice of algorithm. Although variational Bayesian
inference is often the worst performing algorithm, it is not by a significant amount
for well chosen hyperparameters. Therefore, for the purposes of this work, David
Blei’s implementation of variational inference for LDA [51] is used as this allows di-
rect comparison with previous work completed by Huynh et al. [32], as discussed in
section 4.1.1.

2.2.2 Variational inference and parameter estimation

The goal of performing inference is to estimate the posterior distribution given the
observed words. In other words, to determine the topics, ~β1:K ; per document topic
distributions, ~θ1:D and per word topic assignments, z1:D,1:N . The hyperparameters
of the LDA model, ~α and η can either be selected in advance or estimated, from an
initial seed value, for a given dataset as part of the inference algorithm.
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2.2. Latent Dirichlet Allocation (LDA)

More generally, given a set of observations x1:N and latent variables z1:M , it is
often difficult to efficiently compute the marginal likelihood of the observations, as
is the case for LDA. Variational methods are a deterministic alternative to Markov
Chain Monte Carlo (MCMC) methods that use established optimisation techniques
instead of sampling. For large problems variational methods are faster and more
scalable than MCMC, however they are also biased [41]. The idea is to determine the
evidence lower bound (ELBO) of the log probability of the observations, log p(x1:N),
given by equation 2.8. Jensen’s inequality states that f(E[x]) ≥ E[f(x)] for a concave
function f(x), where E denotes the expectation and this is used to derive the ELBO.

log p(x1:N) = log
∫
p(z1:M , x1:N)dz1:M

= log
∫
p(z1:M , x1:N)qν(z1:M)

qν(z1:M)dz1:M

= log
(
Eqν

[
p(z1:M , x1:N)
qν(z1:M)

])

≥ Eqν

[
log p(z1:M , x1:N)

qν(z1:M)

]
= Eqν [log p(z1:M , x1:N)]− Eqν [log qν(z1:M)] (2.8)

where Eqν is the expectation with respect to qν and p(z1:M , x1:N) is the joint proba-
bility distribution over the observed and latent variables.

It can be seen that a distribution qν(z1:M) over the latent variables with free
variational parameters ν is introduced by multiplying and dividing by it. These
parameters are then optimised to make the bound as tight as possible, in other
words, to find a member of the family qν(z1:M) that is closest in Kullback-Leibler (KL)
divergence to the posterior distribution p(z1:M |x1:N) [41, 46, 49]. The factorisation of
qν(z1:M) determines the complexity of the optimisation.

In mean field variational inference the variational distribution is chosen to be
fully factored, as shown in equation 2.9. This means that each latent variable is
independent and governed by its own variational parameter νi. This is beneficial as
it is often the dependence exhibited in the true posterior that makes exact inference
intractable [41, 46]. In terms of the graphical model this is equivalent to removing
problematic edges between nodes. For example, in LDA the denominator of the true
posterior, equation 2.7, is intractable due to the problematic coupling between ~θd and
~βk, which arises from the edges between ~θd, zd,n and wd,n in the graphical model. The
model can be simplified by removing these edges and the wd,n nodes and using free
variational parameters for ~θd and zd,n [46].
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2.2. Latent Dirichlet Allocation (LDA)

qν(z1:M) =
M∏
i=1

qνi(zi) (2.9)

Suppose the distribution of each latent variable, zi, conditional on the observed
variables and all other latent variables excluding zi denoted as z−i, expressed as
p(zi|z−i, x1:N) is in the exponential family. Assume also that each factor qνi(zi) is
in the same exponential family. The optimal variational parameters can then be
found using the coordinate ascent algorithm, where the update is given by equation
2.10 [52].

νi = Eq−i [η(z−i, x1:N)] (2.10)

where η is the natural parameter for a distribution in the exponential family.

Mean field variational inference can be used to estimate the intractable poste-
rior distribution for LDA. Here we consider ~β1:K to be a parameter of the observed
words, that is a fixed quantity to be estimated, rather than drawing the topic dis-
tributions from a Dirichlet with hyperparameter η. The details of this approach are
given because the work presented in this thesis is based on Blei’s implementation
of variational inference for LDA [51] which follows this assumption, as outlined in
his seminal paper [46]. Taking this into account, for each document, the variational
distribution over the latent variables such that all variables are independent is given
by equation 2.11.

q(~θd, zd,1:N |~γd, φd,1:N) = q(~θd|~γd)
N∏
n=1

q(zd,n|φd,n) (2.11)

where ~γd is the variational Dirichlet parameter for ~θd, the topic proportions for the
document and φd,1:N are the variational multinomial parameters for zd,1:N , the per
word topic assignments for the document.

The optimal values for the variational parameters are found using the coordinate
ascent algorithm. For document d, for each topic k the update equation for γd,k is
given by 2.12 and for each word, n the update equation for φd,n,k is given by 2.13.

γd,k = αk +
N∑
n=1

φd,n,k (2.12)

φd,n,k ∝ βk,wd,n exp{Eq[log(θd,k)|γd,k]} (2.13)

where αk is the Dirichlet hyperparameter given the current topic is k; βk,wd,n is the
probability of the current word in the document wd,n given it is assigned to the current
topic k and Eq[log(θd,k)|γd,k] = Ψ(γd,k)−Ψ(∑K

j=1 γd,j) noting that Ψ is the digamma

19
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function i.e. the first derivative of the log Γ function. A full derivation can be found
in Blei et al. [46].

The results of performing variational inference at the document level provides a
tractable lower bound on the log probability of the observations, as desired. This
bound can then be maximised, for fixed values of the variational parameters, with
respect to the corpus level parameters, ~α and ~β1:K . The following alternating varia-
tional Expectation Maximisation (EM) algorithm can be used to achieve this. Details
of the derivation of this algorithm can be found in Blei et al. [46].

1. (E-step) Find the optimal values for the variational parameters ~γd and φd,1:N ,
for each document and hence an approximation of the posterior distribution
p(~θ1:D, z1:D,1:N |w1:D,1:N , α, ~β1:K).

2. (M-step) Find the maximum likelihood estimates for α and ~β1:K with expected
sufficient statistics for each document under the approximate posterior com-
puted in the E-step.

Repeat both steps until the lower bound converges.

2.3 Extensions to Latent Dirichlet Allocation

Topic models were originally based on Latent Dirichlet Allocation, as discussed in
2.2. However, this model has some short comings and is not suitable for solving all
problems. In particular, LDA assumes that data are exchangeable, i.e. the order
of documents and order of words does not matter. Furthermore, the use of finite
hierarchical mixtures means that the number of topics needs to be known in advance
and is then fixed for that model. Several extensions to the original graphical model
of LDA have been developed and applied to problems both within and beyond the
natural language processing community [36]. Extensions relevant to this thesis are
presented in this section.

2.3.1 Dynamic topic models

Dynamic topic models (DTMs) extend LDA by including a model of the evolution
of the topics over time, whereas documents are assumed to be exchangeable within
a corpus for LDA. This is achieved by dividing the data into T time slices, such as a
year, and then modelling the documents in each time slice using LDA with K topics.
Each time slice is a separate LDA model and information is only shared between each
instance by chaining together the topics and thus sequentially tying the collection of
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2.3. Extensions to Latent Dirichlet Allocation

Figure 2.7: Graphical model for Dynamic Topic Model

topic models. The topics can smoothly evolve from time slice t− 1 to t, as shown in
figure 2.7. As the Dirichlet distribution is not suitable for sequential modelling, the
logistic normal distribution is used to capture uncertainty about the time-series topics
by embedding it in a state-space model. Each topic is represented by a multivariate
Gaussian random variable, which are modelled to evolve with Gaussian noise. The
words drawn from these topics are then mapped to the simplex [36,47,53].

Variational inference can also used to estimate the posterior for DTMs. In fact,
the nonconjugacy of the Gaussian and multinomial distributions makes this an easier
method to implement than alternative sampling based techniques [53]. The approxi-
mate variational posterior for the DTM is given by equation 2.14. Note that at the
document level this is the same as equation 2.11 for LDA.

K∏
k=1

q(~βk,1:T |~̂βk,1:T )
T∏
t=1

 Dt∏
d=1

q(~θt,d|~γt,d)
Nt,d∏
n=1

q(zt,d,n|φt,d,n)
 (2.14)

21



2.3. Extensions to Latent Dirichlet Allocation

where
K is the number of topics
T is the number of time slices
Dt is the number of documents in time slice t
Nt,d is the number of words in document d of time slice t
~βk,1:T are distributions of topic k for each time slice
~̂
βk,1:T are the Gaussian variational observations for ~βk,1:T that retain the imposed

sequential structure
~θt,d is the proportion of topics in document d and time slice t
~γt,d is the free variational Dirichlet parameter for ~θt,d
zt,d,n is the topic assignment for word n in document d at time slice t
φt,d,n is the free variational multinomial parameter for zt,d,n

Hence, the update equations for the document level variational parameters are
the same as for LDA, equations 2.12 and 2.13. The conjugate gradient method is
used to optimise the variational observations for the topics. An approximation based
on a Kalman filter is used in the implementation utilised in this thesis (chapter 5).
Further details of this approach can be found in Blei and Lafferty [53].

2.3.2 Other extensions

The two models used in the work of this thesis are LDA and DTMs that have been
described. Other extensions to LDA are mentioned here for completeness as they are
considered for future work.

LDA requires the number of topics to be defined before estimating the model,
however, the choice of the number of topics is not well defined. Often it is chosen
by examining the fit to held-out documents or using the marginal probability of the
whole collection but this is time consuming and does not always yield the optimal
result. Bayesian non-parametric methods can be used to solve this problem. In
particular, Hierarchical Dirichlet Processes (HDP) allow the number of topics to be
infinite a priori. In addition, previously unseen documents can evoke a previously
unseen topic i.e. an atom that has not yet appeared [36].

The graphical model for Hierarchical Dirichlet Processes is shown in figure 2.8.
It can be seen that the topic proportions ~θd in LDA, are replaced by a distribution
over topics Gd drawn from a Dirichlet Process, DP (α,G0), where α is the precision
parameter and G0 is the base distribution over topics. G0 is also drawn from a
Dirichlet Process, DP (γ,H), where H is a symmetric Dirichlet on the word simplex
and γ is the precision parameter. Hence, the atoms of the per-document distributions
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Figure 2.8: Graphical model for Hierarchical Dirichlet Processes

over topics are shared across documents. The clustering property guarantees that the
words in a document share a subset of topics [36].

Dynamic Hierarchical Dirichlet Processes (dHDP) extend HDPs by modelling how
topic-proportions change over time. This is distinct from a DTM, which models how
topics change over time. This is achieved by positing a distribution over topics Gt

corresponding to all documents at time t. The model imposes a generally smooth
evolution of Gt but allows sharp changes in time if required by the data. As with
HDPs, the number of topics is inferred from the data. This model also assumes that
data is not temporally exchangeable [36].

The author-topic model [54] extends LDA to model the association between au-
thors and topics using a multinomial distribution. This enables information about
which topics authors write about to be obtained, as well as the topics that make up
a document. The idea behind the correlated topic model is to assume that there is
a relationship between the different topics discovered. This relationship is explicitly
modelled using the logistic normal distribution so that it can be quantified as an
output of the correlated topic model [47].

2.4 Analysis of topic model performance

Clearly, it is important to analyse the results of topic models to determine how well
they are performing [55, 56]. However, this analysis is not straightforward as it is
not easy to define what the ‘best’ performance is. In particular, a model may find
patterns that a human would not have thought of but are actually relevant and
useful for answering a particular question. A variety of different methods have been
developed to try and assess the performance of topic models [55–58]. These can be
split into two categories: quantitative and qualitative analysis.
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There is no universal method of accurately and efficiently measuring the generali-
sation of a topic model that is independent of any specific application. However, one
method that is often used in the topic modelling literature is an estimate of the prob-
ability of held-out documents for a trained model. A measure known as perplexity is
the inverse of the geometric mean per-word likelihood on a held-out set of documents
using a model learned on a set of training documents. For a set of M test documents
the perplexity can be calculated using equation 2.15 [46].

perplexity(D1:M) = exp
{
−
∑M
d=1 log p(wd,1:N)∑M

d=1 N

}
(2.15)

whereD1:M is the test set of M documents, wd,1:N are the N words in the dth document.
A lower perplexity suggests a better generalisation performance of the model because
the log function gives high values for low probability words. Moreover, this measure
can be used to select the parameters for the model, such as an optimal number of
topics for a given dataset [59].

Although quantitative analysis of the performance of a topic model can be useful,
it does not necessarily mean that the results are semantically beneficial. In fact, it
can often be the case that model A gives more semantically useful results than model
B even though model B performs better when measuring the probability of held-out
documents [57]. Qualitative analysis investigates the semantic quality of topics found,
that is, an expert’s judgement of how ‘useful’ a topic is to the user. Various methods
have been proposed to try and quantify the variable semantic quality of topics. These
include human scoring of topics [56], word and topic intrusion methods [57] and graph
mining techniques [58].

These methods of qualitative evaluation have been developed for the original ap-
plication of text processing and are not directly applicable to the problems considered
in this thesis. They have been used as inspiration for new evaluation methods for the
specific applications of activity monitoring and nutrition. In particular, visualisations
of topic model results, expert opinions and existing methods from the application ar-
eas have been utilised. These are presented in more detail in the relevant chapters.
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Chapter 3

Data Fusion for Healthcare
Monitoring in Residential
Environments

This chapter reviews the literature related to processing and understanding the data
that can be collected from a healthcare monitoring system in a residential environ-
ment. In particular, a brief summary of the field of data fusion is given for context.
Previous work using different types of sensors suitable for this application is con-
sidered and gaps in the literature are identified. It should be noted that healthcare
monitoring systems focusing on the use of physiological sensors are beyond the scope
of this review.

To date, there has been a greater focus on monitoring at the activity level and
fewer studies have considered investigating the higher level of behaviour patterns
and daily routines that can be detected from activity data [60]. The work that has
been done in this area is reviewed in more detail, with a strong focus on the use
of topic models to achieve this goal. Moreover, the use of topic models to detect
daily routines from other types of data is also considered. Finally, the application of
topic models to nutrition data, which could be generated by a residential healthcare
monitoring system is addressed. Diet and nutrition are highly correlated with health,
especially chronic diseases. Understanding eating behaviour patterns in greater detail
aids research into the impact of these relationships.
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3.1. Residential healthcare monitoring systems

3.1 Residential healthcare monitoring systems

Monitoring systems in the home can provide individuals with a greater insight into
their own health and well-being. They also provide clinicians with previously un-
available data that can aid early diagnosis and treatment of diseases. However, a
monitoring system generates a large wealth of data from a variety of sources, which
has no clear meaning by itself. In order for the data to benefit the users it must be
combined to obtain information that can directly influence decisions and actions [61].
The idea of fusing data from different sensors has been a challenge for a variety of
research communities over the last few decades. This section summarises some of the
key work in this area and how it relates to this application.

Various types of sensors can be included in a monitoring system, including wear-
able sensors, environmental sensors and video cameras [62]. This section reviews
studies that have investigated activity monitoring in a residential environment, pri-
marily using environmental sensors. The use of wearable sensors for recognition of
activities of daily living that occur in a residential environment is also addressed. A
‘wearable’ or ‘body worn’ sensor is considered to be a sensor that can be externally
attached to a person, such as a wristband, clipped onto a belt or worn as a piece of
jewellery. The sensor(s) in the device can vary but for activity recognition accelerom-
eters are the most commonly used [62, 63]. Video based activity recognition is not
considered in this review as this was the focus of a separate work package within the
SPHERE project.

3.1.1 Data fusion definition and models

The phrase ‘data fusion’ is used widely in the literature, yet there is still not a
consensus on the exact definition of this term and associated expressions [64–66].
This problem was recognised by the remote sensing community and hence a working
group was set up to address the need for terms of reference in data fusion, presenting
their findings in [65]. It was felt that any definition for data fusion should not be
restrictive to a specific domain or method, therefore the following definition was
proposed.

“Data fusion is a formal framework in which are expressed means and
tools for the alliance of data originating from different sources. It aims at
obtaining information of greater quality; the exact definition of ‘greater
quality’ will depend upon the application”

Buchroithner and Wald, January 1998 [65]
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Although various definitions exist, it is clear that the key concepts that underpin
the field of data fusion are: combining data; using multiple sources and improving
quality [67]. The advantages of using multiple sensors are myriad, as discussed in
[68,69]. They include:

• Inherent redundancy for improved reliability and robustness
• Extended spatial and temporal coverage
• Increased confidence in measurements
• Shorter measurement and response times
• Improved resolution
• Increased dimensionality
• Higher signal-to-noise ratio
• Increased hypothesis discrimination

There are a variety of frameworks and models available in the literature that have
been developed to help implement a functional data fusion system [66]. Frameworks
provide a structure for designing a complex system composed of multiple data sources
which need to be acquired, processed and communicated. If they are not directly
applicable they can be modified to meet the specific requirements of a particular
application [65,68,69].

One of the first and most popular data fusion models was developed by the Joint
Directors of Laboratories (JDL) Data Fusion Working Group [70]. Developed in the
context of military applications, it has some shortcomings for other application areas
but the main principles are fundamental [66, 69, 71]. Moreover, the model has since
been extended and used as a basis for other models [68,70,72]. The JDL data fusion
process model includes three main levels of processing that occur to data which comes
in from the sources and is output for human computer interaction. There is a fourth
meta-process for refinement of the overall process and preprocessing of raw data is
sometimes considered an additional level [70, 73].

Luo and Kay proposed the Multi-sensor Integration Model [74] where integration
is the use of multiple sensor information for a task, whilst fusion is considered as the
actual combination of data. Both fusion and integration occur simultaneously. The
model includes hierarchical, sequential fusion centres and measurements from sensors
can be fused at one or more levels [69, 75]. Dasarathy [76] defined the functions of
data fusion in terms of the relationship between the type of input and output data,
which can be data, features or objects. This categorisation is useful as it can be easily
mapped to specific techniques and algorithms [73]. Thomopoulos proposed the use of
three modules at different levels: signal, evidence and dynamics level. The levels of
fusion can be sequential or interchangeable, depending on the application. Moreover,
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Thomopoulos highlighted the importance of monotonicity of fused information and
robustness against a-priori uncertainty in any data fusion system [69].

More recently several models and frameworks have been suggested for healthcare
applications. Lee et al. propose a ‘Pervasive Healthcare Architecture’ [77] which
includes a data fusion module to combine data from different types of sensors used
in a pervasive healthcare monitoring system. Gong et al. [78] incorporate multiple
preferences in their model to provide flexibility in what is considered important in
different applications. The model is suitable for many wireless sensor networks but is
designed with a specific focus on healthcare monitoring. A customisable framework
for collaborative body sensor network applications is described in [79]. The frame-
work supports a three-layer model for multi-sensor data fusion, which is extended to
support collaborative computing between networks.

Rodriguez et al. [80] present a system based on PANGEA, a multi-agent architec-
ture which provides a high level framework for intelligent information fusion. They
demonstrate the use of this healthcare monitoring system in a residential care home
for 8 months. King et al [34] describe a generic centralised hierarchical data fusion
model for wearable health monitoring, incorporating ideas from the JDL and Multi-
sensor Integration models. This model uses three levels of abstraction, signal, feature
and decision level fusion as well as pre-processing and feature extraction steps as
required. Data from each sensor passes through one or more of the fusion centres
as appropriate. Cao et al. [81] developed an integrated framework for multi-modal
activity recognition that includes correcting for class imbalance, caused by varying
frequencies and durations of different types of activities. They propose that fusion
happens at the post classification level, i.e. the labels predicted by different classifiers
are fused to reduce errors.

3.1.2 Data fusion algorithms

There are many different data fusion algorithms and techniques [66]. These are often
categorised into three levels, although the names given to each level varies. Here,
the simple labels of low, middle and high level fusion are used to minimise confusion.
Luo et al. [75] provide a useful reference table that summarises the key advantages
and disadvantages of some of the methods for each level. An alternative approach
to looking at available data fusion algorithms and techniques is taken by Khaleghi et
al. [66], where methods are considered in terms of data-related challenges that can
be addressed. In particular, different frameworks for dealing with uncertainty are
highlighted. Moreover, Castanedo [67] outlines the different approaches that can be
taken to classifying data fusion techniques. A summary of the type of algorithms
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and specific examples based on the three fusion levels convention are given here
for context. The choice of algorithm relies on finding an agreement between the
application requirements and the relevant advantages and disadvantages of available
techniques at the appropriate level.

At the low level of data fusion there is a need to synchronise and adapt the data due
to varying sampling properties across multiple sensors. Techniques for low level fusion
can be broadly separated into two categories: statistical estimation and covariance
based methods. Statistical estimation methods can be non-recursive, such as weighted
averages or least squares, which both merge redundant data. Alternatively, they
can be recursive, for example a Kalman Filter, which is a predict-update type of
estimator. Furthermore there are also Extended Kalman Filters, which linearise
about a point and Unscented Kalman Filters for non-linear filtering. Covariance based
methods include cross covariance, covariance intersection which is used if sensor data
are not independent and covariance union which solves the problem of information
corruption [75].

The aim of the middle data fusion level is to group the data into classified sets
within a multidimensional feature space. Again, techniques can be broadly separated
into two categories: parametric and non-parametric. Parametric methods include
parametric templates, which are used for image processing, k-means clustering and
Näıve Bayes. The non-parametric methods include learning vector quantization,
kohonen feature maps, artificial neural networks and support vector machines. Prior
assumptions about the distribution of input data are not required for non-parametric
classification algorithms, which can be advantageous for some applications [75].

High level data fusion methods use a symbolic representation of information. Sym-
bols, with an associated level of uncertainty, are combined to give a composite deci-
sion. Therefore, algorithms at this level must be tolerant of imprecision and uncer-
tainty. There are a variety of techniques that can be used for inference. Bayesian
inference is a probabilistic framework for recursive state estimation. Particle filters
are a modern sequential monte carlo bayesian method based on point mass repre-
sentation of posterior probability density. Topic models are a type of hierarchical
mixture model, used to find hidden patterns [36]. Dempster-Shafer theory is based
on the concept of degrees of belief whilst fuzzy logic is a multivalue logic that allows
uncertainty in multi-sensor fusion to be directly represented. Artificial intelligence
methods, such as neural networks, can also be used for high level fusion [75]. Each
method has associated modelling assumptions which must fit with the problem do-
main they are used for.
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Grouping available algorithms in different ways is a useful reference point when
selecting algorithms, however expert knowledge about the specific application is still
required to choose the most appropriate technique. Various review papers have pre-
sented different view points for considering appropriate data fusion techniques within
the broad fields of healthcare monitoring and activity recognition. Lai et al. [82]
present a survey of body sensor networks, which are often used for healthcare mon-
itoring. They include a section that reviews the data fusion methods that can be
used for both physiological sensors and inertial sensors. Major challenges in the field
are highlighted, including the impact of architecture choice and data management
requirements on the selection of fusion methods. King et al. [34] concentrate on data
fusion techniques for wearable health monitoring systems. A discussion of the con-
siderations for selecting a suitable algorithm for a particular application is included.

Pires et al. [83] focus their comprehensive review on fusion techniques for identi-
fying activities of daily living within the constraints of using mobile devices. They
include a summary of advantages and disadvantages of different categories of meth-
ods, but conclude that the choice of the best method is dependent on many factors
specific to a particular application. The challenges related to data fusion for fall de-
tection systems, which can be incorporated in a more general healthcare monitoring
system, are considered by Koshmak et al. [84]. In particular, they emphasise the
benefit of developing a system with more than one sensor type e.g. ambient and
wearable. In addition, they propose that monitoring systems should be modular so
that different components can be added and removed as required.

A detailed review of sensor-based activity recognition is given by Chen et al. [63]
with application to many areas, including healthcare. They review activity recog-
nition models and algorithms using a hierarchical structure, firstly differentiating
between data-driven and knowledge-driven approaches and then sub-dividing these
categories further. Within the data-driven category, generative and discriminative
models are considered and mining, logic and ontology based approaches are included
in the knowledge-driven category. The advantages and disadvantages of these differ-
ent approaches are discussed and summarised. Moreover, the impact of the context
on the choice of approach is highlighted. Future research trends are considered, in-
cluding the use of domain knowledge and context ontologies to facilitate high level
semantic data fusion. Other surveys discuss algorithms used for activity recognition
at different levels but do not specifically focus on data fusion. Thus, these papers are
presented in section 3.1.4.
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3.1.3 Activity monitoring in a residential environment

The literature in the field of activity monitoring in a residential environment is vast
and it is not feasible to include everything here. Ni et al. [62] provide an extremely
comprehensive survey of various aspects of smart home technology, with a particular
focus on older people’s independent living. They dedicate section 2 to reviewing
recent surveys, projects and applications of smart homes. Alam et al. [85] discuss
the history and future of smart homes, including the application of healthcare. They
consider a wide range of aspects from communication protocols to sensor types and
algorithm choice as well as reviewing relevant projects. Detailed reviews of both
Ambient-Assisted Living (AAL) tools and smart home sensor technology are provided
by Rashidi & Mihailidis [86] and Ding et al. [87] respectively.

This section only considers activity monitoring within a real residential environ-
ment for a period of greater than 24 hours. Data collection of activities in a simulated
residential environment set up within a laboratory are not included here. This focus
was chosen as it is in-line with the work of the SPHERE project, with which this
PhD was associated. Applying different algorithms and techniques to data collected
‘in the wild’ can produce very different results compared with controlled laboratory
conditions due to the unpredictable nature and challenges of a complex, natural
environment [88]. Furthermore, short snapshots of data do not provide a realistic
representation of the variety of activities that a person performs.

Several studies have investigated monitoring of people using sensors installed in
their own home [89–93] or a dedicated smart home / AAL environment [26, 27, 94]
for healthcare and well-being applications. These studies primarily use environmen-
tal sensors within the home to detect users’ activities. The sensors used include:
various motion detectors, including infra-red sensors [26, 89–91, 93, 94]; reed or mag-
netic switches on doors and cupboards [27, 89, 91, 94]; toilet flush and water flow
sensors [27, 91]; watt-meters or electric current flow sensors [27, 89]; environmental
sensors e.g. humidity, light, barometric pressure [27]; gas sensors [27]; stove sensor
(to detect heat or flames) [26,89,93,94]; motion sensors mounted on specific objects,
including a bed [26,27,93,94] and a gait / fall monitor based on floor vibrations [93].
A few key projects are presented to highlight the benefits and limitations of different
types of sensors and system designs.

One significant project is the PlaceLab at Massachusetts Institute of Technology,
a highly instrumented living environment, consisting of a living room, dining area,
kitchen, small office, bedroom and bathroom, that can be used for observing activities
and interactions of everyday home life [95]. The environment includes an addressable
speaker system and a large network of sensors that can be added to as required.
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Sensors include switches on doors and cupboards, environmental sensors, water and
gas flow sensors, cameras and microphones. Additionally, accelerometers can be
attached to moveable objects and worn by participants living in the apartment. A
dataset of 104 hours of annotated data from over 900 sensors of a couple who lived in
the PlaceLab for 10 weeks was collected [27]. The annotations were done by a third
party based on the video data. A detailed discussion of the limitations and challenges
of performing activity recognition on data from a real-world setting is provided in [27].
In particular, complex behaviours, such as multi-tasking and interactions between
participants make it challenging to differentiate between activities and label them
effectively. Using a large number of sensors integrated into a dedicated living space
allows an extremely rich and detailed dataset to be collected. However, the cost of
installing and maintaining complex systems is not feasible on a large scale and it is
intrusive for users to have so many sensors, especially cameras, in their living space.

The CASAS (Center for Advanced Studies in Adaptive Systems) project at Wash-
ington State University [96] has a dedicated three-bedroom smart apartment on their
campus. The apartment is instrumented with a range of sensors, including infra-red
motion/light detectors, ambient temperature sensors, door switches and sensors for
monitoring water, stove and phone use. This testbed is often used for validating new
algorithms but can also accommodate residents living there for longer term studies.
A novel activity discovery method was developed that uses an unsupervised approach
to recognise and track activities in the smart home. This was applied to three months
of daily activity data collected from two residents [96]. Unsupervised approaches offer
the strong advantage of not requiring annotated training data which is challenging
to collect.

A large number of sensors, such as used in the PlaceLab and main CASAS test bed,
is not viable at scale. The CASAS project developed a ‘smart home in a box’ solution
for easily instrumenting residential environments with smart home technology. The
system is affordable for large scale deployment and can be installed within 2 hours
without making any changes to the home. It includes motion detectors, door and
temperature sensors. The CASAS design has currently been installed in 32 testbeds
and datasets collected from these environments are publicly available [94]. This is
an invaluable resource for testing and comparing different methods, with greater
confidence in the conclusions. The disadvantage of reduced scale systems is the lack
of detail in the data collected and challenges in detecting anomalies, such as visitors.

Van Kasteren et al. [97,98] have also designed an easy-to-install system consisting
of contact switches, pressure mats, mercury contacts, passive infrared sensors and
float sensors for the toilet flush. The addition of extra sensors such as the float sensor
do not significantly increase the cost and complexity of the system but can add extra
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important detail and context. For example, only a motion sensor in the bathroom
does not give any information about what someone is doing, whereas knowing the
toilet has been flushed means it is highly likely that the toilet has been used and
this can be a useful measure for health outcomes. This system was installed in
three different residential environments of varying size and layout and hence different
numbers of sensors.

Datasets were collected for different users, living in each residence over a period of
2 - 4 weeks. These were annotated using either a handwritten diary or a Bluetooth
headset and speech recognition software. The datasets and source code for the prob-
abilistic models used to analyse the data have been made publicly available. The
variety in the datasets collected enables transfer learning to be applied when little or
no labelled data is available for a new house by using a model learnt on a previous
house. Ordonez et al. compared a full Bayesian inference approach with learning the
maximum a posterior model parameters when using a hidden Markov model (HMM)
for activity recognition [99]. They demonstrated that the Bayesian inference gives a
significantly better performance, particularly in a transfer learning framework.

The University of Virginia developed a wireless in-home monitoring system that
consisted of motion sensors, a stove temperature sensor and a bed sensor system [26].
The system was installed in the assisted living units of 22 participants, 7 of whom were
memory care unit residents, for a period of 3 months. Collecting data for a relevant
cohort of participants is vital to ensure that the systems and algorithms developed are
fit for purpose. A rule-based inference method was used to automatically determine
the participants key activities of daily living (ADLs). The results from multiple users
were used to prioritise the care needs of the patients [26]. Another study installed
the same system, with the addition of a passive floor-vibration gait monitor and fall
detector, in the homes of 13 home health care agency clients for four months. One
particular case study highlighted that the system’s ability to monitor ADLs, such as
bathroom visits could have avoided a patient’s hospitalisation had the doctors been
able to see this data [93].

The Empath platform was also developed at the University of Virginia [100] to
monitor people with depression. This platform integrates both the analysis software
and the hardware, including: motion sensors and contact reed switches for activity
detection; a sleep monitoring system using accelerometers in the bed; WiFi weighing
scales; a microphone on a touchscreen device for speech analysis and an iPhone
to record mood. The Empath system was installed, in less than an hour, in the
apartment of a patient for a period of 14 days. The study demonstrated that various
factors linked to depression could be successfully measured in a home environment.
It shows how sensors can be selected to provide specific data that is relevant for
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monitoring a known condition. However, the activity detection could be improved to
give more detailed information than room occupancy and estimated energy levels.

3.1.4 Wearable sensors for activity recognition

The focus for this section is to review the literature in the area of detecting activities
using wearable sensors. They offer the advantages of being directly associated with a
specific person and providing more detailed information about an individual’s move-
ments and activities. User compliance is critical though, as no data can be collected
if the user forgets to wear the device, which is a particular risk for certain cohorts,
such as people with dementia. Human activity recognition has a wide range of appli-
cations and includes detection of simple actions or gestures, through to higher level,
more complex activities such as ‘having dinner’ [63,101,102]. Chen et al. [60] present
an overview of recent survey and review papers for activity recognition, focusing on
inertial sensors in section 3. This highlights the vast nature of the literature, which is
summarised in this section, including the fusion of wearable sensors with other sensor
types. Table 3.1 provides a reference for the different areas of focus for the wearable
sensor review papers discussed here.

Table 3.1: Summary of areas of focus for review papers on wearable sensors for
activity recognition

Focus Reference
[101] [103] [104] [105] [106] [107] [108] [109]

Feature extraction X X X X X X
Classification algo-
rithms X X X X X X X

System analysis X X X
Healthcare applica-
tion X X X

Sensor types X X X X
Sensor placement X X X X

Bulling et al. [103] provide a comprehensive tutorial on human activity recognition
with a specific focus on the use of on-body inertial sensors. Godfrey et al. [104] give
a detailed background on the use of accelerometers to measure human movement,
including considerations of sensor placement and algorithms for data analysis. Lara
and Labrador [101] survey the state of the art for a wide range of aspects of human
activity recognition using wearable sensors: from system design to classification al-
gorithms and evaluations of complete systems. They present a taxonomy to assist
the comparison and analysis of different systems that have similar characteristics.
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Finally, they highlight important directions for future research efforts, such as ad-
dressing the complex nature of composite and concurrent activities, including at a
routine level. A survey by Avci et al. [105] analyses research in activity recognition
using inertial sensors with applications in healthcare, well-being and sports. They
segment the activity recognition process into five steps and present the algorithms
and techniques that can be utilised at each stage. Classification of individual activi-
ties is the highest level of fusion included in this survey. They include a summary of
the relationship between different classification techniques, sensor placement and the
corresponding reported accuracy level.

Two review papers in this area have been contributed by Preece et al. [106, 107].
The first focuses on comparing 14 methods, based on wavelet transforms and fre-
quency and time characteristics, for extracting classification features from accelerom-
eter data for recognising activities [106]. They used two datasets to compare the dif-
ferent feature sets used as input to a k-nearest neighbour classifier. It was shown that
time and frequency characteristics based on an ankle sensor outperformed wavelet
transforms for dynamic activities carried out by healthy participants. However, this
is a limited conclusion because the results will vary for different classifiers and demo-
graphics. The second paper provides a review of classification techniques for activity
identification using wearable sensors [107]. This includes techniques at different lev-
els, from windowing the raw sensor data through to classification algorithms. They
highlight studies that use a range of different machine learning techniques for ac-
tivity recognition and also focus specifically on fall detection. They emphasise the
variability in the nature of datasets, making meaningful comparisons between meth-
ods challenging.

Jatoba et al. [108] review a variety of techniques for classification of physical ac-
tivity as a method to provide context when monitoring the ECG (electrocardiogram)
and blood pressure of a patient with cardiovascular disease over a long period in a
non-clinical environment. Different levels are considered, from data preprocessing
through to classification algorithms. They collected a dataset of daily activities and
compared the accuracy of different methods. For this specific dataset it was found
that the best results were given by the classification and regression tree and adaptive
neuro-fuzzy inference system. In addition, Mannini and Sabatini [109] also review
a range of activity recognition methods and describe their application to simulated
datasets based on the daily activity accelerometer dataset from Bao and Intille [110].
They compare the results and conclude that a continuous hidden Markov model is
optimal when spurious data is removed for this dataset. Moreover, they summarise a
variety of human activity classification systems in the literature, including details of
sensors, features, classifiers, number of activities, number of subjects and accuracy.
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Seminal work by Bao and Intille in 2004 [110] used 5 bi-axial accelerometers, with
a sampling rate of 76.25 Hz to collect data from 20 participants performing a range of
20 activities. These were selected to reflect common everyday activities at a variety
of intensity levels and included, reading, walking, brushing teeth and folding laundry.
Both a semi-naturalistic collection protocol and a more controlled collection procedure
were used for the experiments. Mean, energy, entropy and correlation features were
created from the accelerometer data. These were used with decision tables, instance-
based learning (nearest neighbour), C4.5 decision trees and naive Bayes classifiers
to perform activity recognition. It was found that the highest recognition accuracy
was achieved with the decision tree classifiers, with an overall accuracy rate of 84%,
followed by the nearest neighbour algorithm. The results also demonstrated that a
high recognition accuracy, comparable with previous works in a controlled laboratory
environment, was achieved with data collected using the semi-naturalistic protocol.

Using multiple sensors is not always realistic for real-world long term monitoring as
users can find the devices obtrusive. In contrast to Bao and Intille, Wang et al. [111]
used a single waist worn tri-axial accelerometer with a hidden Markov model (HMM)
based method to classify six different human daily activities. Data was collected, at a
sampling rate of 50 Hz, for 13 healthy subjects, aged 26 to 50 years, who were asked
to perform the following activities: falling, jumping, running, sitting down, standing
and walking. A subset of the data collected from the accelerometer was used to train
a HMM for each of the six activities. Different parameters were investigated and
tested on the unseen data. It was found that the highest recognition accuracy of
94.8% was achieved with 7 hidden states and 3 mixture components. Furthermore,
it was found that the most likely activities to be misclassified are sitting and falling,
this is likely to be because from the point of view of accelerometer data sitting is
similar to a controlled fall.

Combining data from wearable sensors with other sources of information, such
as cameras and motion detectors can improve the accuracy of activity recognition
[60,112]. Peetom et al. [112] conducted a systematic document search of key databases
for articles related to monitoring technologies for detecting activities of daily living
and significant events, with a specific focus on independent living of the elderly in
their homes. They identified five types of monitoring technologies, including the
use of body-worn sensors. They summarise the 26 articles found in this category
in a table, focussing on the aim of the monitoring, study characteristics and main
outcomes. Furthermore, they also found 31 articles that utilise a combination of the
five technologies highlighted. In particular, 5 papers combined body-worn sensors and
passive infra-red (PIR) motion sensors, this was the second most frequent combination
after video and PIR. However, the majority of these papers described validation
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studies in a laboratory environment.

Although it did not match the criteria of the search conducted by Peetoom et al.,
one key project that combines different types of sensors, not yet discussed in this re-
view, is the Opportunity Project [113]. They used a highly instrumented environment
to collect a dataset of complex, naturalistic activities of daily living. The environ-
ment was set up in a room and designed to mimic a studio flat. Participants were
asked to follow a high-level script of activities but were free to interpret and perform
them as they would normally, to capture natural variations between participants. A
total of 72 sensors of 10 different modalities were utilised, including wearable sensors,
environmental sensors and sensors attached to specific objects of interest, such as a
knife. A subset of the collected data was released as an open source dataset that can
be used for benchmarking different approaches and techniques [114]. In particular, as
part of an activity recognition challenge that was held in 2011 based on this dataset,
baseline performance of standard classification techniques were provided [114]. These
were k-Nearest Neighbour, Nearest Centroid Classifier, Linear Discriminant Analysis
and Quadratic Discriminant Analysis. The tasks in this challenge included multi-
modal activity recognition of 4 modes of locomotion e.g. walking and 17 gestures e.g.
open drawer.

Finally, the SPHERE project, with which this PhD was associated, held a similar
challenge in 2016 [115]. However, the data was collected in a real house environment
rather than simulated. Participants were asked to follow a set of scripted activities
and also record naturalistic activities that were not scripted. The dataset included
raw signals from a wrist-worn accelerometer and PIR sensors, as well as bounding
box and centre of mass features from RGB-D cameras (no raw video data was used
for privacy reasons). The main aim was to predict posture (e.g. sitting), transition
(e.g. sit to stand) and ambulation e.g. (walking) labels for every second of the
dataset. A total of 20 labels, across all 3 categories were used to annotate the data.
The winning competition entry [116] used a location-based hierarchical approach
and temporal activity consistency for classification. This performed better than the
baseline features, with a micro-f1 score of 0.76 reported. However, this approach may
not perform as well on non-scripted activities as there is likely to be more variation
in location-activity relationships and the temporal order of activities recorded in a
free-living scenario.

The use of wearable sensors for activity recognition has received a lot of attention
from a variety of research communities. Advances in low-power, low-cost and minia-
turised sensors and improvements in wireless communication technologies have made
the application of wearable technology a reality. The quantity and complexity of
data produced presents significant challenges in terms of exploiting its full potential.
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Real world systems have many requirements that often constitute a direct trade off.
For example wearing multiple sensors can provide a much more accurate picture of
a person’s activities and movement but are an inconvenience to wear and recharge.
If the extra level of detail gained makes a significant improvement on the quality of
life for an individual with a complex, chronic disease the benefits can outweigh the
disadvantages. However, for others simply measuring activity intensity from a single
wrist worn device may be sufficient. Similarly, the choice of algorithms depends on
the overall data fusion architecture selected, the accuracy required, power consump-
tion and processing time. These choices have to made in the context of the target
application. Data fusion from different types of sensors can help to find suitable com-
promises by combining the advantages of different modalities to provide additional
context and detail.

3.2 Detecting behaviour patterns in activity data

Section 3.1 demonstrated that there has been a large amount of research into analysing
data that could be generated by a residential healthcare monitoring system with the
goal of recognising various activities. The level of granularity at which these activ-
ities are detected varies from very short, specific gestures to longer, more complex
activities. However, they are all at a lower level of data fusion than behaviour pat-
terns and daily routines. Detecting these higher level patterns facilitates long term
monitoring and identification of changes in behaviour or health status. This can aid
early diagnosis, enable more effective management of chronic conditions and improve
quality of life [3, 11, 19, 24, 26]. In comparison to activity recognition, there has been
little research in higher level patterns and changes over time, which many authors
have suggested as important avenues of future research [62,63,101,102,112,117,118].

Daily routine discovery is looking for higher level patterns in a person’s daily
activities that correspond to their routine. For example, a lunch routine could consist
of: walking, preparing food, cooking, eating and washing up. Each routine involves
a combination of different activities in varying proportions. Some activities will be
very specific to a particular routine, such as working at desk, which is most likely to
be in the work routine. Other activities, such as using the toilet will occur in many
different routines. There are several methods for detecting someone’s daily routine
from various types of data. Previous work reported in the literature, is highlighted
and discussed here.
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3.2.1 Using topic models to detect routines

One method for detecting daily routines is to use topic models (Latent Dirichlet
Allocation (LDA) and variations), which were introduced in chapter 2. In order to
use topic models for an alternative purpose the concept of the generative model needs
to be translated to the new application domain. For instance, the daily activities,
such as eating, can be equivalent to the words in a document and the routines, such
as lunch, equivalent to the topics. For continuous data, the documents are usually
specific length time slices, such as 30 minutes, and the entire dataset is equivalent
to the corpus. As for activity recognition, the source of sensor data used with topic
models for discovering daily routines can vary. This section reviews the work done in
this area using (global) location data, wearable sensor data and environment sensor
data, including local location data within a building. Studies based on data collected
from video cameras is not considered here, as this is not the focus of this thesis.

3.2.1.1 Location data as input

A person’s daily routine can be detected from data about their location over time.
For example, Ferrari and Mamei [119] used data from Google Latitude, a mobile
phone application that collects location information, to look at patterns in people’s
global movement. Data was collected for 2 people over nearly a one year period and
preprocessed to discover and label relevant places for each user, such as home and
work. Using these labels and a label to indicate a time-slot within the day, a bag-
of-words representation of the data was created and used as the input to LDA. The
resulting topics were analysed and shown to be effective at identifying users’ routine
behaviours in terms of locations.

Farrahi and Gatica-Perez [120,121] also consider using location data from mobile
phones to discover daily routines. They use a much larger dataset, the Reality Mining
Dataset from Massachusetts Institute of Technology (MIT), with 97 users over a
period of 16 months, although some days are discarded due to having no reception.
They use a similar bag-of-words representation based on specific locations, as done by
Ferrari and Mamei. In addition to discovering location-driven routines using LDA,
they also use Author-Topic Models, described in section 2.3.2, to identify how routines
vary between users. The routines found from this type of input data, such as ‘going
to work late’, are not very specific as this simply summarises a transition between
locations during a given time range. In comparison, a routine such as ‘commuting
to work’, summarises more detailed information e.g. modes of transportation, about
the activities involved, for example ‘walking’, ‘waiting for bus’ and ‘travelling on bus’.
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The more generic routines are used to determine overall behaviour patterns in users
and groups of users but only reflect significant changes in geographical location.

A topic model variant was also applied to the MIT Reality Mining dataset more
recently by Nabaei et al. [122]. However, they focus on robustly detecting anomalous
patterns, with a focus on security and fraud applications. Topic models are learnt
for each behaviour and the results are used as a user profile which represents normal
behaviour. Gradual changes are distinguished from abrupt ones and the model pa-
rameters are updated to reflect the normal variation over time. The model was also
applied to a dataset of Brazilian medical hospital records to detect fraudulent insur-
ance claims. The results demonstrated that this method performed well for datasets
with a large number of unique attributes.

Furthermore, Steinhoff and Schiele [123] use data from GSM (Global System for
Mobile Communications) and Bluetooth as an input to LDA to discover daily rou-
tines. It is found that although topics can be discovered from this data, Bluetooth
environments are unstable and GSM traces are too static for long periods, hence it is
likely that more interesting results would be obtained when combining this with other
sensors. Although the ideas from these studies can be applicable, the data sources
considered are not suitable for smaller geographical areas, such as in a residential
environment, as required for the SPHERE project. Moreover, they do not provide
detail of the specific activities included in the user’s routine and hence do not directly
add useful information for healthcare monitoring applications. They could be used
in conjunction with other techniques to provide context, such as how often someone
eats out or visits the gym.

3.2.1.2 Wearable sensor data as input

Huynh et al. [32] used topic models to discover daily routine patterns in accelerometer
data. They collected 7 days of data from one person wearing two accelerometers.
The user annotated their daily routines and the detailed activities that made up
these routines. A hierarchical approach was taken to analyse the data, with both
supervised and unsupervised methods. Firstly, the raw sensor data was classified
into activities. The classifier results were then used as the input to a topic model
by creating documents of 30 minutes of activity data. The results showed that the
topic models were able to identify topics that correlated well with the ground truth
daily routine labels. Further details of the collection and analysis of the dataset
(UbiComp08) are given in section 4.1.

Seiter et al. [124] investigated how different characteristics of a daily activity
dataset can affect the performance stability of a topic model. They simulated datasets
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with specific properties based on the original UbiComp08 dataset collected by Huynh
et al. A three layered simulation model was defined to sample the daily routines and
the activity primitives of which they are composed. The different datasets were used
as an input to LDA and the results compared. As the number of topics does not
necessarily match the number of routines, a k-Nearest Neighbours classifier was used
to map the topics to routines. Details of the key dataset properties found for stable
performance of the topic model are discussed in section 4.2.1.

Furthermore, Seiter et al. [125] also considered the performance of three variations
of topic models on different datasets, including UbiComp08, benchmarked against a
baseline method using k-means clustering. The approaches included LDA, n-gram
topic models, which add primitive sequence information and correlated topic models,
which explicitly model the relationship between topics, as discussed in section 2.3.2.
Seiter et al. define four properties that describe the complexity of a dataset; averaged
primitive rate, activity composite specificity, activity primitive sequence similarity
and composite-instance ratio. The three datasets analysed all contain activity prim-
itives and composites, however they vary in terms of their properties. After pre and
post processing the results showed that overall LDA had the best performance on
all datasets, even when noise was introduced. Moreover, it was noted that LDA had
a greater advantage over the baseline for datasets with a lower activity composite
specificity. This is likely to be due to the underlying assumption of the LDA model
that documents exhibit multiple topics. The results also demonstrated that good
choices for segment size and the number of topics are close to the weighted mean
durations and expected number of activity composites respectively.

More recently, Seiter et al. [126] evaluated the use of LDA for daily routine dis-
covery in hemiparetic rehabilitation patients. Data was collected for 11 patients in
a daycare centre using six wearable sensors, although only data from three were re-
quired for analysis. Ground truth labels were annotated for six daily routines for each
patient for up to 10 days. An unsupervised hierarchical approach was used to detect
the routines. The activity vocabulary used as input to LDA is created using either
k-means clustering or a rule-based approach based on features extracted from the raw
sensor data. The final step to map the discovered topics to the ground truth labels for
evaluation uses a supervised k-nn classifier. The results revealed that the rule-based
approach performed best, with an average accuracy of 76% across patients. This sug-
gests that the inclusion of expert knowledge is beneficial. However, this may be due
to the structured scenario of a rehabilitation centre where specified routines are of
interest. In a free-living home environment, the discovery of new routines that have
not been identified a priori could provide as much or more insight into the patient’s
health status than known routines. For example, the model may identify a routine
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where the user has an increased level of sedentary or active behaviour in comparison
with their usual behaviour, that they would not have considered as a routine if asked.
By discovering this routine and understanding why the patient was not conscious of
it can provide an insight into how to approach changing the patient’s behaviour to
improve their health and well-being.

Spina et al. [12] conducted a similar study to Seiter et al. [126] but for patients with
chronic obstructive pulmonary disease (COPD). However, their dataset was much
larger, including 977 COPD patients and 66 healthy controls from studies across 10
countries worldwide. The physical activity of participants was recorded using a com-
mercial wearable sensor which provides estimates of energy expenditure, metabolic
equivalent of tasks, step count and sleep status for at least 4 days. Moreover, Spina
et al. took a different approach to constructing the vocabulary, using a complex data-
driven methodology based on activity intensity categories (IC) and relevant features
such as skin temperature, sleep count and accelerometer data. The resulting routines
were distributions over the vocabulary and were interpreted by considering the IC to
which they were most related. The results showed that the probability of routines
inferred over a day varies between different cohorts of patients with varying levels
of disease severity. These routines have the potential to be used as biomarkers in
diagnostic decision support systems and daily feedback from a monitoring system.
The results of this approach are well aligned with the target application but do not
provide any information about the activities performed and hence are not necessarily
transferable to alternative conditions with different requirements.

Kim et al. [127] used low level activities found from multi-modal sensor data,
accelerometer and ECG, as input to LDA. They investigated the performance with
the KNOWME real-life dataset, which includes self-labelled high level activities and
the corresponding sensor data for 12 subjects in free-living settings. The results
reported show that, for a model with 30 topics, all of the labelled high level activities
are assigned to only one or two topics. This suggests that this method is not suitable
for this dataset. It is likely that this is due to several factors, including the limited
number of low level activities (9) and short duration used to create documents (10
mins) in comparison to the reported durations of self-labelled activities. This would
mean that the input does not provide enough detail to discriminate between different
types of high level activities and documents would be unlikely to exhibit multiple
topics as assumed by LDA.

A combination of wearable sensors, including accelerometers and physiological sen-
sors, were used by Peng et al. [128] to find complex activities following a hierarchical
approach. They used k-means clustering on features from the acceleration data to
create words as input for LDA. The resulting topics were fused with the physiological
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features at the classifier level. A modified stacking framework method was applied
with the J48 decision tree as a base classifier and multinomial logistic regression for
the meta classifier. The authors compared their results with a range of other methods,
including the original work by Huynh et al. They demonstrated that their method
outperformed the others overall in terms of the F-score. However, this is likely to
be because the parameters they used were chosen to be optimal for the proposed
method. In particular, they applied the approach of Huynh et al. using only 8 low
level activity labels that are not well aligned to discriminate between the higher level
activities. Moreover, the final stage of this method relies on supervised learning and
hence labelled data is required for training, which is challenging to obtain.

Sun et al. [129] developed a two phase non-parametric framework for human rou-
tine discovery. The first phase creates artificial words from features using a Dirichlet
process Gaussian mixture model, allowing the size of the activity vocabulary to be
found automatically. These words are grouped into documents and input to the sec-
ond phase, a hierarchical Dirichlet process (HDP), enabling the optimal number of
latent topics to be discovered by the model. The resulting document topic propor-
tions are clustered using the affinity propagation algorithm to find high level routines,
without specifying the number of routines in advance. The framework was tested on
two public datasets: the UbiComp08 dataset and a transportation mode dataset from
Microsoft Research Asia. The results demonstrated that the non-parametric frame-
work performed comparably to parametric models, such as LDA, with the advantage
of not needing to choose parameters. This is useful because there is no obvious way
to select the optimal parameters.

A non-parametric approach to routine detection was also considered by Nguyen
et al. [130], with a focus on the intensity of physical activity based on accelerometer
data. They use a HDP to infer the number of physical activity levels automatically
from the accelerometer data. The discovered mixture proportions of activity levels
are used as features for a multi-label classifier. The resulting classifications are then
compared to the daily routine of the user. In order to test the framework a new
dataset was collected for 13 people during working hours over a period of 3 weeks,
using the accelerometer in the Sociometric Badge, a device originally developed by
the MIT Media Lab. Experience sampling was used to collect the ground truth labels,
as it is thought that this reduces the bias in the data collection [130]. However, over
the 3 week period only 201 10-minute blocks of labelled data were collected across 13
people. This is an average of approximately 2.5 hours per person, which is not very
indicative of a long term routine. Furthermore, the users could only select from 6
activity labels and 2 of these were never chosen, hence there is little detail available.

Zhu et al. [131] used sticky hierarchical Dirichlet process hidden Markov model
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(HDP-HMM), a non-parametric Bayesian model, to segment and cluster raw ac-
celerometer data at different levels of granularity. This approach has the advantage
of automatically determining the number of clusters as it is non-parametric. The
authors compared this method to LDA and reported that sticky HDP-HMM had
lower entropy-based error values for the ground truth segmentations. However, the
reported results are for a small dataset, one working day of data for 3 participants
with only 5 labelled ground truth labels. Moreover, LDA was applied in a different
context to that of the cited work of Huynh et al. [32]; determining activities directly
from accelerometer features and location data, as opposed to detecting routines in
activity data. Insufficient detail of the application of LDA for this dataset is given
and the conclusions drawn are thus very limited.

The studies described here have demonstrated that wearable sensor data used as
input to different types of topic models is a promising avenue of research for detect-
ing daily routines. The characteristics of the data must be carefully selected to align
with the assumptions of the model, such as exhibiting multiple topics in a document
and the target application. Extensions to LDA, such as hierarchical Dirichlet pro-
cesses have demonstrated the potential to enhance the method by offering additional
advantages, such as automatically determining the number of topics. This field of
research is still in its infancy and offers scope for expansion in several directions.

3.2.1.3 Environmental sensor data as input

Binary environmental sensor data is investigated by Rogers et al. [132], who apply a
hierarchical, iterative approach to using LDA for activity discovery. They evaluate
this method on the SCARE corpus, which has been adapted from the original purpose
of situated dialogues to produce an event stream. These events related to activities
that were carried out in a virtual environment, following a list of tasks and no detailed
information of the activities are provided. Although this dataset offers the benefit
of having ground truth labels, it is not very realistic in comparison to a free-living
real world environment. The results demonstrate that patterns of events in the data
at different levels of abstraction can be found. A visualisation of these patterns is
presented, however no semantic interpretation is considered and it is not clear how
useful these results are for human users.

Rieping et al. [133] considered a different approach by altering the LDA model
to combine both the clustering of the sensor data and detection of routines into
one model. They tested their novel approach on data collected from PIR sensors,
reed and contact switches installed in 5 houses for at least 63 days. They included a
preprocessing step that grouped the sensors into 5 key locations and used the number
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of activations in each location and time of day as features. The results showed that
their models outperformed the baseline LDA model on this dataset and they state
that meaningful routines are found. However, the interpretation of these routines is
not obvious and would not be suitable for end users of a monitoring system. Moreover,
by only considering the location of the sensors a lot of detail is lost, for example just
because someone enters the bathroom it does not necessarily mean they used the
toilet. Whereas if it was known that a flush sensor had been activated this would
provide a much higher level of certainty.

A different approach to creating artificial words from binary PIR data is applied by
Castanedo et al. [134], similar to that used by Farrahi and Gatica-Perez for global lo-
cation data. Each word represents a 5 minute sensor activation pattern for a specified
sensor, in a given time slot. Documents are then created using the data for one room
over one day per document. This method is evaluated on two long-term datasets, 50
and 90 weeks, collected in office environments. Measuring the average perplexity for
a 10-fold cross validation suggested that using 100 and 1000 topics on each dataset
respectively gave the best fit. The results are interpreted to demonstrate patterns of
behaviour in terms of office occupancy. However, the interpretation is very involved
and the data is still of a high dimension. Further processing is required to determine
useful information from these results. One improvement could be to reduce the size of
the vocabulary which contains 38,880 and 83,520 words for each dataset respectively.

Finally, for completeness it should be noted that topic models have also been
applied to find activities at a lower level. In particular, Chikhaoui et al [135] used
sequential patterns of sensor events as inputs to LDA to find activities. The method
was evaluated on 5 datasets, including 2 from the CASAS project, and shown to
be a successful method for unsupervised activity recognition. Chen et al. [136] also
utilised the CASAS dataset to evaluate their method using a modified LDA model
where each document corresponds to only one activity. The documents are created
by segmenting the data based on location. LDA is used as an intermediate step by
Rai et al. [137] to create features, together with other techniques, that are then used
as input to a support vector machine. Raw data is collected from an accelerometer in
a smartphone and two different data fusion frameworks are evaluated. Ihianle et al.
have considered using a simple topic model, probabilistic latent semantic analysis, on
two datasets created from environmental sensors [138, 139] for activity recognition.
Moreover, they enhanced this method using domain knowledge extracted from the
web.

It has been found that the routines detected by topic models using environmental
sensors as input tend to be difficult to interpret and require further processing in
order to extract useful information. These results could be improved by including a
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wider range of environmental sensors rather than focussing on location data generated
by movement sensors. Furthermore, the results could be fused with data from other
types of sensors to provide additional context and enhance the level of information
obtained. Using topic models as an activity recognition method has been shown to
be successful. This suggests that a hierarchical approach to topic modelling could be
an interesting avenue for research to create a model that can work with raw data and
provide results at multiple levels of abstraction.

3.2.2 Other methods applied to the detection of behaviour
patterns

3.2.2.1 Detecting daily routines

In addition to using topic models, work has been done to discover daily routines us-
ing other methods. For example, Zheng et al. [140] explored the use of collaborative
filtering to identify representative routine patterns for individuals even if only sparse
mobile phone data is available, such as the location of the user when they make
a phone call. As with some of the previous studies using topic models, this work
considers daily routines at a high level based on locations of interest, however the
technique proposed could be applied to other datasets. The intuition behind collab-
orative filtering is that there are only a few different behaviour routines people can
have and hence given many users’ data there will be a large number of other users
with similar routines. Details of the algorithms used can be found in [140]. This
approach would be most suitable for large, sparse datasets.

The MIT Reality Mining dataset, to which Farrahi & Gatica-Perez and Nabaei et
al. applied topic models to discover daily routines, was also analysed by Eagle and
Pentland, who collected the original dataset [141]. They used principle component
analysis to identify the top characteristic vectors that they term eigenbehaviours
[142]. Similarly, the routines found using this approach are at a very high level,
such as working late or sleeping in. Eagle et al. consider both routines found for a
given individual and also routines associated with an affiliated group of individuals
within the dataset, such as business school students. This approach works well for
a large, longitudinal dataset where the aim is to characterise behaviours and social
interactions at a high level as it provides a large reduction in dimensionality of the
data. However, for the purpose of providing data to support healthcare and well-being
requirements, too much detail of an individual’s activities would be lost.

The Bluetooth proximity data in the MIT Reality Mining dataset was investi-
gated by Azam et al. to determine human behaviour routines [143]. They applied an
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n-grams technique to identify the longest repeated patterns of proximal Bluetooth
devices detected by a specific user. Different levels of variance were considered to
account for anomalies in patterns, such as detecting a visitor’s Bluetooth device and
the frequency of patterns in defined time slots were explored. This work was then
extended by also considering a correlation matrix of the repeated patterns discovered
to remove sub-patterns that are not unique [144]. However although frequently oc-
curring patterns were highlighted for one user, no interpretation of these patterns is
attempted and it is not clear how useful these results are.

A prototype of the University of Virginia smart house monitoring system intro-
duced in section 3.1.3, was installed in a volunteer’s residence over 12 weeks [145]. The
sensor data was analysed using mixture models, an unsupervised learning method,
to detect clusters of sensor firings. A set of performance metrics were used to estab-
lish the most significant clusters and it was found that these corresponded to event
patterns or routines, such as waking up. The authors suggest that this method can
be used to determine a baseline of normal activity for an individual. However, the
level of correspondence between the clusters and activities is not clear and has only
been investigated for one participant. Additionally, using an unsupervised technique
for the discovery of routines directly from raw sensor data offers the advantage of not
requiring training data but results in a loss of detail.

Li et al. [146] proposed a method of discovering a flowgraph relating to a per-
son’s movement patterns around the home from motion sensor data. Probabilistic
deterministic finite automata are learnt, using the Alergia algorithm, to create the
flowgraph, from which subflows corresponding to an activity are extracted by apply-
ing a weighted kernel k-means algorithm. The identified subflows are mapped to the
floor plan of the environment and labelled according to their correspondence with
the ground truth. Further analysis using the method introduced by Eagle et al. [142]
is used to determine the eigenbehaviours. Li et al. suggest that these correspond to
different routines, however interpreting these results to provide useful information is
still unintuitive.

Motion patterns were also considered by Yin et al. [147], who took a top-down
approach to discovering daily routines and then room-level activities. Rather than
directly using the sensor names as done by Li et al., the location of motion sensors
e.g. kitchen, are used to model transitions through a living environment. Markov
chains are used to model these transitions for each one hour time interval and then
merged using a hierarchical clustering approach to find daily routine patterns, such
as morning routine. The example Markov chains intuitively correspond to feasible
location patterns, however no validation of the method is provided.
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A data mining approach was taken by Lin et al. [148], who extracted frequent
sequential patterns at the activity and routine level. However, the method appears
to rely on the raw sensor data already being labelled. Moreover, it is not shown
how the resulting association patterns between activities can be used. It is not clear
if this method could be applied to new raw sensor data to estimate what activities
and routines are being conducted. Data mining techniques have also been considered
as part of the CASAS project. In particular, Rashidi et al. developed a novel fre-
quent sequence miner algorithm, discontinuous varied-order mining, for unsupervised
activity recognition that allows for discontinuities and order variation within the se-
quences [96]. They extended the method to be used with streamed sensor data from
real life smart apartments, enabling automatic discovery of activity patterns over
time [149]. This provides information for the routine of each individual, which can
then be used to look for trends in behaviour. The methods were evaluated and shown
to work well on several datasets, both scripted activities and free living [96,149].

Blanke and Schiele took an alternative view of the challenge to recognise daily
routines, based on activity spotting to reduce the amount of data required to classify
routines [150]. They demonstrated that a joint boosting framework that uses low-
level activity spotters as weak classifiers can reliably discriminate between high level
routines. This was evaluated on the UbiComp08 dataset, collected by Huynh et
al. [32], showing that using less than 3% of the original data still yielded recall and
precision rates over 80% for the routines. This approach is very useful for improving
computational efficiency, however it suffers from a loss of data which could reveal
important data to clinicians. In particular, it only identifies discriminative features
for each routine rather than providing information about the underlying structure.

The methods presented here for detecting daily routines tend to be based on
location data and/or have a lack of detail about activities performed. The most
comparable method to topic models is the work of Rashidi et al. which discovers
activity patterns that correspond to daily routines, whilst allowing for discontinuities
and interleaved activities. The patterns are found from raw sensor data and therefore
still require additional knowledge of the system architecture and layout in order to
interpret the routines. It is not possible to make direct comparisons between these
approaches as they have been applied to datasets with very different characteristics.

3.2.2.2 Detecting changes over time

Rather than following a hierarchical approach and looking for routines that are con-
structed from a series of activities, some researchers have pursued the idea of using the
activities found from sensor data to investigate changes over time. This varies from
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considering overall trends in activity levels to focussing on the patterns for a specific
activity of interest, such as using the toilet. This high level overview of changes over
time can often be presented in a more accessible form to key stakeholders, such as
clinicians and caregivers. However, interesting data about which activities make up
a routine may be lost by taking this approach.

Derungs et al. [151] conducted an exploratory analysis of trends in wearable sensor
data from stroke patients, from the dataset collected by Seiter et al. [126] described
in section 3.2.1.2. The results showed that leg movement and sit to walk duration
ratios demonstrated the strongest trends over time. There was still a lot of variability
between patients, with both positive and negative trends discovered. It is not clear
from this analysis whether the results correspond with clinical observations of progress
levels in each patient’s recovery and hence how useful they are for clinicians.

The prediction of long term functional health status using environmental sensors,
particularly passive infra-red (PIR), has been considered by Robben et al. [152,153].
Two case studies of elderly participants, living independently, with monitoring sys-
tems installed in their homes are presented in [152]. An exploratory analysis of
detected location in the house over time and the application of principal component
analysis are considered and compared against various health metrics taken every 3
months, used as ground truth. Although these approaches can help to highlight
trends in behaviours that can be linked with health outcomes, the results still require
interpretation, which is not feasible for clinicians or caregivers. This work is extended
in [153] and moves towards addressing this limitation. A regression based approach is
utilised in order to automatically select features which are discriminative for different
health metrics and represent common concepts for assessing health status e.g. time
spent in the living room in the evening. The results show that using features based
on changes in measurements yields more accurate results than the static values.

Long term datasets collected at TigerPlace have also been used to investigate be-
haviour patterns as an early indicator of health decline. One technique proposed
was linguistic summarisation, which enables numerical data to be presented using
quasi-natural language phrases [154]. This method is based on fuzzy logic calculus
of linguistically quantified propositions, such as, ‘on some nights the resident had
high restlessness’. This methodology allows for uncertainty in the data and provides
results in an easily interpretable format for key stakeholders, such as clinicians. Con-
versely this leads to a reduction in sensitivity to changes and details which may be
of clinical importance. A 15 month case study presented for one 80 year old resident
demonstrates that contextual knowledge, such as medical procedures undertaken, is
very important when analysing the results. This would be difficult to scale up for a
large population.
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Another approach considered, using the TigerPlace data, is dissimilarity compar-
ison of activity density maps from different time points [155]. Activity density of
residents, calculated from the number of sensor firings, can be visualised with colours
representing different ranges of activity levels for each hour of the day over a month.
This quickly enables general patterns and trends to be seen. A co-occurrence matrix
can be used to measure and quantify the dissimilarity between two maps, based on
features related to the regularity of the activity data as well as the average motion
density and time away from home. The direction of changes is not directly reported
however. Results from three case studies showed that observed trends could be linked
to health status. Moreover, health professionals found the maps useful to support
their job and now use them regularly. Detailed specific knowledge, such as when the
cleaner comes, is still required to interpret the maps as this causes a large increase
in the number of sensor firings.

More recently, a classification method was used to select features, extracted from
motion and bed sensor data collected at TigerPlace, most relevant to capturing early
health changes [156]. It was determined that features linked with bathroom visits,
sleep patterns and socialising were the most important. These features were used to
create an automated health alert system based on comparison of sensor values with
a two week moving baseline, personalised for each person. High thresholds were used
for the alerts, resulting in approximately 50% false alarms. The clinical relevance of
all of the alerts generated were rated by clinicians to provide a ground truth. One
domain knowledge based machine learning algorithm and three supervised learning
algorithms, with different feature spaces, were compared to automatically determine
the relevance of alerts. The results demonstrated the fuzzy pattern tree method,
based on domain knowledge performed the best on a dataset of 21 residents for
one year. The system enabled the early detection of a variety of health conditions,
including urinary tract infections, heart failure, delirium and hypoglycemia. This
method works well for TigerPlace residents but may not transfer directly to the
wider population.

The idea of an activity curve was introduced by Dawadi et al. [157] as part of
the CASAS project. It models the probability distributions of a specified set of
activities at different times of day for a whole day. Minor day-to-day variations
in the timing of routines are accounted for by aggregating activity curves within a
window of a few days. Longer term changes are discovered by comparing the curves
at different time points using the proposed algorithm; a permutation-based two-
sample test with a distance metric of symmetric Kullback-Liebler divergence. This
method was validated on a synthetic dataset with known changes and evaluated on
real long term smart home data from 18 participants aged 73 or older. The results
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demonstrated a statistically significant correlation to the Timed Up and Go Test, a
standard clinical test for mobility based health but not the RBANS, a measure of
cognitive health. Continuous changes can also be detected and the results indicate
that larger variations can be associated with a decline in health [157]. The hierarchical
nature of many activities was not considered and only a limited set of labels was
utilised. Extending this further could improve the correlations and provide more
useful information for healthcare providers.

Four case studies from the assisted living pilot at the University of Virginia were
analysed for behavioural patterns [117]. The motion sensor data was used to de-
termine activity level and amount of time spent in each room for each hour of the
day. These features enabled estimation of participant’s circadian activity rhythms
and their deviations. It was demonstrated that this can be used to model behavioural
patterns and changes that may be consistent with disease onset. This approach is
strongly linked with time of day and therefore may be less effective for populations
with a less structured and predictable routine.

Elbert et al. [158] also investigated deviations in circadian rhythms, focusing on
people suffering from dementia. Activities of daily living (ADLs) were detected from
sensor events using a combination of techniques, including case-based reasoning, rule-
based reasoning, time maps and fuzzy logic. Long-term behaviour monitoring is
achieved through a combination of an activity score calculator, sleep monitor and
circadian rhythm score (CRS) calculator, which are used by a trend analyser to
detect critical changes in behaviour. In particular, the CRS calculator is designed to
analyse a person’s daily routine giving a score from 0 to 1, representing the degree of
deviation from normal. This is achieved through a combination of three approaches:
cosinor analysis based on the theory of circadian rhythms as a special representative
of regression analysis; a histogram-based approach based on movement data and a
probabilistic model of behaviour based on a person’s ADLs. Details of these methods
are given in [158]. This approach appears to be very comprehensive, however it is
not clear how much computation power is required and whether it would be feasible
to implement such a system outside of an ambient assisted living environment.

Changes in activity levels and patterns over time have been linked with clinical
outcomes in a variety of studies. The changes detected do not generally provide
specific details about the structure of an individual’s routine, rather they tend to
indicate variations in overall activity levels. This information can be presented in a
usable and useful way to clinicians and caregivers. This level of information may be
sufficient for certain applications, but a greater level of detail about which routines
and activities are changing, the level and direction of the change could further exploit
the data collected, enhancing the benefit of a monitoring system.
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3.3 Detecting behaviour patterns in nutrition
data

A residential healthcare monitoring system offers huge potential to collect a wealth of
data. In addition to detecting activities of daily living from different sensors, nutrition
data can be gathered through the use of cameras and logging applications on mobile
phones [31, 159, 160]. Good nutrition is fundamental to a healthy lifestyle [161] and
many chronic diseases are related to diet [16]. Collecting data on food intake is
paramount for investigating associations between diet, health and the occurrence
of disease [159]. Eating behaviours and patterns can be directly related to chronic
diseases such as obesity, cardiovascular disease, cancer and diabetes [162–165].

This section reviews the state-of-the-art in technology based solutions for moni-
toring food intake that could be utilised in a residential environment. Background
information on the assessment of food intake at different levels is given. In partic-
ular, the concept of meal-based analysis is introduced and how this can be used to
explore the relationships between diet and health. Finally, the challenge of defining
different eating events, especially distinguishing between meals and snacks is consid-
ered. Existing definitions used in the literature and qualities affecting perceptions
are highlighted. More complex food based definitions are reviewed and the use of
machine learning algorithms to identify relevant food groupings is addressed.

3.3.1 Automated nutrition monitoring using sensors in a
residential environment

As cameras are already a proposed part of many residential healthcare monitoring
solutions, using them to detect food intake is a logical step. He et al. [166] proposed
a classification approach based on k-nearest neighbours and vocabulary trees for
identifying images of foods consumed during an eating event, taken on a smart phone.
A classification accuracy of 64.5% was achieved for the most probable label given to
each segmented food item. Ciocca et al. [167] recently presented a benchmark dataset
of real canteen trays, containing multiple instances of food items. They developed an
automatic tray analysis pipeline and results showed approximately 79% accuracy of
food was achieved using convolutional-neural-networks-based features.

The idea of using cameras for dietary assessment was developed further by Dehais
et al. [168] who created a novel system to calculate portion sizes using two images
from mobile devices. The algorithmic framework presented enables 3D reconstruction
and volume estimation of various food items on a plate. The results demonstrate this
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system is more accurate than existing solutions and user estimates. However, there
are currently several limitations due to the requirements for input pictures, type of
serving dish and the need for a size reference object in the image. Furthermore, Liu
et al. [169] have considered how the use of images taken on mobile devices for dietary
assessment can be handled in a real-world scenario, with a particular focus on real
time processing and low energy consumption, whilst still achieving state-of-the-art
recognition accuracy. This was achieved through the use of deep learning algorithms
and the use of cloud based servers for processing.

In addition to detecting food intake in terms of what is consumed, there is also
interest in eating behaviours, such as choice of food and number of bites or chews.
There are a number of different sensing technologies that are being investigated. The
aim is to reliably and unobtrusively gather information on what, how and when items
are consumed. The state-of-the-art solutions currently focus on a specific aspect of
dietary monitoring, each offering unique advantages but still having severe limitations
[170,171]. As technology and research in this area develops these innovations can be
integrated to provide a detailed automatic dietary monitoring system. Some examples
of state-of-the-art solutions for monitoring eating behaviour are highlighted, a more
detailed review is beyond the scope of this thesis but can be found here [170].

A smart dining table was proposed by Manton et al. [172] to track eating be-
haviours during a meal. They found that combining a wearable inertial measurement
unit with a multi-touch tabletop computer running Microsoft Surface performed bet-
ter than a kinect for detecting bites and which plate the food was taken from. Zhou
et al. [171,173] also designed a smart table surface using a novel smart tablecloth with
a fabric based pressure matrix and a dining tray with pressure sensors on the feet.
This system enables detection of detailed dining-related activities such as scooping
and cutting, the type and weight of items consumed, including drinks. Furthermore, a
novel algorithm to detect the weight of individual bites consumed during unrestricted
eating has been developed for use with a simple table embedded scale [174].

Table top sensor systems have the limitation of not being easily portable, whereas
wearable solutions can be used when eating in different situations, such as on the
move or in front of the TV [170]. One wearable solution for detecting eating events
and chewing is to integrate electromyography electrodes into custom 3D printed eye-
glasses. The glasses can be worn unobtrusively in a free living environment for a
full day and can classify between different food types based on textures and hard-
ness [175,176]. Furthermore, the feasibility of fabric based sensors embedded in a shirt
collar to detect swallowing has also been demonstrated [177]. Inertial sensors worn on
the wrist can be utilised to detect eating events, similar to general activity recognition
discussed in section 3.1.4, but developing algorithms to be more specific [178].
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3.3.2 Assessing and analysing dietary intake

Monitoring and assessing food and nutrient intake data for individuals is a complex
process. There are a variety of different methods employed by scientists, including
food diaries, 24-hour dietary recall and food frequency questionnaires. Each method
has its own strengths and limitations and the most appropriate method depends
on the objectives of a study [179]. Understanding nutrient intake at both a macro
and micro level is important for investigating links with health outcomes. Food
composition or nutrient databases are used to calculate overall nutrient intake from
food consumption data, although these are not standardised and can be a significant
source of error, particularly when making comparisons across multi-national datasets
[180].

There are many benefits to considering food intake at the individual food item
level, but the variety of items means it is difficult to use this level of information to
communicate with the public [181]. Similar items are often grouped together into
food groups, such as puddings, fruit and cheese. These groups may then be split
further into subsidiary food groups, such as sponge puddings (manufactured), citrus
fruit not canned and cottage cheese [182]. These groupings are not standardised and
can vary in number and content between studies [182, 183]. Only considering food
items and the constituent nutrient content does not enable a full analysis of food
intake and associations with health outcomes, often leading to conflicting findings
[184]. People often eat a variety of food items together, for example a sandwich
could consist of wholemeal bread, low-fat spread and cheddar cheese. The interaction
between different foods and nutrients consumed together should also be considered
[181,185]. Dietary pattern analysis has been utilised widely amongst the nutritional
epidemiology research community and related to chronic diseases [163,164,181].

Recently interest in understanding how the composition and patterns in the con-
sumption of meals impact the relationship between diet and disease has increased. A
meals-based approach would complement existing dietary advice, which is given at a
food or nutrient level [181,184].There are strong advantages to analysing food intake
at a meal level, however one key drawback is the difficulty in comparing results across
studies due to the variation in definitions of meals and snacks [17, 18, 184, 186]. In
particular, studies that consider the impact of eating frequency on health outcomes,
such as obesity are highly inconsistent, reporting a full range of inverse, null and
positive associations. This is due to a variety of methodological problems: choice of
assessment method; adjustment for confounding factors; under-reporting by certain
participants and the lack of consensus about what constitutes a snack, meal or eating
event [187, 188]. Similar challenges occur when investigating the impact of skipping
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breakfast on cognitive performance and appetite control, particularly as the meaning
of breakfast is often subjectively interpreted by participants with no clear guidance
from researchers [189].

3.3.3 Defining eating events

3.3.3.1 Influence of language and culture on definitions of eating events

It is well understood that there is little consensus within the nutrition research com-
munity as to what constitutes a snack [17, 18, 190–193]. Furthermore, the use of
different phrases with the root word ‘snack’, e.g. snack food or snacking can cause a
large difference in interpretation by individuals [194]. Hess et al. compare the rec-
ommendations relating to snacks, snack foods and snacking from dietary guidelines
published by countries around the world. The variety of language used demonstrates
the diversity of definitions for snacks and the challenges in communicating healthy
eating information to the public [191]. Moreove, this is further demonstrated in other
languages that have a much greater variety of words to describe eating events outside
of meals [193].

A variety of factors can affect the perception of what a snack is, including time
of day, type of food, amount of food and level of hunger [17, 192]. Leech et al. [190]
compare a variety of definitions for eating events used in the literature. This includes
participant defined labels, with five types of meals and four types of snack, including
a ‘beverage break’. Other definitions are based on the time of day and energy content
of eating events to distinguish them as meals or snacks, with a maximum of three
meals possible and all other events deemed as snacks. The remaining six definitions
highlighted are neutral, only defining an eating event, using criteria related to time
interval separation and minimum energy content, but not distinguishing between
meals and snacks. Another definition is based on contribution to the total energy
intake (TEI) in a 24-hour period, with those eating events providing greater than
15% of TEI considered a meal and those lower, a snack [195].

Johnson and Anderson propose a qualitative definition for snacks, excluding bev-
erages consumed alone [192]:

“A snack is composed of solid food(s), including those typically eaten with
a utensil (with or without a beverage) that occurs between habitual meal
occasions for the individual, is not a substitute for a meal, and provides
substantially fewer calories than would be consumed in a typical meal.”

This definition is based on identified characteristics from the literature, but it is
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offered for initial consideration and acknowledged that a collaborative effort among
all relevant stakeholders is required [192]. Warde and Yates provide very insightful
analyses into types of eating events based on a survey of eating patterns conducted
in Great Britain in 2012, focussing both on snacks [193] and meals [196], including a
comparison with how meal content has changed since the 1950s. They suggest that
the definition for a snack would have the following qualities [193]:

“Small portions of portable foods, easily prepared, and consumed casually
at simple and quick events.”

In addition, a more specific definition has been proposed for breakfast by O’Neil
et al. [197]:

“Breakfast is the first meal of the day that breaks the fast after the longest
period of sleep and is consumed within 2 to 3 hours of waking; it is
comprised of food or beverage from at least one food group, and may be
consumed at any location.”

Further guidance is also provided with regards to criteria for a quality breakfast in
terms of nutrient and energy balance. St-Onge et al. suggest combining this defini-
tion, with the definition based on TEI, to cover all eating events without referring to
the time of day, as it excludes subgroups of the population, such as shift workers [195].

Situational and environmental cues, such as eating alone or with others, can also
influence perception of eating event classification [193, 196, 198]. Young children,
aged 4 to 6 years, are already learning associations between eating cues and the clas-
sification of eating events. These eating habits can endure over time and therefore
influencing children’s perceptions from a young age could help to encourage a healthy
and well-balanced diet [199]. Younginer et al. focussed specifically on snacks for chil-
dren from the perspective of low-income caregivers. They highlighted five dimensions
that influence the definition of a snack, arising from semi-structured interviews: type
of items consumed, portion size, purpose of eating event, location and time, both
time of day and time for preparation and consumption. These resulted in a proposed
definition for a child’s snack [200]:

“A small portion of food that is given in-between meals, frequently with
an intention of reducing or preventing hunger until the next mealtime.”

3.3.3.2 Food based definitions of eating events

Beyond the use of participant defined labels, simple criteria, based on time of day and
energy content or qualitative descriptions, some studies have considered how foods are
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grouped together in eating events. In 1999, Lennernäs and Andersson [201] proposed
a categorisation strategy for eating events based on combinations of food categories,
known as ‘food-based classification of eating episodes’ (FBCE). Rather than using
specified thresholds to define events, this strategy first categorises different types of
eating events and then considers the mean energy and nutrient content. Seven food
categories are given based on their nutritional similarity, such as ‘high fat density’.
A table of criteria on how these categories are combined is used to determine the
type of eating event, from a list of four meals and four snacks. These are given
labels, from ‘complete meal’, through to ‘no energy snack’, with examples provided
for each. However, this classification strategy has not been widely adopted by the
community [192], perhaps because it does not consider the other qualities and factors
associated with eating events.

More recently, a food based classification method with detailed criteria for iden-
tifying eating events as meals, snacks or drinks was developed to investigate the
association between restrained eating, total energy intake and obesity [202]. All food
groups recorded in the UK National Diet and Nutrition Survey 2000, excluding sup-
plements, were allocated to meal, snack and drink lists, based on information from
the literature. Eating events were considered to be all items consumed within every
60 minute period, starting from the time of the first record on each day for every
participant. The following criteria were then applied to label an eating event as a
meal, snack or drink:

Meal All items from meal list OR
More than one item and at least one item from meal list EXCEPT
Two items only, one each from meal and snack lists (e.g. bread and butter)

Snack All items from snack list OR
Two items only, one each from meal and snack lists

Drink All items from drink list OR
Two items only, one each from drink and snack lists (e.g. sugar in coffee)

This method allows for common combinations of food items, which are listed sepa-
rately in databases, to be categorised in the relevant group. For example, an eating
event which only contains a coffee will still be labelled as a drink even if there is
sugar in the coffee. However, this method still has limitations, for example a cup
of tea where tea, milk and sugar are listed separately would not meet the criteria
for the drink category. This highlights the complexity of defining eating events and
the influence of underlying coding strategies used in databases on developing suitable
criteria.
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The concept of generic meals was introduced by Woolhead et al. [181], based on
common food group combinations that occurred in the Irish National Adult Nutrition
Survey (NANS). The food items recorded in the survey were allocated to 20 food
groups and the recorded eating event labels were simplified to five types: breakfast,
light meals, main meals, snacks and beverages. Within each type, the most commonly
consumed food group combinations were identified, using a data-mining method based
on the concept of ‘frequent item sets’. These food group combinations were considered
to represent generic meals, such as ‘cereals and milk and juice’ and each assigned a
unique code. A total of 63 generic meals were found across the full dataset, excluding
all supplement items.

Generally dietary patterns are used in nutrition research to identify trends in over-
all dietary intake. However, this approach was used at the meal level for a dataset
of food intake for Brazilian adults [203]. Three types of breakfast were identified:
healthy, traditional and snack. There were five types of lunch: traditional, salad,
sweetened juice, western and meats. Finally, for dinner four patterns were found:
coffee with milk and bread, transition, traditional and soup and fruits. These group-
ings of foods could be useful for the specific population studied, however the current
naming conventions limit their use in different settings as they rely on assumptions
e.g what constitutes traditional and western.

Johnson et al. [204] investigated how foods are grouped based on individuals’
hedonic ratings of foods and the relationship to dietary intake. Principle components
analysis (PCA) was used to determine the component structures of the food ratings.
For each component researchers reviewed the images and selected the following names
to describe the groups: Energy dense Main Courses, Fruits, Meats, Desserts, Light
Main Courses, Seafood, and Grains. These were compared to traditional food groups,
revealing that some groups were an exact match, e.g. fruits, whereas others e.g.
energy dense main courses had a poor agreement due to a more complex mixture of
foods. Notably, vegetables were not found to be a discernible component in the PCA.
Although this does not specifically focus on defining eating events, understanding how
individuals group foods in terms of appeal can help dietary guidelines be tailored to
have a greater impact on encouraging healthy eating.

As far as the author is aware, at the time of writing, machine learning algorithms
have not been directly utilised to investigate how foods are grouped together in
eating events. However, there has been interest in the use of machine learning to
investigate eating patterns at a meal level, as opposed to a food item level. Hearty
and Gibney [185] developed a 2-tiered coding system to represent types of meals based
on the foods consumed together. These codes were used as the input to supervised
machine learning algorithms to predict a Healthy Eating Index score. Khanna et
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al. [16] implemented kernel k-means clustering to identify temporal dietary patterns
in terms of energy consumed. Clustering was also adopted by Riou et al. [205] to
identify temporal patterns in meals for the population of Paris.

Participant defined eating events, definitions based on simple criteria relating to
time of day and energy content or qualitative descriptions are inherently biased by
language and cultural influences. Some studies have utilised food based definitions,
which are linked with ideas on how foods are combined together in meals, rather than
relying on time or energy content. This reduces some restrictive assumptions, such
as snacks have a lower energy content than a meal. However, these definitions are
still subjective in nature due to the choice of categories for grouping foods. The lack
of consistency between definitions used across studies poses a huge challenge when
analysing eating events to understand how different combinations of foods are linked
with diet quality and health outcomes. Interdisciplinary collaborations and advances
in machine learning techniques have enabled the use of new methods to be applied to
nutrition research. A data driven approach to understanding how foods are combined
could help to limit researcher bias and provide a standardised approach for analysing
eating events.

3.4 Chapter summary

This chapter has reviewed the literature related to the application of data fusion
for healthcare monitoring in residential environments. The rich, complex nature of
datasets that can be collected by a monitoring system consisting of a variety of sensors
has been highlighted. Understanding these datasets and obtaining useful informa-
tion for the end users was considered within the context of data fusion frameworks.
Research at the low and middle levels of data fusion, in particular activity recogni-
tion has received a lot of attention and is a mature field of work. A variety of the
techniques and algorithms employed were presented, along with a discussion of the
advantages and limitations.

High level data fusion for detecting behaviour patterns has received a lot less
attention in comparison to activity recognition and was identified as an important
area for further research. Clinicians and caregivers have limited time available to
review data from a monitoring system on a regular basis and therefore summarising
information at a high level can improve the overall usability. At the same time, it is
important not to disregard the detailed data at a lower level as this may need to be
referred to for specific situations. Topic models were identified as a promising method
for detecting daily routines in activity data based on the work by Huynh et al. [32].
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Topic models offer the advantage of finding the latent structure of routines based on
a series of activities. Therefore a high level summary is achieved at the same time
as retaining knowledge of the underlying details. Furthermore, topic models assume
that activities can occur in any routine, as opposed to clustering algorithms which
restrict each activity to be assigned to only one routine, which is not reflective of
the real world nature of activities. The probabilistic nature of topic models is also
beneficial as it represents and helps to quantify the uncertainty that is inherent in
complex, real data.

Extensions to the original topic model, LDA, have been implemented in a handful
of studies related to activity and routine monitoring. There has also been interest
in long term monitoring and detection of changes in behaviour patterns over time.
This information can aid early diagnosis and management of chronic diseases, im-
proving quality of life for patients. However, many techniques currently applied to
this challenge tend to focus on variations in overall activity levels and do not include
data about the underlying structure of routines. Dynamic topic models (DTMs) have
been identified as a potential method to address this gap in the research. DTMs can
model changes in the structure of routines over time, in terms of the probability of
the constituent activities. This can reveal more detailed information about how a
person’s behaviour varies with time.

In addition to activity data, a residential monitoring system can also be employed
to collect data related to other aspects of a person’s health and well-being. In par-
ticular, nutrition is highly correlated with a variety of health outcomes and eating
behaviours can be directly linked with chronic diseases. Therefore the application
of topic models to nutrition data was highlighted as a key research opportunity. In
collaboration with a nutrition expert from the University of Bristol it was identified
that a large research challenge in the nutrition community is the lack of a clear def-
inition of different eating events, such as a snack. This affects the analysis of the
impact of different eating behaviours on health outcomes and makes comparisons of
results across studies difficult. Topic models can provide a data driven approach to
understanding how different food groups are combined together in eating events.
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Chapter 4

Detecting Routines in Activity
Data

An individual’s physical activity levels and ability to perform activities of daily living
are key indicators of their health and well-being [3, 15, 206]. Monitoring these can
enable older adults and people with chronic conditions to maintain their independence
living at home for longer [23]. Moreover, continuous monitoring of activities in a
residential environment is important for early detection of disorders and deterioration
in health [3, 4]. Many machine learning algorithms have been applied to the task of
activity recognition and to a lesser extent, detecting behaviour patterns. Topic models
have been identified as showing great potential for detecting routines in activity data,
offering the advantages of discovering the underlying structure, allowing activities to
occur in multiple routines and quantifying uncertainty in the data.

Several studies globally have collected datasets [62,89,90,94,97,113,118,119,141,
158,206–210] relating to human activities and daily routines. However, the nature and
availability of these datasets varies greatly. It is recognised that there is an important
need for realistic datasets to be publicly available, unfortunately there can be many
restrictions that mean this is not always possible. In particular, such datasets are
expensive and difficult to collect; furthermore there can be ethical constraints on
releasing data into the public domain. Publicly available datasets allow researchers
to both validate other’s work and build on it, including making direct comparisons
between the performances of different algorithms [206,208].

This chapter describes the implementation of Latent Dirichlet Allocation (LDA)
to replicate the work of Huynh et al. using the UbiComp 08 dataset [32] and the
results obtained are compared with those originally published. Following on from the
analysis of this previous work, the requirements and collection of a new dataset of
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daily activities, using a custom built smart phone app, are presented. The results of
applying topic models to this novel dataset are analysed and discussed.

4.1 UbiComp 08 dataset

This section investigates the open UbiComp 08 dataset presented in Huynh et al. [32].
The aim is to verify the results given, in particular the application of topic models
to activity data in order to find higher level routines. Routines are considered to
be a group of activities that often occur together, in varying orders and proportions
and tend to last a longer period of time than individual activities. For example, the
routine ‘office work’ will mostly involve the activity of ‘sitting/desk activities’ but
may also include activities such as ‘using the toilet’ and ‘standing /talking’. The
UbiComp 08 dataset contains data from one person, wearing two accelerometers, one
on their right wrist and one in their right hand hip pocket, whilst carrying out their
normal activities of daily life. The data was collected over a period of sixteen days,
during waking hours. The sensors sampled at 100 Hz and this data was preprocessed
on the device using a sliding window of 0.4 seconds to give mean and variance features
at 2.5 Hz. The user also annotated their daily routines and the detailed activities that
made up these routines, throughout the collection period. These annotations were
recorded using a combination of methods, including experience sampling, a time
diary and camera snapshots. After accounting for hardware failures and missing
annotations, the final dataset used for experiments included 84 hours across 7 non
consecutive days.

The data were analysed using a hierarchical approach with both supervised and
unsupervised methods. Firstly, the raw sensor data was classified into activities using
the mean and variance features, frequency features, and a time stamp. Initially, three
supervised classification methods were evaluated, support vector machines, hidden
Markov models and Näıve Bayes, using the annotations for training. Huynh et al.
found that the best method for this dataset was a Näıve Bayes classifier and adding
the frequency features did not improve the results. The classifier results were then
used as the input to a topic model by creating documents of 30 minutes of activity
data using a sliding window, shifted by 2.5 minutes each time. Secondly, it was
then demonstrated that the whole process could be unsupervised by using k-means
clustering to generate discrete labels from the accelerometer data. These labels can
then be used as the vocabulary for the topic model [32].

The results showed that topic models can identify topics that correlate well with
the ground truth daily routine labels given by the user, both using the output from su-
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pervised and unsupervised classifiers. Supervised techniques offer the advantage that
the topics found are immediately human-readable because they are constructed from
meaningful labels, such as walking. On the other hand, unsupervised methods gener-
ate topics where the contents is a collection of cluster labels with no direct meaning.
However, unsupervised methods have the significant advantage of not requiring an
annotated dataset, which requires substantial effort and is not always accurate [32].

4.1.1 Applying LDA to activity data in UbiComp 08
dataset

Huynh et al. used David Blei’s implementation of variational inference for LDA,
written in C [51], hence this was chosen in order to replicate their results as closely as
possible. The C code was compiled using Microsoft Visual Studio and the executable
was called from a wrapper function in MATLAB to allow easy manipulation of both
the input data and the results. The program has two main functions which can
be called. The first one, ‘lda est’ estimates a topic model which has the best fit
to the data i.e. the Expectation Maximisation (EM) algorithm described in section
2.2.2 is executed to determine the latent variables at the document and corpus level.
An option is selected to define whether the topic distributions should be initialised
randomly or smoothed from a randomly chosen document. An initial value for α, the
Dirichlet hyperparameter for the per document topic proportions, and the number of
topics K must also be specified.

There is a settings file, which can be altered as required. This states whether to
make the initial value of α fixed or estimated as the model is learnt. It also contains
settings to define the convergence criteria and maximum number of iterations that
should be executed for the variational EM algorithm and coordinate ascent variational
inference. The second function, ‘lda inf’ performs variational inference on new data
using a previously estimated LDA model. Again, it uses a settings file to configure
the convergence criteria and maximum number of iterations.

In order to use activity data as an input to a topic model it needs to be split into
the equivalent of documents that make up a corpus. The same approach as taken by
Huynh et al. was used to make the results comparable. The full list of all activities
is used as the vocabulary, where an activity is the equivalent of a word. To create
documents, a sliding window was applied to the dataset, where each window is a time
slice of data that is equivalent to the words in a document. This means that each
time slice contains a mixture of routines over a period of time. The routines to be
discovered from the activity data are the equivalent of the topics in documents. The
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Figure 4.1: Applying LDA model to activity data, see figure 2.6 for original applica-
tion.

total dataset is equivalent of a corpus of documents. The representation of the LDA
model, in the context of activity data for discovering routines is given in figure 4.1.

A window length of 30 minutes, shifted by 2.5 minutes at a time, was used as
Huynh et al. [32] found that the performance of the topic models decreased when using
windows of a smaller size. The number of routines was set to 10 and the Dirichlet prior
α was 0.01. These settings were also used for this work to allow direct comparison.
The default settings for the maximum number of iterations and convergence criteria
were used as these were not specified by Huynh et al. Furthermore, it was chosen
to set α to be estimated as part of the model so that the best fit to the data was
found and a random initialisation was used for the routine distributions. There were
37 activities in the vocabulary and each was assigned a unique numerical label.

The LDA C code uses the assumption that the words of each document are ex-
changeable to be able to represent each document as a sparse vector of word counts.
Data is read from a file, where each line represents a document and is of the form:

[N] [word1label]:[count1] [word2label]:[count2] ... [wordNlabel]:[countN]

where N is the number of unique words in the document, wordnlabel is the numerical
label representing the nth unique word and countn is the number of times that word
appears in the document. A data file of the correct format was generated at the same
time as splitting the dataset into time slices by applying a histogram function to the
labels in each time slice and printing the relevant information to the file. This was
done for 6 days in the dataset and used to estimate the model.

A file of the same format was generated for the remaining day in the dataset so
that inference could be performed on this data to predict the routines for that day.
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The ground truth labels provided in the dataset for this day were also collected in
sliding windows, the same way that the documents were generated. The mode of the
labels was used to represent the routine for each period of time.

4.1.2 Routines detected in UbiComp 08 dataset

The results of the estimated model for 6 days of data are output to a file where
each line represents a routine. It lists the log probability of the activity given the
routine, for each activity in the vocabulary. This file was analysed to find the top
activities, with a probability greater than 0.02 [32], in each routine. These were listed
in descending order of probability, as shown at the bottom of figure 4.2.

These routines were analysed qualitatively and subjectively assigned a mapping
between the routine number and the most appropriate choice from the list of ground
truth labels, based on the most common activities that occur in the routine. The
ground truth labels in the UbiComp 08 dataset are: ‘Lunch’, ‘Dinner’, ‘Office work’,
‘Commuting’ and ‘Unlabelled’ to cover everything else. For example, routine 1 has
‘sitting desk activities’ with a probability of 1.00 (to the nearest 2 decimal places) and
hence is obviously equivalent to the ‘office work’ routine. However, routine 7 is more
ambiguous as it includes ‘driving car’ with a probability of 0.43, which is likely to be
part of the ‘commuting’ routine and ‘discussing at whiteboard’ with a probability of
0.35, which is likely to be part of the ‘office work’ routine. However, it was decided
to map this routine to the ‘commuting’ routine ground truth label as the associated
activity had a higher probability. The mappings chosen for each routine are given in
table 4.1.

Table 4.1: Mapping of predicted routines to ground truth labels for UbiComp 08
dataset

Routine # Ground Truth Mapping
1 Office work
2 Unlabelled
3 Unlabelled
4 Lunch
5 Unlabelled
6 Unlabelled
7 Commuting
8 Dinner
9 Unlabelled
10 Commuting
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Inference was performed on the data for the remaining day, generating the free
variational Dirichlet parameters, γ, as defined in section 2.2.2. Subtracting the prior
Dirichlet parameters, α from these posterior Dirichlet parameters approximately
yields the expected number of activities allocated to each routine for a particular
time slice. This was used to determine the probability of each routine for a time
slice and hence the routine with the highest probability was considered the predicted
routine for that time slice.

Using the mappings, a graph of the ground truth label and predicted routine for
each time slice in the remaining day was plotted, as shown at the top of figure 4.2. It
can be seen from this that the predicted routines have a good match to the ground
truth. There are some small differences, for example it was predicted that the lunch
routine was slightly shorter than it was recorded to be. Additionally, a short period of
the ‘unlabelled’ routine was predicted both before and after the commuting routine,
which was not labelled in the ground truth. However, ground truth labelling itself
is very subjective and although the subject may not have deemed it necessary to
label these periods of time as separate routines it does not necessarily mean that it
is invalid to do so.

In addition to comparing the predicted routine with the ground truth the results
were also visualised by plotting the probability of all routines for each time slice, as
shown in the second graph in figure 4.2. This helps to identify why discrepancies
occur between the predicted routines and the ground truth. The graph shows that
during the main part of the day when the subject was doing office work there is one
routine which is very dominant, with a probability of nearly 1 for the majority of
the time. However, around the period that relates to the end of the working day,
commuting and dinner it can be seen that many routines are activated, all with
similar probabilities. This demonstrates that there is a lot more uncertainty as to
the prediction of what is happening during this time. However, these results can still
be interesting as the uncertainty is quantified by the probabilities.

The original results published by Huynh et al. [32] are included in figure 4.3 for
comparison. It can be seen that although the routines found by each model are
not exactly the same there are some strong similarities. For example, both models
have a routine containing the activity ‘sitting desk activities’ with probability 1.
Furthermore, both models have routine(s) that can be mapped to each of the ground
truth labels, although Huynh et al. do not explicitly perform this mapping or plot
the predicted routines. Moreover, in the original model the routine of ‘office work’
is shared between several predicted routines, whereas in the replicated results it is
dominated by just one predicted routine, with more predicted routines relating to
the ‘unlabelled’ routine.
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Table 4.2: Accuracy of predicted routine compared with ground truth labels

Day1 Day2 Day3 Day4 Day5 Day6 Day7 Average

80.1% 68.2% 78.7% 84.0% 93.4% 73.8% 95.0% 81.9%

A leave-one-day-out cross validation was conducted using the same settings as
previously. For each day a topic model was estimated using the other six days of
data and then inference was performed for the left out day. The discovered routines
were mapped to the ground truth labels using the same process as before. Using
these mappings the most likely predicted routine for each time slice was calculated.
These mapped predicted routines were directly compared to the mode of the ground
truth labels for each time slice. The accuracy was calculated as the number of time
slices with matching labels divided by the total number of time slices. The results,
given in table 4.2, show that there is a good match between the mapped predicted
routines and the ground truth labels across all days.

Overall, this section has confirmed the results of Huynh et al. and demonstrated
that LDA can successfully detect patterns of activities that reflect a person’s routines.
It has been demonstrated that even when the same dataset is used the random
initialisation of the topic distributions can lead to different results with regards to
the exact proportions of the activities in the detected routines. However, the results
still show strong correlation with the ground truth labels and can be used to explore
the high level structure of daily activities. The ability of topic models to quantify
uncertainty is a key property as it indicates a level of confidence in the results at any
time and reflects the ambiguous nature of human behaviour, such as concurrent and
overlapping activities.

At the time at which the work for this thesis was conducted, as far as the author
was aware, the work of Huynh et al. was the only published work applying LDA to
a publicly available dataset of real world activities with ground truth routine labels
to discover routines. A method may provide good results for a particular dataset but
this does not guarantee that it will perform as well on different datasets. Applying
LDA to another dataset with similar properties helps to validate the method and
demonstrate that it can be generalised beyond a specific dataset. The next section
considers the collection of a novel dataset of daily activities and associated routine
labels which can be used to validate the use of LDA to discover activity patterns
reflective of daily routines.
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4.2 Collection of a novel daily activity dataset

This section highlights the properties of an ideal dataset for daily routine detection
from activity data collected in a residential environment. The details of a mobile
phone application developed for collecting activity labels and ground truth routines
are presented. The application of LDA to this new dataset is described and the results
are analysed and discussed. The challenges involved in data collection are discussed
and improvements made to the logging application are given.

4.2.1 Dataset requirements for research into behaviour
patterns for healthcare monitoring

There are few published results of applying topic models to daily activity data. At
the time this work was conducted the only known published results were using the
UbiComp 08 dataset from Huynh et al. [32]. Further work has since been conducted
by Seiter et al. [125] to compare results with other datasets, one of which, the Op-
portunity dataset [113], also has daily activities. However, the Opportunity dataset,
although very detailed, was collected in a simulated environment within a labora-
tory, over a short time period for each participant, approximately 20 minutes per
run through the script. Therefore it is not as applicable for the task of daily routine
detection of activity data in a residential environment. The UbiComp 08 dataset
was provided with a vocabulary of 37 activities, with one being ‘unlabelled’ and two
activities that did not occur during the seven days. This size of vocabulary was suf-
ficient to provide interesting results that demonstrate the potential of topic models
for identifying routines within a user’s daily activities.

Seiter et al. explored the robustness of topic models by developing simulated
datasets based on the UbiComp 08 dataset. They found that the key dataset proper-
ties for providing stable topic model performance were the duration of routines, the
amount of data and the specificity of routines [124]. In particular, it was reported
that routine duration must considerably exceed, by a factor of more than 2, the doc-
ument length, which was set to 30 minutes and is also influenced by the total amount
of data available. Less than 5 days of data will have a large effect on the stability of
the topic model and it is recommended that at least 14 days of data is used for good
performance, particularly for infrequent routines. Furthermore, routines need to be
specific and hence the activities that make up a routine should not overlap with other
routines by more than 5% [124].
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Based on this and the aims of the SPHERE project, a reasonable dataset would
have the following properties:

• Participant(s) from target cohort
• Data collected for 14 + consecutive days for 24 hrs/day
• Data based on body worn sensors, environmental sensors and RGBd cameras
• Specific, labelled routines with less than 5% overlap
• Collected in a residential environment

4.2.2 Development of mobile phone application for logging
activities

Unfortunately, it is infeasible to collect a dataset with the properties listed from
raw sensors within the time-scale of this thesis as the deployment of the SPHERE
platform is due to occur in years 4 and 5 of the project. It was decided to collect
a dataset that provided a ‘gold standard’ representation of the first stage. In other
words, for the user to directly label the activities they are performing as if they
had been automatically generated by a classifier, such as Näıve Bayes, from the raw
sensor data. Huynh et al. [32] demonstrated that raw sensor data can be classified
into activities using mean and variance features from the accelerometer data and a
time stamp. However, a classifier does not have 100% accuracy in activity recognition
and therefore a dataset generated directly from user annotation and assumes ‘perfect
labels’ has the limitation that it does not represent the noise that occurs in a dataset
generated by a classifier.

A mobile phone application was developed in order to log daily activity data and
the associated ground truth routine labels. This was developed for the Windows
Phone 7.8 platform as this hardware was already available for use. The aim of the
application was to make it easy to record the time a new activity was started and
which routine this activity was associated with. It was decided to pre-set the labels
for the different routine categories so that they were consistent and suitable for use
as ground truth labels. These were based on the work by Huynh et al. [32] and
extended to provide more detail for non-work related routines and to include a multi-
routine option for activities, such as ‘using the toilet’ that occur as part of several
different routines. The final list of categories is: wake up, travel, work, lunch, dinner,
relaxation, exercise, multi and other.

The app was designed to give the user flexibility over the labels used for activities
so that it could be customised for each user’s needs. The user could select the ‘add
new activity’ option from the menu at the bottom of the app, as shown in figure
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Figure 4.4: ADL Logger App (a) Menu options (b) Add new activity screen

4.4(a), which brings up the screen shown in figure 4.4(b). The user can then select
the routine category that the new activity fits into from a drop down list of the
pre-set options and then type any description they want for the activity itself. The
new activity is then saved as part of that user’s vocabulary and will be available for
selection on the main screen in the future.

The aim was to make the app quick to use, so as not to be too intrusive in the
user’s daily life. To this end, to log an activity the user simply has to open the app,
select the relevant activity from the drop down list for the corresponding routine and

Figure 4.5: ADL Logger App (a) Main screen (b) Selecting an activity
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press the ‘+’ button next to it, see figure 4.5(a). If the activity to be logged is already
selected then the user only needs to press the ‘+’ button, making the process quicker.
If there are only a few options in a routine then the drop down list will appear in
situ, see figure 4.5(b) and if the list is longer it will open on a separate screen so it is
easier to see all of the items and find the correct one as efficiently as possible.

Vocabulary 
 

Activity (A)   Routine (R) 
1 Showering   1 Wake Up 
2 Personal hygiene   1 Wake Up 
3 Eating breakfast   1 Wake Up 
4 Eating snack    8 Multi 
5 Drinking     8 Multi 
6 Working at desk   3 Work 
7 Preparing drink   8 Multi 
8 Attending meeting   3 Work 
9 Driving     2 Travel 
10 Bus     2 Travel 
11 Train     2 Travel 
12 Waiting    2 Travel 
13 Other     9 Other 
14 Preparing breakfast  1 Wake Up 
15 Dressing    1 Wake Up 
16 Gym     6 Exercise 
17 Climbing (indoor)  6 Exercise 
18 Phone call   8 Multi 
19 Using toilet    8 Multi 
20 Walking    8 Multi 
21 Watching television   7 Relaxation 
22 Sitting talking    7 Relaxation 
23 Preparing lunch   4 Lunch 
24 Eating lunch    4 Lunch 
25 Preparing dinner   5 Dinner 
26 Eating dinner    5 Dinner 
27 Ironing     9 Other 
28 Ironing     9 Other 
29 Shopping    9 Other 
30 Sitting relaxing   7 Relaxation 
31 Taking medication   9 Other 
32 Sleeping    9 Other 
33 Personal hygiene   8 Multi 
34 Queuing    4 Lunch 
35 Standing talking   9 Other 
36 Packing bag    1 Wake Up 
37 Giving presentation  3 Work 
38 Doing chores    9 Other 
39 Bathing     9 Other 
40 Attending presentation  3 Work 
 
 
 
 

Log 
 
R A Date  Time 
9 13 31 7 2014 07 46 58 
8 19 31 7 2014 08 04 15 
1 1 31 7 2014 08 07 17 
9 13 31 7 2014 08 18 52 
1 15 31 7 2014 08 25 56 
9 13 31 7 2014 08 34 59 
1 14 31 7 2014 08 40 29 
1 3 31 7 2014 08 42 15 
1 36 31 7 2014 08 47 29 
9 13 31 7 2014 08 53 23 
2 9 31 7 2014 08 56 41 
8 20 31 7 2014 09 59 03 
3 8 31 7 2014 10 08 57 
8 19 31 7 2014 10 35 39 
8 20 31 7 2014 10 38 10 
9 13 31 7 2014 10 44  34 
3 37 31 7 2014 11 03 33 
3 40 31 7 2014 11 24  13 
3 37 31 7 2014 11 46 35 
9 35 31 7 2014 12 01 24 
8 20 31 7 2014 12 10 29 
3 8 31 7 2014 12 16  40 
4 24 31 7 2014 12 26  30 
3 8 31 7 2014 13 05 43 
8 20 31 7 2014 15 35  57 
7 22 31 7 2014 15 42 36 
8 19 31 7 2014 16 06 40 
8 33 31 7 2014 16 11  48 
3 6 31 7 2014 16 14 55 
8 20 31 7 2014 16 42 06 
2 9 31 7 2014 16 50 00 
9 35 31 7 2014 17 19 54 
8 20 31 7 2014 17 27 56 
1 15 31 7 2014 17 31 08 
7 22 31 7 2014 17 37 10 
9 35 31 7 2014 19 13 46 
5 26 31 7 2014 19 40 12 
8 7 31 7 2014 20 04 37 
7 22 31 7 2014 20 06 21 
9 13 31 7 2014 23 00 56 
8 33 31 7 2014 23 07 41 
9 32 31 7 2014 23 10 17 

Figure 4.6: Example of a custom vocabulary and downloaded log from ADL Logger
App. Each activity in the vocabulary has an ID and a description and is associated
with a routine (1-9). The log has columns for the routine ID (R), activity ID (A),
date stamp and time at which the activity started.
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When an activity is logged, both the activity and routine ids are recorded along
with the current date and time stamp. It is assumed that each activity starts when
it is logged and ends when the next activity starts. This avoids the need for the user
to log an end time or duration for each activity. Figure 4.6 shows an example of a log
downloaded from the app. When the user selects ‘download log’ from the menu an
email is automatically generated to be sent to the researcher. The email includes the
current vocabulary and assigned unique IDs and each of the log entries since the log
was last deleted. Each log entry is the routine ID (column R), activity ID (column
A) and date-time stamp of when the start of the activity was logged.

4.2.3 Data collection and preprocessing

Using the custom built ADL Logger app, data was collected over sixteen non consec-
utive days for two healthy female volunteers (average age 27 years). The participants
collected data on days when it was not too intrusive to affect their day to day lives
between 16th July and 21st August 2014. Each participant created their own vocab-
ulary during the collection process, which are listed in figure 4.6 and appendix A.1 for
participant one and two respectively. It was found that it was easiest to start by en-
tering a few common activities to the list and then add extra items to the vocabulary
as necessary. The participants were also able to choose which of the pre-set categories
they felt the activity best belonged to. Participant one had a final vocabulary of 40
activities and participant two had 37 activities, with 25 activities in common assigned
to the same routine. Both participants also had ‘sitting talking and ‘waiting’, but for
participant one these were assigned to the ‘relaxation’ and ‘travel’ routines respec-
tively, whereas participant two assigned both activities to ‘multi’. Table 4.3 shows
the number of activities each participant assigned to each routine. Comparing these
vocabularies highlights the subjective and varied nature of participant defined labels.

Although it was not possible to edit the log on the app directly, if a participant
made a mistake or realised they had forgotten to record an activity they made a
separate note of the correct data and added this into the log once it had been down-
loaded. The logger only records the time of the start of a new activity and it is

Table 4.3: Number of activities assigned to each routine by participants

P
no.

No. activities per routine
Wake up Travel Work Lunch Dinner Exercise Relax Multi Other

1 6 4 3 3 2 2 3 7 9
2 5 3 3 2 2 2 4 10 5
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4.3. Detecting routines in the novel activity dataset

assumed that one activity continues until the next one starts. The number of sec-
onds since the previous activity was calculated and vectors of the appropriate activity
and routine labels were created at a 1Hz sample rate. This data was separated into
time slices, equivalent of documents, using the same method and window length as
for the UbiComp 08 dataset.

Initially, all of the days were processed together, however as each day is date and
time stamped and the data was not collected on consecutive days this meant that the
last activity of one day would be assumed to continue until the next time data was
logged. This lead to these activities dominating the dataset as they would have a
very large number of samples, particularly if there were a few days between the logs.
To solve this problem it was necessary to process each day individually. However,
this does mean that the last activity of the day, usually sleep has no data associated
with it. This is similar to the UbiComp 08 dataset, where data was only collected
during waking hours.

4.3 Detecting routines in the novel activity
dataset

Topic models were estimated for the first 15 days of activity data for each partici-
pant. Trial and error of the number of routines and model parameters was used to
establish the most semantically coherent model for each participant when evaluated
qualitatively. Qualitative evaluation was performed by visualising the most probable
activities in each discovered routine and judging the extent to which the combination
of activities reflects a real routine. A leave-one-day-out cross validation was con-
ducted using the selected number of routines and model parameters. For each day
a topic model was estimated using the other fifteen days of data and then inference
was performed for the left out day. The participants’ grouping of their activities into
routines when using the app were compared with the content of the routines found
by the topic model to establish a mapping between them. The accuracy of the most
likely predicted routine when compared to the mode of the ground truth labels for
each 30 min time slice was calculated.

A quantitative assessment of the optimal number of routines was also conducted
using a leave-one-day-out cross validation for different numbers of routines, from 5 to
50 at intervals of five. The perplexity (equation 2.15) of the left out day was calculated
for every model and the average perplexity across all days was given for the range
of routine numbers. The number of routines with the lowest perplexity is considered
optimal [59], as a lower perplexity suggests a better generalisation performance.
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4.3. Detecting routines in the novel activity dataset

The dataset collected contains several sources of bias, which should be taken into
account when considering the routines detected. Firstly, the data was collected on
non-consecutive days and the recording days were chosen arbitrarily by each par-
ticipant in order to minimise the invasiveness of logging data. This results in an
imbalance in the representation of weekday and weekend days in the dataset, which
often include different routines. It also means that routines on days that partici-
pants considered it inconvenient to log data are not represented, which introduces
an inherent bias as participants have specifically chosen not to include certain types
of days. A bias was also introduced by removing long sleep activities due to not
necessarily recording the waking time on the following day. Moreover, both partici-
pants were young, healthy females in full-time employment and thus only represent a
small subset of the variability in routines and behaviour patterns across the full UK
population. Finally, the participants had flexibility in the choice of activities logged
and when ‘unlabelled’ was selected, which also adds an inherent bias in the activities
represented.

4.3.1 Analysis and discussion of the detected routines

4.3.1.1 Routines discovered from models estimated for the first fifteen
days

Using the first fifteen days of data, it was found that 12 routines gave semantically co-
herent results, which had good agreement with the ground truth labels for participant
one. For participant two, 15 routines gave the most semantically coherent results.
The participant’s grouping of their activities into routines when using the app to log
their data were compared with the content of the routines found by the topic model
to establish a mapping between them, as shown in table 4.4. For participant two,
even with 15 discovered routines, the activities that were logged under the ‘exercise’
routine are still mixed up with other activities and so no routine is discovered that
maps to this ground truth label. This suggests that the labels forced by the app do
not match the actual routine of the participant.

The routines found by the chosen topic models are shown at the bottom of figures
4.7 and 4.8 for participant one and two respectively. They are visualised as a list of the
most probable activities for each of the routines, with the corresponding probability of
the activity given in brackets. Inference was performed on the data for the sixteenth
day using the topic models estimated for each participant from the first 15 days. The
results of these were processed and visualised in the same way as for the UbiComp
08 dataset.
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4.3. Detecting routines in the novel activity dataset

Table 4.4: Mapping of discovered routines from the models to ground truth routine
labels from the logger app

Ground truth (App) Routine num (Model)
Label ID Participant 1 Participant 2
Wake up 1 9 14
Travel 2 3 4,9
Work 3 1, 2, 12 2,10,12,13,15
Lunch 4 4 5
Dinner 5 7 6
Exercise 6 8 -
Relaxation 7 10 3, 11
Multi 8 5 1,7
Other 9 6, 11 8

The top plot in figure 4.7 shows the actual logged routine and predicted routine
for each document during the sixteenth day for participant one. It can be seen
that overall there is a very good match between the ground truth recorded by the
participant and the output of the topic model. However, there are some differences,
in particular, the predicted routines have missed two bus journeys that occurred in
the morning and afternoon that day, which were logged as part of the travel routine
by the participant. This incorrect prediction is because there were no bus journeys
in the previous 15 days of data that were used to create the model. Using a topic
model with an infinite vocabulary may help to mitigate problems such as this where
previously unseen activities occur [211].

Furthermore, it should be noted that the dinner routine has not been activated
for either the predicted routines or the actual routines. Looking at the underlying
activity data reveals that this was because on this day the only activity relating to
dinner that was logged was ‘eating dinner’, which only lasted 5 minutes. Hence, this
was not a sufficiently long enough event for it to be recognised because time slices
are 30 minutes long and only the most common routine within that time period is
recorded. This also happens for other activities that have a short duration, such as
‘using the toilet’. This is not necessarily a problem as the aim of using topic models
is to investigate high level routines and the end users of the system could still look
at the previous level of data fusion if they required more detailed information.

The second plot in figure 4.7 shows the probability of all routines for each time
slice. This provides more information about the certainty of the predicted routines.
In particular, this highlights that the ‘dinner’ routine is activated, but is not shown
on the first graph as its probability is just below that of the ‘other’ routine. It can
also be seen that routine 9, mapped to the ‘wake up’ routine occurs with a low
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4.3. Detecting routines in the novel activity dataset

probability at several points throughout the day. This is not necessarily intuitive but
occurs because the model has associated the ‘using the toilet’ activity to this routine
with a relatively high probability.

It can be seen from the top graph of figure 4.8 for participant two, that there is a
good match between the actual and predicted routines for large periods of the day but
that there are also several differences for shorter periods. The second graph confirms
that often the routines are predicted with a relatively low probability, demonstrating
uncertainty. One difference that can be seen is that the participant logged the ‘exer-
cise’ routine first thing in the morning, whereas the topic model predicts the ‘wake
up’ routine. However, this prediction is actually valid as the underlying activity is
yoga, which is performed as part of the wake up routine but also classes as exercise.
This highlights the limitations of the subjective nature of recording the ground truth
and the limitations of the logging app. Similarly, some of the differences during the
evening period could be considered valid. For example, routine 6, which has been
mapped to ‘dinner’ includes the activities ‘phone call’ and ‘doing chores’, which is
why it has been activated three times during the evening period. Hence, a more
appropriate label for this routine may have been ‘evening routine’ but this was not
an available option in the app and could be considered too generic to be useful.

In order to investigate the differences that occur between the actual logged routines
and those predicted by the model, a matrix of routines was generated. Every time

Figure 4.9: Visualisation of probabilities of predicted routines for each ground truth
label (actual routine) for participant one.
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slice was categorised by the mode of the logged routine labels during that period. For
each routine label in the app the sum of the probabilities of all discovered routines
(mapped to the relevant labels) for the corresponding time slices was calculated and
normalised by the total number of time slices. Figure 4.9 shows a visualisation of
this matrix for participant one, where the probability of the predicted routines for
each ground truth label is displayed using a colour scale. The orange and reds across
the diagonal show that, for the routines that occurred on this day, the probability
that the ground truth label matched the predicted routine is high. The ‘wake up’
routine is mistaken for the ‘travel’ routine relatively often, this is likely to be because
‘wake up’ only lasts for a short duration, occurs once in the day and is immediately
followed by ‘travel’.

Figure 4.10 represents the matrix for participant two. This demonstrates that the
probability of predicting a different topic is relatively high, particularly in compar-
ison with the results for participant one. In addition, it can be seen that although
exercise is logged it is never predicted as the topic model did not find a corresponding
routine. Instead, the visualisation shows there is a high probability that exercise will
be predicted as ‘wake up’, because it occurs in the morning.

Figure 4.10: Visualisation of probabilities of predicted routines for each ground truth
label (actual routine) for participant two.
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4.3. Detecting routines in the novel activity dataset

4.3.1.2 Leave-one-day-out cross validation analysis

The results of the leave-one-day-out cross validation, using 12 routines for participant
one and 15 routines for participant two, were used to calculate the accuracy of the
models for each day. For each model the routines found were subjectively mapped to
the ground truth routine labels in the same way as for the previous models. Using
these mappings the most likely predicted routine for each time slice was calculated.
These mapped predicted routines were directly compared to the mode of the ground
truth labels for each time slice. The accuracy was calculated as the number of time
slices with matching labels divided by the total number of time slices. The results
for both participants are given in table 4.5.

Table 4.5: Accuracy of most likely predicted routine compared with ground truth
labels for a leave-one-day-out cross validation for each participant

Day Accuracy P1 (%) Accuracy P2 (%)
1 33.3 89.7
2 91.9 76.3
3 83.1 70.4
4 90.1 78.5
5 64.0 64.5
6 88.2 41.8
7 91.4 81.6
8 87.2 80.3
9 84.8 76.5
10 79.3 80.9
11 91.5 53.8
12 77.5 38.2
13 84.3 87.4
14 78.3 70.3
15 88.0 47.6
16 62.8 67.4

Average 79.7 69.1

The results confirm that overall there is a greater level of uncertainty in the models
for participant two, with an average accuracy of 69.1%, than there is for participant
one, with an average accuracy of 79.7%. This is probably because the ground truth
labels matched the behaviours of participant one more closely. This highlights that
the subjective nature of the ground truth labelling can affect the results, even though
the routines found may be realistic. For participant one, day 1 has a much lower
accuracy than any other day. This is because the participant only recorded the
activity of ‘gym’ on this day. Therefore, as the model was trained on the other days
when this activity did not occur it was not possible for the correct routine to be
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4.3. Detecting routines in the novel activity dataset

predicted. Moreover, day 1 for this participant only started in the afternoon and
therefore the ‘gym’ activity accounted for quite a large percentage of the data for the
day, making the impact of this problem larger.

For participant two, day 6 and 12 have the lowest accuracies. This is probably
because both of these days were Sundays, whereas all of the other days in the dataset
were weekdays. The participant’s activities and routines are very different at the
weekend and there is little training data, therefore the model does not perform as
well for these days. Investigating the discrepancies in the predictions and the ground
truth confirms this. For example, on day 6 the participant takes a long train journey,
however the corresponding activity only occurs in routine 6 with a probability of
0.06 and therefore this routine has been mapped to ‘Other’ rather than ‘Travel’ as
it contains several activities with much higher probability that are related to the
‘Other’ routine.

4.3.1.3 Quantitative analysis for selection of number of routines

The results of the leave-one-day-out cross validation across different numbers of rou-
tines were used to calculate the average perplexity across the range for each partici-
pant. Due to the problem of the ‘gym’ activity not occurring in any of the training
data when leaving out day 1 for participant one the perplexity for this day is of
the order of magnitude 109 or 1010. Therefore this day has been excluded from the
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Figure 4.11: Average perplexity of models for different numbers of routines
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average for participant one as it obscures the remaining results. Figure 4.11 shows
how the average perplexity varies with the number of routines. It can be seen that
overall the perplexity is lower for participant two, which suggests that the models
for this participant have a better generalisation performance. This is contrary to the
accuracy results, highlighting that qualitative and quantitative assessments do not
always correspond due to the subjective nature of the labelling process. Labelling the
discovered routines for each participant based on their content could provide more
realistic results than using a standardised set of ground truth labels.

The average perplexity for participant one has a high rate of change for less than 15
routines. For participant two the rate of change is steadier, reaching approximately
zero at 20 routines. This suggests that models with slightly higher numbers of routines
would perform better than the 12 and 15 routines, that were subjectively chosen to
give the most semantically coherent results. However, although a model with 20
routines may generalise better, it would not be as useful for further analysis of daily
routines as the size of the vocabularies for these models is only approximately double
this number of routines. Therefore the routines would be too specific and be strongly
associated with single activities rather than groups that form a routine. Therefore,
the semantic coherence is important when selecting the number of routines to use.

4.4 Limitations of data collection method

When using the initial version of the ADL Logger app some shortcomings were iden-
tified. In particular, it was noticed that some activities are carried out concurrently,
for example the user may be working at their desk whilst drinking a coffee or watching
television whilst talking on the phone. If the user has chosen to enter the activities
they can select from individually, i.e. ‘drinking coffee’, ‘working at desk’, ‘watching
television’ and ‘talking on phone’ then they will need to make a subjective decision
as to which the main activity currently is and log that one. This can mean that
data that is of medical interest, such as fluid intake or social interaction, is lost. One
solution is to list all combinations of activities as separate items in the vocabulary.
However, this might result in a large vocabulary, making logging activities more time
consuming and requiring a larger dataset to ensure sufficient examples of each activ-
ity are included. On the other hand, it is expected that some detail will be lost when
summarising data at a higher level and this is not necessarily a problem. If clinicians
or users require more detailed information then the system could allow them to access
the results from lower levels of data fusion.
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4.4. Limitations of data collection method

Figure 4.12: ADL Logger App (a) Menu (b) Adding a log entry

Another limitation of the app is the lack of functionality to correct mistakes, e.g.
when a user forgets to record an activity or accidentally logs an incorrect activity.
This problem was addressed by post-editing of the log from the user’s memory of
events to provide as realistic a representation as possible. Furthermore, when adding
activities to the vocabulary for the ADL Logger app the routine options to select
from are restrictive, even with the ‘multi’ option and do not always reflect the user’s
behaviour patterns. For example, participant two added the activity ‘yoga’ to the
‘exercise’ routine, however this activity actually generally occurs as part of the morn-
ing routine and hence it may be more appropriate for it to be in the ‘wake up’ routine.
This subjective selection of routines can mean the results of the topic model do not
always agree with the ground truth, even if they are valid. Finally, the feedback to
indicate an activity has successfully been logged after pressing the ‘+’ button was
too subtle.

Figure 4.13: ADL Logger App (a) Check topic (b) Update topic (c) Confirmation
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The ADL Logger app was improved to address the restrictive choice of ground
truth routines. Instead of having a pre-defined set of routine labels, the user can use
the menu options, shown in figure 4.12(a) to separately add descriptions of different
activities and routines. A new activity can then be logged by selecting it from the drop
down list and pressing the ‘Log activity’ button, as shown in figure 4.12(b). Based on
the existing assumption that a routine runs over a period of several activities, when
the user logs an activity they are asked whether it is still part of the current routine
or if it is the start of a new routine, as shown in figure 4.13 (a). If the new activity is
the start of a new routine then the user presses the change button and can select the
new routine from the list, as shown in figure 4.13 (b) and then press update routine.
Once an activity has successfully been logged a confirmation message is shown to the
user, as seen in figure 4.13 (c), to provide clear feedback.

4.5 Chapter summary

This chapter considered the application of LDA to activity data with the aim of dis-
covering daily routines. The work of Huynh et al. [32] was replicated and the results
for the UbiComp 08 dataset were shown to be similar to those previously published.
In particular, the topic model with 10 routines had an average accuracy of 81.9%
when the most likely predicted routine for each time slice was compared with the
corresponding ground truth label for the results of a leave-one-day-out cross valida-
tion. The structure of the routines discovered by the topic model were comparable
to those found by Huynh et al. in terms of the most probable activities.

The requirements and challenges for collecting an ideal dataset for daily routine
detection from activity data collected in a residential environment were discussed.
The development of a mobile phone application to collect a new dataset of activ-
ities and ground truth routine labels was described. The experience of collecting
data and the problems encountered, such as concurrent activities were highlighted
and discussed, with suggestions for improvements given. LDA was applied to the
activities in the novel dataset collected to discover patterns reflective of daily rou-
tines. The results presented in this chapter have shown that topic models can be
successfully used with different activity datasets to discover daily routines. On aver-
age, across both datasets, there is a high level of accuracy, approximately 70 to 80%,
when comparing the discovered routines with ground truth labels. Moreover, each of
the datasets included different activities, showing that topic models will work with
varying vocabularies.
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For the new dataset, the results varied between the participants, in particular there
was a higher level of uncertainty in participant two but a lower average perplexity.
This highlights that the subjective nature of both ground truth labelling and assigning
labels or mappings to the discovered routines can have a large impact on the results
and need to be considered carefully. The semantic coherence of the routines may be
of more importance than how well they correspond to the ground truth labels. This is
particularly true due to the unsupervised nature of topic models. For example, when
discovering a routine that the user has not considered labelling but the content relates
to a routine the user performs the results of the topic model could be considered more
accurate than the original ground truth.

Finally, the results have also highlighted that the amount and variation of the
data used to estimate the model can have a large impact on the inference results
on a held-out dataset. For example, having an activity occur for the first time in
a held-out dataset will mean that the model is unable to accurately determine the
corresponding routine, especially if the activity lasts for a long time. One solution
to this could be to use a topic model with an infinite vocabulary [211]. In addition,
a very different routine structure in a held-out day, for example, a weekend day vs
a weekday will reduce the inference performance if the model was estimated on data
without similar routine structures.
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Chapter 5

Changes in Routines Over Time

Chapter 4 demonstrated that Latent Dirichlet Allocation (LDA) can be successfully
applied to activity data to discover daily routines for an individual. The routines
found are based on the data used to estimate the model and hence are the most
probable combinations of activities for that period of time. However, in reality many
peoples’ routines are not fixed and will change over time, this is an example of concept
drift [212]. These changes are two-fold: the amount of time spent in each routine
fluctuates over time and the probability of the activities that occur within a routine
may also vary. For example, an individual may change their job and have a shorter
commute so the amount of time spent doing this routine would decrease but the activ-
ities involved in the routine would remain the same. Alternatively, an individual may
change their mode of commuting from driving to cycling and hence the probability
of the activities in the ‘commuting’ routine will alter.

The two commuting examples given are dramatic shifts in behaviour patterns in
order to highlight the two types of changes. However, more subtle changes over time,
that would not necessarily be noticed by an individual or their clinician, may be an
indicator of an alteration in health status. Being able to detect such variations could
help identify concerns and aid earlier diagnosis or monitor improvements in response
to treatment. For example, someone with the onset of depression may start to spend
less time preparing meals as they have less motivation and energy, hence changing
their habits from cooking home-made meals to eating ready meals. This would mean
the probability of the activities included in their dinner routine would alter over time.

Dynamic topic models (DTMs), introduced in section 2.3.1, can be used to identify
the second type of change, that is when the probability of activities in a routine vary
over time. This chapter investigates how DTMs can be applied to long term daily
activity datasets to detect these changes. There are no datasets publicly available
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with annotations of changes over time, therefore simulated datasets are used as this
allows the changes to be controlled. Initial experiments were conducted to investigate
different approaches for applying DTMs to activity data, to detect changes over time
in the probabilities of activities within a routine. A validation experiment was then
conducted to establish whether specific changes can be correctly identified without
prior knowledge of what the changes are.

5.1 Applying dynamic topic models to long term
activity data

Dynamic topic models are an extension of LDA that allow for the evolution of routines
over time. Unlike LDA where documents are assumed to be exchangeable within the
entire corpus, DTMs impose a sequential structure on the data. This means that
changes in the probability of the activities in each routine over time are explicitly
captured using this model. This is achieved by splitting the dataset into ordered time
slices, where a noticeable change could be expected to occur between one time slice
and the next, for example a month. The data in each large time slice is used to create
smaller time slices, for example 30 minutes of data, as done in section 4.1.1 for the
LDA model. These 30 minute slices of data are the equivalent of documents in the
original text processing context. For each large time slice an LDA model is estimated
but the routines found are constrained to evolve from one time slice to the next, as
shown in figure 5.1. More specifically, the routines, βk, are chained between the large
time slices using a state space model that evolves with Gaussian noise.

5.1.1 Dynamic topic model implementation

The approximate variational inference method for dynamic topic models from Blei
and Lafferty [53], summarised in section 2.3.1, was implemented in C++ by Sean
Gerrish and David Blei along with the Document Influence Model [213] and released
as open source code [214]. An executable binary of this program is available on
Github [215] and was downloaded for use. A python wrapper for the C++ program is
included as part of the open source library Gensim, created by Radim Řeh̊uřek [216].
This python library provides functions to create and edit a corpus, call the DTM
program and view the resulting topics for each large time slice. The settings and
parameters for the DTM are passed as arguments to the C++ program. The python
library has default values for many of these settings, which were used for standard
parameters, such as maximum number of iterations of the EM algorithm. For each
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Figure 5.1: Applying the dynamic topic model to long term activity data

model the dataset used, length and number of large time slices required, number of
topics, vocabulary and alpha values were specified.

Preprocessing of the dataset to create a corpus in the same format as described
in section 4.1.1 for LDA was conducted in Matlab, as this had been used for the
previous work, thus allowing code reuse where appropriate. The Gensim python
library can be used for simple visualisations of the top activities in routines over
time. However, more detailed analysis of the results was conducted in Matlab by
directly using the data files output by the C++ program as this provided greater
flexibility than interfacing through a python API.

5.1.2 Simulation of long term activity data

To date there are no open access long-term datasets for activities of daily living
that are annotated with changes in routines over time. Therefore, it is not possible
to directly validate changes in the activities of a routine discovered using dynamic
topic models on a real world dataset because it is not known if these variations
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actually occurred. Although simulations of activity datasets are oversimplified and
not always realistic, they offer the benefit of controlling specific parameters of the
dataset. Therefore simulations can be used to generate a long-term dataset which
has a known change occurring in it. The changes in routines discovered by a DTM
can be compared to the known change that was included in the simulated dataset to
investigate whether it is possible to use this model to detect changes in routines over
time.

There are a variety of smart-home simulators in the literature [217–220], however
at the time of writing many of these do not have code available to use for running
simulations. Moreover, several of these simulators are designed for different applica-
tions, such as designing smart homes and hence are not suitable for the purpose of
creating a long-term activity dataset. Often simulators require a high level of user
input, such as paths taken around the environment by the simulated humans or a
list of pre-defined events. The output of the simulators also varies, with several im-
plementations only giving logs of simulated sensor activations. For this experiment,
output at the activity level is desired in order that this data can be directly used as
the input for the dynamic topic model to discover routines in the activities and how
they vary over time.

Given the requirements, the chosen simulator was the Home Sensor Simulator
created by Kormanyos and Pataki from Budapest University of Technology and Eco-
nomics [221]. The software, written in C#, is freely available for use and includes
two small programs that allow different layouts of houses and human behaviour pro-
files to be created. These can be used with the main simulator to generate data as
required. A variety of different data logs are generated for each simulation, including
activity logs at two different levels of abstraction. The output from the simulation
also includes detailed sensor activation logs for all simulated sensors placed in the
house layout and movement data for the simulated human. The simulation length
and step size can be specified and the results are displayed as graphs and saved to
file.

Kormanyos and Pataki [222] created the Home Sensor Simulator to help develop
and test algorithms for ambient assisted living projects without the need to collect
real life data with ground truth labels. The model assumes that there is a single
human inhabitant, with specified behaviour characteristics, in the simulated home
environment. The actions and activities that occur are decided based on priorities,
which are affected by the state of the environment and the behaviour profile. For
example, someone will become thirsty more quickly if the temperature is high, they
are performing a physical activity and have not had a drink recently. The simulator
assumes that exactly one activity, at the highest level of abstraction, is occurring
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at any given time and each of these activities has an associated priority function.
The activity with the highest priority will take precedence. Priority functions are
based on the combinations of relevant constants and variables describing the current
situation, including an element of randomness that reflects the complex nature of real
life behaviours.

The hierarchical approach to defining activities allows flexibility in the level of
detail for each activity. High level activities are made up of a sequence of mid-
dle level activities. For example, the eat cold meal event includes get ingredients,
eat meal at table and put plate to sink [222]. Unlike the high level activities, those
in the middle level do not have a priority function. The middle level activities are
further subdivided into actions, which directly influence the variables associated with
the simulation and hence affect the priorities. For example, eat meal at table is split
in to the actions go to table and eat meal. Furthermore, most actions can be inter-
rupted by others and then resumed once the interrupting action has been completed.
Interruptions are controlled by the current interrupt level, based on a combination of
the priority level of the main activity and the interrupt levels of the corresponding
lower level activities and actions currently being performed. The naming convention
for activities is taken directly from the simulator and are generally self explanatory.
At the low level, moving from one labelled area in the house layout to another is pre-
fixed by the word ‘go’. A full list of activities at the low and high levels of abstraction
are given in appendices A.2 and A.3 respectively.

For all of the experiments described in this chapter, the Home Sensor Simulator
was used to create long term daily activity datasets using the default large home
layout. The parameters for the human behaviour profiles are given as a percentage
and the real world meaning of the range of variability is detailed in table 5.1. A sim-
ulation is run to generate one month’s worth of data and then the human behaviour
parameters are adjusted, as detailed in each relevant section. This is repeated until
data representing a full year is simulated, with a known gradual change occurring.
For each dataset, a total of 12 months were simulated and all months were set to be
30 days, with a simulation step size of 10 seconds.

5.2 Investigating the effect of activity data
properties on detecting changes

This section describes initial experiments to investigate the performance of using
a dynamic topic model to find a known change in a simulated dataset. The aim
is to find the change occurring at the activity level, that is, the probability of the
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Table 5.1: Human behaviour profile parameters available for the Home Sensor Sim-
ulator. Every parameter is given as a percentage and the real world corresponding
ranges are in italics. The chosen values for simulations 1 and 2 are listed.

# Parameter Simulation 1 / % Simulation 2 / %

1 Eat frequency
3 to 7 meals per day 25 to 80 (+5/month) 50

2 Eat warm frequency
0 to 1 meal per day 50 50

3 Drink frequency
rarely to often 50 50

4 Sleep lengths
5 to 10 hours 50 50

5 WC use frequency
rarely to often 50 25 to 80 (+5/month)

6 Move speed
0 to 1 m/sec 50 50

7 Shopping frequency
never to often 50 50

8 Visitor frequency
weekly to 3 times a day 50 50

9 TV frequency
never to often 50 50

10 Computer frequency
never to often 50 50

11 Computer lengths
5 mins to 2 hours 50 50

12 Exercise frequency
never to often 50 50

13 Go outside frequency
never to often 50 50

14 Go outside lengths
20 mins to 2 hours 50 50

15 Wash dishes
never to often 50 50

relevant activities should change over time within one or more routines. Changes can
also occur at the routine level, where the probability of the whole routine occurring
changes but the activities within the routine are not affected, these types of changes
are not the focus of this work. Two simulations were run, each changing one parameter
each month, whilst keeping all other variables constant. The data generated by
these simulations were processed to create long term activity datasets with different
properties that were used as the input to dynamic topic models. The results were
explored through visualisations and analysed to determine if the known changes could
be detected.
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5.2.1 Experimental methods for investigating the effect of
activity data properties

5.2.1.1 Modelling known changes over time

For the first simulation, the eating frequency behaviour parameter was changed by
5% each month, whilst all the other parameters were kept at 50% as this reflects
average behaviour in the simulator, as detailed in table 5.1. The hypothesis was
that activities associated with eating would increase in probability within one or
more routines. Using the method described in section 5.1.2 a year of simulation data
was generated. A sample of a full event log generated by the simulation software,
containing activities at the lowest level of abstraction, is shown in table 5.2.

Table 5.2: Full event log sample with activities at a low level of abstraction

Day No. Time Activity
1 00:00:00 go wardrobe
1 00:00:24 get clothes
1 00:01:33 go bathtub
1 00:01:51 have bath
1 00:26:22 go bathroom sink
1 00:26:28 brush teeth
1 00:31:56 go bed

The vocabulary for the dynamic topic model was established to be all unique
activities that occurred in the full event logs for the 12 month simulation. The event
logs were processed to prepare the data as input to estimate a dynamic topic model.
It was assumed that the current activity continues until the next activity in the log
starts and that activities are cut off at the end of the month. Activities were listed for
each second (1Hz) for the full 12 months. For consistency with the method used for
LDA, in section 4.1.1, 30 minute time slices were created from this 1Hz activity data
with a sliding window of 2.5 minutes. Each month was considered a large time slice
for the DTM, giving 17269 small 30 minute time slices per large time slice. Dynamic
topic models were estimated using the data generated with 12 large time slices, a
vocabulary of 76 activities and α = 0.1.

The top words and their probabilities across all of the months, for each of the
routines, were viewed using Gensim [216]. Every routine was assigned a label based
on the top activities associated with it. The discovered routines were visualised and
explored in different ways to help identify significant patterns, as summarised in
section 5.2.2.1, to see if they agreed with the hypothesis that eating related activities
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would become more likely in one or more routines. The raw simulation results were
also analysed to ensure the induced change had been simulated as expected. Finally,
the most likely routine for each 30 minute time slice was determined from the results
of the DTM. A histogram of the routines for each month was generated and the values
for each routine across all months were normalised to be in the range 0 to 1.

For the second simulation, the same methods were used but instead of changing
the eating frequency behaviour parameter, the WC use frequency parameter was
changed by 5% each month, as detailed in table 5.1. Similarly to the first simulation,
the hypothesis was that activities associated with using the toilet would increase in
probability within one or more routines. Generally, using the toilet is an activity
which can occur as part of many routines at any time of the day and has a relatively
short duration. Therefore, it was expected that these changes would be more obvious
at the activity level than those related to eating.

5.2.1.2 Impact of activity durations

The exploratory visualisations and analysis of the results for the two simulations,
detailed in section 5.2.2, revealed that detecting changes in the probability of activities
within a routine over time is not trivial. Changes in activities of longer durations,
such as eating, occur at the routine level rather than within a routine. This problem
could be addressed by increasing the length of the small time slices, which is currently
30 minutes. However, this would mean that short activities would comprise a smaller
percentage of each small time slice and hence not be well represented by the model.

To understand the length of the different activities, the mean, maximum and
minimum duration of each activity at the low level of abstraction in the second
simulation was calculated, as shown in figure 5.2. This reveals that the mean duration
of all but two of the activities is less than one hour. The ‘walk outside’ activity has a
mean duration of 01:12:31, which is only slightly greater than an hour. In contrast,
the ‘sleep in bed’ activity has a mean duration of 07:33:24, which is significantly
longer than any other activity. The high mean duration for this activity causes a
large number of the small time slices used as the input to the dynamic topic model
to only contain this one activity. Therefore the changes in other routines that are of
interest are only represented in a relatively small proportion of the small time slices.
This under-representation reduces the ability of the dynamic topic model to identify
the changes of interest within routines.

To determine the impact of the long sleep activity on the performance of the
dynamic topic model it was removed from the simulated dataset for the second sim-
ulation, where the frequency of the WC use parameter was increased with time, as
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this change was found to occur at the activity level. As the mean duration of the
majority of activities is less than an hour, any occurrences of the ‘sleep in bed’ activ-
ity that lasted longer than 1 hour were removed. This meant that short naps would
still be captured as these are different to sleeping overnight. As it is assumed that
each activity in the log continues until the next one starts the dataset was split in
to days, with the last activity ending when the first long sleep activity began. Short
bursts of activity, such as getting a glass of water, in between long sleep activities
were discarded if they were shorter than the window length.

Another factor related to the duration of activities is the choice of vocabulary, i.e.
the level of abstraction of the activities used as input data. Therefore the duration of
the activities at the highest level of abstraction, listed in the shorter event log were
also investigated. The mean, maximum and minimum duration of each high level
activity in the second simulation was calculated, as shown in figure 5.3. There is only
one activity (do the dishes) with a mean duration less than 1 minute, whereas 56%
of the low level activities are under 1 minute. Similarly to the low level activities, the
sleep activity has a much longer mean duration, 08:04:17, than any other activity.

Using the high level activities with longer durations means each activity comprises
a larger proportion of each small time slice. Therefore changes in the probability of
activities within a routine will be more obvious than a small change occurring for every
short activity related to watching the TV, for example. However, the disadvantage
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of using a smaller vocabulary of activities at a higher level of abstraction is that
they become more like routines. Hence some routines can be comprised of a single
activity with probability of 1.0, providing no further insight than the original data. To
determine the impact of using activities at a higher level of abstraction, the shorter
event logs were used to generate the 30 minute time slices as input to estimate a
dynamic topic model with 12 large time slices, a vocabulary of 14 activities and
α = 0.1. Finally, combining the use of the high level activities with the removal of
long sleep durations was investigated.

A total of five datasets were generated from the two simulations to investigate the
effect of the activity data properties, as summarised in table 5.3. Only one dataset
was based on the simulation where the eating frequency parameter was changed
because it was found that this change occurred at the routine level and this is not the
focus of this work. Four datasets were based on the simulation where the WC use
frequency parameter was changed to investigate the effect of different combinations
of properties related to the duration of activities.

Table 5.3: Summary of properties for datasets generated from simulations with sim-
ulation parameter changed over time, whether long duration sleep activities are in-
cluded and activity abstraction level.

ID Simulation parameter Long activities Abstraction level
A Eating frequency Yes Low
B WC Use frequency Yes Low
C WC Use frequency No Low
D WC Use frequency Yes High
E WC Use frequency No High

5.2.2 Visualising changes in routines

This section highlights key results of the exploratory investigation to determine the
effect of the activity data properties on the performance of a DTM. A variety of
different visualisation techniques are considered to facilitate interpretation of the
results.

5.2.2.1 Results of changing eating frequency parameter

The results in this section relate to dataset A where the eating frequency parameter
was changed. The top three activities and the corresponding range of values for their
probabilities over 12 months for each routine discovered by a 10 topic DTM are shown
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in table 5.4. Each routine is arbitrarily numbered 1 to 10 and assigned a subjective
label to describe the routine based on its constituent activities. The results show
that the probabilities of the top activities in most routines are static or have a very
low variation, less than 0.005.

Although there is little variation in the probabilities of activities in routine 5,
the order of the top activities does alter over time as one activity becomes more
probable than another. This concept of changes in the importance of activities in

Table 5.4: Top activities and their range of probabilities over time for routines discov-
ered using dataset A, changing eating frequency. Each routine is given a subjective
label. A dynamic topic model with 10 routines over 12 months was used.

Routine
No.

Routine
Label

Top 3 Activities
Description Probability range

1 Sleeping sleep in bed 1.000
2 Cooking use oven

get ingredients from shelf
get ingredients from fridge

0.921 - 0.922
0.046
0.024 - 0.025

3 Exercise and
hygiene

do exercise
have bath
brush teeth

0.548 - 0.564
0.305 - 0.317
0.073 - 0.077

4 Eating and
social

eat warm meal
interact with man
pack food

0.405 - 0.510
0.192 - 0.221
0.071 - 0.082

5 Relaxing rest in chair
wc do
drink water

0.901 - 0.904
0.018 - 0.020
0.018 - 0.019

6 Outside walk outside
dress down outdoor
dress up outdoor

0.996 - 0.998
0.001 - 0.002
0.000 - 0.001

7 Getting ready change clothes
dress up outdoor
dress down outdoor

0.299 - 0.325
0.151 - 0.166
0.149 - 0.165

8 Relaxing /
TV

do watch tv
drink water
go tv

0.972 - 0.973
0.011
0.005

9 Using
computer

use the computer
drink water
go kitchen shelf

0.960 - 0.961
0.015
0.006

10 Eating eat cold meal
get food
get food from fridge

0.593 - 0.649
0.130 - 0.148
0.036 - 0.048
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Figure 5.4: Variation in top activities of relaxation routine over 12 notional months.
Activities are ordered by probability and changes in order are highlighted in red text.

a discovered routine is visualised for this routine, subjectively labelled as relaxing,
in figure 5.4 by displaying the top 6 activities for each month for the whole year.
The months with different orders of activities are highlighted in red. Routines 4 and
10, subjectively labelled as ‘Eating and social’ and ‘Eating’ demonstrate the largest
variation in probability of the activities in the routines. The probability of the top
activity relating to eating in each of these routines decreases in probability, although
other activities in both routines that are related to eating increase in probability.

Analysing the raw simulated data confirmed that increasing the eating frequency
parameter caused an increase of activities associated with eating. Furthermore, the
most likely routine for each 30 minute time slice was determined from the results
of the DTM. A matrix visualisation of the variation in frequency of each routine
over twelve months is shown in figure 5.5. The colour corresponds to the normalised
number of occurrences of the routine for each month. It can be seen that most
of the routines either have very little variation (remain the same colour) or change
frequency at random (jumping between pink and blue). However, it can be seen that
the routine subjectively labelled as ‘Eating’ varies gradually from blue to pink from
month 1 to 12, indicating that this routine becomes more frequent with time. The
routine labelled ‘Getting ready’ also varies gradually, but decreases in frequency with
time.
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5.2.2.2 Results of changing WC use frequency parameter

The results in this section are for dataset B where the WC use frequency parameter
was changed, with all activities included listed at the low level of abstraction. For
three DTMs estimated for K = 5, 10 and 15 routines, the top activities in each
routine were visualised. For the 5 routine model, the ‘wc do’ activity occurs in the
top 6 activities for all months of two routines and for the last 3 months of another
routine. In all of the routines, the probability of this activity only varies by 0.002 at
most across the twelve months. The 10 routine model only has this activity in the
top 6 activities of one of the routines and its probability is slowly decreasing by a
total of 0.013 over the whole twelve months. Finally, for the 15 routine model there
is one routine where the top four activities are related to using the toilet. The most
likely activity is ‘wc do’ and its probability decreases gradually by a total of 0.089
over twelve months. The other three related activities all increase in probability over
time however.

The model with 15 routines contains one routine that is only related to using the
toilet. Analysis of the frequency of occurrences of the most likely routine for each
30 minute time slice showed that this routine is never the most likely. Looking at
the probabilities of the routine related to using the toilet for each time slice over
the twelve months showed that overall there was a gradual increase with time. In
contrast, the 10 routine model does not have a routine specifically related to using
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Figure 5.6: Variation over time of probability of activities related to using toilet in
two discovered routines (6 and 8) for the 10 routine DTM estimated using dataset B.

the toilet and the only routine that has a relevant activity in the top 6 does not
increase over time. Visualising the probabilities over twelve months of the toilet
related activities for each routine shows that for two of the routines, there is a slight
increase in the probability of some of the related activities, as shown in figure 5.6.

However, if it was not known that the WC use frequency parameter had been
increased it would not be obvious to look at these activities specifically. If all of the
activities are visualised at once then the changes in the toilet related activities do not
stand out as changing significantly more than other activities by visual inspection.
Therefore it is not possible to confidently identify changes from viewing the results
in this way. The trends of changes in activities can be made clearer by highlighting
only those activities in routines which demonstrate a change over twelve months of
more than 25% of the minimum probability of the activity occurring in the routine,
given that the minimum is greater than 0.001. The change in the activity over twelve
months is then scaled to the range 0 to 1 in order that the direction of change can
easily be seen, as shown for routines 6 and 8 in figure 5.7. Making direct comparisons
between activities is not relevant as each one is individually normalised to the range
0 - 1 to allow clear observation of the trend of the change.

For the 10 routine model, the results of highlighting the activities that change the
most relative to their minimum probability shows that such changes occur in 6 out
of the 10 routines. Two of these routines, 6 and 8, have increases in toilet related
activities, figure 5.7, as was found by specifically looking at these activities. However,
two of the other routines, 1 and 9 also show strong trends of increasing or decreasing
in activities that are related to getting a drink. The other two routines that have
highlighted activities have more of an oscillatory pattern of change over the twelve
months, rather than showing a strong increase or decrease.
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Figure 5.7: Changes in routines 6 and 8 that vary more than 25% of their minimum
value, which is greater than 0.001. The range of the probability for each activity is
individually scaled (between 0 and 1), hence comparisons across activities are not
meaningful, however it does allow a comparison of trends.

As for the 10 routine model, the 5 routine model shows the probabilities of toilet
related activities increasing within routines. For 4 out of 5 of the routines there
are increases in probabilities over time of relevant activities. However, as for the 10
routine model, it would not be possible to visually identify these changes from others
if they were not being specifically looked for. Highlighting all changing activities, that
vary by at least 25% of their minimum probability, reveals that increases in toilet
related activities can be found in 3 of the routines, as shown in figure 5.8. Increases
in other activities co-occur in these routines though and one of the routines shows
only a decrease in the ‘wc-do’ activity and changes in other non-related activities.

5.2.2.3 Results of changing activity data properties

The results in this section are for datasets C, D and E, where the WC use frequency
was changed and the activity data properties were varied by removing long sleep
activities and/or using the activities listed at a high level of abstraction. DTMs were
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Figure 5.8: Highlighted changes individually scaled to between 0 and 1, that vary the
most relative to their minimum probability, in four routines discovered by a 5 routine
DTM estimated using dataset B.

only estimated for K = 5 and 10 for each dataset as using K = 15 produces routines
that are too specific i.e. one routine for using the toilet.

For the 5 routine model using dataset C with long sleep activities removed, vi-
sualising the probability of the toilet related activities over time showed that four
routines in this model had an increase in at least one relevant activity. These re-
sults are very similar to those for dataset B without sleep removed. Highlighting the
changing activities in each routine showed that increases in the probability of toilet
related activities were found in all of the routines except one. Three of these four
routines also had other highlighted changes in unrelated activities which were oscil-
lating rather than showing a steady increase or decrease in probability. One routine
had increases in toilet related activities co-occurring with an increase in the ‘drink
water’ activity. The final routine only had an oscillating change in one non-related
activity.

A 10 routine model was also created for dataset C and the resulting probabilities
of the relevant activities over time were visualised. The results showed that toilet
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related activities only occurred in one of the ten routines. Moreover, four of the top
six activities in this routine are related to using the toilet. Determining the most
likely routine for each 30 minute time slice shows that this routine is never the most
likely. However, looking at the probability of the routine over the twelve months
demonstrates that there is an increase with time.

When the vocabulary is changed to the activities at a high level of abstraction but
sleep is not removed (dataset D), for the 5 routine model, the WC activity occurs
in the top 6 activities of four routines. The probability of the activity is increasing
in every routine, but sometimes only by a small amount. Highlighting changes in
routines showed that the WC activity is increasing in two of the routines. However,
the ‘someone at entrance’ activity is highlighted for four of the routines, although
it oscillates in probability rather than showing a steady trend. The model with 10
routines only has the WC activity in the top 6 activities of one routine, with a
relatively high probability. This routine is very rarely the most likely for each 30
minute time slice, but looking at the probabilities demonstrates an overall increase
with time.

As the routines found using the K = 10 model for datasets C and D, with sleep
removed or activities at a high level of abstraction were too specific, only a K = 5
model was estimated for dataset E with both of these properties. The results showed
that the WC activity occurs in the top 6 activities of all the routines. Moreover,
the probability of this activity is increasing in four of the routines and nearly stable
in the other routine. Highlighting changes within routines revealed that the WC
activity is increasing in three of the routines, however changes in other activities are
also highlighted. In particular, the ‘someone at entrance’ activity occurs in all of the
routines, although it has a varying probability in four of the routines and a decreasing
probability in the other routine.

5.2.3 Discussion of detecting changes in routines

This section has investigated the use of dynamic topic models with simulated activity
datasets to determine if it is possible to find a known change over time. In partic-
ular, the effect of the activity data properties on detecting changes was considered.
A range of different visualisations were explored to determine the best method for
automatically identifying relevant changes occurring at the activity level, i.e. the
probability of activities within a routine changing over time.

Listing the top activities and their probabilities over time for the 10 routines
found for dataset A, where the eating parameter was changed, showed that there
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was little variation for the majority of activities. This was as expected because all
of the simulation parameters were kept constant, except for the eating frequency
parameter. Viewing the results in this format provides a high level of detail but
it is time consuming to consider all of the individual probabilities and draw useful
information from the results. Therefore this is not a suitable method for presenting
the data to clinicians. Figure 5.4 demonstrated how changes in the importance of
activities within a discovered routine can be visualised in a summary diagram where
changes in the orders of activities are specifically highlighted, helping to identify the
changes quickly and easily. These changes can be linked to behaviour changes which
help to provide users and clinicians with detailed data for aiding diagnosis.

The routines discovered did not show an obvious pattern of eating activities in-
creasing in probability within routines. This suggests that the change did not occur
at the activity level as expected. The matrix visualisation of the change in frequency
of each routine over the twelve months confirmed that the change was occurring at
the routine level. It was also noted that other routines showed a decrease in fre-
quency. The probability of all the routines sums to one for each small time slice and
therefore an increase in one routine can cause a decrease in others. In real terms this
is equivalent to the idea that the number of hours in a day is fixed and hence if more
time is spent on eating then less time must be spent on other activities. This impact
may be seen as a decrease in one other routine or be spread across all other routines
depending on the nature of the person and the change that is occurring.

The results for dataset B, where the WC use frequency parameter was changed
demonstrated that the number of routines affects the level at which the change is
seen. This is due to the fact that as the number of routines increases they become
more specific i.e. only one or two activities have a high probability and the majority
of activities have a probability of approximately 0. Therefore the routines are more
like activities and hence changes will be seen at the routine level rather than the
activity level. In the case of the 15 routine DTM for dataset B, one of the routines
is only related to using the toilet and hence the change is seen at the routine level.
However, because this routine is actually still short in duration, in comparison with
the 30 minute length of the short time slices, it is never seen as the most likely routine
and therefore the change is only seen if the probabilities of the routine are plotted
over the full twelve months. Changes at this level can be of interest to clinicians but
are not discussed further here as they are not the focus of this work.

When there are fewer routines each routine contains a larger mix of activities and
hence is less specific. The results for the 5 and 10 routine models demonstrated that
the change in WC use frequency can be seen at the activity level. This indicates that
the models are sensitive to the relationship between the duration of the activities that
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are changing and the length of the routines that they occur in, which is affected by
the choice of the number of routines and how specific they are. Although it is possible
to find the WC use frequency change at the activity level, the results also showed that
it is not the only change that was highlighted by considering activities that varied by
over 25% of their minimum probability of at least 0.001. In particular, the ‘interact
with man’ activity was highlighted in several routines but had an oscillatory pattern
of change. The simulator used includes an element of randomness in determining the
priority of each activity at any given time. This oscillatory change pattern could be
attributed to this random change in the simulation, which is reflective of the complex
nature of real life.

Other activities are also highlighted and show a trend of increasing or decreasing
over the twelve months, such as ‘change clothes’. These activities are not related to
the parameter that was changed but can still be valid changes caused by the random
element in the simulation or as an indirect result of the known change. Generally,
these activities are isolated i.e. one activity is highlighted as changing but other
associated activities are not highlighted, whereas the activities related to the known
change appear in groups that change at the same rate. These additional changes
reduce the confidence in the identification of the known change. Future work in
collaboration with clinical experts, using real datasets need to evaluate the properties
of the data and model that will produce clinically relevant information to help aid
diagnosis.

Changing the properties of the dataset by removing long sleep activities and/or
using a vocabulary of activities at a high level of abstraction affected the relationship
between the number of routines chosen for the model and the level at which the
change was seen. For datasets C, D and E the routines discovered by a 10 routine
model were too specific and hence the change was seen at the routine level. Removing
the long sleep activities means that there are fewer small time slices used as input to
the model. Hence, each of the remaining small time slices will be a larger percentage
of the whole dataset and so the model can find a better fit to this data as it is not
dominated by time slices with only sleep. The resulting routines are more specific
for the same parameter K, number of routines. Using the smaller vocabulary of high
level activities means there are fewer activities listed in each time slice, hence the
routines discovered have a smaller mix of activities and are more specific.

For the 5 routine models the change in the WC use frequency parameter could be
seen at the activity level for these datasets (C, D and E). Other changes unrelated
to the known change were also highlighted, similar to the results for dataset B.
For example, the oscillatory pattern of the ‘someone at entrance’ activity when using
activities at the high level of abstraction is equivalent to the behaviour of the ‘interact
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Table 5.5: Summary of changes found at the activity level, of more than 25% of the
minimum probability of the activity, for models with different numbers of routines
and dataset properties.

ID Routines Unrelated
changes

Related
changes Details of related changes

B 5 0% 80% 60% increases, 20% decrease, all with
unrelated changes

B 10 40% 20% All increases, no unrelated changes
C 5 20% 80% All increases with unrelated changes
D 5 40% 40% All increases with unrelated changes
E 5 40% 60% All increases with unrelated changes

with man’ activity for the low level of abstraction.

Overall the known change of increasing the WC use frequency, was found at the
activity level for datasets B to E using models with K = 5 routines and for dataset
B using a model with K = 10 routines. For each of these models, table 5.5 sum-
marises all of the highlighted changes found and whether they were related to the
known change. The percentage of routines where all of the highlighted changes were
unrelated to the simulation parameter that was varied are given. The percentage
of routines where at least one of the highlighted changes was related to the known
change is also presented. The details of the trend for related changes and whether
they occurred with unrelated changes are listed to indicate how clearly they can be
seen. When there is a larger percentage of routines with a related change and all of
the related changes demonstrate the same clear trend this increases the confidence in
the change found. The models estimated with 5 routines for datasets C and E, where
long sleep activities were removed and the activities were at a low and high level of
abstraction respectively, demonstrate the clearest visualisation of the known change
at the activity level.

5.3 Detecting unknown changes in routines

The initial experiments suggested that changes occurring at the activity level can
be identified more easily when estimating a model with 5 routines, using a dataset
where long sleep activities have been removed. For these experiments the simulation
parameter changed over time was known, introducing a bias when exploring the
results. In a real world dataset the changes occurring will not be known a priori.
This section describes an experiment where simulations were run without the author
knowing the parameters that were changed, in order to remove this bias. Dynamic
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topic models were estimated for each dataset and the results were visualised to detect
any changes, which were then compared with the revealed variation in simulation
parameters.

5.3.1 Generating datasets with unknown changes over time

An unbiased third party ran three simulations (X, Y and Z) using the procedure
described in section 5.1.2. For the human behaviour profiles a total of 6 options were
provided, where all of the parameters were to be set to 50% except for one or two of
the parameters. For each option the parameters to be increased from 25% to 80% by
5% each month are given in table 5.6. The instructions stated that two of options 1-4
and one of options 5 or 6 should be chosen; one of these for each simulation, in any
order. The event logs generated for each simulation were given to the author without
revealing the parameters selected.

Table 5.6: Options of parameters to vary from 25% to 80% by 5% each month, for
simulations where the changes were unknown to the author

# Parameters to change
1 Drink frequency
2 Eat frequency
3 TV frequency
4 Exercise frequency
5 Drink frequency and WC use frequency
6 Eat frequency and TV frequency

From the event logs for each of the three simulations a total of six datasets were cre-
ated, as summarised in table 5.7. Long sleep activities were removed for all datasets
and for each simulation there was one dataset with activities at the low level of ab-
straction and one at the high level. A 5 routine dynamic topic model was estimated
for each of the six datasets and the vocabulary for each model consisted of all possi-

Table 5.7: Summary of properties for datasets generated from simulations with un-
known parameter changed over time.

ID Simulation Long activities Abstraction level
F X No Low
G X No High
H Y No Low
I Y No High
J Z No Low
K Z No High
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ble activities that could be simulated at the relevant level of abstraction. As for the
initial experiments, 30 minute time slices were created from 1Hz activity data with
a sliding window of 2.5 minutes and each month was considered a large time slice.

5.3.2 Changes in routines found using dynamic topic
models

The results from models estimated for datasets F and G suggest that the exercise
frequency simulation parameter was increased in simulation X, indicating option 4
was selected. The reasons for concluding this are discussed here. Visualising the
probabilities over time of the top 6 activities in each routine, discovered by the model
estimated using dataset F, shows an increase in the ‘do exercise’ activity in routine
1, as shown in figure 5.9a. A log scale is used in order to visualise all of the activities
at once. There are also changes in activities relating to eating and using the toilet in
two of the routines, therefore this alone is not enough evidence to draw a conclusion.

Viewing the highlighted changes, shows that every routine has the ‘interact with
man’ activity, however it has an oscillatory pattern of change rather than showing
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Figure 5.9: (a, b) Probabilities over time of top activities and (c, d) highlighted
changes, in two routines estimated by a DTM using dataset F.
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a strong increase or decrease. Therefore it is unlikely to be related to the changing
simulation parameter but can still be a valid change occurring in the data due to the
random element in the simulation. Routine 1 shows increases in highlighted changes
for exercise related activities and decreases for eating related activities, as shown in
figure 5.9c. Whereas, routine 2, figure 5.9d shows increases in many activities that
are related to eating. This is also inconclusive as the trend of the highlighted change
for eating related activities is opposite in the two routines.

As it is possible for changes to also occur at the routine level the most probable
routine for each 30 minute time slice was determined. The variation in frequency for
each routine across the full simulation duration is visualised as a matrix, as shown in
figure 5.10. The colour corresponds to the normalised number of occurrences of the
routine for each month, where blue is the lowest and pink is the highest frequency.
It can be seen that routine 1 is occurring more often and routine 2 is decreasing in
frequency.
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Figure 5.10: Visualisation of the normalised change in frequency of all routines over
time. Blue is lowest frequency and pink is highest. Results from a 5 routine DTM
using datset F.

Combining this information shows that exercise related activities are becoming
more likely within routine 1, in addition to the routine increasing in frequency overall.
In contrast, although eating related activities are increasing in probability in routine
2, overall the routine is occurring less frequently. Furthermore, the eating related
activities in routine 1 are decreasing, although the routine is becoming more frequent.
Hence the changes at activity and routine level effectively cancel each other out for
the eating related activities, whereas for the exercise related activities they have a
compound effect. This strongly suggests that the simulation parameter changed over
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time is the exercise frequency. The same patterns can be found in the results from
the dynamic topic model estimated for dataset G.

For datasets H and I, the results from the dynamic topic models suggest that both
the drink frequency and WC use frequency simulation parameters were increased,
indicating option 5 was selected. The evidence leading to this conclusion is presented
here. Visualising the top 6 activity probabilities over time for the model estimated
using dataset H shows that there are changes in activities related to drinking and
using the toilet in three of the routines. There are also changes in other activities
across the routines but none of these are as consistent, for example the ‘go tv’ activity
decreases in routine 2 but activities related to watching tv do not occur in the other
4 routines. This evidence alone is inconclusive.

Finding the highlighted changes for each routine gives further insight into the
results. This shows that WC use related activities are increasing in 80% of the
routines and drink related activities are increasing in 60% of the routines. The other
highlighted changes that occur are much more variable and the probabilities tend to
oscillate over time. Moreover, for this dataset, it was found that there was very little
variation at the routine level, indicating the change is occurring at the activity level
as desired.

The results of the model estimated using dataset I show that when visualising the
top 6 activities in each routine over time the WC activity is changing in 100% of the
discovered routines and the drink activity is changing in 60%. There are also changes
in other activities across all of the routines but they generally show an oscillatory
pattern of change. A similar picture can be seen in the highlighted changes, as shown
in figure 5.11. For three of the routines the highlighted changes show increases in
WC, drink or both. However, the WC activity is decreasing in two routines. The
other highlighted changes all demonstrate an oscillatory pattern of change. Overall
the only consistent changes with a strong trend are for activities related to drinking
and using the toilet, suggesting these are the simulation parameters changed over
time.

The results of the dynamic topic models estimated using datasets J and K suggest
that the eating frequency simulation parameter was increased, indicating option 2
was selected. Considering the probabilities of the top 6 activities in each routine,
found by the model estimated using dataset J, suggests there is no obvious change
at the activity level. Routines 1 and 4 show a decrease in activities related to using
the toilet and routine 2 shows a decrease in the ‘drink water’ activity. Routine 5
shows the most changes, with eating related activities both increasing and decreasing
and the ‘wc do’ and ‘drink water’ activities increasing. The highlighted changes
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Figure 5.12: Routine 5 highlighted changes for DTM estimated using dataset J.

also demonstrate no obvious consistent change. In particular, routine 5 has many
highlighted changes, as shown in figure 5.12, including several activities related to
eating.

The matrix representation of the variation over time of the frequency of each rou-
tine, figure 5.13, demonstrates that routine 5 is occurring more often over the twelve
months. This shows that the change is happening at the routine level. Therefore,
although the eat warm meal activity is decreasing within routine 5, the increase in
several other eating activities and the overall increase in the routine provides strong
evidence that the change is in the eating parameter. The results of the model esti-
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Figure 5.13: Visualisation of the normalised change in frequency of all routines over
time. Blue is lowest frequency and pink is highest. Results from a 5 routine DTM
estimated using dataset J.
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mated using dataset K also do not demonstrate any obvious consistent change at the
activity level. There is an increase over time at the routine level of routine 1, which
has the top activity ‘eat cold’. In addition, the highlighted changes for this routine
show the ‘do the dishes’ activity increasing.

After the results were analysed and the predicted options determined the original
selections were revealed, as summarised in table 5.8. It can be seen that the cor-
rect option was successfully identified using the routines discovered by the dynamic
topic models for every simulation. This demonstrates that it is possible for unknown
changes over time to be identified using DTMs on a simulated dataset. However,
some of the changes found were at the routine level rather than the activity level.
Furthermore, additional changes were identified as well as those related to simulation
parameters changed. The limited list of possible changes to be found means that
there is still an element of bias and further work is required to validate this approach
using long term annotated real world datasets.

Table 5.8: Results of detecting unknown changes in routines for three simulations
with different parameters varied over time.

Simulation Predicted Actual
X Option 4 Option 4
Y Option 5 Option 5
Z Option 2 Option 2

5.4 Chapter summary

This chapter has considered the use of dynamic topic models to identify changes
in the probabilities of activities within discovered routines. The initial experiments
demonstrated that these types of changes can successfully be identified for a simulated
dataset with a known change. However, some of the changes occurred at the routine
level, that is the probabilities of the activities within a routine remained similar over
time but the routine occurred more frequently over time. It was found that the
relationship between the duration of the activities in the dataset used as input and
the number of routines specified affect how easily a change can be identified. The
best performing combinations for the simulated datasets investigated were identified
as models with 5 routines and removal of long sleep activities from the data. The
vocabulary used did not have much effect on the performance.

These selections of activity data properties and model parameters were used to
estimate DTMs and identify unknown changes in six datasets created from three
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different simulations. The results showed that the DTMs can successfully be used
to identify changes when they are not previously known. This indicates that DTMs
have potential for identifying changes in routines over time occurring in real activity
data. There are limitations with these results as they are for simulated data with a
maximum of two parameters changed over time and a limited number of options to
choose from when identifying the unknown changes.

Different visualisations and techniques to explore the routines discovered by DTMs
have been explored. The results demonstrated that considering how the probabilities
of the top activities in each routine vary over time can reveal interesting patterns.
However, interacting with the results at this level is time consuming and would not
be suitable for end users unless summary diagrams that clearly outline the changes
can be automatically generated. Presenting all of this information, including the
magnitude or significance of a change, concisely and clearly is a challenging data
visualisation task.

A new visualisation technique was proposed that highlights changes in activities
that meet given criteria. For the simulated datasets the requirements were that the
activity must vary by over 25% of its minimum probability and that the minimum
probability must be at least 0.001. This approach uses the relative change of the
probability rather than the absolute change. The probability of an activity in a
routine is the likelihood of that activity if the routine is occurring and hence activities
of shorter duration will have lower probabilities. This does not mean that a small
change in absolute terms is not significant if it has a large change relative to its initial
probability. The highlighted changes are scaled from 0 to 1 in order to visualise the
trend of the change clearly. A change that oscillates over time is less likely to be
significant if it is related to natural phenomenon, such as seasonal changes or random
fluctuations. These criteria were shown to be successful in highlighting the large
relative changes in the simulated datasets considered. However, they may not relate
to significant real world healthcare criteria for a real dataset.

Future work needs to address the limitations of the existing results. Firstly, a larger
experiment on more complex simulated datasets with multiple parameters changing
and no limited list of permutations is required. This would demonstrate the ability
of DTMs to detect changes in data that are more similar to a real-world dataset.
A large number of varying parameters may cause the results to highlight too many
changes to be helpful in understanding the data. In addition, the activity labels
generated by the simulator are assumed to be a perfect representation of the person’s
behaviour. In reality, activity recognition algorithms using raw sensor data will not be
completely accurate and hence noise will be introduced into the system. The impact
of this can be investigated using simulated datasets by manually varying deletion and
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insertion errors of the generated activities, as done for LDA and other topic model
variants by Seiter et al. [125]. Secondly, a real-world long term dataset with known
changes would be needed to demonstrate that the method can work on data that is
not simulated. Furthermore, valid criteria for detecting significant changes related
to health and well-being will need to be established in collaboration with relevant
experts.

The combination of activity data properties and model parameters for this exper-
iment were chosen in relation to the data generated by the simulator. Only some of
the changes made were discovered at the activity level. This is due to the variation in
duration of activities. A new vocabulary where activities are selected to ensure that
their mean duration is within a specified range would improve the performance of the
DTM. The length of the small time slices would also be set in relation to the length
of activities so that most of the time slices contain a mixture of different activities.
These decisions should be made in conjunction with expert clinical opinions in order
to be able to identify changes that are significant in terms of healthcare. Different
models may be required for different situations if changes are occurring at varying
levels of granularity.

Certain changes in behaviour can be detected simply by monitoring how frequently
relevant activities occur. However, if there are a lot of activities being recorded then it
would be time consuming to review and identify changes at this level. It is quicker for
a clinician to be given a summary at a higher level, only reviewing more detailed data
if necessary. The benefit of using DTMs to identify changes within routines is that
this processing can be done automatically to provide the user a concise summary.
Only analysing changes at a higher level directly would risk the loss of important
information that is hidden in the data. DTMs enable both a high level summary
whilst still incorporating useful information from the more detailed data.

In conclusion, dynamic topic models are useful for detecting changes over time
in the probabilities of the activities that compose a routine. DTMs should be used
carefully as certain conditions and assumptions need to be met for them to perform
well. This approach is not a one size fits all solution as it is affected by the model and
dataset parameters and how they relate to each other. For example, a model that
performs well for detecting changes in activities that only last a few minutes within a
routine that is varying on a weekly basis will not perform well if applied to a dataset
containing changes in activities that last half an hour within a routine that varies
every few months. This is a limitation of the approach as it is not generalisable and
needs to be tuned using expert knowledge and contextual information for different
scenarios.
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Chapter 6

Detecting Eating Event Types in
Nutrition Data

Many chronic conditions are related to diet, such as diabetes and obesity [7, 16].
Therefore, one important focus for a healthcare residential monitoring system is the
consumption of food and drink. Recently, nutrition research has moved away from
the traditional approach of investigating relationships between single nutrients and
specific health outcomes to take a more holistic view by considering dietary patterns
[184, 223]. This approach reflects the fact that links between diet and health are
multifaceted and complex. Furthermore, it acknowledges that single nutrients are not
consumed alone; in fact people eat items of food, which contain multiple nutrients.
Equally, meals or snacks represent combinations of food consumed together within an
eating event. The ingestion of nutrients and foods in combinations can interact with
each other and therefore considering how they occur together could help to reveal
stronger relationships to health outcomes than considering them individually [16,223].

Several studies consider the association between different eating behaviours, es-
pecially snacking, and the impact on diet quality and health. Results throughout
the literature are often conflicting and this is, in part, due to not having consistent
definitions for different eating events, including what a snack is [17,18,184]. As high-
lighted in section 3.3.3, there are a variety of methods used in studies to define eating
events; moreover, these definitions are often biased by cultural norms [184]. Clear
definitions of eating events are required to enable consistent research into related
health outcomes and determinants of eating behaviours [18]. They would also inform
public health guidance, to ensure that advice is relevant and useful. This chapter will
consider how topic models can be applied to nutrition data to reveal patterns in the
combinations of food groups consumed together in different eating events.
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6.1 Applying topic models to nutrition data

The aim of applying topic models to nutrition data taken from food diaries, which has
not previously been considered, is to identify combinations of food groups consumed
together in an eating event. It is hypothesised that the results of the topic model will
be representative of eating events composed of similar combinations of foods, which
can be subjectively labelled as meals or snacks. This could provide a standardised
approach for categorising eating events that could be used within the nutrition re-
search community. In order to apply LDA to food diary data it is necessary to define
the probabilistic model, as presented in 2.2, in the context of this application. This is
not a trivial problem and this section describes the approach taken to find a suitable
vocabulary and method for document creation for the National Diet and Nutrition
Survey Rolling Programme (NDNS RP) dataset. This dataset includes dietary data
from four-day unweighed food diaries, with each item consumed by a participant
listed separately.

6.1.1 National Diet and Nutrition Survey (RP) dataset

The NDNS RP was a continuous cross sectional survey conducted from 2008 to
2012 [224]. The survey investigated food consumption, nutrient intake and nutri-
tional status of people aged 18 months or older and living in private households, from
a representative sample across the UK population. The sample was drawn using a
multi-stage stratified random sampling procedure. Addresses were selected randomly
from primary sampling units, which are clusters of addresses from the postcode ad-
dress file for the UK. The aim was to collect data for 500 adults and 500 children each
year, therefore for some addresses only children were selected to participate. Extra
addresses for Wales, Scotland and Northern Ireland were selected to boost sample
sizes for these countries to enable comparisons between countries, however these were
not included in the available datasets (Core Sample Data) at the time of this work.
In total there were 4,156 fully productive participants for whom a complete set of
data is available. Full details of how the survey was conducted and all of the data
collected is available from the UK dataservice [225]. This data was accessed under
usage number 87742 on 23/02/2015.

The study includes detailed dietary data from unweighed four-day food diaries
recorded by the participants, although participants who only completed three days
were still classified as fully productive. The food diaries were completed over four
consecutive days. Across the whole study all days of the week were represented as
equally as possible, accounting for the preferences of the participants [224]. The in-
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formation from these diaries were coded by trained individuals using the Department
of Health’s NDNS RP Nutrient Databank. Each item, or component part of compos-
ite items such as a sandwich, recorded in the diaries was assigned a food code and
portion code [226]. The aim of coding food diary data is to establish the nutrient
composition as accurately as possible. Recipes for composite foods can vary widely
and hence they are separated into their constituent ingredients to improve accuracy.
Variation between recording composite items in their entirety or as component parts
depends on the availability of information supplied by the participant and data on
food composition in the database.

The data from the entire survey is provided at individual and household levels and
food diary data at food, day and person levels. For this work, the food level dietary
data is generally used, which consists of 384,028 records, one for each food item
recorded for each participant, on each day. This provides very detailed information
about each item consumed, including the food name, food group, food subgroup,
recipe group, nutrients, weight and energy content. In addition, contextual data is
included, such as unique ID, age, sex, location eaten, company when eating, day of
week and time of consumption. However, for some of the exploratory work the day
level dietary data for foods was also considered. This consists of 16,540 records, one
for every diary day for each participant, giving a record of the total weight of each
food group consumed during the day. It should be noted that the food groups used
in this section of the data vary slightly from those used in the food level data. Full
details can be found in the NDNS RP documentation [182, 227] and are listed for
reference in appendix B.1.

6.1.2 Choosing vocabulary

For the purpose of this work, an eating event is defined as all items consumed at a
specific time on one day, as recorded to the nearest second in the food diary [228]. In
other words, every entry in the food diary (a group of items consumed at a specified
time) is equivalent to an eating event. The important information about analysing
an eating event is its energy content, weight, constituent food items and time of day.
Therefore, it was initially proposed that the vocabulary used for the topic model
should include these aspects. It was thought the food names given in the dataset
could be used directly as these are already mapped to food groups and subgroups so
no information would be lost. To have a separate vocabulary entry for every weight,
energy value and time would result in a verbose vocabulary e.g. a 40g (94 kcal) slice
of white bread eaten at 7am would be one vocabulary item. Therefore the dataset was
analysed to decide on realistic groupings which could be used as vocabulary items,
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e.g. weights between 1 and 50g could be one vocabulary item and energies between
0 and 100 kcal could be another.

A statistical summary of the dataset was used to determine suitable ranges for
grouping the meal time, energy and weight variables. It was found that meal times
recorded in the dataset ranged across the full 24 hour period. The maximum interval
between any two meal times recorded for any participant across the whole dataset was
found to be 10 minutes. The sum of the energy of all items in each eating event was
also analysed. The majority of eating events had a total energy content of less than
2000kcal. Items over 2000 kcal were for example, 1kg of pizza or 500g of chocolate.
A histogram of the total energy of eating events was created, automatically selecting
the bin width to fit the data and reveal the shape of the underlying distribution. An
optimal bin width of 20 kcal was found, as shown in figure 6.1, energies above 1000
kcal are not displayed here as the frequencies are relatively small. The same approach
was taken for analysing the sum of the weight of all items in each eating event. It was
found that the majority of eating events had a total weight of under 2kg. Typically
beer and cider consumption contribute to entries over 2kg. The histogram of weights
finds an optimal bin width of 10g and the distribution of weight up to 1kg can be
seen in figure 6.1.
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Figure 6.1: Histograms of sum of energy content and weight of all eating events in
the NDNS RP dataset. The bin sizes are 20 kcal and 10g respectively.
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Based on this analysis an initial set of vocabulary items were chosen as described
below. For the energy, weight and time, each item was created from a prefix, repre-
senting the relevant type of data, and the associated range. This creates descriptive
words that facilitate subjective analysis of the final results of a topic model. In total
there were 4521 vocabulary items, each assigned a unique ID.

The initial vocabulary items were as follows:
• Food names of all items in dataset
• Meal Time ranges in 10 min intervals from midnight to midnight (MT00:00-

00:10 to MT23:50-00:00)
• Energy content ranges in 20kcal intervals from 0 to 2000 kcal (E0-20 to E1980-

2000) and energy content over 2000 kcal (E2000+)
• Weight ranges in 10g intervals from 0 to 2000g (W0-10 to W1990-2000) and

weights over 2000g (W2000+)
Using this vocabulary with the assumption that a document in the original LDA

model is equivalent of one eating event for this application restricts every vocabulary
item to appear once at most in any document. If there was a larger quantity of any
one item it would just be listed in the original diary data with a higher quantity.
Only having items appear once per document would result in very sparse documents.
One solution considered was to change the vocabulary to use the 60 food groups
that exist in the dataset, rather than the individual food names, as each food group
contains many food items and hence may occur more than once in a document. Other
solutions based on changing the document structure were also considered and these
are outlined in more detail in section 6.1.3.

Furthermore, having separate vocabulary items for energies, weights and times
meant that the intrinsic relationship between a particular food item and its properties
was lost. One option considered was to combine food names or food groups together
with the weight, energy or energy density, for example, ‘Bacon and Ham E80-100’
could represent a 90 kcal portion of bacon. This would create unique vocabulary items
that maintain the link between the properties and the item. However, this would
lead to a verbose vocabulary where words would occur infrequently in documents,
hence this approach was not considered appropriate for the modelling assumptions.
Alternative solutions are described in more detail in section 6.1.3.

The separate weight, energy and time vocabulary items meant that some of the
topics found by the model did not contain any food items or food groups in the
list of most significant words. An example of a topic with only time and energy
values in the top 10 words is given in figure 6.2b. Although such topics could still
reveal interesting information about patterns between weights, energies and times; for
investigating types of eating events it is desired to know about the specific food groups
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vegetables not raw
pasta rice and other cereals

other margarine fats and oils
beef veal and dishes

chicken and turkey dishes
wine

miscellaneous
other potatoes potato salads & dishes

chips fried & roast potatoes and potato products

sausages

(a) Main Meal Topic

mt18:00-18:10
mt13:00-13:10

mt18:20-18:30
e320-340
e360-380
e380-400

mt12:20-12:30
mt12:00-12:10

mt16:50-17:00

e400-420

(b) Non-food Topic

Figure 6.2: Examples of the top 10 food groups in two topics. Discovered by a model
with 10 topics; a vocabulary based on food groups, weights, energies and times; and
documents created per eating event. Displayed with font size proportional to the
probability of the vocabulary item in the topic. The labels ‘Main Meal’ and ‘Non-
food’ are subjectively assigned to the topics by the researcher based on the food
groups listed.

involved. In contrast, figure 6.2a depicts a topic that is semantically coherent and
can be subjectively labelled as being a ’Main Meal’ based on the top 10 vocabulary
items in the topic.

6.1.3 Approaches to creating food documents

For the original application of LDA to a corpus, a document is implicit and does not
need to be defined. However, when applying the model to alternative types of data
it is necessary to consider and define what is meant by a document. A document
is represented as a bag of N words taken from the vocabulary but the boundaries
of the collection are not defined for this application. For continuous data, a given
time slice can be used to define a document, such as a 30 minute window, as used
for the activity data in chapter 4. In contrast to the activity datasets, the NDNS
RP dataset contains data from a large number of participants, rather than long term
records for a few participants. Furthermore, food diaries are recorded as discrete
eating events, at specific times, with varying intervals in between events for each
participant. Therefore, using windows of a specified length for eating events recorded
for one participant does not guarantee that all documents will contain data.

Initially, a document was considered to be a single eating event, as defined in
section 6.1.2. Documents were created by recording all of the relevant vocabulary
items for the eating event, from the original vocabulary of 4521 items. For weights,
energies and times the vocabulary item representing the range in which the actual
value occurs was used. As mentioned in section 6.1.2, creating documents based on
a single eating event means that they are very sparse. Although using food groups
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is an improvement over using the food item names directly the documents remain
sparse.

In order to reduce the problem with sparsity in the documents and to encode the
relationship between a food item and its properties more explicitly, a new approach
was taken to creating documents. Each food group was repeated in proportion to
its energy content, using a vocabulary of food groups only. Using this approach the
topic model discovered some semantically coherent topics which are representative
of typical eating events. However, some of the topics were combinations of food
groups that did not relate to a typical eating event when evaluated qualitatively. For
example, a topic with the following top vocabulary items and associated probabilities
in brackets, ‘biscuits (0.59)’, ‘eggs and egg dishes (0.24)’ and ‘white fish coated or
fried (0.16)’ would be challenging to apply a subjective eating event type label to.

Repeating the food groups solves the sparsity problem, however if a topic is con-
sidered to be a type of eating event and a document is created based on a single eating
event, then by definition, a document will only exhibit one topic. This does not sup-
port the assumption of LDA that a document will exhibit multiple topics. Therefore,
the structure of a document was revised so that each document is created using the
data from one full day. As described in section 6.1.1, the dataset also includes data
at the day level, recording the total weight in grams, for each of the 67 food groups,
consumed during the day. This data subset was used to create documents at a day
level, with a vocabulary of 67 food groups, where each food group is repeated in pro-
portion to the weight consumed on that day. The resulting topics from this approach
were subjectively identified by a nutritionist expert to be more reflective of different
lifestyle dietary patterns, rather than types of eating events. For example, the topic

fruit
yogurt fromage frais and dairy desserts

wholemeal bread

skimmed milk
salad and other raw vegetables

high fibre breakfast cereals

Figure 6.3: Example of a topic, created from day level food group data repeated in
proportion to weight of consumption, that is representative of a low-energy dense,
low-fat, high-fibre diet. Displayed with font size proportional to the probability of
the vocabulary item in the topic.

124



6.1. Applying topic models to nutrition data

displayed in figure 6.3 is representative of food groups that would be likely to appear
in a low-energy dense, low-fat, high-fibre diet [229].

As day level data did not produce the desired results, an alternative approach to
creating documents with more than one eating event was taken. It was proposed
to create documents using all eating events that occur in the dataset at a given
time, t, to the nearest second, regardless of the person or day on which the event was
recorded. Creating documents using this method means that the time of eating is still
represented but documents can exhibit multiple types of eating events. This approach
to creating documents was used together with various vocabularies, including food
names and food groups as well as different representations, such as single items or
repetition proportional to energy content.

Table 6.1: Summary of combinations of document structures and vocabularies inves-
tigated. Comments on limitations and qualitative evaluation of the topics discovered

Document structure No. docs Vocabulary Comments
Single eating event 111031 food names

(+ weight,
energy, time)
food groups
(+ weight,
energy, time)

Food names only appear
once at most. Documents
are sparse. Loss of
connection between food
item and properties. Topics
with only weight, energy or
time items.

Single eating event with
items repeated
proportional to energy

111031 Food groups Only some topics are
coherent

All food for one day
with items repeated
proportional to weight

16539 Food groups
(from day
level data)

Topics are reflective of
dietary patterns rather
than eating event types

All events at time t 1038 Food names
Food groups

Topics with food names are
too specific. Topics with
food groups are
semantically coherent.

All events at time t with
items repeated
proportional to energy

1038 Food names
Food groups

Topics not semantically
coherent. Vocabulary items
have high frequencies,
especially for food groups.

All events with energy
in given range

401 Food groups Documents too general,
most contain all vocabulary
items. Topics not
semantically coherent.
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Another approach proposed for creating documents representing multiple eating
events was to use all eating events that occur in the dataset with a total energy
content within a given range. The 20kcal ranges used for the original vocabulary and
based on the analysis of the dataset are not suitable as this would only create 101
documents. Therefore, 5kcal ranges were selected to give 401 documents: one for
each 5 kcal interval from 0 to 2000kcal and one for 2000kcal and over. A vocabulary
of food groups was used with this document structure. The topics discovered had
very low semantic quality and had no clear link with different types of eating events.
It was noted that many of the documents contained the large majority of vocabulary
items, making it harder for the model to distinguish between different documents and
find relevant patterns.

6.1.4 Selected document structure and vocabulary

The limitations and qualitative evaluation of the different combinations of document
structures and vocabularies investigated are summarised in table 6.1. This demon-
strates that the most promising combination is a vocabulary of food groups in the
NDNS RP dataset and a document structure of all eating events at time t. This
combination matches the underlying assumptions of LDA, in particular, ensuring
that documents exhibit multiple topics. In addition, the discovered topics are se-
mantically coherent in the context of discovering eating event types. This document
structure creates 1038 documents, one for each unique time recorded to the nearest
second, that appears in the dataset spanning a full 24 hour period in total. For each
document, the corresponding food group for every food item, in each eating event
recorded at time t, is listed.

The selected document structure and vocabulary is used as the basis for the re-

Figure 6.4: Applying LDA model to nutrition data.
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mainder of the work presented in this thesis. The exact choice of food groups included
in the vocabulary varies as required, the details of this are given in each relevant sec-
tion. The representation of the LDA model, in the context of nutrition data for
investigating types of eating events is given in figure 6.4. Here types of eating events
are equivalent of topics; a collection of eating events at a given time are equivalent
of documents and food groups are equivalent of words.

6.2 Detecting types of eating events

The selected document structure and vocabulary were used to carry out experiments
to evaluate the performance of topic models in the context of understanding how
foods are combined together in different types of eating events. A sensitivity analysis
of the impact of different properties of the dataset was also conducted. Different
methods for analysing the results of a topic model to assess how well it is perform-
ing were presented in section 2.4. This included both qualitative and quantitative
techniques for evaluating the model in the given context. For this application, qual-
itative evaluation of the resulting eating event types is extremely important as these
are what will be utilised by the nutrition research community to facilitate further
research. Even if a model statistically performs very well, if the results do not have
any tangible meaning then it is not possible to use them as a basis for future analysis.
However, quantitative analysis still plays an important role, to ensure that the results
are representative of the data. In addition, quantitative techniques can help confirm
the selection of model parameters.

6.2.1 Experimental methods for investigating the
performance of topic models applied to nutrition data

For consistency, the same C implementation of variational inference for LDA from
David Blei [51] was used, as described in section 4.1.1. Although the data source
is different, documents are still represented as sparse vectors of word counts in the
same format as previously used. The preprocessing to generate the vocabulary list
and create the documents with the selected structure from the NDNS RP dataset was
done in MATLAB. Eating events were identified in the dataset by grouping the food
level data on the ‘ID’, ‘meal time’ and ‘day no.’ variables. For the chosen document
structure, every unique time in the full dataset was identified and for each of these,
all of the corresponding eating events were selected. The food groups of all items
consumed during these eating events were counted and used to create the sparse
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word vector for the document. The numbering system used to identify food groups
in the dataset was used as the numerical representation of the vocabulary.1

For each model, the number of eating event types and the initial value of the
Dirichlet prior, α, were set to the desired values, as specified in section 6.2.2. The
default settings for the maximum number of iterations and convergence criteria were
used, as done in section 4.1.1. The value of α was set to be estimated as part of the
model so that the best fit to the data was found and a random initialisation was used
for the eating event types distributions.

6.2.1.1 Qualitative and quantitative analysis for full NDNS RP dataset

Post-processing of the results was also carried out in MATLAB. The most intuitive
way to qualitatively evaluate the results is to investigate the eating event types,
which are the probability distributions over the vocabulary, βk. The top food groups,
with a probability greater than or equal to 0.02 [32], for each eating event type were
determined. The list of food groups enables an assessment of how well the content
of the discovered eating event types reflect reality. In addition, it is useful to be
able to visualise these results in a more compact form for a quick evaluation. A tool
was developed in MATLAB to print out up to the top 10 food groups of an eating
event type in order of probability where the font size of the food group is directly
proportional to the probability that it occurs in the eating event type.

Subjective assessment based on knowledge of different types of eating events was
used to determine the semantic quality of the eating event types found and to apply
a label that summarised the content of the eating event type for further analysis. For
example, an eating event type with top food groups such as bread, margarine, ham,
salad and similar, appears to be a combination of items that could form a sandwich
or other typical lunch time eating event. This assessment was verified by a nutrition-
ist expert, with experience looking at different combinations of food groups in the
context of eating events. These subjective labels are used to aid visualisations of the
results and as the basis of further analysis, as presented in chapter 7. However, it
should be understood that they are only a representative description of the underlying
probability distribution and are open to interpretation by experts in the nutrition re-
search community as required. In essence the discovered eating event types represent
the most likely combinations of food groups consumed by a representative sample of
the UK population.

1In the NDNS RP dataset the main food groups are numbered from 1 to 61, but there is no
food group associated with 46 [182]. This is due to changes in the coding of food groups made since
previous versions of the survey.
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Further insight into the results of a topic model can be gained by considering how
the probability of each eating event type βk varies with the time of day. As each
collection of eating events is related to a time of day, for the purpose of visualisation,
a 24 hour period can be split into 10 minute intervals and the collections of eating
events grouped accordingly. The most probable eating event type across all collections
of eating events for each 10 minute interval can be determined and plotted against the
time of day. Furthermore, a more detailed graph can be generated, such as in figure
6.8, where the average probability of each eating event type across all documents in
a 10 minute interval is plotted for every interval.

A quantitative assessment using a ten-fold cross validation was conducted, with
perplexity (equation 2.15) as a measure of the performance of each model on the
held-out fold. A fold is 10% of the data, with 103 randomly selected collections of
eating events in each fold. For every fold a topic model was estimated using the
remaining 9 folds of the data for 5 to 50 eating events types at sampling intervals of
5. The model was then used to perform inference on the held-out fold of data and
the perplexity of the results was calculated. The average perplexity across all folds
was then calculated for the range of number of eating event types. The number of
eating event types around which the perplexity was lowest was identified and a more
detailed analysis was carried out using the same method but for a range of eating
event type numbers from 5 to 20 at sampling intervals of one. This was to provide a
clearer picture of how the perplexity varies around this key value. This quantitative
analysis ensures that the results are representative of the data and helps to confirm the
selection of the number of eating event types determined by the qualitative analysis.

6.2.1.2 Sensitivity analysis for NDNS RP dataset

Whilst exploring the results of the topic models for qualitative analysis it was noted
that certain vocabulary items often appear with a larger probability than others. In
particular, the food group of ‘tea, coffee and water’ often dominates several topics
in a model. This was highlighted by a nutrition expert to possibly be an artefact of
the original dataset. Two different potential causes were considered and investigated
further to understand their impact, if any, on the results of the model.

One possible reason for an elevation in probability of certain food groups is the
coding method used in the NDNS RP dataset e.g. the nature of the groupings of
food items into food groups. Each food group contains a different number of food
items. For example, the ‘vegetables not raw’ food group includes many different
vegetables, whereas the ‘eggs and egg dishes’ food group contains a smaller variety of
items, such as omelette or quiche. Hence, if a person ate a roast dinner for example,
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the food group ‘vegetables not raw’ would occur 3 times in the relevant document if
they had broccoli, cabbage and carrots as part of their meal. Whereas, if a person
ate a quiche for example, the food group ‘eggs and egg dishes’ would only occur
once in the document. This is not necessarily the most representative approach
for nutrition analysis. To investigate the impact of this on the results a modified
dataset of collections of eating events was created as before, but for every eating event
each food group was only allowed to occur a maximum of once. Any repetitions of
food groups in a single eating event were removed, although the collection of eating
events could still have each food group listed multiple times overall as it still contains
multiple eating events.

A second potential reason is the limited selection of food groups related to drinks
appearing in topics compared with possible permutations of food groups related to
food items. Hence, the same drinks will often occur with many different permutations
of food. The impact of this potential bias was investigated by removing all eating
events that contain only drinks, including sugar in teas and coffees and powdered
drinks, such as hot chocolate. All dietary supplements were also removed from the
dataset, as these are often taken as part of an otherwise drink only event and are
not of particular interest in this analysis. A modified dataset of collections of eating
events was created as before using this reduced set of eating events.

Finally, a third modified dataset was generated using collections of eating events
where both the food groups could only be listed once per single eating event and where
all drink only eating events were removed. Topic models were estimated for each of
the three modified datasets using 10 topics and an initial α of 0.1, as these parameters

Table 6.2: Mappings of topic numbers to four eating event type categories for four
modified datasets

Discovered
eating event
type no.

Mapped eating event type label

All data No repeat No drinks No drinks or repeat
1 Main meal Light meal Light meal Breakfast
2 Breakfast Light meal Main meal Breakfast
3 Light meal Breakfast Light meal Breakfast
4 Main meal Snack Main meal Light meal
5 Snack Snack Breakfast Snack
6 Light meal Breakfast Main meal Light meal
7 Snack Snack Breakfast Light meal
8 Snack Main meal Snack Main meal
9 Breakfast Main meal Snack Main meal
10 Main meal Main meal Main meal Main meal

130



6.2. Detecting types of eating events

gave the lowest perplexity for the original full dataset and therefore allows comparison
with the results from each modified dataset. The discovered eating event types for
each dataset were visualised and evaluated qualitatively and were all considered to
be representative of typical eating events. To compare the results, each of the 10
discovered eating event types in the four datasets were subjectively mapped by the
author, based on their content, to one of four eating event type labels: ‘Main meal’,
‘Light meal’, ‘Breakfast’ and ‘Snack’ as shown in table 6.2

For each of the four eating event type labels the top food groups for all of the dis-
covered eating event types mapped to the label were used to compare the probability
distribution over these most relevant food groups. These distributions were compared
visually by plotting them for each relevant eating event type label on one graph, as
shown in section 6.2.2.2. Furthermore, a ten-fold cross validation was conducted for
each dataset. The results were used to calculate the average perplexity across all folds
for a range of numbers of eating event types and were compared across datasets.

6.2.2 Analysis and discussion of detected eating event types

6.2.2.1 Qualitative and quantitative results for full NDNS RP dataset

The semantic quality of topics in the context of investigating different types of eating
events, was an important criteria when selecting the document structure and vocab-
ulary. The results from a model created using the chosen document structure and

tea coffee and water
semi skimmed milk

other breakfast cereals

whole milk
fruit juice

fruit

dietary supplements
high fibre breakfast cereals

sugars preserves and sweet spreads

white bread

Figure 6.5: Top 10 food groups from an example ‘breakfast’ eating event type from
a model with 15 eating event types, α = 0.01. Displayed with font size proportional
to probability of food group in the eating event type. Probability of first food group
is given for scale.
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biscuits
chocolate confectionery

skimmed milk
fruit juice

whole milk

artificial sweeteners

tea coffee and water
semi skimmed milk

buns cakes pastries & fruit pies

other milk and cream

Figure 6.6: Top 10 food groups from an example ‘snack’ eating event type from a
model with 15 eating event types, α = 0.01. Displayed with font size proportional
to probability of food group in eating event type. Probability of first food group is
given for scale.

miscellaneous

soft drinks not low calorie
pasta rice and other cereals

chips fried & roast potatoes and potato products

biscuits

vegetables not raw
soft drinks low calorie

salad and other raw vegetables

yogurt fromage frais and dairy desserts

Figure 6.7: Top 10 food groups from an example ‘mixed’ eating event type from a
model with 15 eating event types, α = 0.01. Displayed with font size proportional
to probability of food group in eating event type. Probability of first food group is
given for scale.

vocabulary, with 15 eating event types and an initial α set to 0.01, were considered
to have a high semantic quality. Examples of eating event types detected by this
model are given in figures 6.5 - 6.7. The full results are provided in appendix C.2.
The discovered eating event types can vary widely in their semantic quality; some are
very obviously representative of a particular type of eating event, whereas others are
more ambiguous. The three examples shown have been assigned a subjective label to
best describe their content. The eating event type in figure 6.5 is representative of
breakfast and has a high semantic quality.

The eating event type in figure 6.6 is also semantically coherent and appears
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to reflect a snacking event. Finally, the eating event type in figure 6.7 appears to
be of a lower semantic quality as it involves a wide mixture of food groups, which
have relatively low probabilities, as shown by the size of the fonts. However, such
discovered combinations of food groups can also provide useful insight as they may
reveal patterns which are common but not necessarily well known or intuitive.

Figures 6.8 and 6.9, show how the fifteen eating event types found by this model
vary over time, demonstrating the probability of eating event types at different times
of day. It should be noted that the labels for the eating event types were assigned
subjectively based on their most probable food groups. Furthermore, the frequency
of eating events is not considered, hence a high probability of an eating event type at
2am does not necessarily correspond to a large number of this type of eating event.
Rather, of those eating events that do occur, it is most likely to be of this type. For
some times of day no eating events occurred and therefore a probability cannot be
given.

It can be seen in figure 6.8 that during the early morning period the eating event
types labelled as ‘breakfast’ have a high probability in comparison to other topics.
These breakfast eating event types then generally have a lower probability at all other
times. Similarly, the eating event types labelled as ‘lunch/sandwiches’ have peaks in
probability around the middle of the day. However, these peaks are not as defined
as those for breakfast. This suggests that there is more uncertainty in the type of
eating events that occur at this time of day. In fact, the eating event types labelled
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Figure 6.8: Graph showing variation of probability of each eating event type with
time of day for a model with 15 eating event types, using the selected document
structure and vocabulary for full dataset.
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Figure 6.9: Matrix representation of how probability of each eating event type varies
with time of day for a model with 15 eating event types, using the selected document
structure and vocabulary. The colour indicates the probability.

as ‘snacks’ are also quite probable at this time. This is probably a combination of
people consuming what is considered a snack rather than lunch and the wide range of
times over which lunch type eating events occur. Overall, the snacks topics are more
variable in probability throughout the full 24 hour period, this seems to fit with the
cultural idea of snacking.

Figure 6.9 highlights the peaks in probabilities more clearly, by displaying a matrix
representation of the eating event types against time, where the colour corresponds
to the probability, as given by the values in the legend. For example, it can be seen
that the two types of eating events labelled as ‘breakfast’ have distinctive peaks in
probability at different times. One has a dominant peak around 7 - 8am, whereas the
other is more dominant either side of these times. This difference could highlight a
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Figure 6.10: Quantitative results showing the variation of the average perplexity with
the number of eating event types at different sampling frequencies.
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link between the type of breakfast and the time consumed. It can also be seen that
one of the main meal type of eating events has stronger probabilities than the others.
These visualisations and observations provide a starting point for further analysis by
nutritionists.

Figure 6.10 displays the results of the ten-fold cross validation conducted for the
selected document structure and vocabulary at sampling intervals of 5 eating event
types. It can be seen that at this resolution the average perplexity is lowest for 10
eating event types. The more detailed analysis based on this value, with sampling
intervals of 1 eating event type, shows that the average perplexity oscillates between 5
and 16 eating event types. However, it should be noted that the scale of the average
perplexity has a small range (0.6) and therefore the number of eating event types
does not have a strong effect on how well the model generalises to previously unseen
data. The average perplexity for 15 eating event types, the number chosen based on
the qualitative analysis, is very similar to the lowest average perplexity indicating
that using 15 types is valid.

For completeness, as the minimal average perplexity was for a model with 10

dietary supplements
tea coffee and water

high fibre breakfast cereals
white bread

reduced fat spread

fruit

semi skimmed milk
sugars preserves and sweet spreads

whole milk

skimmed milk

Figure 6.11: Top 10 food groups from an example ‘breakfast’ eating event type for a
model with 10 eating event types. Displayed with font size proportional to probability
of food group in eating event type. Probability of first food group is given for scale.

vegetables not raw
miscellaneous

fruit

other margarine fats and oils

other potatoes potato salads & dishes

semi skimmed milk

salad and other raw vegetables
tea coffee and water

pasta rice and other cereals

chicken and turkey dishes

Figure 6.12: Top 10 food groups from an example ‘main meal’ eating event type for a
model with 10 eating event types. Displayed with font size proportional to probability
of food group in eating event type. Probability of first food group is given for scale.
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fruit

soft drinks low calorie

buns cakes pastries & fruit pies
sugar confectionery

soft drinks not low calorie
salad and other raw vegetables

tea coffee and water
crisps and savoury snacks

chocolate confectionery

cheese

Figure 6.13: Top 10 food groups from an example ‘snacks’ eating event type for a
model with 10 eating event types. Displayed with font size proportional to probability
of food group in eating event type. Probability of first food group is given for scale.

eating event types, examples from this model are given in figures 6.11 - 6.13. The
full results are provided in appendix C.1. The top 10 food groups are displayed with
font size proportional to the probability of the food group in the eating event type
and based on these a subjective label is assigned. Figure 6.11 shows an eating event
type labelled as ‘breakfast’, however it can be seen that this is quite a different type
of breakfast, compared to figure 6.5 as it is dominated by food groups relating to
a cup of tea or coffee and taking dietary supplements. Figure 6.12 gives an eating
event type labelled as a ‘main meal’, as it includes cooked vegetables and pasta or
rice. Both of these eating event types are considered to have quite good semantic
quality as it is relatively easy to apply a subjective label. The eating event type in
figure 6.13 is labelled as ‘snacks’ and is considered to have a high semantic quality
as several food groups have relatively high probabilities and the top eight words are
typical of what are often considered snacking foods or drinks [202].

Figures 6.14 and 6.15 show the variation in probability of the 10 eating event
types over time. These are very similar to the patterns seen for 15 eating event
types. The structure of each type is listed in full for both models in appendices C.1
and C.2. Table 6.3 lists the ordered subjective labels used in figures 6.8 and 6.15 and
the corresponding eating event type number for reference to the appendices. It can
be seen in 6.14 that the breakfast eating event types have the highest probabilities
between 6 and 10am. The probability of the snack eating event types are again more
varied throughout the day and the main meal eating event types have peaks during
the evening. Figure 6.15 highlights that different types of main meals appear to have
stronger associations with different times of day, for example, an early dinner time
around 5pm or a later meal between 7 and 8pm.
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Table 6.3: Reference table for eating event type numbers for each model. Full listings
of the content of each type can be found in Appendices C.1 and C.2.

Model with 15 eating event types Model with 10 eating event types
Ordered Label Number Ordered Label Number
Breakfast 2 Breakfast 2
Breakfast 13 Breakfast 9
Lunch/sandwiches 5 Lunch/sandwiches 6
Lunch/sandwiches 11 Light meal 3
Lunch/sandwiches 15 Main meal 1
Light meal 8 Main meal 4
Mixed 4 Main meal 10
Main meal 6 Snacks 5
Main meal 12 Snacks 7
Main meal 14 Drinks/snacks 8
Snacks 1
Snacks 7
Snacks 10
Drinks/snacks 9
Drinks 3

Midnight10pm8pm6pm4pm  2pm

Time of Day

Midday10am8am6am4am   2amMidnight

drinks and snacks

snacks

snacks

main meal

main meal

main meal

light meal

lunch/sandwiches

breakfast

breakfast

0

0.5

1

Eating
event 
type  

P
ro

ba
bi

lit
y

Figure 6.14: Graph of variation in probability for eating event types with time of day
for a model with 10 eating event types, using the selected document structure and
vocabulary.

6.2.2.2 Sensitivity analysis results

Figures 6.16 - 6.19 show the comparison of eating event types mapped to each of
the labels for all of the datasets: original (all data), food group repetitions in single
eating events removed (no repeat), drink only events removed (no drink) and both
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Time of Day
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Figure 6.15: Matrix representation of how probability of each eating event type varies
with time of day for a model with 10 eating event types, using the selected document
structure and vocabulary. The colour indicates the probability.

repetitions and drinks removed (no drinks or repeat). For each dataset 10 eating
event types are detected and subjectively mapped to the four labels. The number
of discovered eating event types that match to a specific label will vary between
datasets. Each label can have more than one eating event type mapped to it for each
dataset, therefore these are numbered successively. For example, the dataset with
drink only events removed has three eating event types mapped to the ‘Breakfast’
label, hence these are referred to as ‘No drinks 1’, ‘No drinks 2’ and ‘No drinks 3’.

Figure 6.16 shows that for the ‘breakfast’ label, the distributions over the vocab-
ulary appear to vary as much between two eating event types created from the same
dataset as they do between eating event types from different datasets. In particu-
lar, looking at the ‘tea, coffee and water’ food group, it can be seen that this has a
strong probability in several eating event types, including those from datasets which
had drink only events removed. All of the datasets contain at least one eating event
type with a relatively high probability of food groups related to breakfast cereals
and another with a low probability for the same food groups. Similarly for the ‘light
meal’ label, figure 6.17 shows that the variation in distributions is not clearly related
to the dataset. Again, removing drink only events does not necessarily reduce the
probability of the ‘tea, coffee and water’ food group. Removing repetitions of food
groups within an eating event may have had an impact on the probability of the food
group related to salad, however this can also have a low probability in topics from
datasets where this restriction was not applied.

The range of distributions over the vocabulary does not appear to be linked to
the dataset for the ‘main meal’ label either, as demonstrated by figure 6.18. For
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Figure 6.16: Comparison of eating event type distributions from four different
datasets over relevant vocabulary items for the breakfast eating type event label.
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Figure 6.17: Comparison of eating event type distributions from four different
datasets over relevant vocabulary items for the light meal eating type event label.
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Figure 6.18: Comparison of eating event type distributions from four different
datasets over relevant vocabulary items for the main meal eating type event label.
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Figure 6.19: Comparison of eating event type distributions from four different
datasets over relevant vocabulary items for the snack eating type event label.
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6.3. Chapter summary

example, there are several eating event types with a focus on food groups related to
potatoes and vegetables from a variety of datasets. There are also eating event types
with a focus on pasta/rice and vegetable food groups in each dataset, although the
probability of vegetables is a little lower for the eating event types from datasets with
repetitions removed. Figure 6.19 highlights that there are eating event types with
the ‘snacks’ label with similar distributions estimated from different datasets. For
example, the third eating event type from the dataset using all the original data (All
3) and the first eating event type from the dataset with only repetitions removed (No
repeat 1) are very alike.
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Figure 6.20: Graph showing how the average perplexity varies with the number of
topics for four modified datasets

As well as the qualitative comparison of the different datasets, figure 6.20 shows
the results of the ten-fold cross validation performed on each dataset. It can be seen
that removing either repeated food groups or drink only events corresponds to an
increase in the perplexity across the range of number of eating event types. Further-
more, removing both repetitions and drink only events increases the perplexity further
again. Hence, using all of the original data gives the best generalised performance on
previously unseen documents.

6.3 Chapter summary

This chapter has considered the application of LDA to a different data source, namely
nutrition data, with the aim of revealing patterns in the combinations of food groups
consumed together in different types of eating events. The critical importance of the
selection of a vocabulary and document structure for the LDA model when using a
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6.3. Chapter summary

new type of data has been shown. In particular, the exact context and aim of the
task should always be taken into account. One key result that can be applied to
other data types is to ensure that all of the assumptions of LDA are completely met,
in particular, that documents exhibit multiple topics. This will depend on what a
topic has been defined to be for a particular application but should be given careful
consideration. Moreover, the selection of the vocabulary will have a strong impact on
the semantic quality of the resulting topics. For example, a large vocabulary may not
be suitable as the resulting topics are likely to not be specific enough. It is important
to consider the choice of vocabulary in the context of the application and to recognise
that documents use a bag of word representation which has no structure modelled.

It has been demonstrated by the results presented in this chapter that it is possible
to apply topic models to nutrition data from food diaries in order to find topics
that are representative of different types of eating events. This was done using the
NDNS RP dataset, which contains a sample of food diaries representative of the UK
population. Different methods of visualising the resulting eating event types have
been shown. This includes listing the top food groups of an eating event type with
the font size in proportion to the probability of the food group and displaying the
variation in probability of eating event types with the time of day. This has confirmed
that the topics found intuitively correspond to typical eating event types, as confirmed
by a nutritionist expert with experience in looking at different combinations of food
groups in the context of eating events.

Finally, a sensitivity analysis of the effect of different properties of the original
dataset was conducted. In particular, repeated food groups in a single eating event
and drink only events were removed from the data and the results were compared.
Overall, from both the qualitative and quantitative analysis there is no evidence
that altering the dataset properties improves the performance of the topic models.
Therefore, as making changes could cause unforeseen consequences it was concluded
that utilising the full dataset is the most appropriate option.
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Chapter 7

Exploring and Validating Eating
Event Types

In chapter 6, it was demonstrated that topic models can be applied to nutrition
data to find topics representative of types of eating events. This initial research was
done using the NDNS RP dataset. This chapter extends this work by considering
further visualisations and analysis that can be conducted to exploit these results. For
example, the dataset can be separated into subsets based on the type of day, weekday
or weekend day, in order to compare the number of each type of eating event within
these groups. In addition, inference can be performed on a per person basis to look at
the specific eating event types for an individual. The aim is to highlight a variety of
different ways that the eating event types discovered by topic models can be used for
nutrition research, rather than answering a specific nutrition based research question.

Furthermore, the application of topic models to two other existing nutrition datasets
is considered to validate that the methods for selecting a vocabulary and document
structure extend to datasets with different properties. Alternative approaches to iden-
tifying eating event types have previously been used with the selected datasets and
can be compared with the results from topic models. Firstly, a manual rule-based
labelling approach to identify types of eating event was previously applied to the
UK National Diet and Nutrition Survey (NDNS) 2000 dataset [202]. Secondly, topic
models are implemented for the Irish National Adult Nutrition Survey (NANS) [183]
because this dataset includes subjective labels for each eating event recorded as part
of the original data collection procedure.
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7.1. Exploring the NDNS RP dataset using discovered eating event types

7.1 Exploring the NDNS RP dataset using
discovered eating event types

The eating event types that have been discovered using topic models can be used to
analyse the NDNS RP dataset in more detail. The food group combinations found
using the model with 15 eating event types, presented in section 6.2.2.1, are used as
these were considered to be the most semantically coherent results. The eating event
type labels assigned to the discovered combinations of food groups are also considered
in the analysis, however these labels are used with caution due to their subjective
nature.

7.1.1 Inference for individuals

One avenue for exploring the dataset using the results from the topic model is to
perform inference at an individual person level. Documents can be created based
on single eating events, although this does not match with the assumption that a
document will exhibit multiple topics, these will only be used for inference, rather
than estimating a model and allow an eating event type to be associated with every
eating event. Each person will have a different number of documents, depending
on the number of eating events they recorded across the four day food diary. For
example, participant one recorded 27 eating events over a four day period.

7.1.1.1 Visualising the types of eating events for an individual

The results of inference at the individual level can be used to investigate an individ-
ual’s eating behaviour patterns by visualising the type of eating events discovered.
Figure 7.1 shows the most likely eating event type for every eating event recorded by
participant one on the first day of their food diary. For every eating event the original
food groups of the items consumed in that event, as listed in the food diary, the time
of the event and the most likely eating event type found by inference, along with the
corresponding subjective label are given. For example, at 13:30 the participant had
a piece of fruit, a soft drink and two items of sugar confectionery. This was found
to most likely be eating event type 10, which was subjectively labelled as a snack.
Intuitively, this label seems to be a good match to the items consumed during the
eating event.

The subjective labels for the eating events at 07:45 and 11:08 are less intuitive.
The event at 07:45 is likely to be considered breakfast due to the food group com-
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Time of Day
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lunch/sandwiches

lunch/sandwiches

lunch/sandwiches

light meal
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main meal

main meal

main meal

snacks

snacks

snacks

drink and snacks

drinks

Reduced fat spread

Semi skimmed milk

White bread

07:45:00

15: Lunch/sandwiches

Bacon and ham

Reduced fat spread

Tea Coffee and Water

White bread

11:30:00

15: Lunch/sandwiches

Crisps and savoury snacks

Sugar confectionery

11:08:00

8: Light meal

Fruit

Soft drinks not low calorie

Sugar confectionery X 2

13:30:00

10: Snacks

Bacon and ham

Crisps and savoury snacks

Reduced fat spread

White bread

15:00:00

15: Lunch/sandwiches

Chips fried & roast potatoes

Miscellaneous

Sausages

Coated chicken

19:30:00

6: Main meal

Sugar confectionery

21:00:00

10: Snacks

Sugar confectionery X 2

22:00:00

10: Snacks

Most likely eating

event type

Actual food groups and

time eaten

Figure 7.1: The most likely eating event type number and corresponding subjective
label found by inference for each eating event recorded by participant one, on food
diary day one. The recorded food groups and time of the eating event are given for
context.

binations and the time of the event. However, it can be seen why the most likely
eating event type found during inference was one that was subjectively labelled as
lunch/sandwiches, because the bread and spread could easily be part of a sandwich
rather than toast. Similarly, the event at 11:08 is assigned to most likely be eating
event type 8, which is subjectively labelled as a light meal. This event has food
groups that could form part of a light meal, however this is much more likely to be
labelled as a snack by a participant or researcher.

The results for this participant highlight the complexity and subjective nature of
analysing food and drink intake at a meal level due to different behaviour patterns.
This participant has recorded three separate eating events between 11.30 and 15:00.
Considering the content of these eating events it appears that the participant probably
spread their ‘lunch’ over this extended period as a series of smaller eating events. In
particular, bread, spread and bacon/ham are listed at both 11:30 and 15:00 suggesting
that the participant ate one sandwich late morning and another in the afternoon.
The total content of these three eating events could be equivalent to one eating event
recorded by a different participant, either because they ate everything together or
just recorded it as eaten at one time for ease. If the nutrition intake was considered
at a day level this would be equivalent overall, however the behaviour of having a
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7.1. Exploring the NDNS RP dataset using discovered eating event types

series of smaller eating events could be linked to health outcomes and hence this meal
level information is important. The traditional labels of lunch and snack may not be
appropriate for reflecting this eating behaviour pattern.

Figure 7.2 shows the eating events for day two of the food diary for participant
one. This shows that, similarly to the first day, the subjective labels for the most
likely eating event type correspond well to the content of each eating event. Again,
one exception is the event that is most likely to be type 8 that occurs at 21:29, which
also appears to be more likely to be considered a snack rather than a light meal.
Comparing the results for the two days it can be seen that this participant has little
consistency or routine in the type and time of their eating events across these two
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08:30:00

13: Breakfast

Chips fried and roast potatoes

Ice cream

Miscellaneous

Other potatoes

Pasta rice and other cereals

Pork and dishes

Soft drinks low calorie X 2

Vegetables not raw X 4

Other margarines fats and oils
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Beef veal and dishes

12:15:00

12: Main meal

Sugar confectionery

13:59:59

10: Snacks

Bacon and ham

Biscuits

Cheese

18:00:00

5: Lunch/sandwiches

Crisps and savoury snacks

Sugar confectionery

21:29:59

8: Light meal

Sugar confectionery

22:59:59

10: Snacks

Figure 7.2: The most likely eating event type number and corresponding subjective
label found by inference for each eating event recorded by participant on food diary
day two. The recorded food groups and time of the eating event are given for context.
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days. Referring back to the original data reveals that these entries are for a Saturday
and Sunday respectively. This may influence the type and number of eating events
that occurred [193].

Figure 7.3 highlights the most likely eating event types across the whole four days
of participant one’s food diary. It can be seen from this plot that there are no strong
patterns of the time and type of eating events for this participant over the four day
period. Figure 7.4 shows the eating events for a different participant for all four days
of their food diary. It can be seen that this participant is very different from the first
example. Firstly, this participant has far fewer eating events across the four days,
a total of 14 compared to 27 for the other participant. Secondly, this participant
demonstrates a much stronger routine and consistency in their eating events. Both
the content and the time of their eating events are frequently very similar or the same.
All of the subjective labels for the most likely eating event types for this participant
match well to the items consumed during the events.

A random sample of the participants was selected and the detailed content of
their eating events were investigated. For brevity visualisations of all of these are not
included here as the aim is to demonstrate different types of analysis that the use
of topic models can facilitate, rather than undertaking a full analysis of the dataset.
It was found that overall the majority of the subjective labels for the most likely
eating event types match well to the items consumed during the eating events. The
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Figure 7.3: Graph showing times and most likely eating event type label found by
inference for all eating events recorded by participant one, across all four days of their
food diary.
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exceptions found included an eating event containing only fruit, which was inferred to
most likely be eating event type 15, lunch/sandwiches. Many people would probably
consider one piece of fruit a snack, however it was consumed at 13:35 so the participant
could have considered this lunch and hence the subjective label inferred would be
correct. This highlights the lack of clarity of subjective labels. Another exception
detected was the occurrence of eating events that contain the items used to bake a
home made cake listed separately, which were inferred to most likely be a main meal.
This is because the food groups of the recipe items do match the food groups likely
to be in a main meal and the topic model has no other context. This problem could
be solved by listing such items as the finished product, i.e. cake, rather than the
individual ingredients.

7.1.1.2 Investigating the effect of morning eating event types

In addition to visualising the eating events for a specific individual, the results of in-
ference at the individual level can be used for further analysis across the full sample
population. For example, nutritionists are often interested in the effect of breakfast
and how this influences what someone eats for the rest of the day [230]. To demon-
strate how the results from topic models can provide a new approach to this research
area, an initial analysis was conducted. No direct nutritional conclusions are drawn,
as this is not the focus of this thesis, but this approach could be utilised by the
nutrition research community to address relevant hypotheses.

The most likely eating event type for each eating event for all participants was
determined using the individual inference results. For each day of every participant’s
food diary the eating events that occurred between 6am and 10am were selected
and the most common eating event type amongst these was identified. Based on
this information the eating events recorded for that day were put into one of three
categories: none, breakfast or other. This reflected whether the participant had no
eating events, mostly breakfast type events or mostly other types of events within
this time period. The most likely eating event type for each of the remaining eating
events for the rest of the day were then listed for the corresponding category.

Figure 7.5 shows the average number of each of the 15 eating event types per
day for each of the three categories. Each of the categories: none, breakfast and
other, contained 2997, 8401 and 5141 days respectively. It can be seen that the
distribution of eating event types varies across the categories. Overall, the none
category has lower average numbers of eating events across all types. This suggests
that people who do not consume anything between 6am and 10am generally have
fewer total number of eating events in a day than those who consume something in
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Figure 7.5: Graph showing the distribution of the average number of eating event
types in one day for three categories based on the most common eating event types be-
tween 6am and 10am. All eating event types are found by inference at the individual
level.

this time period. However, this analysis does not take energy content into account.
Nutrition researchers could take this idea further to investigate whether fewer eating
events correlate to a lower daily energy intake. Figure 7.5 also reveals that those
who primarily have eating event types that are not breakfast between 6am and 10am
have a higher average number of snack eating event types across the rest of the day.
Again, further analysis would be required to draw any conclusions from this, as many
of these eating events may have a low energy content.

In summary, the results of inference at the individual level has shown that in gen-
eral there is a good match between the food groups consumed in an eating event and
the subjective label for the most likely eating event type. This provides further con-
firmation that topic models can successfully be used to detect combinations of food
groups reflective of different types of eating events. Furthermore, it has been demon-
strated that the discovered eating event types provide a basis for further analysis at
both the individual and population level. In particular, they can help to identify and
investigate eating behaviour patterns for an individual. This could be extended to
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7.1. Exploring the NDNS RP dataset using discovered eating event types

long term food diary data to identify stronger trends and links to health outcomes.
Additionally, specific hypotheses at the population level, such as “skipping breakfast
is linked to a lower daily energy intake” can be investigated using the discovered
eating event types.

7.1.2 Investigating differences between weekdays and
weekends

In addition to performing inference at the individual level the dataset can be explored
by performing inference for different groups based on a variable of interest. The
original method of document creation, using all items consumed at time t for any
person on any day, is applied to each group. Visualising the results from inference
on the groups can highlight differences between them. For example, the dataset can
be grouped based on the day of the week variable, with all of the weekdays from
Monday through Friday in one group and the weekend days, Saturday and Sunday
in a second group.
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Figure 7.6: Most likely eating event types for each hour when inference is performed
on groups of weekday and weekend days.

Figure 7.6 shows the most likely eating event type for all of the eating events
in each hour, for weekdays and weekend days. This highlights that there are many
similarities in the types of eating events that occur on both weekdays and weekend
days. However, there are some differences which may be of interest to nutrition
researchers. In particular, it can be seen that on weekend days the period of time for
which breakfast is the most likely eating event type is longer than on weekdays. This
could suggest that people have less of a routine at the weekend and this may in turn
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Figure 7.7: Probability of 15 eating event types at different times of day when infer-
ence is performed on weekend days.
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Figure 7.8: Probability of 15 eating event types at different times of day when infer-
ence is performed on weekday days.

impact what is consumed for the remainder of the day. Nutritionists could utilise
these eating event types to investigate this at a higher level than has previously been
possible when using the raw data directly [231].

One of the benefits of LDA is its probabilistic nature, that allows the uncertainty in
the data to be modelled. For example, the model can accommodate the fact that not
everyone eats the same food at the same time for breakfast. The probabilities of the
eating event types found from performing inference on weekend days and weekdays
can be visualised at different times of day, as shown in figures 7.7 and 7.8 respectively.
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Figure 7.9: Differences between probabilities of 15 eating event types at different times
of day. Positive values (yellow and green) indicate higher probability for weekend and
negative values (blue) for weekdays.

Comparing these graphs provides a more detailed insight into the differences that were
identified in figure 7.6. For example, on weekdays there are two strong peaks of the
snack event type either side of peaks for the lunch/sandwiches and light meal event
types. Whereas, at the weekend there is more uncertainty between all of the event
types around midday. Additionally, more detail between the probability of the two
different breakfast eating event types can be seen on these graphs, than is summarised
by visualising only the most likely eating event types.

In order to quantify the observed variation in probabilities between weekdays and
weekends the differences between the two groups are calculated. These are visualised
as a matrix of eating event types at different times, as shown in figure 7.9. A positive
value, green and yellow squares, indicates that this eating event type is more likely
at this time of day on a weekend day. Vice versa, a negative value, blue squares,
indicates that the eating event type is more likely at this time of day on a weekday.
For example, at 5am one of the eating event types, labelled as breakfast, is a lot
more probable on a weekend than on a weekday. Conversely, at the same time the
eating event type drinks and snacks is more likely to occur on a weekday. The matrix
visualisation shows that overall there is not much difference between the probabilities
for each type of day. Moreover, the larger differences in probability tend to occur
between midnight and 6am, during which period less eating events tend to occur,
meaning there are fewer samples and hence each event will have a larger impact on
the probability.
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In summary, this section has demonstrated that performing inference on different
groups can reveal patterns that are useful for further analysis. In particular, it has
been shown that there are differences between the probabilities of eating event types
that occur on weekday and weekend days. The eating event types discovered by a
topic model can be used by nutritionists as a basis to investigate when and where
these food group combinations are consumed, their average energy and other variables
of interest. Understanding the patterns of consumption for the UK population on
average can help to influence policy on nutrition and dietary advice.

7.2 Validating application of topic models to
nutrition data

It has been shown that topic models can be applied to food diary data from the
NDNS RP dataset to identify combinations of food groups that are representative of
different types of eating events. The results have been qualitatively and quantitatively
evaluated and demonstrate that this method is successful. However, it is necessary
to both confirm that this method extends to other datasets and validate the results
against other approaches. There is no gold standard within the nutrition research
community for identifying eating event types, as discussed in section 3.3.3. The
discovered eating events are validated against the results of other techniques [202]
and subjective labels given by participants [183].

Several datasets were considered for the purposes of validation. The United States
National Health and Nutrition Examination Survey [232] has datasets available for
every year from 1999 to present. However, the details of the survey change each year,
only 2 days of food diary data are collected for each participant using the 24 hour
dietary recall method and the food groups are not given explicitly in the dataset.
The European Prospective Investigation into Cancer and Nutrition study [180] has
datasets from 10 different countries, however there is only one 24 hour dietary recall
for each participant. Using a different method of data collection, dietary recall instead
of food diaries, means that the comparison between the results may be less valid and
hence these datasets were not selected for the validation.

The UK National Diet and Nutrition Survey 2000 (NDNS 2000) [233] and the Irish
National Adult Nutrition Survey (NANS) [183] were chosen for use as validation sets.
Details of these datasets are provided in sections 7.2.1 and 7.2.2 respectively. Both of
these datasets included four or seven day food diary data, making comparisons across
the datasets easier. Moreover, these datasets have previously had alternative manual
approaches to identifying eating event types applied to them, hence enabling direct
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comparisons between the results of the different methods. Whilst there are similarities
between the datasets, there are also differences in the food lists and coding of food
groups, particularly for the NANS dataset. Therefore, they can both be used for
validation but direct comparisons between them are more difficult.

7.2.1 Validation using UK National Diet and Nutrition
Survey 2000 dataset

The UK National Diet and Nutrition Survey 2000 is the predecessor to the NDNS RP
dataset used for the initial work. It was a cross sectional survey of a representative
sample of the UK adult (aged 19 - 64 years) population living in private households.
The survey investigated the food consumption, nutrient intake and nutritional status
of participants over a 12-month period between 2000 and 2001. This included the
completion of 7-day weighed dietary records of food intake. Participants were pro-
vided with accurately calibrated weighing scales and instructions on how to weigh
food, drinks and leftovers. Full details of how the survey was conducted and all of
the data collected is available from the UK dataservice and was accessed under usage
number 87742 [233]. From the full eligible sample in the survey, 1724 participants
completed the full seven day weighed food diary. The data from the diaries were
coded by trained individuals using a list of food codes for 6000 items, provided by
the survey organisers. Composite items were split into individual components, for
example a cup of tea may be recorded as tea infusion, milk and sugar [234].

7.2.1.1 Methods for comparing manual rule based and topic model
labels

A manual rule based classification method for identifying eating events as meals,
snacks or drinks has recently been applied to this dataset [202]. This method involved
allocating all of the food groups in the NDNS 2000 dataset to the most relevant list
selected from meal, snack and drink, based on expert knowledge. The lists are given
in appendix B.3 for reference. Dietary supplements were not included in this analysis.
In the published work eating events were considered to be all items consumed within
every 60 minute period, but this method was also applied for eating events defined
as all items consumed at a unique time. The results based on eating events at unique
times were used to facilitate comparison with the work described in this thesis. The
following rules were then applied to label an eating event as a meal, snack or drink:

Meal All items from meal list OR
More than one item and at least one item from meal list EXCEPT
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Two items only, one each from meal and snack lists (e.g. bread and butter)

Snack All items from snack list OR
Two items only, one each from meal and snack lists

Drink All items from drink list OR
Two items only, one each from drink and snack lists (e.g. sugar in coffee)

Although the analysis presented in [202] excludes several of the participants due
to missing non-dietary data, the full sample was used in this work as all dietary data
was complete. The manual rule based labels, assigned using the above method, for all
participants was provided by Dr Laura Johnson, University of Bristol, a collaborator
for this PhD thesis. In order to be able to draw comparisons and generalise the
results across the datasets investigated, the same approach was taken to applying
topic models to this dataset as used for the NDNS RP dataset. Documents were
constructed from the items consumed in all of the eating events that occurred at
every unique time t, as recorded to the nearest minute, for any participant on any
day, giving a total of 1148 documents. The vocabulary consists of the 57 food groups
found in the NDNS 2000 dataset, which are broadly the same as those in the NDNS
RP dataset and are listed in appendix B.2 for reference.

The C implementation of variational inference for LDA from David Blei [51] was
also used for this dataset for consistency. A ten-fold cross validation was conducted
using the method described in 6.2.1, with 114 documents in each fold. The average
perplexity was calculated for a range of eating event types from 5 to 50 and is shown
by blue crosses in figure 7.10. It can be seen that the perplexity is lowest for between
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Figure 7.10: Graph showing how the average perplexity varies with the number of
eating event types for the NDNS 2000 dataset.
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5 and 10 eating event types, but that it does not increase much for the full range of
numbers. This suggests that the model generalises to previously unseen data best
when using 5 or 10 eating event types, however the number of types does not have a
strong effect, as for the previous dataset. A more detailed cross validation was also
conducted for between 1 and 15 eating event types at 1 type intervals, shown by red
diamonds in figure 7.10. This confirms that between 5 and 10 types gives the lowest
perplexity, with the minimum at 7 types.

In addition a qualitative analysis was also conducted for the dataset. The results of
estimating models using 5, 10 and 15 eating event types were visualised as lists of the
top food groups with font size proportional to the probability of the food group, given
in appendices C.3 - C.5. These were evaluated for their semantic coherence and given
subjective labels using the same types as for the previous dataset, as summarised
in table 7.1. All of the eating event types found were considered to be semantically
coherent, however the model with 5 eating event types is a limited representation as
there are no event types associated with lighter meals.

For comparison with the manual rule-based classification method it is necessary
to map the eating event types given in table 7.1 to the three simple types used for
the rules. Therefore, breakfast, lunch/sandwiches, light meal and main meal were all
mapped to the label meal; whilst drinks and snacks remained with the same labels.
The NDNS 2000 dataset was restructured into documents that were created based on
single eating events, in the same way as described in section 7.1.1. These documents

Table 7.1: Mappings of eating event type numbers to subjective labels for models
estimated using the NDNS 2000 dataset for 5, 10 and 15 types of eating events.

Type # Eating Event Type Label
1 Snacks Main meal Snacks
2 Drinks Breakfast Breakfast
3 Main meal Main meal Snacks
4 Breakfast Snacks Light meal
5 Drinks Lunch/sandwiches Light meal
6 Light meal Snacks
7 Lunch/sandwiches Main meal
8 Drinks Lunch/sandwiches
9 Drinks Lunch/sandwiches
10 Snacks Drinks
11 Snacks
12 Breakfast
13 Breakfast
14 Drinks
15 Lunch/sandwiches
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were used to perform inference and determine the most likely eating event type for
every eating event. This was completed for the models estimated using 5, 10 and 15
eating event types. The simple eating event type labels (meal, snack, drink) for each
eating event could then be directly compared with the label given to the same eating
event using the manual rule-based method.

7.2.1.2 Results and discussion of comparison between manual rule
based and topic model labels

Table 7.2 shows the percentage of eating events that were given the same label by
both the manual method and the topic model approach, using the mapped simple
labels. The model with 15 original eating event types has the highest similarity to the
manual rule-based method. This suggests that although the eating event types are
mapped onto only three labels, starting with a large number of types when estimating
the model can still provide benefit.

Table 7.2: Percentage of matched labels between rule based method and labels as-
signed by models for 5, 10 and 15 eating event types for the NDNS 2000 dataset.

Percentage of Matched Eating Event Types
5 Type Model 10 Type Model 15 Type Model

67.7% 66.3% 70.6%

Table 7.3: Detailed break down of fraction of eating events for each manual rule based
label that matched each mapped simple label for the most likely eating event type
assigned by the model, for models estimated with 5, 10 and 15 eating event types
using the NDNS 2000 dataset.

5 Type Model 10 Type Model 15 Type Model

Meal Drink Snack Meal Drink Snack Meal Drink Snack

Manual
Label

Meal 0.84 0.01 0.16 0.92 0.01 0.07 0.91 0.08 0.01

Drink 0.23 0.32 0.45 0.34 0.44 0.22 0.25 0.58 0.17

Snack 0.12 0.10 0.78 0.19 0.18 0.63 0.25 0.10 0.66

For each of the models, table 7.3 shows a matrix with the fraction of eating events
for each manual label that matched each of the mapped simple labels for the most
likely eating event type assigned by the model. For example, for all of the eating
events with the manual rule based label of ‘Meal’, the fraction of labels assigned
using the topic model with 5 different eating event types are 0.84 for ‘Meal’, 0.01
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for ‘Drink’ and 0.16 for ‘Snack’, as shown by the first row of the first matrix. These
results highlight where the differences occurred between the two labelling methods.
For all of the models it can be seen that meals are the most likely to be given the
same label by both methods. There is a much larger disagreement for the drink label,
but the agreement for this improves as the number of eating event types in the model
increases. This is likely to be because the eating event types discovered become more
specific when a larger number are found. The agreement for the snack label seems to
vary and is highest for the model with 5 eating event types.

However, the manual rule-based method would not be considered a gold standard.
When investigating the details of the eating events that are given different labels it
can be seen that identifying which method is correct is very subjective and not always
possible to determine. Table 7.4 summarises some examples of eating events that are
given different labels by each method. These are discussed in further detail here.

In general, it was observed that eating events with only one item often cause

Table 7.4: Examples of items in different eating events to highlight the difference in
manual and model label assignments.

# Food Items Manual Label Model Label
1 Chicken Arrabbiata ready meal Snack Meal
2 Semi-skimmed milk Drink Meal

3 Coca cola
Chocolate bar Drink Snack

4

Instant coffee powder
Water as diluent
Milk
Sugar

Snack Drink or Meal

5 Medicine
Water Drink Snack

6
Cream crackers
Brie
Cream cheese

Snack Meal

7

Bread (toasted)
Marmite
Instant coffee powder
Water as diluent
Milk
Sugar

Meal Snack or Drink

8 Mineral water
Canned vegetable soup Meal Snack or Drink
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confusion for both methods. In particular, the manual rule-based method assumes
that a meal will have at least two items and therefore incorrectly labels some eating
events which would subjectively be considered a meal, such as ready meals, pizza or
a ‘Big Mac’. Example 1 in table 7.4 shows a ready meal, which is labelled as a snack
by the manual method. In these cases, the topic model approach performs better as
it labels the eating event as a meal. However, in other instances of one item eating
events, notably drinks, the topic model will give a label of meal, although drink is
more appropriate, as demonstrated by example 2.

The manual rule-based method will label an eating event with two items, where
one is a drink item and the other a snack item, as a drink, in order to account for
people who have sugar in their hot drink. However, this does not cover cases where
a hot drink is listed as several separate components, such as in example 4, where the
manual label is incorrectly given as snack. For this example, the topic model approach
correctly labels this eating event as a drink when using the 5 eating event type model
but incorrectly gives the label meal for the models with 10 or 15 eating event types.
Moreover, this rule also misses cases where a drink and snack are consumed, such as
in example 3. This is correctly labelled by the topic model method.

Other eating events are less obviously of a particular type and therefore it is not
possible to say which label is correct. Examples 5, 6 and 7 in table 7.4 highlight some
common types of eating events that have this problem. The addition of medicine to
the eating event in example 5 makes it ambiguous as to whether it is still just a drink
or should be considered a snack. It is possible that removing all medicine items from
the dataset would be appropriate for this analysis. However a decision would then
need to be made as to whether the associated water was relevant.

Example 6 is also ambiguous as some people would eat this combination of foods
as a snack, whilst others would consider it to be a lunchtime meal. Therefore, giving
an eating event like this a label is difficult and not necessarily that meaningful.
Similarly for example 7, some people might have marmite on toast and coffee for
breakfast, whereas another person might have this as an evening snack. However, for
this eating event the models with 5 and 10 eating event types label this as a drink,
which is incorrect. In general, the models with less types appear to be more likely to
label eating events that are meals or snacks as drinks.

Finally, example 8 demonstrates a problem with eating events where soup is con-
sumed and there are not many items in total. These are often labelled incorrectly by
the topic model approach. This may be because the food group that soup is part of is
‘miscellaneous’ and this food group also contains savoury sauces, condiments and dry
beverages, such as hot chocolate powder. Therefore, it is not discriminatory enough
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and causes confusion in the model. Whereas the rule based approach utilises the 115
sub food groups and hence soups are explicitly assigned to the meal list. Redefining
the food groups used specifically for applying topic models to find eating event types
could improve the results by avoiding such ambiguities but still maintaining a small
vocabulary.

In summary, this section has shown that the results found in chapter 6 extend
to a different dataset. Topic models have successfully been applied to the NDNS
2000 dataset to find combinations of food groups representative of different types of
eating events. The method was easily applied to this new dataset, even though the
vocabulary was different, the food diary records were for seven days rather than four
and the survey only included adults aged 19 - 64 years. Furthermore, it has been
demonstrated that the eating event types found by the topic model are comparable
to those found using a manual rule-based approach in up to 71% of cases. Using a
model with a larger number of topics gives a higher agreement between eating events
labelled as drink because the discovered eating event types are more specific. For
some eating events the topic model results are correct when the rule-based method
fails.

Finally, the subjective nature of labelling eating event types is shown to not be
applicable for all situations as often the same items will be consumed but considered
different types of events. This suggests that using the eating event types found
directly, rather than applying labels to them could be more insightful when using
these results for further analysis. However, this can cause problems for nutritionists
when trying to communicate guidelines for policies to a lay audience as it is normal
to use these labels for communicating such ideas.

7.2.2 Validation using Irish National Adult Nutrition
Survey dataset

The Irish National Adult Nutrition Survey (NANS) was conducted by the Irish Uni-
versities Nutrition Alliance (IUNA) to investigate food consumption, lifestyle and
health of a representative sample of the population of the Republic of Ireland. The
survey ran from 2008 - 2010 and recruited 1500 free-living adults aged 18 - 90 years,
excluding women who were pregnant or breastfeeding. Participants completed a four-
day semi-weighed food diary, weighing food items when possible, using manufacturers
information or a food atlas to estimate weights otherwise. Participants were asked
to define the type of each eating event and this was coded at the time of input to the
database. Full details of the survey are available in the summary report [183]. Data
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was made available through collaboration with Dr Eileen Gibney, University College
Dublin, a member of IUNA.

7.2.2.1 Methods for comparing participant defined and topic model
labels

The data from the food diaries for all 1500 participants were coded using the WISP
(Tinuviel Software), using a total of 2552 items. The data was recorded at the
item level in an SPSS Statistics (IBM) database and the relevant variables were
extracted for processing in Matlab (v2014b, The Mathworks Inc.). The same method
of applying topic models as used for both NDNS datasets was utilised for this dataset
for consistency. Documents were constructed by identifying every unique time, to the
nearest minute as recorded, in the dataset and selecting all of the eating events that
occurred at this time. The food groups for every item consumed during each of
the eating events were listed to create the document. The dataset contains 68 food
groups and a reduced set of 19 food groups. The full set was used for creating the
documents (listed in appendix B.2 for reference) as this was most similar to the
NDNS food groups, however there are differences in the food groupings, which are
highlighted in section 7.2.3. Overall, there were 539 documents for the full dataset.

The same implementation of variational inference for LDA was used as for the
previous datasets for consistency. A ten-fold cross validation was conducted using
the method described in 6.2.1, with 53 documents in each fold. The average perplexity
for 5 to 50 eating event types, at intervals of 5 was calculated across all folds, as shown
by blue crosses in figure 7.11. It can be seen that the perplexity is lowest for 5 eating
event types but that it does not increase much across the full range. This is similar
to the previous datasets and suggests that the model generalises to previously unseen
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Figure 7.11: Graph showing how the average perplexity varies with the number of
eating event types for the NANS dataset.
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data best when using 5 eating event types, however it is not strongly affected by the
number of eating event types. A more detailed cross validation was conducted for 1
to 15 eating event types and is shown by red diamonds in figure 7.11. This confirms
that the lowest average perplexity value is at 5 types.

In addition to quantitative evaluation, it is also important to qualitatively analyse
the results. Therefore, models were estimated using 5, 10 and 15 eating event types
and the results were visualised as lists of the top food groups with font size propor-
tional to the probability of the food group, given in appendices C.6 - C.8. These were
evaluated for their semantic coherence and given subjective labels using the same
types as for the previous datasets, as summarised in table 7.5. All of the eating event
types found were considered to be semantically coherent. However the model with 5
eating event types has less variety, in particular meat based food groups only appear
once in the top food groups of any eating event type. The results of the model with
15 types was judged by nutrition experts to be the most useful, particularly because
it contained an eating event type for drink only events.

The label for the type of each eating event as defined by the participants was
coded to be one of eleven options (the meal type labels listed in column two of table
7.6). These are different in nature to the labels used to subjectively name the eating
event types found by a topic model because they focus more on the time of day. For
example, there are four types of snacks that only differ by the time of day they are

Table 7.5: Mappings of eating event type numbers to subjective labels for models
estimated using the NANS dataset for 5, 10 and 15 types of eating events.

Type # Eating Event Type Label

1 Breakfast Drinks and snacks Lunch/sandwiches
2 Light meal Light meal Lunch/sandwiches
3 Drinks and snacks Main meal Lunch/sandwiches
4 Main meal Breakfast Drinks and snacks
5 Drinks and snacks Main meal Main meal
6 Drinks and snacks Breakfast
7 Lunch/sandwiches Main meal
8 Lunch/sandwiches Lunch/sandwiches
9 Breakfast Lunch/sandwiches
10 Main meal Drinks (alcoholic)
11 Main meal
12 Breakfast
13 Light meal
14 Main meal
15 Light meal
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Table 7.6: Mapping from labels defined by participants (meal type labels) and sub-
jective labels assigned to discovered eating event types (eating event type labels) to
a common set of simple labels to enable comparison

Simple Labels Meal Type Labels Eating Event Type Labels
Breakfast Breakfast Breakfast

Light meal Lunch light meal
Evening light meal

Light meal
Lunch/sandwiches

Main meal Lunch main meal
Evening main meal Main meal

Drink / Snack

Morning snack
Afternoon snack
Evening snack
Night snack
Non-alcoholic beverage
Alcoholic beverage

Snacks
Drinks and snacks
Drinks (alcoholic)

associated with. In order to make comparisons between the two approaches, a reduced
set of simple labels was identified, to which the labels used in the two approaches
could be mapped. The mappings between these different sets of labels are explicitly
defined in table 7.6. Drinks and snacks are combined as only one discovered eating
event type represented only alcoholic drinks.

In order to compare the labels given to each eating event, documents were created
for each single eating event in the NANS dataset using the method described in
section 7.1.1. Inference was performed on these documents using each of the three
estimated models, with 5, 10 and 15 eating event types. The most likely type was
determined for every eating event. The mappings for the simple labels, given in table
7.6, were then applied to the results from the models and the ‘meal type’ variable in
the original dataset. This allowed the simple labels to be directly compared for each
eating event to quantify the similarities between the model results and the participant
defined labels. Table 7.7 shows the percentage of eating events that were mapped to
the same simple label. The model with 5 eating event types has the highest similarity
to the participant defined labels when mapped to the simple label set. The percentage
of matches decreases with the increase of the number of eating event types.

For each of the models, table 7.8 shows a matching matrix detailing the fraction
of eating events for each simple label (mapped from the participant defined labels)
that matched the simple labels (mapped from the most likely eating event type as-
signed by the model). These results highlight that the majority of the decrease in
overall percentage of matched types as the number of eating event types in the model
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Table 7.7: Percentage of matched labels between participant defined labels and labels
assigned by models for 5, 10 and 15 eating event types for the NANS dataset.

Percentage of Matched Eating Event Types
5 Type Model 10 Type Model 15 Type Model

71.6% 60.9% 56.5%

Table 7.8: Detailed break down of fraction of eating events for each simple label
(mapped from participant defined labels) that matched each simple label (mapped
from the subjective eating event type labels) for the most likely eating event type
assigned by the model, for models estimated with 5, 10 and 15 eating event types
using the NANS dataset.

5 Type Model
Breakfast Light meal Main meal Drink/snack

Meal
Type
Label

Breakfast 0.78 0.07 0.00 0.15
Light meal 0.10 0.61 0.07 0.21
Main meal 0.02 0.16 0.72 0.10

Drink/snack 0.18 0.07 0.03 0.72

10 Type Model
Breakfast Light meal Main meal Drink/snack

Meal
Type
Label

Breakfast 0.85 0.07 0.16 0.06
Light meal 0.18 0.58 0.10 0.14
Main meal 0.03 0.28 0.63 0.06

Drink/snack 0.25 0.09 0.17 0.48

15 Type Model
Breakfast Light meal Main meal Drink/snack

Meal
Type
Label

Breakfast 0.73 0.24 0.02 0.02
Light meal 0.07 0.78 0.10 0.04
Main meal 0.01 0.35 0.60 0.04

Drink/snack 0.22 0.22 0.18 0.38

increases is related to those eating events defined by participants as drinks or snacks.
As the number of eating event types discovered increases they become more specific.
For this dataset, the more specific eating event types found were more often subjec-
tively labelled as a type of meal, especially lunch or light meal than as a snack or
drink. These labels do not match as well with how participants define their eating
events. In particular, an eating event defined as a snack by a participant can have
similar food groups to part of a meal, especially eating events with few items.
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Several of the more specific eating event types in the 15 type model that were
labelled as lunch or light meal contain food groups related to bread, tea, coffee,
milk, sugar and spreads within the top food groups of the eating event type. The
subjective labels are assigned based on the distinguishing food groups, such as cheese,
bacon & ham, soups and salad, which generally have a lower probability within the
eating event type. The eating event type discovered labelled as ‘snacks and drinks’
also contains tea and milk within the top food groups but is distinguished by the
chocolate confectionery, savoury snacks and cakes, pastries & buns food groups. This
means that eating events that only have food groups such as bread, spread and
tea have a higher chance of being assigned a most likely eating event type with a
subjective label of light meal or lunch. This highlights the problem of subjective,
cultural based labels as in reality people eat these same combinations of food groups
at many different times but associate different labels with them. For example, if a
person has toast and tea for breakfast or a night time snack, or a sandwich and tea
for lunch, they are consuming very similar food groups but using different labels.

Due to the subjective nature of the labels given to eating events by participants
and to the results from topic models by researchers, only matches and differences can
be quantified, without stating that one is necessarily more correct than the other.
Investigating the components of the eating events given different labels gives further
insight into why these differences occur. Table 7.9 gives some examples of eating
events which were given different labels. These are discussed in more detail below.

In the NANS dataset some items, such as milk and tea, are given average portion
sizes. This means that if someone has a large mug of tea or two cups of tea in one
eating event then this item will be listed more than once. This artificially inflates
the representation of these items when creating documents at the eating event level,
affecting inference of the most likely type of eating event. Example 1 in table 7.9
demonstrates this effect, as the distinguishing food group between a snack and a light
meal, associated with the tuna food item, only accounts for 11% of the document
created for this eating event. In addition, cream crackers are assigned to the biscuit
food group and hence will be associated by the model with a snack eating event type
rather than a light meal.

It was shown that, for the 10 and 15 type models, the majority of differences are
for eating events with participant defined labels mapped to the drink/snack simple
label. Eating events with only one or two items often cause differences in labels,
especially for the 15 type model, as highlighted by examples 2 to 4 in table 7.9. Each
of these events were labelled by participants as drink/snack but assigned to light
meal, breakfast or main meal by the 15 type model. The food groups for the items
in these eating events do not occur in the top food groups for the eating event types
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Table 7.9: Examples of items in eating events with different labels assigned by par-
ticipant and model approaches.

# Food items Meal Type Label Model Label

1

Cream crackers
Whole milk x 2
Tea, black infusion x 2
Water
Tuna, canned in brine
Crisps
Mayonnaise

Light meal Drink/snack

2 Apple Drink/snack Main meal

3 Coffee, infusion
Whole milk Drink/snack Light meal

4 Cranberry juice Drink/snack Breakfast

5

Iced fairy cake
White bread
Whole milk
Tea, black infusion
Butter
Chicken, roasted

Drink/snack Light meal

6

Brown soda bread
Marmalade
Whole milk
Tea, black infusion

Light meal Breakfast

7

Brown bread
Hash browns
Whole milk
Eggs, fried
Coffee, instant
Butter
Bacon
Pork sausages

Breakfast Light meal

8

Crumpets
Eggs, boiled
Maple syrup
Coke

Breakfast Drink/snack

9

Beef stew
Digestive biscuits
Semi-skimmed milk
Tea, black infusion

Main meal Drink/snack

mapped to the simple drink/snack label for this model. Rather, they occur as part of
other types of eating events, for example fruit can be eaten as part of a main meal.
Therefore, because these eating events only have one or two items there is no data
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that the model associates with the drink/snack eating event type. Conversely, the
eating event types discovered by the 5 type model are less specific, hence those types
mapped to drink/snack include coffee and fruit. Therefore, the model can associate
these eating events with the drink/snack types.

Example 5 in table 7.9 shows that for some eating events the label assigned by
the model is arguably more realistic than the participant defined drink/snack label in
terms of the content of the eating event. Another participant eating the same items
could consider the eating event to be a light meal. This ambiguity due to the nature
of the subjective labels also occurs for other eating event types, as shown in examples
6 and 7. Example 6 demonstrates that although the combination of tea, bread and
marmalade is often consumed as breakfast this participant had the same items as
a light meal. Similarly, in example 7 a traditional cooked breakfast is represented,
however in terms of food groups it is clear that this is more like a light meal, as
suggested by the model results.

Certain food groups that contain a wide range of different items can cause dif-
ferences in labels, such as example 8. Coke and maple syrup belong to food groups
more generally associated with snacks than breakfast, therefore the model has as-
signed the most likely type to be snack/drink for this eating event. Furthermore,
the NANS dataset contains some items for which the nutrition values are known at a
recipe level and hence are not split into their composite parts. These items are only
listed as one food group in a document, rather than several which does not accurately
represent the eating event. This is shown in example 8, where the beef stew is the
main part of the meal but only has one item compared to the tea and biscuits, which
require three items. Therefore the model bases the assignment to the most likely
eating event type on the tea and biscuits rather than beef stew and considers it to
be a snack instead of a meal.

All datasets contain some inconsistencies, some of the inconsistencies in the NANS
dataset are clearly incorrect. For example, one participant who had porridge, ba-
nanas, pears, honey and coffee for breakfast every morning has this eating event
labelled as a non-alcoholic beverage for day 3, which is clearly a mistake. Other
inconsistencies cannot be considered definitively incorrect without being able to refer
to the original food diary records. For example, one participant had porridge, pasta
with tomato sauce and apples for their evening meal. This does not seem like a
common combination, however it could be a valid entry.

In summary, this section has shown that topic models can be successfully applied
to the NANS dataset to find combinations of food groups representative of different
eating event types. The subjective labels given to eating event types found are
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comparable to the subjective labels assigned by participants in up to 72% of cases.
In contrast, to the results for the NDNS 2000 dataset where as the number of eating
event types discovered increases the agreement between labels increases, for the NANS
dataset the agreement decreases. This decrease in agreement primarily occurs for
drink/snack eating event types. A model with a larger number of eating event types
discovers more specific combinations of food groups. For the NDNS 2000 dataset this
meant that a more specific drink eating event type was discovered that increased the
number of matches for the drink label. However, for the NANS dataset having less
specific eating event types gives a better agreement with participant labels because
it reflects the increased variation from using participant defined labels, rather than
standardised rule based labels.

The coding strategies vary a lot more between NANS and NDNS 2000 than be-
tween the two NDNS datasets because they are run by completely separate groups.
In particular, the nature of the food groups varies in terms of what level items are
grouped at e.g. whether tea, coffee and water are all in one group or in three separate
groups. The use of composite foods i.e. whether a sandwich is listed as one item or
all of the component parts and average portion sizes are different. These underlying
coding strategies affect the resulting eating event types discovered by a topic model
because they are directly linked with the vocabulary and document structure. For
example, if average portion sizes are used then the corresponding food groups will
be repeated if a participant has a double portion. These differences have a more
noticeable effect when performing inference on documents representing single eating
events, compared to the documents used to estimate the model, because they are
much smaller and hence a repetition of one item will be more significant in relative
terms.

Finally, as for the NDNS 2000 dataset, the results highlighted that using subjective
labels for eating events is not always applicable. The same combination of food groups
may be consumed but given different labels based on cultural norms. This problem
is compounded when both the participant based labels and labels assigned to the
eating event types found by topic models are subjective. There is often no definitive
answer as to which is the ‘correct’ or ‘better’ label.

7.2.3 Using NDNS food groups with the NANS dataset

The are several differences between the 68 food groups used in the NANS dataset
and those in the NDNS datasets. For example, in the NDNS datasets tea, coffee
and water are one food group whereas in the NANS dataset these are three separate
food groups. The opposite is true for alcoholic beverages, which are separated into
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several different groups in NDNS but all grouped together in NANS. These different
groupings affect the results of using topic models as the food groups are used as the
vocabulary. For example, if a dataset contains 100 tea, 100 coffee and 100 water items
then this would result in the NDNS ‘tea, coffee and water’ food group being listed
300 times in total, whereas each of the separate corresponding NANS food groups
would be listed 100 times each in total. This change in the underlying structure of
the data affects how the model discovers the hidden structure of eating event types.

To investigate this further, the food items in the NANS dataset were reassigned
to the NDNS RP food groups by a nutritionist. There were a few unclear items that
required clarification before being assigned to the most appropriate group, including
splitting items into component parts where necessary. For example, the food item
‘cocoa powder, made up with semi-skimmed milk’ in the NANS dataset was coded
to be NDNS RP food groups ‘Beverages dry weight’ and ‘Semi-skimmed milk’. The
assigned groups for these additional items were verified and agreed by a nutrition
expert, familiar with the NDNS dataset.

Using the 60 NDNS RP food groups as the vocabulary, documents were created
for the NANS dataset. Documents were constructed from the assigned food groups
of the items in all eating events at each unique time recorded in the dataset, to the
nearest minute. Variational inference for LDA was used to conduct a ten-fold cross
validation using the method described in 6.2.1, with 53 documents in each fold. The
average perplexity for 5 to 50 eating event types, at intervals of 5 was calculated
across all folds as shown by blue crosses in figure 7.12. This shows the perplexity is
lowest for 5 eating event types, but does not increase much across the full range.
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Figure 7.12: Graph showing how the average perplexity varies with the number of
eating event types for the NANS dataset with the NDNS RP food groups.
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A more detailed ten-fold cross validation was conducted and the average perplexity
calculated for 1 to 15 eating event types, as shown by red diamonds in figure 7.12.
This confirms that the lowest perplexity is for 5 or 6 eating event types. This is a
similar trend to previous datasets and models, suggesting that the model generalises
to previously unseen data best when using 5 eating event types, however the number
of types does not have a large impact. Furthermore, comparing figure 7.12 to figure
7.11 highlights that the perplexity is lower across the whole range of number of
eating event types when using the NDNS RP food group vocabulary as opposed to
the original NANS food groups. This suggests that using the NDNS RP food groups
creates models that are a better fit to the NANS dataset.

A qualitative analysis of the results was also carried out by visualising the top food
groups for models estimated using 5,10 and 15 eating event types, given in appendices
C.9 - C.11. All of the eating event types were considered to be semantically coherent.
The models with larger numbers of types displayed more specificity in the types found
in terms of food group combinations, as expected. All of the eating event types were
given subjective labels using the same types as for previous datasets and these are
detailed in table 7.10.

To further investigate the impact of using the NDNS RP food groups as the vo-
cabulary for the NANS dataset, the same analysis of comparing labels as described
in section 7.2.2.1 was conducted for the new models. Table 7.11 summarises the per-

Table 7.10: Mappings of eating event type numbers to subjective labels for models
estimated using the NANS dataset with the NDNS RP food groups for 5, 10 and 15
types of eating events.

Type # Eating Event Type Label

1 Breakfast Breakfast Drinks and snacks
2 Main meal Lunch/sandwiches Main meal
3 Drinks and snacks Drinks and snacks Drinks and snacks
4 Drinks and snacks Main meal Main meal
5 Lunch/sandwiches Main meal Breakfast
6 Breakfast Drinks and snacks
7 Lunch/sandwiches Breakfast
8 Drinks and snacks Light meal
9 Drinks and snacks Drinks and snacks
10 Main meal Drinks and snacks
11 Breakfast
12 Light meal
13 Main meal
14 Lunch/sandwiches
15 Lunch/sandwiches
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Table 7.11: Percentage of matched labels between participant defined labels and
labels assigned by models for 5, 10 and 15 eating event types for the NANS dataset
with the NDNS RP food groups.

Percentage of Matched Eating Event Types
5 Type Model 10 Type Model 15 Type Model

73.3% 69.5% 67.5%

Table 7.12: Detailed break down of fraction of eating events for each simple label
(mapped from participant defined labels) that matched each simple label (mapped
from the subjective eating event type labels) for the most likely eating event type
assigned by the model, for models estimated with 5, 10 and 15 eating event types
using the NANS dataset with the NDNS food groups.

5 Type Model
Breakfast Light meal Main meal Drink/snack

Meal
Type
Label

Breakfast 0.61 0.09 0.01 0.29
Light meal 0.06 0.61 0.14 0.20
Main meal 0.01 0.10 0.80 0.10

Drink/snack 0.07 0.08 0.03 0.81

10 Type Model
Breakfast Light meal Main meal Drink/snack

Meal
Type
Label

Breakfast 0.85 0.08 0.01 0.07
Light meal 0.16 0.62 0.10 0.12
Main meal 0.03 0.18 0.71 0.08

Drink/snack 0.22 0.08 0.06 0.64

15 Type Model
Breakfast Light meal Main meal Drink/snack

Meal
Type
Label

Breakfast 0.77 0.12 0.02 0.09
Light meal 0.12 0.61 0.16 0.11
Main meal 0.02 0.21 0.70 0.07

Drink/snack 0.23 0.10 0.03 0.64

centage of eating events for which the final mapped label was the same for models
with 5, 10 and 15 event types. It can be seen that as for the original NANS dataset
and vocabulary, the model with 5 eating event types has the highest similarity to
the participant defined labels when mapped to the simple label set. The percentage
of matches also decreases with the increase of the number of eating events. Overall
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the percentage of matches is higher using the NDNS RP food groups, compared with
the original NANS food groups and the rate of decrease in the number of matches is
smaller. This suggests that the structure of the data using these food groups enables
the topic models to discover hidden eating event types that are more aligned with
participant based labels.

A detailed break down of the fraction of matches for each simple label are given
for each model in table 7.12. These highlight that there is a similar decrease in the
fraction of matching drink/snack labels between the 5 and 10 type models as there
was for the original NANS food groups but that there is no further decrease for the 15
type model. This suggests that less specific eating event types still align better with
participant defined labels but that using the structure of the NDNS RP food groups
improves the agreement between the more specific eating events and the participant
labels. One explanation for this is that by grouping ‘tea, coffee and water’ into one
food group it is only one vocabulary item in the eating event types it appears in and
hence there are a larger number of top food groups that are more discriminatory.
This is in contrast to the eating event types discovered when the original NANS food
groups were used where there were a large number of eating event types dominated
by different proportions of combinations of tea, milk, bread, spreads and sugar, which
are not discriminatory.

7.3 Chapter summary

This chapter has shown that the resulting eating event types from applying topic
models to nutrition data from the NDNS RP dataset can be utilised for further
analysis. This can occur at the individual participant level, the population sample
level or for specific groups of interest. In particular, it has been demonstrated that
the content of eating events, in terms of the food groups consumed, and the subjective
label for the assigned most likely eating event type are well matched in the majority of
cases. Patterns in the eating event types for an individual can be found and these can
be used in future work to investigate a person’s eating habits. Moreover, it was shown
that the eating event types found can be utilised to investigate specific hypotheses,
using the example of how breakfast habits affect the eating events that occur for the
rest of the day in the sample population. Inference can also be performed on different
groups within the dataset, based on a variable of interest, to reveal patterns that can
be used for further analysis. An example was shown that highlighted the differences
between the probabilities of eating event types that occur on weekday and weekend
days.
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In addition to using the results from the NDNS RP dataset, it has been demon-
strated that topic models can successfully be applied to other datasets containing
food diary data. Food group combinations representative of eating event types were
found for the NDNS 2000 dataset and the NANS dataset. These datasets both have
alternative sources of labels for eating event types: a rule-based method for the NDNS
2000 dataset and participant defined labels in the NANS dataset. Analysis was car-
ried out to investigate the number of matches between the different label sources.
The results demonstrated that the subjective labels assigned to eating event types
found by topic models matched the rule-based labels in up to 71% of cases and the
participant defined labels for up to 72% of eating events.

Some of the incorrect labels given to eating events by the results of the topic model
approach were identified to be linked to the choice of vocabulary. Some food groups
are too ambiguous and contain a variety of food items that would be consumed during
different types of eating events, for example the NANS food group ‘biscuits including
crackers’. Different coding strategies, including how composite items are listed, the
level of food groups and the use of average portions affect the resulting eating event
types discovered as they alter the underlying structure of the data. Determining a
coding strategy for specific use with topic models for identifying eating event types
could help to improve the results.

Eating events with a small number of items, such as a cup of tea or coffee (some-
times listed as up to four items if split into coffee, water, milk and sugar), a piece of
fruit or a glass of juice are often assigned incorrect labels by both the topic model
results and the manual rule based method. Only considering the food groups for
these small events does not provide enough information to reliably determine the
type of eating event. However, simply labelling all events with one or two items as
drink/snack is not necessarily valid and still does not account for a cup of coffee with
four components. One suggestion is to pre-process the data with rules based on more
detailed information, such as total energy content of eating event and then estimate
topic models using only data for eating events above a defined energy content.

Overall, the results have shown that using a model with a larger number of eating
event types aligns better with rule-based labels. Conversely, models with fewer types
give a better match to participant defined labels. This is because the larger the
number of types, the more specific the combinations of food groups in each eating
event type is. These results reflect the fact that subjective participant labels are more
varied in nature in comparison with applying a consistent set of rules. The choice
of number of eating events type to use should be based on the nutrition research
question being addressed.
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Exploring the eating events that were assigned different labels highlighted that
although sometimes each method can clearly give an incorrect result, often it is not
possible to decide which method is correct. Many eating events could be given a
range of labels, which could all be considered correct but only depend on variables
such as time of day, which do not directly change the nutrient content of the items
eaten. For example, a cup of tea and a piece of toast could be eaten as breakfast, a
light meal or a snack. In each instance, although the label is different, assuming the
quantities are the same, the nutritional content of the eating event is the same.

The benefit of the eating event types found using the topic model approach is that
they do not have to be labelled. They are found based only on what is recorded in the
dataset and not biased by cultural norms. The resulting food group combinations
could be used for analysis without ever applying subjective labels to them. For
example, there is real potential for investigating routines and consistency in eating
habits. A higher variability in eating event types may be indicative of chaotic eating
and hence lead to overconsumption and obesity. Currently, nutrition researchers only
consider the standard deviation of energy intake in different time slots over multiple
days. Using the food group combinations found by topic models would enable this
analysis to be extended to define similarity in both the energy intake and the food
sources of the energy. The drawback of not labelling the eating event types is the
challenge of how to disseminate the results found in a format that will be suitable for
use in public policy creation and health initiatives.

In conclusion, for the purpose of investigating how people actually combine food
groups together in eating events topic models are better than the rule-based approach.
This is because topic models are a data driven approach and is therefore less con-
strained than the rule-based approach which cannot account for the full variability in
the data. Moreover, topic models do not rely on the use of predefined labels, which
can be biased by cultural norms, rather the focus is on the food groups involved.
However, using topic models with only food groups as input has limitations. More
detailed and useful information regarding the energy, weight and nutritional content
of an eating event is lost. The approach is also affected by the choice of food groups
used, which is not standardised within the nutrition research community.
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Chapter 8

Conclusions and Outlook

This chapter highlights the conclusions of the research presented in this thesis and
how they address the stated research questions. An outlook for how this research can
be extended through future work is also given.

8.1 Conclusions

The aim of the research conducted for this thesis was to detect behaviour patterns
in data collected by a residential healthcare monitoring system in order to obtain
information of a greater quality than the raw sensor data. To address this aim three
research questions were formulated that focus on specific challenges in this area. This
section summarises the conclusions of the research related to each of these questions.

8.1.1 Detection of daily routines for healthcare monitoring

Can patterns in a person’s daily activities that are representative of
routines be detected for a novel, real world activity dataset?

Chapter 4 presented the development of a mobile phone logging application that
was used to collect a real world dataset for two healthy volunteers with 16 days
of activity data each. Latent Dirichlet Allocation (LDA) was applied to the daily
activities in this novel dataset and the results demonstrated that the detected groups
of activities are representative of routines.

An average accuracy of up to 80% was reported when comparing the discovered
routines with the recorded ground truth labels for each participant. However for this
dataset, a higher accuracy was associated with a higher perplexity (across all numbers
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of routines), which suggests that the model does not generalise as well to unseen data.
This observation highlights the impact of the subjective nature of both ground truth
labelling and the assignment of labels to detected routines. The semantic coherence
of routines is as important, if not more, than how well they correspond to ground
truth labels. In particular, a discovered group of activities may represent a valid
routine for a user that was not considered when labelling the dataset.

Considering the semantic coherence of the discovered routines resulted in the se-
lection of models with fewer routines than suggested by the quantitative measure of
the perplexity. Using a larger number of routines gives a lower perplexity, meaning
that the model can generalise to unseen data better, but this is because the discov-
ered routines are strongly associated with single activities rather than groups that
form a routine. The duration of discovered routines must be long enough to include
a mixture of activities, in order for information of a greater quality than the input to
be obtained.

In addition, it is recommended that the overall duration of the dataset used to
estimate the model is of sufficient length to represent the general variability of a
user’s behaviour, in order that the model is less sensitive to rare or unseen activities.
The absolute duration necessary will be dependent on the specific research question
and use case. For example, an elderly person with a very stable routine will need a
shorter dataset compared to a student with a chaotic routine. Furthermore, datasets
should be collected over consecutive days to ensure there is no bias in the selection
of recording days.

In conclusion, LDA can successfully be applied to a novel activity dataset to de-
tect patterns representative of routines. The selection of the number of routines for
a model can be guided by the measure of perplexity but the semantic coherence of
the routines in the context of the application must not be lost. Validating detected
routines against ground truth labels can give a good indication of performance. How-
ever, analysing the content of the routines directly can reveal more useful information
beyond the restriction of subjective predefined labels.

8.1.2 Identification of changes in routines over time

Can changes in the structure of daily routines over time be detected?

Following on from the results of chapter 4, that showed LDA can detect routines
in activity data, the application of dynamic topic models (DTM) to detect changes
in the structure of daily routines over time was considered in chapter 5. The re-
sults demonstrated that changes over time in the probabilities of activities within
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discovered routines can successfully be identified for a simulated dataset.

The results revealed that the relationship between the duration of the activities
used as input to the DTM and the number of routines in the model affect how easily
a change can be identified. For the simulated dataset used in this research models
with 5 routines and only using activities that occur during waking hours (i.e. no
sleep activities of a duration greater than an hour) performed the best. A novel
visualisation technique was developed that highlights activities that vary by at least
25% of the minimum probability of the activity occurring in the routine, assuming
this is over 0.001. These criteria were shown to be successful at identifying relevant
changes for the simulated dataset tested.

It was observed that not all of the changes in the simulated dataset were identified
at the activity level. In other words, some changes were identified as a variation in the
frequency of a routine, rather than the probability of an activity within routine(s).
This is due to the variation in duration of activities that are modelled in the simulated
dataset. A limitation of using DTMs is that the model and dataset parameters need
to be tuned using expert knowledge and contextual information for different scenarios.

In conclusion, changes in the structure of daily routines over time can successfully
be detected using dynamic topic models for simulated datasets. This preliminary
result suggests there is potential for this method to be successful when applied to real
activity data. However, this approach is affected by the model and dataset parameters
and how they relate to each other and therefore these must be carefully selected for
each application. Furthermore, the criteria used to highlight relevant changes will
need to be adjusted to reflect significant real world healthcare criteria. For example,
using a threshold of 0.001 for the minimum probability of activities considered to be
changing may not reflect any useful diagnostic information for clinicians.

8.1.3 Understanding how foods are combined in eating
events

Can the combinations of foods consumed together in different types of
eating events be automatically detected?

Chapter 6 presented a novel method for applying LDA to nutrition data recorded
in the form of food diaries. The results demonstrated that combinations of food
groups that represent different types of eating events can automatically be detected
using LDA. This method was shown to successfully detect eating event types for three
different datasets in chapters 6 and 7.
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When visualising the results of the eating event types found for the NDNS RP
dataset it was noted by a nutrition expert that some food groups often appeared with
a relatively large probability compared to others. It was hypothesised that this was
due to the structure of the original dataset. Chapter 6 detailed a sensitivity analysis,
revealing that altering the structure of the data to eliminate this artefact did not
improve the performance of the topic models and hence the original structure should
be kept.

Chapter 7 showed that the eating event types detected for the NDNS RP dataset
can be utilised for further analysis. Performing inference for single eating events
enables patterns in eating behaviours to be investigated at both the individual par-
ticipant and population sample levels. Inference can also be performed on a group of
data related to a variable of interest to investigate similarities and differences between
the groups, such as weekdays and weekend days.

The subjective labels assigned to the eating event types discovered by LDA in the
NDNS 2000 and NANS datasets were validated using alternative sources of labels.
The results given in chapter 7 revealed that the subjective labels matched the rule-
based labels in NDNS 2000 and participant defined labels in NANS for up to 71%
and 72% of the eating events respectively. Overall, it was observed that a model
with a larger number of eating event types aligns better with rule-based labels and
conversely for participant defined labels. This reflects the fact that there is more
variety in how participants assign labels to eating events.

Eating events with only one or two items are often assigned incorrect labels by both
the LDA and rule based approaches. This is because only considering the food groups
for these small events does not provide enough information to reliably determine the
type of eating event. Only using food groups as input data for topic models is a
limitation of this method. Data regarding the energy, weight and nutritional content
of an eating event, that can reveal important information, is lost. The approach is
also affected by the choice of food groups used, which is not standardised within the
nutrition research community.

In conclusion, combinations of foods consumed together in different types of eating
events can be automatically detected using LDA. The labels assigned to the discovered
combinations have a good agreement with other methods for labelling eating event
types. However, as all types of labelling are subjective in nature and biased by
cultural norms it is proposed that the combinations of food groups could be used
for further analysis without applying labels. The drawback to this suggestion is the
challenge in disseminating the results to lay audiences in a useful manner.
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8.2 Outlook

During the course of this research several avenues for future work were identified.
These are highlighted in this section with suggestions for extending the work pre-
sented in this thesis.

8.2.1 Future work for detecting routines and changes over
time

Analysing the results of applying LDA to the novel activity dataset collected high-
lighted limitations of how the model deals with previously unseen data. The recom-
mended guideline previously published by Seiter et al. [124] to use at least 14 days of
data for good performance was followed. However, it was observed that over the 16
days of data for each participant in the novel dataset some activities only occurred
on one or two days. The performance of the model decreased significantly for days
with these activities when a leave-one-day-out cross validation was performed. It was
observed that the days with lower accuracies for participant two were weekend days,
whereas all the other days in the dataset were weekdays.

One improvement would be to collect data on consecutive days for a longer period
of time and ensure that both weekend and weekdays are well represented. Future
work, in collaboration with clinical experts, should address the question of how much
data should be used to estimate a model that represents a baseline for establishing a
person’s ‘normal’ routine. The amount of data required may vary depending on the
healthcare context and the nature of an individual’s lifestyle. For example, a student
is likely to have a more chaotic routine than a parent with a small child or an older
person with a chronic disease.

Another possible solution for previously unseen data is to use online LDA with an
infinite vocabulary proposed by Zhai and Boyd-Graber [211]. This method enables
the model to expand topics to include additional words by drawing topics from a
Dirichlet process (DP) with a base distribution over an infinite vocabulary, instead
of a finite Dirichlet distribution. The infinite vocabulary is implemented using a
truncated ordered set that is updated to allow the vocabulary to dynamically expand
and contract as required. As suggested in [211] this model could be combined with
the concept of dynamic topic models to model both how the topics and the underlying
dimensionality of the vocabulary changes. This could be used to identify changes in
the variety of activities a person performs.

The results of applying dynamic topic models to activity data to identify changes
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8.2. Outlook

in the structure of daily routines have limitations, as discussed in section 5.4. To
expand on this work the next step would be to run a larger experiment on more
complex simulated datasets with multiple parameters changing in any permutation.
This would demonstrate the ability of DTMs to detect changes in data that are more
similar to a real-world dataset. If DTMs can successfully identify changes in a more
complex simulated dataset then they can be tested on real-world long term data with
known changes. Furthermore, valid criteria for detecting significant changes related
to health and well-being need to be established in collaboration with relevant experts.

Another important area of research for applying DTMs to activity data is to
establish the optimal vocabulary and length of small time slices to discover changes
at the activity level. These decisions should be made in conjunction with expert
clinical opinions in order to be able to identify changes that are significant in terms
of healthcare. Different models may be required for different situations if changes are
occurring at varying levels of granularity.

In addition to DTMs there are several other extensions to LDA, as described in
section 2.3.2. In particular, Hierarchical Dirichlet Processes (HDP) could be applied
to activity data to discover routines without specifying the number in advance as this
is determined directly by the model. HDP also offers the advantage of allowing new
topics or routines to be evoked by previously unseen data. Therefore if new activities
occur that do not fit an existing routine, a new one can be defined. This model can
then be further extended to create a model known as dynamic Hierarchical Dirichlet
Processes that models how topic proportions change over time. This could be used
to identify changes over time at a different level i.e. the variation in the probability
of routines over time.

As well as overcoming the limitation of needing to define the number of routines
for LDA in advance, Seiter et al. [235] propose an approach that addresses the
limitation of time-invariant segments, which include failure to handle transitions,
variations in activity duration, and short activities accurately. This is a hierarchical
topic model approach that includes automatic segmentation of raw sensor data into
context words in an unsupervised way, avoiding the need for annotations. It allows
segments to vary in size by performing segmentation dynamically based on the data.
The hierarchical model uses a segmentation prior, that considers semantic and tem-
poral features of context words, and distance dependent Chinese restaurant process
(ddCRP) to group segments and the Chinese restaurant process (CRP) to discover
activities. Future work could build on this approach to address these limitations in
DTMs for discovering changes in routines over time.
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8.2. Outlook

8.2.2 Future work for detecting eating event types

There is a clear opportunity to extend the work presented on detecting different
types of eating events. The discovered combinations of food groups can be used,
with or without subjective labels, as a basis for further analysis to address a wide
range of nutrition research questions. For example, patterns in eating behaviours of
individuals can be explored further to determine if there are associations with specific
health and well being outcomes. This could be applied to the data from the four and
seven day food diaries in the datasets utilised in this research or longer term data to
find more detailed patterns.

At a population level, characteristic patterns of specific groups, such as children,
could be investigated. For example, visualising the probability of different eating
events over time might reveal that main meal type events are more likely between 5
and 7pm than for a group of adults aged 19 - 64. The discovered eating event types
could also be linked back to other variables of interest recorded in the datasets. For
example, investigating correlations between a discovered eating event type and the
energy or nutrient content of the eating events for which this type is the most likely.

The effect of breakfast on the remaining eating event types throughout the rest
of the day was considered in section 7.1.1.2. It was observed that people consuming
‘breakfast’ between 6 and 10am were more likely to have a second breakfast. The
reason for this could be that the first event labelled as breakfast was just a cup of
tea or coffee and a more substantial breakfast or second drink was consumed later.
Investigating this further by considering the energy of the eating events or removing
drink only events could reveal whether this hypothesis is correct.

The results highlighted that eating events containing all of the individual items
for a homemade dessert e.g. a cake, are often assigned to an incorrect eating event
type. This is because the food groups of the individual items i.e. eggs, flour, milk,
butter are different in nature to that for the final product. On the other hand, for
some main meals e.g. beef stew, that are not split into their component parts, the
incorrect label is assigned due to the lack of detail. Eating events with only one or
two items and drink only events are also often mislabelled. An interesting avenue for
further work would be to investigate whether rule-based preprocessing of the data
could resolve these limitations.

Various extensions to LDA could also be applied to nutrition data. In particular,
HDP could be investigated so that the number of eating events is automatically
determined by the model. However, this may not improve the results as the best
fit to the data and the semantic coherence of the results do not always align. A
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8.2. Outlook

variation on author topic models could also be considered as a solution for including
more information about eating events. For example, the weight, energy and time of
the eating event, that were identified as key properties could be the equivalent of the
author of a document. This means that the link between these variables and the food
groups are explicitly modelled. However, the original author topic model assumes
there is one author for a document containing multiple topics. Therefore the model
would have to be modified to reflect the nature of the nutrition application.
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Appendix A

Activity Vocabularies

This appendix provides reference lists of the vocabularies of activities used for differ-
ent models that were not included in the main body of the thesis.

Table A.1: Custom vocabulary from ADL Logger App for participant two. Each
activity in the vocabulary has an ID and a description and is associated with a
routine (1-9).

Activity Routine
ID Description ID Description
1 Showering 1 Wake Up
2 Personal hygiene 1 Wake Up
3 Eating breakfast 1 Wake Up
4 Eating snack 8 Multi
5 Working at desk 3 Work
6 Attending meeting 3 Work
7 Bus 2 Commute
8 Train 2 Commute
9 Dressing 1 Wake Up
10 Yoga 6 Exercise
11 Phone call 8 Multi
12 Using toilet 8 Multi
13 Walking 8 Multi
14 Watching television 7 Relaxation
15 Sleeping 9 Other
16 Walking 8 Multi
17 Preparing drink 8 Multi
18 Eating lunch 4 Lunch
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Activity Routine
ID Description ID Description
19 Eating dinner 5 Dinner
20 Preparing dinner 5 Dinner
21 Shopping 9 Other
22 Waiting 8 Multi
23 Drinking 8 Multi
24 Tidying up 9 Other
25 Preparing breakfast 1 Wake Up
26 Doing chores 9 Other
27 Using computer 7 Relaxation
28 Reading 7 Relaxation
29 Relaxing 7 Relaxation
30 Preparing lunch 4 Lunch
31 Personal hygiene 8 Multi
32 Sitting talking 8 Multi
33 Car 2 Commute
34 Golf 6 Exercise
35 Ironing 9 Other
36 Doing other work 3 Work
37 Preparing food 8 Multi

Table A.2: List of activities at the low level of abstraction defined by the Home
Sensor Simulator. Note - the typing mistakes are kept as these are the labels directly
generated by the simulation.

Activity Activity
ID Description ID Description
1 brush teeth 39 go kitchen shelf
2 change clothes 40 go kitchen sink
3 cook and eat 41 go micro
4 do exercise 42 go outside
5 do the dishes 43 go oven
6 do walk 44 go shoe shelf
7 do watch tv 45 go tv
8 dress down outdoor 46 go tv chair
9 dress up outdoor 47 go wardrobe
10 drink 48 go wc
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Activity Activity
ID Description ID Description
11 drink water 49 have bath
12 eat cold 50 interact with man
13 eat cold meal 51 nonprepared sleep
14 eat warm 52 pack food
15 eat warm meal 53 pack goods
16 exercise 54 plate to sink
17 finish walk 55 prepared sleep
18 get bread 56 put meal to fridge
19 get clothes 57 put plate to sink
20 get cold ingredients 58 rest
21 get cold warm food 59 rest in chair
22 get food 60 shop
23 get food from fridge 61 sleep in bed
24 get glass 62 someone at entrace
25 get ingeredients from fridge 63 switch computer off
26 get ingeredients from shelf 64 switch computer on
27 get water 65 switch tv off
28 go bathroom sink 66 switch tv on
29 go bathtub 67 use computer
30 go bed 68 use micro
31 go chair 69 use oven
32 go computer 70 use the computer
33 go computer chair 71 walk outside
34 go dining chair 72 wash dishes
35 go dining table 73 wash hands
36 go entrace 74 wc
37 go exercise place 75 wc do
38 go fridge 76 wc flush
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Table A.3: List of activities at the higher level of abstraction defined by the Home
Sensor Simulator. Note - the typing mistakes are kept as these are the labels directly
generated by the simulation.

Activity
ID Description

1 cook and eat
2 do the dishes
3 do walk
4 drink
5 eat cold
6 eat warm
7 exercise
8 prepared sleep
9 rest
10 shop
11 someone at entrace
12 use computer
13 watch tv
14 wc
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Appendix B

Food Group Lists

This appendix provides the lists of food groups from each of the datasets used for
reference. The lists of meal, snack and drink foods used for the rule-based labelling
method published as supplementary material in [202] is also given for reference.

Table B.1: Food [182] and day [227] level food group lists from NDNS RP dataset

NDNS RP Food Level Food Groups NDNS RP Day Level Food Groups
ID Description ID Description
1 pasta rice and other cereals 0 bacon and ham
2 white bread 1 beef veal and dishes
3 wholemeal bread 2 beer lager cider perry
4 other bread 3 biscuits
5 high fibre breakfast cereals 4 brown granary and wheat germ

bread
6 other breakfast cereals 5 buns cakes pastries fruit pies
7 biscuits 6 burgers and kebabs
8 buns cakes pastries & fruit pies 7 butter
9 puddings 8 cheese
10 whole milk 9 chicken and turkey dishes
11 semi skimmed milk 10 chips fried roast potatoes and

potato products
12 skimmed milk 11 chocolate confectionery
13 other milk and cream 12 coated chicken
14 cheese 13 commercial toddlers foods and

drinks
15 yogurt fromage frais and dairy

desserts
14 crisps and savoury snacks
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NDNS RP Food Level Food Groups NDNS RP Day Level Food Groups
ID Description ID Description
16 eggs and egg dishes 15 eggs and egg dishes
17 butter 16 fruit
18 pufa margarine & oils 17 fruit juice
19 low fat spread 18 high fibre breakfast cereals
20 other margarine fats and oils 19 ice cream
21 reduced fat spread 20 lamb and dishes
22 bacon and ham 21 liver dishes
23 beef veal and dishes 22 low fat spread
24 lamb and dishes 23 meat pies and pastries
25 pork and dishes 24 nuts and seeds
26 coated chicken 25 oily fish
27 chicken and turkey dishes 26 one percent milk
28 liver & dishes 27 other bread
29 burgers and kebabs 28 other breakfast cereals
30 sausages 29 other margarine fats and oils
31 meat pies and pastries 30 other meat and meat products
32 other meat and meat products 31 other milk and cream
33 white fish coated or fried 32 other potatoes potato salads

dishes
34 other white fish shellfish & fish

dishes
33 other white fish shell fish fish

dishes
35 oily fish 34 pasta rice and other cereals
36 salad and other raw vegetables 35 pork and dishes
37 vegetables not raw 36 puddings
38 chips fried & roast potatoes and

potato products
37 pufa margarine oils

39 other potatoes potato salads &
dishes

38 reduced fat spread

40 fruit 39 salad and other raw vegetables
41 sugars preserves and sweet

spreads
40 sausages

42 crisps and savoury snacks 41 semi skimmed milk
43 sugar confectionery 42 skimmed milk
44 chocolate confectionery 43 soft drinks low calorie
45 fruit juice 44 soft drinks not low calorie
47 spirits and liqueurs 45 spirits and liqueurs
48 wine 46 sugar confectionery
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NDNS RP Food Level Food Groups NDNS RP Day Level Food Groups
ID Description ID Description
49 beer lager cider & perry 47 sugars preserves and sweet

spreads
50 miscellaneous 48 tea coffee and water
51 tea coffee and water 49 vegetables not raw
52 commercial toddlers foods and

drinks
50 white bread

53 ice cream 51 white fish coated or fried
54 dietary supplements 52 wholemeal bread
55 artificial sweeteners 53 whole milk
56 nuts and seeds 54 wine
57 soft drinks not low calorie 55 yogurt fromage frais and dairy

desserts
58 soft drinks low calorie 56 dry weight beverages
59 brown granary and wheatgerm

bread
57 low fat spread not polyunsatu-

rated
60 1% fat milk 58 polyunsaturated low fat spread
61 smoothies 100% fruit and/or

juice
59 reduced fat spread not polyun-

saturated
60 reduced fat spread polyunsatu-

rated
61 savoury sauces pickles gravies

condiments
62 soup homemade and retail
63 cheddar cheese
64 cottage cheese
65 other cheese
66 smoothies 100 fruit and/or juice
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Table B.2: Food group lists for NDNS 2000 [233] and NANS [183] datasets

NDNS 2000 Food Groups NANS Food Groups
ID Description ID Description
1 Pasta, rice and other cereals 1 Rice & pasta, flours, grains &

starch
2 White bread 2 Savouries
3 Wholemeal bread 3 White sliced bread & rolls
4 Other breads 4 Wholemeal & brown bread &

rolls
5 High fibre breakfast cereals 5 Other breads
6 Other breakfast cereals 6 RTEBC
7 Biscuits 7 Other breakfast cereals
8 Buns, cakes, pastries and fruit

pies
8 Biscuits including crackers

9 Puddings 9 Cakes, pastries & buns
10 Whole milk 10 Whole milk
11 Semi-skimmed milk 11 Low fat, skimmed & fortified

milks
12 Skimmed milk 12 Other milks & milk based bever-

ages
13 Other milk and cream 13 Creams
14 Cheese 14 Cheeses
15 Yogurt and other dairy desserts 15 Yoghurts
16 Eggs and egg dishes 16 Ice-creams
17 Butter 17 Desserts
18 PUFA margarine and oils 18 Rice puddings & custard
19 Low fat spread 19 Eggs & egg dishes
20 Margarine and other fats, not

PUFA
20 Butter (over 80% fat)

21 Reduced fat spread 21 Low fat spreads (under 40% fat)
22 Bacon and ham 22 Other fat spreads (40-80% fat)
23 Beef, veal and dishes 23 Oils (not including those used in

recipes)
24 Lamb and dishes 24 Hard cooking fats
25 Pork and dishes 25 Potatoes (boiled/baked/mashed)
26 Coated chicken and turkey 26 Processed & homemade potato

products
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NDNS 2000 Food Groups NANS Food Groups
ID Description ID Description
27 Chicken and turkey dishes 27 Chipped, fried & roasted pota-

toes
28 Liver, liver products and dishes 28 Vegetable & pulse dishes
29 Burgers and kebabs 29 Peas, beans & lentils
30 Sausages 30 Green vegetables
31 Meat pies and pastries 31 Carrots
32 Other meat and meat products 32 Salad vegetable
33 Fried white fish 33 Other vegetables
34 Other white fish, shellfish and

fish dishes
34 Tinned or jarred vegetables

35 Oily fish 35 Fruit juices & smoothies
36 Salad and other raw vegetables 36 Bananas
37 Vegetables, not raw 37 Other fruits
38 Chips, fried and roast potatoes

and products
38 Citrus fruits

39 Other potatoes, potato salads
and dishes

39 Tinned fruits

40 Fruit 40 Nuts & seeds, herbs & spices
41 Sugars, preserves and sweet

spreads
41 Fish & fish products

42 Crisps and savoury snacks 42 Fish dishes
43 Sugar confectionery 43 Bacon & ham
44 Chocolate confectionery 44 Beef & Veal
45 Fruit juice 45 Lamb
47 Spirits and liqueurs 46 Pork
48 Wine 47 Chicken, turkey & game
49 Beer, lager, cider and perry 48 Offal & offal dishes
50 Miscellaneous 49 Beef & veal dishes
51 Tea, coffee and water 50 Lamb, pork & bacon dishes
52 Commercial toddlers foods and

drinks
51 Poultry & game dishes

53 Ice cream 52 Burgers
54 Dietary supplements 53 Sausages
55 Artificial sweetners 54 Meat pies & pastries
56 Nuts and Seeds 55 Meat products
57 Soft drinks, not low calorie 56 Alcoholic beverages
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NDNS 2000 Food Groups NANS Food Groups
ID Description ID Description
58 Soft drinks, low calorie 57 Sugars, syrups, preserves &

sweetners
58 Chocolate confectionary
59 Non-chocolate confectionary
60 Savoury snacks
61 Soups, sauces & miscellaneous

foods
62 Nutritional supplements
63 Teas
64 Coffees
65 Other beverages
66 Carbonated beverages
67 Diet carbonated beverages
68 Squashes, cordials & fruit juice

drinks
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Table B.3: Meal, snack and drink lists for rule based labels method [202]

Meal Food Snack Food Drink
Bacon & ham Apples pears Alco-pops
Baked beans Bananas Beers
Beef, veal Biscuits Other beverage
Burgers kebab Block marge Bottled water
Carrot Buns cakes pastries Cider perry
Chicken & turkey Chocolate con Coffee
Coated chicken Cottage cheese Common toddler drinks
Common toddler food Cream Fortified wine
Cooked tomatoes Fromage frais Fruit juice
Egg dishes Fruit in juice Herbal tea
Eggs Fruit in syrup Liqueurs
Fried white fish Fruit pies Low alc beers
Green beans Ice cream Low alc cider perry
Lamb Low fat spread Low alc wine
Leafy green Milk puds Other milk
Liver Nuts & seeds Semi-skimmed
Meat pies etc Oils & fats not pufa Skimmed milk
Non fried potato products Oranges Soft drink fizzy diet
Oily fish Other dairy dessert Soft drink fizzy non-diet
Other white fish Other cheese Soft drink squash diet
Other breakfast cereals Other fruit Soft drink squash non-diet
Other bread Other puds Soft drink still diet
Other cereal Other salad Soft drink still non-diet
Other fried pots Other sugars Spirits
Other meat Preserves Tap water
Other potato dishes PUFA low fat spread Tea
Other veg PUFA marge Whole milk
Pasta PUFA oils Wine
Peas PUFA reduced fat spread
Pizza Raw carrots
Pork Raw tomatoes
Potato chips Reduced fat spread
Rice Savoury sauces
Sausages Savoury snacks
Shellfish Soft marge not PUFA
Softgrain bread Sponge puddings
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Meal Food Snack Food Drink
Soups Sugar
Vegetable dishes Sugar confectionery
High fibre breakfast cereal Sweeteners
White bread Yogurt
Wholemeal bread Butter
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Appendix C

Detected Eating Event Types

C.1 NDNS RP 10 Type Model

(a) Topic 1 : Main meal

Figure C.1: All 10 eating event types and labels for NDNS RP 10 Type model
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(b) Topic 2 : Breakfast

(c) Topic 3 : Light meal

(d) Topic 4 : Main meal

Figure C.1: NDNS RP 10 Type model
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(e) Topic 5 : Snack

(f) Topic 6 : Light meal

(g) Topic 7 : Snack

Figure C.1: NDNS RP 10 Type model
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(h) Topic 8 : Snack

(i) Topic 9 : Breakfast

(j) Topic 10 : Main meal

Figure C.1: NDNS RP 10 Type model
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C.2 NDNS RP 15 Type Model

(a) Topic 1 : Snacks

(b) Topic 2 : Breakfast

(c) Topic 3 : Drinks

Figure C.2: All 15 eating event types and labels NDNS RP 15 Type model
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(d) Topic 4 : Mixed

(e) Topic 5 : Lunch/sandwiches

(f) Topic 6 : Main meal

Figure C.2: NDNS RP 15 Type model
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(g) Topic 7 : Snacks

(h) Topic 8 : Light meal

(i) Topic 9 : Drinks and snacks

Figure C.2: NDNS RP 15 Type model
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(j) Topic 10 : Snacks

(k) Topic 11 : Lunch/sandwiches

(l) Topic 12 : Main meal

Figure C.2: NDNS RP 15 Type model
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(m) Topic 13 : Breakfast

(n) Topic 14 : Main meal

(o) Topic 15 : Lunch/sandwiches

Figure C.2: NDNS RP 15 Type model
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C.3 NDNS 2000 5 Type Model

(a) Topic 1 : Snacks

(b) Topic 2 : Drinks

Figure C.3: All 5 eating event types and labels NDNS 2000 5 Type model
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(c) Topic 3 : Main meal

(d) Topic 4 : Breakfast

(e) Topic 5 : Drinks

Figure C.3: NDNS 2000 5 Type model
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C.4 NDNS 2000 10 Type Model

(a) Topic 1 : Main meal

(b) Topic 2 : Breakfast

Figure C.4: All 10 eating event types and labels NDNS 2000 10 Type model
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(c) Topic 3 : Main meal

(d) Topic 4 : Snacks

(e) Topic 5 : Lunch/sandwiches

Figure C.4: NDNS 2000 10 Type model
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(f) Topic 6 : Light meal

(g) Topic 7 : Lunch/sandwiches

(h) Topic 8 : Drinks

Figure C.4: NDNS 2000 10 Type model
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(i) Topic 9 : Drinks

(j) Topic 10 : Snacks

Figure C.4: NDNS 2000 10 Type model

213



C.5 NDNS 2000 15 Type Model

(a) Topic 1 : Snacks

(b) Topic 2 : Breakfast

(c) Topic 3 : Snacks

Figure C.5: All 15 eating event types and labels NDNS 2000 15 Type model
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(d) Topic 4 : Light meal

(e) Topic 5 : Light meal

(f) Topic 6 : Snacks

Figure C.5: NDNS 2000 15 Type model
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(g) Topic 7 : Main meal

(h) Topic 8 : Lunch/sandwiches

(i) Topic 9 : Lunch/sandwiches

Figure C.5: NDNS 2000 15 Type model
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(j) Topic 10 : Drinks

(k) Topic 11 : Snacks

(l) Topic 12 : Breakfast

Figure C.5: NDNS 2000 15 Type model
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(m) Topic 13 : Breakfast

(n) Topic 14 : Drinks

(o) Topic 15 : Lunch/sandwiches

Figure C.5: NDNS 2000 15 Type model
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C.6 NANS 5 Type Model

(a) Topic 1 : Breakfast

(b) Topic 2 : Light meal

Figure C.6: All 5 eating event types and labels NANS 5 Type model
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(c) Topic 3 : Drinks and snacks

(d) Topic 4 : Main meal

(e) Topic 5 : Drinks and snacks

Figure C.6: NANS 5 Type model
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C.7 NANS 10 Type Model

(a) Topic 1 : Drinks and snacks

(b) Topic 2 : Light meal

(c) Topic 3 : Main meal

Figure C.7: All 10 eating event types and labels NANS 10 Type model
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(d) Topic 4 : Breakfast

(e) Topic 5 : Main meal

Figure C.7: NANS 10 Type model
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(f) Topic 6 : Drinks and snacks

(g) Topic 7 : Lunch/sandwiches

(h) Topic 8 : Lunch/sandwiches

Figure C.7: NANS 10 Type model
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(i) Topic 9 : Breakfast

(j) Topic 10 : Main meal

Figure C.7: NANS 10 Type model

224



C.8 NANS 15 Type Model

(a) Topic 1 : Lunch/sandwiches

(b) Topic 2 : Lunch/sandwiches

(c) Topic 3 : Lunch/sandwiches

Figure C.8: All 15 eating event types and labels NANS 15 Type model
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(d) Topic 4 : Drinks and snacks

(e) Topic 5 : Main meal

(f) Topic 6 : Breakfast

Figure C.8: NANS 15 Type model
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(g) Topic 7 : Main meal

(h) Topic 8 : Lunch/sandwiches

(i) Topic 9 : Lunch/sandwiches

Figure C.8: NANS 15 Type model
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(j) Topic 10 : Drinks (alcoholic)

(k) Topic 11 : Main meal

(l) Topic 12 : Breakfast

Figure C.8: NANS 15 Type model
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(m) Topic 13 : Light meal

(n) Topic 14 : Main meal

(o) Topic 15 : Light meal

Figure C.8: NANS 15 Type model
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C.9 NANS with NDNS food groups 5 Type
Model

(a) Topic 1 : Breakfast

(b) Topic 2 : Main meal

Figure C.9: All 5 eating event types and labels NANS with NDNS RP food groups 5
Type model

230



(c) Topic 3 : Drinks and snacks

(d) Topic 4 : Drinks and snacks

(e) Topic 5 : Lunch/sandwiches

Figure C.9: NANS with NDNS RP food groups 5 Type model
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C.10 NANS with NDNS food groups 10 Type
Model

(a) Topic 1 : Breakfast

(b) Topic 2 : Lunch/sandwiches

Figure C.10: All 10 eating event types and labels NANS with NDNS RP food groups
10 Type model
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(c) Topic 3 : Drinks and snacks

(d) Topic 4 : Main meal

(e) Topic 5 : Main meal

Figure C.10: NANS with NDNS RP food groups 10 Type model
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(f) Topic 6 : Breakfast

(g) Topic 7 : Lunch/sandwiches

(h) Topic 8 : Drinks and snacks

Figure C.10: NANS with NDNS RP food groups 10 Type model
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(i) Topic 9 : Drinks and snacks

(j) Topic 10 : Main meal

Figure C.10: NANS with NDNS RP food groups 10 Type model
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C.11. NANS with NDNS food groups 15 Type Model

C.11 NANS with NDNS food groups 15 Type
Model

(a) Topic 1 : Drinks and snacks

(b) Topic 2 : Main meal

(c) Topic 3 : Drinks and snacks

Figure C.11: All 15 eating event types and labels NANS with NDNS RP food groups
15 Type model
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C.11. NANS with NDNS food groups 15 Type Model

(d) Topic 4 : Main meal

(e) Topic 5 : Breakfast

(f) Topic 6 : Drinks and snacks

Figure C.11: NANS with NDNS RP food groups 15 Type model
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C.11. NANS with NDNS food groups 15 Type Model

(g) Topic 7 : Breakfast

(h) Topic 8 : Light meal

(i) Topic 9 : Drinks and snacks

Figure C.11: NANS with NDNS RP food groups 15 Type model
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C.11. NANS with NDNS food groups 15 Type Model

(j) Topic 10 : Drinks and snacks

(k) Topic 11 : Breakfast

(l) Topic 12 : Light meal

Figure C.11: NANS with NDNS RP food groups 15 Type model
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C.11. NANS with NDNS food groups 15 Type Model

(m) Topic 13 : Main meal

(n) Topic 14 : Lunch/sandwiches

(o) Topic 15 : Lunch/sandwiches

Figure C.11: NANS with NDNS RP food groups 15 Type model
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[212] I. Žliobaitė, “Learning under Concept Drift: an Overview,” Faculty of Math-
ematics and Informatics, Vilnius University, Vilnius, Lithuania, Tech. Rep.,
2009.

[213] S. M. Gerrish and D. M. Blei, “A Language-based Approach to Measuring
Scholarly Impact,” in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel, 2010,
pp. 375 – 382.

[214] D. M. Blei and S. M. Gerrish, “Dynamic Topic Models and the
Document Influence Model C++,” 2011. [Online]. Available: https:
//code.google.com/archive/p/princeton-statistical-learning/downloads

[215] M. A. G. Silva, “DTM executable,” 2014. [Online]. Available: https:
//github.com/magsilva/dtm

[216] R. Rehurek and P. Sojka, “Software Framework for Topic Modelling with Large
Corpora,” in Proc. Lr. 2010 Work. New Challenges NLP Fram. Valletta,
Malta: ELRA, May 2010, pp. 45–50.

260



Bibliography

[217] J. Synnott, L. Chen, C. Nugent, and G. Moore, “IE Sim – A Flexible Tool for
the Simulation of Data Generated within Intelligent Environments,” in Int. Jt.
Conf. Ambient Intell., Nov. 2012, pp. 373–378.

[218] C. Krzyska, “Smart House Simulation Tool,” Master’s thesis, Technical Uni-
versity of Denmark, 2006.

[219] T. V. Nguyen, J. G. Kim, and D. Choi, “ISS: The Interactive Smart home
Simulator,” in 2009 11th Int. Conf. Adv. Commun. Technol., vol. 3, Feb. 2009,
pp. 1828–1833.

[220] S. Helal, J. W. Lee, S. Hossain, E. Kim, H. Hagras, and D. Cook, “Persim
- Simulator for Human Activities in Pervasive Spaces,” in 2011 Seventh Int.
Conf. Intell. Environ., Jul. 2011, pp. 192–199.

[221] B. Kormanyos and B. Pataki, “Home Sensor Simulator Software,” 2013.
[Online]. Available: http://home.mit.bme.hu/{∼}kormi/simulator/

[222] ——, “Multilevel simulation of daily activities: Why and how?” in 2013 IEEE
Int. Conf. Comput. Intell. Virtual Environ. Meas. Syst. Appl., Jul. 2013, pp.
1–6.

[223] K. Hoffmann, M. B. Schulze, A. Schienkiewitz, U. Nöthlings, and H. Boeing,
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