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Abstract  

Reliable ECG classification can potentially lead to better detection methods and increase 

accurate diagnosis of arrhythmia, thus improving quality of care. This thesis investigated the 

use of two novel classification algorithms: CSVM and SIMCA, and assessed their 

performance in classifying ECG beats. The project aimed to introduce a new way to 

interactively support patient care in and out of the hospital and develop new classification 

algorithms for arrhythmia detection and diagnosis. Wave (P-QRS-T) detection was performed 

using the WFDB Software Package and multiresolution wavelets. Fourier and PCs were 

selected as time-frequency features in the ECG signal; these provided the input to the 

classifiers in the form of DFT and PCA coefficients. ECG beat classification was performed 

using binary SVM. MSVM, CSVM, and SIMCA; these were subsequently used for 

simultaneously classifying either four or six types of cardiac conditions. Binary SVM 

classification with 100% accuracy was achieved when applied on feature-reduced ECG 

signals from well-established databases using PCA. The CSVM algorithm and MSVM were 

used to classify four ECG beat types: NORMAL, PVC, APC, and FUSION or PFUS; these 

were from the MIT-BIH arrhythmia database (precordial lead group and limb lead II). 

Different numbers of Fourier coefficients were considered in order to identify the optimal 

number of features to be presented to the classifier. SMO was used to compute hyper-plane 

parameters and threshold values for both MSVM and CSVM during the classifier training 

phase. The best classification accuracy was achieved using fifty Fourier coefficients. With the 

new CSVM classifier framework, accuracies of 99%, 100%, 98%, and 99% were obtained 

using datasets from one, two, three, and four precordial leads, respectively. In addition, using 

CSVM it was possible to successfully classify four types of ECG beat signals extracted from 

limb lead simultaneously with 97% accuracy, a significant improvement on the 83% accuracy 

achieved using the MSVM classification model. In addition, further analysis of the following 

four beat types was made: NORMAL, PVC, SVPB, and FUSION. These signals were 

obtained from the European ST-T Database. Accuracies between 86% and 94% were obtained 

for MSVM and CSVM classification, respectively, using 100 Fourier coefficients for 

reconstructing individual ECG beats. Further analysis presented an effective ECG arrhythmia 

classification scheme consisting of PCA as a feature reduction method and a SIMCA 

classifier to differentiate between either four or six different types of arrhythmia. In separate 

studies, six and four types of beats (including NORMAL, PVC, APC, RBBB, LBBB, and 

FUSION beats) with time domain features were extracted from the MIT-BIH arrhythmia 

database and the St Petersburg INCART 12-lead Arrhythmia Database (incartdb) respectively. 

Between 10 and 30 PCs, coefficients were selected for reconstructing individual ECG beats in 

the feature selection phase. The average classification accuracy of the proposed scheme was 

98.61% and 97.78 % using the limb lead and precordial lead datasets, respectively. In addition, 

using MSVM and SIMCA classifiers with four ECG beat types achieved an average 

classification accuracy of 76.83% and 98.33% respectively. The effectiveness of the proposed 

algorithms was finally confirmed by successfully classifying both the six beat and four beat 

types of signal respectively with a high accuracy ratio.  
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Chapter 1 Introduction  
 

1.1 Background and statement of the research pursued 

Cardiovascular disease is one of the leading causes of death worldwide. According to public 

health agencies, cardiovascular diseases are currently one of the biggest causes of death in 

developed countries and cardiac failure incidents are increasing every year. Early expert 

diagnoses through Electrocardiogram (ECG) analysis can lead to improved chances of 

survival for various heart conditions and better management of the disease (in some cases, 

there is also potential for some reversal of the condition). In addition, ECG analysis is one of 

the most commonly used methods to establish the onset of heart problems. It can be used for 

diagnosis of arrhythmias, by providing multi-parametric information regarding both the 

rhythm and electrical activity of the heart. The ECG signal maps the changes in electrical 

potential during the cardiac cycle; these are recorded using surface electrodes on the body 

(arm, leg, and chest wall). The standard ECG contains 12 different leads which record the 

same electric events but from a different direction. The 12 leads provide a three-dimensional 

view of the electrical activity of the heart. It can be divided into two groups of six on each 

limb (the extremity) lead and the chest (precordial) lead [1]. Moreover, the analysis of the 

electrocardiographic signals from these leads can provide comprehensive information that can 

be used to classify different heart conditions. The classification of heartbeats on the ECG is 

important to the study of arrhythmias. In addition, the automation of heartbeat classification 

could improve the diagnostic quality of arrhythmias, especially in long-term patient’s 

recordings.  

Detection and treatment of arrhythmias have become one of the main goals in cardiac 

care diagnosis provided by general practitioners. In order to prevent a heart attack, one of the 

most significant ways is to monitor its operation using ECGs. ECG classification of heartbeats 

enables the identification of specific arrhythmia or other heart conditions. ECG beat 

classification has been studied extensively using several algorithmic techniques. Some of 

these methods including analysis of the first derivative of the signal and digital filtering can 

be used for the ST segment detection and analysis [2].  
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Of particular interest to the current study are the developed algorithms for automatic 

ECG heartbeat classification. There are several accounts of ECG beat classification in the 

literature using different techniques such as neural networks [3], forward neural network [4-5], 

Recurrent Neural Networks (RNN) [6-7] linear discernment analysis (LDA) [8], probabilistic 

neural network (PNN) [9-10], self-organizing maps (SOM) [11], deep learning neural 

network (DNN) [12] and support vector machine (SVM) classifiers [13-14]. Wavelet 

transforms in conjunction with a novel hybrid neural network have also been discussed in [15]. 

Multilayer Neural Networks have also been used, especially for classifying the QRS waves 

[16]. 

A successful ECG beat classification and arrhythmia detection protocol involve three 

essential processes: pre-processing, feature extraction and selection, and classification. 

Feature extraction and dimensionality reduction are important processing steps as they usually 

affect classifier performance. In the literature on ECG classification, the relative importance 

of feature selection algorithm has been the subject of considerable discussion. In addition, 

several procedures have been proposed and developed in order to analyse ECG beats and 

extract features to be used as input vectors to the classifier. According to Song et al (2005) 

LDA and PCA can be used to obtain four features from the original seventeen features, 

including two features correlated to rhythm and fifteen features correlated to the morphology 

of an ECG signal. By combining principal component analysis (PCA) with linear discriminant 

analysis (LDA), and a PNN classifier, it was possible to categorise eight different types of 

arrhythmia from ECG beats [17]. A PNN and a backpropagation neural network (BPNN) were 

the two types of neural networks used with Independent component analysis (IPCA) to 

differentiate between eight different ECG beat types (normal (NORMAL), Left Bundle 

Branch Block Beat (LBBB), Right Bundle Branch Block Beat (RBBB), atrial premature 

contraction (APC), premature ventricular contraction (PVC), paced beat (PB), ventricular 

flutter wave (VFW), and ventricular escape beat (VEB) ECG beat) with an accuracy above 

98%. Using both neural network classifiers with a small number of Independent Components 

(ICs) as feature vectors provided high classification accuracies [9]. In addition, a combination 

of various features, such as higher order statistics, morphological features, Fourier transform 

coefficients, and higher order statistics of the wavelet package coefficients were used to 

produce an arrhythmia recognition system. These features were used to classify the ECG 

beats according to five main groups, namely normal beat (NORMAL), ventricular ectopic 

beat (V), supraventricular ectopic beat (S), fusion beat (F), and unknown beat (Q) using a k-
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nearest neighbour classifier. The classification accuracy values were 85.59%, 95.46%, and 

99.56% for average sensitivity, selectivity and specificity, respectively [18]. In 2014, Martis 

et al. [19] proposed to use a linear classification method using discrete wavelet transform 

(DWT) coefficients, featuring also a reduction technique based on the PCA, these were used 

to extract features from normal and arrhythmia classes. These features were applied to 

distinguish between normal beats and four arrhythmia classes. A remarkable classification 

accuracy of 98.78% was shown using a neural network for the classification of the five main 

beat classes. In another study [20], five types of beats were classified with a lower accuracy of 

93.48%. The HOS (higher order spectra) bispectrum after PCA filtering was used to capture 

features and reduce dimensionality. In addition, a feed-forward NN and a least square-support 

vector machine (LSVM) classifier were used to classify these five types of beats according to 

various features. In 2014, Das and Ari used the S-transform (ST) and the wavelet transform to 

select the features of the ECG beat more effectively. Subsequently, a combination of two 

features were used to create an input vector. Five classes of ECG beats were identified by 

using these features as input vectors to a multilayer perceptron neural network (MLPNN) 

classifier. Average sensitivity performances achieved were  95.70%, 78.05%, 49.60%, 89.68% 

and 33.89% for NORMAL, S, F, PVC and Q respectively [21].  Lyapunov exponents, wavelet 

coefficients and power spectral density (PSD) methods were used as a set of features and 

achieved an average accuracy of 93.89% [22]. The time-domain features, such as 

morphological and temporal features, were  combined to classify the five classes of ECG 

signal and 85.9% accuracy was obtained using a linear discriminant classifier [23]. In another 

study, fast least square support vector machines (LS-SVMs) classification with a radial basis 

function kernel and discrete cosine transform (DCT) were used to classify six types of ECG 

beats (NORMAL, LBBB, congestive heart failure beat, PVC, non-conducted P-wave, and 

VEB) obtained from the MIT-BIH database with a 95.2% rate of accuracy [24].  

Form the above discussion, it may be concluded that even though many studies have 

been reported in the arrhythmia beat classification literature, there is a need to improve the 

classification accuracy for large databases by including different classes and different beats 

duration. A comparison of beats extracted from the precordial lead or from the limb lead also 

requires further investigation. In addition, the duration and characteristics of beats may vary 

according to the type of lead and according to the different types of arrhythmias the 

segmentation protocol leading to vectors of different dimensions and features. Further studies 

are therefore needed to develop a holistic and effective treatment programme based on ECG 
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telemonitoring [25] on the basis of the ECG features identified, and different beat types 

should be classified using multi-class classification. The development of better diagnostic 

methodologies could improve the health of people worldwide. The main objective of this 

thesis is to develop new methodologies for the classification of heartbeats extracted from 

ECG records.  

This project describes the design and implementation of some new ECG beat 

classification algorithms.  This could lead to a new way to support interactive patient care in 

and outside the hospital and provide services for arrhythmia detection and diagnosis through 

the use of a new classification technologies. The investigation and evaluation focuses on 

improving multi-class classification accuracy using Complex Support Vector Machine 

(CSVM) algorithm [26] to simultaneously classify four types of heartbeats. In addition, the 

multi-class classification of ECG beats with different beats duration and improve accuracy of 

classification is also performed. The multi-class classification study is based on the creation 

of a model for each class independently to classify six types of heartbeats simultaneously 

using six models instead of one. 

The classification performance and generalization ability of the proposed classifier 

were studied using three publicly available databases the MIT-BIH cardiac arrhythmia 

database, the European ST-T database and the St Petersburg INCART 12-lead Arrhythmia 

Database (incartdb). The study focuses on the analysis of both precordial lead and limb beat 

signals extracted from patient’s records.  

As already mentioned, pre-processing of the signal and beat detection, feature 

extraction compression, and classifier implementation are the three most important steps 

associated with successful ECG arrhythmia classification software. In the first task in this 

study, ECG beats were extracted from precordial leads and limb leads via base-line removal. 

Initially, an ECG arrhythmia classification scheme based on PCA feature extraction and 

binary SVM classification was adopted to discriminate between normal and abnormal beats. 

Following this, multi-class classifications was investigated using CSVM and Multi-class 

Support Vector Machine (MSVM). In both CSVM and MSVM algorithms, the ECG 

arrhythmia classification scheme is based on the use of the Fourier transform for feature 

extraction, while the CSVM or MSVM classification is adopted to discriminate between four 

types of cardiac arrhythmias. A DFT algorithm is also used to find the complex Fourier 

coefficients for each beat presented at the input stages of both classifiers. Thus, frequency-
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domain features were also used to create an input vector for the classifier.  Finally, both 

classifier methods are employed to simultaneously classify four types of ECG arrhythmias: 

NORMAL, PVC, APC and Fusion of ventricular and normal beat (FUSION) or fusion of 

paced and normal beat (PFUS).  

Following on the success of this study, an ECG arrhythmia classification scheme 

based on a PCA feature extraction scheme and a SIMCA classifier were used to differentiate 

between six types of arrhythmia conditions. PCA was used to find feature vectors from each 

beat and present them at the input stages of the Soft Independent Modelling of Class Analogy 

(SIMCA) classifier. PCA is a statistical method that aims to extract the underlying 

components from multidimensional data while in its domain. Finally, the SIMCA classifier 

was employed to create a model for each class individually and to classify six types of ECG 

beats simultaneously, for NORMAL, PVC, APC, LBBB, RBBB and FUSION beats that were 

extracted from both precordial and limb leads. The datasets in this study had a variable 

dimension for the input vector to the classifier. In addition, the final study focuses on the use 

of a new ECG arrhythmia classification scheme based on PCA for feature extraction and 

either an MSVM or a SIMCA  classifier to differentiate between four type of arrhythmias 

conditions that were obtained from records in the St Petersburg INCART 12-lead Arrhythmia 

Database (incartdb) [27]. PCA is used to find the principal components (PCs) associated with 

each beat and to create feature vectors based on the PCs that were presented at the input stage 

of the MSVM and SIMCA classifiers. Both the MSVM as well as the SIMCA classifier were 

used to classify the four types of ECG beats (annotated as NORMAL, PVC, and APC and 

RBBB respectively) simultaneously.  

As a general remark, this study focused on ECG classification using only supervised 

classification methods. A brief description of unsupervised classification techniques that have 

been used in ECG beat classification is summarized in chapter three. 

1.2 Study aim 

The project aims to introduce a new way to support interactively patient care inside and 

outside the hospital and provide services for arrhythmia detection and diagnosis through the 

use of new classification algorithms. A supervised methodology for analysing ECG beat 

signals that were extracted from Holter recordings, including pre-processing, feature selection 

and classification, was designed to diagnose cardiac arrhythmia conditions. The proposed 
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methodology will be able to separate four or six types of arrhythmia groups. Thus, the natural 

question is how we could use the development of traditional SVM algorithms with an 

extension to complex spaces, or create an individual PC model for each class to classify four 

and six types of heartbeats, respectively. 

1.3 Hypothesis and objectives of the proposed research 

1.3.1 Hypothesis 

It is hypothesized that the application of CSVM and SIMCA to the classification of individual 

ECG beat waveforms will provide a better classification accuracy than that other machine-

learning and neural-network approach have achieved. In addition, by creating the input vector 

to the classifier using a selected number of features it is expected this will lead to high 

classification accuracies and improve the generalization ability of the classifier improving and 

its accuracy. 

1.3.2 Objectives 

The following objectives were set at the onset of this study. 

1. To firstly make a survey of current literature on ECG signal processing and 

classification.  

2. To design and implement sound procedure for extracting ECG beats based on the 

Wave Form Database (WFDB) Software Package for R (peak) localization and detect 

peaks in other waves such as P and T. A further aim to review the different method for 

QRS complex estimation and identify the main significant characteristics of these 

waves in relation to signal amplitude and time of deflection.  

3. To develop feature extraction and selection algorithms taking into account that these 

features may to be extracted in either time or frequency domains and assess their 

effectiveness. A further aim was to identify the best number of features. 

4. To develop classification schemes for ECG classifiers based on reduced features in the 

ECG beats in binary SVM, MSVM, CSVM and SIMCA classifiers. 
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5. To investigate if signal pre-processing in the wavelet domain can improve 

classification accuracy in SVM classification and extend SVM classification to higher 

dimensions to take advantage of developments in future ECG imaging techniques.   

6. To assess the performance of the new classification algorithm on the basis of 

sensitivity (SE), specificity (SP), positive predictively (PP) and accuracy (ACC). 

1.4 Contribution of the thesis 

 The major contribution of this thesis is the development of a novel classification framework 

for ECG analysis based on two types of algorithms, CSVM and SIMCA. These algorithms are 

used after compressing the original time domain signals using DFT and PCA. The work 

systematically changes the number of extracted features presented to the developed classifiers 

so that an optimal number of features can be identified for each algorithm enabling their 

performance to be optimized. The work is also one of the first of its kind with respect to 

multi-lead detection, where several arrhythmia conditions may be simultaneously present in 

the ECG records that need to be classified.  

In chapter two, following a survey of the different heart condition as discussed in the 

literature, different feature in the time-domains signal are related to specific pathological 

condition. In addition, details associated with these recordings as found in the most widely 

used ECG databases are identified. 

Chapter 3 provides a comprehensive literature review of existing supervised and 

unsupervised classification algorithms and discusses different pre-processing algorithms as 

well. The work contributes to the current understanding of the different algorithms that may 

be used to perform ECG analysis.   

Chapter 4 provides a systematic overview of signal de-noising, compression based on 

the sine, and cosine transforms as well as PCA. In addition, it discusses the sequential 

minimal optimization algorithm, which is adopted in the SVM classifier used in the thesis. In 

addition, it discusses a new extension for CSVM, which has never been used in the context of 

ECG signal classification. An evaluation procedure, which may be used with the newly 

developed ECG classifiers, is also adopted.  

In chapter five, the results from several studies using the different algorithms (binary 

SVM, MSVM, CSVM and SIMCA) are presented and discussed. In the first study, single 
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leads records from a single patient are classified using binary SVM. The 2-lead records from a 

single patient and one lead records from two patients are classified (binary SVM 

classification). The second study adopts the CSVM methodology, using either a precordial-

lead or a limb lead, assuming Fourier transform pre-processing and feature extraction of the 

time-domain datasets. Peak detection using the DWT is also performed. ECG beat 

characteristics were extracted using either the pre-existing annotation files in the adopted 

database or multiresolution wavelet.  Implementation of CSVM classification using frequency 

domain features (Fourier coefficients) of four types of ECG signal beats showed an 

improvement in classification accuracy. This is a useful result to the ECG community. Using 

the ECG beat from two correlated leads also showed a significant improvement in the 

classification accuracy. This study demonstrates the importance of using many patient records 

and two leads. This is also the first study of its kind that investigates the application of CSVM 

to ECG beat classification. The CSVM algorithm should find additional application domains 

in the biomedical community. Several (four) types of arrhythmia condition are simultaneously 

classified (multi-class classification) successfully using the proposed method. The third study 

focuses on multi-class classification using SIMCA with PCA noise reduction. Feature 

extraction results of the proposed algorithm were compared with other methods in the 

literature that were used to simultaneously classify six types of ECG beats. This study 

demonstrates that using a multi-model approach after optimizing their number of PCA 

coefficients provides better classification accuracy than using a single-model. This is the first 

study reporting an advantage of creating a model for each class, as well as using different 

dimension vectors at the input to the classifier. The results showed an improvement in 

classification accuracy. Furthermore, the algorithm showed potential for multi-class studies 

where a large number of ECG beat types are present.    

The four studies display the distinct advantages in using an extension of SVM to 

complex spaces as well as SIMCA to perform multi-class classification of multiple ECG 

recodes simultaneously. In addition, this research confirmed that the use of a selected number 

of Fourier coefficients or PCs to approximate the ECG beat signal and compress the input 

features to the classifier could lead to high classification accuracies and improve the 

generalization ability of the classifier. This project will fill a gap in the literature in 

developing classification algorithms that can be used to classify heart problems and diagnose 

cardiac arrhythmia conditions with higher classification accuracy.  
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1.5 Organization of the thesis 

This thesis is structured around five main topics: introduction, a literature review on ECG 

classification algorithms, the provision of new investigation using the various algorithms, the 

analysis of results and their evaluation, and finally the generation of conclusions and the 

provision of directions for future work. The chapters are organised as follows: 

Chapter1 gives a brief research background about the problem and discusses the methods 

adopted to do the research. The aims and objectives of this research are presented in this 

chapter as well.  

Chapter 2 presents a literature review of the current understanding of the anatomy of the 

human heart and its working, the measurement of ECGs and the various ECG interpretations 

based on identified waves. The basic modes of ECG beat recording and ECG wave 

morphology are briefly described according to different modes of data acquisition on the basis 

of lead placement.  In addition, some types of arrhythmias and details of the three databases 

that were used in this study are explained briefly. 

Chapter 3 focuses on the literature review of some previous studies related to ECG analysis 

and classification algorithms. This chapter also provides the theoretical background to ECG 

classification, including the methods used for feature selection and classification according to 

previous studies found in the literature. Supervised and unsupervised classification schemes 

are also mentioned. The use of SVM and neural networks in ECG classification are discussed.  

Chapter 4 gives a background to the current methods, used by physicians to diagnose 

arrhythmia conditions. It also discusses the theoretical and technical background of the 

algorithms that were used to develop the feature selection and the classification scheme. In 

addition, it describes some MATLAB 2012 a toolboxes that were used for the pre-processing 

and classification of ECG beats. The signal pre-processing and feature estimation techniques 

are also described. Furthermore, this chapter provides a concise description of Fourier 

transform methods such as DFT, DST, DCT, and SMO algorithms, as well as an introduction 

to CSVM and kernel functions. Moreover, it provides a review of the PCA and SIMCA 

classifier algorithms. It finally describes the methods and tools used to evaluate the 

classification results. 
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Chapter 5 describes all the experimental protocols and procedures, as well as shows the 

results of the investigation and provides their discussion. Each section explains how the 

experiments were conducted and how the results were obtained. The chapter presents in more 

detail the actual algorithmic implementation and performance evaluations of the all the 

proposed algorithm and classification results. Furthermore, it discusses ECG beat extraction 

via the pre-processing and feature extraction algorithms, focusing on the results using the 

various methods, such as DWT, DFT, and PCA. The performance of the CSVM and SIMCA 

classifiers within the ECG classification context is discussed. An evaluation of the 

performance of each classification scheme is also provided. Finally, this chapter provides a 

discussion of the overall classification framework that was used across all studies. A 

discussion of the results in terms of the chosen classification performance metrics is provided; 

this is compared with other studies of ECG classifiers found in the literature. Some of the 

results in this chapter were included in the candidate’s publications [28-29]. 

Chapter 6 provides a summary of the project’s outcomes and some concluding remarked. 

Moreover, recommendations for possible further developments and future work are 

mentioned. The possibility of using mobile phone technologies for analysing ECG signals is 

also discussed. Furthermore, it discusses the use of Clifford algebra in data fusion as well as 

the potential use of Clifford algebra support vector machines and geometric neurons for 

multi-lead analysis and ECG beat classification in the future. 
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Chapter 2 ECG Signal Characterisation Studies and 

Identification of Arrhythmias in the ECG Signal 
 

2.1 Introduction 

An ECG is a graphic representation of the heart muscle’s electrical activity. The contraction 

of any heart muscle is associated with electrical changes called depolarisation and these 

changes can be detected by electrodes attached to the surface of the body. The ECG monitor 

provides the necessary visualisation [30]. In all ECG records, there are 12 ECG data 

acquisition channels that must be considered, and information from all of these may be used 

in the process of determining cardiac diseases. The ECG record provides an insight into 

pathological diseases of the heart based on the heart’s electrical activity. From a physician’s 

perspective, it is also imperative to understand the orientation of the planes associated with 

the propagating waves, which are associated with each of the leads’ recordings. In this way, 

the activity of the heart can be mapped. Recording strips also provide details of the activity of 

the heart between the positive and negative pole. The ECG record provides evidence and 

information that can help a doctor to diagnose abnormalities in the heart rate such as 

arrhythmias, myocardial infarctions, atrial enlargements, ventricular hypertrophies, and 

bundle branch blocks. A patient’s ECG record can be used to detect abnormal cardiac rhythm, 

abnormal cardiac conduction, ischaemia of the myocardium, and hypertrophy, and it can be 

used to provide a dynamic picture of how the heart is functioning as a pump. Heart function 

tests are necessary for an accurate assessment of heart disease risk. In the following section of 

this chapter, heart function and the interpretation of the ECG are discussed further.  

2.2 The anatomy of the heart and its function  

2.2.1 The heart’s anatomy 

The main function of the cardiovascular system is to transport nutrients and oxygen to the 

entire body. The heart is a muscular organ that pumps blood to all the tissues in the body 

through a network of blood vessels [31]. The network can be divided into two circuits: the 

pulmonary circuit and the systemic circuit. The pulmonary circuit carries carbon dioxide‒rich 

blood from the heart to the surfaces of the lungs and returns oxygen-rich blood to the heart. 
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The systemic circuit transports oxygen-rich blood from the heart to the rest of the body’s cells, 

returning carbon dioxide‒rich blood back to the heart. The heart has four chambers and 

several atrioventricular and sinoatrial nodes in the atrium, as shown in Fig. 2.1. The upper two 

chambers are called the right atrium and left atrium, whereas the lower two are called the right 

ventricle and left ventricle. These chambers are separated by a wall of tissue called the septum, 

which separates the left from the right side of the heart. The right atrium receives blood from 

the systemic circuit while the right ventricle discharges blood into the pulmonary circuit [32]. 

The right side of the heart pumps blood through the lungs where it takes in oxygen, while the 

left side of the heart receives the blood containing oxygen and pumps the blood to the rest of 

the body. The right atrium receives oxygen-devoid blood from the body and the left atrium 

receives oxygen-rich blood from the lungs. In other words, the purpose of the atria is to 

receive blood from the body. The atria are separated from the ventricles by the tricuspid valve 

on the right side and the mitral valve on the left side. The blood flows from the atria into the 

ventricles when these valves are opened. The ventricles are made of stronger muscle tissue 

than the atria because their function is to pump blood throughout the body. The right ventricle 

pumps the oxygen-devoid blood to the lungs to absorb oxygen and release carbon dioxide, 

while the left ventricle pumps the oxygen-rich blood to the body’s organs [33]. The atria are 

attached to the ventricles by fibrous, non-conductive tissue, which keeps the ventricles 

electrically isolated from the atria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Anatomy of the human heart, with chambers and valves, adopted 

from [34] 
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The human body has about 5.6 litres (6 quarts) of blood, all of which circulate through 

the body three times every minute. The right atrium and the right ventricle together form a 

pump to circulate blood to the lungs. The heart’s cycle begins when oxygen-poor blood from 

the body moves into the right atrium. Oxygen-poor blood is received through large veins 

called the superior and inferior vena cava and flows into the right atrium. Then the blood 

flows through the right atrium into the right ventricle that serves as a pump, which sends the 

blood to the lungs. The blood releases waste gases and picks up oxygen within the lungs. This 

newly oxygen-rich blood returns from the lungs to the left atrium through the pulmonary 

circuit. Then the blood flows through the left atrium into the left ventricle. Finally, the left 

ventricle pumps the oxygen-rich blood out through the aorta, and from there to all parts of the 

body [31]. 

2.2.2 Heart dynamics as related to ECG recordings 

The mechanical pumping action of the heart results from electrical activation that is applied to 

the spread of electrical signals through the atria and ventricles as shown in Fig 2.2. At 

initiation, the signal for the heartbeat begins in the sinus or sinoatrial (SA) node, which is 

located in the right atrium near the opening of the superior vena cava. The SA node is a small 

collection of specialised cells capable of automatically generating an electrical stimulus. This 

stimulus spreads first through the right atrium from the SA node and then into the left atrium. 

Next, the electrical stimulus reaches specialised conduction tissues in the atrioventricular (AV) 

junction that act as an electrical relay connecting the atria and ventricles. The AV junction is 

located at the base of the interatrial septum and extends into the interventricular septum. The 

upper part of the AV junction is the AV node, while the lower part of the AV junction is 

called the bundle of His. The bundle of His divides into two main branches: the right bundle 

branch and left bundle branch. The right bundle branch distributes the stimulus to the right 

ventricle, whereas the left bundle branch distributes the stimulus to the left ventricle. Finally, 

the electrical signal then spreads simultaneously down the left and right bundle branches into 

the ventricular myocardium (ventricular muscle) through specialised conducting cells called 

Purkinje fibres [1]. 

  The ECG is capable of recording only relatively large currents produced by the mass 

of working (pumping) heart muscle. The ECG records the average electrical activity that 

corresponds to a large mass of atrial and ventricular cells. Each cardiac electrical activity 



Chapter 2. ECG Signal Characterisation Studies and Identification of Arrhythmias in the ECG Signal  

 

 14  

 

phase is identified by a specific wave labelled alphabetically P, QRS and T. In order to record 

the electrical activity of the heart, 12 standard ECG leads are placed on the surface of the 

body. These leads detect the changes in voltage of the cardiac muscle. 

 

Figure 2.2: The mechanical pumping action of the heart, adopted from [35] 

2.3 A concise historical account of work leading to today’s 

recording practice and interpretation of the ECG signals        

The first ECG recording was made by Willem Einthoven in 1895. In his work, the P, QRS, T 

waves were also defined for the first time [36]. The 1930s saw the invention of the unipolar 

extremity leads and the six precordial leads. These were added to the original three bipolar 

extremity leads by Dr Frank N. Wilson and his colleagues at the University of Michigan. 

Originally, three augmented unipolar extremity leads were used: aVR, aVL, and aVF. These 

were invented by Dr Emanuel Goldberger. Currently, 12 leads are normally employed, 

including the six limb leads (I, II, III, aVR, aVL and aVF) and the six precordial leads (V1 to 

V6). In addition to this, the basic ECG waves are separately labelled as the P wave, the QRS 

complex, the T wave, and the U wave. In this way, the analysis of ECG waves is used to 

obtain a dynamic picture of the heart’s function and arrhythmias. 
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2.3.1 The standard 12-lead ECG record 

The multi-lead ECG is a medical device, which records the heart’s electrical activity with 

electrodes placed on the skin in specific locations. It consists of the measurement of electrical 

activity on the body surface associated with myocardial contraction with respect to time. The 

standard ECG contains 12 different leads which record the same electric events but from a 

different view. The 12 leads provide a three-dimensional view of the electrical activity of the 

heart. The determination of the proper placement of these leads is very important, as this 

dictates the accuracy of the reading in the ECG grids. In fact, one should always consider that 

monitoring the cardiac output involves a series of cardiac cycles, as records associated with a 

single cycle are insufficient to interpret problems with the heart’s function. In other words, the 

multiple leads are very important when it comes to an ECG because they provide 12 different 

views of cardiac activity, by showing the direction of wave deflection as related to the heart’s 

electrical activity [37]. The standard ECG recording electrodes are placed on the arms, legs, 

and precordial wall. ECG patterns are obtained when electrodes are placed at various points 

on the chest. These leads can be divided into two groups of six on limbs (extremity) and the 

chest (precordial) [36]. The limb leads are used to record voltages on the frontal plane of the 

body, while the six precordial leads record voltages on the horizontal plane. 

2.3.1.1 ECG records using limb leads 

The six limb leads record voltage differences by means of electrodes placed on the extremities. 

According to [1], the limb leads can be divided into two subgroups depending on their 

historical development; three leads on each standard bipolar limb (I, II, and III) and three 

augmented unipolar limb leads (aVR, aVL, and aVF), as shown in Fig. 2.3. The purpose of 

bipolar limb leads is to calculate the mean depolarisation vector of the heart in the frontal 

plane. The unipolar augmented limb leads are used to determine the orientation of the heart 

[38]. The limb leads are connected to metal electrodes, which are placed on the arms and legs 

of the patient. In addition, the arm electrodes need to be attached just above the wrist and the 

leg electrodes need to be attached above the ankles, as shown in Fig. 2.3. Lead I, II and VL 

look at the left lateral surface of the heart, while lead III and VF look at the inferior surface 

and lead VR looks at the right atrium. 

Lead I records the difference in voltage between the left arm (LA) and right arm (RA) 

electrodes, Lead II records the difference between the left leg (LL) and right arm (RA) 
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electrodes, whilst Lead III records the difference between the left leg (LL) and left arm (LA) 

electrodes. These leads are used to provide a basic ECG recording [36]. 

Limb leads are very important as they allow physicians to assess whether there is an 

ischaemic event occurring in the frontal area of the heart. These leads also represent a way of 

detecting if there is an electrical impulse in this area of the heart. In this case, determining the 

current flow in the frontal area of the heart indicates whether or not the heart is in good 

condition. This in turn indicates that there is nothing happening in the heart. It is an indication 

that there is no myocardial infarction or heart blockage occurring. Indeed, electrical impulse 

detection is confirmatory evidence that a certain cardiac disease is present in the heart, and 

more specifically in the frontal or on the inner area of the heart. In this case, proper and 

precise reading in this grid is very important for the accurate diagnosis of the patient’s heart 

condition [39]. 

 

 

Figure 2.3: Standard and augmented limb leads positions, adopted from [40] 

2.3.1.2 ECG records using the precordial leads 

The precordial leads record voltage differences by means of electrodes placed at several 

positions on the chest wall, as illustrated in Fig. 2.4. These are actually precordial leads which 

measure the propagation of voltages across the horizontal plane of the heart [41]. 

Lead V1 is located in the fourth right intercostal space to the right of the sternum; lead 

V2 is located in the fourth left intercostal space to the left of the sternum. Both V1 and V2 
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leads record voltage from the right ventricle. V3 and V4 leads record voltage from the 

anterior surface and lateral walls of the left ventricle, while V5 and V6 record voltage from 

the frontal and lateral walls of the left ventricle.  Lead V3 is placed on a line central to leads 

V2 and V4, whereas lead V4 is placed in the mid-clavicular line in the fifth interspace. Lead 

V5 is placed in the anterior axillary line at the same level as lead V4, and lead V6 is placed in 

the mid axillary line at the same level as lead V4 [36]. Consequently, the six limb leads record 

electrical voltages transmitted to the frontal or vertical plane of the body, whereas the 

precordial leads record voltages transmitted onto the horizontal plane from the front and the 

left side. A total of 12 leads offer three-dimensional visualisations of atrial and ventricular 

depolarisation and repolarisation. 

 

Figure 2.4: Precordial leads (electrodes) positions, adopted from [34] 

2.3.2 Description of the various ECG wave types recorded 

The cardiac activation process of the heart muscle is performed through two different 

processes: depolarisation (the spread of a stimulus through the heart muscle) and 

repolarisation (where heart muscle cells return to their resting state). The cardiac cycle 

initiates with the P wave, which corresponds to the period of atrial depolarisation in the heart. 

The QRS complex is the second wave, and it corresponds to the period of ventricular 

depolarisation. The start and end points of the QRS complex are denoted as the Q and J points, 

respectively. The most noticeable feature of an ECG waveform is the QRS complex. The T 

wave presents the period of  ventricular repolarisation, and the end point of this wave 

represents the end of the cardiac cycle as shown in Fig. 2.5 [42].   
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 Fig. 2.6 shows the basic characteristic features of the ECG wave, showing the interval 

and associated segment in a single beat record. Some intervals and segments between waves 

are identified as QT, ST and PR features. The P-QRS-T sequence is usually recorded on 

special ECG graph paper, which provides a grid for visual identification of the duration of the 

features. The ECG grid resolution is 1 mm squares. Most often, this corresponds to time 

duration of 0.04 s.  The ECG vertical axis relates to the voltages [39]. 

 

Figure 2.6: The basic ECG wave, interval, and segment, adopted from [34] 

 

Figure 2.5: The origin of the electrical activity and electrophysiology of the 

heart, adopted from [34] 
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2.3.2.1 Physiological relevance and good practice in recording the P wave 

The P wave corresponds to the atrial depolarisation that occurs inside the heart whenever 

there is a new heartbeat. In this process, it is the first waveform in the ECG following a QRS 

complex. The normal characteristics of this are an amplitude of 2 to 3 mm high, a duration of 

0.06 to   0.12 s and a shape that is round and upright. The frontal plane of the P wave axis 

should be between 0° and +75° and the voltage in the limb leads should not exceed 0.25 and 

0.15 mV in the precordial leads. Usually, in most leads, the P wave is positive, whereas it is 

always negative in one of the limb leads (aVR) and sometimes can have a negative deflection 

in leads III and V1 [38]. 

2.3.2.2 Typical characteristics of the QRS complex  

There is a large deflection associated with the ECG signal when the ventricles are depolarised. 

This is known as the QRS complex wave. This contains more than two or three deflections. It 

is the ventricular depolarisation which would occur after this for every single contraction 

which takes place in the heart. The muscle mass of the atria is small compared with that of the 

ventricles, and as a consequence the P wave is smaller than the QRS complex. The normal 

duration does not exceed 0.12 s and has a typical duration of 0.06 to 0.10 s. The typical 

voltage usually varies between 1.5 and 2.0 mV. If the duration of the QRS complex is greater 

than    0.12 s, it is due to an asynchronous depolarisation of both ventricles. The QRS 

complex follows the PR interval and has an amplitude of 5 to 30 mm high, although this may 

differ depending on the lead used [38], as voltage gain settings in the transducer can vary.  

2.3.2.3 Typical characteristics of the T wave and its physiological relevance  

A T wave is associated with the return of the ventricular mass to its resting electrical state; a 

process known as repolarisation. In other words, the T wave represents ventricular recovery. 

This has an amplitude of 0.5 to 10 mm and takes place at every heartbeat. The shape of the T 

wave is round and smooth, usually upright, and maybe inverted depending on the lead’s 

polarity. This particular wave follows the S wave of the heart, which can be determined by the 

attending cardiologist [43].  
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2.3.2.4 Typical characteristics of the U wave and its physiological relevance  

A U wave corresponds to a small deflection, which is sometimes seen after the T wave and 

represents the last phase of ventricular repolarisation. This is the recovery period of the 

Purkinje fibres or the ventricular conduction fibres. This wave follows the T wave and has a 

shape that is typically rounded and upright. The direction of the U wave is most often the 

same as that of the T wave, but sometimes a negative U wave can appear with positive T 

waves. This wave can be identified in about one-quarter of the population, but might not 

appear on the recording strip sufficiently clearly.  It does not provide any significant 

information with regard to the activity of the heart [43]. 

2.3.2.5 Typical characteristics of the J wave and its physiological relevance  

A J wave refers to the elevated point of an electrocardiogram, which appears at the very 

beginning of the ST segment. It is also referred to as the Osborn wave. This wave appears as a 

late delta wave, which usually follows the QRS complex. Some doctors feel that this wave is 

in fact a smaller secondary wave. Whenever there is an evident case of an identified J wave 

period, it can be regarded as a pathognomonic sign of hypothermia or hyperkalaemia [43]. 

2.3.3 The explanation of the physiological relevance of ECG segments and 

intervals 

Segments and intervals are other identifying elements in the ECG waveform. ECG segments 

relate to the duration of the isoelectric line between waves while ECG intervals correspond to 

the time elapsed between the same segments of adjacent waves. A further aim of an ECG 

analysis is to evaluate the shape, amplitude, and duration of the waves, segments, and 

intervals [38]. 

ECG intervals measure the depolarisation and repolarisation duration, which can be 

observed in the heart for every activity and provide an assessment of overall cardiovascular 

integrity, which occur in every contraction. When the heart beats faster, one can easily notice 

that the length of the interval is shorter; when the heart beats slower, the duration is longer. 

The most important feature to consider in the ECG is the QT interval. If there is a change in 

the length of each heart interval, it would indicate that there is something wrong with the 

physiological integrity of the heart. Identification of this particular abnormality provides an 
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additional assessment of overall heart health and so could lead to a new way of making 

medical assessments. 

2.3.3.1 Physiological relevance of the PR interval  

The PR interval is defined as the dead time between the end of the P wave and the beginning 

of the QRS complex. This tracks the propagation of an electrical impulse from the atria to the 

AV node across all pathways (P), to the end point, which is the bundle branches. The duration 

of this particular wave is 0.12 to 0.20 s [38].   

2.3.3.2 Physiological relevance of the ST segment 

The observed segments in an ECG signal depict the end of a contraction and the beginning of 

the following one. They confirm the continuity of the electrical activity manifested in the 

heart. More specifically, they denote the end of atrial and ventricular contraction and also the 

relaxation of the atria and ventricles in preparation of another contraction to be initiated. The 

feature associated with ECG rhythmic strip is the ST segments that represent the end of 

ventricular contraction and depolarisation and the beginning of ventricular recovery.  

The ST segment is particularly important to a physiologist, as it reveals all related 

physiological responses that are essential to interpreting the general degree of health of the 

patient’s heart [44]. The characteristics of the ST segment are that it extends from the end of 

the S wave to the beginning of the T wave. The deflection is isoelectric, with a duration of 0.5 

to 1 mm for every heartbeat [43]. 

2.3.3.3 Physiological relevance of the QT interval  

The QT interval is associated with the return of stimulated ventricles to their resting state 

known as ventricular repolarisation. In addition, the QT interval provides an estimate of the 

ventricular depolarisation and repolarisation as revealed by the electrocardiogram. This 

interval occurs at the beginning of the QRS complex and extends to the end of the T wave. 

Normally, it has duration of between 0.36 and 0.44 s [12]. 

2.3.3.4 Physiological relevance of the PQ interval and ST-T interval 

The PQ interval shows the time elapsed between atrial depolarisation and the onset of 

ventricular depolarisation. Its normal range is between 0.12 and 0.20 s. The ST-T interval 
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provides a measurement of the speed of the repolarisation of the ventricular muscle. It is a 

part of the QRS complex (the J point) and lasts until the onset of the T wave [38]. 

2.4 Heart rhythms and detection of arrhythmias in the ECG 

signal 

Arrhythmia is a cardiac condition caused by the abnormal electrical activity of the heart. 

According to [45], arrhythmias can be divided into two groups. The first group relates to life-

threatening arrhythmias that require immediate therapy with a defibrillator. Arrhythmias are 

the result of ventricular fibrillation and tachycardia. Many solutions with high sensitivity and 

specificity have been developed for detection of these arrhythmias. The second group of 

arrhythmias are not imminently life threatening but may require therapy to prevent additional 

problems. This study focuses on analysing and detecting arrhythmias from this second group 

such as premature ventricular contraction (PVC) and fusion of ventricular and normal beats. 

The normal rhythm of the heart where there is no disease or disorder in the 

morphology of the ECG signal is called the normal sinus rhythm (NSR). The heart rate is 

generally characterized by regular beats at a frequency of 60 to 100 beats per minute. The 

rhythm is known as sinus tachycardia when the heart rate is over 100 beats per minute. 

However, the rhythm is called bradycardia when the heart rate is too slow [46].  

Typical heart rates differ with every person, for example because of cardiovascular 

conditioning, so correlations of heartbeat rates can be misleading. Unusual heart rates have 

variable causes and affect individuals in various ways. Heartbeat issues, called arrhythmias, 

are one paradox of medication. Just about anybody’s heart can produce an extra beat or two, 

and the upsetting manifestations that might go with the additional pulsations like palpitations 

do not often cause a serious issue. Yet an undetected arrhythmia, likewise, might set off a 

chain of events prompting sudden death from heart failure. In the following section, 

discussion of some types of arrhythmias is provided. 

2.4.1 Sinus node arrhythmias 

This sort of arrhythmia is associated with the SA node of the heart. A typical feature of these 

arrhythmias is that the P wave morphology of the ECG is normal. Sinus arrhythmia, sinus 

bradycardia, and sinus arrest are some manifestations of these arrhythmias [46].  
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2.4.2 Myocardial infarction and ischaemia 

Myocardial dead tissue occurs following myocardial ischaemia. It is a result of a reduced 

blood supply to the heart, below a certain threshold that overpowers myocardial cellular repair 

systems intended to keep up typical working function and homeostasis. Ischaemia often 

results in irreversible myocardial cell damage or death. An interruption in the supply of 

myocardial oxygen happens when a thrombus is superimposed on ulcerated or shaky 

atherosclerotic plaque. This often results in coronary impediment [47].  

2.4.3 Atrial arrhythmias  

Irregular rhythms are generated by the left or right atrium in the human heart. The main cause 

of this arrhythmia is often old age. The most predominant changes in the P wave and Q wave 

features relate to the atrial electrical activities [48]. Atrial arrhythmias start outside the SA 

node but inside the atria. There are different arrhythmia types such as premature atrial 

contractions (PAC) and atrial flutter and atrial fibrillation.  

During PAC arrhythmias, an irregular P wave morphology is produced after a normal 

QRS complex and T wave. This happens because an ectopic pacemaker terminates before the 

SA node. PVC has a signature morphological feature: before the QRS complex, an extra beat 

will be present, as shown in Fig. 2.7. In addition, the P-R segment will be non-isoelectric as a 

result of the extra beat [48]. PACs might happen as a doublet where two PACs are produced 

continuously. Whenever three or more successive PACs happen, the patient is thought to be 

suffering from atrial tachycardia. In atrial tachycardia, the heart rate is quick and ranges from 

160 to 240 beats per minute. 

During atrial flutter (AF), the atrial beat rate is very high, increasing from 240 to 360 

beats per minute. The irregular P waves happen frequently and thus they rapidly take the 

morphology of a saw-tooth waveform, which is called ripple (F) waves. AF happens when a 

single group of atrial muscles triggers an electrical pulse that disrupts the regular impulse 

from the SA node. The features of the waveform are regular R-R intervals and there are saw-

tooth waveforms present between R peaks [48]. The AF rate is even faster than in atrial 

tachycardia, which is between 160 and 240 beats per minute.  
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During AF, the atrial rate sometimes surpasses 350 beats per minute. This arrhythmia 

happens as a result of compression of various parts of the atria. The higher atrial beat rate and 

compression prompts insufficient pumping of blood into the ventricles [46]. In other words, 

atrial fibrillation is initiated by multiple groups of the atrial muscle, triggering pulses at 

random, causing the sinus node’s regular electrical impulse to be disrupted, and thus it fails to 

trigger the AV node regularly. The main features of AF are the irregular R-R intervals; 

furthermore, both P wave and T wave are unrecognizable [48]. 

2.4.4 Junctional arrhythmias 

A junctional rhythm happens when the primary pacemaker, the SA node, fails to send the 

electrical impulses along the presented pathway. Therefore, the secondary pacemaker, the AV 

node, becomes the main pacemaker of the heart. The features of this rhythm are a regular R-R 

interval and a delay in the P wave that appears after the R waves [48]. 

Junctional ectopic tachycardia is an irregular programmed tachyarrhythmia that 

emerges in the atrioventricular conduction system over the bifurcation of the bundle of His. 

As a result of this arrhythmia, the P wave morphology is abnormal. The abnormal P wave 

would be opposite the P wave of the normal sinus due to depolarization. This wave circulates 

in the opposite direction from the AV node towards the atria [46]. Children can have 

junctional ectopic tachycardia as an inherent sickness or other physiological imperfections, as 

 

Figure 2.7: The PAC beat were taken from the MIT-BIH 

Arrhythmia database  
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a result of cardiac surgery. This arrhythmia is uncommon in grown-ups. Numerous youngsters 

with inborn junctional ectopic tachycardia have a family history of this type of arrhythmia.  

Innate junctional ectopic tachycardia for the most part occurs at the same time in life. 

At the point when the arrhythmia follows cardiac surgery, the youngsters regularly have 

operations including atrioventricular intersections. Congestive heart failure and hypotension 

involve fast heart rates.  

The trademark electrocardiographic signature is atrioventricular separation. Inherent 

junctional ectopic tachycardia is typically treated with beta-adrenergic blocking drugs and 

amiodarone, which will diminish the ventricular rate. Atrial pacing can briefly re-establish 

atrioventricular synchrony and increase cardiac yield. Junctional ectopic tachycardia can 

significantly compromise cardiac function when it is the result of cardiac surgery, as a rule in 

kids with inherent heart sickness. Amiodarone, beta-adrenergic blocking drugs and 

propafenone diminish the rate of the tachycardia; however, other antiarrhythmic medications 

are generally insufficient. Removal of the atrioventricular junctional and ventricular pacing 

might sometimes be required. This arrhythmia can be a reliable proxy to determine, most of 

the time, whether the patient will survive the early post-operative period [5].  

2.4.5 Ventricular arrhythmias  

The general characteristic of ventricular arrhythmias is that the QRS-complex is wider, as 

shown in Fig 2.8. Ventricular arrhythmias can be associated with the following conditions: 

untimely ventricular contractions (PVC), ventricular tachycardia (VT) and ventricular 

fibrillation (VF).  

  

Figure 2.8: The PVC beats were taken from the MIT-BIH Arrhythmia database 
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In PVC arrhythmias there is no depolarisation of the atria or the SA hub. The 

morphology of P waves maintains their underlying rhythm. This kind of ventricular 

arrhythmia might happen at any place in the heartbeat cycle. PVCs manifest as segregates on 

the off events that occur separately or as couplets if two continuous PVCs occur.  

During ventricular tachycardia, the heart rate is between 110 and 250 beats per 

minute. The QRS complex in VT is also strangely wide. This arrhythmia is considered life-

debilitating as the fast rate might lead to ventricular filling, resulting in a drop in cardiac 

yield. The common features in VT are the wide R waves and short R-R intervals. 

Ventricular fibrillation happens when various ectopic pacemakers in the ventricles 

cause diverse parts of the myocardium to contract at various times in a non-synchronised 

manner. The ventricular vacillation shows an exceptionally quick ventricular rate with a saw-

tooth-like ECG waveform [46]. The features of this arrhythmia are noise and a quick heart 

rate of 300 beats per minute (sometimes this can even reach more than 300 beats per minute). 

2.4.6 Atrioventricular blocks  

Another group of arrhythmias that can be detected from the ECG signal is heart blocks. 

Atrioventricular block refers to the typical pathological spread of the electrical activity along 

the conduction pathways to the ventricles. Such a blockage might delay the propagation of the 

waves or totally incapacitate whatever is left of the conduction system. There are three types 

of blockage: first-degree block, second-degree block and third-degree block. A first-degree 

AV block happens when all the P waves are led to the ventricles; however, the PR interval is 

delayed. The delay is revealed as a feature on the ECG beat analysis that shows an extended 

P-R interval. Second-degree AV blocks happen when a portion of the P waves fails to reach 

the ventricles. The main feature of this block is an irregular R-R interval. Furthermore, the 

QRS complexes in the ECG record are missing consecutively. During third-degree AV 

blocks, the tempo of the P waves is totally separated from the QRS event. Every beat occurs 

at its own particular rate.  

The bundle branch block stops the conduction of the electrical stimulation from the 

AV node to the entire conduction system. Because of this blockage, there might be localised 

myocardial necrosis needing cardiac surgery. The bundle branch block beat is classed as 

being of two types. These are the left bundle branch block beat (LBBB) and right bundle 
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branch block beat (RBBB). In LBBB, the left bundle branch will keep the electrical 

stimulation forces from the AV hub from depolarizing the left ventricular myocardium in the 

ordinary way. At the point when the right bundle branch is blocked, the electrical excitation 

from the AV hub is not capable depolarizing the ventricular myocardium [46].  

2.4.7 Bundle branch blocks (BBB) 

The ventricles of the heart (either left or right) contain an adequate muscle cell mass; viable 

depolarization of the considerable number of cells requires a specific conduction pathway 

inside of the ventricle. The bundle branches (left and right) correspond morphologically to the 

first division in the ventricular conduction system after the bundle of His. Conduction blocks 

can happen in either of the two bundle branches. As noted, these can happen as the after-

effect of localized necrosis of the tissue, in spite of the fact that various generally typical 

individuals may have a bundle branch block because of the fill-up of the conduction pathway 

with sinewy tissue [49].  

The LBBB is normally associated with poor intraventricular conduction. The common 

surface ECG highlight of LBBB is a prolongation of the QRS complex event above 0.11 s in 

conjunction with a delay of the natural redirection in leads V5 and V6 of more than 60 ms and 

no septal Q waves in leads I, V5, and V6 because of the unusual septal actuation from right to 

left. LBBB might instigate irregularities in left ventricular function because of anomalous off-

beat constriction patterns which can be fixed by bi-ventricular pacing (resynchronization 

treatment) [50]. Fig 2.9 and 2.10 show the LBBB and RBBB beats were taken from the MIT-

BIH Arrhythmia database lead II and lead V1 respectively. 

 

 

 

Figure 2.9: The LBBB beats were taken from the MIT-BIH Arrhythmia database 
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2.5 Description of the ECG databases used in the current study 

2.5.1 The MIT-BIH Arrhythmia Database 

The MIT/BIH Arrhythmia Database is used in the majority of studies for software-based 

performance evaluations. This database was the first to be established and provides standard 

test records for assessment of arrhythmia identifiers. It has been utilized to assess cardiac flow 

at more than 500 labs around the world. Initially, the database was stored on a nine-track 

computerised tape at 800 and 1,600 bpi, and on quarter-inch IRIG-position FM simple tape. 

In August 1989, a CD-ROM rendition of the database was created.   

The MIT-BIH Arrhythmia Database contains 48 half-hour portions of two-channel 

wandering ECG recordings, acquired from 47 subjects. Recordings were made between 1975 

and 1979. Each of these recordings includes two-lead information such as from limb lead II 

and one from the precordial leads V1, V2, V4 or V5 or two precordial leads as presented in 

Fig. 2.11. Twenty-three recordings were picked randomly from 24-hour ambulatory ECG 

recordings gathered from a blended populace of inpatients (around 60%) and outpatients 

(around 40%) at Boston’s Beth Israel Hospital. 

In addition, the recordings were digitized at 360 samples for every second per channel 

with 11-bit resolution over a 10 mV range. Two or more cardiologists freely clarified every 

record; disagreements were resolved to obtain the computer-readable reference annotations 

for every beat (around 110,000 annotations) included within the database [51],[27].  

 

Figure 2.10: The RBBB beats were taken from the MIT-BIH Arrhythmia 

database 
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There are 12 types of ECG waveforms of abnormal beats in this database: left bundle 

branch block (LBBB), right bundle branch block (RBBB), atrial premature beat (APC), 

aberrated atrial premature beat (a), nodal (junctional) premature beat (J), ventricular 

premature beat (VPC), fusion of ventricular and normal beat (FUSION), ventricular flutter 

wave (I), nodal (junctional) escape beat (j), ventricular escape beat (E), supraventricular 

premature beat (S), and fusion of paced and normal beat (PFUS), and the waveforms 

corresponding to the normal sinus rhythm (N). The vertical axis y is measured in μV and 

presents amplitude of ECG waveforms, while the horizontal axis x scaled as the number of 

points (at a 360 Hz sampling rate; 360 samples corresponds to every second and one point 

corresponds to approximately 2.8 ms), shows time index (duration) of ECG waveforms [44]. 

The diagram in Fig. 2.11 illustrates ECG waveforms and beat that is taken from the MIT-BIH 

Arrhythmia Database patient record number 104. 

 

Figure 2.11: A segment of an ECG signal taken from the MIT-BIH 

Arrhythmia database (record no 104) 

2.5.2 The European ST-T Database 

The European ST-T Database is often utilised in order to investigate ST and T wave changes. 

This database comprises 90 annotated selections of ambulatory ECG recordings from 79 

subjects; data was lost for one subject. The subjects included 70 mature men aged 30 to 84, 

and 8 mature ladies aged 55 to 71. Records e0118‒e0122 originated from the same subject as 

did records e0123‒e0126, records e0129 and e0133, records e0136 and e0139, records e0147 

and e0148, records e0154 and e0155, and records e0162 and e0163. Then myocardial 

ischaemia was diagnosed or suspected for every subject; this was determined using the 

following procedure: firstly, multiple selection criteria were set up in order to obtain a 

representative selection of ECG ischaemia events, including baseline ST segment 
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displacement resulting from hypertension and ventricular dyskinesia. Moreover, this database 

incorporated 367 episodes of ST segment change, 401 episodes of T wave change with 

periods spanning from 30 s to a few minutes, and crest relocations extending from 100 μV to 

more than one mV. In addition to this, 11 episodes of axis movement bringing about evident 

ST change and 10 episodes of axis movement bringing about clear T wave change were 

stamped. Minimal clinical reports were used to archive every record. These reports are 

contained inside the header (.hea) documents and are connected with every record. They 

condense pathology, pharmaceuticals, electrolyte imbalance, and technical data for every 

recording [27]. The diagram in Fig. 2.12 illustrates ECG waveforms and beat that is taken 

from the European ST-T database record no e0104. 

 

 
Figure 2.12: A segment of an ECG signal taken from the European ST-T database (record no e0104) 

depicting lead III and V4 information 

2.5.3 The St Petersburg INCART 12-lead arrhythmia database (incartdb) 

This database comprises 75 annotated recordings removed from 32 Holter records. Each one 

of these records is 30 minutes in length and contains 12 standard leads, each sampled at 

257 Hz, with increases shifting from 250 to 1,100 simple to-advanced converter units per 

millivolt. Pick-ups for every record are indicated in the document. The annotated reference 

documents contained more than 175,000 beat annotations in total. The first records were 

gathered from patients undergoing tests for coronary vein illness (17 men and 15 women, 

aged 18‒80; mean age: 58). In addition, none of the patients had pacemakers; most had 
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ventricular ectopic beats. In selecting records to be incorporated into the database, preference 

was given to subjects with ECGs predicting ischemia, coronary vein illness, conduction 

variations from the norm, and arrhythmias [27].  

2.6 Summary  

In this chapter, the basic features of ECG recording and their physiological relevance were 

discussed. It was explained how such recordings can diagnose a patient with cardiac 

ischaemia and infarction. Interpretation of ECGs is discussed on the basis of 12-lead ECG 

recording and the morphology of the characteristic waves. The different ECG leads provide 

different electrical activity of the heart recorded from different orientations. The output of the 

ECG signal provides information regarding the activity of the heart between positive and 

negative poles and the way that the heart pumps the blood through the different parts of the 

body. Different algorithms need to be used in order to analyse the output of ECGs and extract 

the ECG beat events. In the next chapter, different techniques that have been used for analysis 

and extraction of ECG beats will be discussed. In addition, some of the feature extraction and 

classifier techniques will be reviewed as well. 
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Chapter 3 Review of ECG analysis and classification 

algorithms 
 

3.1 Introduction  

Analysis of ECGs is possible using several different algorithms. Any automated ECG analysis 

and classification system comprises three main components: pre-processing, feature 

extraction, and selection and classification of ECG beats. Previous studies have reported the 

use of different methods for accomplishing each of these tasks. There are different types of 

classification approaches that can be adopted, such as a LDA classifier, an artificial neural 

network (ANN) or an SVM classifier. In this chapter, the various techniques that are used for 

extracting discernible features from an ECG signal will be reviewed, and different pre-

processing and classification techniques will be considered.  

3.2 Pre-processing  

The first step, which needs to be considered in ECG analysis, is pre-processing. The pre-

processing module usually contains three components, as shown in Fig. 3.1. These are 

denoising, detection of the QRS complex and extraction of a single beat on the basis of 

segmentation. Each of these components is described briefly in the following sections. 

 

Figure 3.1: The pre-processing module with methods used in previous studies 



Chapter 3. Review of ECG analysis and classification algorithms  

 

 33  

 

3.2.1 ECG signal denoising 

Denoising is the primary processing to remove all the high-frequency noise as well as the 

power supply interference superimposed on the ECG signal. ECG signals usually contain 

different types of noise. The sources of these noises can be either cardiac or extra-cardiac. The 

reasons for cardiac noise are the reduction or disappearance of the isoelectric interval and 

prolonged repolarisation and atrial flutter, while the sources of extra-cardiac noise are 

respiration, changes in the electrode’s position, muscle contractions and power line 

interference [52-53]. Moreover, the main sources of ECG noise are the electrical activities of 

other body muscles, a baseline shift because of respiration, the poor contact of the electrodes, 

and possible interference from other equipment or electronic devices [54-55].  

In 2015, Velayudhan and Peter claimed that there are two main types of noise that 

affect the ECG signal. The first type of noise is due to the natural features found in the typical 

ECG signal, these occur predominantly at high frequency and are attributed to 

electromyogram (EMG) noise, additive white Gaussian noise and power line interference. 

Noise with a low frequency such as baseline wander are of the second type [56]. Frequency 

interference, baseline drift, electrode contact noise, polarisation noise, muscle noise, internal 

amplifier noise and motor artefacts are different types of noises that an ECG signal might 

contain [57].  

Baseline wander comprises the noise artefacts that generally affect ECG signals and it 

usually comes from respiration; such interference lies between 0.15 and 0.3 Hz [58]. 

Moreover, since baseline wander is one of the common problems in ECG signal processing, 

its removal is always required in order to minimise alterations in beat morphology. The 

baseline wander is removed by using a moving average filter. This can be done easily by 

using the Wavelet Toolbox [59]. Furthermore, some algorithms have been suggested 

specifically for removing baseline wander, and these are discussed below.  

One approach is through wavelet filtering [60]. Various types of wavelet basis 

functions (mother wavelet) such as Coiflets, Haar and Daubechies have been used to evaluate 

the performance of wavelets in denoising ECG signals [58]. Other algorithms include custom-

made filter banks, PCA, independent component analysis (ICA) [61], neural networks (NNs), 
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adaptive filtering [62], empirical mode decomposition (EMD) [63] or wavelet transforms 

(WT) in conjunction with these [64].  

A considerable amount of literature has been published on denoising ECG signals 

using these various methods. The majority of the publications have used wavelets to denoise 

ECG signals, remove the 50/60 Hz power line interference [65] and perform other types of 

denoising [66]. Moreover, ECG signal noise cancellation can be done using adaptive filtering, 

as indicated in [67]. In [68], notch filter [69], recursive least squares (RLS) adaptive filter [70], 

normalised least-mean squares (NLMS) adaptive filter [71] and wavelet packet transform [72] 

were utilised to reduce the 50 Hz power line interference from an ECG signal. An excellent 

simulation result was achieved when using wavelet packet transform. Furthermore, adaptive 

filters have been considered to reduce the ECG signal noises arising from power line interface 

(PLI) and baseline interference. The RLS algorithm is suggested for removing the low-

frequency components and tiny features of the ECG [70]. In 2012, a new ECG denoising 

approach based on alternative noise reduction algorithms such as EMD and discrete wavelet 

transform (DWT) was proposed to denoise ECG signals, and this method was found to be 

more effective in reducing noise [73]. In 2014, AlMahamdy and Riley [74] suggested that the 

most common and essential denoising algorithms are DWT, adaptive filters (LMS and RLS) 

and Savitzky-Golay (SG) filtering. They applied these methods systematically to real ECG 

signals in their research entitled ‘Performance Study of Different Denoising Methods for ECG 

Signals’ and concluded that the wavelet algorithm performed very well. 

A recent study by Gang et al. (2015) indicated that the three main ECG noises were 

power frequency interference, baseline drift noise and EMG or muscle artefacts. In their paper, 

they suggested an improved wavelet packet denoising algorithm. Moreover, they compared 

the performance of certain other algorithms, such as the WT threshold method and the Mallat 

algorithm. The wavelet packet algorithm was used to remove the baseline drift and part of the 

EMG interference in the ECG signal, whereas the method of threshold denoising was 

suggested and used for the removal of noise from the 60 Hz mains interference and from part 

of the EMG interference. Using their proposed wavelet packet algorithm produced a better 

result than that achieved by using the Butterworth digital filter, the Mallat algorithm, the WT 

threshold method and other standard wavelet packet algorithms [75].  



Chapter 3. Review of ECG analysis and classification algorithms  

 

 35  

 

3.2.2 QRS complex detection 

A QRS wave is associated with ventricular depolarisation. This type of wave has three 

separate deflections, which are called Q, R and S waves. A variety of noise types and 

different types of abnormal morphologies are the two main problems that need to be 

addressed in QRS detection [76]. The R peak location from the patient’s recorded data needs 

to be identified first in order to detect the QRS complex event more accurately in time. The 

recognition of real peaks on ECG signals is important for diagnosing heart diseases. Various 

R peak detection techniques are mentioned in the literature. Furthermore, as the precise 

detection of the QRS complex is difficult, some techniques are recommended to detect the 

QRS complex. 

  Detection of the QRS complex plays a central role in ECG classification. Therefore, 

such a procedure is normally performed prior to feature extraction. There are different 

methods for QRS detection, such as the Pan Tompkins algorithm [77] or WT [60]. The Pan 

Tompkins algorithm incorporates several pre-processing steps such as derivative-based peak 

detection, signal squaring, moving average integration and threshold operations. The 

logarithm also incorporates linear filtering, a non-linear transformation and a decision rule for 

the detection of the QRS complex after using a differential operation to find the R peak [77]. 

A further improvement in this algorithm was developed by Hamilton and Tompkins [78]. The 

development includes the use of a threshold for peaks and an estimated threshold for noise. A 

recent study by Krishna proposed a new technique based on the Pan Tompkins algorithm and 

digital differentiators. The author used infinite-impulse-response (IIR) digital differentiators 

instead of the original digital differentiator [79]. This not only improved the sharpness of the 

signal, but also amplified the high-frequency noise in the signal. Careful application of this 

algorithm is needed as noisy datasets will produce a signal with large number of artefacts 

when the algorithm is applied.  

The last decade has seen rapid development in QRS detection methods. In [4], the 

QRS complex was detected using multi-rate signal processing and filter banks techniques. Xu 

and Liu (2004) described an algorithm based on slope vector waveform (SVW) for QRS 

complex detection and RR interval evaluation. In 2008, Yeh and Wang used an alternative 

difference operation method (DOM) to detect the QRS complex. The first differentiation of 

the ECG signal and its Hilbert transform were utilised to find the location of the R peak in the 
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ECG signal [80]. Izzah et al. (2013) indicated that NN pattern recognition is able to classify 

and recognise the real peaks accordingly. All three waveforms of P, QRS and T were 

recognised by using NNs. Their study showed that 40 datasets were correctly classified as 

desired, while nine datasets were misclassified, with a total accuracy rate of 81.6% [81]. 

Recently, the associated scientific literature around the theme of QRS complexes and 

R peak detection has been expanded significantly. Some other algorithms have gained 

popularity. Xia et al. (2015) proposed a quick method for the detection of QRS complexes 

and R peak waves in ECGs using WT and K-means clustering. Real ECG signals from the 

MIT-BIH Arrhythmia Database (MIT-AD) were used for performance evaluation. In that 

study, data analysis and pre-processing were done first using the WT. Thereafter, the 

segmented K-means clustering method was applied to detect the QRS location. A sensitivity 

of 99.72 and a positive predictive value of 99.80% were obtained as the average R peak 

detection [82]. Moreover, a new technique based on moving average filters and adaptive 

thresholding was developed for QRS complex detection. This algorithm was divided into an 

IIR filter for the pre-processing stages and a moving average filter for the extraction of the 

QRS complex. Several ECG databases published on the PhysioNet website were used for the 

testing and evaluation of the technique. Sensitivity between 98% and 99% was obtained when 

the algorithm was applied to the ECG database [83]. Another new algorithm for QRS 

detection with minimum pre-processing requirements was presented recently in [84]. To 

remove the baseline drift, a two-step median filter was applied, while SG smoothing filters 

(digital smoothing polynomial filters or least squares smoothing filters) were used to smooth 

the ECG signal. Several standard ECG databases, such as the Fantasia Database (FTD), the 

MIT-AD, the MIT-BIH Normal Sinus Rhythm Database (MIT-NSD), the BIDMC Congestive 

Heart Failure Database (CHFD), which is a two-channel database, and a self-recorded dataset 

were used for the performance evaluation of this algorithm. This algorithm revealed a high 

accuracy rate of 99.81% for records from the FTD, an accuracy rate of 99.46% for records 

from the CHFD and an accuracy rate of 99.96% for the self-recorded ECGs. A QRS complex 

can be detected with high sensitivity on some ECG databases using this new technique. This 

study also claims that some of the previous studies were successful only on specific databases, 

whereas the technique proposed in this study has universal applicability. It seems that this 

study also offers probably the most comprehensive empirical analysis of QRS detection. 

Furthermore, several other differentiation techniques were considered to create alternative 
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QRS detection algorithms, such as the differential threshold method and digital differentiators. 

In [85], an R peak detection algorithm for ECG signals based on the second derivative was 

proposed, whereas QRS detection using the first derivative was presented by Benitez et al. 

[80]. Lai and Wang (2015) suggested using the differential threshold method for a real-time, 

complex QRS detection algorithm. The design of this algorithm included three computation 

steps, an improved differential processor, a detector of the R wave, and a detector of the Q 

and S waves. In that study, the assessment of the QRS detection using this algorithm was 

performed using the MIT-BIH databases. Excellent results were obtained for sensitivity and 

positive prediction of 99.69% and 99.63% respectively [86]. 

3.2.3 Recent advances on beat segmentation  

As stated earlier, each cardiac cycle in an ECG signal consists of the P-QRS-T waves. 

Segmentation of beats is needed for each cardiac cycle. Segmentation is done after detection 

of the QRS complex wave. In previous works, different numbers of samples around the R 

peak were chosen in order to extract the ECG beat. In [87] and [88], a segment or ECG beat 

of 200 samples was selected. In these works, 99 samples were chosen from the left side of the 

R peak and 100 samples after the R peak point. In [89], the R peak was taken as the centre of 

the window used for beat analysis, resulting in 150 samples before the R peak and 150 

samples after the R peak. This windowing process sets an ECG beat segment length to be 

composed of 301 samples, with the ventricular beat placed in the centre of the window. In 

2012, Rabee and Barhumi extracted 14 different beat types from the MIT-BIH database using 

a windowing function with 251 data points. Annotation files from the MIT-BIH were used to 

allocate the position of the R waves in an asymmetric manner, with 90 points preceding the R 

wave and another 160 data points after the R wave [90]. Currently, there is no consensus on 

whether a symmetric window should be used. Since Fourier transforms and WTs are normally 

used with a unitary apodisation function, such differences in the segmentation procedure are 

not of consequence to the value of the feature vectors derived through pre-processing. 

3.3 Feature extraction and selection techniques 

ECG feature extraction plays a significant role in diagnosing most cardiac diseases through 

ECG classification. Feature extraction and reduction are important procedures that usually 

influence the performance of any arrhythmia classification system. Therefore, in order to 
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extract sufficient features and reduce their dimensions to enable optimal classification, a 

balance between parsimony and feature retention needs to be established. Since each cardiac 

cycle in an ECG signal consists of the P-QRS-T waves, it is appropriate to consider 

morphological or timing features such as the widths of the P and the QRS wavelet, the widths 

of the PQ, PR and QT intervals, the amplitudes of the P and T wavelet and QRS height, 

including R location as useful features. ECG analysis and feature extraction techniques may 

thus be classified into three main categories: time domain, frequency domain and time-

frequency techniques, as illustrated in Fig. 3.2. In the time domain, the extracted features are 

the heartbeat interval, the duration parameters of QRS, QT and PR features and the amplitude 

parameters of the QRS and ST features [91].  

 

 

 

 

 

 

 

 

There are several ECG feature extraction algorithms that have been successfully 

applied in arrhythmia classification, such as time-domain methods [92], frequency-domain 

methods [93], time-frequency domain analysis [94], statistical feature signal-based methods 

[95], fast Fourier transform (FFT), for example, [96] and [97] and Hermite coefficients [98], 

ICA [99] and PCA [10], Lyapunov exponents [100] and WT, for example, [101] and [102]. 

Moreover, feature reduction methods often need to be adopted to reduce the dimensions of 

input feature vectors to the classifier to improve classification performances by improving the 

generalisation ability of the classifiers. Some of the feature reduction methods, such as PCA 

and LDA, have also been applied successfully for arrhythmia classification. The PCA method 

 

Figure 3.2: ECG feature extraction and dimension reduction techniques 
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has been widely used in statistical data analysis, feature extraction, feature reduction and data 

compression, while the LDA method is an effective supervised dimension-reduction method 

for pattern recognition problems. 

Recently, there have been several studies on extracting different features in ECG 

signals. Vaneghi et al. [103] indicated that the six most commonly used methods are based on 

autoregressive (AR) approaches, WT, Eigenvector calculations, FFT, linear prediction (LP) 

algorithms and ICA. Using the Eigenvector method in the frequency domain showed better 

performance for ECG feature extraction in their study.  

WT is one of the preferred methods used to extract features (the wavelet coefficients). 

These features can faithfully describe each ECG beat segment [30]. According to Asl et al. 

(2008), it is possible to select five features of a total of 15 using a generalised discriminant 

analysis (GDA) feature reduction method. On the basis of their proposed feature reduction 

method, they were subsequently able to discriminate between six different types of 

arrhythmias [104]. In 2007, Übeyli used discrete WTs for feature extraction in conjunction 

with multiclass SVMs and error-correcting output codes; in Übeyli’s work, 265 wavelet 

coefficients were originally obtained and extracted for each ECG beat. Subsequently, the 

author used statistical techniques to reduce the dimensionality of the extracted feature vectors. 

Statistical features (maximum, mean, minimum and standard deviation) of the wavelet 

coefficients were subsequently used as feature vectors at the input of the SVM classifier [101]. 

Alternatively, ICA may also be used to reduce the input feature space dimensionally from 200 

to 17 features [13]. According to Song et al. (2005), LDA and PCA can be used to select a 

sub-group of only four features from an original number of 17, (which were originally 

associated with two features correlated to rhythm and 15 features correlated to morphology of 

the ECG signals) without overwhelming the classifier. Discrete Fourier transform (DFT) is 

another well-established method for feature extraction. Selected Fourier coefficients can be 

subsequently used as input to a classifier; this approach has been used extensively in a large 

number of biomedical applications [17]. In 2011, Gothwal et al. utilised an FFT to identify 

the R peaks in the ECG signal, and NNs were applied to identify different types of heart 

disease [97]. EMD combined with the Hilbert transform as well as EMD combined with the 

DFT have also been used to extract the spectral features from ECG raw signals [105]. 

Moreover, Haque et al. (2009) found that using FFT as a feature extraction tool was useful in 

finding abnormalities in the ECG signal [96].  
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In recent years, linear and non-linear transformation methods have been applied 

successfully to ECG signal analysis as well as to the extracted time-frequency-based feature 

sets. Many studies in the literature also apply two or more techniques in tandem in order to 

extract and select features of the ECG beats. As a result of using diverse techniques, a 

combination of various features is used to create the input vector. Some of these studies will 

be discussed below, as the majority showed good classification accuracy. In 2014, Martis et al. 

proposed a linear method using DWT coefficients featuring a further reduction technique 

using PCA to extract features from normal and arrhythmia classes. These features were 

applied to discriminate between normal classes and four arrhythmia classes. Remarkable 

classification accuracy of 98.78% was shown using an NN for the classification of the five 

main beat classes [19]. In another study [20], five types of beats were classified with a lower 

accuracy of 93.48%. The HOS bispectrum in conjunction with PCA was used to capture the 

features and reduce dimensionality. Furthermore, the feed-forward NN and the LSVM were 

selected to classify these five types of beats according to these features. Moreover, in the 

same study, alternative features, such as higher order statistics, morphological features, 

Fourier transform coefficients and higher order statistics of the wavelet package coefficients, 

were used in an arrhythmia recognition system. These features were used to classify normal 

beat (NORMAL), VEB, S, fusion beat (F) and unknown beat (Q) on the basis of a k-nearest 

neighbour classifier. The overall classification accuracy values were 85.59%, 95.46% and 

99.56% for average sensitivity, selectivity and specificity respectively [18]. In 2014, Das and 

Ari used the S-transform (ST) and WT to select the features of the ECG beat more effectively. 

Subsequently, a combination of two features was used to create an input vector. Five classes 

of ECG beats were identified by using these features as input vectors to a multi-layer 

perceptron neural network (MLPNN) classifier. This method achieved average sensitivity 

performances of 95.70%, 78.05%, 49.60%, 89.68% and 33.89% for NORMAL, S, F, VEB 

and Q beats respectively [21]. In another study, Lyapunov exponents, wavelet coefficients 

and power spectral density (PSD) methods were also used as a set of alternative features and 

the classifier achieved average accuracy of 93.89% [22]. Morphological and temporal features 

were combined to classify the five classes of ECG signal, and overall accuracy of 85.9% was 

obtained using a linear discriminant classifier [23].  

Recently, a combination of time-domain and frequency-domain features was used in 

tandem as input vectors for classification. In 2016, Elhaj et al. found that there were some 
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disadvantages of using a combination of time-domain and frequency-domain features 

techniques. They concluded that using a combination of linear and non-linear features in the 

input vector could be an excellent solution. Five types of arrhythmia can be categorised 

according to five classes with high accuracy (98.91%) when using this technique with an 

SVM and a radial basis function (RBF) method [88]. 

In the research in this thesis, some of the methods mentioned above will be used to 

extract features from the ECG beat on the basis of the Fourier transform, WT or PCA. These 

methods will be discussed in more detail in Chapter 4.  

3.4 Literature survey of classification algorithms 

Classification of arrhythmias is a complex problem because of the strict requirement for 

avoiding false-positive or false-negative results. There are many different approaches that can 

be used to analyse and classify ECG signals. It has been suggested that LDA [106], back 

propagation NNs [107], self-organising maps (SOMs) [108], learning vector quantisation 

(LVQ) schemes [108], SVMs [101] and fuzzy or neuro-fuzzy algorithms should be used [109]. 

Furthermore, many methods for ECG analysis and arrhythmia detection have been developed 

in order to increase accuracy and sensitivity; such methods include the use of wavelet 

coefficients, AR modelling, radial basis function neural networks (RBFNNs), SOMs and 

fuzzy c-means clustering techniques. 

Classification methods can be defined as one of two main types, namely, supervised 

and unsupervised. Supervised classifiers define a target (class membership) that is used for 

training; however, unsupervised classifiers have no need for a predefined target or knowledge 

of the membership. NNs, nearest-neighbour classifiers and SVMs are examples of the 

supervised classification method, while SOMs and hierarchical clustering are examples of 

unsupervised classification. 

In the following sections, some of the different approaches that have been used in 

previous studies will be discussed and a comparison of results found in the literature will be 

provided. Chapter 5 is dedicated to the discussion of other results found in the literature as 

well as those generated through this study. Results will be placed in context to other signal 

processing and classification methodologies. Some pattern recognition techniques are also 
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discussed. Furthermore, an introduction to unsupervised and supervised learning-based 

approaches within the context of ECG classification will be provided. 

3.4.1 Supervised classification of cardiac arrhythmias 

Supervised learning is based on training a sample from a data source with a target that 

assigned the correction of each class. Each element in the classifier input space is related to 

a pair value in the output space defined for each class. In other words, the training dataset 

includes input data and response values. A model can then make predictions of the response 

values for a new dataset that is built during the training process. Moreover, the supervised 

learning model is adopted, assuming the presence of the supervisor, which classifies the 

training examples into classes using the information on the class membership on the basis of 

each training example. NNs such as feedforward or multi-layer perceptron (MLP) models are 

typical examples of fuzzy NNs, probabilistic NNs (PNNs) and SVMs [110]. An example of a 

supervised ECG classification approach is shown in Fig. 3.3 [111]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Supervised classification algorithm 
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3.4.1.1 Artificial Neural Networks (ANNs) 

3.4.1.1.a General structure of an neural network 

In general, Neural Networks can be divided into three fundamentally different classes of 

network architectures: Single-Layer Feedforward Networks, Multilayer Feedforward 

Networks and Recurrent Networks. 

Neuron Model  

The simplest model of neural it contains one input element, one weight matrix, one bias, input 

to the transfer function f and an output element. Fig 3.4 shows the structure of the McCulloch 

and Pitts neurons depicting weights matrix w where the output of the neuron following 

thresholding is a zero or one. When a network is represented with an input element, the input 

matrix and the weight matrix are multiplied and added to the bias. Finally, the output is the 

function of the total value of this quantity. The output can be written as: [112].  

   𝑂 = 𝑓(𝑤. 𝑥 + 𝑏)                                 (3.1)  

where 𝑥 input element, w weight matrix and b bias.  

 

 

 

 

 

 

 

 

Example of supervised ANNS include feed-forward and recurrent networks, whereas 

unsupervised classifiers are often based on self-organising maps. 

3.4.1.1.b RBF classifier 

The main concept of the RBF classifier is inspired by the theory of function approximation. 

The classifier is composed of two layer feedforward networks with hidden nodes that 

implement a set of RBFs. The RBFNNs are non-linear hybrid networks that usually contain a 

single hidden layer of neurons. Firstly, the input layer broadcasts the coordinates of the input 

 

Figure 3.4: General description of the McCulloch and Pitts neurons 

depicting weights and thresholding function 

b 
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vector into each of the nodes in the hidden layer. Each node in the hidden layer then produces 

activation functions based on the associated RBF. Finally, each node in the output layer will 

compute a linear combination of the activations of hidden nodules [113]. This approach was 

adopted in a relevant study using non-linear PCA (NLPCA) techniques to classify each ECG 

segment into normal and abnormal classes [114]. During the algorithm training stages, only 

normal patterns were used. Only two non-linear features for each ST segment were used. 

These features were modelled using an RBF network (RBFN) [114].  

3.4.1.1.c Bayesian ANN classifier  

The Bayesian ANN classifier is based on a logistic regression model and a back propagation 

algorithm. A dual threshold method is applied in order to suppress false alarm signals. This 

classifier acquires arrhythmia properties from the underlying dynamics of the system. It also 

works even when the dataset includes incomplete information such as missing feature values 

and unclassified classes. A Bayesian ANN classifier is useful for generating a pattern 

recognition model based on a given set of inputs and output [115]. The ECG beats are 

decomposed into finite characteristic waveforms using a sum of Gaussian kernels. A 99.1% 

accuracy rate for three types of ECG beats (normal, ventricular premature cycle [VPC] and 

other possible beats) using Bayesian filtering has been reported in [116]. 

3.4.1.1.d Extended Kalman Filter (EKF) 

The Kalman filter is a state-estimating technique that is implemented to operate on a state-

space representation of signals [117]. Meau et al. (2006) developed a hybrid system that 

consisted of the combination of an EKF-based multi-layer perceptron network (MLPN) and a 

learning fuzzy inference system through the use of a look-up table scheme for the recognition 

of ECG signals [118]. The Kalman filter method includes a process noise component with 

different variances that can be estimated on the basis of measurement noise. Kalman filters 

are based on two approaches: residual-based algorithms or expectation maximisation 

algorithms [119]. An EKF-based MLPN and a one-pass learning fuzzy inference system can 

be used to discriminate between various types of abnormal ECG signals. The study by Meau 

et al. (2006) distinguished between four types of ECG signals, namely, VPC, T wave 

inversion (TINV), ST segment depression (STDP) and supraventricular tachycardia (SVT) 

from normal sinus rhythm (NSR) ECG signals by using an EKF neuro fuzzy classifier. The 

ECG waveforms were taken from the MIT-BIH database. Three ECG signals from each 
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category were taken and used for the training; while a further three different, ECG signals 

from each category were used for testing after the training was completed. The overall success 

rate for the detection of STDP was 89.0%, while for the recognition of TINV the success rate 

was 96.6%. Moreover, for NSR and SVT the classification rates were 88.2% and 99.3% 

respectively [118].    

3.4.1.1.e Fuzzy NN  

Fuzzy networks attempt to model the human reasoning and thinking process. They are 

composed of generalised crisp sets that have greater flexibility to capture various aspects of 

the imperfection or completeness of information. Such algorithms operate using fuzzy logic, 

which is based on fuzzy sets and approximate reasoning. Fuzzy networks can faithfully 

approximate the inexact nature of the real world found in biological experimental datasets 

[120]. Moreover, in 2009, Ceylan et al. built a module that contained a combination of a type-

2 fuzzy c-means (T2FCM) clustering algorithm along with an NN for the classification of ten 

types of ECG arrhythmias obtained from the MIT-BIH database (normal beat, sinus 

bradycardia, ventricular tachycardia, sinus arrhythmia, APC, PB, RBBB, LBBB, atrial 

fibrillation (AF) and atrial flutter) [121]. Furthermore, fuzzy hybrid NN with HOS has been 

proposed for ECG beat recognition and classification of seven different types of ECG beats. 

The work indicated that through the recognition of normal beats and the identification of 

abnormal arrhythmias, different types of beats could be classified to an accuracy of 96% [95]. 

Moreover, fuzzy adaptive resonance theory mapping (ARTMAP) was selected and used to 

classify two different conditions from cardiac arrhythmias: normal and abnormal PVC. The 

results from these tests show that using the fuzzy ARTMAP NN can help classify cardiac 

arrhythmias with more than 99% specificity and 97% sensitivity [87]. In 2008, Sengur and 

Turkoglu proposed the use of an artificial immune system (AIS)-based fuzzy K-nearest 

neighbours (K-NN) algorithm for diagnosing aortic and mitral valve disorders of the heart. 

The WT and the short time Fourier transform (STFT) were used as feature selection methods. 

The result showed 95.9% sensitivity and a 96% specificity rate for 215 sample beats taken 

from the MIT-BIH database [122]. In another study, fuzzy K-NN and NNs in combination 

with a fuzzy system were used to classify LBBB, RBBB, PVC, and fusion paced and normal 

heartbeats with classification accuracy of 98% [123].  
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3.4.1.1.f Hopfield NN (HNN) classifier  

In order to reduce interference noise, recurrent HNN can be used effectively, as these 

networks have the additional property that they store information in a dynamic stable pattern. 

The algorithm from HNN retrieves a pattern that is stored in the memory in order to respond 

to the presentation of the incomplete or even noisy version of that pattern (equivalent to 

filtering with a priori information). In a study by Bagheri et al. (2013), computer simulation 

results showed that HNNs can effectively model the ECG signal and remove high-frequency 

noise [124]. Furthermore, Dokur and Olmez (2001) presented a novel hybrid NN structure 

that can be used for the classification of ECG beats. The method uses feature extractions 

methods (Fourier and wavelet analysis) for ECG beat classification. Its features are 

determined by the dynamic programming according to the divergence value of the algorithm. 

The classification performance, training time and number of hidden nodes for the MLP and 

the Coulumb energy were also observed in that study. Ten types of ECG beats obtained from 

the MIT-BIH database were classified using the proposed hybrid NN with a success rate of 

96%. The hybrid structure was trained by using genetic algorithms (GAs) in order to increase 

the classification performance and to reduce the number of nodes [15].  

3.4.1.1.g Recurrent Neural Network (RNN) and Continuous Time Recurrent Neural Networks 

(CTRNN) classifiers. 

A Recurrent Neural Network (RNN) can be implemented and used as a basis for detection of 

variability in ECG signals. RNN can be used to classify different types of ECG beats, such as 

normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat and atrial 

fibrillation beat that are obtained from different ECG databases. A particular feature of all 

neural networks is their multi-layered architecture. Multi-layered networks can be classified 

as feed-forward or feedback networks, according to their connectivity and the direction of 

information flow. The recurrence allows the network to remember cues from the past without 

complicating the learning excessively.  

An Elman RNN is a network, which in principle is set up as a regular feed-forward 

network. This means that in this type of network, all neurons in one layer are connected with 

all neurons in the next layer. Fig 3.5 depicts the architecture of this type of network, it can be 

seen that the neurons in the context layer (context neurons) hold a copy of the output of the 
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hidden neurons. Moreover, the output of each hidden neuron is copied into a specific neuron 

in the context layer.  

RNNs can perform highly nonlinear dynamic mappings and thus, have temporally 

extended applications; whereas multi-layer feed-forward networks are confined to performing 

static mappings. This is an important advantage over other topologies for the current 

application, especially when aiming to detect the onset of disease or the impact of lifetime 

changes to the ECG signal. The strength of all connections between neurons are indicated 

with a weight, which is similar to a regular feed-forward neural network. At the start point, all 

weight values are chosen randomly and are then optimized during the training stages. The 

weights from the hidden layer to the context layer are set to one and are fixed because the 

values of the context neurons have to be copied exactly in an Elman network. Furthermore, 

the first output weights of the context neurons are set to be equal to half the output range of 

the other neurons in the network (for amplitude normalization purposes which leads to better 

collinearity of the calculated weights). Similar to regular feed-forward neural networks, the 

Elman network can be trained with gradient descent back propagation and optimization 

methods [6-7]. Elman networks are, therefore, good candidates for ECG signal classification. 

  

 

 

 

 

 

In recent years, there has also been a growing interest in Continuous Time Recurrent 

Neural Networks (CTRNN). The popularity of these networks has been increasing because of 

their simplicity in simulating non-linear dynamical processes. Gallagher et al., (2005) 

suggested that CTRNNs should be seen as Hopfield type networks with unconstrained 

connection weight matrices. The unconstrained connectivity provides an improvement in the 

generalization ability of the networks in the learning process, thus improving its classification 

ability. Furthermore, CTRNNs are capable of faithfully emulating neuronal activity, and as 

 

Figure 3.5: Elman recurrent neural network structure adopted from [125]. 
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such they are a natural platform upon which a classifier can be built for ECG diagnostics. 

CTRNNs are made up of neurons and each neuron's activity can be described by the 

following expression: 

     𝜏𝑖 
𝑑𝑦𝑖

𝑑𝑡𝑖 
= − 𝑦𝑖 + ∑ 𝑤𝑗𝑖

𝑁
𝑗=1 𝜎(𝑦𝑗 + 𝜃𝑗) + 𝑠𝑖𝐼𝑖(𝑡),   𝑖 = 1… . . 𝑁     (3.2) 

In the above expression, 𝑦𝑖  is the internal state of neuron 𝑖 , 𝜏𝑖 is a time constant of 

neuron i, N is the total number of neurons, 𝑤𝑗𝑖 is the strength of the connection from neuron 

𝑗𝑡ℎ  to neuron 𝑖𝑡ℎ , 𝜃𝑗  is a threshold/bias term, (x) =1 / (1+ℯ-x 
) is the standard non-linear 

(sigmoid) logistic activation function and 𝐼𝑖(𝑡)  represents a weighted sensory input with 

strength 𝑠𝑖 [126]. 

The main difference of a CTRNN over other kinds of neural networks is that the 

neurons could propagate a signal back through the network. Other neural networks considered 

in ECG are feed forward, which means that neuron signals could only be unidirectional. In 

addition, CTRNNs are more dynamic in terms of mimicking biological neuronal signal 

discharge processes. Moreover, CTRNNs are also deemed to be more efficient than other 

neural networks in terms of computations since they could be used to directly simulate each 

spike [127]. The CTRNN has additional advantages and computational efficiency over other 

discrete formulations. For example, using a discrete-time RNNs there is a considerable 

dependence of the resulting models on the sampling period used in the process, whereas for 

CTRNNs this can be varied without the need for re-training. Even in the presence of 

measurements noise the RNNs are capable of providing long-range predictions. Another 

advantage of CTRNNs is that if they are compared with other NN types such as feed forward 

neural networks (FFNNs), they have been shown to be more efficient in terms of the number 

of neurons required to model a dynamic system [128]. 

An RNN was implemented and used as a basis for the detection of variability in the 

ECG signals in [6]. Four types of ECG beats were considered: normal, congestive heart 

failure, ventricular tachyarrhythmia and atrial fibrillation beats, these were successfully 

classified using an RNN trained with the Levenberg–Marquardt algorithm [6]. 
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3.4.1.1.h ECG Classification using other neural network types                                            

Added to the above there is also a plethora of other alternative algorithms that have also 

reported very high classification accuracy.  Guler and Übeyli (2005) showed that four types of 

ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, and 

atrial fibrillation beat) were successfully classified with a 96.94% rate of accuracy by using 

Combined Neural Networks (CNNs) trained with the extracted features from discrete wavelet 

transforms of normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, and 

atrial fibrillation beat signals [129].  

PNN are another alternative modality for ECG classification. A number of types of 

arrhythmias have been classified by using these neural networks. By combining PCA with 

LDA, and a PNN classifier it was possible to categorise eight different types of arrhythmia 

from ECG beats [10].  

Furthermore, BPNN and feed-forward neural networks are among the most widely 

used groups of arrhythmia condition classifiers. A discrete wavelet transform (DWT) 

approach and a multilayer feed-forward neural network with one layer of hidden units were 

used to classify 13 types of ECG beats, with a 96.77% overall accuracy of classification. A set 

of DWT coefficients, which contain the maximum information about the rhythm, was selected 

from 4-level wavelet decomposition. For training a feed-forward neural network back-

propagation with momentum was used [130]. Discrete wavelet transform and Back 

Propagation Neural Network (BPNN) were used for binary (normal versus abnormal) ECG 

detection. A 96% rate of accuracy is reported for the normal class sample, whereas a 100% 

accuracy rate is achieved for the abnormal class sample. Moreover, 97.8% of accuracy was 

obtained for the overall system using a BPNN classifier [58]. In another study, a multilayer 

feed forward neural network with a back propagation algorithm is employed to classify both 

normal and arrhythmia spectra. The three layer networks were shown to be sufficient to 

approximate any nonlinear function that can be encountered in ECG classification studies [4].  

A Multilayer perceptron neural network (MLPNN) was also adopted in a study by 

Übeyli and Güler (2004) to classify the normal beats and partial epilepsy beats with a 97.50% 

rate of accuracy; this was also a study that used the Levenberg–Marquardt algorithm for 

training the MLPNN [131]. In another study, Güler and Übeyli (2005) demonstrated the 

usefulness of MLPNN algorithms, when trained by various means e.g. backpropagation (BP), 



Chapter 3. Review of ECG analysis and classification algorithms  

 

 50  

 

delta-bar-delta (DBD), extended delta-bar-delta (EDBD) and quick propagation (QP) 

approaches. They showed that using MLPNN trained with these algorithm can help classify 

normal beats and partial epilepsy beats with an accuracy of 90.63%, 92.50%, 95.00% and 

96.88% respectively [132]. By comparing the reported results in these studies, it seems that 

the use of the Levenberg–Marquardt algorithm for training can lead to slightly higher 

percentage accuracy than using a simple back propagation algorithm.  

The evidence presented in this discussion suggests that different types of NNs can be 

used for creating a successful classification module. A SVM, or support vector network, is 

another supervised machine learning technique, which has been used for ECG classification. 

Over the past decade, a significant body of literature in ECG analysis has focused on binary 

and multi-class SVM classification. The following section will discuss some of these studies, 

as this was one of the preferred directions to pursue further research in the current project. 

3.4.1.2 Support Vector Machine (SVM) and kernel functions 

Application of SVM based classification represents the cutting edge of current research in 

pattern recognition. These innovations include finding a hyperplane with the widest margin 

between the two classes and using a higher dimensional setting through a kernel function. 

These two objectives can be formulated using a Quadratic Programming (QP) framework. 

This makes SVMs an effective pattern recognition and classification solution platform in 

various fields such as bioinformatics (e.g for gene expression) and physiology (e.g lung data 

classification). The process of analyzing ECG signals and classifying arrhythmia problems 

through SVM, especially in detecting QRS complexes for ECG beats classification is well 

established [133]. In that work, a 12-lead ECG recording were studied and T, P, and QRS 

complexes were detected using an SVM classifier. After filtering of disturbances in the ECG 

signal, the training data is formatted in such a way that the LIBSVM software can be used. 

The training instance matrix is a 𝑚 × 𝑛 matrix, where 𝑛 = 12 represent the number of ECG 

leads used. After the SVM training, each record is tested for the recognition of QRS 

complexes. The detected QRS complexes are removed from the signal of the ECG and 

replaced by a baseline. The ECG signal is then processed for the recognition of T-waves. 

Calculation and normalization of the ECG signal gradient, SVM training, and testing are three 

important preliminary steps before detecting the T waves. The T waves are firstly removed in 

the ECG signal without the QRS complexes and replaced by a baseline. The ECG signal is 
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then processed for the detection of P waves. LIBSVM software is used for the detection of 

these waves. This is a software package that is widely used for software vector classification 

and regression, as well as parameter estimation [134].  

In 2013, Sambhu and Umesh used Wavelet Transform and Support Vector Machines 

to classify seven types of heartbeats. The classification was implemented by using OAO 

(One-Against-One) SVMs and the result indicated an accuracy of more than 97 % for all 

classes. The features that were selected were also related to a particular type of disease; 

because the single feature vectors were mixed in a matrix that included three types of features, 

namely temporal features, morphological features and statistical features. Temporal features 

such as ST Intervals, RR Intervals, Heart Rates, TT Intervals, PR Intervals, QT Intervals and 

PP Intervals were included in the findings, while the statistical features consisted of the mean, 

variance, skewness, kurtosis, sum, root mean square and mean absolute deviation of the 

wavelet coefficients. The authors of the work conducted multiclass SVM classifications, 

using the One-Against-One (OAO) approach, and linear kernel functions [135].  

In 2005, Zhao and Zhang published a study [136] on the use of  wavelet transforms 

and SVM for ECG feature extraction and classification. The result of their study attained a 

99.68% accuracy of classification for the recognition of six heart rhythm types, which was an 

improvement of the result indicated in [135]. For detecting the R peak, the Pan and Tompkins 

algorithm was used, with four decomposition levels. It was indicated that the detail wavelet 

coefficient d1 is usually a noise signal that must be removed, while d2, d3 and d4 denote higher 

frequency components of the ECG signal. Furthermore, they showed that the approximation 

wavelet coefficients at the fourth scale represent the main feature of each heartbeat. In order 

to obtain optimal SVM classification, two parameters SVM parameters C and kernel 

parameter 𝛾  should be used. In addition, the best value of these parameters C and 𝛾 could be 

found by using the cross-validation method. Martis et al., (2012) indicated that through PCA 

reduction of time domain signals, feed forward NN and LS-SVM can be used to classify five 

types of ECG beats (NORMAL, RBBB, LBBB, APC and VPC) with an accuracy of 98.11% 

[137]. In another study, fast LS-SVMs classification and DCT were used to classify six types 

of ECG beats (normal beat, LBBB, congestive heart failure beat, PVC beat, non-conducted P-

wave, VEB) with a 95.2% rate of accuracy [24]. Rabee and Barhumi (2012) used SVM with 

wavelet multi-resolution (through the discrete wavelet transform) pre-processing for 

classifying 14 different types of heart beats, the work was based on a comprehensive study 
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that took into consideration, 17260 ECG beats, selected from the MIT/BIH database. The 

average classification accuracy achieved was 99.2% [90]. Moreover, extracted principal 

components of the bi-spectrum using an LS-SVM with an RBF kernel were used to classify 

the same five types of beats with a 93.48% rate of accuracy [20]. In a further study, Übeyli 

(2007) classified these signals using multiclass SVM and discrete wavelet transforms (DWT). 

Two different studies with different feature vectors were conducted. In the first study, 265 

wavelet coefficients were used, and the total classification accuracy was 95.56%. In the 

second study, statistical features such as maximum, mean, minimum and standard deviation 

of the wavelet coefficients were used to create the input feature vectors. Reducing the 

dimension of the feature vectors showed a significant increase in classification accuracy to 

98.61% [101]. In studies by Martis et al., (2013) five types of beat classes of arrhythmia were 

analysed, namely non-ectopic beats, supra-ventricular ectopic beats, ventricular ectopic beats, 

fusion betas and unclassifiable and PB. It was found that the DWT could provide acceptable 

timing and good frequency resolutions for ECG datasets. In their study, a SVM, neural 

network (NN) and PNN were used for classifying these five types of ECG beats for 

automated diagnosis [87]. One should be very critical to that study, however because of issues 

related to Nyquist sub-sampling.  

Generally, as a conclusion to the presented literature review in the previous pages 

Machine Learning techniques should be strongly recommended for classifying ECG signals 

because of their superior generalization capability compared to other traditional classification 

techniques. Machine Learning techniques are also characterized by higher classification 

accuracies and lower sensitivity to high dimensionality in the dataset. They can therefore be 

used to also enhance other learning techniques such as support vector machines by 

significantly boosting the latter’s generalization capability. They can also enhance SVMs’ 

robustness against the problem of limited availability of training beats [138]. 

3.4.2 Unsupervised classification of cardiac arrhythmias 

With unsupervised classifiers, there is no need for a target or knowledge of the membership 

function of a sample. Indeed, when it comes to unsupervised learning models, the pattern 

class information and reinforcement learning are identified and learnt through trial and error 

interactions with the environment. This approach implies an ability to learn and organise 

information without providing target information to evaluate the potential solution [110]. Fig. 
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3.6 illustrates some widely used models of unsupervised classification methods, including 

partitioning clustering techniques (PCT), hierarchical clustering techniques (HCT) and 

quadratic discriminant analysis (QDA) [111].  

 

 

 

 

SOMs [110] are one of the examples of unsupervised classification that have been 

used to classify cardiac arrhythmia conditions. SOMs are applied for classifying different 

types of ECG beats such as normal and abnormal beats. As explained in the above study, they 

have been used to design a customised heartbeat classifier and a global beat classifier. 

Afterwards, the two classifiers may be combined through the mixture-of-experts principle. In 

the study by Wen et al. (2009), they used a self-organising cerebellar model articulation 

controller (SOCMAC) network. The SOCMAC algorithm represents the combined structure 

of the CMAC network into the Kohonen layer of the SOM. This approach can effectively 

distribute the learning error into the memory contents of hyper-cubes [117]. Talbi and Charef 

(2008) introduced another approach using SOMs that are combined with information from the 

QRS complex. The combination of SOMs and QRS complexes is used to discriminate PVC 

arrhythmia through the use of the power spectrum density of the QRS complexes [139].  

In 2004, Gaetz et al. proposed using SOMs to analyse the ECG signals of patients 

suffering from depression. The 84 subjects were divided into groups. Overall, the correct 

classification was very low, however, between 54% and 70.2% [140]. It is worth noting that 

there are more than 15 types of ECG beats that can be of interest to physiologists. Therefore, 

the generalisation ability of the classifier as well as its tuning parameters need to be studied 

 

Figure 3.6: Unsupervised classification algorithm. 
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extensively before they can be used reliably to address specific heart conditions. Such an 

approach would also provide wider acceptance of other approaches such as that of Lagerholm 

et al. (2000), who suggested that 16 ECG beat types can be classified using a Hermite 

function decomposition coupled with an SOM to an accuracy rate of 98.5% [141]. Hermite 

basis functions and SOM have been used successfully for clustering ECG beats. Firstly, each 

QRS complex taken from the MIT-BIH-AD was reduced into Hermite basis functions in 

order to find coefficients and width parameters that are used to represent the QRS complex. 

Self-organising NNs were then applied to cluster the data into 25 groups [139].  

Hierarchical clustering is another unsupervised learning method that has been 

proposed for the analysis of large sets of ECG data classified into groups, as discussed by 

Nishizawa et al. Firstly, this algorithm arranges the data in a multidimensional space without 

any pre-processing and then classifies it into clinical groups according to the criteria defined 

by the user. The classification result was represented via a binary tree structure as a hierarchy 

of clusters, and the simulation results indicated a good performance. Another interesting study 

was conducted using the unsupervised classification of QRS complexes through the use of a 

hierarchical cluster analysis and a two-step correlation technique. The ECG signal was first 

filtered by means of two median filters in order to reduce baseline wander and high-frequency 

noise. Three different feature sets were used for cluster analysis: four Fourier coefficients, the 

first seven coefficients of a Hermite series, and the first eight discrete cosine transform (DCT) 

coefficients [142].  

K-means clustering methods based on integrated shape averaging (ISA) were 

proposed to characterise P wave shapes and to distinguish between patients at risk of AF and 

non-patients [143]. The results obtained show that an unsupervised learning method was able 

to differentiate clinically between subgroups in a meaningful way using ECG information. 

More research needs to be conducted in order to improve the classification accuracy of 

unsupervised learning algorithms, however. Furthermore, such algorithms are more difficult 

to validate and as a consequence may not be adopted for routine use in hospitals in the near 

future.  
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3.5 Summary 

In order to fully interpret the ECG records, pre-processing, segmentation, feature extraction 

and selection, as well as classification must be performed. This chapter reviewed several 

techniques for QRS complex detection and heartbeat classification for the diagnosis of 

common pathologies. Both supervised and unsupervised classifier techniques that have been 

used for ECG beat classification such as neural network and SVM were reviewed and 

discussed. In the following chapter, feature dimensions and classifier parameters are altered in 

a systematic manner to optimize them. The analysis is performed in the time or frequency 

domains.     
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Chapter 4 Denoising and classification algorithms 

using CSVM and SIMCA  
 

4.1 Introduction 

As stated in the previous chapter, correct ECG beat classification requires noise removal and 

QRS complex detection, feature extraction and selection, and signal classification. The 

classification output can be used for making a report of the patient’s heart condition. In the 

following section, the different algorithms for noise-free parsimonious feature extraction to 

generate the input vector to the classifier will be presented. For frequency domain feature 

extraction, discrete cosine transforms (DCTs), discrete sine transforms (DSTs), and the 

discrete Fourier transform (DFT) are used. This chapter also discusses the algorithms and 

technical aspects of some important classification algorithms such as CSVM, MSVM, and 

SIMCA, which will be used to classify ECG datasets, as discussed in a subsequent chapter 

(chapter 5). 

4.2 Data collection 

In this study, data are selected from three different databases: the MIT-BIH Arrhythmias 

database, the European ST-T Database, and the St Petersburg INCART 12-lead Arrhythmia 

Database (incartdb). Normal beat, and some abnormal beat types, are extracted from these 

databases for a number of patient records. The durations of beat segments varied between 

experiments, for example by using windows of either 301 or 256 data points, as indicated in a 

number of previous studies [24],[89]. Therefore, the duration of waves and beats depends on 

the type of lead used to record condition settings, as well as the pathology of the arrhythmia 

conditions. Different conditions are investigated through different length datasets. 

4.3 Signal processing software tools used  

4.3.1 MATLAB 2012a software and associated tools box used in the 

current study 

MATLAB is a powerful and comprehensive software that can be used for signal processing 

and medical imaging. It can also be used to perform data classification. It is a high level 

language for technical computing. As an interactive system, it entails computation, 
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visualisation, and programming, expressed in mathematical notations. This includes 

mathematical computations, algorithm development, modelling, simulation, data analysis, 

exploration and visualisation, scientific and engineering graphics, and application 

development. MATLAB, which stands for “matrix laboratory”, has evolved to become user-

friendly for a variety of consumers, including universities and industry.  

Furthermore, MATLAB 2012a contains several toolboxes and there are various uses 

for these that make numerical processing easier. These are generalised to perform the 

following functions: numerical integration (quad), discrete Fourier transform (fft, ifft), 

statistics (mean, median, std, var), curve fitting (cftool), signal processing (sptool), and 

numerical integration of systems of ODEs (ode-45). Assuming an advanced level of 

understanding by the prospective user, the signal processing toolbox, the wavelet toolbox, the 

library support vector machines (LIBSVM), and the WFDB software package are all adopted 

in the current study [144]. These enabled programming and scripting of the required 

mathematical expressions discussed in this chapter. A brief discussion of these toolboxes 

follows.                                                                                 

4.3.1.1 Signal processing toolbox 

This toolbox is a collection of automated routines that are built on the MATLAB numeric 

computing environment. It contains processing operations in the following two categories: 

signal processing command line functions and a suite of graphical user interfaces for 

interactive filter design, signal plotting and analysis, spectral analysis, filtering signals, and 

analysing filter designs. Its main functions are algorithms, which are used for expressing M-

files and implementing signal-processing tasks. As a specialised extension for the MATLAB 

computational and graphical environment, it was created for the benefit of computation and 

visualisation. Its basic entities are signals, systems, and functions, such as digital or discrete 

signals and filters [145]. Some functions from this toolbox were used in order to extract 

features in the frequency domain using Fourier transforms such as DCT and DFT. 

4.3.1.2 The MATLAB 2012a wavelet toolbox 

This toolbox is a collection of functions and applications that analyse and synthesise signals 

and images as well as data that exhibit regular behaviour punctuated with sudden changes. 

This toolbox also includes algorithms for continuous wavelet transforms (CWTs), scalograms, 
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Adopting the training model with test dataset to do classifcation 

Using the  kernel  parameter to train the whole training set and 
create the model  

Use cross-validation to find the kernel  parameter  

Normalise the data between 1and -1 

Transform data to the format of LIBSVM package 

and wavelet coherence. The toolbox enables the user to analyse the frequency of content and 

signal changes to reveal time-varying patterns found in multiple signals. Because of this, 

multiresolution analysis from fine-scale to large-scale features can be done as well as 

identification of discontinuities and detection of change points that are not visible in 

unprocessed datasets. It also features compression and reconstruction of signals and images to 

match pursuit algorithms and lifting methods for constructing custom wavelets [59]. Some 

functions from this toolbox were used in this thesis in order to do the DWTs and find the 

wavelet coefficients to be used as input to the classifier. In addition, the DWT was used to 

extract features in the time-frequency domains. 

4.3.1.3 A Library for Support Vector Machines (LIBSVM) 

This is an integrated software that supports vector classification, regression, and distribution 

estimation. The main features of LIBSVM include different SVM formulations, efficient 

multi-class classification, probability estimates, and various kernels, enabling weighted SVM 

for unbalanced data. Furthermore, it is compatible with both C++ and Java resources as well 

as various interfaces, codes, and extensions and provides automatic model selection that 

generates a contour of cross-validation accuracy [146]. It also features an easy script (easy.py) 

that automates everything from data scaling to parameter selection. A typical use of LIBSVM 

entails two stages: training a data set to obtain a model and then using this model to predict 

information of a testing data set and performing classification. The LIBSVM software was 

used for classification and implementation of SVM classification. It enabled the simple 

scaling on the data, the choice of the kernel functions and cross-validation to find the best 

parameter value, adoption of the best parameter value to train the whole training set and it 

was finally used to generate the model to be used with the test data [147]. Fig. 4.1 summarises 

the main procedure that must be followed for performing classification using the LIBSVM 

package. 

 

 

 

 

Figure  4.1: Procedure of LIBSVM classifiers. 
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4.3.1.4 Wave Form Database (WFDB ) Software Package and toolbox for MATLAB 

2012a   

As a tool for PhysioNet, the WFDB software package is a compilation of the WFDB library. 

It is a separate shared library supported by a platform. It uses Java Native Interface (JNI), 

with the WFDB library being coded in Java. Its major components include the WFDB library, 

the WFDB applications for signal processing and automated analysis, and the WAVE 

software for viewing, annotation, and interactive analysis of waveform data. Documentation, 

featuring tutorials and reference manuals, is also included in the package. The WFDB toolbox 

for MATLAB 2012a  includes over 30 functions and utilities that work with PhysioNet [27]. 

PhysioNet is an open-source project support software, comprising applications and medical 

databases [148]. To find the R peak location in the QRS complex, several functions from this 

toolbox were used including (rdann), used to read annotation files for patients records, and 

(rdsamp), used to read signal files of records. 

4.4 General classification methodology in separate stages 

The block diagram of the proposed method for ECG beat classification is described in Fig. 4.2. 

As can be seen, the method is divided into three steps: ECG sampling and pre-processing, 

calculation of the feature vector used as the input to the classifier, and classification. These 

methods are described separately in this section using a variety of algorithms to achieve each 

of these steps.  

 

       Figure 4.2: Structure and methodology of ECG classification. 

Classification 
Binary SVM MSVM CSVM SIMCA 

Feature Extraction 
PCA DWT DCT DST 

Pre-processing   
De-noising Baseline removal 

Raw ECG signal 
Normal Abnormal 

https://physionet.org/physiotools/matlab/wfdb-app-matlab/html/rdsamp.html


Chapter 4. Denoising and classification algorithms using CSVM and SIMCA   

 

 60   

 

4.4.1 Signal pre-processing  

Pre-processing must be performed further before conducting analysis of the signal. This step 

usually involves the use of different filters for denoising purposes. Removal of noise from the 

ECG signal helps to improve peak detection and beat feature extraction.  In its simplest form, 

a digital filter may be implemented, using the following general difference equation to 

remove noise from the sampled ECG signal:  

       ( )1dx n x n Ax n                                                         (4.1) 

where x(n) is the original input ECG signal at time instance n, which is used as an input, and 

𝑥𝑑 is the output signal at time n. 

Different types of noise such as electrode motion and electrical lead electronic noise, 

power-line interference, baseline wander, and muscular movement can corrupt the ECG 

record [149].  

4.4.1.1 Baseline removal and de‐noising 

Baseline wandering is attributed to the respiration process and lies between 0.15 and 0.3 Hz 

[58]. Baseline wander removal is one of the most common problems in ECG signal 

processing, and its removal is required in order to minimise possible changes in beat 

morphology. The baseline wander of an ECG waveform is removed by first loading the 

original signal, and then smoothing it in amplitude y using a moving average; this can be 

conveniently accomplished using the Wavelet Toolbox [59].  

Denoising is also necessary to remove high frequency, as well as power supply 

interference from the ECG signal. Several research groups have been consistently using 

wavelets for denoising of biomedical signals [60]. Different approaches are well established 

after adopting wavelet basis functions, such as Coiflets, Haar, and Daubechies [58]. 

4.4.1.2 R peak detection algorithms in the QRS complex wave and extraction of 

heartbeats  

In the last few decades, various algorithms have been introduced for detecting specific 

features in the ECG wave. Moreover, several techniques have been developed in order to 

improve the accuracy of the QRS complex detection. Such approaches use sophisticated toots 

such as neural network [150] or fuzzy hybrid neural networks [95]. As stated in chapter 3, Pan 
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and Tompkins [77] established one of the most popular methods for the detection of the QRS 

complex. This algorithm, based on linear filtering, is followed by a non-linear transformation 

and the application of a decision rule algorithm. The diagram below illustrates the detection of 

QRS complex using the Pan-Tompkins algorithm, after cancellation of DC drift and 

normalisation, low pass filtering, high pass filtering, derivative filtering, squaring, and 

moving window integration. Fig.4.4 shows the systematic progression through all of the 

different stages, so that a visual understanding of the algorithm can be developed (the result of 

low pass filtering). Fig. 4.5 provides the result of high pass filtering. The results of derivative 

filtering and squaring are illustrated in Fig 4.6 and 4.7, respectively. In all plots, a 

magnification of the data to include only two beats is provided. 

 

Figure 4.3: Cancellation DC Drift and normalisation. 

 

Figure 4.4: ECG Signal after low pass filter (LPF). 
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Figure 4.5: ECG Signal after high pass filter (HPF). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: ECG signal Squaring. 

 

Figure  4.6: ECG signal After Derivative. 
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Figure 4.8: QRS complex Detection. 

Another method that has been used for extracting an ECG wave involves the use of 

multiresolution wavelets and filter banks. In 2010, Pal and Mitra proposed using a 

multiresolution wavelet transform for the detection and evaluation of the QRS complex, as 

well as P and T waves. The original 12-lead ECG recordings were collected from the 

Physionet PTB diagnostic database, in order to perform and validate the proposed algorithm. 

Over 99% detection accuracy for R peak was achieved. Furthermore, detection accuracy of 

heart rate, P wave, QRS complex, and T wave were over 97%, 96%, 95%, and 98%, 

respectively [151]. 

In this study, the multiresolution wavelet decomposition [152] extracted features in 

both time and frequency domains. The algorithm was applied on selected ECG data records 

no 209, taken from the MITBIH Arrhythmia Database. Decomposition of the signal was 

performed up to level eight, as shown in Fig 4.9. Fig 4.9 illustrates reconstruction of 

approximation and details coefficients at each level.  
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It can be noted that small scales represent the high frequency components, while large 

scales represents the low frequency components of the signals. Detail coefficients (d) at level 

3, 4, and 5 are recognised for the detection of R peak using the following expression.  

1 5 3  4 
S d d d                            (4.2)                                                              

 54  3 
2

2

d d d
S n

 
                    (4.3)  

    3 1 2S S S                 (4.4)  

where n is the level of decomposition. 

Following the R peak detection, the Q and S waves are then identified using the expression 

below: 

           4 5 2  3  4 
S d d d d                     (4.5) 

The Q and S points are identified from the first zero slope points on each side of the R peak. 

The following formula is used to perform five-point differentiation on S4: 

 

Figure 4.9: Reconstruction of detail and approximation coefficients at eight level of decomposition. 
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where h is the time step. 

For the detection of the T and P waves, reconstruction detail coefficients at levels 6 and 7 are 

used according to equation (4.7), as it is believed that to energy of both T and P waves are 

mostly at scale levels 6 and 7. This is an assumption that requires reassessment on the basis of 

previous work performed at Reading by Froese et al [8]. The peak in the T wave is recognised 

as the maximum after detection of the S point. In addition, the onset and offset of the T wave 

are detected as the minimum estimated crossing points on each side of the T peak [151]. The 

expression for finding T peak is: 

      5
7 6 

S d d                 (4.7)  

Alternatively, the QRS complex can be found using multi-rate signal processing and filter banks, 

as indicated in [153]. Some QRS complex detection algorithms are based on first finding the R 

peak location, before finding the other waves. In [154], an algebraic approach based on 

differential algebra and operational calculus was used to find the R peak location in the ECG 

signal. In addition, the first differentiation of ECG signal with its Hilbert transform is used to find 

the location of the R peak in the ECG signal [80]. 

In this study, the R peak location in the QRS complex was identified using the WFDB 

Software Package. Following identification of the R peak, ECG beats were extracted after 

inclusion of 150 samples before the R peak with a window spanning 150 data points after the 

R peak, as shown in Fig. 4.10a. The majority of studies reviewed in this project have used this 

technique for extracting ECG beats from each database. 

4.4.2 Feature extraction and selection 

As stated earlier, the ECG features can be extracted in either the time [92] or the frequency 

domain [155]. The compression of the ECG signal can be performed directly by using time 

domain techniques. Intelligent sample selection criteria must be used in order to get a high 

performance time domain compression and to extract the important features in the signal. An 

inverse process is used to reconstruct the original signal with a few features [156]. Frequency 

domain techniques, based on dividing the signal into frequency components and allocating 
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ECG bits in the frequency domain, are also possible. The input ECG signal is distributed into 

blocks of data and stored as frequency domain features in the form of a vector [157]. 

Transforms, particularly integral transforms, are usually utilised to reduce the complexity of 

solving mathematical problems. The differential and integral equations, through judicious 

application of the opposite transforms, may be changed into algebraic equations where the 

solutions are more easily acquired using numerical techniques. The Fourier transform helps 

decompose a signal into its frequency components, while the Karhunen-Loѐve transform 

(KLT), decorrelates a signal sequence. These are the most commonly used transforms in 

signal processing. In exploring the DCT, it is important to consider the continuous versions, 

such as the Fourier cosine transform and the Fourier sine transform. The properties of 

continuous transforms are well known and bear great resemblance to those of the DCT and 

the DST [158]. In the following section, some of the most well established ECG time and 

frequency domain feature extraction algorithms are discussed, including Direct Time-Domain 

Techniques and Transformed Frequency Domain Techniques (such as DFT, DST, and DFT). 

The coefficients of these transforms comprise the input vector to the classifier.  

4.4.2.1 Discrete Fourier Transform (DFT) 

The Fast Fourier Transform (FFT) is an efficient algorithm which has been used to compute 

the discrete Fourier transform (DFT) and it’s inverse. The DFT has been used to identify and 

extract features from ECG beat signals in the frequency domain. The selected coefficients 

form the elements of a row vector that defines the classifier input feature space. DFT 

coefficients were used to create the training as well as the testing datasets used for ECG 

classification. Initially, the DFT is applied to the ECG beat extracted using Eq. (4.8a). In Eq. 

(4.8a), 𝑥(𝑛) denotes the input signal amplitude in the time domain, while ( )X k the frequency 

domain output expression. Eq. (4.8a) is used to find a row vector for DFT coefficients for 

each beat using the DFT matrix, whereas (4.8b) is used to reconstruct the original signal from 

fewer DFT coefficients. DFT coefficients are transformed back to the time domain using an 

inverse DFT. From the reconstructed segments, threshold data points are eliminated to 

generate a signal with only few features, as shown in Fig. 4.10. 
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where W is the DFT matrix [159]. A reduction of data points from 301 to 50 is possible 

without significant visible distortion of the original signal as illustrated in Fig.4.10. 

 

Figure 4.10: (a) Typical windowed superimposed ECG datasets from the MIT-

BIH cardiac arrhythmia database (record no 104, lead V5, 301 sample 

window), and (b) time domain filtered and reconstructed signal using 50 

Fourier coefficients. 

4.4.2.2 Discrete Cosine Transform (DCT)   

The DCT is associated with the Fourier transform, which is similar to the DFT using only real 

numbers. It is based on a transform of an ECG signal into a frequency representation as a sum 

of components of varying magnitude and frequency. The most common variant of the DCT is 

the DCT-II type. The DCT-II is typically defined as a real, orthogonal, and linear 

transformation [160].  A discrete Cosine Transform of N sample is defined as: 

               
1 (2 1)

( ) ( ) ( )cos ,  0,1,  .. 1
20

N k m
C k u k x m k N

Nm

 
 
 

 
   


                      (4.9a) 

where ( )x m the value of m
th

 samples of input signals, N is the number of sample, and C(k) 

represents the  DCT coefficients. 

The inverse DCT is defined as: 

1 (2 1)
( ) ( ) ( )cos ,  0,1,  .. 1

20

N k m
x m u k C k m N

Nk

 
 
 

 
   


             (4.9b) 

In both Eqs. (4.9a) and (4.9b) ( )u k is defined as: 
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Fig 4.11 shows an ECG signal taken from the MIT-BIH arrhythmia database and its 

reconstructed waveform using DCT. One hundred of the original 301 DCT coefficients were 

used for reconstructing each ECG beat. 

 

4.4.2.3 Discrete Sine Transform (DST) 

The Discrete sine transform (DST) is one of the Fourier transform methods which is similar to 

the discrete Fourier transform (DFT) using only a purely real matrix. It corresponds to the 

complex parts of a DFT of roughly double the length. Discrete sine transforms (DSTs) 

express a signal in terms of a sum of sinusoids with different frequencies and amplitudes. In 

addition, a DST runs on a function at a finite number of discrete data points as the discrete 

Fourier transforms (DFT). The noticeable difference between a DST and a DFT is that the 

former uses only sine functions in DST, while in DFT both cosines and sines are used [161].  

In order to generate the DST, it is required to replace the Neumann condition at 𝑥 = 0 

with the Dirichlet condition. The Dirichlet condition is used to specify the values of unknown 

function on the boundary of the domain while the Neumann condition specifies the values of 

the normal derivative on the boundary of the domain. This condition can be used and applied 

in an exact manner, both at the grid point or at the mid-grid point. These two processes 

 

Figure 4.11: 50 Normal ECG beat extracted from ECG datasets from the MIT-BIH 

arrhythmia database and b) reconstructed signal using 100 Fourier coefficients. 
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together with two possible boundary conditions can be applied both to the grid point and at 

the mid-grid point combined in order to generate the eight DSTs. Even and odd DCTS are 

derived in the same way. The matrices are denoted as signalised through the DST matrices 

as 𝐵𝑛.  The size of the grid is considered to be given by π/N. After normalisation by √2/𝑁, 

then the unitary matrix elements of the DST can be written as [162]. 

11 (2 1)( 1)
( ) ( )sin ,  0,1,  ..

20

N n k
S k x n k N

N Nn

 
 
 

  
  


          (4.10) 

4.4.2.4 Singular value decomposition (SVD) 

Singular value decomposition (SVD) is an matrix transformation in signal processing which is 

used in spectral analysis, system identification, filter design, applications in statistics, 

estimation theory, and other related mathematical problems. Scharf (1991) proposed that, 

given an 𝑚× 𝑛  matrix A of full rank r, this real (𝑚× 𝑛 ) matrix, where 𝑚 ≥ n has the 

decomposition depicted below: 

                         U TA V                           (4.11) 

There are three matrices identified as follows: an 𝑛 × 𝑛 unitary matrix V, an 𝑚 ×𝑚 

unitary matrix U, and an n x m diagonal matrix with the given diagonal entries which are 

strictly positive with positive or zero elements, called the singular values. 

If the rank of matrix A is r=m=n then the matrix of ∑ will be reduced to the simple 

case of ∑=D, and the diagonal components in D are considered strictly positive (𝑑𝑖𝑖>0). Thus, 

the decomposition is considered effective for both real and complex matrices. The SVD 

decomposition can be determined by finding the eigenvalue-eigenvector decomposition in 

terms of the two matrices. In addition, from A, two positive-definite symmetric 

matrices, (𝐴𝐴𝑇) and (𝐴𝑇𝐴), can be constructed, each of which can be decomposed as follows 

[163]: 

  2( )  T TA A U U                                                (4.12a)  

                             2   ( )T TA A V V                          (4.12b) 
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The eigenvectors and eigenvalues can be identified using the decomposition above. 

For example, for  (𝐴𝑇𝐴), the eigenvectors are columns of V eigenvalues and the squared 

diagonal elements are the eigenvalues. 

 The SVD of a Matrix X is the factorisation of this matrix into the product of the three 

matrices as previously mentioned. In the field of signal processing, SVD has become a key 

tool for the decomposition of matrices into singular vectors. For example, the ECG beat signal 

is decomposed with SVD into a singular matrix as U and V sub-matrices in which, U is 

known as the left singular orthogonal matrix and V as the right singular orthogonal matrix, 

while ∑  is known as the diagonal singular matrix. These decomposed groups, which contain 

the singular value of the input matrix of the ECG beat, can be defined using the following 

equation: 

        
N M

T

N M N N M MX U V


                              (4.13)  

where U is the left singular orthogonal matrix that contains the amplitude, V is the right 

singular orthogonal matrix that contains the basic pattern, matrix ∑ is a diagonal singular 

matrix with the correlation, N is the length of the beat (sample), and M is the number of beats. 

To retain the desired signal quality, the rank of a singular matrix can be truncated in 

decreasing order as a low rank matrix (b ≪ B) where B is a full rank and b is the retained rank 

of a singular matrix. After this truncation, the decomposed singular matrix can be express as 

follows: 

T

N M N b b Mb b
X U V  

                              (4.14) 

As can be seen, the truncation of rank affects both orthogonal Matrices U and V as 

well as the singular matrix, and the output for each beat is reconstructed with a lower number 

of coefficients [164]. 

In addition, SVD is used to perform PCA by decomposing X to three matrices as 

shown in Eq. (4.11), and the covariance matrix can be written as follows:  

      
21 TY U U

N
              (4.15) 
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4.4.2.5 Principal component analysis (PCA) 

PCA is one of a linear dimensionality reduction methods which tries to find a data projection 

direction that shows maximum variability in the dataset [165]. This is a well-established 

technique that has been used for feature extraction and dimensionality reduction. In 2011, 

Gupta et al indicated that PCA is generally used as a technique for data classification and 

dimensionality reduction in many a biomedical signal processing applications [166]. In 

addition, PCA has been applied in digital signal processing and ECG classification [165]. The 

PCA approach has a number of attractive features: it can reduce the number of dimensions 

without much loss to the information as shown in Fig 4.12.  For this reason, it has been 

widely used in statistical data analysis, feature extraction, feature reduction, and data 

compression [10]. The main goal of the PCA is to reduce the dimensionality of the data 

matrix by finding new variables (PCs). In ECG analysis these are the following main steps in 

PCA decomposition algorithm [136],[168-170]: 

 

Figure 4.12: a) Evaluation of matrix effect, b) instrument response function at two 

wavelengths, c) principal component axes, d) data ranges along the original axes and along 

the first principal component axis, e) rotation along principal component axes, f) reduction of 

singular components for PC analysis. 
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1- Loading of the data in matrix format after windowing, the data to individual bins 

(ECG beats): This requires converting a single ECG beat into a data matrix with a 

column showing the number of beats. Fig 4.13 illustrates the 𝑁 ×M data matrix where 

N is the number of beats and M is length of beat segment. In addition, the data is 

normalized to zero mean and unit variance before applying the PCA algorithm as 

illustrated in the second phase. 

 

Figure 4.13: 10 Normal ECG beat extracted from ECG datasets from the MIT-BIH 

cardiac arrhythmia database record no 209. 

2- Calculation of the mean from the data set and subtraction of the mean from the ECG 

dataset: 
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                          (4.16) 
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where Y is the variance of a sample, Xi is the data matrix of a segment of the ECG beat and 

X  is the mean of the dataset, N is the number of beat samples. 

3- Calculation of the covariance matrix: 

All relationships between pairs of measurements in a data set are described by a covariance 

matrix [166]. The expression for finding the covariance (COV) of Y is expressed as: 

1

1

1
( )( )

N
T

i i
i

COV X X X X
N





                        (4.18) 
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4- Calculation of the Eigenvectors/Eigenvalues of the covariance matrix: 

The following expressions were used to do the sorting of the eigenvalue and eigenvector. 

         

                                      1,2, ,i i iCOV S S i p     (4.19) 

 

with eigenvalues: 

det(  - )  0iCOV I               (4.20) 

with eigenvectors: 

                                       
( )  0

i i
COV SI       (4.21) 

where Si is the eigenvectors and  is the eigenvalues of COV and p depicts the number of 

principal components of a given observation vector.  

For each eigenvalue , the set of all vectors ∑  satisfying Eq.(4.19) is called Eigenspace 

of COV corresponding to eigenvalue  . When eigenvectors are found from the covariance 

matrix, the eigenvalue is used for ordering eigenvectors from highest to lowest value using 

Eq.4.20. The PCs are obtained by organising the eigenvectors in the descending order of 

magnitude of eigenvalues. Therefore, only the first eigenvectors are chosen and the final 

dataset has only dimensions of these eigenvectors that were selected as indicated in the 

following step.   

5- Choosing components and forming a feature vector: 

In order to create a PC feature vector, some eigenvectors need to be kept from the list of all 

eigenvectors:  
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                                             (4.22) 

where m is number of coefficient in each PC.  

6- Derivation of the transformed dataset the new data set is then performed. 
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Once the PCs have been chosen and assembled to form the feature vector, the data is fed to 

the classifier. Projecting the data in the directions of PCs is based on taking the inner product 

between the data and the eigenvectors. The transpose of the feature vector was obtained in a 

previous step; this is used to get the final dataset.  

Final dataset = PC
T
 ⋅ 𝐷𝑇                                     (4.23) 

where PC
T
 is the matrix with the eigenvectors placed in the rows due to the transposition 

operate  and DT is the mean-adjusted data that was obtained in the second step. As can be 

seen each original data vector can be represented by its principal component vector with 

reduced dimensionality without missing much information while keeping only important 

information that is needed for performing classification. 

In (2014) Shlens discussed two algebraic solutions for finding the PCs for solving 

PCA using either an eigenvector decomposition as mentioned above or through a more 

general solution using singular value decomposition (SVD). In this research both algorithms 

have been used to select features for ECG signal and reduce dimension of the input vector to 

the classifier [171]. Fig.4.14. illustrates the main procedure that has been used to calculate the 

PCA from the ECG signals and create an input to the classifier using SVD. 

 

Figure 4.14: the main steps of the PCA algorithm using SVD 

 

The use of PCA is well established in ECG data analysis[114],[172-173]. In 2007 Polat and 

Gunes proposed using PCA to decrease the ECG arrhythmia beat features from 279 to 15 
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features per beat. Test classification accuracies of 100% were obtained using these features 

[174]. In another study [175] different structures including PCA such as PCA-NN and fuzzy 

c-means clustering (FCM)-PCA-NN were used for classification ECG arrhythmias, where 

PCA was applied to reduce the sample number in each beat from 200 to 20. Their test results 

suggested that the FCM-PCA-NN structure showed better result than the PCA-NN structure 

with an average test error 5.05 × 10
-9

.  

4.4.3 Discussion of the classification algorithm 

4.4.3.1 The necessity for a cross-validation step  

To minimise the bias that is related to the random sampling of the data samples when 

comparing the predictive accuracy of two or more methods, one can use a k-fold cross-

validation methodology. This method is also known as rotation estimation; the complete 

dataset is divided into k mutually exclusive subsets of about equal size randomly. This way 

the classification model is trained and tested k times [176]. Sequentially, each subset is tested 

using the classifier trained on the remaining k-1 subsets. Thus, each instance of the whole 

training set is predicted once as a result of the cross-validation accuracy. Using the term 

accuracy the percentage of data that are correctly classified can be indicated [148].  

In stratified k-fold cross validation, the folds are formed in a way such that they 

approximately contain the same class labels as the original dataset. The estimation of the 

overall accuracy of the model of cross validation is measured by simply averaging the k 

individual accuracy measures as expressed in Eq. 4.24 [176].  

       
0 1

1 k

iACVA A
k 

                (4.24) 

where ACVA stands for cross validation accuracy, k is the number of folds used, and A is the 

accuracy measure of each fold. In the current study cross-validation is used for estimating the 

best parameter values for the Gaussian kernel function. The parameters with the best cross 

validation accuracy were selected and used to train the CSVM and SVM. 
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4.4.3.2 Optimization of SVM parameters and training using Sequential Minimal 

Optimization (SMO) 

SVM training often requires the solution of a complex quadratic programming (QP) 

optimisation problem. Chunking methods [177], Osuna’s algorithm [178] and SMO are all  

well-established methods that can be used to train SVMs. The following section provides a 

brief overview of the SMO algorithm that was adopted to train the CSVM to find the hyper-

plane parameters, threshold value and support vectors in the current work.  

The first SMO algorithm was proposed by Platt (1998), this was subsequently 

enhanced  by Keerthi (2001) [179]. It is based on decomposing a complex QP problem into a 

sequence of smallest-possible QP problems. This, it is a special case of other decomposition 

methods and it optimises the minimal subset of two samples at each iteration. In traditional 

SVM, two parameters, 𝛼𝑖  and 𝛼𝑗, are selected to find optimal values and update the SVM to 

reflect these new values. Updates are obtained on the basis of the SMO algorithm. 

The Karush-Kuhn-Tucker (KKT) conditions can be used to check for convergence of 

the algorithm to the optimal point. In addition, the optimality conditions for KKT are the 

gradient of the Lagrange multipliers with respect to the primal variables that must always be 

satisfied by the dual problem. There are three conditions that depend on the parameter value 

of 𝛼𝑖 as shown below:    

 

 

 

.

.

if    0   y  b 1 

if   C   y    b 1 

if  0 C    y    b 1 

T
i i i

T
i i i

T
i i i

xw

xw

xw







   

   





   

                                 (4.25) 

 where   bi
T xw   is the output of the SVM for the training samples. 

The SMO algorithm provides an efficient method for evaluating the objective function 

of the dual problem shown in Eq. (4.48a) and for finding the hyperplane parameters. Since 

SMO belongs to the family of iterative algorithms, optimisation problems are solved by 

translating this into sub-problems, which are subsequently solved through simpler analytical 

approaches. 

The SMO algorithm provides good performance when several Lagrange multipliers 

are simultaneously used. The SMOs are considered very efficient methods for training SVMs. 
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Training SVMs using the SMO algorithm comprises three phases: an analytical method to 

solve for the two Lagrange multipliers, the use of heuristics to select the two parameters such 

as 𝛼𝑖 and 𝛼𝑗  for optimisation, and finally a computation of the b threshold (b parameter) based 

on the new parameters. 

4.4.3.2.a Application of SMO to evaluate the two Lagrange Multipliers in CSVM 

Optimising Lagrange multipliers 𝛼𝑖 and 𝛼𝑗  is done through maximising the objective function 

of the dual problem and using an old set of feasible solutions, such i  and j . First, the SMO 

computes the constraints on the values of these parameters (𝛼𝑖 , 𝛼𝑗 ) and then solves for the 

constrained maximisation problem. As there are only two Lagrange multipliers, the 

constraints can be easily displayed in two dimensions. In Eq. (4.26a) and (4.26b) the bound 

constraints lead the Lagrange multipliers to lie inside a box-like region, while the linear 

equality constraint causes the Lagrange multipliers to lie on a diagonal line. The SMO 

algorithm first computes 𝛼𝑗 and then computes the ends of the diagonal line segment in terms 

of 𝛼𝑗 . In order for  𝛼𝑗  to satisfy the constraint 0 ≤ 𝛼𝑗  ≤ C, two bounds, L and H, must be 

found, these must satisfy constrains L ≤ 𝛼𝑗 ≤ H.  

If the label value of 𝑦𝑖 does not equal the 𝑦𝑗 value, then Eq. (4.26a) will be applied to 𝛼𝑗, 

whereas Eq. (4.26b) will be applied to 𝛼𝑗  if the label value of 𝑦𝑖 is equal to 𝑦𝑗.  

       0,  ,      ,      j i j iL max H min C C                                    (4.26a) 

              0,   ,       ,  j i j iL max C H min C                                     (4.26b) 

In the second step, the 𝛼𝑗
𝑛𝑒𝑤 value must be found to maximise the objective function. 

The location of the constrained maximum of the objective function is computed. Thus, the 

value of the first optimal parameter 𝛼𝑗 is computed using the following expression:  

                    
    j i jnew

j j

y E E
 




                         (4.27a) 

                              
     
 

     ,         ,       2  ,   i i j j i j

r r r

K x x K x x K x x

E f x y

   

 

              (4.27b) 

where 𝛼𝑗  is the old value before optimisation using (4.27a) and (4.27c), 𝐾 is a kernel matrix, 

𝐸𝑟  is the error between the SVM output on the rth example and the true label 𝑦𝑟 , and 𝜂 
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parameter is the second derivative of the objective function along the diagonal line. 

Moreover, if the value of 𝛼𝑗
𝑛𝑒𝑤 is outside the bounds of L and H, then the value of 𝛼𝑗

𝑛𝑒𝑤 is 

simply clipped to lie within the boundary range. Hence, the second step clips 𝛼𝑗
𝑛𝑒𝑤 to lie 

within the boundary range [L, H] as shown below.  

           if              

, 
        if         

            if              

newH Hj
new clipped new newL Hj j j

newL Lj



  



 



  





             (4.27c) 

The optimal for 𝛼𝑖
𝑛𝑒𝑤 is given using the 𝛼𝑗

𝑛𝑒𝑤,𝑐𝑙𝑖𝑝𝑝𝑒𝑑
 as indicated below: 

                     ,new clippednew y yi i i j j j                     (4.28) 

where i is the old value before optimisation. 

4.4.3.2.b Selection procedure for SOM parameters 

Heuristics are used to select which two Lagrange multipliers are optimised in order to speed-

up convergence. There are two separate choices for heuristic selection of the two Lagrange 

multipliers, (one for each parameter). The outer loop of the SMO algorithm is used as the first 

heuristic choice and selects the first Lagrange multiplier, whereas the second Lagrange 

multiplier is selected using an inner loop that maximises the absolute value of the numerator 

in Eq. (4.27a)  E Ei j . The outer loop alternates iterations over the entire set of training 

samples and then selects an example that violates the KKT conditions shown in Eq.(4.25). 

The outer loop alternates between one sweep through all examples and performs as many 

sweeps as possible through the non-boundary examples then selects an example that violates 

the KKT conditions. Since the first i  is given, the inner loop looks for a non-boundary value 

that maximises the step size by the absolute value of the numerator  E Ei j  to select j . For 

every non-bound sample in the training set, SMO keeps a cached error value of E, then 

chooses an error to approximately maximise the step size. The error values are cached 

because the SMO algorithm spends the majority of its time adjusting the non-boundary 
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samples. The SMO algorithm selects samples with minimum E j
 if 

iE  is positive, whereas if 

Ei  is negative, it selects a sample with maximum error E j
. 

4.4.3.2.c Computing the threshold that defines the CSVM hyperplanes 

The value of threshold (b) in both linear and non-linear SVMs must be re-computed after each 

step and is selected such that the KKT conditions are fulfilled for the i
th

 and j
th

 examples. 

After optimising both Lagrange multipliers  𝛼𝑖  and 𝛼𝑗 , the threshold of both 𝑏1 and 𝑏2 are 

considered valid when the 𝛼𝑖
𝑛𝑒𝑤 and 𝛼𝑗

𝑛𝑒𝑤 are not in the bounds (0 < 𝛼𝑖, 𝛼𝑗 < 𝐶). In addition, 

if both  𝛼𝑖
𝑛𝑒𝑤 and  𝛼𝑗

𝑛𝑒𝑤are not in the bounds after optimisation, the thresholds for 𝑏1 and 𝑏2 

can be expressed as shown below: 

       , 
   ,     ,   

1
new clippednew

b E y K x x y K x x bi i i i i i j j j i j                 (4.29a) 

         , 
   ,     ,   

2
new clippednew

b E y K x x y K x x bj i i i i j j j j j j           (4.29b) 

However, occasionally, the threshold may be chosen to be  the mean value between b1 

and b2 as illustrated in Eq. (4.29c) when both b1 and b2 are valid and equal. Moreover, all the 

thresholds between b1 and b2 satisfy the KKT conditions if both  𝛼𝑖
𝑛𝑒𝑤  and  𝛼𝑗

𝑛𝑒𝑤 are at 

bounds.  

1 2

2

b b
b


                                             (4.29c) 

In the current work, Eq. (4.46a), Eq. (4.47a), Eq. (4.64a), and Eq. (4.65a) form a QP 

problem that the SMO algorithm will solve individually. The SMO algorithm will terminate 

when all of the KKT optimality conditions of the QP problem are satisfied. 

4.4.3.3 SVM classification 

SVM is a reliable classification technique that is based on statistical learning theory. It was 

developed to classify the dataset that contains two separable classes and is widely used for 

data classification and function approximation because of its generalization ability. SVM 

maps input data into a high dimensional feature space where it may become linearly separable. 

Therefore, dimension reduction is necessary for an efficient classifier, especially for large data 
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sets. Different approaches for data reduction may be presented for models trained in a 

supervised way. SVMs are binary classifiers, which consider examples of two distinct classes. 

In addition, a SVM is a supervised learning technique that uses an optimal separation 

hyperplane (OSH) to separate classes in binary or multi-class classification problems.  SVM 

is therefore a classifier that works through determining an optimal hyperplane to separates 

two class data. The optimal hyperplane is the surface optimally separating two groups of data. 

Moreover, a hyperplane, in an Euclidean plane geometry is a higher-dimensional principle of 

a line, and in 3D Euclidean geometry it is a higher-dimensional principle of a plane. A 

hyperplane with the biggest distance to the closest training data point of a functional margin 

provides a good separation. Generally, when the margin is larger, it means that the classifier’s 

generalization error is lower. The main idea of SVM application is finding the hyperplane that 

separates two classes in which the margin is maximized between them. The approach is 

applicable only to linearly-separable training dataset 𝑥𝑖 where  𝑦𝑖  ={–1,+1} is a class label.  

4.4.3.3.a Binary SVM classification 

Binary SVM classification is often performed by using a real-valued function :   
n n

f X  

, where the input 𝑋 = (𝑥1, … , 𝑥𝑛)
𝑇 is assigned to a positive class if  f(x) ≥ 0, and to a negative 

class if  f(x) ≤ 0. The f(x) function is a linear mapping of 𝑥 ∊ 𝑋 and can be written as: 

    sgn ,      
1

n
f x w x b w x bi i

i
   


                (4.30) 

where (w, b) ∊ ℝ𝑛 ×ℝ  are the parameters that control the function f(x),   xi refers to examples 

(training samples), and b is the bias term of the hyperplane used to separate binary datasets. 

The training set would be:  

         (( , ), ....., ( , )) ( )1 1
l

S x y x y X Y
l l

                          (4.31) 

or 

          1 1 2 2( )( ),( )( ), , ( )( ) | ( )( ) 1,. . 1.. n

n n i iS x y x y x y x y R                (4.32) 

where 𝑆 is the training sample, l is the number of examples and  xi refers to the examples and 

yi  are their labels. If X is a vector space, the input vectors are column vectors as are the weight 

vectors [5]. As there are linearly-separable training and non-linearly-separable training dataset, 



Chapter 4. Denoising and classification algorithms using CSVM and SIMCA   

 

 81   

 

two type of SVM need to be considered in binary SVM when Linear performing and non-

linear SVM classification. 

4.4.3.3.b Linear SVM classification. 

Suppose there are linearly-separable training datasets 𝑥𝑖 and 𝑦𝑖  ={–1,+1} is a class label. In an 

SVM formulation wherein the training samples are 𝑋 = {𝑥𝑖|𝑖 ∈ {1, … , 𝑛} ∧ 𝑥𝑖 ∈ ℝ𝑑} where d 

is the dimension of the input vectors and class label 𝑌 = {𝑦𝑖|𝑖 ∈ {1,… , 𝑛} ∧ 𝑦𝑖 ∈ ℝ} used for 

training the classifier; X is linearly separable and 𝑥𝑖 contains two feature components, these 

examples can be placed in a two dimensional plane. A hyperplane with the upper limit margin 

for a given finite learning patterns set is called the optimum separation hyperplane (OSH). 

The OSH problem is defined as:  

1  if 1

1  if 1

w bi i

w bi

x y

x yi

   

    





                                 (4.33) 

The above two expressions can be combined into one equation as: 

                                  1 0 i iy w x b                                                     (4.34) 

Two groups of data can be separated using different hyperplanes. The optimal hyperplane 

location is right in the middle of the two classes. The two parallel lines in the left and right of 

the hyperplane are the margins that support the hyperplanes. Fig 4.15 illustrates the structure 

of simple SVM. The metric 
𝑏

∥𝑤∥
 is the distances from the hyperplane to the basis, ∥ 𝑤 ∥ is the 

Euclidean norm of w and d1 and d2 are the distance between the hyperplane and margins.  

 

Figure 4.15: Structure of Binary SVM, adopted from [180] 



Chapter 4. Denoising and classification algorithms using CSVM and SIMCA   

 

 82   

 

The supporting hyperplanes are defined using Eq.4.34: 

The aim in traditional SVM classification problems is to find the optimal separating 

hyperplane (OSH), which can be obtained by maximizing a margin. In order to maximize a 

margin, the minimizing of 
2

w  need to be found :   

   

2

,

1
min

2w b
w                                            (4.35a) 

subject to: 

   y 1 0,   1, ,
i

w b i mxi                      (4.35b) 

From Eq. (4.34), it can be found that   y 0
i

w x bi   for 1yi   , while   y 0
i

biw x    for

1yi   . 

The optimization problem in Eq. (4.35a) is solved using Quadratic Programming (QP) 

and Lagrange multipliers. Eq. (4.35a) can be given in the form of a Lagrange functional:  

    
1 2

,  ,  1    
2 1

N
L w b w y w x bi i i

j
      

 
              (4.36) 

Eq. (4.36) provides the basis of the Lagrangian for the optimization problem, where i are the 

Lagrange multipliers. The goal here is to minimize the Lagrange function Eq. (4.36) with 

respect to w and b, and maximise (4.38) with respect to 0i  .  

The minimum with respect to w and b of the Lagrangian in Eq. (4.36) is given by 

imposing the following two conditions: 

1
0          

N

i

L
w y xi i i

w





  


                                (4.37a) 

and  

                              0    0 
1

NL
x yi i ib i




  
 

                                 (4.37b) 

The equation below shows the condition satisfying both constrains in (4.37a) and 

(4.37b), this is also referred within the SVM classifier literature as the dual problem:  
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1

( ) max          
21 1 1

N N N
L y y x xi i j i j i j

i i j
      

  
              (4.38)   

where N relates to the number of support vectors; L is the minimizing goal function in the 

formulation; i  are the Lagrange multiplies; xi are the training attribute vectors; yi   is the 

training label vectors; and, b is the bias term of the hyper-plane. The value of i  is zero if it 

is not a support vector and non-zero if it is a support vector. The value of i  can be found by 

solving Eq.(4.38) using quadratic programming (QP) techniques.  

The optimal weights of separating hyper-plane is given by: 

                        
1

     
N

i
w y xi i i


                                                    (4.39) 

 y x )        s sb x ym m m
m S

   


                                         (4.40) 

where S is a set of indices of the support vectors and from each class and   xs represent support 

vectors. A hard classifier is obtained using the values of w, b according to the decision 

function. The optimal decision function (ODF) is express as  [181]: 

                      sgn(   )  
1

N
f x y x x bsi i i

i
 



              (4.41) 

If the output of f(x) > 0 is assigned to the positive class, this is considered as a normal ECG 

beat, whereas if  f(x) < 0 it is assigned to the negative class and this is considered as an 

abnormal ECG beat.  

4.4.3.3.c Soft-margin nonlinear support vector machine   

Hard margin classification can solve linearly separable data. However, if the data is not 

linearly separable and imperfect, soft margin classification is used in which some points in the 

training sample are assumed to be classified incorrectly and a solution is performed without 

the use of a mapping function. In soft-margin SVM, a slack variable 𝜉𝑖 is introduced as shown 

in Fig 4.16. 
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   Figure 4. 16: Structure of soft margin SVM, adopted from [180] 

The OSH hyperplane can be obtained by minimizing the following expression: 

 
2

1

min, 
1

 
2

N

i

i

wL w C 


                            (4.42) 

subject to:       1 0         i i iy x w b i                                        (4.43) 

where C is an SVM parameter used for trading off the margin’s maximization and 

classification error’s minimization. The Dual formulation for soft margin formulation is 

represented by the equation written below: 

      
2

1 1 1

,  ,  ,
1

, 1
2

N N N

i i i i i i i

i i i

w bL w C y x w b      
  

                           (4.44) 

Here 𝛼𝑖  and i  denote Lagrange multipliers. It is necessary to minimize the Lagrangian 

function L with respect to x, w and b and have it maximised with respect to 𝛼𝑖 and i  to get Eq. 

(4.44) into a dual problem form. Minimizing Eq. (4.44) is based on differentiating with respect 

to w, b and 𝜉𝑖 in which 𝜇𝑖 ≥ 0 and setting the derivatives to zero. It results to the following 

three conditions:         

0          
1

NL
w y xi i iw i




   
 

                            (4.45a)  

0    0 
1

NL
yi ib i




  
 

                                (4.45b) 

and 
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0   
L

C i i 



   


                      (4.45c) 

Substituting theses condition in Eq. (4.44) to get the Dual formulation leads to:  

               
1

( ) max          
21 1 1

N N N
L y y x xi i j i j i j

i i j
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                        (4.46a) 
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                          (4.46b) 

The maximizing and solving of (4.46a) for a given value of i  is performed using quadratic 

programming (QP) techniques. The output is a vector with all Lagrange multipliers evaluated.  

Each Lagrange multiplier corresponds to a training vector which takes values between 0 and 

C (0 < 𝛼 < 𝐶), these are called support vectors [181]. 

4.4.3.3.d Non-linear SVM Classification. 

In many applications, using a linear SVM it is not possible to obtain accurate classification 

results due to the data not being linearly separable. In this case, a suitable mapping function (a 

kernel function) needs to be used to transform the input data to a higher dimensional feature 

space where it can be linearly separable as required. Using a kernel function, data in the input 

space can be transformed to a higher dimensional space. Therefore, in higher dimensional 

space it is also possible to separate the data using a hyperplane. Fig.4.17 illustrates the 

different between an original data set that is not linearly separable in two-dimensional space 

and a data set that is separable in the nonlinear feature space defined after using a nonlinear 

kernel function such as a Radial Basis Kernel.  
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Figure 4.17: Transformed data to a higher dimensional space and re-mapped 

using Radial Basis Kernel function, adopted from [180]. 

A general non-linear SVM can be expressed as: 

          K     
1

)
N

f x y x x bi i i j
i
 


( ,                                         (4.47) 

Moreover, for a general non-linear SVM the Lagrangian optimization problem is modified by 

replacing 𝑥𝑖 with a mapping function K )jix x( ,  that performs the non-linear mapping into a 

feature space as expressed below: 

 
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( ,             (4.48a) 
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        (4.48b) 

The decision function of the dual problem for non-linear SVM can be obtained on the basis of 

the test dataset and the output of Eq. (4.48a) in Eq. (4.49).  

A general decision function for non-linear SVM that is used for generating the optimal 

separating hyperplane in the feature space can be expressed as: 

    
1

  sgn( K )   )
N

i i i
i

f x y x x b


  ( ,                   (4.49) 
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where K )jix x( , is a kernel function that measures the similarity of a stored training samples to 

the input.  

4.4.3.3.e Types of Kernel Functions used for non-linearly separable datasets   

A kernel method is an algorithm that depends on the data only through inner-products. The 

kernel function is used to do the evaluation of the inner products in a feature space. In other 

words, a kernel based solution is composed of a module wherein the mapping is performed 

into the feature space, and a learning algorithm is subsequently used for discovering the linear 

patterns in that feature space. This method is well established within the statistical research 

and machine learning community. The linear patterns can be represented in high-dimensional 

spaces using the computational shortcut called the kernel function [182]. According to Ben-

Hur and Weston (2010) [183] the kernel function has two advantages. Firstly, it provides the 

user with the ability to generate non-linear decision boundaries using methods designed for 

linear classifiers. Secondly, it lets the user apply a classifier that does not have an evident 

fixed-dimensional vector space representation. Kernel functions can compute the dot product 

of two-dimensional vectors in an implicitly higher dimensional space and transforms the data 

from a low dimensional input space to a higher dimensional space [183]. 

Some of the most commonly used SVM kernels are linear (dot) kernel, polynomial 

kernel, Gaussian radial basis function kernel, exponential radial basis function kernel, neural 

kernel, Anova kernel, and Fourier series kernel [184]. In (2010) Albrecht and Darmstadt 

claimed that the most common kernel functions are: the linear kernel, polynomial kernel, 

radial basis function (RBF) and sigmoidal kernel [185]. The most common kernels are listed 

below 

Linear Kernel 

The linear (dot) kernel is represented by the inner product of x and y so that: 

                                        K  )  ji i jx x x x ( ,                                                 (4.50) 

This expression is also used for assessing the training set’s non-linearity and as a reference for 

the final classification improvement acquired when using non-linear kernels.  
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Polynomial kernel  

A polynomial mapping is a general method for non-linear modelling. This is achieved using 

the expression below:  

       K 1) ( )i i jj

d
x x x x  ( ,     (4.51) 

where d is an adjustable parameter by the user. One disadvantage of this method is that it 

leads to over fitting as the adoption of a polynomial degree leads to a more complex 

classification surface. 

Radial Basis Function (RBF) Kernel 

The Gaussian Radial Basis Function (RBF) Kernel is of the form:   

 
2

2
K ,  e

2

i j

i j

x y
x x xp



 


 
 
 
 
 

    (4.52) 

Exponential RBF can be used if a lack of coherence in the definition of the hyperplane 

regions is tolerable. 𝜎 refers to the skewness of the distribution and is an adjustable parameter 

by the user. 

Sigmoidal Kernel:  

In artificial neural networks, a hyperbolic tangent function with sigmoid shape can be used. In 

SVM classification, a sigmoidal kernel can be also used and written using the formulation 

below:  

   K , tanh  γ(    )x x x x bi j i j                   (4.53) 

4.4.3.3.f Multi-class SVM Classification (MSVM)       

Ultimately, SVMs are designed to solve two-class problems only. However, there are several 

problems in ECG analysis involving three or more classes. Multi-class SVM problems can be 

resolved using one of three approaches: one-versus-one (OVO), where all the binary SVMs 

classify each testing data; one-versus-all (OVA), where the entire formulation is divided into 

k binary SVMs; and Directed Acyclic Graph SVM (DAGSVM), which uses a rooted binary 

directed acyclic graph for prediction, so the class that is less comparable to the input data is 
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discarded. In subsequent discussion, all formulations of multi-class SVM methods adopt the 

following general notation: 𝑥𝑖 ∈ ℝ𝑑  and  yi ∈  {1, 2, 3, . . . , k}(i =  1, 2, . . . , n),  are 

corresponding class labels [181], where d is the dimensional training example, k represents 

the number of classes, and 𝑥𝑖  are the training attribute vectors. 

One-Versus-One (OVO) Classification: This technique assumes construction of the normal 

binary classifiers for all pairs of classes. If k is the number of classes, then 𝑘(𝑘 −  1)/2 

classifiers are constructed and each one trains data from two classes. All the binary SVMs 

classify each testing data and the decision function assigns the class that has the largest 

number of votes. Fig 4.18 provides the structure of OVO to classify three class.  

 

Figure 4.18: The structure of multi class SVM using of OVO 

technique, adopted from [186]. 

One versus All (OvA): This method constructs k SVM models for a k class problem. The 

region is space denoted as 7 in Fig 4.18.  Hole formulation is divided into k binary SVMs. All 

examples in the i
th

 class that are labelled as positive are used for the i
th

 SVM trained set and 

the rest are labelled as negative. The class which has the largest value of the decision function 

is finally identified. Fig.4.19 provides the structure of OVA to categorize three classes. 
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Figure 4.19: The structure of multi class SVM using of OVA technique, adopted 

from [187]. 

Directed Acyclic Graph SVM (DAGSVM): This uses a rooted binary directed acrylic graph 

for prediction and the class, which is less comparable to the input data, is discarded. This 

method uses a set of binary SVMs to solve the key problem. The decision function is 

constructed as a binary tree. Each branch of this tree is a binary SVM associated with for a 

pair of classes, and in each node of the tree the data is compared with two classes as can be 

seen in Fig 4.20 [186]. 

 

Figure 4.20: Structure of DAGSVM algorithm, adopted from [186]. 

4.4.3.3.g CSVM classification 

 The purpose of a traditional binary SVM classification task is to separate two different data 

classes ℋ+and ℋ− using a maximum margin hyper-plane, as shown in Fig.4.21. 
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In other words, elements belonging to the first class satisfy {      ;  ,      0}f f w c     true, 

whereas elements belonging to the second class satisfy {      ;  ,      0}f f w c    , As 

discussed earlier, in both of the above expressions, ,w b   are the parameters that control 

the function and the decision rule is given through Eq.(4.51). 

            , 0f w c                                                          (4. 51) 

The adopted formulation for the current study follows the general ideas discussed by 

Bouboulis et al., (2015) which generalised the SVM formulation to complex spaces. The 

approach defines a complex space separated into four parts by using a pair of complex 

hyperplanes. The following section illustrates the CSVM classification technique and 

procedure that will be used to solve (classify) the four classes’ problem in more detail.   

For clarity a notation where integers, real numbers, and complex numbers are denoted 

by ℕ, ℝ and,ℂ respectively is adopted  and 𝑧̅ denotes the complex conjugate of z. A complex 

reproducing kernel Hilbert space (RKHS) will be denoted by ℍ while a real RKHS by ℋ. 

The complex hyperplane is composed of two orthogonal hyperplanes that will be referred to 

as real and imaginary hyperplanes, as shown in Fig 4.22.  

 

Figure 4.21: Traditional SVM hyper-plane CSVM. 
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The following expressions provides a complete description of the derived hyper-planes for 

some w , c  and f  : 

 e , 0R f w c                        (4. 52a)     

 Im , 0f w c                       (4. 52b)                

This is directly derived by observing that 

 

   

, , ,

, ,

r r i if w f w f w

i r r ii f w f w
 
 
 

 

 

                                      (4. 53) 

where 
r if f if   and r iw w iw  . 

The above expressions naturally lead to the following conditions associated with the 

derivation of the hyperplanes: 

                        
2

, 0r
r rf w

b
i if w

   
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   

  

                                           (4. 54a) 

 

 Figure 4.22: complex hyper- plane in CSVM. 
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The above expressions  define two separate hyper-planes in ℋ2. These planes are orthogonal 

if : 

                                     , 0

i
i r

r

w
w w

w


 

 
 
 

                          (4. 55) 

Moreover, in order to be able to define arbitrarily placed hyper-planes intersecting at 

oblique angles, widely linear estimation functions may also be employed. Through the 

expressions in Eq.(4.56) below, two hyperplanes associated with doubled real space such as 

ℋ2may be represented for some v , c , and f   arbitrarily on ℋ2 depending on the 

values of  w and v by: 

 *
, , 0Re f w v cf                                  (4. 56a) 

           *
Im , , 0f w v cf                       (4.56b)  

where ,w v and c  

A corollary from explicitly adopting complex values leads to alternative expressions for the 

above equations defining the hyperplanes in a complex space: 

        , 0
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i i rf w v
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
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Here, 
rf f f ii  , rw w wii  , 

rv v vii   and 
rc c cii  . 

In CSVM, a complex couple of hyper-planes can be defined as the set of f  , which can 

satisfy any of these expression (4.56a) or (4.56b), for some ,w v and c . As can be 
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seen, the expression (4.52) and (4.56) display the key difference between complex linear 

estimation and wide linear estimation functions. The complex linear case is pretty limiting, as 

the couple of complex hyperplanes is always orthogonal, while the widely linear case is 

broader and covers oblique hyper-plane definitions. In CSVM, a complex pair of hyper-planes, 

therefore separates the space of complex numbers  into four sectors as shown in Fig 4.22 

follows: 
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                          (4.58) 

In a CSVM classification task, the primary purpose is the identification of a complex 

couple of maximum margin hyper-planes that optimally (maximally) separate the points of 

the four classes, as can be seen in Fig 4.22. Thus, minimisation is necessary using the 

following equation and maximising margin can be stated by evaluating costing functions 

through the solution of the following optimisation problem:  
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2 222

2 2

(

  

2 2 2

2( )

r r i i

i i r r

r r i i i i r r

r i r i

w v w v

w v w v

w v w v w v w v

w w v v

w v

  


 

       

   

 

   
   
   

      (4.59) 

Thus, the primal complex SVM optimisation problem is defined as:  

                 2 21 1min      , , 2 2 1

NC r iw v n nw v c N n
  
 
 
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

                    (4.60a) 

subject to: 
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                  (4.60b) 

where Φc is the feature map, x i Z y    

The associated Lagrangian function is then casted as follows: 
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                (4.61) 

Here, 𝑎𝑛 , 𝑏𝑛, 𝜂𝑛 𝑎𝑛𝑑 𝜃𝑛  are the positive Lagrange multipliers for  𝑛 = 1,… ,𝑁 , N is the 

number of training examples and ,r i

n n  are slack variables that permit margin failure. The 

constraints are given by the saddle point of the Lagrange functional equation and its minimum. 

The minimum of the Lagrange function in Eq.(4.61) occurs when: 
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Using a Lagrangian, Eq.(4.61) can, therefore, be transformed into its dual form, which is a 

quadratic QP optimisation problem. The equation below shows the result of using the 

conditions embodied in Eq. (4.63) with Eq.(4.61), (also known as the objective function of the 

dual problem). As can be seen, the dual problem in CSVM can be divided into two separate 

maximisation tasks, as there are two hyperplanes-real and imaginary: 
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for    1, ..,n N   
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for  1, ..,  n N   

Here, N is equal to the number of support vectors, 𝑎𝑛 is the Lagrange multiplier, and 𝑧 the 

training attribute vector, where z x iy  , 
r

nd  is the real training label vector, 
i

nd is the 

imaginary training label, and c the bias term of the hyperplane. Furthermore, 𝑎𝑛 and 𝑏𝑛 are 

Lagrange multipliers, with the value of both zero if it is not a support vector, and non-zero if 

it is a support vector. The value of both 𝑎𝑛 and 𝑏𝑛 can be found by solving Eq. (4.64a) and 

(4.65a) using a QP based SMO algorithm [188].  

Once the Lagrange multipliers are determined, the real vector w, imaginary vector v, and the 

threshold c can be derived from the Lagrange multipliers. The hard classifier is obtained using 

the values of w, v, and c after placing them into the decision function as shown in (4.66a). In 

addition, the output of CSVM is explicitly computed from the Lagrange multipliers 

(𝑎𝑛and 𝑏𝑛), as can be seen in (4.66b). Eq.(4.66) is a decision function which is used to 

measure the performance of the classification and find the output of the classifier: 

     
sign *  Φ , Φ ,          g z z w z v ci

 
 
 

                          (4.66a) 
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sign  ( )   sign(Re( ))     sign(Im( ))z z i zi                                    (4.66c) 

Kernel functions can compute the dot product of two d-dimensional vectors in an implicitly 

higher dimensional space and transforms the data from a low dimensional input space to a 

higher dimensional space. As discussed earlier, commonly used kernels in the linear kernel, 
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the polynomial kernel, the Gaussian radial basis function kernel, and the sigmoidal kernel. 

These can also be adopted for CSVM classification tastes.  

In the current study the following general complex Gaussian kernels was used:  
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                                   (4.67) 

where 𝑥, 𝑦 ∈ ℝ𝑣 , 𝑧, 𝑤 ∈ ℂ𝑣 , 𝜎 is a free positive parameter chosen by the user, and  exp (∙) is 

the extended exponential function in the complex domain [189]. 

4.4.3.4 Soft Independent Modelling of Class Analogy (SIMCA) 

SIMCA is a well-established algorithm developed by the chemometrics community, which 

has gained popularity within the classification community due to the fact that each class 

model is developed individually. In addition, SIMCA is a “soft” classification process; this 

implies that a new sample may be classified as a member of one or two or even several 

classes simultaneously, or even be classified as not belonging to any class. This is in contrast 

to the “hard” classification process in which a sample is considered classified as a member of 

one, and only one, class [190]. 

 Very often, in SIMCA the class models are developed using PCA. These models are 

subsequently reduced to more parsimonious representations though the adoption of a 

thresholding function which truncates the number of principal components needed to 

reconstruct the original signals. There are many ways this thresholding value is established, in 

the current work the predicted residual error sum of squares (PRESS) criterion for each class 

is adopted, this is evaluated following SIMCA classification and cross-validation. 

 Creating good models requires an optimization on the number of PCs to be retained. 

This can be done using a cross-validation procedure wherein the primary model is developed 

and one PC at a time is added and retained after evaluating the fidelity of the classification 

result. The residuals for the fit are also calculated at each iteration step. The number of PCs 

which minimize the residuals is thus optimized so that the best classification result can be 

obtained. All the different models are optimized in a similar manner for each class represented 

in the training set. Since each class model is developed independently, these may retain a 

different number of principal components. After tuning the number of principal components 
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kept for each class, new samples are used for model validation on the basis of the training set. 

Scores for each new sample are calculated and projected onto each model. The variance of the 

residuals for the sample when fit to a class is given from:  
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The following expression is used to compare the variance of the residuals for the sample with 

the variance of the residuals for members of the class.  
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where 𝑆𝐼
2 is the variance in the residuals for the sample fit to the class, 𝑆0

2  is the variance in 

the residuals for the class, 𝑒𝑖𝑗 are the residuals, R is the dimensionality of the class, K is the 

best number the optimal number of PCs retained in the model, and N is the number of samples 

in the class [190]. 

4.5 Evaluation of classification results and feature extraction 

In classification problems, the primary source of performance measurements output of 

classification is a confusion matrix. In the confusion matrix, the numbers along the diagonal 

from upper-left to lower-right denote to the correct classification, and the numbers outside 

this diagonal represent the misclassification and errors. Overall accuracy is used to denote the 

overall performance of the classifier. Furthermore, to evaluate the performance of each class 

in the classification system, some statistical common measures of the performance - 

sensitivity (SE), specificity (SP), positive predictively (PP) and accuracy (ACC) - are used. 

The equations of each metrics are given below and these can be calculated using a confusion 

matrix.  

           %    100  
TP

Sensitivity SE
TP FN

 


                          (4.70)  

    % 100  
TN

Specificity SP
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              (4.71) 
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TP
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             (4.72) 
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                                        % 100
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Accuracy ACC
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
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                                   (4.73) 

For determining the overall system performance accuracy is usually used as the most crucial 

metric [176]. 

   % 100
  

   
Overall Accuracy AC

Correctly classified samples

Total number of samples
                        (4.74) 

In ECG classification the estimation of the performance of the classifier is based on 

the recognition of abnormal beats, the true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN). The FP short hand notation refers to a result if a normal class 

is classified as abnormal, TP refers to an abnormal class if it is identified as abnormal, FN 

refers to an abnormal class if it is identified as normal and TN refers to a normal class if it is 

identified as normal. Moreover, the sensitivity (true positive rate) of a test illustrates the 

percentage of patients in the positive group that are correctly identified, whereas the 

specificity (true negative rate) states the percentage of non-patients in the negative group that 

are correctly classified as healthy people. 

To evaluate the performance of feature selection the Compression Ratio (CR) and 

Percentage Root Mean Square Difference (PRD) metrics are used. The CR is defined as the 

ratio of the number of bits representing the original signal to the number of bits required to 

store the compressed signal. It is one of the most widely used parameters in data compression 

algorithms that specifies the amount of compression. A successful algorithm is characterized 

by a large value of CR. PRD is used to compare between original data and reconstructed. In 

addition, PRD provides a numerical measure of the residual root mean square error (RMSE) 

and is used to find out  how well the reconstructed waveform matches the original  one [191]. 

In this study, to evaluate the effectiveness of an ECG compression technique CR and PRD 

were used. The CR is measured by the compression ratio which is defined as the ratio of the 

number of bits representing the original signal to the number of bits illustrating the 

compressed signal [170]. The CR and PRD for an ECG signal are obtained using the 

expression below. 
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where ( )X n
original is the original ECG signal data and ( )X n reconstructive  is the reconstructed 

ECG signal using PCs. 

     
 

     

Total number of samples before compression

total number of samples after compres
CR

sion
                (4.76) 

The techniques described in this chapter are used to generate the result presented and 

discussed in following chapter. 

4.6 Summary  

This chapter introduced a generic methodology for denoising, feature extraction, and 

classification of ECG signals. Details on how to remove the high-frequency components of 

the noise including baseline drift are explained. In addition, several techniques for QRS 

complex detection are compared. The SIMCA and CSVM algorithm are proposed as suitable 

candidates for classifying ECG signals with time and frequency domain features respectively. 

In addition, statistical measures of the performance of the classifier such as sensitivity (SE), 

specificity (SP), positive predictively (PP), and accuracy (ACC) were discussed and used to 

evaluate the performance of the proposed algorithms. The following chapter discusses the 

classification results after adopting the proposed algorithms to perform binary or multi-class 

classification across a range of known arrhythmia conditions in records found in three 

different ECG databases. 
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Chapter 5 ECG classification studies: algorithmic  

implementation, results and discussion 
 

5.1 Introduction 

This chapter provides the result of using the proposed CSVM and SIMCA algorithms 

formulated in the previous chapter to tailor classifier performance. In order to do 

classification, pre-processing and feature extraction for the input vector that will be presented 

to the classifier need to be done first. Different algorithms have been used throughout each 

study in order to extracted feature and improve classification accuracy. In some, features were 

extracted in time domain using PCA, while in other investigations features were extracted in 

frequency domain using DCT, DST and DFT. In order to extract features in both time and 

frequency domain Wavelet Transforms (WTs) were used using approximation and details 

coefficients in time and frequency domain respectively. Finally, an implementation of 

automatic classification is presented using several algorithms such as the binary and Multi-

class Support Vector Machine (MSVM), CSVM and the Soft Independent Modeling of Class 

Analogy (SIMCA) algorithm. 

5.2 ECG beat detection and pre-processing 

5.2.1 Extraction of normal and abnormal heartbeats  

In this section, the work focuses on individual ECG beat segments (these include P, QRS 

complex and the T wave). First, the R peak location need to be identified using the 

accompanying annotation file. Moreover, the associated RR interval can be calculated from 

the locations of the R points documented in the annotation files of the MIT/BIH database. 

Moreover, the associated RR interval can be calculated from the locations of the R points 

documented in the annotation files of the MIT/BIH database. Each beat corresponds to a 

0.815 ms segment that includes some signal before and after the R event. The record consists 

of 301 points at a sampling frequency of 360 Hz. Fig 5.1 illustrates the extraction of normal 

and abnormal beats with 300 samples around the R peak using MATLAB 2012a. Similar 

procedures were used to extract beats from the other database. ECGs extracted need to be pre-

processed for baseline removal before creating the input vector to be presented to the 
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classifier. The Z-score method is utilized to normalize the extracted ECG beat samples with 

zero mean. 

 

 

Figure 5.1: Normal and abnormal beats extracted from the MIT-BIH database 

using the accompanying annotation files. 

5.3 Pre-processing  

Pre-processing of ECG beats is performed by subtracting the mean value of each ECG sample 

in order to eliminate offset effects. This procedure results in normalized signals with zero 

mean and unity standard deviation as shown in Fig 5.2a. For better classification in order to 

avoid numerical problems, each beat was normalized between -1 and 1 as shown in Fig 5.2b. 

The reason for mean centring the data  is to decrease possible false decisions due to signal 

amplitude biases resulting from instrumental or inter-patient variations [9]. In order to 

improve classification performance the dimensionality of the input vector to the classifier 

needs to be reduced using feature reduction and selection techniques. 

 

Figure 5.2: Normal beat extracted from record 100 from the MIT-BIH database with (a) elimination 

of offset, (b) normalized mean-centred data with removed offset. 
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5.4 Features extracted and compressed for each beat 

Feature extraction and compression are important procedures that usually influence the 

classification performance of any ECG arrhythmia classification system. Therefore, extraction 

of sufficient features and a reduction of their dimensions become primary tasks for an ECG 

arrhythmia classifier in order to achieve optimal classification. The three main  ECG feature 

extraction methods which have been successfully applied for arrhythmia classification are 

time-domain methods [9], frequency-domain methods [192],[155] and time-frequency domain 

analysis [94]. All these methods were considered in this project. PCA was used for extracting 

time dome feature, whereas frequency domain feature were extracted using the Fourier 

transform. Time-frequency domain features were extracted using DWT as can be successfully 

applied for arrhythmia feature extraction in both time and frequency domain.    

The Principle component analysis (PCA) method has been widely used in statistical 

data analysis, feature extraction, feature reduction, and data compression in time domain [10]. 

PCA has been used to find PCs from ECG signals. Complete signal reconstruction of  ECG 

beats is also possible using a few features (PCs) [10].  PCA can be used for feature extraction 

and dimensionality reduction of the input vector to the classifier. 

Several ECG data compression algorithms may be used to reduce the amount of data 

to be transmitted, stored and analysed, without losing clinical information of interest. The 

ECG data compression schemes are based on standard transform techniques such as DCT, 

FFT, DST, and Discrete Wavelet Transform (DWT). According to Deshpande and Rajankar 

(2013) a compressed ECG signal has advantages such as low storage data space, reduction of 

low data transmission rate as well as advantages from a transmission bandwidth perspective. 

Using compression, ECG data can be compressed using a very few number of bits [193]. In 

(2015) Jain indicated that Data compression can be achieved using the following three 

approaches: Direct data Compression, Transform Methods, and Parameter Extraction and 

Compression Methods [170]. Compression approaches can further be divided into the 

following two main categories: lossless and lossy methods. Lossless methods provide  an 

exact reconstruction of the original signal, whereas lossy methods do not [193]. The second 

methods has been more commonly used for ECG  [194]. ECG compression techniques can be 

classified as direct time-domain techniques and transformed frequency domain techniques 

[156]. Transformed frequency domain techniques are based on dividing the signal into 

frequency components and assigning bits in the frequency domain efficiently. The distribution 
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of the input signal into blocks of data is done first. The result is then stored as a form of a 

vector in the frequency domain [157]. Recently several compression methods have been 

developed with high compression rate and better quality for compressed ECG signal. In (2012) 

Saberkari and Shamsi investigated ECG signal compression techniques. These included 

compression in the frequency domain [195]. Yaniv Zigel et al. (2000) proposed ECG 

compression using analysis by synthesis (ASEC) algorithm. This algorithm contains a beat 

codebook, long and short-term predictors, and an adaptive residual quantizer [196]. Chhipa 

(2013) investigated a set of ECG data compression schemes for compressing ECG signals. 

These schemes were based on transform methods such as DCT, FFT, DST, and their 

improvements. A comparison of performance of these transforms is made in terms of the 

compression Ratio (CR) and Percent root mean square difference (PRD). It was shown that 

the DST scheme provided the lowest CR and a high level of distortion, whereas the DCT 

scheme provided improvement in CR and lowered PRD. However, DCT-II provided an 

improvement in CR of 95.77%, but it also resulted in an increase in PRD up to 1.33 [197].  

In another study [157] five different transform compression techniques DCT-I , DCT-

II, DST, FFT, and WT were compared using two criteria: CR and PRD. The simulation 

results indicated that using a WT with the fourth order Daubechies (db4) function at the 

second decomposition level provided better CR performance of  97%, and a PRD of 0.8. The 

study also concluded that the DCT is a valuable tool for compressing both signals in an ECG 

as well as ECG captured and images because the DCT has de-correlation and energy-saving 

properties. In addition, the DST is a Fourier-related transform that is similar to the DFT, but it 

uses a purely real matrix. DST is equal to the imaginary parts of a DFT of roughly twice the 

length, and it operates on the real data with odd symmetry. Moreover, DSTs can express a 

function or a signal as a sum of sinusoids with various frequencies and amplitudes  [198].  

5.5 Classification studies using the proposed algorithms 

In the following section, beat classification is performed by using binary SVM and MSVM 

using OAO (One against One) training, CSVM and SIMCA. Each study will be discussed in 

details. Each method in this section has been already discussed in detail in chapter 4.  
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5.5.1 Study one: using binary SVM classification results 

The ECG beat dataset used to conduct binary SVM classification described below were 

obtained from the MIT-BIH Arrhythmia Database. An automatic classification of normal and 

premature ventricular contraction (PVC) beats, is implemented. Fig 5.3 illustrates in a block 

diagram form the binary classification scheme that was used to detect normal from abnormal 

ECG beats. Each cardiac cycle or beat in the ECG is normally characterized by a sequence of 

deflections that make waveforms that are known as the P wave, the QRS complex, and the T 

wave. QRS detection is performed with the WFDB Software Package to read annotation and 

find the R (peak) location. Principle component analysis (PCA) and wavelet decomposition 

using different mother wavelets is used for features extraction and compression. Between 10 

and 30 principal components were selected for each beat in the feature selection phase. A 

different number of ECG beats from two leads and patients are selected for training and 

testing implementation. The binary SVM experiments were presented at the 8
th

 Saudi 

Students Conference in the UK 2015 as a poster.  

 

 

Figure 5.3: Block diagram of binary ECG LIBSVM classification. 
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5.5.1.1 Results using the MIT-BIH Arrhythmia Database in datasets from one lead 

In this study the ECG signals were taken from  Lead II (MLII). First, the position of the R 

wave in the QRS complex was detected using the WFDB Software Package which is 

normally used for reading annotation of beats and finding the R-peak location. After finding 

the position of the R-peak in the QRS complex, ECG beats are extracted using windows with 

150 samples before the R-peak and 150 points after the R-peak of the QRS complex. The R 

peak corresponded to the 151
st
 point in the data sequence as shown in Fig 5.4. The total length 

of the segment was approximately 830 ms. This figure illustrates 300 Normal and 200 PVC 

beats extracted. The normal and PVC beats that were extracted corresponded to one lead. 

They corresponded to patient record number 119. These beats were selected for both training 

and testing. 

 

 

 

 

 

 

 

 

PCA is another useful statistical technique for finding patterns in datasets of high 

dimensionality. PCA can be used to reduce the dimensionality of the dataset without losing 

much information [170]. In this study, extracting features from each beat in the time domain 

was also performed using PCA. Between 10 and 30 principal components (PCs) were selected 

form each beat. These PCs form the input feature vector to the classifier.  The optimum 

number of principal component was found as 20. The obtained training patterns, whose size 

was dimension included 20 features times 500 segments, were presented to the binary SVM 

classifier.  

 

Figure 5.4: 300 Normal and 200 PVC beats were extracted from one lead and 

patient rec.119. The time index is 301 points long corresponding to a time duration 

of 830ms. 



Chapter 5. ECG classification studies: algorithmic implementation, results and discussion  

 108   

 

Classification performance was done using a binary SVM algorithm and the LIBSVM 

software. Figure 4.1 illustrated the general procedure used for implementation through 

LIBSVM and MATLAB 2012a. A typical LIBSVM software contains two main stages:  

training a data set to obtain a model and using the model to predict information of a testing 

data set.   In more detail, the procedure consists of the following steps: using LIBSVM to 

transform data to the format of an SVM package; conducting simple scaling on the data; 

choosing one of the kernel function and cross-validation to find the best parameter value; 

using the best parameter value to train the whole training set; and finally creating the model 

and using a second group (test data) for final evaluation. The main benefit of scaling is to 

avoid attributes in larger numeric ranges dominating those in smaller numeric ranges (data 

conditioning). This is achieved by linearly scaling each value within the range between -1and 

+1. Cross-validation (in our case 5-fold cross-validation), is used for finding the best 

parameter value for the kernel function (such as Gaussian RBK). The parameters with the best 

cross validation accuracy were selected as best. After the best parameters are found, these 

values are applied to the entire training set to create the model. Implementation of SVM is 

performed by dividing the dataset into two groups: a train dataset and a test dataset. A training 

SVM model was created using the training dataset, label, best parameters, kernel function and 

binary SVM implementation. Finally, the model and test data were adopted for classifying a 

new ECG beat (test dataset). Fig 5.5 shows the classifier result using 20 PCs as features and 

binary support vector machines classification with accuracy 100%. The blue squares illustrate 

normal beats, whereas the red squares illustrate abnormal beats in the data test.  

 

     Figure 5.5: LIBSVM classification result from beats extracted from one lead. 
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5.5.1.2 Results using the MIT-BIH Arrhythmia Database in datasets from two leads 

In this experiment the ECG beats were selected from one patient’s record containing two 

different leads limb (II) and precordial (V1) leads. Pre-processing of the ECG signals 

included QRS complex and beat detection in a similar manner. One thousand heart beats (600 

normal and 400 abnormal) were extracted from MIT-BIH Arrhythmia Database record 

number 119 lead (II) and lead (V1). Five hundred beats were taken from each lead. Fig 5.6 

shows the normal and abnormal ECG beats extracted from two leads after pre-processing. For 

feature selection from individual beat segments, PCA was used and each beat was 

reconstructed using only 20 PCs instead of 301 samples. After feature selection, the dataset 

was divided into two groups: train dataset and test dataset. Five hundred beats were used for 

training and Five hundred for testing. In order to classify the signals between normal and 

abnormal classes, binary SVM was used.  
 

 

Figure 5.6: ECG beats extract of beats from two leads (a) limb lead (II) and (b) precordial lead (V1). 

This classifier was applied to the reduced space containing only the ECG PC features. 

During the training phase, the binary SVM parameters are selected using a 5-fold cross-

validation procedure. In addition, 5-fold cross-validation was used to obtain the optimal 

Gaussian RBK kernel parameters. These parameter values were then used to the whole 

training set to create the SVM model. In order to evaluate the performance of the 

classification, the SVM model was then adopted for the test dataset samples. Using the binary 

SVM classifier and PCA for discriminating normal from abnormal beats showed an excellent 

performances with accuracy ratio 100%. Fig 5.7 displays the classifier result using ECG beats 

NORMAL   

beats 

PVC beats 
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extracted from the two leads shown in Fig 5.6 on the basis of 20 features for each beat. Green 

and black squares show the result of normal and abnormal beats when these were taken from 

precordial lead V1 respectively, while red and blue square illustrate the classification result of 

normal and abnormal beats when these were taken from limb lead (II) respectively. As can be 

seen, the values of normal and abnormal beats were significantly different between leads; thus, 

it is better to make separate models for each lead when creating a dataset for training and 

validation. Furthermore, the characteristics of beats can be different between patients, as 

shown in the next study.   

 

Figure 5.7: Classification result were beats extracted from two leads. 

5.5.1.3 Results using MIT-BIH Arrhythmia Database in datasets from two patients 

In this study, one lead ECG beats were extracted from two different patients. Pre-processing 

was performed using a similar method to that in the previous study. One thousand ECG 

heartbeats (500 normal and 500 abnormal) were selected from the MIT-BIH Arrhythmia 

Database (lead (II) record number 119 and record number 223). Five hundred ECG beats 

(normal and abnormal) were extracted from each patient record. Fig 5.8 show the normal and 

abnormal ECG beats extracted from two patient records, these can appear dramatically 

different. 
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Figure 5.8: ECG beats extract from two patients and limb lead (II) (A) patient 

record no 119 and (B) Patient record no. 223. 

The features were extracted in the time domain using PCA and 20 PCs were used for 

reconstructing individual beats to be presented to the input to the classifier. After ECG beat 

detection and feature selection, the datasets were divided into two groups: training dataset and 

test dataset. The training dataset was used for training the SVM and creating the model. The 

model and test data were combined in order to predict the status of a new ECG beat. Fig 5.9 

illustrated the classifier result on the basis of 20 features and binary support vector machines 

classification which showed an accuracy of 100%.  The blue squares illustrate normal beats, 

whereas the red abnormal beats. As can be seen the characteristics of normal and abnormal 

beat were different between patients; thus it is better to create a dataset for both training and 

testing using an extraction procedure from both different patients as well as different leads. A 

further investigation of this argument can be seen in the multi-class study were a number of 

beats were extracted from different leads and patients the evaluation of the algorithm.  

 

 

 

 

 

 

 

 

 

Figure 5.9: Classification result for two patient’s information. 



Chapter 5. ECG classification studies: algorithmic implementation, results and discussion  

 112   

 

5.5.1.4 Discussion of SVM binary classification 

In the current study, a binary SVM classification approach was developed for the classifying 

normal and abnormal ECGs beat with PCA for feature extracting. This proposed method 

included (filtering, feature extraction and classification) which are done automatically.  

According to current research, several binary classification methods have been 

developed in the last few years in an attempt to simplify the task of ECG monitoring. Cascade 

forward NNs is one of the neural networks that can be used to identify whether an ECG beat 

is normal or abnormal. These types of neural network are similar to feed-forward networks, 

but they include a weight connection from the input layer to each following layer, and then 

from each layer to the successive layers. A good illustration of this is a three-layer network 

which has connections from layer 1 to layer 2, layer 2 to layer 3, and layer 1 to layer 3.  Ayub 

and Saini (2011) identified normal from abnormal ECG beat using a cascade forward network 

algorithm. The result of classification indicated that using a cascade-forward network with 

back propagation training is the best option for identifying normal beats, they showed that this 

type of NN achieved an accuracy of about 99.9%. A further advantage of relevance to mobile 

application is that the memory requirements are also low. In addition, in that work, the 

authors discussed these results in relation to previous studies that used other neural network 

techniques, and concluded that this method gives the best results [89].  

Artificial neural networks (ANN) and SVM have been used to diagnose an ECG 

signal as either healthy or as indicating myocardial infarction (MI). Back propagation 

artificial neural networks with varying hidden layers and nodes have been implemented for 

performance analysis. The Pan-Tompkins algorithm has been used to detect the QRS complex, 

while feature extraction and the reduction of the dimensionality of the input vector to the 

classifier have been performed using DWT and PCA.  Using SVM provided a better 

classification than when using NN, with an overall accuracy of 91.0714 % and 90.1786% for 

approximate and detail coefficients, respectively. The neural network was shown to have an 

overall accuracy of 82.14% for the approximate coefficient and 78.1% for the detail 

coefficient [199].  

  SVM was used to classify the ECG signals into normal and arrhythmia categories with 

an accuracy of 94%. Features such as linear predictive coefficients (LPC), linear predictive 

cepstral coefficients (LPCC) and mel-frequency cepstral coefficients (MFCC) were extracted 
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to present the ECG signal to the classifier. Using SVM with MFCC features provided better 

performance results with an accuracy rate of 94%, while other features, such as the predictive 

coefficients (LPC) and the linear predictive cepstral coefficients (LPCC), showed a 

classification accuracy rate of between 90 and 93% [200]  

In 2006 Exarchos el at investigated an alternative methodology based on ‘association 

rules’ for the automated detection to classify ECG beats as either ischemic or normal. 

Electrocardiogram (ECG) features were extracted from the ST segment and the T-wave. 

Simulation result showed 87% sensitivity (SE) and 93% specificity (SP) respectively [201].  

Kanaan et al. (2011) proposed a combination of support vector machines and the 

principal component to classify normal and abnormal beats into two classes. The principal 

component analysis was used to reduce the dimension of the ECG beat, while the kernel 

principal component analysis was used for high-dimensional mapping of nonlinear separable 

data. The binary SVM classifier was used to classify normal and abnormal classes. Using a 

binary SVM classifier with KPCA as a feature extraction method gave better performance 

results than did PCA, with accuracy, sensitivity, positive predictively and specificity of 95%, 

100%, 90% and 90%, respectively [169]. 

A neural network with a back propagation algorithm was used to classify arrhythmia 

conditions according to normal and abnormal classes with an accuracy rate of 96.77% on the 

MIT-BIH database [202]. In another study, a supervised neural network was designed to 

distinguish between normal and ischemic beats of the same patient. It was based on an ECG 

digital recording that was taken from the European ST-T database and two beat segments 

(RRR interval). Experimental results showed a highly reliable beat classification and the 

automatic detection of ischemic episodes with a specificity of 99% and sensitivity of 98% 

[203]. In [4], a classical multilayer feed-forward neural network with a back propagation 

algorithm was used to classify normal and arrhythmic beats with an accuracy rate of 100%. 

This study showed successful classification results that agree with the current study’s 

classification results. 

A nonlinear principal component analysis (NLPCA) algorithm and multilayer neural 

network technique was developed and used to extract nonlinear features and to classify 

segments of beats as normal or abnormal. A specific part of the ECG beat called the ST 

segment was selected and used with only two nonlinear features for each ST segment as 
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inputs for the classifier. Using the NLPCA showed a better performance than did the linear 

principal component analysis (PCA), with a classification accuracy rate of 80% for the normal 

beats and 90% for the ischemic beats [114]. 

This study showed that using a binary SVM with PCA for feature extraction improved 

the accuracy of normal and abnormal beat classification. It is clear that using binary SVM 

with a kernel function operates as an excellent classifier for the given normal and abnormal 

arrhythmia beat data set. Compared to some previous studies, the proposed methodology 

produced better results than did other approaches in terms of accuracy. 

5.5.2 Study two: classification using CSVM and MSVM classifiers 

The aim of this study has been to improve multi-class SVM accuracy by extending traditional 

SVM algorithms to complex spaces so as to simultaneously classify four types of heartbeats. 

Different ECG beats, normal and abnormal were obtain from the two most popular ECG 

databases (the MIT-BIH arrhythmia database and European ST-T database). A description of 

the method, and a table showing a confusion matrix with results of the performance of 

classification is provided. A discussion of how the results contribute to the overall study and 

improve how the classification accuracy is then articulated. The proposed arrhythmia 

classification scheme is composed of the same pre-processing steps, with beat extraction, 

feature reduction and selection and finally a classification step as shown in the block diagram 

in Fig 5.10.  Fig 5.10 and 5.11 illustrate description of the three most important steps 

associated with CSVM and MSVM classification respectively.  

5.5.2.1 Results on MIT-BIH Arrhythmia Database using a precordial lead 

The 301 sample window function used in the ECG analysis corresponds to a 360-Hz sampling 

rate, furthermore this is again centered around the R peak of a single ECG beat sample. The 

extracted ECG beat samples are normalized using Z-scores and standard deviation is used to 

normalize the signal amplitude. The MIT-BIH Arrhythmia database contains forty-eight half-

hour records that were obtained from twenty-five males and twenty-two females. Each record 

was sampled at eleven-bit resolution and had a duration of thirty minutes [51]. 
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Figure 5.10: Overview of the pre-processing, feature selection and classification steps associated with the 

proposed CSVM algorithm used in the multiclass ECG beat classification problem. 
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Pre-processing 

Feature selection  

Classification 

FUSION APC PVC NORMAL 

Baseline removal and standard Deviation 

Annotation merge with record to extract beats 

Obtaining ECG signal and annotation file from MIT-BIH cardiac arrhythmia 

ECG Data  
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mean 

Using a singular value 
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find scores and loading 
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feature vector 

Derive a new 
data set 
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components 
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Testing dataset 

Adopting the training 

model to classify test 

dataset 
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Normalization 

SVM Training 

Obtain kernel and SVM parameter using fold-cross validation 

For the current study, twelve recordings and four ECG beat types where only 

considered. Table 5.1 illustrates details of four dataset groups that are used in this experiment in 

terms of record number, lead name and total number of beat samples for each beat type 

studied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11:  Overview of the pre-processing, feature selection and classification steps associated with the 

proposed SVM algorithm. 
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At this point, it is worth mentioning that various studies have been performed in the 

past in order to determine appropriate sizes of the training and testing datasets of the ECG 

signals. Übeyli, (2007) showed beat classification accuracies of 98.61% on the basis of 360 

training beats and 360  test beats. Similarly in the current study, half of the beat samples are 

selected as the training dataset and the other half is used for testing in each group. All 

pathological ECG records such as PVC, APC, and PFUS associated with different leads were 

contrasted with normal beats. Each cardiac cycle in an ECG signal consists of the P-QRS-T 

waves. Detection of the QRS complex plays a central role in ECG classification. Annotation 

files were used to assign the position of the R waves as it was determined in some previous 

study [204],[5]so that the QRS complex can be easily detected. The WFDB (Waveform 

Database) software package with library functions (from PhysioToolkit) is used for the 

evaluation of digitized signals with annotations. QRS complex waves as well as T and P 

waves are identified using both file annotation information of the R peaks and record 

information. The R-peak location in the QRS complex were also detected using the WFDB 

Software Package. Following identification of the R-peak, ECG beats were extracted after 

inclusion of 150 samples at 415 ms before the R-peak with a window spanning 150 data 

points at 415 ms after the R-peak as shown in the Fig 5.12 similarly to previous studies [89].  

Subsequently, the extracted ECG beat signals are normalized using the Z-score method. All 

raw ECG beat signals used in this experiment were obtained from precordial leads. 

Dataset Annotation Record # 

 

 

One lead Two lead three lead four lead 

V1 V1 V5 V1 V5 V2 V1 V5 V2 V4 

Train 

NORMAL 

201, 202, 210, 217, 223 

100, 102, 104, 114, 123 
102, 104, 117 

100 50 50 35 33 32 35 33 32 0 

PVC 

201, 202, 210, 217, 223 

102, 104, 114, 123 

102, 104,124 

50 25 25 24 23 3 16 16 3 15 

APC 
201, 202, 223 

100, 114,117, 124 
50 30 20 30 20 1 30 19 1 1 

PFUS 217, 102, 104 50 25 25 18 16 16 18 16 16 0 

Test 

NORMAL 
201, 202, 210, 217, 223 
100, 102, 104, 114, 123 

102, 104, 117 

100 50 50 35 33 32 35 33 32 0 

PVC 
201, 202, 210, 217, 223 

102, 104, 114, 123 

102, 104, 124 

50 25 25 24 23 3 16 16 3 15 

APC 
201, 202, 223 

100, 114,124 
50 29 20 29 20 0 29 19 0 1 

PFUS 217, 102, 104 50 25 25 18 16 16 18 16 16 0 

 

Total 

 

12 500 250 250 213 184 103 197 168 103 32 

Table 5.1: Illustration four-dataset groups extracted from MIT-BIH arrhythmia database. 
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The ECG features were extracted in the frequency domain as complex datasets need to 

be used with CSVM. The features of the P, QRS complex, and T waves are associated with 

the location, duration, amplitudes, and shapes of the waves. As stated in chapter 3, there are 

several dimensionality reduction and frequency domain feature extraction algorithms that may 

be applied successfully to ECG signals such as wavelet transforms (WT) [205] and Fourier 

transforms [122]. In the current study, the DFT is used to select features in each beat. Before 

performing a DFT transformation, the ECG signals were normalised; this is in contrast to 

traditional MSVM classification studies where ECG beat normalization is performed after 

feature selection [147]. Linear scaling is performed to avoid collinearity issues when 

reconstructing individual ECG beats in the feature selection phase. 

All signal processing was carried out using MATLAB 2012a and WFDB software 

packages. For classification and CSVM implementation, the reconstructed individual ECG 

beats with Fourier coefficients were further divided into two groups for training and testing 

purposes. The optimal hyper-plane parameters are identified on the basis of the training data 

set, class label and the output of the SMO algorithm. Finally, on the basis of the training 

results, test data are imported to the CSVM classifier to perform unknown beat classification. 

The CSVM classifier is used to distinguish the four ECG arrhythmia types using the DFT 

coefficients as feature vectors. The Gaussian Radial Basis Function parameters are tuned 

using a cross-validation technique. In addition, CSVM parameter C and Gaussian Radial 

Basis Function parameter σ are selected according to a 5-fold cross-validation procedure that 

was used to find the optimal parameters. Once the best parameter values are obtained, these 

are then used on the entire training data set. Through trial and error, it was concluded that the 

best parameter for the kernel function and CSVM module are 170 and 13 for C and σ 

respectively. These values provided a cross-validation accuracy rate of 98.40%. 

 

Figure 5.12: Extract of (a) Normal, (b) PVC, (c) APC and (d) PFUS beats. 
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The SMO algorithm was used to train the CSVM and solve the dual problem 

associated with Eq. (4.64a) and (4.65a). The output of the CSVM consisted of 

𝑎𝑛 𝑎𝑛𝑑 𝑏𝑛 Lagrange multipliers associated with the real and complex parameters in the 

calculated hyperplanes respectively; the corresponding threshold values for both real and 

imaginary hyperplanes can be seen in Fig. 5.10. The outputs from training (𝑎𝑛 ,  𝑏𝑛  and 

threshold) were combined with the test dataset to measure the classification performance 

attained and find the output of the classifier. 

To evaluate the performance of the CSVM classifier, records from one, two, three and 

four leads were grouped and presented at the input of the classifier simultaneously. The 

classification performance was evaluated after presenting 500 beats as associated with the 

four ECG beat types. There were 200 Normal, 100 PVC, 100 APC and 100 PFUS beats; these 

were associated to different patient records as shown in Table 5.1. Patients records were 

randomly divided into two equally sized groups consisting of 250 beats for training and 250 

beats for testing. To evaluate the performance of the classification process, three common 

measures- SE, SB, and PP are used. Overall accuracy is used to denote the overall 

performance of the classifier.  

All four dataset groups used in this study have been trained with the same value of C 

and σ.  In order to systematically assess the best number of features needed to be selected 

from the DFT coefficients, different numbers of coefficients were used as input vectors and 

the classification process was repeated. Table 5.2 compares the error rate associated with 

different numbers of DFT coefficients as the input vector to the CSVM classifier. It can be 

seen that using 50 DFT coefficients produced the best result with 0.8% error rate, whereas 

using 301 DFT coefficients produced the worst result with a 3.5% error rate. 
 

DFT coefficients number Error rate 

301 3.50 

100 1.75 

50 0.8 

30 1.75 

Table 5.2: Classification error rate for different number of DFT coefficients presented to 

classifier 
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The classification results for each ECG beat type are displayed using confusion 

matrices, which illustrate the success of the classification process in terms of classified or 

misclassified results; these are shown in Tables 5.3, 5.4, 5.5 and 5.6. In addition, it is worth 

noting that any ECG beats that were associated to PVC, APC and PFUS are classified 

correctly, and there is no misclassification in all the dataset groups. The performance of the 

CSVM using a real Gaussian kernel, in terms of specificity, sensitivity and Positive 

Productivity on the test sets is illustrated in Table 5.7. This shows the percentage correct 

classification of individual classes (beat types) in terms of SE, PP and SP for each class. As 

can be seen in the four groups (datasets), the PP and SP classification results achieved for the 

APC beats using fifty DFT coefficient were the same 100%, whereas the PP and SP results 

achieved for NORMAL, PVC and PFUS beat classification results were not as high. For beats 

extracted from a single lead using the DFT filtered beats and CSVM classifier with DFT 

features, NORMAL beats could be classified with a specificity of 98%, whereas PVC, APC 

and PFUS could be classified with a specificity of 100%. Furthermore, using ECG beats from 

two leads can reduce the number of misclassifications of NORMAL beats. According to 

Table 5.7, the average sensitivity for NORMAL beats extracted from one, four and three leads 

has improved from 98%, 96% and 98% respectively to 100% when beats were extracted from 

two leads.  Finally, as can be seen in the results in Table 5.7, the CSVM algorithm can also 

classify simultaneously the four ECG beats more effectively. Moreover, the overall accuracy 

using ECG beats extracted from one, two, three and four leads were 99%, 100%, 98% and 99% 

respectively. 

Annotation 
Output result 

NORMAL PVC APC PFUS 

NORMAL 98 0 0 2 

PVC 0 50 0 0 

APC 0 0 50 0 

PFUS 0 0 0 50 

 

 
Annotation 

Output result 

NORMAL PVC APC PFUS 

NORMAL 100 0 0 0 

PVC 0 50 0 0 

APC 0 0 50 0 

PFUS 0 0 0 50 

 

 Table 5.3 classification results using DFT extracted 

coefficients of the ECG signal taken from one lead 

and CSVM. 

 Table 5.4 classification results using DFT extracted 

coefficients of the ECG signal taken from two lead 

and CSVM. 

Annotation 
Output result 

NORMAL PVC APC PFUS 

NORMAL 96 4 0 0 

PVC 0 50 0 0 

APC 0 0 50 0 

PFUS 0 0 0 50 

 

 
Annotation 

Output result 

NORMAL PVC APC PFUS 

NORMAL 98 2 0 0 

PVC 0 50 0 0 

APC 0 0 50 0 

PFUS 0 0 0 50 

 

Table 5.5 classification results using DFT extracted 

coefficients of the ECG signal taken from three lead 

and CSVM. 

 Table 5.6 classification results using DFT extracted 

coefficients of the ECG signal taken from four lead 

and CSVM. 
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Table 5.7 Collective performance analysis and classification result using DFT and CSVM. 

 

5.5.2.2 Classification of NORMAL, PVC, APC and FUSION beats from the MIT-BIH 

Arrhythmia Database (using a single limb lead). 

In this study, a new automatic classification algorithm to simultaneously classify four ECG 

beat types, NORMAL, PVC, APC and FUSION is implemented using MSVM and CSVM 

classification [26]. The ECG signals used in these studies were obtained from the MIT-BIH 

cardiac arrhythmia database using limb lead (II) from two patient records (record 208 and 

record 209). The MSVM and CSVM classifier are used to distinguish the four ECG 

arrhythmias types using the DCT, DST and DFT coefficients as feature vectors at the input 

vector of the classifier. A sequential minimal optimization (SMO) approach is used to train 

the CSVM and compute the corresponding complex hyper-plane parameters. These 

procedures were selected for training and evaluation of classifier performance.  

In pre-processing, wave detection (P, QRS complex, T) is performed using 

Multiresolution Wavelet Analysis [206-207],[151]. One of the advantages of using wavelet 

decomposition is that it helps in the removal of noise and baseline wander. The 

multiresolution wavelet for ECG wave detection and feature extraction is performed using 

DWT and Daubechies 6 (db6) wavelet as Daubechies wavelets have physical similarity with 

the ECG wave, especially the QRS complex. In addition, in low frequencies their energy 

spectra are more focused. The morphological features of the ECG signal such as, PR interval, 

PT interval, ST interval, TT interval, QT interval, and P, Q, R, S, T and peaks points that were 

detected and used to create the segmentation of the beats. First, the DWT is applied to the 

ECG record. Decomposition of the signal is done up to level eight as indicated in [208]. Fig 

5.13 shows the reconstruction of detail and approximation coefficients at each level of 

decomposition. QRS complex detection is performed first by using detail coefficients d3, d4, 

and d5 to detect the R peak, and then Q and S points are identified using more detail 

 

Annotation 

Classification performance result 

One lead Two lead three lead four lead 

ST 

 (%) 

SP  

(%) 

PP  

(%) 

ST 

 (%) 

SP  

(%) 

PP  

(%) 

ST  

(%) 

SP  

(%) 

PP 

 (%) 

ST 

 (%) 

SP  

(%) 

PP 

 (%) 

NORMAL 98 100 100 100 100 100 96 100 100 98 100 100 

PVC 100 100 100 100 100 100 100 98 93 100 99 96 

APC 100 100 100 100 100 100 100 100 100 100 100 100 

PFUS 100 99 96 100 100 100 100 100 100 100 100 100 
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coefficients from other levels. Fig 5.14 illustrated the reconstruction information from d3, d4 

and d5 detail coefficients. After the R peak is detected, the Q and S points are detected using 

d2, d3, d4 and d5 coefficients. The reconstructed wave involving these coefficients is shown 

in Fig 5.16. Fig. 5.15 and 5.17 show the detected R peak and Q point from the QRS complex. 

This approach obviates the need to use annotation files. The ECG beats obtained had 301 

samples. The reconstruction coefficients d6 and d7 are used to detect T and P waves. The 

reconstructed wave from both d6 and d7 is shown in Fig 5.18. T and P wave detection were 

illustrated in Fig 5.19 and Fig 5.20 respectively. Fig.5.21 provides four types of beat extracted 

for testing and evaluation of the classification algorithm. 

 

Figure 5. 13: Reconstruction of detail and approximation coefficients at each level of decomposition. 
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Figure 5.14: Reconstruction using d3, d4 and d5 details coefficients of heartbeat. 

 

Figure 5.15: Detection of the R peak. 
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Figure: 5.16 Reconstruction of the heartbeat using of d2, d3, d4 and d5 details coefficients. 

 

Figure 5.17: Detection of the Q peak. 

 

Figure 5.18:  Reconstruction wave using d6 and d6 details coefficients. 
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Figure 5.19: Detection of the T wave peak. 

 

            Figure 5. 20 : Extract of (A) NORMAL, (B) PVC, (C) APC and (D) FUSION beats. 

 

                   Figure 5. 21: Detection of the P peak. 
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Both Discrete Cosine Transforms (DCT) and Discrete Sine Transforms (DST) were 

used for feature extraction and dimensionality reduction of the input vector to the multi-class 

SVM classifier as this operates only with real numbers. However, Discrete Fourier 

Transforms (DFT) were used for feature extraction and dimensionality reduction of the input 

vector to the CSVM classifier which can handle complex valued datasets. Between 30 and 50 

DFT coefficients were selected in the frequency domain for reconstructing individual ECG 

beats in the feature selection phase. A similar number of DST and DCT coefficients were also 

used. Fig 5.22 shows a comparison between original normal beat feature and reconstructed 

normal beats from only 50 Fourier coefficients showing minimal distortion. 

 

 

 

 

Figure 5.22: (a) Typical ECG datasets extracted with 301 sample window (b) time domain 

filtered and reconstructed signal using 50 Fourier coefficients.  

For the classifier implementation, after feature selection is performed, the datasets are 

divided into two groups with 500 beats for training and 500 beats for testing purposes. Each 

of these datasets contain 200 NORMAL, 100 PVC, 100 APC and 100 FUSION beats. As can 

be seen the number of beats in each class were increased from 205 to 500 compared to the 

previous study in order to measure the performance of the algorithm with that using a larger 

dataset. Sequential minimal optimization (SMO) [188] was used to compute hyper-plane 

parameters and threshold values for both MSVM and CSVM during the training phase. The 

optimal hyper-plane parameters are identified on the basis of the training data set, and class 

label. Finally, on the basis of the training results, test data are imported to the CSVM and 

MSVM classifiers to perform unknown beat classification. The LIBSVM software is used to 

train and validate the MSVM model and to perform classification. The performance of the 

classifiers is evaluated by computing of the ST, SP, and PP parameter and the total 

a b 
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classification accuracy. Classification results of correct and misclassified beats for each class 

were displayed by a confusion matrix in Tables 5.8 and 5.9. When an ECG beat is 

misclassified as another one, this can be identified from using the output of the confusion 

matrix. Table 5.8 presented the confusion matrix of the classification results using CSVM, 

while the classification results using MSVM are shown in Table 5.9. It can be seen that all 

PVC beats are correctly classified when using both algorithms (MSVM and CSVM). It was 

found that with MSVM, 20 NORMAL beats 33 PVC beats and 30 FUSION beats were 

misclassified as an APC beat, while with CSVM only one NORMAL beat was misclassified 

as APC beats. Two NORMAL beats and two PVC beats were classified as FUSION beats 

using CSVM, whereas nine NORMAL beats and three PVC beats were misclassified as 

FUSION beats.  

Table 5.10 summaries the results of the classification process using the three common 

measures: SE, SP, and PP.  The proposed algorithm achieved classification accuracies up to 

97%, whereas multi-class SVM achieved up to 83% accuracy. The sensitivities were found to 

be 99%, 100%, 100%, 97% and 100.0% for NORMAL, PVC, APC and FUSION cases, 

respectively using CSVM. The sensitivities were 95.59%, 91.32%, 90.50%, 94.51%, and 

93.77% for NORMAL, PVC, APC and FUSION beats cases respectively using MSVM. 

Annotation Output result 

NORMAL PVC APC FUSION 

NORMAL 190 0  1 9 

PVC 2 95 0 3 

APC 0 0 100 0 

FUSION 1 0 0 99 

 

 

Annotation 
Output result 

NORMAL PVC APC FUSION 

NORMAL 178 0 20 2 

PVC 0 65 33 2 

APC 0 0 100 0 

FUSION 0 0 30 70 

 

Table 5.8: Confusion matrix classification results 

using DFT extracted coefficients of the ECG signal 

taken from  a single  limb lead and using CSVM. 

 Table 5.9: Confusion matrix  classification results 

using DFT extracted coefficients of the ECG signal 

taken from  a single  limb lead and using MSVM. 

 

Annotation 

Classification performance result 

CSVM MSVM 

PP (%) ST (%) SP (%) PP (%) ST (%) SP (%) 

NORMAL 98 95 99 100 89 100 

PVC 100 95 100 100 65 100 

APC 99 100 100 55 100 79 

FUSION 89 99 97 95 70 99 

 

Table 5.10: Collective performance analysis and classification result using MSVM and CSVM in the study in 

single limb lead study presented in section 5.5.2.2. 
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Using CSVM showed an improvement in the sensitivity for all classes and 

significantly enhanced the overall classification accuracy. However, when comparing these 

results with those in the precordial lead study when the number of beats for training and 

testing was increased, a slightly decreased classification accuracy was observed. In addition, 

it is worth noting that the ECG signals used in these studies were obtained using one limb 

lead (II) and two patients records, whereas in the precordial lead study the ECG beats were 

obtained from four precordial leads and 12 patient records. Extracting beats from more than 

one lead while using several patient records could improve classification accuracy results as 

was shown in the previous study.  

This work was presented at the 9
th

 Saudi Students Conference in the UK 2016 as a 

poster and was published in [29].  

5.5.2.3 Results from a MSVM and CSVM study using two leads (V1, V5) with data 

from the European ST-T database identifying NORMAL, PVC, SVPB and 

FUSION beats  

In this section, an automatic classification of four beat types NORMAL, PVC, 

Supraventricular premature or ectopic beats SVPB and FUSION of ventricular and normal 

beats is discussed, as implemented using the MSVM and CSVM algorithms.  

The ECG signals used in these experiments were obtained from the European ST-T 

Database using recordings from two leads (V1, V5). A number of beats from different 

patients were selected for training and evaluating classifier performance. In the pre-processing 

stage, baseline removal and R peak detection were performed. R peak detection is performed 

with the WFDB Software Package. R (peak) location was used as a reference to detect peaks 

in other waves such as such P and T and to extract the ECG beat. ECG beats are extracted 

after windowing the signal using 106 samples before the R-peak and 106 samples after the R-

peak as mentioned in a previous study [209].     

Discrete Cosine and Sine transforms or the Discrete Fourier Transform (DFT) were 

used for feature extraction and dimensionality reduction of the input vector at the input of the 

classifier. Studies after selecting either 100 or 50 Fourier coefficients for reconstructing 

individual ECG beats in the feature selection phase were performed. Using 100 Fourier 

coefficients indicated better result than using 50 Fourier coefficients due to smaller signal 

distortion in the reconstruction process. These were used for creating the input vector to the 

classifier and reconstructing individual ECG beats as shown in Figure 5.23. DCT and DST 
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coefficients were used to extract the features presented at the input vector of the MSVM 

classifier whereas DFT coefficients are used for creating an input vector to the CSVM 

classifier. Fig 5.23 illustrates a comparison between the normal ECG beats with 213 samples 

around the R-peak at a sampling frequency of 250 Hz and reconstructed normal ECG beats using 

only 100 Fourier coefficients.   

 

Figure 5.23: (a) Typical ECG datasets extracted with 213 sample window (b) time 

domain filtered and reconstructed signal using 100 Fourier coefficients. 

The MSVM and CSVM classifiers are used to distinguish between the four ECG arrhythmias 

types using the DCT, DST and DFT coefficients as feature vectors at the input vector of the 

classifier. For the classifier implementation, after feature selection is performed, the datasets 

(622 beats) are divided into two groups with 311 beats for training and testing purposes 

respectively. Each of these group contain 150 Normal beats (NORMAL), 60 premature 

ventricular contraction (PVC) beats, 60 Supraventricular premature or ectopic (SVPB) beats  

and 41 Fusion of ventricular and normal (FUSION) beats. MATLAB software routines were 

used to train and validate both the CSVM and the Multi-class Support Vector Machine 

(MSVM) classifier, with LIBSVM used to train and validate MSVM. Firstly, the kernel and 

complex kernel functions (Gaussian RBK) were used and 5-fold cross validation was adopted 

for adjusting the kernel and SVM parameter values. Then, SMO is used to train the CSVM 

and compute the corresponding complex hyper-plane parameters as in the previous studies. 

LIBSVM software routines are used to train and validate the MSVM model using SMO as 

well as the kernel parameter values that were obtained using 5-fold cross validation. In both 

CSVM and MSVM, the optimal hyper-plane parameters are identified on the basis of the 

training data set and class label. The output of the SMO algorithm was used for training.  

Finally, on the basis of the training results, test data are imported to the CSVM and MSVM 

classifiers to perform unknown beat classification. The optimal valued for 𝑎𝑛 , 𝑏𝑛  and 

a b 
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threshold were adopted and applied to the test datasets in order to measure the classification 

performance for both CSVM and MSVM classification. 

Classification accuracies of up to 94% were obtained using CSVM, whereas multi-

class SVM achieved up to 86% accuracy. Confusion matrices were used as part of the 

evaluation to summarise the classifier performance. These are shown in Tables 5.11 and 5.12. 

As can be seen in Table 5.11 three of the 60 PVC beats are misclassified as SVPB whereas 

four are estimated as misclassified FUSION beats. Five of the 41 FUSION beats are 

misclassified as SVPB, while six are misclassified as either three NORMAL beats or three 

PVC beats. 150 NORMAL beats and 60 SVPB beats are correctly classified. According to the 

overall confusion matrix given in Table 5.12, one of the 150 NORMAL beats is identified as 

PVC while six the 60 SVPB beats are estimated as PVC beats. One of the 60 PVC beats is 

misclassified as a FUSION beat, whereas one of the 41 FUSION beats is identified as an 

SVPB beat. In addition, from the confusion matrix, the sensitivity and specificity of the 

implemented algorithm for individual classes is obtained. Table 5.13 illustrates the 

performance of the classification process using the three metrics (SE, SP, and PP). This table 

included the final decision results obtained using the two method: CSVM and MSVM. The 

sensitivities were found to be 100%, 88%, 100%, and 73% for NORMAL, PVC, SVPB and 

FUSION beats respectively using CSVM. In contrast, using MSVM differed sensitivities 

were obtained: 99%, 98%, 90%, and 17% for NORMAL, PVC, SVPB and FUSION beats 

respectively. It may thus be concluded that using CSVM a significantly improved 

classification accuracy is obtained. This is better than using MSVM, which produced 

sensitivities between 86% to 94%. 

Annotation 
Output result 

NORMAL PVC SVPB FUSION 

NORMAL 150 0 0 0 

PVC 0 53 3 4 

SVPB 0 0 60 0 

FUSION 3 3 5 30 

 

 

Annotation 
Output result 

NORMAL PVC SVPB FUSION 

NORMAL 149 1 0 0 

PVC 0 59 0 1 

SVPB 0 6 54 0 

FUSION 0 33 1 7 

 

Table 5.11: Confusion matrix using MSVM and 

European ST-T database records. 
 

Table 5.12: Confusion matrix using CSVM and 

European ST-T database records. 
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Results illustrate that the proposed beat classifier is very reliable, and that it may be 

adopted for automatic detection of arrhythmia conditions and classification. Moreover, the 

present research confirmed that the use of selected number of Fourier coefficients to 

approximate the ECG beat signal and compress the input features to the classifier could lead 

to high classification accuracies and improve the generalization ability of the CSVM classifier. 

To our knowledge, this is the first time that multiclass algorithms such as MSVM and CSVM 

were employed to classify ECG beats that were extracted from the European ST-T Database.  

This work was presented at 2015 IEEE Signal Processing in Medicine and Biology 

Symposium (SPMB) conference, Temple University in the USA as a poster and was 

published in [28].  

5.5.2.4 Discussion of results from the second study using the MSVM and CSVM 

classifiers 

Classification of arrhythmias is a complex problem because of the strict requirement 

for avoiding false-positive or false-negative results. Pre-processing and feature extraction are 

crucial steps for developing automated diagnostic expert systems for different types of heart 

disease. The high classification accuracy of the multiclass CSVM gives additional insights 

into the features that may be selected for identifying the ECG signals. 

In addition, it is worth noting that as discussed in chapter 3 there are several 

alternative classifiers that can be used in an ECG classification context, such as a linear 

discriminant analysis (LDA) classifiers and artificial neural networks (ANNs). There have 

been suggestions to use novel hybrid neural network [15], probabilistic neural network [10], 

back propagation neural networks, self-organizing maps (SOM), learning vector quantization 

(LVQ) schemes [108], support vector machines (SVM) [210] and fuzzy or neuro-fuzzy 

algorithms [109]. In order to place our results in context to these studies, a performance 

comparison of the proposed CSVM classifier to other classifiers based on traditional SVM 

 

Annotation 

Classification performance result 

CSVM MSVM 

PP (%) ST (%) SP (%) PP (%) ST (%) SP (%) 

NORMAL 98 100 98 100 99 100 

PVC 95 88 99 60 98 84 

SVPB 88 100 97 98 90 100 

FUSION 88 73 99 88 17 100 

 

Table 5.13: Collective PP, ST and SP results using MSVM and CSVM classifiers 

for a 2-lead study using the European ST-T database records. 
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and Least Square Support Vector Machines (LSSVMs) is shown in Table 5.14. The table 

illustrates the different approaches in terms of the chosen feature selection method, number of 

features used as input vector to the classifier, number of arrhythmia types studied and overall 

accuracy. Moreover, it focuses on multi-class SVM studies. For brevity, it excludes binary 

SVM classification studies.  

Martis et al., (2012) indicated that through the PCA of time domain ECG signals, 

feed-forward neural network (NN) and Least Square- Support Vector Machine (LS-SVM) can 

be used to classify five types of ECG beats (NORMAL, RBBB, LBBB, APC and PVC) with 

an accuracy of 98.11%  [137]. In another study, fast least square support vector machines 

(LS-SVMs) classification and DCT were used to classify six types of ECG beats (NORMAL 

beat, LBBB beat, congestive heart failure beat, PVC beat, non-conducted P-wave, ventricular 

escape beat) with a 95.2% rate of accuracy [24]. Rabee and Barhumi (2012) used SVM with 

wavelet multi-resolution (through the discrete wavelet transform) pre-processing for 

classifying 14 different types of heart beats. Their work was based on a comprehensive study 

that took into consideration, 17260 ECG beats, selected from the MIT/BIH database. The 

average classification accuracy achieved was 99.2% [90]. Moreover, extracted principal 

components of the bi-spectrum using an LS-SVM with an RBF kernel were used to classify 

the same five types of beats with a 93.48% rate of accuracy [20]. In another study, SVM in 

conjunction with multi-class directed acyclic graphs was used to classify four types of ECG 

signals (NORMAL beat, Atrial fibrillation, Ventricular tachyarrhythmia and Congestive heart 

failure). The features of input vectors were selected using empirical mode decomposition and 

singular value decomposition. The Directed Acyclic Graph Support Vector Machine 

(DAGSVM) classifier yielded an average accuracy rate of 98.96%. In addition, the DAGSVM 

algorithm and two other classifier methods (K-Nearest Neighbor (KNN) and Artificial Neural 

Network (ANN)) were also compared. DAGSVM showed an accuracy of 98.96%, while the 

average accuracy of the classification result using KNN and ANN algorithms was 95.83% and 

96.66% respectively [224]. 

In studies by Martis et al., (2013) five types of beat classes of arrhythmia were 

analyzed, namely non-ectopic beats, supra-ventricular ectopic beats, ventricular ectopic beats, 

fusion betas and unclassifiable and paced beats. It was found that the DWT can provide 

acceptable time and good frequency resolutions for ECG datasets. In their study, The SVM, 

neural network (NN) and the PNN were used for classifying these five types of ECG beats for 

automated diagnosis [217]. 
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Feature reduction method Number of feature Classification method 
Number of 

arrhythmia type 
Overall Accuracy (%) Reference 

PCA 30 PC SVM 4 99.17 [136] 

PCA 20 PC SVM 4 99.08 [136] 

PCA 10 PC SVM 4 98.69 [136] 

DFT 
15 Fourier 

coefficients 
LS-SVM 6 92.2 [24] 

DCT 
15 DCT 

coefficients 
LSSVM 6 95.2 [24] 

DWT 
15 Wavelet 

coefficients (WFs) 
LS-SVM 6 94.2 [24] 

Adaptive autoregressive (AAR) 
15AAR 

coefficients 
LS-SVM 6 91.7 [24] 

DWT 16 WFs SVM 4 94 [211] 

DCT 
18 DCT 

coefficients 
SVM 4 96.5 [211] 

average of every eight samples 

of 256 (Amplitude value) 
32 SVM 4 94.2 [211] 

DWT 20 WFs Multi-class SVM 4 98.61 [101] 

ICA 20IC SVM 6 98.7 [212] 

GDA 5 SVM 6 99.16 [104] 

PCA 15 SVM 6 97.65 [104] 

LDA 15 SVM 6 98.06 [104] 

Genetic Algorithm 22 SVM 4 93.46 [213] 

PCA 22 SVM 4 80.00 [213] 

ICA 17 ICs SVM with 8 98.7  [13]  

DWT 25 WFs Multi-class SVM 7 98 [135] 

Non-parametric power spectral 

density (PSD) 
132 SVMGA 5 96.00 [5] 

Cross-correlation & FFT 32 LS-SVM 3 95.82 [214] 

DWT &PCA 20 PC SVM 4 99.63 [215] 

PCA 12 PC 
LS-SVMwith RBF 

kernel 
5 98.11 [137] 

Linear 

Prediction (LPC) & PCA 
12 PC 

LS-SVMwith RBF 

kernel 
5 94.88 [137] 

DWT& PCA 12 PC 
LS-SVM with RBF 

kernel 
5 96.88 [137] 

DWT 251 SVM with GRBF 14 99.2 [58] 

DWT and Statistical with 
electrophysiological features 

68 Multi-class SVM 12 98.92 [216] 

Higher Order Statistics (HOS) 

( Bispectrum) & PCA 
12 PC LS-SVM 5 93.48 [20] 

Continuous WT 129 SVM 6 99.82 [14] 

WT 17 SVM 6 98.74 [17] 

WT+LDA 4 SVM 6 99.52 [17] 

WT+PCA 4 SVM 6 98.86 [17] 

DWT& LDA 12 LDA features 
SVM  with RBF 

kernel 
5 97.04 [217] 

DWT& PCA 12 PC 
SVM with RBF 

kernel 
5 96.92 [217] 

DWT& ICA 12 ICA 
SVM with RBF 

kernel 
5 98.36 [217] 

DCT and PCA 12 PC 
LS-SVM with RBF 

kernel 
5 96.61 [218] 

ECG Chaos Extractor platform 

11 (four linear 

and seven 
nonlinear HRV 

features) 

SVM 4 98.4 [219] 

statistical correlation analysis 11 SVM 11 97.87 [220] 

autoregressive (AR) 300 SVM 5 99.93 [221] 

a geometric technique 

( Temporal and amplitude 

distance) 

21 SVM 15 98.80 [222] 

DWT 17 SVM 8 98.42 [223] 

SVD 9 DAGSVM 4 97.71 [224] 

ICA 200 SVM 3 99.9 [225] 

DFT 100 CSVM 4 94 Current work [28] 

DFT 50 CSVM 4 97 Current work [29] 

DFT 50 CSVM 4 100 Current work 

Table 5.14: Comparison of overall accuracy of different ECG classifier reported in literature addressing 

the   multi-class classification problem. 
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 Moreover, the performance of this study was compared with other well-established 

methods of ECG classification such as Combined Neural Networks (CNNs), Radial basis 

function neural network (RBFNN) and neural network.  

Guler and Ubeyli (2005) showed that four types of ECG beats (NORMAL beat, 

congestive heart failure beat, ventricular tachyarrhythmia beat, and atrial fibrillation beat) 

were successfully classified with a 96.94% rate of accuracy by using Combined Neural 

Networks (CNNs) when trained with the extracted features from discrete wavelet transforms 

of NORMAL beat, congestive heart failure beat, ventricular tachyarrhythmia beat, and atrial 

fibrillation beat signals [129]. The same group also used WTs for feature extraction and an 

adaptive neuro-fuzzy inference system (ANFIS) trained with backpropagation to classify two 

NORMAL beats and partial epilepsy beats, with an accuracy rate of 98.13% [226]. 

In (2010) Korürek and Doǧan illustrated classification using a Radial basis function 

neural network (RBFNN) for classifying six types of ECG beats, namely NORMAL beats, 

PVC beats, FUSION beats, APC beats, RBBB beats and PFUS beats) [113]. In addition, the 

PNN and a backpropagation neural network were used with IPCA to differentiate between 

eight different ECG beat types with an accuracy above 98%. The IPCA was used to extract 

features from ECG signals and create input vectors for the classifier [9]. 

Departing from the standard neural network methodologies, in 2006, Polat et al., 

proposed that fuzzy weighted pre-processing and artificial immune recognition system 

(AIRS) can be also used for pre-processing ECG datasets and diagnose cardiac arrhythmias. It 

was found that 78.79%, 75.00% and 80.77% classification accuracies were obtained using 50-

50%, 70-30%, and 80-20% of training dataset to validation dataset ratios respectively [227]. 

In addition, Ceylan et al., in 2009, built a module that contained a combination of a type-2 

fuzzy c-means (T2FCM) clustering algorithm along with a neural network, for the 

classification of ten types of ECG arrhythmias obtained from the MIT-BIH database (normal 

beat, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, APC, paced beat, RBBB, 

LBBB, atrial fibrillation and atrial flutter). This last study was further refined with the 

addition of a wavelet transform feature extraction, to obtain input vectors for the classifier 

[102].  

Luz et al., (2014), proposed a SVM classifier using four feature selection methods, 

where WT, and IPCA was also used to classify ECG signals of low frequencies (sampled at  
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30 and 60 Hz respectively) with an accuracy of 95% [228]. In addition, five types of 

ECG beats were classified, using an alternative pattern recognition technique known as the 

Optimum-Path Forest (OPF) classifier. The performance resulting from the use of OPF was 

compared with other classification methods such as SVM, Bayesian and MLP models [229].  

The multiclass SVM results from the current CSVM study compares favourably to 

most of the above studies. Using CSVM showed slightly better performance than the 

multiclass SVM classifiers that were used in all previous studies. The results are very 

encouraging when considering four classes of ECG beats were simultaneously classified. In 

addition, using the ECG beat from two leads showed a significant improvement in the 

classification accuracy as compared to the above classifiers, achieving an impressive average 

accuracy of 100%. This is an important finding justifying the use of both leads in clinical 

practice.   

Finally, it is also interesting to note that the SVM Kernel-Adatron (K-A) learning 

algorithm and the backpropagation (BP) learning algorithm with a multi-layered perceptron 

(MLP) have also been used to classify six different types of arrhythmias and normal ECG 

beats, without resorting to any feature extraction pre-processing methods [230]. Despite that 

result, in the current study it was maintained that feature extraction through pre-processing is 

absolutely necessary for best classification performance. 

In future investigations, we intend to use twelve different leads, where several types of 

beats from pathogenic and normal datasets are simultaneous selected. Using ECG signals 

from multiple leads provides a more complete patient picture and enables simultaneous 

identification of various heart conditions. The proposed approach can be extended using an 

adaptive wavelet bank for pre-processing (see appendix) where a different wavelet function is 

derived at each decomposition level to improve the parsimony of the input vector [206].  

Furthermore, multidimensional SVMs using Clifford Algebras [231] should also be 

considered to account for multi-lead signals as well as correlate inputs from alternative 

sensing modalities. Such approach will make the proposed classification methodology more 

generic and relevant to future advances in sensing. 

5.5.3 Study three: SIMCA classifier structure and results  

SIMCA is a method that is widely adopted to classify multiple objects. This model helps in 

finding similarities between test datasets and classes rather than matching identical behaviour. 
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SIMCA modelling is based on the PCA. The following study looks at the use of a new ECG 

arrhythmia classification scheme based on PCA for feature extraction using a SIMCA 

classifier to differentiate between six types of arrhythmia conditions.  The aim of this work is 

to improve the classification accuracy when using a large database composed of different 

classes of pathological conditions and different beat duration.The previously described data 

pre-processing and beat extraction methodology is adopted, feature extraction and selection 

and a classification step as shown in Fig 5.24 which depicts the three most important steps in 

the classification process is adopted. 

5.5.3.1 ECG acquisition and pre-processing for the SIMCA study 

Six types of beats including: NORMAL, PVC, APC, RBBB, LBBB and FUSION beats are 

selected from the MIT–BIH arrhythmia database. A number of beats of these six type were 

selected from limb lead (II), precordial leads (V1), these related to different patients. All these 

records were presented simultaneously to the classifier for training and for evaluating 

classifier performance. The research conducted focuses on ECG beat segments that include 

the P, QRS complex and T wave as in the previous studies. Again first the R peak location 

needs to be identified using the annotation files so, the associated RR interval can be found 

from the locations of the R points documented in the annotation files. Each complete beat is 

time domain a segment that has 127 data points before and 128 data points after the R evens. 

In each time domains sequence there are 256 points corresponding to a sampling frequency of 

360 Hz. A rectangular window (256 data points) is formed by centring the R peak in the QRS 

complex for each ECG beat segment as determined in the previous studies [24],[129]. For the 

current study, nine recordings, with six ECG beat types from two leads where used. Table 

5.14 illustrates the details of the two dataset groups used in terms of record number, lead 

name and total number of beat samples for each beat type studied. ECG extracted beats need 

to be pre-processed and baseline corrected before extracting the features and creating the 

input vector to the classifier. Fig 5.25 illustrated the extraction of six types of beat with 256 

samples around the R peak with normalized signals with zero mean and unity standard 

deviation. In order to improve classification performances the dimensions of the beat 

segments need to be reduced using feature reduction and selection techniques such as PCA. 
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5.5.3.2 Feature extraction and calculation of the feature vectors  

As it was mentioned the ECG features can be extracted either in the time [92] or the 

frequency domain [155]. The features of the P, QRS complex, and T waves are associated 

with the location, duration, amplitudes, and shapes of the waves. There are several 

dimensionality reduction and feature extraction algorithms that may be applied successfully to 

ECG signals such as PCA [10], LDA [217] and wavelet transforms (WT) [24]. PCA is a well-

established technique for feature extraction from ECG beat and dramatically reduce 

dimensionality of input vector to classifier without assuming a particular approximation 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: Block diagram of proposed method for the SIMCA cardiac arrhythmia classification study. 
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function in the traditional sense by relying on the statistical similarities between the time 

domain sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Annotation Record # 

Lead Group 

Limb lead precordial lead 

II V1 

Train 

NORMAL 209, 208, 213, 223 200 200 

PVC 208, 213, 223,214 200 200 

APC 201, 202, 223, 214 200 200 

FUSION 208, 213 200 200 

 RBBB 118, 212 200 200 

 LBBB 111, 109, 214 200 200 

Test 

NORMAL 209, 208, 213, 223 200 200 

PVC 208, 213, 223,214 200 200 

APC 201, 202, 223, 214 200 200 

FUSION 208, 213 200 200 

 RBBB 118, 212 200 200 

 LBBB 111, 109, 214 200 200 

 

Total 

 

11 2400 2400 

 

                          Table 5.14 Illustration of two ECG beat groups from the MIT-BIH cardiac 

arrhythmia database used in both training and test datasets. 

 

Figure 5.25: Extract of six types of ECG beats from the MIT-BIH cardiac arrhythmia database. 
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In (2007) Ceylan and Özbay used four approaches simultaneously: a technique for fuzzy c-

means clustering (FCM), Principal component analysis, FCM with PCA and WT to perform 

feature extraction and data reduction; their study focused on developing a classifier for ten 

different arrhythmias conditions [175]. In another study [175] different structures including 

PCA such as PCA-NN and fuzzy c-means clustering (FCM)-PCA-NN were used for the 

classification of ECG arrhythmias. PCA was applied to reduce sample number in each beat 

from 200 to 20. The study concluded that the FCM-PCA-NN structure showed better result 

than the PCA-NN structure. In 2007 Polat and Gunes proposed the use of PCA to decrease the 

ECG Arrhythmias beat features from 279 features per beat to 15. It was found that 100% test 

classification accuracies were obtained using these features [174]. In the present study, PCA 

was used to reduce the dimensions of the normalised ECG beat samples. PCA is a well-

established technique for feature extraction and data compression without much loss of 

important information. Between 10 and 30 principal components were selected for each beat 

as input features for classification in order to determine the optimal number of PCs. The 

approach of justifying these numbers and the method used for finding optimal number of 

features is based on extensive cross validation as discussed in the next section. 

5.5.3.3 Classification performance with SIMCA 

For each experiment 2400 beats of six ECG beat types taken from both precordial lead (V1) 

and limb lead (II) from the MIT-BIH arrhythmia database and were selected. Each dataset 

includes 400 N, 400 PVC, 400 APC, 400 RBBB, 400 LBBB, and 400 FUSION segments. 

The ECG beat samples were randomly divided into two subsets. Half of the beat samples 

were selected as the training subset and the other half as the testing subset. Mean cantered 

normalised ECG beat samples were used to reduce dataset and better numerical on denoising 

of the SVD associated with the PCA. In order to estimate the best number of the principle 

components (PCs) of the PCA, various combinations of PC number were used to reconstruct 

the ECG beat samples and used as input to the classifier. The feature reduction method for the 

input vectors was repeated four times in order to create feature vectors of different length for 

ECG beats with an optimal number of principle components (PCs).  The best number of 

components in each class could be determined through the cross-validation process as well. 

PCA is performed first on each group of classes and then SIMCA is used on the PCA classes. 

PCA provides a matrix of scores and loadings for each class. In addition, each class can be 

summarized in a different dimension. Fig 5.26 and 5.28 illustrated the predicted residual error 
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sum of squares (PRESS) statistic curve for the six classes using cross validation. The optimal 

number of the principal components (PCs) was used to reconstruct individual ECG beats in 

the dataset. Once the optimal dimensions for each beat were obtained, the classification 

performance of the SIMCA classifier was evaluated for solving the problem of identifying the 

six different types of ECG arrhythmias. The performance of SIMCA is optimized by creating 

individual models for each class and finding similarities between test objects and class models. 

The first step in SIMCA modelling is therefore to build a model for each class using an 

optimal number of principal components (PCs) and creating a training dataset. Individual 

models for each class were created using the optimal number of the principal components 

(PCs). These models were combined with the test dataset to assess the classification 

performance attained.  

To evaluate the performance of the SIMCA classifier ECG beats from Limb lead (II) 

and cheat lead (V1) were grouped in two respectively and presented at the input of the 

classifier individually. Limb lead (II) dataset is firstly used, and then a second dataset with 

ECG beats obtained from precordial lead (V1) was used. The classification performance was 

evaluated after presenting 2400 beats associated with the six ECG beat types. These were 

related to different patient records as shown in Table 5.14. Patients records were randomly 

divided into four equally sized groups consisting of 2400 beats each for training and testing. 

To evaluate the performance of the proposed arrhythmia classification algorithm, three 

common measures of SE, SB, ACC and predictively PP are used. Confusion matrices are 

shown in the following section.  

5.5.3.4 SIMCA classification using the limb lead datasets from the MIT-BIH 

Arrhythmia Database 

Fig 5.26 illustrated the predicted residual error sum of squares (PRESS) curve for the six 

classes using cross validation. It can be seen that the average predicted residual error sum of 

squares reached a plateau at around 10 PCs in the majority of classes. There was no 

noticeable improvement when using more PCs. In addition, Table 5.15 summaries the model 

accuracy for different number of PCs used as input to SIMCA. As can be seen, the best 

accuracy of 95.83% was obtained using 10 PCs. Reducing the number of features to ten will 

increase the number of misclassifications in some sample classes. Therefore, the dimension of 

each ECG beat sample was reduced from 256 to 10 using the PCA method and an optimal 

number of principal components (PCs). This is a very impressive result, showing the 
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advantages of the proposed methodology. It is worth stating that using only 10 PCs is also 

beneficial from the perspective of not overwhelming the classifier so that is generalization 

capability can be maximized. 

 

 

 

 

 

PCs number Model accuracy 

10 98.61 

15 98.33 

20 98.22 

30 97.28 

 

Table 5.15: Classification accuracy rate for different number of PCs 

coefficients presented to classifier using ECG beats obtain from limb lead 

(II). 

 

Figure 5.26:  predicted residual error sum of squares (PRESS) curve for the six beat type 

classes using ECG beats obtained from the limb lead. 
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Moreover, the classification results for each ECG beat type are displayed using 

confusion matrices, which illustrate the success of the classification process in terms of 

classified or misclassified results. The confusion matrix of the ECG arrhythmia classification 

using the limb lead datasets and SIMCA are shown in Tables 5.16. It can be seen that four of 

the NORMAL, one PCV and three of the LBBB beats were determined as APC, while 11 

APC beats were estimated as Normal. All of the RBBB beats were correctly classified. A total 

of 197 of the 200 RBBB beats were correctly classified, and three were identified as APC 

beats. Seven of the PVC beats and only one of the NORMAL beats were determined to be 

FUSION beats, whereas 14 of 200 FUSION beats were classified as NORMAL and eight as 

PVC.  

 

 

 

 

 

The overall performance of the method for test dataset in terms of SE, SB, PP and 

ACC with SIMCA is illustrated in Tables 5.17. The best and poorest classification sensitivity 

of each ECG beat type were 100% for RBBB and 89% for FUSION beats respectively 

whereas the best and poorest SP were 100 % for RBBB and LBBB beats and 97.40% for 

NORMAL beats  respectively.  The sensitivities were 97.50%, 95.50%, 94.50%, 89%, 100 % 

and 98.50% for the NORMAL, PVC, APC, RBBB and LBBB heartbeat classes respectively. 

The SIMCA classification algorithm could simultaneously classify six beat types obtained  

from limb lead, with an average accuracy of 98.61%. 

 

 

 

 

 

Annotation 

Output result 

NORMAL PVC APC FUSION RBBB LBBB 

NORMAL 195 0 4 1 0 0 

PVC 1 191 1 7 0 0 

APC 11 0 189 0 0 0 

FUSION 14 8 0 178 0 0 

RBBB 0 0 0 0 200 0 

LBBB 0 0 3 0 0 197 
 

Table 5.16: Confusion matrix of the ECG signal taken from limb lead and SIMCA 

classification. 

Annotation 
Classification performance result 

PP (%) ST (%) SP (%) ACC (%) 

NORMAL 88.24 97.50 97.40 97.42 

PVC 95.98 95.50 99.20 98.58 

APC 95.94 94.50 99.20 98.42 

FUSION 95.70 89 99.20 97.50 

RBBB 100 100 100 100 

LBBB 100 98.50 100 99.75 
 

Table 5.17: Collective result performance analysis and classification 

result using beats obtain from limb lead (II). 
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Tables 5.16, 5.18, 5.19 and 5.20   illustrate the collective result of classification for 

each class individually versus using a different number of PCs as input to the SIMCA 

classifier. The most accurate performance for each class was obtained for NORMAL beats 

with 97.50% sensitivity, PVC with 95.50 %, RBBB with 100%, LBBB with 98.50%, and 10 

PCs; while APC with 100% and 20 PCs, and FUSION with 91.00% sensitivity and 15 PCs. 

With the use of 10 PCs, 22 of the 200 FUSION beats are estimated incorrectly, while 18 of 

the 200 FUSION were misclassified using 15 PCs. All of the 200 APC beats were correctly 

classified using 20 PC, whereas 11 APC were determined as NORMAL using10 PCs. Using 

15 PCs showed an improvement in classification sensitivity of APC. Moreover, 20 PCs 

illustrated an improvement in classification sensitivity and accuracy of FUSION beats. Using 

15 PCs and 20 PCs showed an improvement in the classification performance of the APC and 

FUSION beats respectively. Fig 5.27 illustrates the collective result of classification accuracy 

for each class individually versus using a different number of PCs as input to the SIMCA 

classifier. 

 

 

 

 

 

Annotation 

Output result 

NORMAL PVC APC FUSION RBBB LBBB 

NORMAL 181 0 19 0 0 0 

PVC 1 186 5 8 0 0 

APC 0 0 200 0 0 0 

FUSION 13 7 1 179 0 0 

RBBB 0 0 0 0 200 0 

LBBB 0 0 10 0 0 190 

 

Table 5.18: Confusion matrix of the ECG signal taken from the limb lead using SIMCA 

classifier and 15 PCs. 

Annotation 

Output result 

NORMAL PVC APC FUSION RBBB LBBB 

NORMAL 154 0 44 2 0 0 

PVC 0 183 9 8 0 0 

APC 0 0 200 0 0 0 

FUSION 9 11 2 178 0 0 

RBBB 0 0 0 0 200 0 

LBBB 0 0 13 0 0 187 

 

 
Table 5.19: Confusion matrix of the ECG signal taken from the limb lead using SIMCA 

classifier and 20 PCs. 



Chapter 5. ECG classification studies: algorithmic implementation, results and discussion  

 144   

 

 

5.5.3.5  SIMCA Results using the precordial lead dataset for MIT-BIH Arrhythmia 

records  

The second SIMCA study processes the MIT-BIH arrhythmia database records from 

precordial leads as shown in Table 5.14. There were 2400 ECG beats similar to the first study 

400 Normal, 400 PVC, 400 APC, 400 FUSION, 400 RBBB and 400 LBBB beats. The cross-

validation technique was used to find the optimal number of the principle components (PCs). 

Fig 5.28 showed the predicted residual error sum of squares (PRESS) curve for six classes 

using cross validation. The average predicted residual error sum of squares reached a plateau 

at around 20 PCs when classifying some of the classes. There was no further noticeable 

improvement by using more PCs. Nevertheless, this is a different result from that inferred for 

the limb lead study which showed that conclusions are dataset specific. In addition, Table 

5.21 provides the model accuracy as a function of the different number of PCs used as input 

to the SIMCA classifier. As can be seen the best accuracy was obtained using 20 PCs with 

Annotation 

Output result 

NORMAL PVC APC FUSION RBBB LBBB 

NORMAL 182 0 15 3 0 0 

PVC 1 188 1 10 0 0 

APC 7 0 193 0 0 5 

FUSION 12 6 0 182 0 0 

RBBB 0 0 0 0 200 0 

LBBB 0 0 5 0 0 195 
 

 
Table 5.20:  Confusion matrix of the ECG signal taken from the limb lead using SIMCA 

classifier and 30 PCs. 

 

Figure 5.27: the predicted of  input individual ECG beat to the SIMCA classifier ECG beats 

taking from limb lead (V1) using (a) 10 PCs , (b) 15 PCs, (c) 20 PCs and (d) 30 PCs. 
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93.33% classification accuracy. It was therefore shown that the dimension of each ECG beat 

vector can be reduced from 256 elements to 20 elements using PCA. 

PCs number   Model accuracy 

10 97.25 

15 97.31 

20 97.78 

30 97.53 
 

Table 5.21: Classification accuracy rate for different number of PC 

coefficients presented to the classifier using ECG beats obtained 

from precordial lead (V1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.28: predicted residual error sum of squares (PRESS) curve for the six beat type 

classes using ECG beats obtained from the precordial lead. 
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 Table 5.22 illustrates the performance of the classifier in terms of the previously 

defined performance metrics. The proposed method misidentified 43 NORMAL beats, 9 PVC 

beats, 14 FUSION, and 14 LBBB beats, while all APC and RBBB beats were correctly 

classified. There were 13 FUSION and 6 LBBB beats that were classified as PVC beats, 

while 5 PVC beats were estimated as APC beats and three as FUSION beats. A total of 186 of 

200 LBBB and the 200 FUSION beats were correctly classified. 

 

Moreover, the performance of the classification for the test dataset in terms of SE, SP, 

and PP for SIMCA are illustrated in Tables 5.23. Six beat types can be classified with average 

accuracy of 97.78% using SIMCA. The best and poorest sensitivity were 100 % for RBBB 

and APC beats and 78.50% for NORMAL beats respectively, whereas the best and poorest SP 

were 100 % for RBBB and NORMAL beats and 95.90% for APC beats respectively. The 

sensitivities were found to be 78.50%, 95.50%, 100%, 93%, 100.0% and 93% for NORMAL, 

PVC, APC, FUSION, RBBB and LBBB heartbeat cases respectively. The total classification 

accuracy was approximately 93.33%.  

 

 

 

 

 

 

Tables 5.22, 5.24, 5.25 and 5.26 illustrate the output of the confusion matrix for each beat 

class individually on the basis of adopting a feature reduction strategy using between 30 and 10 PCs as 

input to the SIMCA classifier. The feature reduction method that adjusted the length of the input 

Annotation 

Output result 

NORMAL PVC APC FUSION RBBB LBBB 

NORMAL 157 0 33 10 0 0 

PVC 0 191 5 3 0 1 

APC 0 0 200 0 0 0 

FUSION 0 13 1 186 0 0 

RBBB 0 0 0 0 200 0 

LBBB 0 6 2 6 0 186 
 

Table 5.22: Confusion matrix of the ECG signal taken from the precordial lead using 

SIMCA classification and 20 PCs. 

Annotation 
Classification performance result 

PP (%) ST (%) SP (%) ACC (%) 

NORMAL 100 78.50 100 96.42 

PVC 90.95 95.50 98.10 97.67 

APC 82.99 100 95.90 96.58 

FUSION 90.73 93 98.10 97.25 

RBBB 100 100 100 100 

LBBB 99.47 93 99.90 98.75 

 

Table 5.23: Collective result performance analysis and classification 

result using beats obtain from precordial lead (V1). 

 

 



Chapter 5. ECG classification studies: algorithmic implementation, results and discussion  

 147   

 

vectors for classification was repeated four times using 10, 15, 20, and 30 PCs, creating different size 

feature vectors. (PCs). Simulation results show that the most accurate classification that was 

achieved for each class was for the NORMAL beats with 79 % sensitivity, for the RBBB 

beats with 100%, , for the APC beats with 100% and 20 PCs. In addition, LBBB beats were 

classified with 100% sensitivity using 10 PCs. The best classification sensitivity values for 

PVC and FUSION beats were 96.50% and 94 %, respectively, using 30 PCs. Using 20 PCs, 

14 of the 200 FUSION beats were estimated incorrectly, while 12 of the 200 FUSION were 

misclassified using 30 PCs. In addition, 9 of the 200 PCA beats were incorrectly classified 

using 20 PCs, whereas 7 PVC were wrongly classified using 30 PCs. Using 30 PCs illustrated 

an improvement in classification sensitivity of PVC and  FUSION beats. Moreover, using 10 

PCs illustrated an improvement in classification sensitivity and accuracy of LBBB beats. Fig 

5.29 illustrates the accuracy for each beat class individually on the basis of adopting a feature 

reduction strategy using between 30 and 10 PCs as input to the SIMCA classifier.  

 

 

 

 

Annotation 

Output result 

NORMAL PVC APC FUSION RBBB LBBB 

NORMAL 145 0 47 8 0 0 

PVC 2 189 8 1 0 0 

APC 0 0 200 0 0 0 

FUSION 0 20 3 177 0 0 

RBBB 0 0 1 0 199 0 

LBBB 0 2 3 4 0 191 
 

Table 5.24: Confusion matrix of the ECG signal taken from the 

precordial lead using SIMCA classification and 10 PCs. 

Annotation 

Output result 

NORMAL PVC APC FUSION RBBB LBBB 

NORMAL 146 0 45 9 0 0 

PVC 0 187 9 4 0 0 

APC 0 0 200 0 0 0 

FUSION 1 12 1 186 0 0 

RBBB 0 0 1 0 199 0 

LBBB 0 3 2 10 0 185 
 

Table 5.25: Confusion matrix of the ECG signal taken from the 

precordial lead using SIMCA classification and 15 PCs. 

 

Annotation 

Output result 

NORMAL PVC APC FUSION RBBB LBBB 

NORMAL 147 0 43 10 0 0 

PVC 0 193 5 2 0 0 

APC 0 0 200 0 0 0 

FUSION 0 11 1 188 0 0 

RBBB 0 0 1 0 199 0 

LBBB 0 10 3 3 0 184 

 

     Table 5.26:  Confusion matrix of the ECG signal taken from the 

precordial lead using SIMCA classification  and 30 PCs. 
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5.5.3.6 General discussion of the study classifying six classes of ECG signals   

The purpose of this study was to establish if it is possible to improve multi-class classification 

accuracy when using a large database by developing models for each class individually so as 

to classify six types of heartbeats simultaneously with a high degree of overall accuracy. The 

first study focused in data from the limb lead (II), while the second study used ECG beats 

extracted from the precordial lead (V1). Classification accuracies have shown small 

differences from using limb leads or precordial leads beats. As can be seen the overall 

accuracy of using ECG beats from limb was better than precordial lead.  

 This result agrees with the study results of Biel et al., who also found small 

differences in classification tests between limb leads and precordial leads data. Biel et al. 

(2011) also investigated the use of SIMCA with selected features extracted from the ECG for 

identifying a person in a predetermined group. The standard 12-lead ECG recorded during 

rest was used  in that study. A SIEMENS Megacart was used to perform the ECG 

measurements. The information recorded dataset from this was transferred and converted to a 

usable matrix format (30 × 12). Features such as P wave onset, P wave duration, QRS wave 

onset, and QRS wave duration were extracted for each person to be used as inputs to the 

SIMCA classifier. To reduce the amount of features to 12, the correlation matrix was 

employed. This reduced the dimensionality of features for the input vector. SIMCA was used 

to classify persons and identify individuals with 95% accuracy [232]. To my knowledge the 

 

Figure 5. 29:  the predicted of  input individual ECG beat to the SIMCA classifier ECG beats 

taking from precordial lead (V1) using (a) 10 PCs , (b) 15 PCs, (c) 20 PCs and (d) 30 PCs. 
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current study presented in this thesis provides a new approach to SIMCA classification of 

ECG measurements. Since PC features were used, the in this thesis studies are the only ones 

that have been done using a  SIMCA PC classifier.  

The results presented show that it is possible to simultaneously classify the six ECG 

beats effectively. What is still needed is a comparative discussion regarding the performances 

of the feature reduction techniques, the different classification techniques, and the entire 

arrhythmia classification procedure. Results are therefore placed in a more general 

perspective by considering different feature reduction approaches and classifier methods 

presented in the literature.  

In [233] an intelligent diagnosis system using an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) model was built to differentiate among six types of ECG signals, namely 

normal sinus rhythm (NSR), PVC, APC, ventricular tachycardia (VT), ventricular fibrillation 

(VF) and supraventricular tachycardia (SVT). An Independent Component Analysis (IPCA) 

and power spectrum information were used to extract input feature vectors of the ANFIS 

classifiers. The simulation results indicate a high classification accuracy at more than 97%. 

Patra et al. (2010) investigated the classification performance of six types of ECG beats using 

four structures: FCM-NN, PCA-NN, FCM-ICA-NN, and FCM-PCA-NN. Fifty sample 

segments attributed to six ECG beat types were selected from the MIT-BIH arrhythmia 

database for this study. These six beat types were NORML, LBBB, RBBB, APC, PVC, and 

paced beats (PB). The fuzzy c-means (FCM) algorithm was used to decrease the number of 

segments by grouping similar segments in the training data, whereas feature extraction was 

performed using PCA. Using the FCM-PCA-NN structure produced a better result than other 

techniques was obtained with an average error rate of 0.13% [168]. Six different features of 

ECG signals were used to discriminate and classify the same six types of heart beat. Three of 

the features were calculated statistically from decomposed sub-band signals that were 

obtained using a discrete wavelet transform, while two features were taken from the AC 

power and the instantaneous RR interval of the original signal. PNN was utilised to classify 

six types of heart beats using just 11 features for each type as input vectors for the 

classification. The performance of classification using this feature set from a wavelet 

transform as an input to the PNN classifier achieved an accuracy of 84.35% [234]. In 2008, 

Korürek and Nizam proposed a new arrhythmia clustering technique based on Ant Colony 

Optimisation (ACO) and neural networks. This technique was tested using ECG beats 



Chapter 5. ECG classification studies: algorithmic implementation, results and discussion  

 150   

 

extracted from the MIT-BIH database to classify six different arrhythmia types, namely 

normal sinus rhythm, PVC, APC, RBBB, ventricular fusion and fusion beats. The sensitivity 

simulation results were produced  using  two parameters together with  ACO and neural 

networks, these had values of  93.05 and 94.40 respectively [235]. In [17] three different 

classification techniques, support vector machine (SVM), multilayer perceptrons (MLP) and 

the fuzzy inference system (FIS) with reduced features using of LDA and PCA  were adopted 

to classify six types of arrhythmia beats: NSR, APC, SVT, PVC, VT and VF. Accuracy of  

classification of NSR, APC, SVT, PVC, VT and VF were 99.307%, 99.274%, 99.854%, 

98.344%, 99.441% and 99.883%, respectively. Asl et al. (2008) utilised the generalised 

discriminant analysis (GDA) feature reduction method to select five features from the 15 

different features extracted from the input HRV signal by means of linear and nonlinear 

methods. Subsequently, these five characteristic features and an SVM classifier were  

combined with an one-against-one (OAO) and an one-against-all (OAA) strategy. These  

were then used to discriminate between six different types of arrhythmias with average 

accuracy of 98.90 and 99.16, respectively [104]. Using a local fractal dimensions (LFD) 

algorithm, six types of ECG beats were classified using an estimation of the LFD of ECG 

signals as features and the nearest neighbour classifier approach. To estimate the LFD, two 

methods were adopted, namely the power spectral density-based fractal dimension estimator 

(PSDFE) and the variance-based fractal dimension estimator (VFE). Normal, LBBB, RBBB, 

APC, VPC and PB beats can be categorised with 88.64% average sensitivity, with an 

individual performance of 93.15% for normal beats and 91.07% for VPC arrhythmia [236]. In 

another study, the wavelet transform and particle swarm optimisation techniques were 

proposed to extract features from six types of ECG beats. The classification performance of 

these six types of ECG beats (normal, LBBB, RBBB, APC, VPC and PB) was performed 

using SVM, this study showed an overall accuracy ratio of 88.84% [237]. Doğan and Korürek 

suggested a new clustering method based on a kernelised fuzzy c-means (KFCM) algorithm 

and a recently proposed ant-based optimisation algorithm, the hybrid ant colony optimisation 

for continuous domains (HACO), to classify six types of ECG beats: NORMAL, PVC, 

FUSION, APC, RBBB and Fusion of Paced and Normal Beat (FUSIONP).  The average 

sensitivity and specificity values were revealed to be 93.76 and 98.76 respectively when using 

the KFCM-HACO algorithm [238]. In addition, in another study six types of beats, including 

a NORMAL, PVC, FUSION, APC, RBBB and FUSIONP beats were classified using particle 

swarm optimisation (PSO) and a radial basis function neural network (RBFNN) with an 
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average sensitivity of 95.24 and a specificity of 98.9 [113]. In another study, the same authors 

proposed a switchable scheme based on IPCA to determine  six different types of ECGs 

(NORMAL, LBBB, RBBB, APB, PVC, and PB) with an accuracy rate of over 99% [99]. In 

addition, the overall performance of the PCA-LDA-PNN scheme was better than the 

aforementioned ECG arrhythmia classification algorithm. The proposed scheme in this thesis 

therefore seems to show the best overall result for the simultaneous classification of six types 

of ECG arrhythmia. The SIMCA classifier can outperform the abovementioned ECG 

arrhythmia classification method because it can significantly reduce the number of 

misclassifications. According to Table 5.17 the average sensitivity, specificity, and accuracy 

were 99.06%, 99.61% and 97.98%, respectively by using the proposed ECG arrhythmia 

classification method suggested in this study. The proposed scheme can provide better 

classification accuracy compared to the other schemes found in the literature and maybe 

considered as an effective tool for diagnosing heart disease. 

5.5.4 Study four: Classification structure and results using SIMCA and 

MSVM classifiers 

5.5.4.1 ECG beat acquisition and pre-processing  

Four types of beats including, NORMAL, PVC, APC and RBBB beats were extracted from 

the St Petersburg INCART 12-lead Arrhythmia (incartdb) database and used for this study. A 

number of beats that showed simultaneously characteristics from all the four type beat types 

mentioned were selected, these were associated with recordings from limb leads II and III 

from the following four patient records: I17, I20, I22 and I71. In total, 1800 heartbeat signals 

were extracted from this database. These beats were used for classifier training as well as for 

evaluating MSVM and SIMCA classifier performance.  

The features selected in the current study focus on the segment associated with the P, 

QRS complex and T wave. Firstly, the R peak location is identified using the annotation file; 

then R (peak) location is used as a reference to detect peaks in other waves (such as P and T). 

Each beat within a segment includes 159 samples before and 160 samples after the R event; 

the window function, therefore, spans across 320 points, these data points are approximately 

equally spaced every 0.889 s as discussed in [239]. As stated earlier, the extracted ECG beats 

had their baseline removed before PCA feature extraction and formulation of the input vector 

to the classifier.  
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5.5.4.2 Feature extraction  

In the present study, as a starting point between 10 and 30 PCs were selected for each beat as 

input features for classification. This number was then adjusted through the procedure of 

determining the optimal number of PCs. The best number of PCs for each beat class was 

determined through the cross-validation process. This way, the dimension of each ECG beat 

sample was reduced from 320 to 30 or fewer. 

 

5.5.4.3 NORMAL, PVC, APC and RBBB beat classification results from the MSVM and 

SIMCA study using two leads (II, III).  

The MSVM and SIMCA classifiers were used to distinguish between the four ECG 

arrhythmia types on the basis of the pruned PC coefficients forming feature vectors at the 

input stage of each classifier. MATLAB 2010a software routines were used to train and 

validate both the MSVM and SIMCA classifier, with LIBSVM used to train and validate 

MSVM. For each experiment 1800 beats from the four ECG beat types were selected. Each 

dataset included 600 NORMAL segments, 400 PVC segments, 400 APC segments, and 400 

RBBB segments. The normalised ECG beat samples were randomly divided into two equally 

sized groups consisting of 900 beats each, for training and testing respectively. Once the 

optimal dimensions for each beat class were obtained, the classification performance of both 

the SIMCA and MSVM classifiers was compared after presenting all four types of ECG 

arrhythmias simultaneously.  

5.5.4.3.a MSVM classifier structure 

LIBSVM software routines were used to train and validate the MSVM model. Sequential 

minimal optimization (SMO) [188] was used to compute hyper-plane parameters and 

threshold values for MSVM during the training phase.  The MSVM and kernel parameter 

values were obtained using 5-fold cross validation. Firstly, 5-fold cross validation was 

adopted for adjusting the kernel and SVM parameter values. Then, SMO was used to train the 

MSVM and compute the corresponding optimal hyper-plane parameters. The optimal hyper-

plane parameters were identified on the basis of the training data set and class label.  Finally, 

on the basis of the training results, the test datasets were imported to the MSVM classifiers to 

perform unknown beat classification. The optimal valued for ( i ) and threshold (b) were 

adopted and applied to the test datasets in order to measure the classification performance for 

MSVM classification.  
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5.5.4.3.b SIMCA classifier structure 

As mentioned earlier, the advantage of SIMCA is that it is based on creating individual 

models for each class and finding similarities between test objects and class models. The first 

step in SIMCA modelling is to build a model for each class using an optimal number of PCs 

(following the cross-validation procedure) and creating a training dataset. Since the average 

predicted residual error (sum of squares) reached a plateau at around 30 PCs in the majority of 

classes and no noticeable improvement could be observed using more PCs, this was taken as 

the optimal vector size. Our aim was not to overwhelm the classifier as this would 

compromise its generalization capability.  After deciding on the number of PCs used, 

individual models for each beat class was created. These models were tested with the test 

dataset samples to measure the classification performance attained.  

5.5.4.3.c Simulation results 

The classification performance was evaluated after presenting 900 beats associated with each 

of the four ECG beat types. To evaluate the performance of the proposed arrhythmia 

classification algorithm, the commonly adopted metrics of sensitivity (SE), specificity (SP), 

positive predictivity (PP) and accuracy (ACC) were used. Moreover, the classification results 

for each ECG beat type are displayed using confusion matrices, which illustrate the success of 

the classification process in terms of classified or misclassified results, these are shown in 

Tables 5.27 and 5.28 

Table 5.27 presents the confusion matrix of the classification results using SIMCA, 

whereas Table 5.28 those from MSVM. It can be seen that all RBBB are correctly classified 

using the MSVM algorithms. With MSVM, 121 N beats and 7 PVC beats were misclassified 

as an APC beat, while with SIMCA only one PVC beat and 12 N beats were misclassified as 

an APC beat. Six RBBB beats and 11 APC beats were classified as PVC beats using SIMCA. 

In contrast, when using MSVM, 5 APC beats were misclassified as PVC beats.  

In addition, Table 5.29 summaries the performance result of the classification process 

using the four common metrics: ST, SP, PP and ACC. The proposed algorithm achieved 

classification accuracies up to 98.33%, whereas MSVM achieved up to 76.83 % accuracy. 

Moreover, the sensitivities were found to be 96%, 99.5%, 94.5%, and 100.0% for N, PVC, 

APC and RBBB cases, respectively using SIMCA. The sensitivities were 59.3%, 73.5. %, 

79 %, and 100% for N, PVC, APC and RBBB beat cases respectively using MSVM. Using 



Chapter 5. ECG classification studies: algorithmic implementation, results and discussion  

 154   

 

SIMCA, there was an improvement in the sensitivity for all classes and significantly enhanced 

the overall classification accuracy. The SIMCA classifier combined with PCA demonstrated 

excellent performances in discriminating four beats types  with average accuracy, sensitivity, 

positive predictivity and specificity of 98.33%, 96.75%, 96.4% and 98.9% respectively. 

5.5.4.3.d Discussion 

The proposed SIMCA algorithm achieved classification accuracies up to 98.33%, whereas 

MSVM up to 76.83% accuracy. Additionally, these results have been compared with other 

ECG beat classification systems such as PCA with SVM [213], SVM with wavelet transform 

and Fourier Transform [211] and DAGSVM. Table 5.30 compares the recognition rate of 

some of these methods from the current literature with the proposed scheme. It is clear that 

the use of SIMCA provides better classification results in terms of recognition rate.

Annotation 
SIMCA output result 

NORMAL PVC APC RBBB 

NORMAL 288 0 12 0 

PVC 0 199 1 0 

APC 0 11 189 0 

RBBB 0 6 0 194 

 

Annotation 
MSVM output result 

NORMAL PVC APC RBBB 

NORMAL 178 0 121 0 

PVC 13 147 7 33 

APC 37 5 158 0 

RBBB 0 200 0 0 

 

Table 5.27: Confusion matrix using SIMCA and  

the  St Petersburg INCART 12-lead Arrhythmia 

Database (incartdb). 

Table 5.28: Confusion matrix using MSVM and  

the  St Petersburg INCART 12-lead Arrhythmia 

Database (incartdb). 

 

Annotation 

Classification performance result 

SIMCA MSVM 

SE SP PP ACC SE SP PP ACC 

NORMAL 96 100 100 98.6 59.3 91.6 78 80.9 

PVC 99.5 97.5 92.1 98 73.5 70.5 41.6 71.2 

APC 94.5 98.1 93.5 97.3 79 81.7 55.2 81.1 

RBBB 97 100 100 99.3 100 95.2 100 74.1 

 

Table 5.29: Collective PP, SE, ACC and SP results using MSVM and SIMCA classifiers 

for a 2-lead study using the  St Petersburg INCART 12-lead Arrhythmia Database (incartdb). 

Feature reduction method Classification method Overall Accuracy (%) References 

DWT SVM 94 [211] 

DCT SVM 96.5 [211] 

Amplitude value SVM 94.2 [211] 

Genetic Algorithm SVM 93.46 [213] 

PCA SVM 80.00 [213] 

Lyapunov exponents RNN 94.72 [6] 

SVD DAGSVM 97.71 [224] 

DFT CSVM 94 [28] 

PCA MSVM 76.83 Current work 

PCA SIMCA 98.33 Current work 

Table 5.30 Comparison study four result with other classifiers. 
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5.6 Summary  

In this study, beat classification was performed using MSVM, CSVM and SIMCA classifiers. 

All results were obtained using MATLAB 2012a software routines for training and validation. 

Extracted feature in both time and frequency domain were considered.  In order to improve 

the classification accuracy of the classifier, the dimensional features were reduced using 

several feature reduction methods. The SMO was used to compute hyper-plane parameters 

and threshold values for both MSVM and CSVM during the training phase. Using CSVM it 

was possible to successfully classify four types of ECG beat signals simultaneously. The 

algorithm indicated higher performance than MSVM classifiers. Results illustrate that the 

proposed beat classifier is very reliable, and that it may be adopted for automatic detection of 

arrhythmia conditions and classification. Using CSVM, a 4-class problem can be classified 

rapidly by decomposing it into two distinct SVM tasks. The overall accuracy using ECG beats 

extracted from limb lead and precordial leads were 97% and 100% respectively. Moreover, 

the present research confirmed that the use of selected number of Fourier coefficients to 

approximate the ECG beat signal and compress the input features to the classifier can lead to 

high classification accuracies and improve the generalization ability of the classifier. To our 

knowledge this is the first time that a multi class algorithms such as MSVM and CSVM were 

employed in ECG beats extracted from the European ST-T Database and the first time that a 

CSVM classifier was used with the other database as well. 

 The SIMCA classifier was used to differentiate between six types of ECG beats. The 

PC feature vectors around each R peak of ECG beat were obtained from the  MIT-BIH 

database and the St Petersburg INCART 12-lead Arrhythmia Database (incartdb). The 

optimal number of features was presented at the inputs of the SIMCA classifier to determine 

the six different types of ECG arrhythmias. The average classification accuracy of the 

proposed scheme was 98.61% and 97.78% using limb and precordial lead datasets, 

respectively. In addition, MSVM and SIMCA classifiers were used to differentiate between 

four different types of ECG beats obtained from the St Petersburg INCART 12-lead 

Arrhythmia Database (incartdb). The average classification accuracy of the MSVM and 

SIMCA classifiers were 76.83% and 98.33% respectively. It is concluded that SIMCA could 

be an effective tool to diagnose arrhythmia conditions using ECG signals.  The effectiveness 

of the proposed scheme for ECG arrhythmia classification was proven by successfully 

classifying the six types of ECG with a high average accuracy ratio. It is speculated that the 
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proposed scheme may be able to identify more than six beat types with good classification 

accuracy. The following chapter summarizes the findings of this study, and provides some 

recommendations for further work.  
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Chapter 6 Conclusions and future work 
 

6.1 Conclusions 

This study has introduced novel classification techniques, which can efficiently detect 

and classify cardiac events. The work adopts CSVM and SIMCA classifier algorithms to 

solve multiclass problems in ECG beat classification. These were used on records selected 

from three databases: the MIT-BIH arrhythmia database, the European ST-T Database and the 

St Petersburg INCART 12-lead Arrhythmia Database (incartdb). The proposed methodology 

provides a useful way for analysing and classifying arrhythmias conditions based on 

supervised classification approaches. The CSVM algorithm demonstrated excellent 

performance, mapping the extracted ECG features to a higher dimensional space through the 

use of two complex hyper-planes. This has been developed as an extension of the well-known 

SVM classification algorithm. The performance of the SIMCA classifier was based on 

creating individual models for each class and finding similarities between test objects and 

class models. The implementation of both CSVM and SIMCA focused on classifying heart 

beats into the right categories. The general approach adopted was composed of three-stages: 

pre-processing and beat extraction, feature reduction and finally classification. The 

importance of feature selection for ECG classification has been the subject to considerable 

discussion, this work confirmed its necessity and merits.     

Several studies have been presented and discussed in order to measure the 

effectiveness of the proposed methods. Using CSVM, a 4-class classification problem can be 

solved rapidly by decomposing it into two distinct SVM classification tasks. The first study 

was focussed on using a binary SVM classifier to differentiate between normal and abnormal 

beats that were extracted from the different lead. A high classification accuracy of 100% was 

obtained from using this technique.  For CSVM, the four types of beats were obtained from 

the MIT-BIH arrhythmia database first. The ECG beats were obtained using a window 

function composed of 300 samples around the R-peak. Furthermore, the work proposed a 

methodology that combines the use of filtered coefficients from a DFT in conjunction with 

CSVM to improve the generalization ability of the classifier. In order to estimate the best 

number of Fourier coefficients, between 100 and 30 Fourier coefficients were used to 
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reconstruct individual ECG beats using the most prominent features in the frequency 

domain.  In the associated DFT, the complex values in the signals were retained as vectors. 

These vectors were used as the input feature vectors for the training and testing of the CSVM. 

For the classifier implementation, after feature selection was performed, the datasets were 

divided into two groups for training and testing purposes. The optimal hyper-plane parameters 

were identified on the basis of the training dataset and class label. The introduction of the 

CSVM framework as an extension to normal SVM was made on the basis that our intention 

was to preserve information in both amplitude as well as phase in the ECG signals. 

Accuracies between 83% and 97% are obtained for MSVM and CSVM classification 

respectively. Using the CSVM algorithm indicated a significant improvement in multi-class 

classification over MSVM. Using the CSVM classifier algorithm indicated higher 

performance than MSVM classifiers. In another study, using the CSVM algorithm with the 

ECG beats that were extracted from four precordial lead provided high classification 

accuracies with 0.8% error rate when trained with fifty DFT coefficients, and 1.75% error rate 

when trained with 100 DFT coefficients. The proposed algorithm demonstrated classification 

accuracies of 99%, 100%, 98%, and 99% in datasets obtained from one, two, three, and four 

leads respectively. Moreover, using the ECG beat from two correlated leads showed a 

significant improvement in the classification accuracy, with an average accuracy of 100%.  

In another study, the ECG beats were obtained from the European ST-T Database with 

212 samples around the R-peak. In the feature selection step, 100 Fourier coefficients were 

selected for reconstructing individual ECG beats, these formed the input vector to the 

classifier. On the basis of the training results, test data were imported to the CSVM and 

MSVM classifiers to perform unknown beat classification. The proposed algorithm confirmed 

classification accuracies of 94%, whereas multi-class SVM achieved accuracies up to 86%.  

 This study also evaluated the use of the SIMCA classifier differentiate between six 

types of ECG beats. It was demonstrated that the SIMCA classifier can be used to 

simultaneously differentiate between the six types of ECG beats even if windows had 

different dimensions. The 256-dimensional feature vectors around each R peak was obtained 

from the MIT-BIH database. In order to improve the classification accuracy of the classifier, 

the 256-dimensional features were reduced to between 10 and 30 features using PCA. The 

optimal number of features and the RR time interval were treated as inputs to the SIMCA 

classifier which was assigned to simultaneously to determine six different types of ECG 
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arrhythmias. The average classification accuracy of the proposed scheme was 98.61% and 

97.78% using limb and precordial lead datasets, respectively. The effectiveness of the 

proposed scheme for ECG arrhythmia classification was confirmed after successfully 

classifying six types of ECG with a high accuracy ratio.  

The final study evaluated the integration of MSVM and SIMCA classifiers with PCA 

extracted features to differentiate and correctly classify four different types of ECG beats 

obtained from the INCART 12-lead Arrhythmia Database (incartdb). All the different ECG 

beat types were presented to the classifier simultaneously. The 230 point feature vectors 

around each R peak of each ECG signal were reduced to the optimal number of features 

following PCA decomposition and extraction of PCs. The average classification accuracy of 

the MSVM and SIMCA classifiers were 76.83% and 98.33% respectively. The SIMCA 

classifier algorithm was able to determine four beat types that were simultaneously presented 

to it with a better classification accuracy than the MSVM classifier.  

The use of the CSVM algorithm indicated higher performance than did the MSVM 

classifiers. The CSVM classification algorithm was able to classify four classes of ECG 

arrhythmias with an accuracy rate between 94% and 100%. Through the feature extraction 

phase, it was possible to reduce the sample set on each heartbeat for example from 301 

samples to 50 samples while maintaining a high accuracy rate. These numbers of features 

were found to give good classification accuracy with good specificity and sensitivity rates as 

well. 

In addition, a reduction of samples could reduce the memory size and processing time 

of classification without compromising on accuracy. The outcome of the present research 

confirmed that the use of a selected number of Fourier coefficients to approximate the ECG 

beat signal and further compress the input features to the classifier can lead to high 

classification accuracies and improve the generalization ability of the CSVM classifier.  

Furthermore, using the SIMCA classifier, it was possible to successfully 

simultaneously classify six types of ECG beat signals with different dimensions. The SIMCA 

classifier was employed to create models for each class individually. It is believed that using 

the SIMCA scheme proposed, in the future could enable the determination of more than six 

beat types with good classification accuracy. It was concluded that both CSVM and SIMCA 

could be effective tools to diagnose arrhythmia conditions. To our knowledge, this is the first 
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time that a CSVM and SIMCA algorithm were employed in ECG studies to simultaneously 

classify four and six types of ECG beats respectively. The work demonstrated the 

effectiveness of the proposed scheme for ECG arrhythmia classification by achieving an 

overall high accuracy ratio.  Using the CSVM algorithm indicated a significant improvement 

in multi-class classification over MSVM. The results also showed a high specificity and 

sensitivity when using CSVM for ECG signals classification. 

6.2 Limitation of the performed studies 

It should be borne in mind that the performed studies have the following limitations: 

 

 The scope of the SIMCA classifier is limited to the development of an ECG 

classification algorithm based on PCA using time-domain and not frequency-domain 

features. 

 Using the CSVM classifier, the major limitation is that only four types of ECG beats 

can be classified simultaneously. Furthermore, a larger number of ECG recordings 

classified would have given us a more robust classification result than the current one. 

 

 Due to limited number of studies performed, the algorithms in this work may require 

further validation using both time domain and frequency domain features as input 

vectors to the classifier. 

 

 The small sample size in some classes did not permit further systematic investigations 

using SIMCA with the European ST-T Database. One of the drawbacks of the SIMCA 

classifier is that it requires a large dataset for training and testing.    

 

 The European ST-T Database and St. Petersburg INCART12-lead Arrhythmia 

Database (incartdb) do not include different types of ECG beats like the MIT-BIH 

Arrhythmia Database does, so an inter-comparison of the developed algorithms across 

all databases was not possible.   

 

 Due to the absence of 12 ECG-lead records in popular ECG databases, such as the 

European ST-T Database and MIT-BIH Arrhythmia Database, in some of our studies 

we were restricted to using only up to four leads. 

 

 The study did not have access to the newly developed multi-lead recordings based on 

the MEDTRONIC vest. It would be useful to apply the proposed algorithms to those 

datasets. 

6.3 Future work using CSVM and SIMCA  

The proposed approach is to be extended using adaptive wavelet where a different 

wavelet function is derived at each decomposing level to increase parsimony of the input 
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vector. For feature selection wavelet pre-processing will be used to further compress the input 

to the classifier by generating wavelets on the basis of higher order moments.  It proves 

convenient to write the transform in matrix form as discussed in chapter 4. A test waveform 

was decomposed to qualitatively describe the new parametrization process as would be 

implemented. This decomposition was contrasted to that of a standard db6 parametrization. It 

was originally intended to further explore this approach as a feature reduction method before 

presenting ECG signals from the MIT-BIH database to CSVM classifiers, but such study was 

postponed due to time constrains for submission of the thesis.  

Multidimensional SVM using Clifford Algebras should also be considered to account 

for multi-lead signal analysis. Some of the future work should therefore concentrate on the 

further development of ECG signal pre-processing using adaptive wavelet algorithms, as 

combined with the classification with Clifford SVM techniques. The aims of using Clifford 

Algebras SVM to adopt CSVM algorithms for heterogeneous (multi-lead or multi-sensor) 

signals in complex spaces (to account for signal amplitude and phase information separately 

or account for time-frequently features in the ECG signal on the basis of wavelet analysis) as 

well as examine the possibility of adopting multi-dimensional Clifford algebra frameworks 

that will cross-correlate information at the input space of the classifier are important direction 

that are likely to make signification impact in the general area of ECG signal analysis. The 

potential sensitivity of the technique might give clues on the impact of diet and lifestyle 

directly to the overall health state of a heart. 

Additionally, different wavelet decomposition schemes of ECG signals assuming 

different levels of approximation and detail for each wavelet family will be considered and 

their suitability as inputs to the CSVM classifier is going to be investigated. The efficiency in 

parametrizing the wavelet coefficients using adaptive structures from the perspective of 

improving parsimony in each decomposition step and improving the reliability of the 

classification task would have to be investigated further. The proposed approach intends to 

optimize the number of wavelet coefficients as well as a number of decomposition levels 

presented to the classifier. In addition, the proposed algorithm may be extended to higher 

dimensional spaces associated with division two algebras for the simultaneous classification 

of four or eight classes of inputs so it represents a generic methodology of relevance to future 

multi-lead recordings as well as to other heterogeneous emergent ECG monitoring modalities. 
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Looking at the problem from the perspective of providing in the future complete 

system solution one should note is that the mobile-phone industry has been rapidly 

developing recently. There are multiple features that have been integrated into the mobile 

phone nowadays.  Current smartphone models tend to integrated several features of other 

biosensor and have been influenced by recent developments in the television industry. For 

example, smartphones are also used to view videos, as well as access the internet; such 

devices have been equipped with resolution capabilities that match those of TV devices. Such 

innovations may not only be used for entertainment purposes but are also likely to be used for 

other functions such as medical- and health-related features. Furthermore, more mobile-phone 

manufacturers are also looking for ways of improving their current product offerings through 

extensive research and development. The use of new mobile algorithms for ECG 

classification and the diagnosis of some long-term conditions such as heart diseases are a 

natural direction for further investigation. The current study predicts that the use of smart-

phones and a wireless communication networks for monitoring patients at home or on the go 

over a prolonged period of time (holder function) for the purpose of providing early diagnosis 

of heart conditions is very likely to further proliferate. The ability of feature reduction of the 

ECG signal has additional advantages in mobile platforms such as low memory. 

As a final thought, it is also believed that the current modality of mapping heartbeats 

using electrodes may also change in the future through the use of non-contact magnetic 

sensors though the development of nano-SQUID (superconducting quantum interference 

devices). Such signals would not be spatially confined to the location of the electrodes used in 

current practice, giving rise to new opportunities for heart monitoring. Such sensors would 

provide a better picture of any abnormal electric wave propagation in the human body. A 

further area of research that can directly benefit from the current work is that of deep AI as 

applied to ECG analysis. In this context the aim is to use multi-layered neural networks with 

different levels of feature abstraction at each layer that needs to be trained. A geometric 

neuron based on Clifford algebras would be the most versatile structure to be adopted in this 

context. 
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6.4 Trends in mobile computing: using mobile devices and 

wearable sensors to analyse ECG signals 

As the development of next-generation wireless technology such as GPRS, EDGE and 3G 

using mobile devices has been increased in the health sector, the mobile device has become a 

possible tool for telemedicine because some medical information can be transferred to or from 

patients through their mobile phone. A good illustration of this is the transmission of an 

electrocardiogram ECG signal to a mobile by using Bluetooth and Multimedia Messaging 

Service (MMS). Nowadays, the majority of smart phones are able to send and receive MMS 

which means that special application software is not needed to display the ECG. It is 

anticipated that in the near future patients will be able to import electrocardiogram ECG 

signals as a bitmap image through their mobile phone when at home or outside the hospital 

[240]. One of the advantage through telemedicine is the possibility for long-term monitoring 

of patients with cardiovascular diseases at home, this is made possible through the use of 

portable ECG telemonitoring systems. Such system is normally divided into two modes: 

store-and-forward mode (patient data is available at a later time); and real-time mode (the 

patient's data is immediately available at the server end after acquisition). A patient-worn unit 

called Holter, can continuously provide information of a patient’s health through MMS on 

GPRS signals or through direct connection to internet using Wi-fi [241]. Due to the 

considerable cost of health care, remote monitoring of medical conditions is rapidly becoming 

an alternative for monitoring patient health states. The main aim for such future developments 

is to focus on the complete architecture of a mobile/wireless communication in conjunction 

with  effective implementation of the algorithms, this should  allow doctors to have access to 

the results from the ECG data analysis immediately [242].  

With the advancement of technology comes the breakthrough possibility of effectively 

safeguarding human lives. Because of the technological advances in the field of mobile 

telecommunications networks, telemonitoring is widely used by more than half of the US 

home care agencies. Not only it is cheaper, it also gives the patients the liberty to stay at home 

with their family. Development in mobile devices such as smart phones and in programming 

platforms such as J2ME and Android has led to a recent proliferation of mobile-based 

telemonitoring system. ECG signal monitoring and analysis procedures use the computing 

capability of mobile devices. This system is very convenient as the mobile phone can be 

handheld by both patients, or medical experts. In an experiment conducted by Fang’s team 
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[243], it was proven that using a J2ME platform, a mobile device can be programmed so as to 

be used for reliable automatic bio-signal collection, noise identification and reduction, and 

message packet creation and transmission. Biosignal transmission can be made possible 

through SMS and MMS. ECG data compression and decompression, and pathological pattern 

detection and encryption are some of the tasks that can be performed by a mobile phone that 

is programmed by a JavaTM based software [243]. Some of these developments are also of 

interest to NASA for astronaught health monitoring. 

The data flow lets the patient to be always in contact with his medical doctor for 

monitoring his medical conditions. For instance, the results and analysis of an ECG recording, 

after being checked by the doctor, can be sent to the patient for data logging and storage 

through GSM/GPRS communications. Connected Limited Device Configuration (CLDC) and 

Mobile Information Device Profile (MIDP) may be also used for application development on 

mobile devices. Different sub-programs which can store and enter ECG data in the database 

must be present in the PC for this to be possible [242]. This system provides economical and 

easily realizable solution for telemedicine in which medical monitoring can be done to the 

patient anytime and anywhere. 

In 2008, Young Chung et al pioneered mobile applications capable of monitoring 

ECG waves by detecting the QRS complex and determining the normality of the vital signs. 

They have built a system that performs mobile-phone local vital sign data analysis and 

transmits data over a wireless sensor network. The patterns of signals can be identified by 

doing simple data analysis and then immediately transmitting these signals to a hospital server 

for diagnosis. The PanTompkins QRS detection algorithm was used for the QRS Detection, 

with 99.3% of the QRS complexes successfully detected correctly, in studies based on signals 

from the MIT-BIH Arrhythmia Database. 

In the same year, another mobile personal electrocardiogram monitoring system 

integrated with a transmitter based on MMS technology was also developed. Tahat (2008) 

discussed the use of MMS for transferring a patient’s ECG signal and body temperature. The 

ECG signals were taken from the three ECG electrodes left arm (LAR), right arm (RAR), and 

right leg (RL) these were fed into the inputs of the designed instrumentation amplifier and 

conditioning circuit. The application software running and displaying the received ECG signal 

and temperature via Bluetooth had a capture button that could be used for saving the display 

as a bitmap image that could also be sent as an MMS message [240].  
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To conclude, telemedicine through mobile sensor integration and signal processing 

has been widely considered to be part of the inevitable future of the modern practice of 

medicine. It could lead to a new approach of practice for patients, helping them to monitor 

their health at home, providing early diagnosis, treatment, and increased convenience. New 

communications technologies, such as GPRS, EDGE, 3G, and WiMax, can be used to provide 

much higher data-transmission speeds (rates) compared with the basic 2G GSM mobile-phone 

system. There should be, therefore, considerable scope to further adopt the algorithms 

discusses in this thesis to such mobile platforms. 

6.4.1 Future work on multi-lead analysis using Clifford algebra and 

Clifford Support Vector Machines. 

6.4.1.1 Future work in ECG Multi-lead analysis  

Multilead ECG analysis is what is being implemented and developed in several hospitals 

nowadays. A number of approaches have been established in order to reduce and then 

eliminate the several disadvantages of offline ECG analysis, such as the inaccurate quality 

control upon data acquisition and therefore, lack of quality of the resulting data.  

 In an attempt to improve the quality of data obtained in ECG analysis, multilead 

estimation of T-wave alternation in ECG was explored in the paper of Monasterio et. al., in 

2008. In this study, it was proposed that a combination of  PCA and the generalized likelihood 

ratio test (GLRT) would be a better way to estimate the T-wave alternation in ECG [244]. The 

performance of this novel combination of extracted features, was assessed and compared with 

that of the single-lead scheme. Moreover, the accuracy of the estimation was calculated 

independently. It was found that a multi-lead scheme is better than a single-lead scheme 

because it has a lower variance. The low variance would mean that the final relative error in 

the data is also low. The multilead scheme could detect T-wave alternans (TWA) with an 

SNR of 30 dB lower and estimate TWA with an SNR of 25 dB lower than the single-lead 

scheme. 

 PCA was also applied for the removal of noise of Multichannel ECG signals. This is 

for the purpose of improving the quality control of data provided by the ECG. Sharma et al., 

applied the PCA to wavelet scale multivariate data matrices to remove signal noise. The 

wavelet scale multivariate data matrices are formed from the collection of wavelet 

coefficients of all ECG channels. In order to enhance the PCA, the signal-to-noise ratio was 
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computed, and percentage root mean square difference (PRD) and wavelet energy based 

diagnostic distortion (WEDD) were applied to evaluate the signal distortion metrics. It was 

found that using the given strategy, the SNR was lowered with better denoising effect [245].  

 This was followed by another approach, in which a novel multi-lead-based automatic 

strategy was performed to delineate the ECG boundaries with respect to the QRS and T-wave 

boundaries [246]. The single-lead and multi-lead (ML) were both subjected to delineation and 

a generalized algorithm was used for multi-lead boundary location. In order to validate the 

automatic delineation strategy, this was used over files from the available ECG databases. 

The results of this study showed that the automatic ML approach can be applied to multiple 

leads. The given strategy provided more robust and accurate boundary locations using the 

delineation system.  

 In another strategy used by Homaeinezhad et al., in 2012 sequential particle SVM was 

used in categorizing the sequential heart arrhythmia. In this approach, baseline wander was 

removed and the computation of scaled multi-lead ECG signals was done. A classification 

algorithm was also applied for accuracy. Because of the sequential particle support vector 

machine that was adopted, heart arrhythmia classification performance was improved. The 

specificity and accuracy, as well as the sensitivity and productivity also increased [247]. 

In order to obtain an improved quality control, Guillemard et al., used Clifford 

Algebras and Dimensionality Reduction to separate and classify signals [248]. The authors 

projected the data to different directions across an orthonormal basis to filter and organize it. 

The results showed that these approaches can be used in organizing, enhancing and 

classifying data that are too hard to decipher.  

6.4.1.2 Clifford algebra and Clifford Support Vector Machines for multi-lead ECGs 

The main goal in Bayro-Corrochano and Arana-Daniel’s study: ‘Clifford Support 

Vector Machines for Classification, Regression, and Recurrence,’ was to generalize the real-

valued SVMs to the hyper complex or Clifford-valued SVMs, and develop the concept of 

multiple input multiple output (MIMO) CSVMs, and to utilize CSVMs as classifiers, 

regressors, and recurrent systems. Their research focused more on the Recurrent Clifford 

Support Vector Machines (CASVMs) and is of much relevance to the work presented in the 

previous chapters as it can efficiently tackle multi-lead datasets [231]. This is an important 

direction for future research in ECG classifiers. Implementations can be envisaged using 
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either multi-dimensional kernel functions based on SVM approaches or using neural networks 

and geometric neurons. 
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Appendix A ECG Signal processing with Wavelet Filter 

Banks  
 

A.1 Introduction 

There have been significant advances in wavelet theory, over the last ten years. Most of the 

developments in the theory have involved the development of new bases for various function 

spaces. These developments include orthonormal wavelets with compact support.  

Furthermore, the applications in wavelet transform have been adopted in different 

fields and industries, such as in the fields of signal processing, image processing and 

compression (in general). In the field of signal processing, weak signals buried in noise are 

recoverable through the application of wavelets filters. This is particularly true in medical 

applications, such as the processing of X-ray images, as well as in magnetic resonance 

imaging. Images that are processed using this approach can be drawn together without the 

unnecessary blur, which may muddle the details. In recent decades, several research studies 

have examined the application of wavelet filter banks in medical signal processing and in 

particular in the field of electrocardiography. 

 This chapter provides an overview of wavelet transform (WT) algorithms for 

analysing ECG records. Aside from the general discussion of WT, this chapter covers 

continuous wavelet transformation (CWT), discrete wavelet transform (DWT), mother 

wavelet design, multi-signal wavelet analysis and filter banks. Specific examples on using 

WT with ECG signals are also provided.   

A.2 Biomedical signal processing and Electrocardiogram (ECG) 

signals 

Biomedical signals, such as the heartbeat, have a tendency to be non-stationary; hence, 

the wavelet transform is probably the most useful tool in analysing heartbeat signals. Through 

the use of a galvanometer, the electrical potentials connecting a range of body points can be 

measured. These signals determine whether the heart is functioning normally or possesses a 

serious health threat or cardiac abnormalities. Different types of filters used for biomedical 

signal processing, particularly in filtering these noises, include FIR and IIR filters, median 
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filters, and adaptive filters [1]. High-pass filters are used for the fluctuations of isoelectric 

lines, often called baselines or isolines. In the FIR filter with a Hamming window, the 

specifications include a 1500 minimum required filter order, 250 Hz sampling frequency, and 

0.35–0.9 Hz transition band. Additionally, a 3-second filter delay is acquired in the FIR filter. 

The result of the FIR filtration is excellent with the exception of its high delay. In the 

Butterworth IIR filter, the design parameters only consist of sampling frequency, cut-off 

frequency, and filter order. Spline interpolation is an alternative method of eliminating the 

isoelectric line alternations. The estimated isolines can be reconstructed through interpolation. 

Median filtration, on the other hand, is primarily used for impulse noise suppression. Noise 

can be regarded as part of the QRS complex and can be eliminated from the ECG signal. 

Other waves, such as P and T waves, can also be filtered out by repeating the filtration 

process. A second-order IIR filter and an adaptive filter are commonly used for suppressing 

power-line noise. Simulink may also be used for adaptive filtration [1] 

A.3 Wavelet transform 

Wavelet transform’ refers to the decomposition of the quadratic integrable function, which is 

 2( )x t L R , among the family ( )t , whether scaled or translated [2]. WT is similar to the 

Fourier transform (FT). In that data or functions are approximated with a particular function 

that has a specific shape. An important difference is that the size of the window used varies, 

whereas in the Fourier transform remains fixed. According to Liu (2010), the main difference 

between WT and FT is that FT decomposes the signal into sines and cosines, the functions 

localised in the Fourier space, whereas WT uses functions that are localised in both the real 

and the complex Fourier space. The following equation expresses WT [2]: 

*

( , )( , ) ( ) ( )a bF a b x t t dt




                 (A.1) 

where* denotes complex conjugation, ψ(t) is a function of mother wavelet and 𝐿2(𝑅) refers to 

the space of square integrable functions. It should be noted that a wavelet is a small wave that 

is zero outside its bounded interval. These functions can be real or complex [3].  

The frequency components of any signal can be analysed and extracted using an FT. 

The feature information of time and frequency can be calculated using the short-time Fourier 

transform (STFT). A Fourier analysis refers to the decomposition of a signal into sine waves 
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of different frequencies. A Wavelet analysis refers to the decomposition of a signal into 

shifted and scaled versions of the original wavelet. To provide a useful time-frequency 

localisation, the WT can be used because it can be reasonably well localised, both in time and 

frequency. In terms of the scaling function , ( )j k t and the mother wavelet function , ( )j k t , a 

signal x (t) is expressed using wavelet transform as: 

           
0 0

0

, , ,,( ) ( ) ( )j k j k j jk

k j j

k

k

x t a t b t




              (A.2) 

where j is the parameter of dilation or the visibility in frequency and k is the parameter of the 

position, a an b are the coefficients associated with both 
, ( )j k t and 

, ( )j k t respectively. 

The coefficients a, b can be calculated using the following equations [4]: 

                        
0 0, ,( ) ( )j k j ka x t t dt





                 (A.3) 

             
0 , ,( ) ( )jk kjb x t t dt





       (A.4) 

The scaling function and mother wavelet function can be expressed as: 

0

/2

, ( ) 2 (2 )j j

j k t k             (A.5) 

/2

, ( ) 2 (2 )j k

j jt t k            (A.6)  

The WT can be divided into two main types: continuous (CWT) and discrete (DWT).  

A.3.1 The Continuous Wavelet Transform (CWT) 

The CWT is implemented with the utilisation of arbitrary scales and arbitrary wavelets [3]. In 

a CWT, the wavelets are non-orthogonal. Moreover, there is a high correlation amongst the 

data or information obtained. CWT is used in the processing of analogue signals and enables 

their features to be categorised into wavelets [5]. The CWT is used in order to analyse the 

variation of frequency over time of a signal. Furthermore, common time-varying patterns are 

revealed by the wavelet coherence of two signals. The analysis of a continuous wavelet is also 

used in the interpretation of images. The frequency content of an image as it changes across 

the image can be observed. This helps identify patterns in a noisy image [6]. 
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In the current study, in order to obtain CWTs of images and signals, the MATLAB 

wavelet toolbox is used. This is often used to obtain the coherence of wavelets between two 

signals; or to rebuild the time frequency estimates of the signals. Image and signal 

compression are two of the many applications of the wavelet transform. The WT provides a 

high image quality and higher compression ratios, as compared to other conventional 

techniques [7].  

The CWT can be applied to areas such as gait analysis, texture analysis, ECG analysis, 

filter design, detection of transients, detection of corners and edges in an image etc. [8]. The 

CWT of a function ( )x t  is defined as the integral transform of function ( )x t , with a family of 

wavelet functions (daughter wavelets) , ( )a b t . In order to find the CWT of a function when 

translated by distance b R  at a scale (𝑎 > 0) the transform can be expressed as: 

*

1/2

1
( , ) ( )X

t
a b x t dt

a

b

a






 
 





                        (A.7) 

This is the most commonly used expression for the CWT.  

The wavelet function is designed to strike a balance between time domain and 

frequency domain resolution. However, it should be noted that the above given equation for 

WT is a representation of an over-complete function. What should be done is that there should 

be a reconstruction on the basis of this representation ( )x t . The reconstruction of ( )x t can be 

obtained using a CWT inversion. The following equation enables the reconstruction of ( )x t , 

using a CWT inversion.  

,

0

( ) ( , ) a b

t b

a
x t X a b da db

 



 
 
 

                (A.8) 

It is notable here that the boundaries regarding translation extend to infinity and those 

regarding frequency indicate causality. In practical applications the infinity signs on 

integration are replaced by large constants taking appropriate limits. 

A.3.2 The discrete wavelet transform 

The DWT is another type of wavelet transform. It should be noted that this is completely 

different from the previously discussed CWT. The DWT is more commonly used for 

numerical analysis, signal and image processing [9] while the CWT is more commonly used 

by physicists to analyse patterns in physical phenomena. Kociołek et al. (2001) have 



 Appendix A   

 

 192   

 

explained that the DWT involves a linear transformation that operates on a data vector, whose 

length is of an integer power of two, transforming it into a numerically different vector of the 

same length [10]. DWT is a tool that can be used to separate data into different frequency 

components. Each component can then be studied with a resolution matched to its scale. It is 

easily characterised by the multi-scale representation of a function. It is also important to note 

that the DWT is orthogonal and invertible [11].  

Additionally, the DWT is considered the transform of wavelets, when the wavelets are 

sampled discretely in functional analysis or numeric analysis. It is preferred over other 

wavelet transforms. Compared to the Fourier transform or the windowed Fourier transform, 

this also has the advantage of temporal resolution, and has the ability to capture both location 

information in terms of time and frequency [12]. 

The practical applications of DWT can be found in the processing of signals in digital 

communications and when it comes to gait analysis. Generally, the discrete wavelet of 

discrete signals ( )x t can be expressed through the following equation: 

        
0

0

0 , 0 ,( ) ( , ) ( ) ( , ) ( )j kj k

k j j k

x t W j k t W j k t  




             (A.9) 

where 0( , )W j k  are approximation coefficients, 0( , )W j k  are detailed coefficients, 
0 , ( )j k t

scaling function and , ( )j k t  is the mother wavelet function. 

A.3.3 Multi-signal Wavelet Analysis  

A multi-signal is a set of 1-D signals with the same lengths and located in one matrix, whether 

in a row or in a column format. The main advantage of using the DWT transform is that it can 

denoise more than one signal at the same time, before presenting them into the classifier as 

input. It can also be used with various mother wavelet functions, such as the Daubechies 

wavelet (db6) and (db4) [13]. 

Zhao and Yan (2010) have explained that the analysis of multi-signal wavelets has to 

do with showing how to analyse, denoise, or compress a multi-signal, and then to classify 

different representations or simplified versions of the signals composing the multi-signal. 

Multi-signal wavelet analysis allows for the compression of a big set of signals, but only with 

the minimal utilisation of wavelet representations [14]. 
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 It should be noted that there are different levels of resolution for the reconstructed 

approximations. As stated in [15], denoising and compressing are two of the main 

applications of wavelets, often used as a pre-processing step before doing classification. Fig 

A.1 illustrates the use of a multi-signal wavelet decomposition with a normal ECG beat.  

 

 

 

 

   

A.3.4 Mother wavelet choices 

The mother wavelet involves a transforming function; it gets its name because it is 

made of smaller waves. Its function is of an oscillatory nature [16]. 

 
Figure A.1: Analysis Normal ECG beat using multi-signal wavelet decomposition 

(MWD). 

 
Figure A.2: Analysis Normal ECG beat were taken from St Petersburg INCART 12-lead 

Arrhythmia Database (incartdb) and extracted coefficients using multi-signal wavelet 

decomposition (MWD)  
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The multi-resolution analysis at different scales of the mother wavelet also implies 

that phenomena with fractal (self-repeating) characteristics can be compactly represented. The 

mother wavelet can be considered a prototype that can generate functions for other windows 

[16]. The daughter wavelets are translated and scaled copies of the oscillating mother 

waveform, with fast-decaying finite-length features. 

Wavelets are generally derived from a single basic mother wavelet,  (t). A family of 

these wavelets can be obtained by scaling and translating , using the following expression: 

,

1
, 0( ,)s t

s

t
s s

s



  





  

 
                                              (A.10) 

where , ( )r s t  is a family of mother wavelet (daughter wavelets), s is a scaling factor and  is 

a translation parameter, controlling the location of the wavelet [3]. 

As discussed by Liu (2010), the mother wavelet function does not extend to infinity in 

terms of the time domain but is bounded. The ( )t has values in a certain range and zeros 

elsewhere. Another property of the mother wavelet is that it has zero-mean and that it is 

normalised. These constrains can be expressed mathematically as follows [2]: 

(0) ( ) 0t dt 




              (A.11) 

                           
2

*( ) ( ) ( ) 1t t t dt  




                         (A.12) 

There are different types of mother wavelets, such as Haar, Daubechies, Biorthogonal, 

Coiflets, Symlets and Morelet, as will be discussed in the following section.  

A.3.4.1 The Daubechies wavelets db(N) 

The Daubechies wavelets db(N) were defined by Ingrid Daubechies in 1992 and they are 

called compactly supported orthonormal wavelets. The families of these wavelets are written 

as dbN where N is the order and db is the family name of the wavelet. The Daubechies 

wavelet function has been used to decompose data as shown in Fig A.3-A.6, which uses 

Daubechies (db4). Daubechies is a type of wavelet that can find the minimum size discrete 
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filter and for a given vanishing moment p. These properties of wavelets also have orthogonal 

and compact support. 

A.3.4.2 The Symlet wavelet (symN) 

 The symN wavelets are also known as Daubechies least-asymmetric wavelets. The symlets 

are more symmetric than the extremal phase wavelets. The  N represents the number of 

vanishing moments in symN, and the symlets properties include orthogonal and compact 

support. The filter length is 2p, it has p vanishing moments and is nearly linear in phase.   

 

 

             Figure A.3: db1 Scaling and wavelet Function.               Figure A.4: db2 Scaling and wavelet Function. 

 
 

          Figure A.5: db4 Scaling and wavelet Function.           Figure A.6: db6 Scaling and wavelet Function. 
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A.3.4.3 The Coiflet Wavelets (coifN) 

This function can be used in applications in numerical analysis. Coifman wavelets are 

constructed as a family of wavelets that have p vanishing moments with some additional 

requirement about the vanishing moments of the scaling function. The equations (A.13) and 

(A.14) explain the two requirements, regarding vanishing moments of the scaling function. In 

coifN, the number of vanishing moments for both the wavelets and scaling functions is N. For 

the coiflet construction, the number of filter coefficients is 3N. General characteristics of the 

Coiflets Wavelets are compactly supported wavelets with the highest number of vanishing 

moments. Fig A.9 shows coif5 scaling and wavelet Function. 

  1    t dt




               (A.13) 

   0         for     1          kt t dt k p




                          (A.14) 

 

 

 

 

 

 

  
        Figure A.7: sym4 scaling and wavelet function.          Figure A.8: sym6 scaling and wavelet function. 

 

Figure  A.9: coif5 scaling and wavelet Function. 
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A.3.4.4 The Haar wavelet (haar)  

The Haar wavelet is the oldest and the simplest wavelet, which has a minimum vanishing 

moment. The scaling function is symmetric while the wavelet function is anti-symmetric. It 

represents the same wavelet as db1 as shown in Fig A.3.  

A.4 Wavelets from a filter banks perspective 

The filter banks, such as the biorthogonal and orthogonal, are considered the 

arrangements of bandpass, high pass and low pass filters, that can divide the data into sub 

bands. If the sub bands are not modified, the perfect reconstruction of the original data is 

possible, by using inverse filters. In most of the applications, the data is processed differently 

in the different sub bands. This enables the reconstruction of a modified version of the 

original data. A linear phase does not occur in the orthogonal filter banks, but there is a linear 

phase in the biorthogonal filter banks [17]. This implies that biorthogonal filters are well 

placed; for example, in terms of the analysis and synthesis of a control system.  

The scaling function can be specified by the number of vanishing moments in the 

wavelet function. This helps retain or remove the polynomial behaviour in the data. The 

wavelet toolbox function can be used to obtain the most common orthogonal and biorthogonal 

wavelet filters [18]. The perfect reconstruction filters can be designed by the elementary steps 

of lifting. In the reconstruction phase, the original signal is synthesised from the coefficients 

that are obtained at each level of the decomposition stages, as shown in Figure A.10. This 

transform is also known as the ‘Inverse Discrete Wavelet Transform’ (IDWT). This technique 

is most commonly used in sub-band coding. Herley and Vetterli (1999) further explained: 

“The wavelet transform has recently emerged as a powerful tool for non-stationary signal 

analysis. Its discrete version is closely related to filter banks which have been studied in 

digital signal processing”.  A biorthogonal filter bank can be constructed with the use of a 

linear phase FIR filters.  

 
Figure  A.10: Filter bank for perfect reconstruction. 
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A.4.1  Wavelet filter bank signal processing of biomedical signals 

Various types of filters were considered used in order to analyse the ECG signals or detect the 

beats. For example a nonlinear filter technique and first-order derivative moving average 

filters have been used for QRS complex detection and heart-rate calculation [19]. In 2009, 

Balasubramaniam and Nedumaran indicated that ECG signal processing can be seen as a two- 

stages preliminary processing and primary processing routine. In the first stages, artefacts 

such as higher peaks due to electrode motion and power-line 60 Hz interference are removed, 

while in primary processing, techniques such as denoising, baseline wandering and detection 

of P, QRS, and T waveforms are achieved through the use of some of the algorithms [20].  

As was mentioned, ECG waveforms consist of five basic waves  P, Q, R, S, and T 

waves and, sometimes, U waves. Under normal conditions, cardiac cells are electrically 

polarised and a normal heartbeat has a usual ECG tracing that is composed of a P wave that 

causes a contraction of the atrium, a QRS complex that causes left and right ventricular 

contractions, and a T wave that signifies ventricular repolarisation. The major disadvantage of 

using as FFT to analyze these waves is its inability to provide the exact location information 

of the frequency components. The short-term Fourier transform (STFT), may also be used but 

its drawback is that the precision of both time and frequency is not optimal. Hence, wavelet 

transformation is a more suitable approach for the studying of ECG signals. 

A.4.2   Wavelets filter banks and their use in Electrocardiogram (ECG) 

signals analysis. 

Multi-rate digital filters and filter banks are often applied in the digital audio industry, 

communications, antenna systems, speech processing, and image compression [21]. A multi-

rate digital signal processing algorithm has been designed in this study in order to perform 

multiple tasks in ECG processing. This algorithm includes the use of filter banks to 

decompose the ECG signals into sub-bands with identical frequency bandwidths. A filter 

bank (FB) is a set of band pass filters which break up the input signal into multiple 

components, each of which possesses the original signal’s single frequency sub-band.  

Performing signal processing by means of a bank of digital filters in combination with 

down-sampling is the idea behind filter bank theory. This process is based on a given signal x 
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passing through a low pass filter with a transfer function C(z) and a high pass filter with a 

transfer function D(z) at each stages of the filtering process.  

 In addition, these two filters have to meet certain requirements in order to enable a 

perfect reconstruction of the two output signals that are obtained after down-sampling a 

corresponding mother wavelet ψ(t). Having compact support leads to an improvement in the 

efficiency of the decomposition and reconstruction. Let is assume two polynomials in the ℤ 

domain: 

                                
( 1) ( 2) ( )

0 1 2( ) N

NC z c c z c z c z                (A.15) 

               
( 1) ( 2) ( )

0 1 2( ) N

ND z d d z d z d z               (A.16) 

where N is an integer determining the order of the filters. The orthogonality of the underlying 

wavelets on the filter coefficients includes the following conditions:  

 

Normalization:  
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Double shift orthogonality  
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for all integers ℓ ≠ 0  

 

(c) double shift orthogonality between two filters:  

0

2 0  
N

k k

k

C d l


                                              (A.19) 

for all integers ℓ.  

A double shift orthogonality implies that N is odd; for example, N=2n-1. [22]. Analysis and 

synthesis are the two basic types of filter banks. An analysis bank uses  filters  𝐻𝑙(𝑧),  which 

split a signal into M subband signals 𝑥𝑙(𝑛), as shown in Figure A.2. A synthesis bank consists 
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of M synthesis filters 𝐹𝑙(𝑧), which combine M signals 𝑦𝑙(𝑛) into a reconstructed signal. Very 

often by marking some of these coefficients equal to zero, we actually filter the signal.  

 The analysis filters are based on decomposing an incoming signal into specific 

frequency bands or sub-bands, while synthesis filters use the processed sub-bands, resulting in 

a processed version of the input signal. An FB-based algorithm involves decomposing a 

signal into frequency sub-bands and then reconstructing the processed sub-bands  [21].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Figure A.11 an filter bank involves M analysis and M synthesis filters, 

while L is the length of each sub-band signal 𝑈𝑙(𝑧), 𝑙 = 0,1, .𝑀 − 1 , found by using the 

analysis filters as the band passes the input signal X(z).  

                                         ,  0,1, . 1lH z l M                                             (A.20) 

                                                0,1, . 1l lU z H z X z l M                                       (A.21)  

As 𝜋 𝑀⁄  is the effective bandwidth of 𝑈𝑙(𝑧), it can be down-sampled to decrease the total rate 

by using the following equation   

                                       
1

1

0

1
          0,1, . 1        

M
kM

l l

k

W z U z W l M
M





                    (A.22) 

 where 𝑊𝑙(𝑧) is the down-sampled signal, 𝑊 = 𝑒−𝑗(2𝜋/𝑀).  

 

 
Figure A.11: Analysis and synthesis filter banks adopted from based on 

single scale multi-resolution analysis, adopted from  [23]. 
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The up-sampling operation is based on inserting zeros after each point in the time domain 

sequence discretized time domain. 

                      
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                 (A.23) 

The synthesis filters can be operated efficiently by using the following expression                   

          𝑶𝒍(𝒛) = 𝑭𝒍(𝒛)𝑽𝒍(𝒛)           𝒍 = 𝟎, 𝟏, …… .𝑴 − 𝟏                 (A.24)    

where 𝐹𝑙(𝑧) represents the synthesis filters and 𝐹𝑙(𝑧) the sub-band signals 𝑂𝑙(𝑧). The sub-

band signals 𝑂𝑙(𝑧) can be algebraically added point by point to result in the output 𝑌(𝑧) [23]. 

                                        
1

1

M

l

l

Y z O z




                                                          (A.25) 

                    
1

0

      
M

l l

k

F z V z




                                      (A.26)

     
1 1

0 0

1
              

M M
k k

l l

k k

X zW H zW F z
M

 

 

                        (A.27) 

Furthermore, some of the ECG processes which can be performed using filter banks 

include detection of heartbeat, beat classification, noise alert, and ECG enhancement [24]. In 

ECG processing, the analysis filters are required to have a linear phase and identical group 

delay since the fiducial points across the sub-bands must have the same delay. In the 

algorithm of beat detection, the presence of a beat is indicated by the energy in the region of 

the QRS filter. Here, the SNR (signal-to-noise ratio) of the QRS complex is maximized by the 

band pass filter, and then the band pass signal is squared and entered into a moving window 

integrator (MWI) to obtain an approximation of its energy [23]. Some result of using DWT 

and filter bank are discussed in the following section. 

Additionally, ECG enhancement can be made possible through the processing of the 

sub-bands, which is dependent on the time and frequency, and then reconstructing them. 

Some results of using DWT and FB will be mentioned in this Chapter. 

A.4.2.1  ECG signal decomposition using Discrete Wavelet Transforms (DWTs) 

In the signal decomposition using  the DWT, both a low pass filter bank (LPF) and a 

high pass filter bank (HPF) are used to generate time domain responses, these are convolved 

with the time domain ECG signal. Convolving the response function of the chosen filter 
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(corresponding to a particular mother wavelet) with the signal provides an output which has 

different energy at different scales. Approximation coefficients relate to the low frequency 

components of the signal whereas detail coefficients relate to the higher frequency 

components in the signal. Wavelet decomposition using the DWT provides essentially a 

multi-resolution representation of the input signal. The user normally retains coefficients up 

to a particular scale whereas more detailed decompositions become redundant as their 

incorporation have a negligible effect on the signal. The convolution operation may be 

conveniently performed in the frequency domain where it is implemented through a simple 

multiplication process [25].   

The ECG signals considered in this study were taken from the European ST-T Database. The 

features in the ECG signal were extracted using DWTs from the sym3, db4 and db6 wavelet 

families. Six decomposition levels are more than sufficient to faithfully represent the ECG 

signals.  As shown clearly in Fig A.12, blocks H[n] and G[n] represent the low-pass and high-

pass filter responses (i=1,... 6) respectively, and the ↓2 operator denotes dyadic down-

sampling. Approximation ci and Detail di coefficients at each decomposition step are also 

shown. Only perfect reconstruction quadrature mirror filter banks (orthogonal transforms) are 

considered in this study because they fully preserve the information content in the signal. This 

is important from an algorithm certification perspective which is normally associated with the 

introduction of new algorithms for bio-medical software applications. The discrete wavelet 

transform can be calculated in a fast manner by using finite-impulse-response (FIR) filter 

banks.   
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G

H 2
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H 2
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Figure  A.12: Two-channel filter bank implementation of the wavelet transform applied to a 

data vector x. Blocks H and G represent a lowpass and a highpass filter respectively and 2 

denotes the operation of dyadic downsampling. The decomposition can be carried out in 

more resolution levels by successively splitting the lowpass channel,  adopted from  [26]. 



 Appendix A   

 

 203   

 

The filter bank transform can be regarded as a change of variables for the ECG signals 

xn:  

  
1

 

0

    ,       0,1  ,  , 1
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t x v n j J






               (A.28) 

where 𝑡𝑗 is a transformed variable and 𝑣𝑗(𝑛) ∈ ℜ is a transform weight. The transfer function 

of the low-pass filter in the z-domain can be written as: 
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                          (A.29) 

where superscript (N) denotes that the filtering sequences have length 2N and  𝐻0
(𝑁)(𝑧) and  

𝐻1
(𝑁)(𝑧)  denote polyphasic components of  𝛨(𝛮)(z) . Further algorithmic details of the 

proposed filter banks and a discussion of adaptive filter banks for the purpose are discussed in 

[26]. Results from multi-level decompositions are shown in Figure A.13.  

Of particular interest to the current study is to identify the most parsimonious 

representation of the ECG signals in the wavelet domain so that a non-linear neural network 

classifier can perform the classification task directly in the wavelet domain. Further 

parameterization of the signals using adaptive wavelets using various adaptive filter banks [26] 

from the wavelet transform literature are considered in this project. This example which was 

also published in [27] shows the result of using multilevel decomposition of an ECG signal 

with some wavelet families such as sym3, db4 and db6.   
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A.4.3 An optimal wavelet filter banks for ECG signal classification 

Signal decomposition using perfect reconstruction quadrature mirror filter banks can provide 

a very parsimonious representation of ECG signals. In a previous work [26], it was shown 

that optimal wavelets can be used for the post-processing of ECG signals so that classifiers 

can operate directly in the wavelet domain as opposed to the time or frequency domains. This 

section will discuss the extension of  the wavelet parametrization approach proposed by 

Sherlock and Monro [28] to ensure that the derived wavelets have at least two vanishing 

moments. 

A.4.4   Wavelet filter bank parametrisation 

In the signal decomposition using the DWT, both a low pass (LPF) and a high pass (HPF) 

filter bank are used to generate time domain responses, these are convolved with the time 

domain ECG signal. Convolving the response function of the chosen filter (corresponding to a 

particular mother wavelet) with the signal provides an output which has different energy at 

different scales. Approximation coefficients relate to the low frequency components of the 

signal whereas detail coefficients relate to the higher frequency components in the signal. 

 
Figure A.13: ECG signal multilevel decomposition using sym3, db4 and db6 wavelet families. 
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Wavelet decomposition using the DWT provides essentially a multi-resolution representation 

of the input signal. The user normally retains coefficients up to a particular scale whereas 

more detailed decompositions become redundant as their incorporation have a negligible 

effect on the signal. The convolution operation may be conveniently performed in the 

frequency domain where it is implemented through a simple multiplication process. 

In this filter bank, the low-pass filtering result undergoes successive filtering iterations 

with the number of iterations Nit chosen by the analyst. The final result of the decomposition 

of data vector x is a vector resulting from the concatenation of row vectors c(Nit) (termed 

approximation coefficient at the largest scale level) and d(s) (termed detail coefficients at the 

s
th

 scale level, s = 1,..., Nit) in the following manner: 

 

t = [c(Nit) | d(Nit) | d(Nit – 1) | … | d(1)]          (A.30) 

with coefficients in larger scales (e.g. d(Nit),d(Nit – 1),d(Nit – 2),…) associated with broad 

features in the data vector, and coefficients in smaller scales (e.g. d(1),d(2),d(3),…) associated 

with narrower features such as sharp peaks. The filter bank transform can be regarded as a 

change in variables from 
J
 to 

J
 performed according to the following operation, 

 
1

 

0

    ,       0,1  ,  , 1
J

j n j

n

t x v n j J



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             (A.31) 

where tj is a transformed variable and vj(n)   is a transform weight. It proves convenient to 

write the transform in matrix form as: 

JJJJ   Vxt 11
         (A.32) 

where x = [x0 x1 … xJ-1] is the row vector of original variables, t is the row vector of new 

(transformed) variables and V is the matrix of weights. Choosing V to be unitary (that is, V
T
V 

= I), the transform is said to be orthogonal and it, therefore, consists of a simple rotation in 

the coordinate axes (with the new axes directions determined by the columns of V).   

Let {h0, h1, …, h2N-1} and {g0, g1, …, g2N-1} be the impulse responses of the low-pass 

and high-pass filters respectively. Assuming that filtering is carried out by circular 

convolution, the procedure for generating the approximation coefficients from the data vector 

x is illustrated in Table A.1. The convolution consists of flipping the filtering sequence and 

moving it alongside the data vector. For each position of the filtering sequence with respect to 
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the data vector, the scalar product of the two is calculated (with missing points in the filtering 

sequence replaced with zeros). For instance, if N = 2, the third row in Table 1 shows that c1′ = 

x1h3 + x2h2 + x3h1 + x4h0. Dyadic down-sampling is then performed to c2i′ to generate 

coefficients ci. The detail coefficients di are obtained in a similar manner by using the high-

pass filtering sequence. 

Table A.1. Convolution procedure for low-pass filtering 

showing results before and after dyadic down-sampling. 

x0 x1  x2N-1 x2N  xJ  x0 x1 ... x2N-2 Before After 

h2N-1 h2N-2  h0  c0′  

 h2N-1  h1 h0  c1′ c0 

     
     

      h2N-1 h2N-2 h2N-3  c′J   

       h2N-1 h2N-2  h0 c′J-1 cJ/2-1 

If the approximation c and detail d coefficients are stacked in vector t = [c | d], the 

wavelet transform can be expressed in the matrix form with the transformation matrix given 

by: 
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A requirement for the transform to be orthogonal (i.e., V
T
V=I) is that the sum of the 

squares of each column must be equal to one and the scalar product of different columns must 

be equal to zero [29]. Therefore, for a filter bank that utilizes low-pass and high-pass filters, 

the following conditions ensure orthogonality of the transform so that no information is lost in 

the decomposition process [30]:  
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Under these conditions, the filter bank is said to enjoy a perfect reconstruction (PR) 

property, because x can be reconstructed from t, which means that there is no loss of 

information in the decomposition process. Although other non-orthogonal filter bank 

transforms can also enjoy a PR property, provided that they are associated to a non-singular 

matrix V, the analysis in the present work is restricted to orthogonal transforms. In fact, the 

orthogonality of the transform (with the consequent PR property) ensures that no information 

that may be potentially useful for classification purposes is lost in the decomposition process. 

Moreover, convenient parameterisation schemes may then be employed to cast the transform 

filters into forms amenable to optimization. 

The parameterisation of PR FIR filter banks proposed by Vaidyanathan (1993) [29] as 

adapted by Sherlock and Monro (1998) [28] to parameterise orthonormal wavelets of arbitrary 

compact support may be used for this purpose. For a filter bank of the form shown in Fig. 

A.12 where the conditions in Equations (A.34a) and (A.34b) are satisfied, the transfer 

function of the low-pass filter in the z-domain can be written as: 
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where superscript (N) denotes that the filtering sequences have length 2N. The terms H0
(N)

(z) 

and H1
(N)

(z), which denote polyphasic components of H
(N)

(z), are given by: 
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Defining the polyphasic components G0
(N)

(z) and G1
(N)

(z) of the high-pass filter G
(N)

(z) in 

a similar manner, a matrix F
(N)

(z) may be defined: 
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It can be shown [28],[31] that F
(N)

(z) can be factorized as: 
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where each pair of parameters (Ck, Sk) are related to a common angular parameter 𝜃 k as Ck = 

cos (𝜃k) and Sk = sin (𝜃k), k = 0, 1,…, N – 1. It follows that the filters can be completely 

parameterised by N angles 𝜃0, 𝜃 1, …, 𝜃 N–1, which can assume any value in the set of real 

numbers, as shown in Fig 4.14. 

The weights of the low-pass filter can be easily recovered from a set of angles { 𝜃 k} by 

using the following recursive formula [29]: 
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for k = 1, 2, ..., N – 1 with 


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zF .           (A.40) 

Equation (A.39) with the initial condition of Equation (A.40) provides a way to obtain 

the weights {hi
(k+1)

} for a filter of length 2(k+1) from the weights {hi
(k)

} for a filter of length 

2k. To do that, one starts by writing, from Equations (A.37) and (A.39), 

 

 
Figure:  A.14 Procedure for parameterizing wavelet filter banks by N angles. (a) Sk 

and Ck represent the sine and cosine of angular parameter k, respectively,  adopted 

from [26] 
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with 0

)1(

0 )( CzH   and 0

)1(

1 )( SzH  . Then, a recursive formula for the generation of low-pass 

filter weights with even indexes {h2i} can be stated by using the definitions in Equations 

(A.36a) and (A.36b) to expand Equation (A.41a) as 
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1 Sh  . From the identity of terms with the same 

power of z in the last line of Eq. (A.42), it follows that: 

 

























)(

12

)1(

2

)(

12

)(

2

)1(

2

)(

0

)1(

0

1...,,2,1,

k

kk

k

k

k

ik

k

ik

k

i

k

k

k

hSh

kihShCh

hCh

           (A.43a) 

for k = 1, 2,..., N – 1.  

A similar formula can be stated for the low-pass filter weights with odd indexes, by 

expanding Equation (A.41b) as: 
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for k = 1, 2,..., N – 1. After obtaining the low-pass filtering sequence as explained above, the 

high-pass filtering sequence can be obtained by using Eq.(A.34b). 

The procedure for obtaining filter weights {hi
(k+1)

} in terms of {hi
(k)

} by adding one 

additional angular parameter 𝜃 k is depicted in Figure A.15 [28]. In this graphical notation, 

each arrow represents the multiplication of the element at the base of the arrow with the 
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constant on top of the arrow. When two arrows arrive at the same point, the results of the 

multiplications are added together. 

By adopting the parameterisation described above, the adjustment of the filter bank to the 

ensemble of signals under consideration can be formulated as a problem of unconstrained 

optimisation in R
N
. The optimal filtering procedure employed in this work was aimed at 

maximising the variance explained by the wavelet coefficients kept in the thresholding 

process. The optimisation consisted of maximising an objective function F(𝜃): R
N
R defined 

as  





I

2 );()(
k

jF θθ              (A.44) 

where 𝜃 is the vector of N angles that parameterise the filter bank as explained above, 𝜎 (j; 𝜃) 

is the standard deviation of the j
th

 wavelet coefficient calculated in the set of training signals, 

and I is the index set of the coefficients used. Since the overall variance of the data set is 

preserved by an orthogonal transform, maximizing (A.44) amounts to maximizing the relative 

explained variance of the wavelet coefficients employed. It is worth noting that I is defined on 

the basis of the variance of the wavelet coefficients before the optimisation.  
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Figure A.15: Recursive generation of lowpass filter weights {hn
(k+1)

} in terms of 

{hn
(k)

} by adding one additional angular parameter at a time as discussed by 

Sherlock and Monro. By using this algorithm, any set of N angles  {𝜽𝟎, 𝜽𝟏, . .,
𝜽𝑵−𝟏} leads to a sequence of lowpass filter weights that satisfies the orthogonality 

condition were adopted from (A.32),  adopted from  [26]. 
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An approach to circumvent the local maxima problem of the formulation described 

above consists of exploiting the product filter parameterisation proposed by Moulin et al., 

[32]. In order to describe the optimisation process, we use again a circular convolution 

process for the data vectors under the down sampling operation Xhc


  and  d gX  where 

 02212 ,..., hhhh NN   and  2 1 2 2 0, ,...N Ng g g g   are the corresponding impulse response 

sequences of the low-and high-pass filters respectively and X


is a circulant matrix formed 

from the data vector x as 
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and we consider the power (energy divided by the number of coefficients) of the low-pass and 

high-pass filter outputs. Since the number of coefficients is J/2, due to the down sampling 

operation, the power values of the approximation (c
m
) and of the detail (d

m
) coefficients for 

the m
th

 training signal are given by  
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P
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If M training signals are employed, the overall power of the approximations and details 

are 
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The relation between Pc and Pd can be expressed in an objective function F: 
2N 
 

2N
 

  given by:  
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which is similar to the coding gain used to assess the compression performance of two-

channel filter bank structures [31].  

If the conditions in Eq.(A.34) are satisfied, the WT is orthogonal, and thus it preserves 

power [33]. As a result, the power of the input signal x
m
 equals the sum of the power in both 

output channels, Pc
m

 + Pd
m
. Hence, for a given training set, the sum A = Pc + Pd is constant and 

thus maximising F is equivalent to maximising Pc. Writing: 

2

2
2 25.0

cc PAP

A
F


            (A.49)  

it follows that F reaches a minimum of 1 when Pc = A/2, that is, when the power is equally 

divided between the approximation and detail coefficients. As Pc increases from A/2 to A, F 

increases and tends to + when Pc tends to A, i.e, when all the power is contained in the 

approximation coefficients. The advantage of aiming at maximising Pc lies in the fact that the 

signal-to-noise ratio is usually larger in the low-pass filter output. Thus, maximising Pc 

further improves the filtering performance. It is worth noting that, if the data set is mean-

centered (variable-wise) prior to the wavelet decomposition, the power is equal to the 

variance. In this manner, the optimisation amounts to maximizing the variance explained by 

the approximation coefficients. 

Since Pc only depends on the low-pass filter weights h, the problem can be re-stated as 

the maximization of an objective function : 2N
   given by: 
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where mm
Xhc


  is the vector of detail coefficients for the m
th

 training signal, before the 

downsampling operation as shown in Table A.1 and m
X


 is the circulant matrix formed from 

x
m
. This holds because we may assume that the power of the detail coefficients before and 

after downsampling is approximately the same. Using (A.50) one may write: 
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Since 
Tmm

XX


 is Toeplitz for any x
m
, then R2N2N is also a Toeplitz matrix. Thus, the 

constraints in Equation (A.34) allow the objective function to be rewritten, with a slight abuse 

of notation, in the following linear form [34] 
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where { r0, r1, …, r2N-1 } are the elements of the first row of R and vector a = [  a0 a1  aN-1 ] 

contains the coefficients of the product filter P(z) defined as: 
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Given a, the transfer function H(z) of the desired filter can be recovered from P(z) by a 

spectral factorisation procedure [33]. This factorisation is possible provided that the frequency 

response of the product filter given by )()( 2 fjePfQ  (where j is the imaginary unity), is 

non-negative at all frequencies f, that is, Q(f) ≥ 0, f. It follows that the following 

restriction must be enforced: 
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Since Q(f) is periodic with period 1 and Q(f) + Q(f + 0.5) = 2, f, it is sufficient to 

consider the restriction Q(f) ≥ 0 in the interval 0  f  0.5, that is 
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Maximising (a) defined in Equation (A.52) with respect to a subject to the inequality 

restrictions in Equation (A.55) is a linear semi-infinite programming (LSIP) problem [35], 

because there is a finite number of variables (a0 a1  aN-1) and infinitely many restrictions. 

This problem can be solved by discretising the frequency interval [0, 0.5] to generate a finite 

number of restrictions, and then applying standard linear programming techniques [36]. The 

solution ã to this approximated problem can then be used to generate a feasible solution af to 

the original problem as discussed by Eriksson et al., (2000) [34]:  
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 Appendix A   

 

 214   

 

where 𝛿  0 is the minimum of Q(f) in the interval 0  f  0.5 when ã is used instead of a in 

Equation (A.54). 

From the above description, it may be concluded that by adopting the coding gain as a 

measure of the compression performance of the low-pass/high-pass filter pair [37], the 

optimisation of coefficients {a0, a1, ..., aN-1} can be cast into a LSIP problem. By using a 

convenient discretisation procedure [32] such a problem can then be converted into a linear 

programming one, for which efficient solution algorithms exist. 

A.4.5 Parametrisation and optimisation approach 

The method of parameterisation of perfect reconstruction finite impulse response filter banks 

and adapts it to parameterise orthonormal wavelets of arbitrary compact support have been 

stated by Vaidyanathan’s [29]. Moreover, the literature discusses several parameterisations of 

orthonormal wavelets. In [38] Zou and Tewfik (1993) proposed a parameterise wavelets 

method that can be used for parameterise wavelets with a number of vanishing moments 

greater than one. 
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As stated in [39] [40], in order to ensure two vanishing moments for the resulting transform,  
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 In what follows, an optimization process is proposed that maximizes the selectivity of 

the pair of high-pass/low-pass orthonormal wavelet filters with a given length.  

As discussed in [39],[41] the expression in (A.57) has a real value solution if the set of 

angles ia  where 1 2i N    satisfy a set of constrains that define a non-convex region in 2NR  .  

Additional constrains are imposed to ensure this, by invoking a new parameter i  so that: 
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Rearranging (A.58) and (A.59) we have:  
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The cost J is defined from the frequency response of the low pass filter as: 

0.5
( )

0.25

0.5
( )

0

s

s

s

N j T

N j T

H e d
J

H e d

















           (A.63) 

with 2 /s T   being the sampling frequency. As discussed in [41], optimization of the cost 

function with respect to the i  parameters is accomplished by using sequential quadratic 

programming (SQP) which uses local quadratic approximations of the cost function and local 

linear approximations of the restrictions. An interesting variance to the above algorithm 

where additional constrains are imposed to ensure a third vanishing moment can be found in 

[41]. 

A.4.6   Example of a signal decomposition process 

The signal in Fig. A.16 represents the first 1000 points out of a 3600 data points record from 

patient number 100 (lead 1) from the MIT database. The patient does not have a pathogenic 

condition and his record (among others from that database) is normally used as a training set 

to different classifiers to discriminate from other pathogenic patient records. A typical 

decomposition of the signal to approximation and detail coefficients at the first decomposition 

level is shown as an inset to that figure. Normally, a much smaller filter tap is generated by 

the user as shown in the Figure A.16b. Figure A.17 depicts the angular parameter alpha 

associated with a standard db6 filter bank as well as for the filter bank generated on the basis 

of the proposed procedure. Figure A.17b shows the difference in the function of these filters 

in the frequency domain. The introduction of a vanishing moment in the random parameter 

filter shown in Fig. A.17b ensures that its gain drops to zero at high frequencies. 
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A.5 Hardware requirements in ECG processing  

In (2012) Rai and Trivedi indicated that ECG signal-processing techniques consist of de-

noising baseline correction, parameter extraction and arrhythmia detection [42]. The 

extraction of a heartbeat characteristic waves in a time resolved manner are the main 

requirements for all ECG signal-processing algorithm. Execution of the digital signal 

processing using specifically designed hardware for the purpose of assisting physicians or 

cardiologists performing ECG monitoring has been discussed in [43]. A real-time visual 

observation of the signal on LCD screen is provided in many wearable devices nowadays. 

 

Figure  A.16: a) Typical signal from the MIT-BIH database with corresponding reconstruction on the basis 

of approximation and wavelet coefficients at the first decomposition level and b) comparison of filter 

coefficients impulse response function assuming 12 taps. 

 
Figure  A.17: a) Comparison of angular parameters for a standard db6 filter bank with those of a filter 

bank generated using the proposed procedure and b) normalized frequency response for the two filter 

banks depicting the difference in their function.   

 

(b) 

(a) 

(b) 

(a) 
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Three hardware units are needed in the design of any the standalone DSP hardware. These 

are: (1) a digital signal processor with memory unit; (2) a signal monitoring displays unit; and 

(3) an analogue front-end unit. These units are integrated through firmware. An ideal system 

should have the  ability to perform in standalone mode and be upgradeable to account for 

advancement  in algorithmic development. Additionally, it should be simple to operate and 

have low power consumption, and should not be expensive. The hardware should provide as 

well data storage and a communication protocol. Its main components include: electrical 

erasable programmable read-only memory (EEPROM – CAT28LV64W), a floating point 

DSP processor (TMS320VC33), and static random access memory (SRAM – 

CY7C1041DV33). In the signal monitoring display unit, the input peripherals are used for the 

observation of the input signal. The PIC18F452 microcontroller can be set up to communicate 

with graphical liquid crystal displays (GLCD). The signal conditioning circuit (SCC) can 

processes the ECG signal by converting from its analog to its digital form using an ADC0820 

chip. The output port (DB0 to DB7) of the ADC0820 chip a provide the converted ADC data. 

The analogue front-end unit can provide communication with the real-world by means of the 

peripherals connectivity. In such system, the digital signal processor may be  used as the core 

processing unit in order to establish standalone DSP hardware. The graphic LCD normally is 

used for the visual observation of ECG signals. The algorithm for this system can still be 

changed or updated so as to provide improvement in performance [44]. 

A.6 Summary 

This appendix reviewed the continuous and discrete wavelet transforme and associated filter 

banks for ECG signal analysis. Filters with vanishing moments of higher order were discussed. 

Filter banks such as biorthogonal and orthogonal are considered as the arrangements of 

bandpass, high pass and lowpass filters can be used to divide the data into subbands. The 

wavelet transform has the capability to localize events in time and frequency. and can perform 

in non-stationary signal analysis. wavelet transforms can produce a finite energy function 

along an  orthonormal basis. An ECG test waveform was decomposed to qualitatively 

describe the new parametrization process being implemented. This decomposition was 

contrasted to that of a standard db6 parametrization. Further work intends to optimize the 

number of wavelet coefficients as well as number of decomposition levels presented to the 

classifiers discussed in subsequent chapter 6.  
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