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Meta-Parametric Design 

Abstract 
Parametric modelling software often maintains an explicit history of design 
development in the form of a graph. However, as the graph increases in complexity it 
quickly becomes inflexible and unsuitable for exploring a wide design space. By 
contrast, implicit low-level rule systems can offer wide design exploration due to their 
lack of structure, but often act as black boxes to human observers with only initial 
conditions and final designs cognisable. In response to these two extremes, the authors 
propose a new approach called Meta-Parametric Design, combining graph-based 
parametric modelling with genetic programming. The advantages of this approach 
are demonstrated using two real case-study projects that widen design exploration 
whilst maintaining the benefits of a graph representation. 

Keywords 
Parametric design; conceptual design; design cognition; human-computer interaction; 
genetic programming. 

 

In Computer-Aided Architectural Design (CAAD), two distinct approaches have 
found favour in recent years. The first involves parametric modelling using an explicit 
visual dataflow program in the form of a graph. Design variations are explored by 
adjusting input parameters. The second approach concerns implicit methods inspired 
by complex systems, whereby the process of generation is irreducible to an explicit 
representation. 

Although the latter approach can often offer wide design exploration (Bentley and 
Kumar, 1999), it is debatable whether implicit bottom-up methods are suitable at the 
conceptual design stage simply because natural systems develop form in this way. 
Instead, by acknowledging that humans must converse with machines and each other 
as part of a healthy digital design process, an alternative approach is proposed that 
offers wide design exploration whilst retaining an explicit representation of 
development for human cognition. 

1. Parametric modelling 
Parametric modelling is now a well-established tool in the computational design 
community. Software applications such as Generative Components (Bentley Systems), 
Dynamo (Autodesk) and Grasshopper (McNeel and Associates) allow complex ideas 



to be quickly explored, often beyond the reach of traditional techniques such as hand 
sketching, physical model making and CAD. 

A subset of parametric modelling based on dataflow programming associates 
parameters and functions to form a Directed Acyclic Graph (DAG). As well as 
generating a design, the DAG acts as a cognitive artifact describing the history of design 
development and shifting the focus from final form to that of digital process (Oxman, 
2006). 

1.1 Parametric design exploration 
The structure of the DAG governs the design space to be explored when parameters 
are adjusted (Aish and Woodbury, 2005).  A combination of parametric modelling and 
performance analysis tools allow designs to be evaluated both quantitatively and 
qualitatively in real-time when adjusting parameters (Shea et al., 2005). A typical 
DAG-based parametric schema is shown in Figure 1. Five numeric parameters (a) are 
passed through associated functions (b) that generate the design (c). Performance 
feedback from analysis (d) guides parameter adjustment, either manually or by setting 
an objective function and using a metaheuristic algorithm (e). 

To date, the most popular metaheuristics used in parametric design are evolutionary 
algorithms, due to their ability to efficiently explore a wide and unknown solution 
space (Turrin et al., 2011). Such tools are becoming increasingly mainstream as little 
or no programming experience is required to use them. For example, the introduction 
of the Galapagos Evolutionary Solver for Grasshopper (Rutten, 2013) has increased 
their popularity in architectural design (Ercan and Elias-Ozkan, 2015). 

 

 

 

Figure 1. A typical directed acyclic graph-based parametric definition.  

 

  



1.2 Limitations at the concept stage 
The conceptual design stage is when the most important decisions are made that will 
shape the future of a project. It is also the time when least is known about the design 
constraints and objectives that will co-evolve during design development (Menges, 
2012). Even if consistent quantitative design drivers can be identified, there often 
exists qualitative criteria that cannot be easily defined.  

Although a DAG-based parametric model keeps a record of how the building 
geometry is created, displaying this explicitly comes at a price. As Aish and 
Woodbury (2005, p. 11) state: “nothing can be created in a parametric system for which 
a designer has not explicitly externalised. This runs counter to the often-deliberate 
cultivation of ambiguity that appears to be part of the healthy design process”. As the 
DAG becomes ever more complicated, so its flexibility reduces. The graph can quickly 
resemble a tangle of spaghetti, making it hard to follow geometric relationships (Davis 
et al., 2011) (Figure 2). In terms of design exploration, one is often left merely fine 
tuning numeric parameters. 

The time required to generate topologically different parametric models is one reason 
why hand sketching and physical models are still popular at the concept stage, where 
the design process can jump between completely different typologies (Figure 3). That 
said, extracting quantitative performance is often difficult with sketches and physical 
models, leading to a temptation to begin with computer models from day one; a shift 
encouraged by developments in Building Information Modelling (BIM) for the early 
design stage (Eastman, 2009). 

 

 

Figure 2. A poorly organised graph is difficult for others to understand. 

 



 

Figure 3. Physical massing models allow exploration of different design typologies but are difficult to 
analyse quantitatively. 

 

1.3 Limitations on future development 
The relationship between a parametric model and its output is many-to-one, i.e. an 
identical form can be constructed using different parametric definitions. Figure 4 
shows the same form created by lofting through shrinking floor profiles (a) and by 
slicing a cuboid with an inclined plane (b). Although the resulting form is identical, 
the graph structure defines subsequent model development. The design process can 
easily become locked-in, with any changes to requirements resulting in a time-
consuming rebuild of the model from scratch (Holzer et al., 2007). 

This parametric lock-in encourages the re-use of existing definitions on different 
projects; either by direct copy-and-paste or by compiling commonly used processes 
into a single component that is then reused. As Moussavi (2011) states, “parametric 
design as a style disposes itself of the restraints of external parameters and promotes 
the autonomy of architectural forms, while it cannot advance beyond new ways of 
shaping matter to produce unexpected spaces.” In summary, parametric design tools 
seem unsuited to the early stage as they either lock the designer to one typology, or 
else require the laborious creation of many different definitions.  

  



 

Figure 4. For the same initial form, two different parametric definitions give different design spaces 
when adjusting parameters. 

2. An implicit approach 
Unlike parametric models, natural systems do not keep an explicit record of how to 
build an organism laid out in their genes. An organism’s DNA contains rule based 
information that encodes an emergent process of development from a single embryo, 
i.e. morphogenesis. The complexity of an emergent process means that small 
alterations to the genotype can often lead to large changes to the phenotype, for 
example its size, shape and number of repeating modules in the living form. A small 
change to a relatively small set of genes known as the homeobox for example can give 
rise to large changes to the final ‘body-plan’ of the organism (Weinstock, 2010). 

2.1 Artificial embryogenesis 
The ability of natural systems to produce a great variety of forms has offered 
inspiration to computational designers (Steadman, 2008). Artificial Embryogenesis 
(AE) is the study of taking natural evolutionary development and artificially 
replicating it inside the machine (Kowaliw, 2007). Bentley and Kumar (1999) have 
used the concept of AE to compare various ways of generating designs and measure 
how appropriate they were for the task of wide exploration in combination with an 
evolutionary algorithm. They found that an implicit representation gave rise to a 
much greater variety of designs than an explicit embryogeny such as a parametric 
model. Historically, the use of an implicit embryogeny for generating architectural 
design was explored by Frazer (1995), Coates (1996) and Bentley and Wakefield (1998) 
with the evolution of rule based cellular automata and remains a popular technique 
in computational design. 

  



 

Figure 5. Comparison between an implicit (a) and explicit (b) embryogeny for generating simple forms. 
CA example taken from Coates et al. (1999). 

 

2.2 The process black-box 
Whilst implicit methods have many advantages, the difficulty of understanding a 
complex development process is often overlooked. In Bentley and Kumar’s (1999) 
implicit example, only the final resulting design was available with no simple 
description of the development (i.e. CA rules to final design) that could be easily 
understood. This is in contrast to a parametric definition for example (Figure 5). In 
addition, due to the indirect mapping from genotype to phenotype, a small change in 
the initial rules and the process has to be run again from scratch. Even then it is 
difficult for the human observer to wilfully influence such a complex process, since 
any intervention can lead to a vastly different outcomes. This irreducibility is a well-
known characteristic of both chaotic (Strogatz, 2006) and complex systems (Wolfram, 
1984). 

2.3 Impact on collaboration  
The non-adoption of automatic plan generation tools in architecture (Liggett, 2000) 
shows the importance of feeling involved in the generative design process. As Derix 
states (2010, p. 64), when black box tools are developed for others to deploy, “the 
designer is side-lined into a seed-watch-evaluate role who feels their intentions and 
heuristics are not participating in the search”. 

In contrast, graph-based parametric models have been shown to assist design teams 
to engage at the level of design generation by acting as cognitive artifacts at the level 
of process (Hudson et al., 2011; Oxman and Gu, 2015). If well-structured parametric 
models have the potential to be understood by others due to their explicit 
representation, it follows that parametric models generated by machines could 
potentially be understood by human designers. 



 

 

Figure 6. A simple Cartesian Genetic Programming example. An integer-string genotype encodes a 
DAG that produces a set of equations. 

3. Meta-parametric design 
In response to both the inflexibility of explicit modelling tools and the irreducibility 
of an implicit approach, the possibility of automatically generating parametric models 
is an interesting alternative (Harding et al., 2013). Although Gero and Kumar (1993) 
have previously shown methods to widen the design space using re-parameterisation, 
this approach goes one step further in order to think topologically (DeLanda, 2002) 
and consider the whole structure of a parametric definition. 

The authors call this approach Meta-Parametric Design with strong similarities to 
genetic programming (GP), whereby whole computer programs are generated by 
machines. GP has been explored in the generation of form by Coates et al. (1999) using 
Lindenmayer systems, and later using simple geometric operations in a shape 
grammar (Coates, 2010). Hernandez’s (2006) work on Design Procedures (DP) and 
more recent work on Compositional Pattern Producing Networks (CPPN) by Clune 
and Lipson (2011) have shown the potential of evolving a graph representation to 
generate form. 

 

 



3.1 DAG generation 
As well as GP using tree structures (Koza, 1994), the automatic generation of DAGs 
has also been of research interest due to their close relationship to computer 
algorithms, particularly their application in work scheduling problems (Van 
Leeuwen, 1991). Cartesian Genetic Programming (CGP) (Miller and Thomson, 2000) 
is a more recent approach that generates explicit DAGs very similar to that used in 
parametric design, using an integer genotype encoding. Partly due to its explicit 
embryogeny, CGP has been successfully used in a wide variety of applications in 
combination with evolutionary algorithms (Millar, 2003). 

An example of a CGP system is given in Figure 6. Initial parameters in the graph are 
tagged sequentially (a). Each node in the graph is a function with inputs and outputs. 
When a new node is added, the encoding method (b) defines the specific function from 
a pick-list and to which outputs in the graph the node inputs are connected. The 
outputs of this new node are then tagged, and the next node is added. This process 
continues until the genotype is exhausted. In this example, terminating nodes (c) are 
also defined so that the graph defines a further phenotype, in this case set of equations 
(d). 

There is an obvious similarity to a CGP system and DAG-based parametric modelling. 
The functions in a CGP can be replaced with components in a parametric schema, and 
the terminating nodes are not required. The next section describes the process of 
applying CGP as a software plug-in to Rhino Grasshopper. 

3.2 Embryo plug-in for Grasshopper 
Embryo is the name given to a software plug-in to Grasshopper written by the first 
author that applies a form of CGP to parametric models (Harding, 2014). It was chosen 
to develop a tool that would work within an existing parametric environment, so that 
automatically generated DAGs could work alongside those created manually.  

In general, Grasshopper model generation can be split into three parts: external 
parameters (for example numeric sliders, external geometry, etc.), the components in 
the graph and the topological structure that associates components. These three parts 
form the basis of the genotype used by Embryo when constructing a parametric 
model: 

a) Metric genes: control the parameter values for generated sliders and have a 
direct numerical mapping. These can be either integer or floating point values. 
These metric parameters are the first objects generated by Embryo. 

b) Function genes: when a component is added to the graph, the function genes 
control the type of component selected from a given pool. 

c) The topological genes are integer based and map the output location for each 
component input when forming the graph. Only one wire can be connected to 
each input, but outputs can be used multiple times. 



 

Figure 7. The Embryo component and input parameters 

 

Figure 7 shows how these three sets of genes (a, b and c) are connected to the main 
Embryo component that generates the parametric model. The user also specifies the 
number of sliders and components to be used. There exists a random override input 
(d), which if used generates a random genotype that replaces any existing genes. This 
feature can be useful in giving an overall feel for the design space. 

Figure 8 gives a simple example of the genotype-phenotype mapping using two 
component types. The process is split into five stages. At Stage 1, the first four values 
of the genotype are interpreted as slider values (green) and placed on the canvas. 
Stages 2-5 then involve the sequential placing and connecting of components. For each 
component placed, the function genes (blue) specify the type and topology genes (red) 
govern the connections for each input. Note that the number of topology genes per 
component (by default set to length 4) is constant regardless of the number of inputs 
the component has. Although requiring a larger genotype, this ensures that should a 
component be replaced (e.g. a single mutation of the genotype), the effects of having 
a different number of inputs does not cascade to all subsequent components. These 
dormant topology genes may of course be activated if the component type changes. 

 

 



 

Figure 8. The generation of a parametric model from genotype to phenotype 



When a component is added, each of its input nodes is connected backwards to an 
output of a compatible datatype. This is achieved by forming a sublist of valid outputs 
before connecting using the topological genes; for example if the input Grasshopper 
datatype is a Number, then the sublist may contain Integers but it cannot contain 
Points. If the topological gene value is higher than length of the sublist, then modular 
arithmetic is used. For example at Stage 4 in the example, the first input of the new 
component is 7, but as there are only 4 suitable inputs available, 7 (mod 4) = 3. 
Components for which it is not possible to connect an input are removed. At Stage 3, 
the orange component has failed and is removed because it requires two inputs of 
Point datatype, but only one is available in the entire graph. However, a similar box 
component is added later at Stage 5 when two points are available. After each 
component is added, its outputs become available for connection at the next iteration. 

A typical Embryo set-up in Grasshopper is shown in Figure 9. The designer specifies 
the components to be included (a) and the Embryo component is located on the main 
canvas (b). Settings can be adjusted (c) such as display parameters, whether multiple 
edges can connect to outputs, geometry preview, displaying failed components, etc. 
The new graph is then automatically generated above the main Grasshopper canvas 
area (d). This can include tagged output parameters from an existing model on the 
main canvas (e). Data can be retrieved from the generated graph and connected to 
tagged inputs of an existing model (f). Having such a connection to manually created 
parametric elements helps facilitate working between different levels of abstraction 
(parametric and meta-parametric) within the same Grasshopper file. 

 

 

Figure 9. Typical set up when using the Embryo plug-in for Grasshopper. 



 

Figure 10. Examples of simple parametric models generated by Embryo with four component types: 
Cartesian point, line by points, divide curve and box by points. 

 

Some examples of simple graphs and associated designs generated by Embryo are 
shown in Figure 10, where ‘s’ represents the number of sliders and ‘c’ the number of 
components. 

3.3 Comparison to shape grammars 
In effect, Embryo turns Grasshopper into a shape grammar system for exploring 
combinatorial problems (Stiny and Mitchell, 1978). At present, the variety of 
components in models generated by humans is at present difficult to achieve and the 
examples thus far involve relatively simple geometric components and a limitation of 
one input per parameter. In this sense, meta-parametric modelling could benefit from 
predefined heuristics or perhaps a form of machine learning over time in terms of 
successful component combinations, much like humans do in order to increase model 
complexity. 

CGP suffers from common GP issues such as a limitation on the number of 
rules/components to avoid generating predominantly impossible combinations of 
components and models. However, by using an existing parametric modelling tool 



such as Grasshopper, testing different component combinations is relatively 
straightforward. CGP has also been shown to reduce the problem of bloat in 
comparison to tree-based GP (Millar, 2001), although a cap on calculation time would 
be a useful addition to Embryo. The fact that unsuccessful components are removed 
from the canvas sequentially (see Figure 8) also helps reduce the chance of errors 
trickling through the model. In combination with an appropriate metaheuristic, 
design spaces involving non-computable parametric models can be better avoided 
during design exploration. 

3.4 Combining with metaheuristics 
The genotype can be easily combined with a metaheuristic algorithm within the 
Grasshopper environment, for example by using the Galapagos evolutionary solver 
(Rutten, 2013). An example of such a setup is given in Figure 11 in solving a 
combinatorial problem, in this case finding a combination of operators (a) that will 
manipulate six integers to reach a target number. Embryo (b) constructs a graph from 
gene pools (c), noting that no new sliders are generated, rather existing numbers are 
tagged (d). The graph is generated (e) and distance from the target number measured 
(f) which is minimised by Galapagos (g) by altering the gene pools. Essentially, a meta-
parametric model is constructed that optimises a parametric model. 

 

 

Figure 11. Combining Embryo with a metaheuristic solver 

 



Such a fitness function can be defined by recovering not just numbers but geometry 
generated by Embryo to the main canvas and measuring its performance within 
Grasshopper (see Section 4.1). Such evolutionary methods using CGP have found that 
crossover can have a limited effect and hence often rely on mutation alone (Clegg et 
al., 2007). 

As an explicit embryogeny is used, the genotype is mapped directly onto the 
topological structure of the graph, as opposed to an implicit method with low-level 
rules. Although a larger genotype is required, this mapping leads to a closer mapping 
between the genotype and phenotype than with an implicit approach, assisting with 
evolvability by reducing discontinuity in the search space (Kumar and Bentley, 2000). 

3.5 DAG Cognition 
One advantage of machine generated models is the potential to maintain a consistent 
structure. In this regard, Embryo generates a DAG that is already topologically sorted 
into a dependency hierarchy which can assist human understanding post-creation 
(Figure 12). In addition, tools that step through the graph, previewing each stage of 
development are included within Embryo. 

 

 

Figure 12. A topologically sorted parametric model by Embryo reveals component dependencies  

 

  



 

Figure 13. An unintelligible parametric model generated by Embryo 



Although the generated parametric models have the potential to be legible, this varies 
depending on the situation. For larger graphs there is still the potential ‘spaghetti 
problem’ (see Section 1.2) with many crossing edges, requiring effort on the part of 
the user to understand. Ways to counter this range from including graph legibility 
during the design search itself (see Section 4.1) to providing a method for 
automatically untangling the graph (Section 5.1). 

Embryo can also be used if the legibility is sacrificed to explore more complex models, 
for example the model shown in Figure 13 which to generate manually would be 
practically impossible. This potentially extends the capability of tools like 
Grasshopper in a new direction albeit, one where understanding the model is highly 
compromised. 

4. Implementation 
Two real projects are shown here as examples of Embryo being used in different 
design contexts in practice. Firstly to generate massing concepts for a residential 
development. Secondly, for a mixed-use tower project whereby parametric models are 
evolved to match an existing geometric concept design using shape analysis. 

4.1 Enhancing design exploration 
In collaboration with 3dReid architects and Ramboll engineers, Embryo was used 
during the concept design stage of a high-density residential project in Tower 
Hamlets, London. A series of initial design team meetings were held in order to set 
out the parameters and constraints for the project. This included writing bespoke 
components based on the project requirements, such as apartment width for single 
and double aspect accommodation, and high-level bridge links between adjacent 
buildings to improve connectivity.  

Parametric models were initially created using randomly generated genotypes, three 
examples of which are shown in Figure 14. In almost all cases, bloat was not an issue 
and models were able to be computed without error. The building performance of 
each generated design was assessed in real-time within Grasshopper, including 
daylight assessment, internal floor area, spatial connectivity, building heat loss and 
views to key London landmarks. This was achieved using a special Embryo 
component that collects geometry from the generated model (shown * in Figure 15), 
acting in a similar way to a tagged parameter input on the main canvas (see Section 
3.2).  

During the study, it was found that reducing the complexity of the graph also became 
an objective in itself, with legibility of the parametric model playing an important part 
in the design process. Figure 15 shows an example of how one of the machine 
generated parametric models was further progressed manually by the design team. 
Interestingly, it was found that models with more and not less parameters were easier 



 

Figure 14. Parametric massing models generated by Embryo for the Tower Hamlets project. 

 

 

Figure 15. A parametric model generated by Embryo that was further developed manually. 



 

to progress. Their influence affected less components and hence the consequences of 
adjustment were easier for the team to understand. 

Embryo was used to generate and analyse novel design ideas that may have otherwise 
remained unexplored running alongside using more traditional methods such as 
sketching and physical massing models. Approximately 60 Embryo generated models 
of a wide variety were used to benchmark the performance (both quantitative and 
qualitative) of designs created using more traditional methods within the practice. 
Here, automation made it possible to quickly generate many alternatives for 
comparison. It was felt however that more work needs to be done on this interface 
between physical and digital modes of representation, for example 3d printing some 
of the Embryo massing models would have meant working in both directions in terms 
of comparing design methods.  

Although Embryo was a useful addition to the project, the use of random genotypes 
in this particular application made design exploration somewhat undirected and 
disjointed. The use of evolutionary methods on a similar project would be interesting 
to revisit in the future, in particular incorporating an interactive evolutionary 
algorithm using artificial selection. 

4.2 DAG evolution  
Another interesting application is in the creation of parametric definitions for existing 
CAD geometry. This includes searching for alternative definitions for geometry 
generated by an existing process (see Section 1.3). Figure 16 shows an example on a 
mixed-used tower project in collaboration with Danish architects AG5 and Ramboll 
Engineers in London. An existing concept design made in Grasshopper was used as a 
target for evolving a machine generated alternative using the Galapagos evolutionary 
solver (a).  

As with the example in the previous section, by retrieving the geometry from the 
generated model to the main canvas, analysis could be performed within 
Grasshopper. An objective function was set using vertex matching techniques found 
in shape analysis (Costa, 2000).  Removing crossover and relying on mutation alone 
was found to generate the best results, something in keeping with similar studies 
using CGP due to the nature of the encoding (Clegg et al., 2007). 

Although the final result was not a perfect match, this is in part due to the change in 
components used in the newly generated definition (b). Particularly at the early design 
stage, often a good enough match is perfectly acceptable as was the case in this instance. 
Consisting of a new set of parameters, components and associations, the alternative 
parametric model could then be used to progress the design in a different direction 
than would have been possible otherwise. Here, there is a natural analogy with 
‘convergent evolution’ in nature, whereby different development paths and  



 

 

Figure 16. For an existing tower geometry, a new parametric definition is evolved consisting of different 
parameters, components and associative structure. 

 

 

 



genotypes can lead to similar traits in organisms. A well-known example of this is the 
independent evolutionary development of the camera eye by both vertebrates and 
octopuses.  

Although promising for simple massing forms, further research on the potential for 
evolving parametric models for more complex problems is required and the method 
is not without issue. For example, whilst understanding the new model construction 
was possible, there was a disconnection in terms of ascribing meaning to the 
parameters; especially those that controlled many different geometric operations. As 
in Section 4.1, rather than reducing models to as few parameters as possible, models 
with more parameters proved to be more useful going forward (Harding, 2014). 
Clearly more empirical work is required here in terms of understanding model 
legibility when created by machines, although it is clear that reducing analysis of 
legibility to the complexity of the graph alone is not sufficient. 

5. Conclusion 
This paper began by highlighting two main approaches to form generation in 
computational design, explicit and implicit. The authors argued that an implicit 
approach, though giving the wide design exploration suitable for the concept stage, 
has a lack of structure that has often proven to be useful in parametric design. Such 
methods are therefore difficult to use in a collaborative design environment, where a 
common language is required for communication between humans and machines. 

DAG-based parametric models however struggle with topological inflexibility. By 
allowing them to be automatically generated, this offers a new opportunity for a 
greater number of parametric definitions to be implemented at concept design stage, 
where wide design exploration is required. The process of creating parametric models 
thus becomes similar to sketching and making physical models, but with the added 
benefits of having a digital presence, i.e. for quantitative measurement or performance 
analysis. 

We call this approach Meta-Parametric Design, and argue it is well equipped to deal 
with the wicked nature of the concept design stage with unknown constraints and 
goals. Initial tests on real projects have been positive, although there is much work to 
be done to understand the potential use of this method and its applications. We 
believe that this work can inspire the application of genetic programming into the 
wider computational design community. 

5.1 Future work 
Some applications of a meta-parametric design approach were given in Section 4. 
However, there is much potential for developments and improvements. These include 
the following: 



• Incorporating self-similar structures as part of the DAG encoding (Boers and 
Sprinkhuizen-Kuyper, 2001), similar to those used with CPPN methods (Clune 
and Lipson, 2011). This would help to reduce the size of the genotype for more 
complicated graphs. Grasshopper now includes modular ‘clusters’ (parametric 
definitions grouped into one single component) that could be useful for this 
development. 

• More work on the legibility of parametric models generated by the machine. 
Algorithms exist in graph theory, such as reducing the amount of overlapping 
edges (Verbitsky, 2008) but to the author’s knowledge are yet to be 
implemented in parametric design.  

• Additional study is required in light of the findings in Section 4, namely the 
preference for models with more parameters not less. Clearly the intelligibility 
of parametric models cannot be based on graph complexity alone. 

• Combining Embryo with interactive evolutionary algorithms that use artificial 
selection. This would enable qualitative criteria to be better accommodated 
during design exploration. 

• Investigate effective methods for genotype crossover within CGP (Clegg et al., 
2007). 

• Expansion on the work shown in Section 4.2 whereby parametric definitions 
are evolved that open up new avenues of design development and negate the 
problem of parametric ‘lock-in’. The use of Embryo on more case-study projects 
will help understand both its potential and limitations. 

• Integrate a mixture of explicit and implicit approaches. Singh and Gu (2012) 
have shown the benefits of a mixture of digital design methods for divergent 
thinking at the early stage, and Grasshopper for example includes components 
for imperative programming. 

5.2 Summary 
Architectural design is becoming increasingly obsessed with combining all elements 
of performative design into a single quantitative tool to be used as early as possible 
on projects. In this age of increasing computing power, it is easy to forget that how we 
approach modelling as design teams has just as important role to play as real-time 
performance analysis tools.  

In this context, Meta-Parametric Design is a new method of working with automation 
that helps design teams engage in wide design exploration whilst retaining the 
cognitive benefits of an explicit representation. Although machines are often thought 
of as problem solvers they can be just as valuable in assisting humans during the 
creative process. In parametric design, increasing model flexibility with help from 
machines helps prevent finding a solution before knowing the problem. 
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