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Abstract: 

It is common place for embedded systems and consumer products to contain flash memory for nonvolatile 

storage. While there are many applications that require the data stored in the flash memory to be in a given structure 

enabling the data to be externally accessed, there are also many embedded consumer applications where the content of 

the flash memory is only accessed locally. In this case, the local application can benefit from having a minimized 

bespoke file system optimized for the application, resulting in lower power and faster access speed than using public 

file systems. 

This paper analyses the overhead in using the commonly used File Allocation Table File System (FatFS), and 

proposes a significantly faster, smaller footprint, and hence lower power file system, termed SlimFS. The work has 

clear applications to low power embedded consumer applications, specifically battery driven wearable devices for 

healthcare and ‘green’ electronic systems.  
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I. INTRODUCTION 

 

Many Consumer products are created from embedded processor devices that make use of flash based NAND memory [1]. 

Consumer applications may store data to their local flash using the File Allocation Table File System (FatFS) to maintain 

compatibility with typical Personal Computers (PCs), allowing consumers to utilize and share data across their devices. Therefore, 

to improve the performance of FAT file systems for embedded devices, previous work has focused on “flash-aware” techniques. 

These techniques take into consideration the technology differences of flash memory compared with traditional data storage 

mediums, typically Hard Disk Drives (HDDs). They are also often further optimized by making assumptions about typical 

workloads of such flash-based devices particularly for media players. However, there are many consumer devices with embedded 

flash memory (e.g. home controllers, simple IoT sensors, simple wearable health devices including pedometers) that have no need 

to share the data in their flash memory, and while it is tempting to use a common file system for ease of development, this paper 

will present that such indolent design methodologies can result in compromising performance, particularly for battery driven low-

power systems, e.g. wearable devices for public and consumer healthcare. 

File systems provide a way of easily storing and accessing multiple sets of data without the user having to keep track of memory 

locations. Data is typically stored in the device with the location of the data referenced in a storage table. File systems provide a 

specific structure that enables the user, or application, to reference the data in the memory using metadata in the storage table. In 

the present work, a ‘file’ is considered as data with metadata attached to it. 

This paper analyses the most common file system, FatFS, identifies performance issues and presents an alternate file system, 

termed SlimFS, that creates a highly minimized file system specifically designed to present a low Central Processor Unit (CPU) 

load, resulting in lower power usage profile compared to FatFS, ideal for implementing in consumer based embedded systems and 

the Internet of Things (IoT). 

The structure of the paper is as follows; Section II presents the literature survey, Section III presents our proposed minimized 

file system, Section IV presents the results and the conclusions are presented in Section V. 

 

II. LITERATURE SEARCH 

 

Flash devices contain a Flash Translation Layer (FLT), a software layer below the file system to abstract the characteristics of 

the implemented flash memory in order to emulate the behavior of a traditional HDD. In NAND based flash memory, the smallest 

granularity of read and write operations occur on a page level, typically in the range of 512 bytes to 8 kilobytes [1] [2], and when 

the flash memory stores data the page must be erased before being written to with the new data. The smallest erase operation 

however, erases at a block level, typically being 32 or 64 pages [2]. Erase operations are significantly slower than write operations. 

When writing to files the metadata in the FAT table is frequently updated. This requires an entire block to be erased and 

reprogrammed when only a 4-byte FAT entry (in the case of 32-bit FAT) is being modified. This operation is undesirable as flash 

memory can only undergo a finite number of Program/Erase (P/E) cycles before failure. 

The improvements suggested by Kim and Shin [1], and Park and Ohm [3] are similar techniques which make assumptions 

concerning the workload. They are both flash aware techniques designed for a multimedia storage use case, such as mp3 players, 

photography or video recording. Therefore, the assumptions made are that the files are large, will only be written to once, and that 

only one file will be written to at any given time. The work Park and Ohm [3] takes advantage of this workload by reallocating all 

free clusters in the FAT table to the file when it is opened and then deallocates them when it is closed. This operation prevents the 

need for multiple program erase cycles to the FAT table as the file is being written to. Kim and Shin [1] used a similar technique, 

however they assumed a maximum file size and allocated enough clusters for that maximum file size. 

Kim et al. [2] proposed a new file system, termed MNFS with multiple notable differences to the FAT file system, one of which 

is also motivated by the assumption that a typical use case is large multimedia files. This assumption allows them to reduce the 

number of metadata updates and P/E cycles by increasing the cluster allocation size to match the flash block size so that fewer 

entries in the allocation table need to be updated. This also makes the allocation table smaller. 

Another common approach to reduce the program erase cycles in flash memory is to employ a log block-based FTL scheme 

such as FAST [4] and EAST [5]. In these schemes, when existing data within a file needs to be overwritten, rather than performing 

an erase on the entire block to rewrite a single page, new writes are written to log blocks. The previous data within a page is then 

invalidated by writing to the spare area of the block. The spare area of the block is an area NAND flash memory which usually 

contains metadata about the block or an Error Correcting Code (ECC). Periodically, log blocks are merged with existing data, 

merging multiple pages into a block at once, reducing the total number of required P/E cycles. This provided both an improved 

write performance and also increased the lifespan of the device. 

Other research also exists on improving the FAT file system itself specifically for embedded systems rather than the underlying 

FTL. Munegowda et al. [6] proposed a directory compaction technique. The directory information metadata used to build the file 

system was stored in clusters which are allocated within the FAT table like normal data. When all directories and files that are 



contained within a single metadata cluster are deleted, that cluster in the FAT table is freed. This technique makes the metadata 

required for the FAT file system smaller, leaving more space for working data. 

Research on improving the FAT file system more generally is the caching system proposed by Hwang and Won [7] for storage 

devices with low data transfer rates. When performing multiple sequential writes to a file, a system utilizing the normal FAT 

architecture must occasionally perform a read request of the FAT metadata. The read is performed to find an unallocated cluster 

which can be allocated to the file, as the memory usage increased. The system proposed by Hwang and Won caches the entire FAT 

table. This prevents the need for additional read requests during a sequential write operation and, therefore, decreases latency.  

As files are created and deleted, the free clusters can also become spread out across the FAT table, creating irregular response 

times when reading the FAT table to find a free cluster. Choi et al. [8] sought to specifically address the issue of irregular response 

times, without having to cache the entire FAT table. They considered a cluster bank structure instead of a FAT system. A cluster 

bank consists of many cluster stack structures which themselves contain the cluster allocation data. A cluster stack consists of a 

cluster group and a cluster table. The cluster table is an 8x8 table which represents clusters and whether or not they have been 

allocated. The cluster group is a byte where each bit represents which rows within the cluster table are fully allocated. The software 

stores, within a register, the first cluster stack containing a free cluster. Using this information, it then reads the cluster group within 

the specified cluster bank to find the lowest row within the cluster table which contains a free cluster. Then it reads that row in the 

cluster table to find the lowest available cluster and it then updates all the cluster bank information at the end of the allocation. The 

cluster stacks only inform the system whether a cluster is free or allocated, with no information about the next cluster belonging 

to the file as with FAT. There is a directory section, as with FAT, which stores the first clusters allocated for each file. The next 

cluster allocated to the file is then stored with the data for the file itself. The cluster bank method eventually requires marginally 

more storage than the FAT file system, however it also provides a fixed number of reads for free cluster allocation. This property 

is useful for writing large multimedia files.  

The SlimFS system proposed in this paper is inspired by the literature, but is designed considering the needs of typical embedded 

applications, e.g. small IoT based devices, sensor systems, embedded controllers, etc. However, unlike much of the previous work 

typically concerned with multimedia storage, we focus on tiny embedded systems which read and write to the flash memory in an 

a priori structure. 

 

III. PROPOSED FS 

 

This section presents a review of the implementation of FatFS, and then presents our SlimFS solution. 

 

A. Existing FatFS 

 

The main feature that defines FAT file systems is the File Allocation Table (FAT). Disk drives are split into blocks/clusters, and 

the FAT table is used to determine (point to) which blocks join together to form the requested data or file. The file system has a 

root directory, which is stored at a predetermined location, typically the first block. As can be seen from Fig. 1, a file or directory 

can be found by recovering data from the root directory. Blocks containing directory information store metadata about each 

file/directory and the location of their starting block. The FAT table is then used to find the location of remaining blocks where 

the file/directory continues. As a way of illustrating by example, Fig. 2 presents a typical FatFS structure to illustrate the start and 

end blocks for files. The root directory indicates the starting block for ‘File 1’ is block 3. Block 3 in the FAT table indicates that 

the file continues in block 4 (i.e. 0004). The FAT table then indicates that the file ends in block 4, (i.e. FFFF). 

File data is not always stored in contiguous clusters. For example, if two files are created and stored in adjacent clusters, but at 

a later stage the first file gets data appended, then the next cluster is already allocated and the file system will have to find another 

free cluster to store the rest of the data. The clusters are chosen by the file system using various algorithms and allocation methods. 

FatFS is a file system layer that is independent of the application or storage device, as can be seen in Fig. 3. It provides an 

Application Programming Interface (API) for the application layer with functionality including such features as opening and 

creating files and directories, reading and writing, closing, navigating…etc. A set of media access functions need to be provided 

to interface with the actual storage device. These have to be programmed to interface to lower level drivers specific to the storage 

device i.e. Secure Digital (SD) card or flash driver.  



 
Fig. 1.  – FatFS file look-up mechanism. 

 
 

 

 

 
Fig. 2.  – FatFS File Allocation Table (FAT). 

 

 
 

 

 
Fig. 3.  – FatFS software layers. 

 

 

 



B. Proposed SlimFS 

 

SlimFs was created as an alternative way of storing data for embedded applications where the number of files required and their 

functionality is fixed. The requirements of the file system were: 

1. Low memory consumption, 

2. Only Open, Read, Write and Close operations, 

3. Save binary data (saved data structures) and text, 

4. Option for circular text files i.e. when the file is full, start overwriting from the start, 

5. Corruption detection of critical data, 

6. Interface with both EEPROM and flash devices. 

The primary difference between SlimFs and FatFS is the memory allocation of the files. FatFS allows new files to be created at 

any time after initialization, however, for the purpose of embedded systems, it is not usually necessary to create files in such an 

unstructured order. An embedded device’s role is very specific and any such files required by the device are known a priori. 

Furthermore, the embedded device’s memory needs not to be accessed externally. Therefore in SlimFs, all the required files and 

their locations in memory are predetermined within the code. Initialization of the file system consists of creating pointers to these 

predetermined files. Thus removing the significant overhead process of the file system allocating memory, saving time and 

minimizing the amount of unused memory space. 

As shown in Fig. 4, the structure of the new file system consists of 3 main parts, i) a global static file system class, ii) a file base 

class, and iii) subclasses of the base class for each of the 3 types of files required; binary data (saved data structures, typically for 

sensor reading), a circular text file, and a non-circular text file. 

 

C. Implementation of SlimFS 

All the required files are known a priori and their physical addresses may be hardcoded or enumerated. The file metadata is 

stored in a structure with the attributes of File System Pointer, File Index, File Name, Physical Start Address and Physical End 

Address. The type of file required is then created by instantiating its corresponding class of binary, text or circular text. Then, 

calling the open(FILE INDEX) function on the instance and passing the FILE INDEX to be associated with the new instance links 

them together. This adds the file to the file systems list of file pointers with all the relevant information. 

Fig. 5 presents the SlimFS look up table. It can be seen that compared to FatFS, SlimFS has a significantly simpler table structure 

allowing for reduced memory and a significant speed increase. 

 



 
Fig. 4.  – SlimFS software layers. 

 

IV. RESULTS 

 

Two test projects were made to compare the performance of both file systems using a common 32-bit 80MHz CPU. Each project 

was bare, only containing the required files to setup the file systems under a Real Time Operating System (RTOS) and interface 

with an off-the-shelf 8-Megabit flash memory IC [9].  

Each project performed the following operations - initialization, creating/opening a file, writing 4096 bytes, reading 4096 bytes 

and closing the file. Physical timings were captured by toggling one of the microprocessor output pins either side of each operation 

and capturing with a counter/timer. The results are presented in TABLE I. As can be seen, SlimFS is significantly faster than FatFS 

in all areas, and therefore offers significant advantages over FatFS in reducing system power and storage delays in applications 

where the required files are known a priori.  

The project codebase was stored in the microprocessor local flash memory. While the program memory in both projects was 

heavily dominated by the RTOS, and as can be seen from TABLE I, SlimFS required significantly smaller program memory than 

FatFS with a reduction of approximately 9kB. FatFS is much larger than SlimFS in part due to the optional features available that 

go unused. 

The required runtime memory was stored in SRAM and FatFS used more RAM than SlimFS in part due to its use of caches. By 

default each FILE variable is 4096 bytes in size due to the inclusion of a cache, although this can be removed for further 

optimization.  

 
 



“File 1” “File 2” “File 3” “File 4” “File 5” … 

 

File System Index Name Start Address End Address 

&fs FILE_1 “File 1” 0x0000 0x0FFF 

&fs FILE_2 “File 2” 0x1000 0x1FFF 

&fs FILE_3 “File 3” 0x2000 0x2FFF 

&fs FILE_4 “File 4” 0x3000 0x3FFF 

&fs FILE_5 “File 5” 0x4000 0x4FFF 

 

Fig. 5.  – SlimFS simplified look-up table. 

 

 
 

TABLE I 
COMPARISON RESULTS OF FATFS VS. SLIMFS 

Feature FatFS SlimFS 

File system Initialize 2.7 s < 1 ms 

Open new file 108ms 76 ms 

Write 4096 bytes 176ms 107ms 
Read 4096 bytes 140ms 33ms 

Close file 312ms N/A 

Open new file, write and read 4096 bytes, 
then close 

 

736ms 216 ms 

Required program storage 55.298kB 46.172kB 
Required runtime SRAM  60.600kB 43.364kB 

 

 

 

V. CONCLUSIONS  

 

This paper has presented an extremely lightweight file system, termed SlimFS, for use in consumer embedded systems and IoT. 

SlimFS has a significantly simplified look-up table that exploits typical system constraints found in embedded consumer systems. 

While SlimFS can be used in small embedded applications where the files that need to be opened and written to are known in 

advance, the profiling results presented show SlimFS to be significantly faster and consume less CPU resources than the popular 

FatFS. 

By implementing SlimFS, consumer will see clear benefits because that devices will respond faster when data needs to be 

accessed in flash memory and battery lifetime can be extended as SlimFS reduces the CPU load compared to FatFS. 
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