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Abstract
In architectural design, parametric models often include numeric parameters 
that can be adjusted during design exploration. The resulting design space can 
be easily displayed to the user if the number of parameters is low, for example, 
using a simple 2- or 3-dimensional plot. However, visualising the design space 
of models defined by multiple parameters is not straightforward. In this paper 
it is shown how dimensionality reduction can assist in this task whilst retain-
ing associations between input designs at a high-dimensional parameter space.  
A self-organising map (SOM), a type of unsupervised artificial neural network, 
is used in combination with Rhino Grasshopper in order to demonstrate the  
potential benefits for design exploration.

Keywords: 
parametric design, machine learning, dimensionality reduction, self-organising 
maps, data visualisation
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1.	 Introduction
Dimensionality reduction (DR) is the study of reducing the number of variables 
that define any system. This is typically divided into two methods, feature selec-
tion and feature extraction. For the former, the task involves selecting a subset 
of variables, typically those that have the greatest influence on the output. Fea-
ture extraction, on the other hand, transforms the data into a new set of lower 
dimensional variables.

Techniques for feature extraction of high-dimensional data sets are well 
known in data-mining for both reducing storage space of complex data and vi-
sualising high-dimensional data sets. Examples in speech (Kumar & Andreou 1998) and 
image recognition (Yu & Yang 2001; Hinton & Ruslan 2006) are now standard references in 
pattern recognition, and research into using DR methods for solving engineering 
design problems (Bekasiewicz et al. 2014) is continuing at pace.

Dimensionality reduction has strong links to research in neuroscience and 
cognition, for example, in mapping sensory experience to associated three- 
dimensional locations in the brain, the so-called somatotopic map (Grodd et al. 2001). 
In AI research, some artificial neural networks attempt to artificially recreate this 
process by mapping complex inputs into a lower dimensional spaces, one ex-
ample being the SOM introduced by Kohonen (1982). This paper therefore inves-
tigates whether SOMs can be used effectively in combination with architectural 
parametric models defined by high-dimensional parameters.

2.	Background
Visualising high-dimensional data for human cognition is hard. Examples with-
out resorting to reducing dimensions include the use of colour on plots or by 
combining multiple plots representing different combinations of variables. Due 
to this mixed mode of representation, such diagrams can often be difficult to un-
derstand and get an overall picture of the data set.

With feature extraction, reducing the high-dimensional data can be converted 
to a lower dimensional space. Feature extraction methods can be classified into 
two sets, linear and non-linear. Popular linear methods include K-means cluster 
analysis and principal component analysis (PCA). PCA, for example, transforms 
the data set to a lower dimensional orthogonal coordinate system that max- 
imises variance (Jolliffe 2002).

Whilst linear methods are often comparatively fast, they struggle to main-
tain associations between data that is distributed non-linearly in the high- 
dimensional space. A classic example is in handing the so-called Swiss-roll data 
set, for which PCA in particular is known to struggle (Tenenbaum et al. 2001). Some 
examples of non-linear dimensionality reduction (NLDR) methods that retain 
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non-linear relationships include Sammon mapping (1969), Isomaps (Tenenbaum et al. 

2001), elastic maps (Gorban & Zinovyev 2009), and SOMs (Kohonen 1982).

2.1	 Precedents in Architectural Design
In architectural design, DR has been implemented predominantly in spatial anal-
ysis. Coyne (1990) first used the idea of connectionism to display differences be-
tween abstract residential plans. Petrovic and Svetel (1993) generated 3-dimensional 
layouts based on higher dimensional semantic associations. More recent work 
by Derix and Thum (2000) investigated a spatial machine that could build autono-
mous representations of space using SOMs. Methods for the classification of 
architectural plans have been investigated using both PCA (Hanna 2006; Hanna 2010) and 
SOMs (Jupp & Gero 2006; Harding & Derix 2010). More recently, Derix and Jagannath (2014) 
have used SOMs to capture and classify spatial descriptions.

Although these applications have shown the high potential of using DR 
methods in design, they are yet to have a wider impact in architectural comput-
ing. This has in part motivated this research in returning to existing parametric 
modelling tools, offering new ways to enhance their use. The work presented 
here focusses on visualising parameter and not objective space (for example, 
performance criteria).

D

T

Figure 1. Visualising the design space of a simple parametric model with two parameters.
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2.2	 Potential for Parametric Models

A subset of parametric modelling tools based on dataflow programming asso-
ciates input parameters and explicit functions to form a directed acyclic graph 
(DAG). The structure of the DAG typically describes a mapping of numbers into 
geometry, setting out a possible design space to be explored when parameters 
are adjusted (Aish & Woodbury 2005). Well-known examples of such DAG-based tools 
used in architecture include Rhino Grasshopper (McNeel and Associates) and 
Autodesk Dynamo (Autodesk).

Visualising the design space of parametric models can help users to under-
stand both the bounds of the model and how each parameter guides variation. 
For low-dimensional models, a simple plot is often sufficient to understand the 
parameter space inherent in the model. Such an example is shown in Figure 1. 
The design space of shapes defined by a set of parametric equations similar to 
Möbius bands is visualised. A parameter (T) governs a number of twists in the 
surface which is then discretised into a hexagonal pattern with increasing den-
sity (D). In this particular case, it is possible to include semantic information to 
each parameter/axis, for example twist and density.

When models begin to increase in terms of independent variables (parame-
ters), it becomes increasingly hard to understand the extent of the model. One 
is sometimes left adjusting different combinations of parameters and observing 
their effect on the output geometry. This is where DR techniques such as SOMs 
can potentially help visualise the bounds of a parametric model definition.
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Figure 2. Each neuron in the map has an associated feature vector at the same dimension as the inputs (a). Learning 
takes place after the ‘winning’ node is identified (b).
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3.	Self-Organising Maps
SOMs are a type of unsupervised artificial neural network that can be used in 
reducing the dimensionality of data whilst attempting to retain non-linear asso-
ciations. Samples in the high-dimensional input feature space are presented to a 
map in a lower dimensional map space, with the map learning over time from the 
inputs presented to it.

Typically, the map has either a hexagonal or rectangular topology arranged 
on a 2D plane, although this depends on the application. Each location in the 
map has an associated feature vector (sometimes known as a synaptic vector) at 
the same dimension as the input samples. In the example shown in Figure 2, a 2- 
dimensional 3 x 3 map contains feature vectors in 4 dimensions. Before learning 
takes place, these feature vectors are typically randomised, meaning resulting 
maps for the same set of inputs, although similar, are never identical.

3.1	 Learning

At each iteration, the inputs are presented to the map with the node with the 
closest feature vector to each input declared the winner. Determining this dis-
tance can be done using various methods, including finding the Hamming distance 
(binary comparison) or simply taking the dot product for small input dimensions. 
The most common method, however, and that used here is to take the smallest 
Euclidean distance (in feature space) to determine a winning node.

Once identified, a winning node adapts its feature vector slightly towards the 
input at a given rate (winner learning rate), with neighbouring nodes also learning 
depending on a radial function, typically a Gaussian radial basis function. These 
learning rates decay (exponentially) over time, with the map converging as learn-
ing approaches zero. As the map changes, so the inputs move between winning 
nodes, making the SOM more than simply a form of high-dimensional diffusion.

The SOM algorithm has various parameters that govern the nature of learn-
ing in the map. These include:

• Map dimension, size, and topology.
• Winning node learning rate.
• Winning node learning decay rate.
• Neighbourhood learning function (e.g. Gaussian radial basis function).
• Neighbourhood learning decay rate.
• Neighbourhood decay rate (affected neighbours shrinks over time).

Setting these parameters depends on the nature of the inputs and requires 
either manual adjustment based on visual inspection of the final map outcome 
or by using various adaptive methods (Berglund & Sitte 2006). For the applications 
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discussed here, manual adjustment of the parameters were adequate to produce 
suitable maps for visualising parametric model design spaces. A more thorough 
background to the SOM algorithm can be found in Kohonen (2001).

3.2	 Reduction to 2D
The chosen map dimension can in theory be any equal or below the input space 
dimension. In this paper, 2-dimensional plots for the map were chosen in order 
to best visualise the design space for human cognition. Figure 3 shows an exam-
ple of a 2-dimensional SOM on a rectangular grid being trained with five inputs. 
Each input is defined by a 3-dimensional vector corresponding to RGB values.

After 25 iterations learning has completed and the locations of the inputs 
on the map are distributed with similar colours being closer to each other and 

Figure 4. 9-dimesional ‘glyphs’ reduced to a two-dimensional map. The final 16 input locations are highlighted.

t = 0 t = 5 t = 25

Figure 3. A 2D self-organising map being trained with five RGB inputs.
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those most different being furthest away. This associativity between inputs is 
maintained, despite a reduction from 3 dimensions to 2. As well as the input 
distribution, the map itself contains a smooth gradient between inputs, revealing 
colours that were not explicitly defined by the inputs.

Although non-linear DR can maintain associativity in the form of map re-
gions, it is important to note that the original orthogonal structure of the data is 
lost. For example, one cannot associate axes to the sides of the 2-dimensional 
map, or in other words the mapping cannot be defined by a linear combina-
tion of the three original variables. Another important aspect is that the whole 
visible spectrum as we know it is not shown; the map can only learn from the 
inputs presented to it.

Figure 4 shows a higher dimensional geometric example with sixteen random 
9-dimensional input ‘glyphs’ being used to train a 2-dimensional map. Glyphs are 
similar to radar or spider plots in that each radial axis defines the value of a giv-
en parameter. The resulting map produces a similar result to multi-dimensional 
scaling (MDS) methods (Buja et al. 2008). In the example shown, in theory the nine 
parameters could in theory control any aspect of a parametric model with the 
resulting geometry located at each map node.

4.	Application in Parametric Design
The use of DR methods in architectural design to date is relatively niche, so com-
bining such techniques with popular parametric design software was the motiva-
tion behind developing a tool for use in the architectural computing community. 
Written in C#, a freely available Grasshopper component was developed by the 
author for producing 2-dimensional SOMs with a rectangular topology (Harding 2016). 
The component consists of the control parameters as discussed in Section 3.2. 
Figure 5 shows the use of the component to generate the glyph plot shown in Figure 4.

4.1	 Parameter Encoding
In general, parametric design models map numbers to resulting geometry. The 
amount of indirectness in this mapping can vary, for example, a parameter that 
controls the height of a box can be seen as direct and linear – i.e. increasing the 
parameter also gradually increases the height of the output gradually. At the other 
end of the scale, parameters that are seeds for pseudorandom functions result in 
a completely indirect mapping between parameter and final geometry – a concept 
similar to that of continuous functions or smooth fitness landscapes in evolution.

Parametric models that use dataflow programming such as Rhino Grasshopper 
do not typically allow cycles and therefore have a so-called explicit embryogeny 
(Bentley and Kumar, 1999). The topology of the graph in a parametric model is fixed when 
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parameters are adjusted, and this usually helps in maintaining a direct mapping 
between number and form. This is in contrast to chaotic (Lorenz 1963) or complex 
systems such as class IV cellular automata (Wolfram 1986) that have a highly indirect 
mapping between parameter and resulting form.

So-called developmental encodings are generally more indirect than paramet-
ric models, for example, superformulas (Gielis 2003) and compositional pattern-pro-
ducing networks (CPPNs) (Stanley 2007; Clune & Lipson 2011) that vary graph topology. In 
architectural design, Vierlinger (2015) has recently showed how such developmen-
tal encodings can help evolve neural networks that produce drawings in antici-
pation of the user.

The nature of the mapping is therefore an important consideration when 
visualising a design space and will inevitably vary depending on the parametric 
definition. For example, if the parametric model is many-to-one, i.e. two values 
of a given parameter map to the same design (a periodic function, for example). 
In such cases, a method such as shape analysis (Costa & Marcondes 2000) is likely to be 
more appropriate for classifying geometry and forming a feature vector.

4.2	 Sampling of Models
As with the examples given in Section 3.3, for high-dimensional parametric mod-
els, a selection of samples (saved parameter states) selected at random from 
the design space can be used to produce a lower-dimensional map. Figure 6 shows 
a tower massing form defined by three parameters with a direct mapping that 
alter the twist, height, and tapering of a box. By using several inputs with nor-
malised parameter values, the resulting 2-dimensional map can offer an overall 
visualisation of the design space inherent in the parametric model.

The spaces between the inputs are interpolated by the map itself. Again, note 
that we have lost the structure of the original 3 dimensions during the process, 

Figure 5. Grasshopper definition with self-organising map component in use.
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i.e. no particular direction now indicates twist, density, or height, rather there ex-
ists regions in the map that have higher values of these parameters than others.

In this example, as the choice of inputs is random, there exists no prevalent 
structure or clustering in the high-dimensional space that requires maintaining. 
However, if particular designs (or parts of design space) are more desirable then 
these can be selected as the inputs to the map. As the specific sampling may 
vary, one must anticipate that linear methods may not be sufficient. Sampling 
such as the Swiss-roll data set (Tenenbaum et al. 2001) requires a non-linear method 
to maintain high-dimensional clustering. This is discussed further in the next 
section.

4.3	 Selective Sampling
If certain parameter combinations are preferred by the designer, then there exists 
a bias towards certain clusters in the data. These could be selected automatically 
using an objective function and/or selected artificially. Figure 7 shows the design 
of a structural node as part of the UWE 2016 Research Pavilion. Each node is 
defined by five parameters, two controlling colour and three defining the mesh 
geometry. As opposed to random sampling, seven designs were selected from 
the parametric model by the design team by adjusting parameters in the tradi-
tional way and saving parameter states.

The selected designs were then used as inputs in the SOM. The resulting 
map (Fig. 8) interpolates designs between the inputs as well as locating similar 
designs closer to each other on the map and dissimilar designs further apart. 
Again, although it is not possible to define linear axes on the map (as we could 
in 5-dimensional feature space), associations between designs are evident by 
viewing the map as a gestalt. The associative map gives an overview of the latent 
possibilities within the parametric definition. Without resorting to laborious slider 

Figure 6. Reducing three dimensions (twist, height, and taper) to a plane. Random selection of inputs (a), initial state of 
the map (b) and following learning (c).
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tweaking resulting in user fatigue (Piasecki & Hanna 2011), the map suggests possible 
design combinations that might have been otherwise missed.

4.4	 Artificial Selection
Evolutionary algorithms with artificial selection often employ a visual interface 
for engaging with the user. Dawkins’ biomorphs (1986), for example, involve se-
lecting designs which are then crossbred and mutated at each generation. Such 
interactive evolutionary algorithms are known to be useful for exploring design 
problems with no clearly defined goal. At each iteration, SOMs could potential-
ly be used to display the design space to the user as part of a human-computer 
interactive process. In addition, associating a fitness landscape at this lower di-
mensional parameter space could also potentially help better visualise the effect 
of parameters on different performance measures for different designs.

5.	Conclusions
In this paper DR has been used in combination with a parametric modelling 
environment in order to visualise high-dimensional parameter spaces. As well 
as creating associations between inputs, the SOM can suggests possible de-
sign avenues beyond that easily achieved by adjusting numeric parameters 
manually. Future research in linking parametric design with DR includes the 
following:

• The use of a hexagonal map topology which is known to improve the per-
formance of the map (Länsiluoto 2004).

• Incorporating fitness plots in order to make comparisons between param-
eter and objective space for architectural designs.

• Incorporate a form of sensitivity analysis to understand effect of param-
eters on the final geometry (i.e. the directness of mapping from param- 
eters to design).

• Incorporating analysis measures as inputs to the map.
• Development of the SOM tool to generate 1- and 3-dimensonal maps.
• Testing of complex parametric models where the ‘curse of dimensionality’ 

can make adequate sampling difficult.

Although popular in other fields such as engineering, machine learning tech-
niques are still relatively niche in architectural design. It is therefore hoped that 
by combining dimensionality reduction methods with mainstream parametric 
modelling software, this can benefit the wider architectural community through 
future experiment and application.
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Parameters:

B: blue colour index
G: green colour index
R: pipe radii
S: central node size (convex hull)
D: mesh pipe density

R

S

D

Figure 7. Structural node joining six elements controlled by five parameters.

0.293
0.697
0.864
0.198
0.560

0.180
0.250
0.947
0.348
0.379

0.502
0.809
0.695
0.030
0.082

0.903
0.123
0.855
0.758
0.476

0.215
0.584
0.498
0.080
0.993

0.294
0.243
0.503
0.063
0.690

0.455
0.513
0.546
0.375
0.497

Figure 8. A 7 x 7 2-dimensional SOM trained with seven inputs chosen by the design team. The input locations at the 
map when learning has completed are shown.
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