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 8 

Soil respiration represents a major carbon flux between terrestrial ecosystems and the 9 

atmosphere, and is expected to accelerate under climate warming. Despite its importance in 10 

climate change forecasts, however, our understanding of the effects of temperature on soil 11 

respiration (RS) is incomplete. Using a metabolic ecology approach we link soil biota 12 

metabolism, community composition and heterotrophic activity, to predict RS rates across 13 

five biomes. We find that accounting for the ecological mechanisms underpinning 14 

decomposition processes predicts climatological RS variations observed in an independent 15 

dataset (n = 312). The importance of community composition is evident because without it RS 16 

is substantially underestimated. With increasing temperature, we predict a latitudinal 17 

increase in RS temperature sensitivity, with Q10 values ranging between 2.33 ±0.01 in tropical 18 

forests to 2.72 ±0.03 in tundra. This global trend has been widely observed, but has not 19 

previously been linked to soil communities.  20 

 21 

Soils store the majority of Earth’s terrestrial carbon, and so play a crucial role in the direction and 22 

magnitude of future climate changes1. However, the influence of ongoing climate change on the soil 23 

carbon sink is a major area of uncertainty2-4. Temperature-associated increases in the global soil 24 

CO2 flux (soil respiration, RS) has led to the supposition that global warming will drive a positive soil-25 

climate feedback5,6. Of particular concern is the potential long-term vulnerability of large soil C 26 

stocks at high latitudes7. However, our incomplete understanding of the temperature – RS 27 

relationship limits constrained forecasts of terrestrial carbon fluxes in the future8. 28 

 29 

The temperature sensitivity of RS across ecosystems is a key determinant of the soil-climate 30 

feedback, but it is difficult to quantify due to the many confounding factors that affect soil metabolic 31 

rates2,9. For instance, Q10 values (the proportional increase in RS with a 10 °C increase in 32 

temperature) are highly variable across different vegetation types and climates2,10. Nevertheless, 33 

Earth system models (ESMs) typically assume a globally constant temperature sensitivity by 34 

incorporating fixed Q10 values of around 2 (that is, RS rates double with an increase in temperature 35 

of 10 °C)11,12. Thus, while there is a growing consensus that future warming will enhance RS rates, 36 

how the response will vary across climatic regions and soil characteristics is not well 37 
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established13,14. Here, we propose that a better understanding of RS temperature sensitivity can be 38 

gained by accounting for the various organisms that live in the soil.  39 

 40 

Soil respiration is the biotic conversion of organic C to CO2 by all of the organisms (heterotrophs: 41 

soil microbes and fauna, and autotrophs: plant roots and their mycorrhizal symbionts) that live in the 42 

soil. Thus, RS rates are the product of the body sizes, metabolic rates, abundances and community 43 

composition of soil-inhabiting organisms15-18. Because individual metabolic rates exhibit varying 44 

temperature sensitivities19, we would also expect RS responses to increasing temperatures to 45 

fluctuate according to soil community composition. However, empirical quantification of soil biota 46 

contributions to RS at large spatio-temporal scales is complicated by the vast biodiversity and 47 

complexity of soil systems20.  48 

 49 

In this study, we use a model derived from metabolic theory21 to integrate soil biota metabolism, 50 

community composition and heterotrophic activity in RS estimates across biomes. The model 51 

accounts for the way in which metabolic rates vary with temperature and body size between soil 52 

community groups. We then extrapolate to heterotrophic respiration (RH) rates by accounting for the 53 

abundance of soil biota across tundra, boreal forest, temperate forest, temperate grassland and 54 

tropical forest soils. By quantifying the contribution of RH to RS, using an RH fraction (HF) which 55 

accounts for autotrophs (plant roots and their symbiotic mycorrhizae) not modelled here, we predict 56 

RS across biomes and mean annual temperature (MAT) ranges. To test the hypothesis that soil 57 

community traits strongly influence RS temperature sensitivities, we compare models that do or do 58 

not account for metabolic variation of soil biota. To test how predictive our approach is, we make a 59 

further comparison with a classical linear regression fitted to the RS data. Finally, we increase study-60 

specific MAT’s by 10 °C to compare Q10 estimates with available data across the five biomes, and 61 

discuss how these compare to those Q10’s used in ESMs and observed in long-term field 62 

experiments.  63 

 64 

Results 65 

 66 

Metabolic ecology of soil communities 67 

Metabolism underpins fundamental mechanisms of organism-environment interactions, and sets the 68 

basis for linking individual to ecosystem processes22. To investigate the temperature sensitivities of 69 

metabolism for diverse soil communities, we compiled a metabolic dataset for fourteen soil biota 70 

groups (bacteria, protozoa, nematode, collembola, enchytraeidae, acari, ant, beetle, isopod, 71 

centipede, spider, termite, millipede, earthworm). The dataset (n = 3768) covers nearly 15 orders of 72 

magnitude in body mass (M) and temperatures (T) between -2 and 40 °C. In the first instance, the 73 
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metabolic dataset was fitted to the linear form of the metabolic scaling equation without accounting 74 

for variations in metabolic parameters between soil biota (termed the ‘general’ model herein): 75 

 76 

ln(B) = ln(B0) + a ln(M) – E/kT                                                 (1) 77 

     78 

where B is standard metabolic rate (J hr-1), B0 is a taxon-specific normalisation constant, a 79 

represents the allometric scaling exponent which usually takes a value close to ¾, E is the 80 

activation energy (eV), k is Boltzmann’s constant (8.62 × 10-5 eV K-1) and T is experimental 81 

temperature (K)21. General model (Equation (1)) regression analysis yields an allometric exponent, 82 

a, of 0.81 (±0.002) and activation energy, E, of 0.67 (±0.01) (Supplementary Table 1). Both 83 

metabolic parameters are within the range predicted by the metabolic theory of ecology (MTE), a: 84 

0.67 – 1 and E: 0.6 – 0.7 eV23,24. Yet, while the general model predicts metabolic rates with 85 

individual body mass well, it does not capture the apparent high variation in soil biota temperature 86 

sensitivities (Supplementary Figure 1), indicating the need to account for metabolic traits between 87 

soil community groups.  88 

 89 

Soil biota were classified into community groups according to their body size distribution as 90 

microbes (< 0.0001 mg FM), mesofauna (0.0001 – 8 mg FM) or macrofauna (> 8 mg FM). Microbes 91 

include bacteria, mesofauna include protozoa, nematode, acari, collembola and enchytraeidae 92 

groups, and macrofauna include ant, spider, isopod, centipede, beetle, termite, millipede and 93 

earthworm groups. Although protozoa and nematodes are technically classified as microfauna 94 

rather than mesofauna, the metabolic data for these groups were collected at a single experimental 95 

temperature. Thus, regression analysis by soil biota groupings was not possible. The community 96 

group (CG) model includes two-way interaction terms between CG – body mass and CG – 97 

temperature to yield community-specific metabolic parameters (B0, a & E): 98 

 99 

ln(BCG) = ln(B0CG) + aCG ln(M) – ECG(1/kT)                                          (2) 100 

 101 

CG model (Equation (2)) analysis yields ranges in a from 0.66 to 0.87 and E from 0.64 to 0.74 eV 102 

(Figs. 1a & b, Supplementary Table 1). Interestingly, analysis of the CG model reveals that the 103 

temperature sensitivity of metabolism (E) increases with decreasing body size, from 0.64 (±0.01) for 104 

macrofauna to 0.74 (±0.19) for microbes (Supplementary Table 1). That is, smaller sized soil 105 

community groups exhibit a greater proportional increase in their metabolic rates with a given 106 

increase in temperature, than individuals belonging to larger size community groups. This suggests 107 

a higher contribution of soil microbes (in particular, as mass-specific metabolic rates in mesofauna 108 

are lower) to RS rates at increasing temperatures, if resources are available to fulfil higher energy 109 

requirements. The distribution of the CG model residuals against the independent variables (body 110 
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mass and temperature, Figs. 1c & d) and fitted lowess line, further indicate an absence of 111 

systematic errors, which are much greater for the general model (Supplementary Figure 1).  112 

 113 

 114 

Figure 1. Metabolic scaling relationships in soil communities. Left-hand plots (a & c) show individual metabolic rates 115 

(B), corrected to a temperature of 20 °C using equation (2), plotted against individual body mass (M, mg FM). Right-hand 116 

plots (b & d) show B, corrected to a body mass of 1 mg using equation (2), plotted against temperature in an Arrhenius 117 

plot. Top plots (a & b) show community group (CG) model predictions of metabolic rates with individual body mass and 118 

temperature, and bottom plots (c & d) show distributions of the CG model residuals, with deviations of the data from model 119 

predictions characterised by lowess fits (black curves). Microbes (orange) include bacteria, mesofauna (purple) include 120 

protozoa, nematodes, acari, collembola and enchytraeidae, and macrofauna (green) include ant, spider, isopod, 121 

centipede, beetle, termite, millipede and earthworm groups (n = 3768). Metabolic parameter values are provided in 122 

Supplementary Table 1.  123 

 124 

Linking soil metabolism to biome-specific RS rates 125 

Linking the individual metabolic rates of soil biota to biome-specific RS (g C m-2 year-1) requires 126 

quantification of soil biota population abundances (A, no. m-2) and RH fractions (HF, which measure 127 

the proportion of RS contributed by heterotrophs and so also accounts for autotrophs) across 128 

biomes. First, individual-level metabolic rates (B, as in equation (2)) for each soil biota group (i) 129 

were calculated for an individual of average body mass (M) at a given MAT (T). B is then converted 130 

to respiration rate units (g C  yr-1) by using the conversion factors 37490 J gC-1 = 20100 J LO2
-1 × (1 / 131 

0.5363 g C LO2
-1) 25,26 and 8760 hr yr-1. The heterotrophic respiration rate (RH) is the soil 132 
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community’s respiration rate, which is calculated according to individual-level respiration rates (ri) 133 

and population abundance (Ai) as: 𝑅𝐻 =  ∑ 𝑟𝑖𝐴𝑖𝑖 , where the summation is over the soil biota groups 134 

in the biome. Our RH predictions are compared to independent data in Supplementary Figures 2 & 135 

3. Finally, accounting for HF’s reported in the Bond-Lamberty and Thomson 27 dataset 136 

(Supplementary Figure 4, n = 66) gives: 𝑅𝑆 =  
1

𝐻𝐹
∑ 𝑟𝑖𝐴𝑖𝑖 . RS was calculated at MAT for each of the 137 

RS studies used to evaluate our approaches predictions (n = 312), using metabolic parameters, 138 

individual body masses and soil biota population abundances in Supplementary Tables 2, 3 & 4 139 

respectively.  140 

 141 

Soil community composition across biomes 142 

Population biomass (g FM m-2) and abundance (number m-2) measurements for the fourteen soil 143 

biota groups for which metabolic data is available were collected across tundra, boreal forest, 144 

temperate forest, temperate grassland and tropical forest soils (n = 2187). Community group 145 

biomasses across the five biomes investigated here were significantly different (p = 0.000, 146 

Supplementary Table 5). In general, high latitude (tundra and boreal) soils harbour more soil 147 

microbes and mesofauna by biomass than temperate and tropical soils. Soil macrofauna follow an 148 

inverse trend, increasing in biomass from tundra to temperate grasslands and tropical forests (Fig. 149 

2). Given the higher temperature sensitivity of smaller sized soil biota (Fig. 1), we would expect 150 

higher abundances of soil microbes and mesofauna in tundra and boreal soils to be linked to higher 151 

RS temperature sensitivities at high latitudes.   152 
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 153 

 154 

Figure 2. Soil community composition across biomes. Soil community groups are classified by body size distribution 155 

(microbe, mesofauna and macrofauna). Biomass (g fresh mass m-2) measurements incorporate the sum of soil biota 156 

population biomasses for each community group. Average biome-specific soil microbial biomasses were taken from the 157 

study of Xu et al. 28, while soil mesofauna and macrofauna data were compiled in this study (n = 2187, Supplementary 158 

Figure ). Presented values are means ± reported standard errors for microbes, while error bars for mesofauna and 159 

macrofauna were calculated as the square root of the summed variances for soil biota group population biomasses. 160 

Differences in community group biomass are significantly different across biomes (p = 0.000, Supplementary Table 5). 161 

 162 

The influence of soil communities on RS across biomes 163 

Comparison of our RS predictions (lines) with independent RS data (symbols) in Fig. 3a 164 

demonstrates good prediction of RS rates across biomes and MAT’s (R2 = 0.66, n = 312, no p-value 165 

can be reported as predictions are independent of the data). Temperature sensitivity differences 166 

across biomes emerge from the approach by integrating variation in the metabolic ecology and 167 

community composition of soils. However, high variability in the RS data likely points to site-specific 168 

interactions between individual, population and community-level dynamics with other environmental 169 

factors (e.g. resource quantity and quality), as well as temperature (Fig. 3b).  170 

 171 
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 172 

Figure 3. Temperature sensitivity of soil respiration (RS) across biomes and MAT’s. Plots show a) independent RS 173 

data (symbols: n = 312) and predicted RS from the community group (CG) model presented here (lines) and b) CG model 174 

residual distributions against MAT (°C) with fitted lowess line (solid black line).  175 

 176 

To test whether incorporating the varying temperature sensitivities of soil biota was important in 177 

achieving good RS predictions (Fig. 3 and 4a), we compare the CG model presented here to RS 178 

predictions using the general model (Fig. 4b) and a linear regression between RS and MAT fitted to 179 

the data (Fig. 4c). Not accounting for metabolic variation between soil community groups in the 180 

general model significantly reduces the accuracy of the metabolic approach (Fig. 4b). This result 181 

indicates that soil community body size distribution and metabolic ecology strongly influence the 182 

temperature sensitivity of RS across the five biomes investigated here. Comparison of the CG model 183 

with the linear regression (Ln(RS) = 22.54 – 0.388 (1/kT), Fig. 4c) and AIC values, further indicates 184 

that accounting for soil ecology enables better RS predictions. Improved prediction of RS rates are 185 

particularly evident in boreal and tundra soils of the CG model, where the data indicate higher RS 186 

temperature sensitivity (Fig. 3a). Weak temperature control in the linear regression presented here 187 

and ESMs which implement fixed Q10 values are unable to capture these climatological differences 188 

in RS temperature sensitivities7, with serious consequences for future climate change projections.   189 
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 190 

Figure 4. Model comparisons and goodness of fits with independent soil respiration (RS, gC m-2 year-1) data. The 191 

community group model (CGM) (a) is compared to the general metabolic model (GM) (b) which does not account for 192 

metabolic variation in soil communities, and an empirical fitted linear regression (LR) to the RS data (Ln(RS) = 22.54 – 193 

0.388 (1/kT), r2 = 0.489, p < 0.0001) (c). p-values cannot be calculated for a & b as predictions are independent of the 194 

data. Solid black lines are 1:1 lines which would demonstrate perfect prediction and lower AIC values indicate a better 195 

goodness of fit to the data while accounting for model complexity (k: number of parameters). Note that the r2 value for the 196 

general model (b) is negative because the residual sum of squares from the model is higher than the total sum of squares 197 

from the data. 198 

 199 

Biome-specific Q10’s were calculated, using the CG model, by taking RS
 rates for study-specific 200 

MAT’s (MAT0, n = 119) and for an increase in temperature of 10 °C (MAT+10), to give Q10 = 201 

RS(MAT+10) / RS(MAT0). We compare our median Q10 values (symbols) to those reported in the 202 

Bond-Lamberty and Thomson 27 dataset (boxes) in Fig. 5. With increasing temperature, the 203 

metabolic approach indicates that RS in tundra and boreal soils is more temperature sensitive than 204 

temperate and tropical soils, with mean Q10 values increasing from 2.33 ±0.001 in tropical forests to 205 

2.72 ±0.03 in tundra. Many studies have reported similar climatological responses, in which RS in 206 

colder high latitude climates increase more rapidly with increasing temperature7,8,10,27,29-33, but none 207 

have yet linked variations in RS temperature sensitivity to the mechanisms driving decomposition 208 

processes by soil communities. However, our estimates also assume static biome-specific soil 209 

communities, and that greater metabolic rates at higher temperatures are met with sufficient food 210 

resources.  211 

 212 

Temperature, soil water and resource availability interact to affect the provision of food resources to 213 

soil communities34, and the inclusion of these environment-community feedbacks would likely result 214 

in lower RS sensitivity predictions in warm climates as the soil biota become food limited15. 215 

Conversely, freeze-thaw cycles in tundra soils lead to deviation of RS temperature dependence from 216 

thermodynamic laws 7, increasing below 0 °C as the decomposition of structurally complex 217 

molecules by arctic microbes exhibit a higher temperature sensitivity of metabolism35. Our Q10 218 
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estimates thus overestimate tropical soil and underestimate tundra and boreal soil responses to 219 

increasing temperatures (Fig. 5), in line with long-term field Q10’s of 5.2 ±2.4 for tundra and boreal, 220 

2.7 ±1.7 for temperate and 2.2 ±0.9 for tropical climates36. Exploring alternative thermodynamic 221 

hypotheses, such as non-linear temperature curves and acclimatisation mechanisms, could explain 222 

more of the variability in the Q10 data and Q10’s under long-term warming. On the other hand, our 223 

approach estimates much higher Q10 values than the static value of 2 used in many ESMs, which 224 

are often parameterised with short-term observations based on eddy covariance fluxes and soil 225 

incubations2,37. This divergence between short- and long-term Q10 values has been suggested as 226 

evidence for the inclusion of emergent behaviour over long timescales7, which in this study includes 227 

the metabolic response of soil communities and shifts in soil community composition across biomes.    228 

 229 

 230 

Figure 5. Observed and predicted Q10 values for RS across biomes. Q10 data from the Bond-Lamberty and Thomson 231 
27 dataset (n = 119) presented as boxes with the median and first and third quartiles shown. CG predictions of Q10 values 232 

across biomes are given by coloured symbols, showing median predicted values, with imperceptible first and third quartile 233 

whiskers.  234 

 235 

Discussion 236 

We use a metabolic ecology approach to better understand the relationships between soil biota 237 

metabolism, community composition and RS rates. We find that accounting for the metabolic 238 

ecology of soils (Fig. 1) together with soil community composition (Fig. 2) reveals variations in RS 239 

with MAT across five biomes (Fig. 3). Important in achieving good RS predictions was incorporating 240 

the varying temperature sensitivities of soil community groups. In comparison, assuming all soil 241 

biota exhibit identical temperature sensitivities resulted in substantial under-estimation of RS rates 242 

(Fig. 4b). The metabolic ecology and body size distribution of soil communities thus strongly 243 
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influence the temperature sensitivity of RS across biomes. With increasing temperature, our 244 

approach suggests that RS would be most strongly enhanced in colder climatic regions (Fig. 5), 245 

because of the higher temperature sensitivity of soil biota inhabiting these soils.  246 

 247 

Soil community composition will also be influenced by multiple global drivers (e.g. warming, CO2 248 

fertilisation, N deposition) in the future, which will alter the direction and magnitude of RS responses. 249 

Thus, to better anticipate the effects of global environmental changes on RS requires a better 250 

understanding of the ecological mechanisms underpinning macroecological patterns in soil 251 

communities. Yet, fundamental knowledge gaps in soil ecology need to be addressed to understand 252 

the primary drivers of soil community composition across a broad spectrum of environmental 253 

variables. Unravelling these complex interactions would allow us to represent the mechanistic links 254 

between the belowground and aboveground components of terrestrial ecosystems, develop more 255 

predictive models of soil systems and improve forecasts of future climate changes on numerous 256 

ecosystem functions, including RS. Our study stresses the importance of considering the soil 257 

organisms which facilitate ecosystem functions, and demonstrates the utility of fundamental 258 

ecological principles in describing complex soil systems.  259 

 260 

Methods  261 

Metabolic ecology of soil biota. Metabolic data for a wide range of soil biota was compiled from 262 

the dataset of Ehnes, et al. 19, which includes data from the meta-analyses of Meehan 38 and 263 

Chown, et al. 39 together with their own measurements for acari, collembola, enchytraeidae, 264 

centipedes, millipedes, isopods, spiders, ants, beetles, termites and earthworms (n = 3399). In 265 

addition, we compiled data for bacteria from Makarieva, et al. 40 (n = 56), protozoa from Laybourn 266 

and Finlay 41 and Fenchel and Finlay 42 (n = 143), nematodes from Klekowski, et al. 43 and Ferris, et 267 

al. 44 (n = 105) and enchytraeidae from Nielsen 45 (n = 58). Detailed differences at the species-level 268 

are avoided in order to explore the collective metabolism of soil community groups across biomes. 269 

All measurements were converted to wet weight (mg) and standard metabolic rate per hour (J hr-1), 270 

using a dry to fresh mass ratio of 0.2:119, 1 mL O2 = 20.1 J26 and 1 mL O2 = 0.5363 mg C25.  271 

 272 

Soil biota populations and community composition. Linking individual to population-level 273 

metabolism requires estimation of the population abundances of different soil biota across biomes. 274 

Here, we extend the dataset of Fierer, et al. 46, who collected population biomass data for acari, 275 

collembola, enchytraeidae, nematodes and earthworms in tundra, boreal forest, temperate forest, 276 

temperate grassland and tropical forest soils (n = 799). We compiled additional data for all of the 277 

soil biota groups and biomes of Fierer, et al. 46, and for ants, beetles, centipedes, isopods, 278 

millipedes, protozoa, spiders and termites in biomes for which data was available (n = 1382). 279 

Average biome-specific microbial biomass values were taken from the extensive review of Xu, et al. 280 
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28, which compiles 1182 measurements across the biomes investigated here (Supplementary Table 281 

4).  282 

 283 

Population biomass measurements required conversion to population abundance by estimates of 284 

mean individual body masses (M) for the fourteen different soil biota groups. We assume that M for 285 

different soil biota groups are constant across biomes. Although this assumption likely introduces 286 

error due to variations in individual life histories across climates, not enough information exists to 287 

apply more detailed individual-level relationships. To minimise error we collated data from a number 288 

of sources reporting M for the different soil biota groups (Supplementary Table 3). Average M (mg 289 

dry mass) used in this study were: protozoa (6.55 × 106), nematodes (0.0020), acari (0.0096), 290 

collembola (0.055), enchytraeidae (0.055), ants (2.23), beetles (4.35), isopods (4.47), centipedes 291 

(6.59), spiders (7.42), termites (9.90), millipedes (17.06) and earthworms (52.37). All population 292 

biomass measurements are expressed here as fresh mass (g FM/m2) using the conversion to fresh 293 

mass of five times dry mass19. Using a single dry to fresh mass conversion factor for all soil biota 294 

groups will also introduce some error, as variations likely exist across soil biota groups and 295 

biomes47. Measurements given in the dataset of Fierer et al. 46 (g C m-2) were further corrected by 296 

accounting for a 50 % carbon content. We do not make additional extrapolations to specific soil 297 

depths, as this is highly variable between soil biota groups and soil types, and often not reported in 298 

field studies. If population measurements were expressed on per mass of dry soil basis, appropriate 299 

bulk density values were used to convert these measurements to density (per m2) for the soil type 300 

reported.  301 

 302 

Heterotrophic respiration (RH) . Using our metabolic approach, RH rates were estimated by 303 

summing the metabolic rates of soil communities at MAT in a given biome. Community-level 304 

metabolic rates were calculated by taking metabolic parameters (B0, a and E; Supplementary Table 305 

1) for each soil community group, individual body masses (M, mg fresh mass) for each soil biota 306 

group (Supplementary Table 3) and their population abundance (A, number m-2) in different biomes 307 

(Supplementary Table 4). Metabolic rates were then transformed to respiration rates (g C) by using 308 

the conversion factors 37490 J gC-1 = 20100 J LO2
-1 × (1 / 0.5363 g C LO2

-1) 25,26 and 8760 hr yr-1
. 309 

To investigate whether our model predicts RH rates across biomes and MAT’s, prior to extrapolating 310 

to RS as detailed below, we compared our predictions with  available RH data in the Bond-Lamberty 311 

and Thomson 27 dataset (n = 66). RH data were compiled for un-manipulated field studies reporting 312 

annual RH and RS rates, and were averaged for single study years and/or locations where 313 

applicable. Measurements were also excluded if reported RH rates were equal to or higher than 314 

reported RS rates. If MAT’s were not reported, or the same MAT was given for multiple years in the 315 

same study, NOAA weather stations were used to collect MAT measurements based on the study 316 

sites latitude and longitude (https://www.ncdc.noaa.gov/cdo-web/datatools/findstation). The CG 317 

https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
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model’s predictions of RH rates were then evaluated (r2 = 0.757, Supplementary Figure 2), in 318 

comparison to the general metabolic model (r2 = -2.261) and a linear regression approach (r2 = 319 

0.529) (Supplementary Figure 3). Accounting for model complexity in AIC calculations indicates that 320 

the CG model does not perform better than the linear regression given its large number of 321 

parameters, but this may be a result of the limited size of the data set. To test whether the CG 322 

approach performs better given more data we used the RH data to calculate an RH fraction (HF) for 323 

each biome to account for the contribution of heterotrophs to RS. This allowed us to use the larger 324 

RS data set (n = 312) to evaluate the CG model with greater precision as reported in Fig. 4.   325 

 326 

RH fraction (HF) 327 

RH fractions (HF) were calculated as RH / RS for studies reporting both annual RH and RS rates (g C 328 

m-2 year-1, n = 66) and assuming RS = RH + RA
48. By using RH values, rather than RA, we avoid some 329 

of the issues in separating heterotrophic and autotrophic contributions to RS, as RH is typically 330 

measured directly whereas RA is typically derived by calculating the difference between RS and 331 

other ecosystem fluxes48. Mean HF ±SE across the five biomes investigated here were 0.39 ±0.10, 332 

0.63 ±0.02, 0.58 ±0.03, 0.63 ±0.04 and 0.77 ±0.07 for tundra, boreal forest, temperate forest, 333 

temperate grassland and tropical forest soils, respectively. Variability in HF within biomes is likely 334 

linked to the experimental difficulties associated with separating the autotrophic and heterotrophic 335 

components of soils and the methodology used to do so in the field48-50. To explain some of this 336 

variability, and to account for the temperature sensitivity of RA, we performed a regression analysis 337 

between HF and MAT, which revealed a weak but significant positive correlation (HF = 0.54 + 0.0069 338 

MAT; r2 = 0.104, p = 0.008, Supplementary Figure 4). This linear relationship is incorporated in our 339 

calculations to extrapolate from RH to RS rates across biomes and MAT’s.  340 

 341 

Soil respiration (RS) 342 

To compare our RS estimates with independent data, annual RS rates (g C m-2 yr-1) were compiled 343 

from the global soil respiration datasets of Bond-Lamberty and Thomson 27 and Carey, et al. 51 for 344 

tundra, boreal forest, temperate forest, temperate grassland and tropical forest soils (n = 312). Data 345 

were included from un-manipulated field studies reporting average annual RS and MAT, and 346 

measurements from both datasets were averaged for single study years and/or locations where 347 

applicable. RS measurements compiled from the Bond-Lamberty and Thomson 27 dataset included 348 

119 Q10 values, which were used to evaluate predicted Q10’s across biomes using our CG model. 349 

 350 

Data availability. The datasets generated and analysed during the current study are available on 351 

Dryad (https://doi.org/10.5061/dryad.416kv03).   352 

https://doi.org/10.5061/dryad.416kv03
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