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Summary

At a given point in time, a forecaster will have access to data on macroeconomic

variables that have been subject to different numbers of rounds of revisions, leading to

varying degrees of data maturity. Observations referring to the very recent past will be

first-release data, or data which has as yet been revised only a few times. Observations

referring to a decade ago will typically have been subject to many rounds of revisions.

How should the forecaster use the data to generate forecasts of the future? The conven-

tional approach would be to estimate the forecasting model using the latest vintage of

data available at that time, implicitly ignoring the differences in data maturity across ob-

servations. In this article we draw on recent research on real-time forecasting to consider

whether there are better ways of forecasting.

∗Prepared for the Oxford Research Encyclopedia of Economics and Finance
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The conventional approach for real-time forecasting treats the data as given, that is,

it ignores the fact that it will be revised. In some cases, the costs of this approach are

point predictions and assessments of forecasting uncertainty that are less accurate than

a number of approaches to forecasting which explicitly allow for data revisions. There

are a number of ways to ‘allow for data revisions’, including modelling the data revisions

explicitly, an agnostic or reduced-form approach, and using only largely unrevised data.

We survey these methods, and provide guidance on choosing one, depending on whether

the aim is to forecast an earlier release or the fully-revised values.

JEL code: C53.

Keywords: data revisions, news, noise, unobserved components, vector autoregres-

sions, point predictions, density forecasts.
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1 Introduction

The majority of the macroeconomic time series of interest to policy makers and forecasters

are subject to data revisions. Monetary policy decisions require accurate measurement

of the current state of the economy, and also the likely future paths for inflation and

economic activity. Fiscal policy decisions also rely on current and predicted values for

economic activity to enable the calculation of the size of future government deficits.

Data revisions to key economic activity aggregates, such as GDP, add an extra layer of

uncertainty to the measurement of current and future economic conditions, and to the

conduct of economic policy.

Both forecasting and policy analysis have to be undertaken in real time. We look

at different approaches to forecasting in real time, when the available information set is

restricted to only the vintages of data that were available at each historical period. With

the advent of readily-available real-time data sets of key macroeconomic indicators (as,

for example, Croushore and Stark (2001)), we are able to look back and gauge how well

different approaches would have fared over the past 50 years or so, to serve as a guide

to what might be expected to work for forecasters today. As an example, by forecasting

data revisions we are able to improve the reliability of output gap estimates in real time

(see, e.g., Garratt, Lee, Mise and Shields (2009, 2008) and Clements and Galvão (2012)).

This article considers the implications of the nature of the estimates of macroeconomic

data published by national statistics agencies, and the subsequent revisions to these

estimates, for forecasting the future values of those variables. Excellent general surveys

on data revisions and real-time analysis, that go beyond our emphasis on forecasting, are

provided by Croushore (2006, 2011b, 2011a).

We begin in section 2 by explaining why statistical offi ces revise macroeconomic data,
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including details of the nature and timing of their updates to initial estimates (i.e., data

revisions) for the US, and for other OECD countries.

One approach to forecasting when data are subject to revision is to attempt to model

the behaviour of the statistics offi ce (henceforth, SO), and incorporate this into the

forecasting model. Section 3 discusses some simple models of the behaviour of the SO

in terms of its processing of source data to generate initial estimates of macroeconomic

variables, and how these models lead to published data inheriting the properties of news

or noise revisions. Initially, we assume a very simple revisions process, namely that the

second estimate (equivalently, first revision) reveals the truth. Later on, we describe

the practical implementation of the approach suggested by Kishor and Koenig (2012)

for data subject to multiple revisions. This approach requires a model for the true

process and for data revisions, and the application of the Kalman Filter. Section 4

considers data revisions in the context of forecasting with Dynamic Stochastic General

Equilibrium (DSGE) models. DSGE models are typically the Central Banker’s model of

choice, especially for policy analysis, but increasingly for forecasting too.

The data revisions modelling approaches in sections 3 and 4 rely on state-space mod-

els and a set of unobserved components. In Section 5 we survey approaches for modelling

data revisions and forecasting that do not require the estimation of unobserved compo-

nents. Section 6 considers simple single-equation approaches to forecasting, and includes

the ‘traditional approach’, which amounts to effectively ignoring revisions. The scope of

our survey is also widened to consider density forecasts in addition to point forecasts.

With the aim of providing guidance as to which modelling approach to choose when

forecasting with data subject to revision, section 7 reviews some of the empirical evi-

dence on the impact of data revisions on forecasting performance, and on the relative

performance of some of the approaches discussed in this article. Section 8 offers some
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concluding remarks.

2 Why data revisions?

Why are macroeconomic data revised? This can perhaps be best understood with refer-

ence to the US Bureau of Economic Analysis (BEA) timetable for data releases.1 The

BEA publishes its first or ‘advance’estimates of quarterly national accounts data about

a month after the quarter in question. These estimates are necessarily based on only

partial source data, and are subject to revision as more complete data becomes available.

They are then revised twice more at monthly intervals. These two monthly revisions were

formerly known as the ‘preliminary’and ‘final’estimates, but are now simply the second

and third estimates. As described by Landefeld, Seskin and Fraumeni (2008), 25% of the

GDP components at the time of the release of the first estimate are trend-based data

obtained from extrapolations supported by related indicator series. The proportion of

trend-based data in the second and third estimates is 23% and 13% respectively. Hence

these revisions typically reflect the availability of more complete source data. The series

are then subject to three annual rounds of revisions (in the third quarters of the year)2

to incorporate new annual source data into the estimates. Finally, comprehensive or

benchmark revisions make use of major periodic source data, as well as methodological

and conceptual improvements.3

In terms of the question we posed - why data revisions? - the need for timely estimates

of recent economic developments necessitates that estimates are produced long before all

1We focus on real GDP, given its importance, and its widespread use in the literature on real-time
forecasting. We also primarily consider the US, although similar considerations apply for other countries.

2The GNP/GDP data of the BEA are subject to three annual revisions in the July of each year: see,
e.g., Fixler and Grimm (2005, 2008) and Landefeld et al. (2008).

3In the case of the US, the Bureau of Economic Analysis provides descriptions of the methodologies
employed at: http://www.bea.gov/methodologies/index.htm#national_meth
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Table 1: Real GDP data vintages - Snapshot
DATE 13Q1 13Q2 13Q3 13Q4 14Q1 14Q2 14Q3 14Q4 15Q1
47:Q1 1770.7 1770.7 1932.6 1932.6 1932.6 1932.6 1934.5 1934.5 1934.5
47:Q2 1768.0 1768.0 1930.4 1930.4 1930.4 1930.4 1932.3 1932.3 1932.3
47:Q3 1766.5 1766.5 1928.4 1928.4 1928.4 1928.4 1930.3 1930.3 1930.3
47:Q4 1793.3 1793.3 1958.8 1958.8 1958.8 1958.8 1960.7 1960.7 1960.7
48:Q1 1821.8 1821.8 1987.6 1987.6 1987.6 1987.6 1989.5 1989.5 1989.5
48:Q2 1855.3 1855.3 2019.9 2019.9 2019.9 2019.9 2021.9 2021.9 2021.9
48:Q3 1865.3 1865.3 2031.2 2031.2 2031.2 2031.2 2033.2 2033.2 2033.2
48:Q4 1868.2 1868.2 2033.3 2033.3 2033.3 2033.3 2035.3 2035.3 2035.3
...

...
...

...
...

...
...

...
...

...
12:Q4 13647.6 13665.4 15539.6 15539.6 15539.6 15539.6 15433.7 15433.7 15433.7
13:Q1 #N/A 13750.1 15583.9 15583.9 15583.9 15583.9 15538.4 15538.4 15538.4
13:Q2 #N/A #N/A 15648.7 15679.7 15679.7 15679.7 15606.6 15606.6 15606.6
13:Q3 #N/A #N/A #N/A 15790.1 15839.3 15839.3 15779.9 15779.9 15779.9
13:Q4 #N/A #N/A #N/A #N/A 15965.6 15942.3 15916.2 15916.2 15916.2
14:Q1 #N/A #N/A #N/A #N/A #N/A 15946.6 15831.7 15831.7 15831.7
14:Q2 #N/A #N/A #N/A #N/A #N/A #N/A 15985.7 16010.4 16010.4
14:Q3 #N/A #N/A #N/A #N/A #N/A #N/A #N/A 16150.6 16205.6
14:Q4 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 16311.6

the data have been collected. As indicated, data collection and refinement of offi cial

statistics ought perhaps be viewed as an ongoing process.

Consider now the quarterly vintages recorded in the Real Time Data Set for Macro-

economists (RTDSM: see Croushore and Stark (2001)). Table 1 illustrates a an excerpt

of the real-time dataset for for US real GDP.4 This resource has greatly faciliated real-

time data analysis. The first available estimate for any quarter in the RTDSM is the

‘advance’estimate, and this is denoted by yt+1t . The second quarterly estimate for quar-

ter t is denoted by yt+2t , and so on. The subscript indicates the reference quarter, and

the superscript the quarterly vintage (or estimate). In the case of US BEA data, the

data will typically then remain unchanged unless the t+ 3-vintage is an annual revision

4Taken from the Federal Reserve Bank of Philadelphia webpage:
https://www.philadelphiafed.org/research-and-data/real-time-center/.
See Croushore and Stark (2001).
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(t + 3 ∈ Q3) or a benchmark revision. In practice, a small modification to this simple

seasonal pattern may occur. When benchmark revisions are anticipated to be published

in January, annual revisions may not be published in the previous July.5

The table depicts only the vintages from 2013Q1 to 2015Q1 - these are the columns.

Quarterly vintages for real GDP are available back to 1965. The first period for which

there is data is 1947Q1, and for each vintage, data are available up to one quarter before

the vintage, reflecting the delay of one quarter in publishing data (when the vintages

are recorded at the quarterly frequency, as here). Note that we drop the observations

from 1949Q1 to 2012Q3, inclusive, to save space. To illustrate the patterns of revision

described in the preceding paragraph, consider the 2013Q4 vintage estimate of the 2013Q3

observation. This is the first estimate of reference quarter 2013Q3, and is 15790.1. In

2014Q1, this estimate is revised up to 15839.3 (a 0.3% increase), in 2014Q2 the estimate

remains unaltered, and is then revised down to 15779.9 in the 2014Q3 annual revision.

Our focus will be on quarterly revisions to quarterly data, primarily to keep the

notation simple. But as shown by Clements and Galvão (2017), monthly vintages can

also be modelled and forecasted. It is generally the case that the models we discuss

below are of the growth rates (or differences of logs) of the variable (such as GDP), and

the revisions are then the differences between different vintage estimates of the growth

rates. This means that we are dealing with variables that are integrated of order zero,

assuming that (the log of) real GDP is integrated of order one. An exception arises when

we discuss the model of Garratt et al. (2008) in section 5.1.

We have described the institutional nature of the revisions to US national accounts

data. The task of providing timely estimates based on incomplete source data is com-

5For example, there are 8 benchmark revisions in the data vintages from 1965Q3 up 2010Q1. In fact
there are 36 annual Q3 revisions rather than the 44 that would otherwise have occurred. There are 44
combined benchmark and annual revisions - the 8 benchmark revisions and the 36 annual revisions.
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mon to all government statistics offi ces, so that data revisions are not specific to the

US. Zwijnenburg (2015) analyses the revisions to national accounts data in 18 OECD

countries, in terms of regular revisions, and benchmark revisions. Regular revisions are

as described earlier, and are normally the focus of interest as they are likely to be more

amenable to modelling. These revisions result from the updating of the dataset used

to compute the earlier estimates, and are present in all 18 OECD countries. The mean

revisions for most countries are not statistically significantly different from zero - data

revisions normally have no effect on the unconditional mean of quarterly growth rates.

However, Zwijnenburg (2015) shows that revisions can be sizeable, with a mean absolute

error of 0.18 (the average across countries for the observations for the 1993-2014 period)

for revisions made up to 5 months, and of 0.40 for revisions made up to 3 years.

3 Forecasting methods and a model of the behaviour

of the Statistical Offi ce

As mentioned earlier, regular data revisions can be related to the operational behaviour

of the government statistical offi ce (SO). A model of the behaviour of the statistical offi ce

is provided by Kishor and Koenig (2012), drawing on earlier contributions by Howrey

(1978) and Sargent (1989). They provide models of the behaviour of the SOwhich directly

suggest ways of forecasting the true values of the series. Before considering models of

SO behaviour, it will be useful to make a distinction between news and noise revisions

- section 3.1. Sections 3.2 and 3.3 then provide a simple model of behaviour, and some

extensions, before showing how this approach may be used in practice in section 3.4.
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3.1 News and Noise data revisions

Following Mankiw and Shapiro (1986), data revisions are sometimes characterized as

news or noise. Data revisions are news when they add new information, and noise when

they reduce measurement error. If data revisions are noise, they can be predicted based

on the current estimate. Mankiw and Shapiro (1986) and Faust, Rogers and Wright

(2005) provide empirical evidence that data revisions to US real GDP are largely news.

Aruoba (2008) and Corradi, Fernandez and Swanson (2009) provide recent extensions to

testing for the properties of data revisions, which may lead to more nuanced findings,

but the broad classification of each series as being subject to news or noise revisions in

the simple setting below is a good starting point.

The standard tests for news and noise regress a revision on either the earlier estimate

or on the later estimate. For example, consider the revision between the first-estimates

yt+1t , and the data available some three and a half years later yt+14t (chosen to include

the three rounds of annual revisions). One can test for news and noise revisions using,

respectively:

yt+14t − yt+1t = α + βney
t+1
t + ωt

and:

yt+14t − yt+1t = α + βnoy
t+14
t + ωt.

If we reject βne = 0, then we reject the null hypothesis that data revisions are news,

because we are able to predict revisions from knowledge of the earlier estimate, yt+1t . If

we reject βno = 0, then we reject the null hypothesis that data revisions are noise, because

they are correlated with the final estimate, yt+14t . If we reject both null hypotheses, then

data revisions are neither news or noise. If we fail to reject both hypotheses, we conclude

that the data are not informative regarding the news /noise dichotomy.
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Of course, the properties of revisions may depend on the choice of the earlier and

later estimates, may vary over time, and as noted above, need not give a definitive

classification. The definition of effi ciency underlying news is in terms of an information

set consisting only of the initial estimate, leaving open the possibility that revisions

may be predictable using initial estimates of other related variables (or other sources of

information, as in Clements and Galvão (2017)) so that the property of revisions being

news, narrowly defined, may be less useful in multivariate settings.

To illustrate, using the standard tests, Clements (2017, Table 2, p. 427) compares the

first estimates to the 15th estimates for the observations 1970Q2 to 2007Q2 for a number

of variables. He finds that 9 of the 25 variables analyzed have data revisions that appear

to be news, in that βne = 0 is not rejected, but βno = 0 is rejected. 7 of the 25 variables

are found to have noise revisions (βne = 0 is rejected, but βno = 0 is not rejected).

Rather than considering the revisions between an early estimate and a later estimate

(such as the preliminary and fully-revised data), Swanson and van Dijk (2006) consider

the entire revision history, and identify the point at which revisions become ‘rational’(or

unpredictable). They also consider the properties of revisions separately in expansions

and contractions.

3.2 Model of SO behaviour

Suppose that ỹt is the true period t value of the quarterly growth rate of a macroeconomic

variable subject to revisions and that it follows a simple AR(1):

ỹt = fỹt−1 + vt. (1)
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There is however a delay in the publication of the true/revised values ỹt, such that

we assume it is not observed or published until t + 2, i.e., yt+2t = ỹt. We relax this

assumption when implementing the Kishor and Koenig (2012) modelling approach in

practice in section 3.4.

In period t + 1, the SO observes source data wt+1t = ỹt + ηt, where ηt is iid
(
0, σ2η

)
.

Based on wt+1t (and possibly ỹt−1, ỹt−2, . . . ;wtt−1, . . .), the SO produces its first estimate of

yt, denoted yt+1t . Private forecasters do not observe wt+1t , unless the SO sets yt+1t = wt+1t .

From the perspective of a professional forecaster (PF) using only data published by

the SO, the goal is to forecast future true values ỹT , ỹT+1, ỹT+2,. . . based on period T +1

information, yT+1T , yT+1T−1 (= ỹT−1), etc. Note that the superscripts denote when the value

is published, while the subscripts refer to the reference quarter - i.e., the time period to

which the data refers.6

A possible strategy, considered by the PF, consists of the following stages:

1. Estimate the model in equation (1) over t = 2 to T − 1 using {ỹt}. That is, the

model is estimated solely on the true data, and because of the publication delay assumed

above, the estimation sample runs only to T − 1 (as the observation for reference period

T is a first estimate).

2. Obtain an estimate of ŷT . This is an estimate of the true value of the variable at

period T , and how this should be done depends on how the SO chooses yT+1T , as discussed

below.

3. Then compute forecasts as ỹT+h|T = f̂hŷT for h = 1, 2,. . .

This strategy avoids what Kishor and Koenig (2012) refer to as the mixing of ‘apples

and oranges’. They state that:

6Throughout, T +1 will be used to denote the forecast-origin-vintage. Hence the latest-vintage values
of data the forecaster will have access to are

{
. . . yT+1T−1, y

T+1
T

}
.
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‘The problem with conventional practice is that it mixes apples and or-

anges. Data toward the tail end of the sample (oranges) have undergone

little or no revision. Data early in the sample (apples) are heavily revised.

For most series and typical sample sizes, the heavily revised data dominate

estimation. Consequently, the VAR approximates the dynamic relationship

between apples and apples. However, the data that are substituted in to the

VAR equations to generate a forecast are end-of-sample oranges. Essentially,

conventional practice constructs a cider press and then feeds oranges into it,

expecting somehow to get cider’. [Kishor and Koenig (2012)]

The strategy outlined above estimates the model on fully-revised data (or ‘apples’)

and also conditions the forecast on (an estimate of) a fully-revised data point. The

conventional approach estimates the model on
{
yT+1t

}
for t = 2, . . . , T , so that all but

the last observation is fully-revised, and then sets ŷT = yT+1T , i.e., conditions on a first

estimate, so falling foul of the dictum not to mix apples and oranges.

For step (2) we need an estimate of ŷT . Suppose the SO simply sets yT+1T = wT+1T , so

that:

yT+1T = ỹT + ηT = fỹT−1 + vT + ηT ,

and the PF assumes this is the case. That is, the SO makes no attempt to process the

source data in order to generate an effi cient first estimate, and the subsequent revision

is noise, as defined in section 3.1. To see this, note that:

Cov
(
ỹt, ỹt − yt+1t

)
= 0,

but that:
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Cov
(
yt+1t , ỹt − yt+1t

)
= −σ2η 6= 0,

implying that the revision ỹt − yt+1t is uncorrelated with the true value, but predictable

from yt+1t .

Suppose now that the SO does actively process the source data. Intuitively, the release

of a high value yT+1T could be because of a large positive ηT (noise) or because of a high

positive vT (i.e., signalling a high true value ỹT ), and some weight ought to be attributed

to both of these possibilities. If vt and ηt are normally distributed, then the standard

signal extraction problem gives the optimal estimate of ỹT as:

E
(
ỹT | yT+1T , yTT−1, ; ỹT−1, ỹT−2, . . .

)
= fỹT−1 + γN

(
yT+1T − fỹT−1

)
(2)

where γN = σ2v/
(
σ2v + σ2η

)
, and γN is the weight on the first estimate, y

T+1
T , and (1− γN)

is the weight on the model predicted value, fỹT−1. When normality does not hold, γN

still has the justification of minimizing:

E
[(
ỹT −

[
fỹt−1 + γ

(
yT+1T − fỹT−1

)])2]

over γ.

Setting ŷT equal to the right-hand-side of (2) results in an effi cient estimate, in the

sense that the induced revision ỹT − ŷT is uncorrelated with ŷT ; Cov (ŷT , ỹT − ŷT ) = 0.

Hence the release of the unprocessed source data by the SO leads to ineffi cient initial

estimates: subsequent revisions are predictable. In our setup, defining ŷT by (2), in

the second step of the three-stage forecasting strategy set out above, would result in

unpredictable revisions.
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3.3 Extensions

A number of extensions and generalizations are possible. For example, Howrey (1978)

allows revisions to be serially correlated:

yt+1t − ỹt = h
(
ytt−1 − ỹt−1

)
+ wt (3)

and then the estimator of ỹT is given by:

E
(
ỹT | yT+1T , yTT−1, ; ỹT−1, ỹT−2, . . .

)
= fỹT−1 + γH

(
yT+1T − h

(
yTT−1 − ỹT−1

)
− fỹT−1

)
with γH = σ2v/ (σ2v + σ2w).

Suppose instead, as suggested by Sargent (1989), that the SO does not announce

yt+1t = wt+1t , but it filters the source data itself, and in so doing inadvertently introduces

an additive random error, so that the first announcement yt+1t is given by:

yt+1t = fỹt−1 + g
(
wt+1t − fỹt−1

)
+ ξt,

where g = γN and ξt is the idiosyncratic error induced by the filtering.

From the perspective of the PF, who now does not observe wt+1t , we obtain:

yt+1t = fỹt−1 + g (ỹt − fỹt−1) + ξt + gηt

= fỹt−1 + g (ỹt − fỹt−1) + εt

= fỹt−1 + gvt + εt,

setting εt = ξt + gηt.
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This suggests the optimal forecast of ỹT is given by:

E
(
ỹT | yT+1T , yTT−1, ; ỹT−1, ỹT−2, . . .

)
= fỹT−1 + γS

(
yT+1T − fỹT−1

)
(4)

where γS = gσ2v/ (g2σ2v + σ2ε) and, as before, γS minimizes the expected squared deviation

between ỹT and a linear combination of fỹT−1 and yT+1T .

Clearly, from (4), the PF should only set ŷT = yT+1T when γS = 1. This condition

requires both that the government filters the source data (as in Sargent), and does so

without error. Then, ξt = 0, so σ2ε = g2σ2η, and using g = σ2v/
(
σ2v + σ2η

)
, we get γS = 1.

We can write the equations for the true process and the first estimate for the Sargent

setup as:

ỹt = fỹt−1 + vt

yt+1t = fỹt−1 + g (ỹt − fỹt−1) + (ξt + gηt) .

Combining these, revisions are given by:

yt+1t − ỹt = (g − 1) vt + εt

so that the error in the revisions equation is correlated with that in the equation for the

true process, but revisions are not serially correlated. By contrast, in Howrey’s setup the

errors in the revisions and true process equations are not correlated, but revisions are

serially correlated.

Kishor and Koenig (2012) suggest combining these two models by allowing correlated
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errors and serially correlated revisions, by specifying the revisions process as:

yt+1t − ỹt = k
(
ytt−1 − ỹt−1

)
+ (g − 1) vt + εt. (5)

Then the best estimate of ỹT is given by

ŷT = fỹT−1 + γK
(
yT+1T − k

(
yTT−1 − ỹT−1

)
− fỹT−1

)
(6)

with γK = γS, and where ‘best’is defined following (2) or (4).

As a consequence, the PF could use a model, which encompasses the Howrey and

Sargent specifications, and combines equation (1) for the true process and equation (5)

for the revisions process, written below for convenience as:

ỹt = fỹt−1 + vt

yt+1t − ỹt = k
(
ytt−1 − ỹt−1

)
+ εt − (1− g) vt. (7)

Because of the cross-equation correlation in the error terms, effi cient estimation of the

two-equation system requires the seemingly-unrelated-regressions estimator (SURE). This

is carried out on observations from t = 2 up to T − 1. The covariance matrix of (vt,

εt − (1− g) vt) is given by:

Q =

 σ2v − (1− g)σ2v

− (1− g)σ2v σ2ε + (1− g)2 σ2v

 .
From the estimates of the elements ofQ, the parameter γk = gσ2v/ (g2σ2v + σ2ε) in equation

(6) can be computed. Combining this with the estimates of f and k from the system in

(7) provides an estimate of ŷT , as required by step (2) of the forecasting strategy.
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For ease of exposition we have assumed that the first revision reveals the true value,

but this clearly needs to be generalized, given the discussion in section 2 of the many

rounds of revisions such data typically experience. This suggests that at time T + 1

estimates are required of the true values of not just ỹT , but of earlier periods, ỹT−1,

ỹT−2, . . . as well. The following section describes a practical implementation of the Kishor

and Koenig (2012) approach allowing for multiple revisions.

3.4 The Kishor and Koenig (2012) approach in practice

For expositional purposes, we assumed in sections 3.2 and 3.3 that the true value ỹt is

observed two quarters after the observational quarter, that is, ỹt = yt+2t . In practice,

data are subject to annual revisions that may shape the true values, such that in general

ỹt = yt+qt , as described in section 2. For US data, accommodating the three rounds of

annual revisions would require setting q = 14. The model described in this section is

motivated by, and generalises, the simpler cases described in sections 3.2 and 3.3.

To implement the Kishor and Koenig (2012) approach in practice, we assume an

AR(p) for the ‘final data’, and equations for q−1 rounds of revisions. The key components

are the t+ 1-vintage vector yt+1 and the true values vector ỹt :

yt+1 =



yt+1t

yt+1t−1

yt+1t−2
...

yt+1t−q+1


and ỹt =



ỹt

ỹt−1

ỹt−2
...

ỹt−q+1


.

We assume that yt+1t−q+1 = ỹt−q+1: yt+1t−q+1 is supposed to be an effi cient estimate of the

16



true value ỹt−q+1. Then the model can be written succinctly in state-space form, with

measurement and state equations given by:

yt+1 =

[
Iq Iq

] ỹt

yt+1 − ỹt

 , (8)

and:  ỹt

yt+1 − ỹt

 =

 c1

c2

+

 F 0q×q

0q×q K


 ỹt−1

yt − ỹt−1

+

 vt

εt

 . (9)

In (8), Iq denotes an identity matrix of order q. The disturbances vectors are vt =

(v1t, 0, ...0)′ and εt = (ε1t, ..., εq−1t, 0)′. The errors in the data revision equations, εt, are

allowed to be correlated with the disturbances to the true values, v1t, as well as being

contemporaneously correlated. Defining vt = (vt, εt)
′, we let E(vtv

′
t) = Q.

The true values ỹt follow an autoregression of order p, defined by the first block of

(9) with:

F =

 f 01×(q−p)

Iq−1 0(q−1)×1


where f = (f1, . . . , fp) is the 1× p coeffi cient vector (p < q). The matrix K describes the

dynamics of q − 1 data revisions yt+1 − yt:

K =



k1,1 ... k1,q−1 0

...
. . .

...
...

kq−1,1 ... kq−1,q−1 0

0 0 ... 0


.

The q × 1 vectors c1 and c2 are c1 = (c1, 0, ..., 0)′ and c2 = (c21, ..., c2q−1, 0)′.

The above provides a complete specification of the model, allowing for multiple revi-
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sions. The unknown parameters c1, c2, F, K and Q are estimated by SURE. Because ỹt

consists solely of final values, given the assumption that yt+1+it−q+1 = ỹt−q+1 for i ≥ 0, the

estimation sample has to end at t = T − q + 1, when T + 1 is the forecast-origin data

vintage. Application of the Kalman Filter then provides estimates of the fully-revised

values of past observations (i.e., of the post-revision values of current and past observa-

tions, ỹT−q+2 up to ỹT ). Forecasts of post-revision future observations ỹT+1, ...,ỹT+h are

obtained by iterating the state equation for yt using the estimate of ŷT obtained from

the Kalman filtering using all data through vintage T + 1.

Alternative approaches to dealing with many rounds of data revisions are proposed

by Cunningham, Eklund, Jeffery, Kapetanios and Labhard (2009), and Jacobs and van

Norden (2011). The model of Jacobs and van Norden (2011) is discussed in section 6.1.

4 Data Revisions and Forecasting with DSGE Mod-

els

Dynamic stochastic general equilibrium (DSGE) models are now routinely used for fore-

casting: see, e.g., Del Negro and Schorfheide (2013). Just as with the autoregressive

model for the true process in section 3.4 (or vector autoregressive models more gener-

ally), forecasts will need to be generated when only early estimates of the data for the

more recent time periods are available.

Galvão (2017) shows how this can be accomplished, by explicitly modelling data

revisions while estimating and forecasting DSGE models. The approach aims to predict

revised values of macroeconomic variables, and also computes density forecasts while

making an allowance for data uncertainty. As in Kishor and Koenig (2012), Galvão

(2017) estimates the forecasting model —a DSGE model in her case —with final (true
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or fully-revised data). She assumes that yt+qt = ỹt, that is, after q − 1 revisions the true

value is revealed. This means that at time t = T + 1 we only observe true values up to

t = T − q + 1, and consequently a model of data revisions (as in section 3) is used to

provide estimates of the true values of the data still subject to revision.

Galvão (2017) proposes a one-step method to jointly estimate the parameters of

the DSGE model (with revised data) and the parameters describing the data revisions

process. Based on the model, one can compute backcasts and forecasts for the data sub-

ject to revision, including their underlying predictive density. We describe her approach

below.

Define yt as an n× 1 vector of the endogenous DSGE variables written as deviations

from their steady state values. In practice, yt may also include lagged variables. The

elements of the vector yt need not be observable, and the absence of superscripts is

deliberate. Define θ as the vector of structural parameters. The solution of the DSGE

model for a given vector of parameters θ is written as:

yt = F (θ)yt−1 +G(θ)vt (10)

where vt is a r×1 vector of structural shocks, and thus, the matrixG(θ) is n×r. Note also

that vt ∼ iidN(0, Q), and that Q is a diagonal matrix because the shocks are regarded

as being structural. Equation (10) is the state equation of the state space representation

of the DSGE model.

Define Ỹt = (ỹ1,t, ..., ỹm,t)
′ as them×1 vector of true values of the endogenous variables

in yt that are assumed to be observable. Typically, m < n and m ≤ r. The Smets and
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Wouters (2007) medium-sized model has m = r = 7. The measurement equation is:

Ỹt = d(θ) +H(θ)yt, (11)

that is, the set of observable variables, such as inflation and output growth, are measured

without error, although Galvão (2017) also shows that the approach would work if there

are measurement errors.

The DSGE is estimated using the values observed after q−1 rounds of revisions, that

is, assuming that Ỹt−q+1 = Y t+1
t−q+1. Then the measurement equations are:

Y t+1
t−q+1 = d(θ) +H(θ)yt−q+1 for t = 1, ..., T, (12)

and the last q − 1 observations (that is, Y t+1
t−q+2, . . . , Y

t+1
t ) have to be excluded.

Define the demeaned observed revisions between first releases Y t+1
t and true values

Y t+q
t as:

revt+q,1t = (Y t+1
t − Y t+q

t )−M1 for t = 1, ..., T − q + 1,

where M1 is m × 1 vector of mean revisions. This implies that we observe T − q + 1

values of the full revision process to a first release at T + 1, and that the full revision

process for observation t is only observed at t + q because of the statistics offi ce data

release schedule. In general, for the kth release, the (demeaned) remaining revisions up

to the true values are:

revt+q+1−k,kt = (Y t+k
t − Y t+q

t )−Mk for t = 1, ..., T − q + v and k = 1, ..., q − 1.

The released-based approach in Galvão (2017) augments the measurement equations

(12) to include a time series of first releases, second releases, and so on, as:
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Y t+1
t

Y t+1
t−1
...

Y t+1
t−q+1


=



d(θ) +M1

d(θ) +M2

...

d(θ)


+



H(θ) 0m · · · 0m Im 0m · · · 0m

0m H(θ) · · · 0m 0m Im · · ·
. . . . . .

0m 0m H(θ) 0m 0m 0m





yt

yt−1
...

yt−q+1

rev1t

rev2t−1
...

revq−1t−q+2


(13)

for t = 1, ..., T and:

revkt = (Y t+k
t − Ỹt)−Mk for k = 1, ..., q − 1,

where the m× 1 vectors Mv allow for non-zero mean data revisions.

The state equations are augmented by data revision processes as:

revkt = Kkrev
k
t−1 + ξkt + Akvt, ξ

k
t ∼ N(0, Rk) (14)

where the serial correlation allows for predictable revisions if them×m matrixKk is non-

zero. The own innovation term ξkt allows for data revisions that are caused by a reduction

of measurement errors, and they are assumed to be uncorrelated across variables, so Rk

is diagonal. The last term Akvt implies that the data revisions may be caused by new

information not available at the time of the current release, but included in the revised

data used to compute the complete effects of the structural shocks. Because the same
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vector of structural shocks vt may lead to revisions for each one of the variables in Y t+k
t ,

then the processes revk1,t, ..., rev
k
m,t may be correlated.

Galvão (2017) proposes a Metropolis-in-Gibbs approach to jointly estimate the DSGE

parameters {θ,Q} and the parameters of the revision process:

{M1, ...,Mv, K1, ..., Kk, A1, ..., Ak, R1, ..., Rk}.

She shows that forecasts of future values of consumption and investment growth using a

Smets andWouters (2007) DSGEmodel are improved by using the release-based approach

in comparison with the conventional approach that employs only the last vintage of data.

5 Vintage-based VARs: Models in terms of observ-

ables

Whereas the Kishor and Koenig (2012) and Galvão (2017) models discussed in sections

3.4 and 4 include unobserved components (namely, the true values of variables at the

time when only earlier estimates are available), other modelling approaches consider the

relationships between the observables directly. A natural way to do this, when we wish to

model a range of different vintages, and not just the first release (say), is to use a vector

autoregression (VAR, see Sims (1980)). A number of VAR-type models based only on

observables have been proposed for modelling revisions, and these are reviewed in this

section.

VARs were originally used to model the dynamic relationships between inter-connected

macro variables, without the need for "incredible" identifying restrictions and hard to

defend assumptions about exogeneity (see Sims (1980)). It was soon recognised that such
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models would have many parameters to estimate for reasonable numbers of series and

lagged values, and Bayesian methods were sometimes adopted: see, e.g., Doan, Litterman

and Sims (1984) and Litterman (1986), and Bańbura, Giannone and Reichlin (2010) for a

more recent contribution. In terms of modelling data subject to revision, the observable

variables are the data defined by both the release data, and the reference quarter, and

the potential for having highly parameterised models arises. As shown below, this is

dealt with in a number of different ways.

5.1 The Garratt et al. (2008) model

The first VAR-type model we consider is that of Garratt et al. (2008). Following Pat-

terson (1995), Garratt et al. (2008) work in terms of the level (of the log) of a variable

(e.g., output, denoted by Y ). The variable is assumed to be integrated of order one

(I (1): see, e.g., the textbook treatment by Banerjee, Dolado, Galbraith and Hendry

(1993)) and they assume that different vintage estimates are cointegrated such that data

revisions are integrated of order zero (written I (0)). So, for example, Y t+1
t−1 and Y

t
t−1

are both I(1) - these are the second and first estimates of reference quarter t − 1, re-

spectively. But Y t+1
t−1 − Y t

t−1, the revision between the first and second estimates of the

period t − 1 value, is I (0). They model a vector of variables comprising 3 elements,

Zt+1 =
(
Y t+1
t − Y t

t−1, Y
t+1
t−1 − Y t

t−1, Y
t+1
t−2 − Y t

t−2
)′
. The first element of Zt+1 is a difference

across vintage and observation, and the subsequent terms are revisions to past data. The

inclusion of two revisions reflects the view that a ‘revision horizon’of two is appropriate,

in the sense that revisions such as Y t+1
t−2−j − Y t

t−2−j for j > 0 are supposed to be largely

unpredictable, and hence are not included in the vector of variables to be modelled. This

assumption also serves to limit the dimensionality of the system to be estimated.

Garratt et al. (2008) relate Zt+1 to two lags of itself, where the lagging is applied to
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both the vintage and reference quarter scripts:

Zt+1 = c + Φ1Z
t + Φ2Z

t−1 + εt (15)

where Zt+1−i =
(
Y t+1−i
t−i − Y t−i

t−1−i, Y
t+1−i
t−1−i − Y t−i

t−1−i, Y
t+1−i
t−2−i − Y t−i

t−2−i
)′
, for i = 0, 1, 2. The

Φi are 3 by 3 matrices of coeffi cients with third columns consisting solely of zeros (see

Garratt et al. (2008) for details), that is, their approach implies specific restrictions on a

VAR.

A disadvantage of the formulation in (15) is that shifts in the levels of Y due to

base-year changes (or to other definitional changes) at times of benchmark revisions

cannot be easily handled by the GLMS model. These arise because the model is based

on differences in Y across time periods and vintages. Differencing-across-vintages means

that level shifts between vintages affect the resulting series. The level-shift components of

the benchmark revisions are removed from the real-time data set prior to the formulation

and estimation of models such as (15).

5.2 The Vintage-based VARs

The problems created by re-basings of the data can be circumvented by instead specifying

the model in ‘same-vintage-growth rates’(see, e.g., Clements and Galvão (2012, 2013a),

Carriero, Clements and Galvão (2015)). For example, let yt+1t = 400
(
Y t+1
t − Y t+1

t−1
)
be

the (approximate) quarterly percentage change (at an annual rate) for period t computed

using data vintage t+ 1. Because the growth rate is calculated between two data points

from the same vintage, level shifts or base-year changes will have no effect (to the extent

that the change is simply a re-scaling of the data).

Suppose that in addition to modelling yt+1t , the first estimate of the growth rate for

24



period t, we also wish to model the revisions for the next q − 1 quarters. This can be

accomplished by modelling the vintage t+ 1 values of observations t− q+ 1 through t as

a ‘vintage VAR’(V-VAR):

yt+1 = c +

p∑
i=1

Γiy
t+1−i + εt+1 (16)

where yt+1 =
(
yt+1t , yt+1t−1, . . . , y

t+1
t−q+1

)′
, yt+1−i =

(
yt+1−it−i , yt+1−it−1−i, . . . , y

t+1−i
t−q+1−i

)′
, and c is

q × 1, Γi is q × q, and εt+1 is a q × 1 vector of disturbances. The first element of yt+1 is

the ‘new’observation yt+1t , and subsequent estimates are the revised estimates of ‘past’

observations, yt+1t−1, . . . , y
t+1
t−q+1.

When q is relatively large, the autoregressive order p may be set to a low value, e.g.,

p = 1 (see, e.g., Clements and Galvão (2013a)). Nevertheless, if q is large, say, q = 14,

in order to capture the three rounds of annual revisions to which US national accounts

data are subject, there will be 14 free coeffi cients to estimate in each of the 14 equations

when p = 1 (plus an intercept in each).

The number of coeffi cients to be estimated can be reduced by restricting the model,

by supposing that, after a small number of revisions, further revisions are unpredictable.

Suppose that after n− 1 revisions, the next estimate yt+n+1t is an effi cient forecast in the

sense that the revision from yt+nt to yt+n+1t is unpredictable, i.e., E
[(
yt+n+1t − yt+nt

)
| yt+n

]
=

0, whereas E
[(
yt+i+1t − yt+it

)
| yt+i

]
6= 0 for i < n . We can impose this restriction on

the VAR, where it translates to E
(
yt+1t−n | ytt−n

)
= ytt−n. This is achieved by specifying Γ1

and Γi (i = 2, . . . , p) in (16) as:

Γ̃1 =

 γn×q

0(q−n)×(n−1) I(q−n)×(q−n) 0(q−n)×1

 , Γ̃i =

 γi,n×q
0

 . (17)
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If n is set equal to 2, for example, then values after the first revision are assumed to

be effi cient forecasts (for example, for the US this would correspond to the BEA esti-

mate published two quarters after reference quarter constituting an effi cient forecast).

An unrestricted intercept is included in each equation, to accommodate non-zero mean

revisions. We refer to this model as the ‘news-restricted’vintage-based VAR, RV-VAR.

Clements and Galvão (2013) compare the forecasting performance of the RV-VAR

with that of the V-VAR. They also consider a periodic specification which captures the

seasonal nature of some data revisions: the annual rounds of revisions which occur in the

July of each year (for US data).

Clements and Galvão (2013a) discuss the interpretation of the forecasts generated by

the V-VAR and related models. Consider the forecast-origin-vintage T + 1. At this time,

the information set will include all the data vintages up to and including the time-T + 1

vintage, i.e., Yt+1 for t = 1, 2, . . . T , where Yt+1 =
{
. . . , yt+1t−1, y

t+1
t

}
. The h-step ahead

forecast of the vector yT+1+h is defined as the conditional expectation, given the model

and the information set:

yT+1+h|T+1 ≡ E
(
yT+1+h | YT+1,YT , . . .

)
.

The elements of vector yT+1+h|T+1 are (y
T+1+h|T+1
T+h , ..., y

T+1+h|T+1
T+h−q+1 ), and thus provide fore-

casts of the first estimate of yT+h, of the second estimate of yT+h−1, and so on down to

a forecast of the qth estimate of T + h− q + 1.

Suppose we require forecasts of the ‘true’(revised) values, that is, ỹT−1, ỹT , ỹT+1, ỹT+2.

As before, we assume that for a reasonably large q (e.g., q = 14, chosen to include the

annual revisions), we have ỹt = yt+qt . That is, we can equate the true values with the
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values available after q − 1 revisions.7 We need then to consider forecasts of a subset of

the elements of yT+1+h|T+1, namely, the last elements of each vector for h = 1, 2, 3, . . . , h∗.

For the forecast origin T + 1, this gives the following set of forecasts: yT+2|T+1T+2−q , yT+3|T+1T+3−q ,

. . . ,yT+1+h
∗|T+1

T+1+h∗−q . All of which are the q-th estimates. Some of these estimates will relate

to the past, and others to the present, relative to the vintage-origin T + 1. When

h∗ + (1− q) ≤ 0, we have forecasts of past observations (or ‘backcasts’), ỹT , ỹT−1, ỹT−2,

etc., and for h∗ + (1− q) > 0 forecasts of ‘fully-revised’future observations: ỹT+1, ỹT+2,

etc.

6 Single-equation approaches: EOS and RTV.

Single-equation approaches have also been considered, and empirically have been found

to work relatively well. We use the statistical framework of Jacobs and van Norden (2011)

to show that, in principle, the traditional approach is not the best way of estimating an

autoregressive model for forecasting. The statistical framework of Jacobs and van Norden

(2011) separately identifies news and noise data revisions, as defined in section 3.1. Their

model can be used to estimate the importance of the news and noise contributions to the

data revisions of a particular series, and generally this would be facilitated by specifying

a relatively small number of revisions. Otherwise it may be diffi cult to identify the

separate news and noise components with any precision. In this section we use their

model as a coherent statistical framework for deriving the properties of single-equation

approaches, including ignoring data revisions (as explained below) when forecasting. The

clear demarcation of revisions into news and noise allows us to determine the implications

of each for the relative forecast performance of the single-equation approaches, at least in

7This will not be literally true. More precisely, we suppose that any differences between the two are
unpredictable.
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population (that is, abstracting from model selection and parameter estimation issues).

Section 6.1 describes the statistical framework. Sections 6.2 and 6.3 then provide the

properties of the traditional approach, and an approach suggested by Koenig, Dolmas

and Piger (2003), and show that the latter is optimal, at least in population. Section

6.4 then discusses the properties of interval and density forecasts derived from the two

single-equation models.

6.1 A News and Noise model of data revisions

The Jacobs and van Norden (2011) statistical framework for modelling data revisions is

based directly on the news / noise distinction. Each release is set equal to the true value

plus an error, or errors, where the errors correspond to news or noise, and are unobserved.

So, for example, at period t+s, the SO releases an estimate of the value of y for reference

period t, which we denote yt+st , which is written as:

yt+st = ỹt + vt+st + εt+st

where, ỹt is the true value, and vt+st and εt+st are the news and noise components. We

allow for up to q-releases, with s = 1, . . . , q. For any given s, one or other of the news

and noise components may be absent.

Jacobs and van Norden (2011) stack the q-releases of yt, namely, yt+1t , . . . , yt+qt ,

in the vector yt =
(
yt+1t , . . . , yt+qt

)′
, and similarly εt =

(
εt+1t , . . . , εt+qt

)′
and vt =(

vt+1t , . . . , vt+qt

)′
, so that:

yt = iỹt + vt + εt (18)

where i is a q-vector of ones. In order that the news revisions are not correlated with

the earlier release, namely that Cov
(
vt+st , yt+st

)
= 0, where vt+st = yt+st − ỹt, we need
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to assume a process for ỹt which includes the news components. For example, if ỹt is

assumed to follow an AR(p), say, with iid disturbances R1η1t, then we need to add in the

sum of q news components vi,t:

ỹt = ρ0 +

p∑
i=1

ρiỹt−i +R1η1t +

q∑
i=1

vi,t. (19)

The vi,t are specified as vi,t = σviη2t,i (for i = 1, ..., l), and both η1t and η2t,i are iid(0, 1).

The news and noise components of each vintage in yt are:

vt =



vt+1t

vt+2t

...

vt+q


= −



∑q
i=1 vi,t∑q
i=2 vi,t
...

vq,t


, εt =



εt+1t

εt+2t

...

εt+qt


=



σε1η3t,1

σε2η3t,2
...

σεqη3t,q


, (20)

where η3t,i is iid(0, 1). The shocks are also mutually independent, that is, if ηt =

[η1t, η
′
2t, η

′
3t], then E (ηt) = 0, with E (ηtη

′
t) = I.

To see how this setup delivers appropriately defined news and noise revisions, consider

a few illustrative cases. The first estimate of yt, yt+1t , is yt+1t = ỹt + vt+1t + εt+1t =

ρ0 +
∑p

i=1 ρiỹt−i + R1η1t + σε1η3t,1. This does not include any news component. The

second estimate is: yt+2t = ỹt + vt+2t + εt+2t = ρ0 +
∑p

i=1 ρiỹt−i +R1η1t +σε2η3t,2 +σviη2t,1.

Suppose there is no noise, so η3t,2 = 0. Then clearly yt+2t is a more accurate estimate of

ỹt than yt+1t , as it includes the news σviη2t,1. Further, the revision between y
t+2
t and the

true value ỹt is uncorrelated with yt+2t , so that yt+2t is an effi cient estimate:

Cov
(
yt+2t − ỹt, yt+2t

)
= Cov

(
q∑
i=2

vi,t, v1,t

)
= 0.
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Suppose now that there is only noise, so vt+2t = 0 but εt+2t 6= 0. It follows immediately

that the revisions induced by the second estimate are predictable using yt+2t :

Cov
(
yt+2t − ỹt, yt+2t

)
= σ2ε2 .

News revisions imply that var(yt+1t ) < var(yt+qt ), while noise revisions imply that var(yt+1t ) >

var(yt+qt ), assuming that later estimates are less ‘noisy’(σε1 > σεq). If σvl = 0 and σεl = 0

the qth released value is the true value, yt+lt = ỹt. The assumption that ỹt is an I (0)

stationary process ensures that yt is a stationary process from (18), as both the news and

noise terms are stationary. This is a reasonable assumption when the model is applied

to an I (0) transformation of the data, such as growth rates.

The model set out above implies that both noise and news revisions are zero mean,

so that the unconditional mean of the underlying series {ỹt} and the observed data

{yt} are equal at ρ0 (1− ρ (1))−1. Non-zero mean revisions can easily be accommodated.

Assume that each news term is instead vi,t = µvi +σviη2t,i, and the noise components are

εt+it = −µεi + σεiη3t,i. The true process is now:

ỹt =
[
ρ0 +

∑q
i=1 µvi

]
+

p∑
i=1

ρiỹt−i +R1η1t +

q∑
i=1

σviη2t,i, (21)

since now
∑q

i=1 vit =
∑q

i=1 µvi +
∑q

i=1 σviη2t,i. The news and noise processes of each

vintage are:

vt = −



∑q
i=1 µvi∑q
i=2 µvi
...

µvq


−



∑q
i=1 σviη2t,i∑q
i=2 σviη2t,i
...

σvqη2t,q


, εt = −



µε1

µε2
...

µεq


+



σε1,tη3t,1

σε2,tη3t,2
...

σεq,tη3t,q


. (22)
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The statistical model can be cast in state-space form using (18) as the measurement

equation and combining (21) and (22) to obtain the transition equation. The parameters

can be estimated by maximum likelihood using the Kalman Filter, as described by Jacobs

and van Norden (2011).

6.2 Estimating AR forecasting models using EOS data

Assuming the variable we wish to forecast can be described by the model set out in section

6.1, we begin with the standard or conventional approach, which effectively ignores the

data revisions. We suppose the forecasting model is an autoregression. The conventional

approach estimates this model on the vintage of data available at the forecast origin.

From the discussion in section 3, such an approach is expected to be non-optimal, as it

‘mixes apples and oranges’. The framework outlined in section 6.1 allows us to determine

why the conventional approach is not able to deliver optimal forecasts in real-time.

Consider forecasting at time T + 1. The T + 1 vintage of data contains data up to

T ,
{
. . . , yT+1T−1, y

T+1
T

}
, and the model is estimated on this data (termed End of Sample,

EOS, by Koenig et al. (2003)). For an AR(p) we have:

yT+1t = α0 +

p∑
i=1

αiy
T+1
t−i + et,EOS (23)

where the unknown parameters are estimated on the observations t = p+ 1, . . . , T .

Writing the model in matrix notation:

Y T+1 = iα0 + YT+1
−1 α+ error (24)

whereYT+1
−1 =

[
Y T+1
−1 , . . . , Y T+1

−p
]
, i is a T−p vector of 1’s, and the vectors of observations
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Y T+1 and Y T+1
−i , i = 1, . . . , p, are:

Y T+1 =
[
yT+1p+1 , . . . , y

T+1
T−1, y

T+1
T

]′
, Y T+1

−i =
[
yT+1p+1−i, . . . , y

T+1
T−i−1, y

T+1
T−i
]′

for i = 1, . . . , p.

Clements and Galvão (2013b) derive the population values of the least-squares esti-

mator of the parameters in (23), when the data are generated by (18)—(20), as:

α∗ =
(
Σỹ + Σv + Σỹv + Σ′ỹv + Σε

)−1 (
Σỹ + Σ′ỹv

)
ρ

α∗0 = (1−α∗′i)µỹ, (25)

where Σv and Σε are second moment matrices of the news and noise components, and

Σỹv is the second moment matrix between the news and the underlying process, ỹt, and

µỹ ≡ E (ỹt) (see, Clements and Galvão (2013b, Suppementary Material) for details).

Clements and Galvão (2013b) also show that these parameter values are not opti-

mal, that is, they are not the values that minimize the real-time out-of-sample expected

squared forecast error, when the forecast is conditioned upon the forecast-origin vin-

tage values of the data (as is standard practice). That is, if the forecast is given by

φ0 + φ′yT+1T , where yT+1T =
(
yT+1T , . . . yT+1T−p+1

)′
, then setting φ0 = α∗0, and φ = α∗, does

not minimize the expected squared forecast error whether the aim is to forecast yT+2T+1 (the

first estimate) or some later vintage estimate. This is perhaps not surprising, given that

the majority of the data underlying the estimation are mature or revised data, whereas

yT+1T contains the first estimate of yT , the second estimate of yT−1, and so on. In terms

of the cider press analogy in section 3.2, equation (23) is estimated on (mostly) mature

data - the ‘apples’, but the forecast is conditioned on yT+1T - the ‘oranges’.

We let φ∗0 and φ
∗ denote the values of the parameters in the forecast function φ0 +
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φ′yT+1T which minimize the expected squared error for forecasting yT+2T+1.

6.3 Estimating AR forecasting models using RTV data

Building on Koenig et al. (2003), Clements and Galvão (2013b) show that estimating

the AR model using real-time-vintage (RTV) data delivers optimal estimators of the

forecasting model, in population, when the forecast is to be conditioned on yT+1T . RTV

estimates the model:

yt+1t = β0 +

p∑
i=1

βiy
t
t−i + et,RTV (26)

on observations, t = p+ 1, . . . , T , where in contrast to EOS, the superscript denoting the

vintage is not fixed at the latest-available vintage. In matrix notation:

Y m = iβ0 + Ym
−1β + error

where Y m and Ym
−1 =

[
Y m
−1, . . . , Y

m
−p
]
are given by:

Y m =
[
yp+2p+1, . . . , y

T
T−1, y

T+1
T

]′
, Y m

−i =
[
yp+1p+1−i, . . . , y

T−1
T−i−1, y

T
T−i
]′
, i = 1, . . . , p.

Y m and Y m
−i contain data of a constant maturity, as indicated by the subscript m. All

the observations in Y m are first estimates, and those in Y m
−i are i

th estimates. This means

that, say, the first row of
[
Y m:Ym

−1
]
contains the first estimate of yp+1, the first estimate

of yp, the second estimate of yp−1, etc. The last row has the same maturities: the first

estimate of yT , the first estimate of yT−1, the second estimate of yT−2, and so on.

Estimation of (26) results in estimates of the β parameters which minimize the ex-

pected squared error, at least in terms of forecasting the first estimate, yT+2T+1, and simple

adjustments can be applied for forecasting later estimates when revisions have non-zero
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means. That is β∗0 = φ∗0, and β
∗ = φ∗.

Clements and Galvão (2013b) provide the general formula for the parameter estima-

tor. We illustrate with the special case of an AR(1) for the true process, and for general

revisions that are a combination of news and noise, when an AR(1) forecasting model is

used. The optimal value of the AR parameter is:

β∗1 =
ρ1
(
σ2ỹ − σ2v

)
σ2ỹ − σ2v + σ2ε1

where σ2v ≡
∑q

i=1 σ
2
vi
, and σ2ỹ = V ar (ỹt), and β

∗
1 is the population value of the parameter

from RTV. When revisions are pure news (σ2ε1 = 0):

β∗1,news = ρ1, β∗0,news = ρ0,

so RTV returns the population parameters of the true process. However, β∗1,news = ρ1

only holds for p = 1: in general when there are news revisions the parameter vector of

the underlying process ỹt (i.e., ρ) is not optimal from a forecasting perspective when the

forecasts are conditioned on early estimates.

For pure noise (σ2v = 0):

β∗1,noise =
ρ1σ

2
ỹ

σ2ỹ + σ2ε1
(27)

so that β∗1,noise < ρ1 when σ
2
ε1
6= 0.

Consider now EOS. When revisions are news, we can show that the EOS estimator

simplifies such that α∗1 = ρ1, matching the optimal value, but this is true only for the

special case of p = 1.

Under noise:

α∗1 =
ρ1σ

2
ỹ

σ2ỹ + σ2εq
(28)
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An immediate implication is that |α∗1| > |φ∗1| if earlier revisions are larger than later

revisions, as might be expected (compare (28) to (27) when σ2ε1 > σ2εq). Note that if

σ2εq = 0, so that the truth is eventually revealed when there is noise, then α∗1 = ρ1 for

a large estimation sample. Even so, ρ1 is not the parameter vector that minimizes the

real-time squared forecast loss (φ∗1 6= ρ1).

The difference between EOS and RTV can be visualized in terms of table 1. Before

the estimation, data is converted to quarterly growth rates within each column. EOS uses

the column of data corresponding to the latest vintage of data available at the forecast

origin. By way of contrast, RTV uses the elements in the diagonals of the data array for

the left-hand-side and explanatory variables.

For example, for forecasting in 2015Q1, for an AR(2), the last RTV observation

is yT+1T =100[ln(Y 15Q1
14Q4 ) − ln(Y 15Q1

14Q3 )] while lags are taken from the previous vintage as

yTT−1 =100[ln(Y 14Q4
14Q3 ) − ln(Y 14Q4

14Q2 )] and yTT−2 =100[ln(Y 14Q4
14Q2 ) − ln(Y 14Q4

14Q1 )]. A similar ap-

proach is followed for all t = p + 1, ..., T . EOS would use data only from the 2015Q1

vintage for both the left-hand side values and the lags.

Finally, RTV is related to the vintage-based VAR model. Equation (26) corresponds

to the first equation of the system of equations given by (16). When the lag order of

the VAR is one, and the dimension of the VAR vector is p, there is an exact equivalence

between the RTV model and the first equation of the VAR. RTV directly models the

first release, yt+1t , as does the first equation of the VAR, whereas in addition the VAR

models later estimates beyond the first.

6.4 Density Forecasting

Most of the literature has looked at first-moment prediction, but a few papers consider

the impact on second-moment prediction, and the calculation of prediction intervals and
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density forecasts. Clements (2017) and Clements and Galvão (2017) compare RTV and

EOS in the context of computing predictive interval and predictive densities for short-

horizon forecasting. They are mainly interested in correctly measuring the forecasting

uncertainty around one-step-ahead forecasts computed in real-time, with the aim of pre-

dicting the first-release value.

A simple model of data revisions suffi ces to show that RTV delivers predictive densities

which match the true underlying densities, while EOS delivers predictive densities that

are too wide when data revisions are news, but too narrow when they are noise.

The model for data revisions is a simplified version of that in section 6.1. It assumes

the true (i.e., fully-revised) values ỹt follow an AR(1):

ỹt = ρ1ỹt−1 + ηt + vt, |ρ1| < 1 (29)

where ηt is the underlying disturbance, and vt is a news revision with variance σ
2
v, and

the first estimate is given by:

yt+1t = ỹt − vt + εt (30)

with yt+nt = yt for n = 2, 3, . . .. Here εt is a noise revision with variance σ2ε. Then the

revision yt+2t −yt+1t ≡ ỹt−yt+1t = vt−εt consists of a noise component (when σ2ε 6= 0) and

a news component (when σ2v 6= 0). ηt, vt and εt are assumed to be mutually uncorrelated,

zero-mean random variables.

Clements (2017) supposes the ηt are homoscedastic, var(ηt) = σ2η. Clements and

Galvão (2017) also allow for conditional heteroscedasticity - var(ηt) follows an ARCH(1),

or a GARCH(1,1), or a stochastic volatility AR(1) process. That macroeconomic volatil-

ity may be time-varying has been reported by Clark (2011), Clark and Ravazzolo (2014)

and Diebold, Schorfheide and Shin (2016)), inter alia.
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In the homoscedastic case, Clements (2017) shows that prediction intervals (calculated

in the standard way, i.e., Box and Jenkins (1970)) using EOS are too wide when revisions

are news, because the predictive variance is over-estimated, and that the reverse situation

holds when revisions are noise. RTV delivers correctly-sized intervals. Clements and

Galvão (2017) extend these results to the heteroscedastic case. When there is conditional

heteroscedasticity, they show that estimating the forecasting model by RTV, with an

appropriate model for the variance of the errors, will result in well-calibrated one-step-

ahead predictive densities.

7 Evidence on the Performance of Alternative Meth-

ods of Forecasting

The relative performance of the different models and methods surveyed in this article

will likely depend on the properties of the series under consideration, and in particular

on the nature of the data revisions to that series. It may also depend on whether the

aim is to forecast an early release, or a more mature vintage, such as the fully-revised

value. Finally, relative performance may depend on whether point forecasts are required,

or density forecasts or prediction intervals.

In this section we briefly summarize some of the findings in the literature to provide

guidance on which method might be better in any particular instance.

Clements and Galvão (2013a), Carriero et al. (2015) and Galvão (2017) provide eval-

uations of different approaches when the goal is to forecast the revised values, denoted

ỹT+1, ỹT+2, ..., ỹT+h. Clements and Galvão (2013a) compare the forecasting performance

of the Kishor and Koenig (2012) (KK) approach (see section 3) and the Garratt et al.

(2008) approach (GLMS) with the vintage-based VAR (VB-VAR) (section 5) for US
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GDP growth and inflation. The models are univariate - in the sense of modelling a single

variable, but allow up to 14 releases of the variable in question. The findings favour

the VB-VAR, which delivers more accurate point forecasts for both variables. Carriero

et al. (2015) show that forecasting accuracy can be improved by using their Bayesian

approach. Their approach better controls the adverse effects of parameter uncertainty in

such large VAR models. They are also able to allow for more than one variable, allowing

for cross-equation dynamics between revisions to different macroeconomic variables (such

as output growth and inflation in their application).

While these papers consider point forecasts of fully-revised values, Galvão (2017)

evaluates the density forecasts of the Smets and Wouters (2007) DSGE model when data

revisions are modelled, as in Kishor and Koenig (2012), and compares the findings to

those obtained using the conventional approach. She finds gains in terms of logarithmic

scores from the release-based approach for predicting the revised values of macroeconomic

variables such as consumption and investment growth.

As well as forecasting the revised values of future outcomes, there are times when

forecasts of the revised values of current and past observations are required. As an

example, Clements and Galvão (2012) show that improved real-time estimates of output

and inflation gaps result from the use of VB-VAR model ‘backcasts’.

Clements and Galvão (2013b), Clements (2017) and Clements and Galvão (2017)

present forecast comparisons in terms of predicting initial releases, that is, yT+2T+1, y
T+3
T+2, ..., y

T+h+1
T+h .

Clements and Galvão (2013b) describe some of the circumstances under which RTV

might be expected to outperform EOS (section 6). In particular, their findings suggest

that larger gains might occur when there are explanatory variables - i.e., autoregressive-

distributed lag models - as opposed to purely autoregressive models. They also suggest

that ignoring data revisions, as in using EOS compared to RTV, might attract a greater
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penalty in terms of accuracy when the estimation sample is small, the process is more

persistent, and revisions are news. Clements and Galvão (2013b) also find that more

elaborate approaches, such as that of Kishor and Koenig (2012), do not outperform RTV

for modelling US output growth and inflation. This parallels findings in the (non-real-

time) forecasting literature that more elaborate, complicated models do not necessarily

outperform their simpler adversaries.

Clements (2017) suggests that larger relative gains might accrue to RTV when the

goal is to provide well-calibrated prediction intervals. Clements and Galvão (2017) extend

the results to variables subject to time-varying conditional variance, and find that RTV

provides more accurate density forecasts for nominal national account variables.

8 Final Remarks

We have not attempted an exhaustive survey of the literature on forecasting in real time,

and our main focus has been on US data. Nevertheless, we have attempted to give the

reader an introduction to the types of approaches that have been proposed, and to have

worked through some of these approaches in suffi cient detail to lay their workings bare.

We have summarised some of the evidence on the relative forecasting performance of the

different approaches, but as in the macro-forecasting literature more generally, rankings

across methods are unlikely to remain the same across different variables, or sample

periods, and so on. In any specific instance it would seem sensible to consider a number

of approaches.

That the more complex models, which attempt to jointly model the true (or revised)

values along with the revisions process, are not necessarily superior to simpler approaches

in terms of forecasting is not surprising, given that simple models are often found to fare
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well in the forecasting literature. There are a number of possible explanations. The

potential of the more complex models might be negated by the need to specify and

estimate the models on relatively small historical samples. As an example, Clements

and Galvão (2013b) provide a Monte Carlo study, whereby data are simulated from a

vintage-based VAR model, or the Kishor and Koenig (2012) model, and the forecasting

performance of RTV and EOS is compared to that of an estimated version of the model

that generated the data. The authors find the estimation sample has to be relatively

large for forecasts from the model assumed as data generating process to beat the simpler

models. Another possible explanation stresses non-constancy or structural breaks in the

process being forecast, and suggests that simpler models might exhibit greater adaptivity,

or be more robust: see, e.g., Castle, Clements and Hendry (2016). Although the model

of Kishor and Koenig (2012) assumes the processes for the data revisions are constant

over time, this may not be the case, and if so, the potential advantages of such models

may dissipate, especially when one takes into account the diffi culties inherent in precisely

estimating these channels unless the sample is large.
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