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DETECTING AT-MOST-m CHANGES IN LINEAR REGRESSION
MODELS

LAJOS HORVÁTH, WILLIAM POULIOT, AND SHIXUAN WANG

Abstract. In this paper we provide a new procedure to test for at-most-m changes in the
time–dependent regression model yt = x>

t βt + et, 1 ≤ t ≤ T , i.e. β1 = β2 = . . . = βT under
the no change null hypothesis against the alternative yt = x>

t β(i) + et, if k∗
i−1 < t ≤ k∗

i , 1 ≤

i ≤ m + 1 and β(j) 6= β(`) for some 1 ≤ j, ` ≤ m + 1 with k∗
0 = 0, 1 < k∗

1 < k∗
2 < . . . <

k∗
m < T, k∗

m+1 = T . Our procedure is based on weighted sums of the residuals, incorporating
the possibility of m changes. The weak limit of the proposed test statistic is the sum of
two double exponential random variables. A small Monte Carlo simulation illustrates the
applicability of the limit results in case of small and moderate sample sizes. We compare the
new method to the CUSUM and standardized (weighted) CUSUM procedures and obtain
the power curves of the test statistics under the alternative. We apply our method to find
changes in the unconditional four factor CAPM.

1. Introduction

In the paper we are interested in the time–dependent regression model

yt = x>
t βt + et, 1 ≤ t ≤ T. (1.1)

We wish to test the null hypothesis of constant βt’s

H0 : β1 = β2 = . . . = βT

against the at-most-m change points alternative. With the notations k∗
0 = 0 and k∗

m+1 = T ,
the case of at-most-m changes alternative can be formulated as

HA : yt =x>
t β(i) + et, if k∗

i−1 < t ≤ k∗
i , 1 ≤ i ≤ m+ 1 and β(j) 6= β(`)

for some 1 ≤ j, ` ≤ m+ 1.

Testing for possible changes was initiated by Quandt (1958, 1960) who suggested maximally
selected statistics and provided practical advise how to get critical values. Gombay and
Horváth (1994), Horváth (1995) and Horváth and Shao (1995) obtained the limit distribu-
tions of some of the test statistics proposed by Quandt (1958, 1960) including maximally
selected F–statistics and the likelihood ratio. McCabe and Harrison (1980) also contribute
to this literature and advise the use of ordinary least squares residuals rather than recursive
in CUSUM-type tests. Later McCabe (1988), using a multiple decision theory approach,
shows that the CUSUM test is Bayes for structural stability in scale and variance models,
and also that the CUSUM-of-squares test is a localised Bayes rule for structural stability in
variance of linear regression models. Turning to estimation of the time change of change,
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Hušková (1996) gave large sample approximation for the estimator of the time of change as-
suming that we have exactly one change in the regressor during the observation period. The
independence of the error terms are assumed in these early papers. Andrews (1993) provides
a general methodology to test for the stability of random systems from an economic view
point. Ghysels et al. (1997), Bai (1999), Bai and Perron (1998), Hall et al. (2012) followed
the suggestions of Andrews (1993) and they also used the maximally selected statistics but
the maxima were not computed for all observations points, a fraction of early and late obser-
vations were excluded. Aue et al. (2008, 2012a) used the maximally selected likelihood ratio
method to test for stability of the parameter against exactly one change. However, they also
showed that the derived tests are consistent against several changes under the alternative.

Our test for H0 against HA uses the residuals

êt = yt − x>
t β̂T , 1 ≤ t ≤ T, (1.2)

where
β̂T = (XTX>

T )−1X>
T YT ,

with

YT =







y1

y2
...

yT





 and XT =







x1,1 x2,1 ∙ ∙ ∙ xT,1

x1,2 x2,2 ∙ ∙ ∙ xT,2
...

...
. . .

...
x1,d x2,d ∙ ∙ ∙ xT,d





 .

In this paper we suggest three test statistics based on the sums of the residuals. The classical
CUSUM statistic

DT = T−1/2 max
1≤`≤T

∣
∣
∣
∣
∣

∑̀

t=1

êt −
`

T

T∑

t=1

êt

∣
∣
∣
∣
∣

which together with the standardized CUSUM

HT = T 1/2 max
1≤`<T

(`(T − `))−1/2

∣
∣
∣
∣
∣

∑̀

t=1

êt −
`

T

T∑

t=1

êt

∣
∣
∣
∣
∣

are one of the most often used statistics in change point analysis. Aue and Horváth (2013)
contains a review of change point detection in time series and it also provides a historical
account of CUSUM procedures. Horváth and Rice (2014) explain how mathematical and
probabilistic tools can be used to extend classical change point methods to time series models.
The motivation for HT and DT is based on the likelihood ratio method when there is exactly
one change in the parameters under the alternative. Since we allow up to m changes under
the alternative, we propose a modification of the CUSUM statistics. Let

M(k1, . . . , km) = |M1(k1)| + |M2(k1, k2)| + . . . + |Mm(km−1, km)| + |Mm+1(km)| ,

1 ≤ k1 ≤ k2 ≤ . . . ≤ km < T , where

M1(k1) =
1

√
k1

(
k1∑

t=1

êt −
k1

T

T∑

t=1

êt

)

,

Mi(ki−1, ki) =
1

√
T




ki∑

t=ki−1+1

êt −
ki − ki−1

T

T∑

t=1

êt



 , 2 ≤ i ≤ m,
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and

Mm+1(km) =
1

√
T − km

(
T∑

t=km+1

êt −
T − km

T

T∑

t=1

êt

)

and define

MT = max
M

M(k1, k2, . . . , km), where M = {1 ≤ k1 ≤ k2 ≤ . . . ≤ km < T}

We would like to note that M(k1, k2 . . . , km), 1 ≤ k1 ≤ k2 ≤ . . . ≤ km < T is also a
generalization of the classical CUSUM process (cf. Csörgő and Horváth (1997)), since M1(k1)
and Mm+1(km), 1 ≤ k1, km < T are standardized CUSUM processes starting from the first and
the last residual, respectively. The components M1(k1) and Mm+1(km) of M(k1, k2, . . . , km)
are self–normalized and therefore they could be derived from a likelihood argument. First
we obtain the joint asymptotic distribution of DT , HT and MT in Theorem 2.1. In Theorem

2.2 we derive the joint limit distribution of M∗
T ,M

(1)
T and M

(2)
T , where

M ∗
T = max

M∗

m∑

j=2

Mj(kj−1, kj) with M∗ = {1 < k2 ≤ . . . ≤ km < T},

M
(1)
T = max

1≤k≤T
M1(k) and M

(2)
T = max

1≤k<T
Mm+1(k).

Due to the standardization, the limit distributions of M1(k1) and Mm+1(km) are non–standard,
they do not follow from weak convergence type results. For the application of the Lagrange
multiplier type statistics using the whole sample we refer to Hidalgo and Seo (2013). Jeng
(2015) surveys CUSUM and related procedures in financial applications. We also discuss the
behavior of MT under the alternative HA.

In this paper the test statistics are based on the residuals êt, 1 ≤ t ≤ T but in a similar matter
we can use the weighted residuals ẽt = xtêt, 1 ≤ t ≤ T (cf. Hušková (1996)). Analogously to
DT and HT one can define

D̃T =
1

√
T

max
1≤`≤T





(
∑̀

t=1

ẽt −
`

T

T∑

t=1

ẽt

)>

Σ−1

(
∑̀

t=1

ẽt −
`

T

T∑

t=1

ẽt

)



1/2

and

H̃2
T = max

1≤`<T



 T

T (T − `)

(
∑̀

t=1

ẽt −
`

T

T∑

t=1

ẽt

)>

Σ−1

(
∑̀

t=1

ẽt −
`

T

T∑

t=1

ẽt

)



1/2

,

where

Σ =
∞∑

t=−∞

E
[
x0e0(xtet)

>
]
,

the long run covariance matrix of the sum of the weighted innovations xtet. Now we define

M̃(k1, . . . , km) = M̃
1/2
1 (k1) + M̃

1/2
2 (k1, k2) + . . . + M̃1/2

m (km−1, km) + M̃
1/2
m+1(km),



4 LAJOS HORVÁTH, WILLIAM POULIOT, AND SHIXUAN WANG

1 ≤ k1 ≤ k2 ≤ . . . ≤ km < T , where

M̃1(k1) =
1

k1

(
k1∑

t=1

ẽt −
k1

T

T∑

t=1

ẽt

)>

Σ−1

(
k1∑

t=1

ẽt −
k1

T

T∑

t=1

ẽt

)

,

M̃i(ki−1, ki) =
1

T




ki∑

t=ki−1+1

ẽt −
ki − ki−1

T

T∑

t=1

ẽt





>

Σ−1




ki∑

t=ki−1+1

ẽt −
ki − ki−1

T

T∑

t=1

ẽt



 ,

2 ≤ i ≤ m,

and

M̃m+1(km) =
1

T − km

(
T∑

t=km+1

ẽt −
T − km

T

T∑

t=1

ẽt

)>

Σ−1

(
T∑

t=km+1

ẽt −
T − km

T

T∑

t=1

ẽt

)

.

The statistics D̃T , H̃T and max1≤k1≤k2≤...≤km<T M̃(k1, k2, . . . , km) can also be applied to to
test H0 against HA. The derivation of their asymptotic properties can be the subject of
future research.

2. Assumptions and Main Results

The vectors {xt, et,−∞ < t < ∞} form a stationary time series. Our main assumption is
that the sequence is a Bernoulli shift which can be approximated with finitely dependent
time series. Let ‖ ∙ ‖ denote the Euclidean norm of vectors and matrices.

Assumption 2.1. The sequence {xt, et −∞ < t < ∞} is a Bernoulli shift, i.e. there are
measurable functionals g and f such that xt = g(εt, εt−1, . . .) and et = f(εt, εt−1, . . .), where
{εt,−∞ < t < ∞} are independent and identically distributed random variables in some
space. Also,

Ee0 = 0, E|e0|
ν < ∞, Ee0x0,i = 0 and E‖x0,i‖

ν < ∞ with some ν > 4, (2.1)

and

(E |et,` − et|
ν)

1/ν
= O(`−α) and (E ‖xt,` − xt‖

ν)
1/ν

= O(`−α) with some α > 2, (2.2)

where et,` = f(εt, εt−1, . . . , εt−`, εt,`,t−`−1, εt,`,t−`−2, . . .),
xt,` = g(εt, εt−1, . . . , εt−`, εt,`,t−`−1, εt,`,t−`−2, . . .) and the εi,j,k’s are independent and identi-
cally distributed copies of ε0.

The Bernoulli shifts xt,m and et,m are random variables that closely approximate xt and
et in the sense specified in Assumption 2.1. They used to establish some of the theorems
that follow. Assumption 2.1 implies immediately that et,xt,−∞ < t < ∞ is a stationary
sequence. For results on change point detection in linear models with nonstationary errors
we refer to Hansen (1992), Busetti and Taylor (2004), Harvey et al. (2006), Cavaliere and
Taylor (2008) and Kejriwal and Perron (2008).
We prove in Lemma A.1 that

1

T
XTX>

T → A a.s.

The next assumption postulates that A−1 exists.
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Assumption 2.2. A is a nonsingular matrix.

Let

σ2 = Ee2
0 + 2

∞∑

`=1

Ee0e`. (2.3)

We show in the proof of Lemma A.3 that σ2 < ∞. To state our main result we need to
introduce further notations. The random variables ξ1 and ξ2 are double exponential random
variables, i.e.

ξ1 and ξ2 are independent and P{ξ1 ≤ x} = P{ξ2 ≤ x} = exp(−e−x) for all x, (2.4)

and define the numerical sequences

aT = (2 log log T )1/2 and bT = 2 log log T +
1

2
log log log T −

1

2
log π.

Theorem 2.1. If H0 and Assumptions 2.1 and 2.2 hold, then we have
(

DT

σ
, aT

HT

σ
− bT , aT

MT

σ
− 2bT

)
D

−→

(

sup
0≤t≤1

|B(t)|, max(ξ1, ξ2), ξ1 + ξ2

)

, (2.5)

where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge, independent of ξ1 and ξ2 defined by (2.4).

Next we provide the joint asymptotic behaviour M∗
T ,M

(1)
T and M

(2)
T .

Theorem 2.2. If H0 and Assumptions 2.1 and 2.2 hold, then we have
(

M∗
T

σ
, aT

M
(1)
T

σ
− bT , aT

M
(2)
T

σ
− bT

)
D

−→

(

B̄, ξ1, ξ2

)

, (2.6)

with

B̄ = sup
0≤u1≤u2≤...≤um≤1

m∑

j=2

|B(uj) − B(uj−1)|,

u0 = 0, where {B(t), 0 ≤ t ≤ 1} is a Brownian bridge, independent of ξ1 and ξ2 defined by
(2.4).

We demonstrate via Monte Carlo simulations in Section 3 that the properties of DT , HT and
MT are different under the alternative and the power of these tests depend on the location
of the change point(s). Theorem 2.1 makes it possible to combine the three tests to increase
the power.

The norming sequences aT and bT are simple from a theoretical point of view but they are
not the best choice in small to moderate sample sizes. Hence we provide an alternative
version of (2.5). Let

aφ,T = (2 log log[T (log T )φ])1/2 (2.7)

and

bφ,T = 2 log log[T (log T )φ] +
1

2
log log log(T (log T )φ) −

1

2
log π, (2.8)

where −∞ < φ < ∞.



6 LAJOS HORVÁTH, WILLIAM POULIOT, AND SHIXUAN WANG

Theorem 2.3. If H0 and Assumptions 2.1 and 2.2 hold, then we have for all −∞ < φ < ∞
that

aφ,T
HT

σ
− bφ,T

D
−→ max(ξ1, ξ2), (2.9)

and

aφ,T
MT

σ
− 2bφ,T

D
−→ ξ1 + ξ2, (2.10)

where ξ1 and ξ2 are defined in (2.4).

We discuss the choice of φ in Section 3.

Next we study the consistency of testing procedures based on Theorem 2.1. Let

β̃T =
m+1∑

`=1

k∗
` − k∗

`−1

T
β(`)

and

JT =
√

k∗
1

∣
∣
∣c>(β(1) − β̃T )

∣
∣
∣+

m∑

i=2

k∗
i − k∗

i−1√
T

∣
∣
∣c>(β(i) − β̃T )

∣
∣
∣+
√

T − k∗
m

∣
∣
∣c>(β(m+1) − β̃T )

∣
∣
∣ ,

where Ex0 = c.

Theorem 2.4. We assume that HA and Assumptions 2.1 and 2.2 are satisfied.
(i) If

JT → ∞, (2.11)

then we have that
DT

σ

P
→ ∞. (2.12)

(ii) If

(log log T )−1/2JT → ∞, (2.13)

then we have that

(log log T )−1/2 HT

σ

P
→ ∞. (2.14)

and

(log log T )−1/2 MT

σ

P
→ ∞. (2.15)

Assumptions (2.11) and (2.13) quantify the relationship between the locations and the sizes
of the changes. If the change is early, i.e. k∗

1/T → 0, then the size of the change at k∗
1 should

be relatively larger to be detected than if the change occurs in the middle of the data. The
same comment holds for a late change, i.e. when k∗

m/T → 1.
The extra (log log T )−1/2 term in (2.13) are needed since the variables HT and MT are in-
creasing to infinity with rate (log log T )1/2 under the null hypothesis.

Next we consider two immediate consequences of Theorem 2.4. Let δ̄(i) = c>(β(i+1) −
β(i)), 1 ≤ i ≤ m denote the size of the change at k∗

i .
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Corollary 2.1. We assume that HA, Assumptions 2.1 and 2.2 are satisfied and

lim
T→∞

k∗
i

T
= θi and 0 < θ1 < θ2 < . . . < θm < 1 (2.16)

hold.
(i) If

T 1/2 max
1≤i≤m

|δ̄(i)| → ∞,

then we have (2.12).
(ii) If

T 1/2(log log T )−1/2 max
1≤i≤m

|δ̄(i)| → ∞,

then we have (2.14) and (2.15).

Relation (2.16) means that the change occurs in the “middle” of the data. To illustrate the
optimality of our results we consider a special case. We assume that m = 1, i.e. we have
exactly one change and δ̄ denotes the size of the change.

Corollary 2.2. We assume that HA holds with m = 1 and Assumptions 2.1 and 2.2 are
satisfied.
(i) If

(
k∗

1(T − k∗
1)

T

)1/2

|δ̄| → ∞

holds, then we have (2.12).
(ii) If

(
k∗

1(T − k∗
1)

T

)1/2 |δ̄|
(log log T )1/2

→ ∞

holds, then we have (2.14) and (2.15).

Conditions detailed in Corollary 2.2 are exactly the necessary and sufficient conditions for
the consistency of the CUSUM and of the self–normalized CUSUM in case of independent
and identically distributed errors (cf. Csörgő and Horváth (1997, p. 170–178)).

According to Corollaries 2.1and 2.2, we can detect changes if at least one of the changes is
larger than T−1/2 or ((log log T )/T )1/2, respectively, which also appeared as conditions for
the consistency of CUSUM based tests (cf. Csörgő and Horváth (1997), Aue and Horváth
(2013) and Horváth and Rice (2014)).

We show in Section A that

sup
0≤u≤1

∥
∥
∥
∥
∥
∥

1

T

bTuc∑

t=1

xtx
>
t − uA

∥
∥
∥
∥
∥
∥
→ 0 a.s. (2.17)

and
1

T

T∑

t=1

‖xt‖
ν < ∞ a.s. with some ν > 2. (2.18)

The results of Theorems 2.1–2.4 remain true if we condition on xt,−∞ < t < ∞ assuming
that (2.17) and (2.18) hold and xt,−∞ < t < ∞ and et,−∞ < t < ∞ are independent.
Assumption (2.17) immediately rules out linear, polynomial, time trend and trigonometric
regression. However, in these cases the likelihood method leads to weight functions different
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from the square function in the definitions of HT , M1(k1) and Mm+1(km). We refer to
Jarušková (1999, 2003) and Albin and Jarušková (2003) for the limit of the maximally
selected likelihood ratio with changing trends and to Aue et. al. (2008, 2009, 2012b) for the
more general case.

3. Finite sample performance

3.1. Estimation of σ. The long run variance of (2.3) is unknown and must be estimated
from the sample. First we consider the case when the errors are uncorrelated, i.e.

Assumption 3.1.

Eetes =

{
0, if t 6= s

σ2, if t = s.

In case of uncorrelated errors we can use the sample variance

S2
T =

1

T

T∑

t=1

ê2
t . (3.1)

Theorem 3.1. We assume that Assumptions 2.1, 2.2 and 3.1 are satisfied.
(i) If H0 holds, then we have that

|S2
T − σ2| = OP(T

−1/2). (3.2)

(ii) If HA holds, then we have that

S2
T = OP(1). (3.3)

It follows immediately from (3.2) and (3.3) that the conclusions of Theorems 2.1–2.4 remain
true when σ is replaced with ST under Assumption 3.1.

If the errors are correlated we need to use a long run variance kernel estimator

σ̂2
T = γ̂0 + 2

T−1∑

`=1

K(`/h)γ̂`, (3.4)

where

γ̂` =
1

T

T−∑̀

t=1

êtêt+`

denotes the sample correlation of lag ` between the residuals. The kernel K and the window
h satisfy the standard conditions:

Assumption 3.2. K ≥ 0, K(0) = 1, K(u) = 0, if |u| > c with some c > 0, and K(u) is
Lipshitz continuous on the real line.

We refer to Taniguchi and Kakizawa (2000) and Politis and Romano (1995) for discussion
on the choice of K(∙).

Assumption 3.3. h = h(T ) → ∞ and h/T → 0.
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Parzen (1957) points out that Assumption 3.3 is the necessary condition for the asymptotic
consistency of the kernel based long run variance estimator. For the optimal choice of h we
refer to Andrews (1991) and Newey and West (1994). Assumption 3.3 is sufficiently general
that it includes the optimal windows specified in these references. The adaptive choice of h
of Politis (2003) can also be used in our set up.

Theorem 3.2. We assume that Assumptions 2.1, 2.2, 3.2 and 3.3 are satisfied.
(i) If H0 holds, then we have that

σ̂2
T − σ2 = OP

((
h

T

)1/2

+
1

h

)

. (3.5)

(ii) If HA holds, then we have that

σ̂2
T = OP(1) (3.6)

Under Assumption 3.3 the convergence of the first coordinate in (2.5),(2.6) and Theorem
2.4(i) remain true when σ is replaced with σ̂T . If the smoothing parameter h satisfies
(h log log T )/T → 0 and (log log T )1/2/h → 0 we can replace the theoretical σ with the
estimator σ̂T in Theorems 2.1, 2.2 and 2.4.

3.2. Monte Carlo simulations under the null hypothesis. To assess how well the
asymptotic distributions detailed in Theorems 2.1 and 2.3 approximates the finite sample
distributions, Monte Carlo simulations are performed. There are several results on the rate
of convergence in the functional central limit theorem even in case of dependent variables,
we only deal with the choice of the tuning parameter φ in Theorem 2.3. The choice of φ in
(2.9) has been discussed in the literature already (cf. Csörgő and Horváth (1997) and Davis
et al. (1995)) so we investigate the finite sample properties of (2.10) when σ is estimated. We
consider independent standard normal, GARCH (1,1) and AR(1) errors for various sample
sizes. In all cases we investigate, the choice of φ = 1 gives the best results and therefore
only those are reported. In our experiments {xt, 1 ≤ t ≤ T} and {et, 1 ≤ t ≤ T} are
independent. Also, β = (0, 2)> and xt = (1, xt,2)

>, where xt,2, 1 ≤ t ≤ T are independent
and identically distributed random variables with Ext,2 = 1 and var(xt,2) = 1. The outcomes
of the simulations are based on 5,000 repetitions.

Example 3.1. First we consider the simplest case when the errors {et, 1 ≤ t ≤ T} are
independent and standard normal random variables. Since Assumption (3.1) holds, we used

V
(3)
T,1 = a1,T

MT

ST

− 2b1,T , (3.7)

where a1,T and b1,T are defined in (2.7) and (2.8), and S2
T is the average of the squared

residuals of (3.1). In Figure 3.1 we report the distribution and the density functions of V
(3)
T,1

for T = 400, 600 and 800. According to Figure 3.1, putting together Theorems 2.3 and 3.1,
we obtain a good approximation for the distribution of the test statistic with the choice of
φ = 1.

Example 3.2. In the second study the errors et satisfy a GARCH (1,1) model, i.e.

et = vtεt and v2
t = α0 + α1e

2
t−1 + α2v

2
t−1,
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Figure 3.1. Plots of the distribution (left panel) and density functions (right

panel) of V
(3)
T,1 for T = 400, 600 and 800 with the distribution and density

function of ξ1 + ξ2

where the εt’s are independent and identically distributed standard normal random variables.
In our study, we used α0 = .25, α1 = .25 and α2 = 0.5. For a survey on GARCH and related
processes, we refer to Francq and Zakoian (2010). It follows from Aue et al. (2014) that
GARCH (1,1) with the present choice of parameters satisfies Assumption 2.1. Since GARCH
(1,1) errors satisfy Assumption 3.1, one can use VT,1 as test statistics. However, since

σ2 =
α0

1 − α1 − α2

,

we can use

σ̃2
T =

α̂T,0

1 − α̂T,1 − α̂T,2

,

where α̂T,0, α̂T,1 and α̂T,2 are the quasi maximum likelihood estimators for the GARCH
parameters from the residuals êt, 1 ≤ t ≤ T of (1.2). Using the basic properties of the quasi
maximum likelihood estimators of the GARCH parameters discussed in Francq and Zakoian
(2010), one can verify that ∣

∣σ̃2
T − σ2

∣
∣ = OP(T

−1/2).

Hence Theorem 2.3 implies

V
(3)
T,2

D
−→ ξ1 + ξ2,

where

V
(3)
T,2 = a1,T

MT

σ̃T

− 2b1,T .

The outcome of the Monte Carlo experiment is reported in Figure 3.2. Figure 3.2 shows that
the dependence in the GARCH errors causes only minor difference compared to the case of
independent and identically distributed et’s.

Example 3.3. In our last experiment we simulated AR(1) errors:

et =
1

2
et−1 + εt,
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Figure 3.2. Plots of the distribution (left panel) and density functions (right

panel) of V
(3)
T,2 for T = 400, 600 and 800 with the distribution and density

function of ξ1 + ξ2

where {εt,−∞ < t < ∞} is a sequence of independent standard normal random variables.

Figure 3.3. Plots of the distribution (left panel) and density functions (right

panel) of V
(3)
T,3 for T = 400, 600 and 800 with the distribution and density

function of ξ1 + ξ2

We use now

V
(3)
T,3 = a1,T

1

σ̂T

MT − 2b1,T ,

where σ̂2
T is the long run variance estimator of (3.4). We used the Bartlett kernel K(x) =

(1 − |x|)I{|x| ≤ 1} and the window h(T ) = b4(T/100)2/9c + 1 following the advise of
Andrews and Monahan (1992). Due to the kernel estimation of the long run variance, we
need somewhat larger sample sizes to achieve the same empirical accuracy as in the previous
experiments and the critical values are slightly underestimated by the limit distribution.
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3.3. Monte Carlo simulations under the alternative hypothesis. As in the numerical
experiments under H0, we assume that {xt, 1 ≤ t ≤ T} and {et, 1 ≤ t ≤ T} are independent,
xt = (1, xt,2)

>, where xt,2, 1 ≤ t ≤ T are independent and identically distributed normal
random variables with Ext = 1, var(xt) = 1. and e1, e2, . . . are independent standard normal
random variables. As previously, we used 5,000 repetitions.
We compare our method to the widely used maximally selected CUSUM statistic DT /σ
where σ is defined by (2.3). It is known that under mild conditions (cf. Aue and Horváth
(2013)) that

DT

σ

D
→ sup

0≤t≤1
|B(t)|, (3.8)

where B(t), 0 ≤ t ≤ 1 denotes a Brownian bridge. Since σ is unknown, we estimate σ with
ST in case of independent and identically distributed errors resulting in

V
(1)
T,1 =

DT

ST

,

where ST is the average of the squared residuals as in Example 3.1. Similarly, in the GARCH
(1,1) model of Example 3.2 we use

V
(1)
T,2 =

DT

σ̃T

,

and

V
(1)
T,3 =

DT

σ̂T

in case of a general stationary model (cf. Example 3.3). It follows from (3.8) and the
discussions in Examples 3.1–3.3 that

V
(1)
T,i

D
→ sup

0≤t≤1
|B(t)|, i = 1, 2, 3.

Similarly we introduce the statistics for AR(1) sequences

V
(2)
T,1 = a1,T

HT

ST

− b1,T , V
(2)
T,2 = a1,T

HT

σ̃T

− b1,T and V
(2)
T,3 = a1,T

HT

σ̂T

− b1,T .

By Theorem 2.3 and Section 3.2 we have under H0 that

V
(2)
T,i

D
→ max(ξ1, ξ2) i = 1, 2, 3.

First we consider the case when there is exactly one change in the parameter βt at k∗
1.

Model I. We assume that m = 1 and

yt =

{
x>

t β(1) + et, if 1 ≤ t ≤ k∗
1,

x>
t β(2) + et, if k∗

1 + 1 ≤ t ≤ T.

Following Gombay (2010), we selected β(1) = (0, 1)> and β(2) = (0, 1 + δ)>, where δ =
−2,−1.8, . . . , 1.8, 2. We considered three cases for the time of change k∗

1 = bTθ1c where
θ1 = .2 (early change), θ2 = .5 (change in the middle) and θ2 = .9 (late change).

Figures 3.4–3.6 exhibit the power functions of the statistics V
(j)
T,i , 1 ≤ i, j ≤ 3 in Model I.

The power of V
(2)
T,i and V

(3)
T,i , i = 1, 2, 3 are essentially the same but the CUSUM statistics
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Figure 3.4. The power functions of the tests based on V
(1)
100,1 (upper panel),

V
(2)
100,1 (lower left panel) and V

(3)
100,1 (lower right panel) in Model I under the

conditions of Example 3.1

Figure 3.5. The power functions of the tests based on V
(1)
100,2 (upper panel),

V
(2)
100,2 (lower left panel) and V

(3)
100,2 (lower right panel) in Model I under the

conditions of Example 3.2

have higher power when the change occurs in the middle of the data.
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Figure 3.6. The power functions of the tests based on V
(1)
400,3 (upper panel),

V
(2)
400,3 (lower left panel) and V

(3)
400,3 (lower right panel) in Model I under the

conditions of Example 3.3

Figure 3.7. The power functions of the tests based on V
(1)
100,1 (upper panel),

V
(2)
100,1 (lower left panel) and V

(3)
100,1 (lower right panel) in Model II under the

conditions of Example 3.1

Model II. In this case m = 2 and

yt =






x>
t β(1) + et, if 1 ≤ t ≤ k∗

1

x>
t β(2) + et, if k∗

1 + 1 ≤ t ≤ k∗
2

x>
t β(3) + et, if k∗

2 + 1 ≤ t ≤ T



CHANGE DETECTION IN REGRESSIONS 15

with β(1) = (0, 1)>, β(2) = (0, 1+ δ)>, where δ = −3,−2.9, . . . , 2.9, 3 and β(3) = (0, 2)>. The
times of the changes in Figures 3.7–3.9 are k∗

1 = bTθ1c and k∗
2 = bTθ2c, when (θ1, θ2) =

(.33, .66) (blue curves), (.2, .5) (red curves) and (.5, .9) (yellow curves). Due to the selection
of the parameters, there is at least one change in Model II. As it is expected, the CUSUM

statistics V
(1)
T,i , i = 1, 2, 3 have the lowest power nearly in all cases when the size of the change

is small. Both V
(2)
T,i and V

(3)
T,i , i = 1, 2, 3 have high power and V

(3)
T,i , i = 1, 2, 3 are better when

the second change is late.

Figure 3.8. The power functions of the tests based on V
(1)
100,2 (upper panel),

V
(2)
100,2 (lower left panel) and V

(3)
100,2 (lower right panel) in Model II under the

conditions of Example 3.2

4. Change detection in the CAPM parameters

The capital asset pricing model (CAPM) of Sharpe (1964), Lintner (1965) and Merton (1973)
and its extensions and modifications have been in the focus of research in applied as well as
theoretical finance. In this application we follow Barras et al. (2010) and Fama and French
(2010), and use the unconditional four factor CAPM of Carhart (1997) defined as

Rt − Rf
t =αt + (RM

t − Rf
t)β

M
t + RHML

t βHML
t + RSMB

t βSMB
t + RMOM

t βMOM
t + et, (4.1)

1 ≤ t ≤ T, where Rt − Rf
t denotes the excess return on the mutual fund, RM

t − Rf
t is the

access return on the market portfolio, RHML
t refers to the average return on three small port-

folios minus the average return on three big portfolios. The value of RSMB
t is constructed

as the average return on two value portfolios minus the average return on the two growth
portfolios and RMOM

t gives the returns on a portfolio consisting of stocks with high returns.
The monthly return history of US mutual funds is available for the period January 1986 to
November 2014 at the web site http://finance.yahoo.com and the factors are available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. In
the notation of model (1.1) we have that

xt = (1, RM
t − Rf

t, R
HML
t , RSMB

t , RMOM
t )> (4.2)
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Figure 3.9. The power functions of the tests based on V
(1)
400,3 (upper panel),

V
(2)
400,3 (lower left panel) and V

(3)
100,3 (lower right panel) in Model II under the

conditions of Example 3.3

and

βt = (αt, β
M
t , βHML

t , βSMB
t , βMOM

t )>. (4.3)

Barras et al. (2010) as well as Fama and French (2010) use (4.1) to evaluate the performance
of the managers of 2,076 actively managed US mutual funds that existed between 1975 and
2006 assuming that βt of (4.3) is not time dependent. Fama and French (2010) collect data
from January 1984 to December 2006. Baras et al. (2010) provide data from 1975 to 2006.
They call a fund manager skilled if the non time dependent α is positive and unskilled oth-
erwise.

The original CAPMs assume that βt is constant (not time dependent) which has been crit-
icized by Harvey (1989) and Ferson and Harvey (1993). Jagannathan and Wang (1996),
Lettau and Ludvigson (2001) and Beach (2011) advocate time–dependent betas and provide
examples where time–varying beta outperform the unconditional CAPM with constant co-
efficients. On the other hand, Ghysels (1998) argues that a structural break model might be
more suitable in applications. Caporale (2012) provides an example of structural breaks in
the CAPM betas in the banking sector, finding only three breaks during the period February
1941 and January 2008. For sequential testing of the stability of high–frequency portfolio
betas, we refer to Aue et al. (2012a).

If the null hypothesis is rejected, under the assumption that we have two changes, we estimate
the times of change by

(k̂1,T , k̂2,T ) = argmax{M(k1, k2), 1 ≤ k1 < k2 ≤ T}.

If (2.16) holds and T 1/2δ̄(1) → ∞ and T 1/2δ̄(2) → ∞, then

1

T
k̂1,T

P
→ θ1 and

1

T
k̂2,T

P
→ θ2.
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Then the standardized CUSUM procedure is calculated in sub-samples to confirm there are
only two changes. For our study we selected two mutual funds, American Century Heritage
C (code AHGCX) and Voya Growth and Income Port I (code IIVGX). AHGCX seeks long-
term capital growth. The fund normally invests in stocks of medium-sized and smaller
companies that the adviser believes will increase in value over time. Our procedure found
two changes, and the estimated time of changes are December 2004 and December 2010. The
standardized CUSUM statistics for five sub-samples are reported in Table 4.1 and confirms
only two changes. The model estimation result of the segmentation is in Table 4.2. In the
terminology of Barras et al. (2010), the manager of this fund is “unskilled” in two periods,
July 2001 to November 2004 and December 2010 to November 2014, since the portfolio α
are negative for the two periods.

Figure 4.1. Plot of the residuals of the AHGCX time series
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Table 4.1. Standardized CUSUM for Sub-samples

Standardized CUSUM P-Value

Jul. 2001–Nov. 2010 3.46 3.08%
Nov. 2004–Nov. 2014 3.23 3.89%
Jul. 2001–Nov. 2004 0.87 34.32%
Dec. 2004–Nov. 2010 0.69 39.48%
Dec. 2010–Nov. 2014 0.37 49.86%

IIVGX’s investment aim is to maximize total return through investments in a diversified
portfolio of common stock and securities convertible into common stocks. We plot the resid-
uals for the IIVGX data in Figure 4.2. The estimated times for the changes are December
1996 and September 2003. Table 4.3 presents the standardized CUSUM statistics for five
sub-samples and confirms that there are only two changes. Table 4.4 summarizes the out-
come of the segmentation procedure. The portfolio α is very low in the period between
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Table 4.2. The segmentation for the AHGCX time series

Jul. 2001–Nov. 2004 Dec. 2004–Nov. 2010 Dec. 2010–Nov. 2014
α -1.09 0.65 -0.39
βM 0.99 1.22 1.05
βHML 0.05 -0.30 -0.41
βSMB 0.48 0.35 0.40
βMOM 0.25 0.18 0.09

Figure 4.2. Plot of the residuals of the IIVGX time series
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Table 4.3. Standardized CUSUM for Sub-samples

Standardized CUSUM P-Value

Feb. 1984–Aug. 2003 5.84 0.29%
Nov. 1996–Nov. 2014 6.02 0.24%
Feb. 1984–Nov. 1996 1.99 12.80%
Dec. 1996–Aug. 2003 0.66 40.30%
Sep. 2003–Nov. 2014 -0.62 84.54%

Table 4.4. The segmentation for the IIVGX time series

Feb. 1984 – Nov. 1996 Dec. 1996 – Aug. 2003 Sep. 2003 – Nov. 2014
α 0.11 -1.21 -0.06
βM 0.83 0.80 1.01
βHML -0.06 0.10 -0.03
βSMB -0.14 -0.07 -0.10
βMOM 0.03 -0.11 0.01

December 1996 to August 2003.
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5. Summary

A new procedure has been developed that can test for an arbitrary but fixed number of
changes in parameters of time–dependent regression models. This is achieved by modifying
the CUSUM statistic so that it can test for at–most-m changes in this model. The asymptotic
properties of our modified statistic are explored under the null hypothesis of no change as well
as under the alternative hypothesis. It is documented there that it converges in distribution
to a sum of two independent double exponential random variables and that out test is
asymptotically consistent under the alternative. Simulations show that our test statistic can
detect one change when there is only one change in the parameters and when there are two
changes. These simulations also allow comparison of our statistic with the standard CUSUM
statistic. Our statistic is further illustrated through application to detecting time–varying
risk factors in the capital asset pricing model.

A. Appendix: Proofs of Theorems 2.1 and 2.2

Lemma A.1. If Assumption 2.1 holds, then we have that

1

T
XT X>

T → A a.s.

Proof. According to the Cauchy–Schwarz inequality and (2.1), E|x0,ix0,j| ≤ (Ex2
0,ix

2
0,j)

1/2 <
∞, 1 ≤ i, j ≤ d. Bernoulli shifts are stationary and ergodic sequences (cf. Stout (1974)) and
therefore the ergodic theorem (cf. Breiman (1968)) yields

1

T

T∑

t=1

xt,ixt,j −→ Ex0,ix0,j . (A.1)

�

Under the null hypothesis (1.1) reduces to

yt = x>
t β + et, 1 ≤ t ≤ T,

where β denotes the common regressor.

Lemma A.2. If H0, Assumptions 2.1 and 2.2 hold, then we have that

β̂T − β = OP(T
−1/2)

Proof. Since under H0

β̂T − β = (X>
T XT )−1XT ET ,

where ET = [e1, e2, . . . , eT ]>. Thus we get via Lemma A.1 that

‖β̂T − β‖ = OP(1/T )‖XTET‖.

Since Ext,iet = 0 is assumed in (2.1), it is enough to show that

E‖XTET‖
2 = O(T ). (A.2)
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It follows from stationarity that

E

(
T∑

t=1

xt,iet

)2

≤
T∑

t=1

T∑

s=1

|Ext,ietxs,ies|

= TE(xt,0e0)
2 + 2

∑

1≤t<s≤T

|Ext,ietxs,ies|

= TE(xt,0e0)
2 + 2

T−1∑

u=1

(T − u)|Ex0,ie0xu,ieu|

≤ T
∞∑

u=0

|Ex0,ie0xu,ieu|.

Using the notation xt,m = [xt,m,1, xt,m,2, . . . , xt,m,d], we write

Ex0,ie0xu,ieu = Ex0,ie0(xu,ieu − xu,u,ieu,u)

since by independence Ex0,ie0xu,u,ieu,u = 0. Hence by the Cauchy–Schwarz inequality we
conclude

∞∑

u=1

|Ex0,ie0xu,ieu| =
∞∑

u=1

|Ex0,ie0(xu,ieu − xu,u,ieu,u)|

≤ (Ex4
0,i)

1/4(Ee4
0)

1/4

∞∑

u=1

(E(xu,ieu − xu,u,ieu,u)
2)1/2

= (Ex4
0,i)

1/4(Ee4
0)

1/4

∞∑

u=1

(E(x0,ie0 − x0,u,ie0,u)
2)1/2

≤ 2(Ex4
0,i)

1/4(Ee4
i )

1/4

∞∑

u=1

(
E(x0,i − x0,u,i)e0)

2 + E(x0,u,i(e0 − e0,u)
2
)1/2

≤ 2(Ex4
0,i)

1/4(Ee4
0)

1/2

∞∑

u=1

(E(x0,i − x0,u,i)
4)1/4

+ 2(Ex4
0,i)

1/2(Ee4
0)

1/4

∞∑

u=1

(E(e0 − e0,u)
4)1/4,

and therefore (A.2) follows from (2.2). �

Since under H0 we have

êt = et − x>
t

(
β̂T − β

)
, (A.3)

we can decompose M1(k) as

M1(k) =
1
√

k

(
k∑

t=1

et + Rk

)

, 1 ≤ k ≤ T, (A.4)

where

Rk = Rk,1 + Rk,2 + Rk,3, 1 ≤ k ≤ T,
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with

Rk,1 = −

(
k∑

t=1

xt

)> (
β̂T − β

)
, Rk,2 = −

k

T

T∑

t=1

et and Rk,3 =
k

T

(
T∑

t=1

xt

)> (
β̂T − β

)
.

Lemma A.3. If H0, Assumptions 2.1 and 2.2 hold, then we have that

max
1≤k≤T

k−1/2|Rk| = OP(1).

Proof. By Assumption 2.1, xt is stationary and ergodic, and therefore by the ergodic theorem
(cf. Breiman (1968)) we have

max
1≤k≤T

1

k

∣
∣
∣
∣
∣

k∑

t=1

xt

∣
∣
∣
∣
∣
= OP(1).

Hence Lemma A.2 yields

max
1≤k≤T

k−1/2|Rk,1| = OP(1).

Following the arguments in the proof of Lemma A.2 we get that

E

(
T∑

t=1

et

)

≤ 2T
T∑

s=0

|Ee0es| < ∞

and since Eet = 0 we conclude
∣
∣
∣
∣
∣

T∑

t=1

et

∣
∣
∣
∣
∣
= OP(T

1/2). (A.5)

Hence

max
1≤k≤T

k−1/2|Rk,2| = OP(1).

By the ergodic theorem we have that

1

T

T∑

t=1

|xt,i| = OP(1). (A.6)

Applying Lemma A.2 we get that

max
1≤k≤T

k−1/2|Rk,3| = max
1≤k≤T

∣
∣
∣
∣
∣
∣

√
k

T

(
T∑

t=1

xt

)> (
β̂T − β

)
∣
∣
∣
∣
∣
∣
= OP(1),

completing the proof of lemma A.3. �

Lemma A.4. If Assumptions 2.1 and 2.2 hold, then we have that

(2 log log T )−1/2 max
1≤k≤T

1
√

k

∣
∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣
∣
P
→ σ,

where σ is defined in (2.3).
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Proof. It follows from Lemma 5.4 of Aue et al. (2014), that we can define Wiener processes
WT such that

max
1≤k≤T

k−1/2+δ

∣
∣
∣
∣
∣

k∑

t=1

et − σWT (k)

∣
∣
∣
∣
∣
= OP(1) with some δ > 0. (A.7)

Hence for any 1 ≤ c1 = c1(T ) ≤ c2 = c2(T ) ≤ T we have

max
c1≤k≤c2

1
√

k

∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣− max

c1≤k≤c2

σ
√

k

∣
∣
∣
∣WT (k)

∣
∣
∣
∣= OP(c

−δ
1 ). (A.8)

Since the distribution of WT (∙) does not depend on T , by the law of the iterated logarithm
for Wiener processes we get

(2 log log T )−1/2 max
1≤k≤T

1
√

k

∣
∣
∣
∣WT (k)

∣
∣
∣
∣
P
→ 1,

which completes the proof. �

Lemma A.5. If H0, Assumptions 2.1 and 2.2 hold, then we have that

P

(

max
1≤k≤T

|M1(k)| = max
n(T )≤k≤m(T )

|M1(k)|

)
P

−→ 1,

where n(T ) = (log T )κ, and m(T ) = T/(log T )κ with any κ > 0.

Proof. It follows from Lemmas A.3 and A.4 that

(2 log log T )−1/2 max
1≤k≤T

|M1(k)|
P
→ σ, (A.9)

and therefore we need to show only that

max
1≤k≤n(T )

|M1(k)| = oP((log log T )1/2)

and
max

m(T )≤k≤T
|M1(k)| = oP((log log T )1/2).

On account of Lemma A.3 we need to prove only that

max
1≤k≤n(T )

1
√

k

∣
∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣
∣
= oP((log log T )1/2) (A.10)

and

max
m(T )≤k≤T

1
√

k

∣
∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣
∣
= oP((log log T )1/2). (A.11)

For any Wiener process W (∙) we have that

max
1≤k≤n(T )

1
√

k
|W (k)| = OP((log log log T )1/2) (A.12)

and

max
m(T )≤k≤T

1
√

k
|W (k)| = OP((log log log T )1/2) (A.13)

(cf. Csörgő and Horváth (1997)). The claims in (A.10) and (A.11) follow immediately from
(A.8) and (A.12), (A.13). �
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According to Lemma A.5, |M1(k)| reaches it largest value on the interval n(T ),m(T ) with
probability converging to 1.

Lemma A.6. If H0, Assumptions 2.1 and 2.2 hold, then we have that

max
n(T )≤k≤m(T )

|M1(k)| − max
n(T )≤k≤m(T )

1
√

k

∣
∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣
∣
= oP((log log T )−1/2),

where n(T ) and m(T ) are defined in Lemma A.5.

Proof. We use again (A.4). Combining Lemma A.2 and (A.1) we get that

max
n(T )≤k≤m(T )

k−1/2|Rk,1| = OP(1) max
n(T )≤k≤m(T )

k1/2T−1/2 = OP(1) (log T )−κ/2

and similarly

max
n(T )≤k≤m(T )

k−1/2|Rk,3| = OP(1) (log T )−κ/2

It follows from (A.5) that

max
n(T )≤k≤m(T )

k−1/2|Rk,2| = OP(1)T−1/2m1/2(T ) = OP(1) (log T )−κ/2 ,

which concludes the proof. �

Next we consider Mm+1(`), since its definition is similar to that of M1(k). However, due to
time reversal, i.e. the CUSUM starts with residual êT , we need to modify Lemmas A.3–A.6.
As in the decomposition of M1(k), we have

Mm+1(`) =
1

√
T − `

(
T∑

t=`

et + R∗
`

)

, 1` < T,

where

R∗
` = R∗

`,1 + R∗
`,2 + R∗

`,3, 1` < T,

with

R∗
`,1 = −

(
T∑

t=`

xt

)> (
β̂T − β

)
, R∗

`,2 = −
T − `

T

T∑

t=1

et

and

R∗
`,3 =

T − `

T

(
T∑

t=1

xt

)> (
β̂T − β

)
.

Lemma A.7. If H0, Assumptions 2.1 and 2.2 hold, then we have that

max
1≤`<T

|R∗
` |√

T − `
= OP(1).

Proof. First we show that

max
1≤`<T

1

T − `

∣
∣
∣
∣
∣

T∑

t=`

xt,i

∣
∣
∣
∣
∣
= OP(1). (A.14)
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Using Aue et al. (2014), we can find Wiener processes WT,i(∙) such that

max
1≤`<T

1
√

T − `

∣
∣
∣
∣

T∑

t=`

(xt,i − Ext,i)

∣
∣
∣
∣− max

1≤`<T

(
var(x0,i)

T − `

)1/2 ∣∣
∣
∣WT,i(T − `)

∣
∣
∣
∣= OP(1),

and therefore (A.14) follows from the law of the iterated logarithm for Wiener processes.
Hence Lemma A.2 yields

max
1≤`<T

(T − `)−1/2|R∗
`,1| = OP(1) and max

1≤`<T
(T − `)−1/2|R∗

`,3| = OP(1).

Using (A.5) we get immediately that

max
1≤`<T

(T − `)−1/2|R∗
`,2| = OP(1).

�

We continue with the analogue of Lemma A.4.

Lemma A.8. If Assumptions 2.1 and 2.2 hold, then we have that

(2 log log T )−1/2 max
1≤`<T

1
√

T − `

∣
∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣
∣
P
→ σ,

where σ is defined in (2.3).

Proof. Using again Lemma 5.4 of Aue et al. (2014), we can define Wiener processes W ∗
T such

that

max
1≤`<T

(T − `)−1/2+δ

∣
∣
∣
∣
∣

T∑

t=`

et − σW ∗
T (T − `)

∣
∣
∣
∣
∣
= OP(1) with some δ > 0. (A.15)

Change of variable and the Darling–Erdős law (cf. Csörgő and Horváth (1997)) gives

(2 log log T )−1/2 max
1≤`<T

1
√

T − `
|W ∗

T (T − `)|
P
→ 1,

and therefore Lemma A.8 follows from (A.15) along the lines of (A.7) and (A.8). �

Lemma A.9. If H0, Assumptions 2.1 and 2.2 hold, then we have that

P

(

max
1≤`<T

|Mm+1(`)| = max
T−m(T )≤k≤T−n(T )

|Mm+1(`)|

)
P

−→ 1,

where n(T ) and m(T ) are defined in Lemma A.5.

Proof. It follows from Lemmas A.7 and A.8 that

(2 log log T )−1/2 max
1≤`<T

(T − `)−1/2|Mm+1(`)|
P
→ σ.

Thus, in light of Lemmas A.7 and A.8, it is enough to establish that

max
1≤`≤T−m(T )

(T − `)−1/2

∣
∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣
∣
= oP((log log T )1//2) (A.16)

and

max
T−n(T )≤`<T

(T − `)−1/2

∣
∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣
∣
= oP((log log T )1//2). (A.17)
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Using (A.15) we get for any 1 ≤ c1 = c1(T ) ≤ c2 = c2(T ) < T

max
T−c2≤`≤T−c1

1
√

T − `

∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣− max

T−c2≤`≤T−c1

σ
√

T − `

∣
∣
∣
∣W

∗
T (T − `)

∣
∣
∣
∣= OP(c

−δ
1 ),

and therefore (A.12) and (A.13) imply (A.16) and (A.17). �

Lemma A.10. If H0, Assumptions 2.1 and 2.2 hold, then we have that

max
T−m(T )≤`≤T−n(T )

|Mm+1(`)| − max
T−m(T )≤`≤T−n(T )

1
√

T − `

∣
∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣
∣
= oP((log log T )−1/2),

where n(T ) and m(T ) are defined in Lemma A.5.

Proof. Putting together Lemma A.2 and (A.14) we conclude

max
T−m(T )≤`≤T−n(T )

(T − `)−1/2|R∗
`,1| = OP(1)(log T )−κ/2.

Similar arguments give

max
T−m(T )≤`≤T−n(T )

(T − `)−1/2|R∗
`,2| = OP(1)(log T )−κ/2

and
max

T−m(T )≤`≤T−n(T )
(T − `)−1/2|R∗

`,3| = OP(1)(log T )−κ/2.

�

Lemma A.11. If H0, Assumptions 2.1 and 2.2 hold, then we have that

max
1≤k≤`≤T

|Mj(k, `)| = OP(1), 2 ≤ j ≤ m.

Proof. Using (A.3) we write

Mj(k, `) = Rk,`,1 + . . . + Rk,`,4,

where

Rk,`,1 = T−1/2
∑̀

t=k

et, Rk,`,2 = −T−1/2

(
∑̀

t=k

xt

)> (
β̂T − β

)
, Rk,`,3 = −

` − k

T 3/2

T∑

t=1

et

and

Rk,`,4 =
` − k

T 3/2

(
T∑

t=1

xt

)> (
β̂T − β

)
.

It follows from Lemma 5.4 of Aue et al. (2014) that

T−1/2

Tu∑

t=1

et
D[0,1]
−→ σW (t),

where W (∙) is a Wiener process. Hence

sup
0≤u,v≤1

T−1/2

∣
∣
∣
∣
∣

Tv∑

t=Tu

et

∣
∣
∣
∣
∣

D
→ σ sup

0≤u,v≤1
|W (u) − W (v)| ,

which implies
max

1≤k≤`≤T
|Rk,`,1| = OP(1).
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Applying Lemma A.2 and the ergodic theorem we conclude

max
1≤k≤`≤T

|Rk,`,2| = OP(1)
1

T
max

1≤k≤`≤T

∥
∥
∥
∥
∥

∑̀

t=k

xt

∥
∥
∥
∥
∥

= OP(1)
1

T
max

1≤k≤`≤T

∑̀

t=k

‖xt‖ = OP(1).

Similar arguments yield

max
1≤k≤`≤T

|Rk,`,3| = OP(1) and max
1≤k≤`≤T

|Rk,`,4| = OP(1).

�

Let us define AT = [n(T ),m(T )] × [T −m(T ), T − n(T )], where n(T ) and m(T ) are defined
ine Lemma A.5.

Lemma A.12. If H0, Assumptions 2.1 and 2.2 hold, then we have that

max
(k,`)∈AT

|Mj(k, `)| = oP
(
(log log T )−1/2

)
, 2 ≤ j ≤ m.

Proof. On account of (A.3) we can decompose Mj as

Mj(k, `) = M2,1(k) + M2,2(k) + M2,3(`) + M2,4(`),

where

M2,1(k) = −T−1/2

k−1∑

t=1

êt, M2,2(k) =
k

T 3/2

T∑

t=1

êt, M2,3(`) = −T−1/2

T∑

t=`+1

êt,

and

M2,4(`) =
T − `

T 3/2

T∑

t=1

êt.

We note that by (A.3) that

v∑

t=u

êt =
v∑

t=u

et −

(
v∑

t=u

xt

)>

(β̂T − β) = OP(T
1/2).

Thus we obtain that from Lemma A.2, (A.5) and (A.6) that

max
n(T )≤k≤m(T )

|M2,2(k)| = OP((log T )−κ/2) and max
T−m(T )≤`≤T−n(T )

|M2,4(`)| = OP((log T )−κ/2).

Applying (A.7) we get

T−1/2 max
n(T )≤k≤m(T )

∣
∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣
∣

(A.18)

≤ T−1/2 max
n(T )≤k≤m(T )

σ |WT (k)| + T−1/2 max
n(T )≤k≤m(T )

∣
∣
∣
∣
∣

k∑

t=1

et − σWT (k)

∣
∣
∣
∣
∣

= OP(1)T−1/2 max
n(T )≤k≤m(T )

k1/2−δ + T−1/2 max
n(T )≤k≤m(T )

σ |WT (k)|

= OP(1)
(
T−1/2m1/2−δ(T ) + (log T )−κ/2

)

= oP
(
(log log T )−1/2

)
,
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since by the scale transformation of the Wiener process W (∙) we have

sup
0≤u≤m(T )

|W (t)| D
= m1/2(T ) sup

0≤v≤1
|W (v)|.

By the ergodic theorem and Lemma A.2 we obtain that

T−1/2 max
n(T )≤k≤m(T )

∣
∣
∣
∣
∣
∣

(
k−1∑

t=1

xt

)>

(β̂T − β)

∣
∣
∣
∣
∣
∣
= OP(1),

and therefore (A.18) implies

max
n(T )≤k≤m(T )

|M2,1(k)| = oP((log log T )−1/2).

Next we write

|M2,3(`)| ≤

∣
∣
∣
∣
∣

T∑

t=`+1

et

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

(
T∑

t=`+1

xt

)>

(β̂T − β)

∣
∣
∣
∣
∣
∣
.

Replacing (A.7) with (A.15), one can establish along the lines of the proof of (A.18) that

T−1/2 max
T−m(T )≤k≤T−n(T )

∣
∣
∣
∣
∣

T∑

t=`+1

et

∣
∣
∣
∣
∣
= oP((log log T )−1/2).

Lemma A.2 and (A.14) give

T−1/2 max
T−m(T )≤`≤T−n(T )

∣
∣
∣
∣
∣
∣

(
T∑

t=`+1

xt

)>

(β̂T − β)

∣
∣
∣
∣
∣
∣
= OP(1/T ) max

T−m(T )≤`≤T−n(T )
(T − `)

= OP(m(T )/T ),

which completes the proof of

max
T−m(T )≤`≤T−n(T )

M2,3(`) = oP((log log T )−1/2).

�

Proof of Theorem 2.1. It follows from Lemmas A.5–A.12 that

HT = max

(

max
n(T )≤k≤m(T )

1
√

k

∣
∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣
∣
, max
T−m(T )≤`≤T−n(T )

1
√

T − `

∣
∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣
∣

)

+ oP((log log T )−1/2)

and

MT = max
n(T )≤k≤m(T )

1
√

k

∣
∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣
∣
+ max

T−m(T )≤`≤T−n(T )

1
√

T − `

∣
∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣
∣
+ oP((log log T )−1/2).

We get from (A.3) that

DT = T−1/2 max
1≤`≤T

∣
∣
∣
∣
∣
∣

∑̀

t=1

et −
`

T

T∑

t=1

et −

(
∑̀

t=1

xt −
`

T

T∑

t=1

xt

)>

(β̂T − β)

∣
∣
∣
∣
∣
∣
.
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By Assumption 2.1 we can use the approximation in Aue et al. (2014) and get

T−1/2 max
1≤`≤T

∥
∥
∥
∥
∥

∑̀

t=1

xt −
`

T

T∑

t=1

xt

∥
∥
∥
∥
∥

= OP(1)

and therefore by Lemma A.2 we have

DT = T−1/2 max
1≤`≤T

∣
∣
∣
∣
∣

∑̀

t=1

et −
`

T

T∑

t=1

et

∣
∣
∣
∣
∣
+ oP(1).

Also, by Aue et al. (2014) we also conclude that

T−1/2 max
1≤`≤T

∣
∣
∣
∣
∣

∑̀

t=1

et −
`

T

T∑

t=1

et

∣
∣
∣
∣
∣

(A.19)

= T−1/2 max
m(T )+1≤`≤T−m(T )−1

∣
∣
∣
∣
∣
∣

∑̀

t=m(T )+1

et −
`

T

T−m(T )−1∑

t=m(T )+1

et

∣
∣
∣
∣
∣
∣
+ oP(1).

Thus we need to show only
(

aT max
n(T )≤k≤m(T )

1

σ
√

k

∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣−bT , aT max

T−m(T )≤`≤T−n(T )

1

σ
√

T − `

∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣−bT , (A.20)

1

σ
√

T
max

m(T )+1≤`≤T−m(T )−1

∣
∣
∣
∣
∑̀

t=m(T )+1

et −
`

T

T−m(T )−1∑

t=m(T )+1

et

∣
∣
∣
∣

)

D
→

(

ξ1, ξ2, sup
0≤t≤1

|B(t)|

)

,

where ξ1 and ξ2 are random variables with distribution defined in (2.4) and {B(t), 0 ≤ t ≤ 1}
is a Brownian bridge. Also, ξ1, ξ2 and {B(t), 0 ≤ t ≤ 1} are independent. In (A.7) and

(A.15) we obtained weighted approximations for
∑k

t=1 et and
∑T

t=` et with some Wiener
processes. However, the proof of (A.20) requires a joint approximation of these partial sums
on (k, `) ∈ AT and

∑v
t=u et,m(T ) + 1 ≤ u < v ≤ T − m(T ) − 1. The approximation in

Aue et al. (2014) uses the blocking technique and therefore we can define three independent
Wiener processes WT,1(∙),WT,2(∙) and WT,3(∙) such that

max
n(T )≤k≤m(T )

k1/2−δ

∣
∣
∣
∣
∣

k∑

t=1

et − σWT,1(k)

∣
∣
∣
∣
∣
= OP(1), (A.21)

max
T−m(T )≤`≤T−n(T )

(T − `)1/2−δ

∣
∣
∣
∣
∣

T∑

t=`

et − σWT,2(T − `)

∣
∣
∣
∣
∣
= OP(1) (A.22)

with some δ > 0 and

max
m(T )+1≤k≤T−m(T )−1

∣
∣
∣
∣
∣
∣

k∑

t=m(T )+1

et − σWT,3(k − m(T ))

∣
∣
∣
∣
∣
∣
= oP(1). (A.23)
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The approximation in (A.23) yields that

1
√

T
max

m(T )+1≤`≤T−m(T )−1

∣
∣
∣
∣
∣

∑̀

t=m(T )+1

et −
`

T

T−m(T )−1∑

t=m(T )+1

et

− σ

(

WT,3(` − m(T )) −
`

T
WT,3(T − 2m(T ) − 1)

) ∣∣
∣
∣
∣
= oP(1)

and the modulus of continuity of the Wiener process (cf. Csörgő and Révész (1981)) gives

1
√

T
max

m(T )+1≤`≤T−m(T )−1

∣
∣
∣
∣WT,3(` − m(T )) −

`

T
WT,3(T − 2m(T ) − 1)

∣
∣
∣
∣

=
1

√
T

sup
0≤x≤T

∣
∣
∣WT,3(x) −

x

T
WT,3

∣
∣
∣+ oP(1).

Thus we have

1
√

T
max

m(T )+1≤`≤T−m(T )−1

∣
∣
∣
∣
∣

∑̀

t=m(T )+1

et −
`

T

T−m(T )−1∑

t=m(T )+1

et

∣
∣
∣
∣
∣

(A.24)

=
σ
√

T
sup

0≤x≤T

∣
∣
∣
∣WT,3(x) −

x

T
WT,3(x)

∣
∣
∣
∣+oP(1).

It is easy to see that

1
√

T
sup

0≤x≤T

∣
∣
∣WT,3(x) −

x

T
WT,3(x)

∣
∣
∣

D
= sup

0≤t≤1
|B(t)|, (A.25)

where B(t) denotes a Brownian bridge. It follows from (A.21) that

max
n(T )≤k≤m(T )

1
√

k

∣
∣
∣
∣

t∑

t=1

et

∣
∣
∣
∣− max

n(T )≤k≤m(T )

σ
√

k

∣
∣
∣
∣WT,1(k)

∣
∣
∣
∣= OP((log T )−κδ) (A.26)

and (A.22) yields

max
T−m(T )≤k≤T−n(T )

1
√

T − `

∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣− max

T−m(T )≤`≤T−n(T )

σ
√

T − `

∣
∣
∣
∣WT,2(T − `)

∣
∣
∣
∣ (A.27)

= OP((log T )−κδ).

The asymptotic independence in (A.20) is an immediate consequence of (A.24), (A.26) and
(A.27).
The Darling–Erdős limit result (cf. Appendix A in Csörgő and Horváth (1997)) states that

am(T )/n(T ) max
n(T )≤k≤m(T )

1
√

k
|W (k)| − bm(T )/n(T )

D
→ ξ, (A.28)

for any Wiener process W (∙), where ξ is a random variable with distribution function
exp(−e−x). Elementary calculations give

|aT − am(T )/n(T )| = O((log log T )1/2/ log T ) = o((log log T )−1/2)

and similarly

|bT − bm(T )/n(T )| = o(1).
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Hence (A.28) can be rewritten as

aT max
n(T )≤k≤m(T )

1
√

k
|W (k)| − bT

D
→ ξ. (A.29)

Now (A.20) follows from (A.24)–(A.27) and (A.29). �

Proof of Theorem 2.2. We follow the proof of Theorem 2.1. By Lemmas A.5–A.12 we have
that

M
(1)
T = max

n(T )≤k≤m(T )

1
√

k

∣
∣
∣
∣
∣

k∑

t=1

et

∣
∣
∣
∣
∣
+ oP((log log T )−1/2), (A.30)

M
(2)
T = max

T−m(T )≤k≤T−n(T )

1
√

T − `

∣
∣
∣
∣
∣

T∑

t=`

et

∣
∣
∣
∣
∣
+ oP((log log T )−1/2), (A.31)

and

M∗
T = max

M∗
0

m∑

i=2

1
√

T

∣
∣
∣
∣
∣
∣

ki∑

t=ki−1

et −
ki − ki−1

T

T−m(T )−1∑

t=m(T )+1

et

∣
∣
∣
∣
∣
∣
, (A.32)

where M∗
0 = {n(T ) ≤ k1 ≤ k2 ≤ . . . km ≤ T − m(T ) − 1} (cf. (A.19)). Repeating the

arguments used in the proof of Theorem 2.1, we obtain the asymptotic independence of

a(T )M
(1)
T /σ− b(T ), a(T )M

(2)
T /σ− b(T ) amd M∗

T from (A.30)–(A.32). We also conclude from
Lemmas A.5–A.12 and (A.30), (A.31) that

(

aT
M

(1)
T

σ
− bT , aT

M
(2)
T

σ
− bT

)
D
→ (ξ1, ξ2),

where ξ1 and ξ2 defined in (2.4). We obtain from (A.24) and the continuity of the Wiener
process that

max
M∗

0

m∑

i=2

1
√

T

∣
∣
∣
∣
∣
∣

ki∑

t=ki−1

et −
ki − ki−1

T

T−m(T )−1∑

t=m(T )+1

et

∣
∣
∣
∣
∣
∣

D
→ σ max

0≤u1≤u2≤...≤um≤1

m∑

i=2

|W (ui) − W (ui−1) − (ui − ui−1)W (1)| ,

with u0 = 0, where W (t), 0 ≤ t ≤ 1 is a Wiener process. Since B(t) = W (t) − tW (1) is a
Brownian bridge, the proof of Theorem 2.2 is complete. �

B. Appendix: Proof of Theorem 2.4.

The OLS estimator βT under HA can be decomposed as

β̂T = (XTX>
T )−1XTYT

= (XTX>
T )−1

(m+1∑

i=1

k∗
i∑

t=k∗
i−1+1

xtx
>
t β(i) +

T∑

t=1

xtet

)

.

We continue with the analogue of Lemma A.2 under HA.



CHANGE DETECTION IN REGRESSIONS 31

Lemma B.1. If HA, Assumptions 2.1 and 2.2 hold, then we have that

β̂T = β̃T + OP(T
−1/2). (B.1)

Proof. Since xt,ixj,t,−∞ < t < ∞ is a Bernoulli shift, repeating the arguments leading to
A.2 we obtain that

E

(
N∑

t=1

(xt,ixj,t − Ext,ixj,t)

)2

= O(N), as N → ∞.

and therefore

(XTX>)−1 =
1

T
A−1 + OP(T

−3/2)

and
k∗

i∑

t=k∗
i−1+1

xtx
>
t = (k∗

i − k∗
i−1)A + OP

(√
k∗

i − k∗
i−1

)
,

and therefore by (A.2) we have (B.1). �

Proof of Theorem 2.4. Similarly to A.2 we have

E

∥
∥
∥
∥
∥

T2∑

t=T1

(xt − c)

∥
∥
∥
∥
∥

2

= O(T2 − T1), as N → ∞, (B.2)

and therefore

T∑

t=1

xt = Tc + OP(
√

T ) and

k∗
i∑

t=k∗
i−1+1

xt + OP

((√
k∗

i − k∗
i−1

))
, 1 ≤ i ≤ m+ 1.

Since

êt = yt − x>
t β̂T = et − x>

t

(
β̂T − β(i)

)
, if k∗

i−1 + 1 ≤ t ≤ k∗
i , 1 ≤ i ≤ m+ 1, (B.3)

we get

M1(k
∗
1) =

1
√

k∗
1




k∗
1∑

t=1

x>
t (β̂T − β(1)) −

k∗
1

T

T∑

t=1

x>
t (β̂T − β̃T )



+ OP(1) (B.4)

=
√

k∗
1c

>(β̃T − β(1))(1 + oP(1)) + OP(1)

and

Mm+1(k
∗
m) =

√
T − k∗mc>(β̃T − β(m+1))(1 + oP(1)) + OP(1). (B.5)

Using again Lemma B.1 and (B.2) we conclude for all 2 ≤ i ≤ m that

Mi(k
∗
i−1, k

∗
i ) =

k∗
i − k∗

i−1√
T

c>(β̃T − β(i))(1 + oP(1)) + OP(1). (B.6)

The result now follows from (B.4)–(B.6). �

Proofs of Corollaries 2.1 and 2.2. The results can be derived from Theorem 2.4 by elementary
calculations. �
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C. Appendix: Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Using (A.3) we get

S2
T =

T∑

t=1

e2
t − 2

(
T∑

t=1

etxt

)>

(β̂T − β) +
T∑

t=1

(
x>

t (β̂T − β)
)2

. (C.1)

Assumption 2.1 implies along the lines of the proof of (A.5) that
∣
∣
∣
∣
∣

T∑

t=1

e2
t − Tσ2

∣
∣
∣
∣
∣
= OP(T

1/2). (C.2)

Putting together Lemma A.1 and (A.2) we conclude
∣
∣
∣
∣
∣
∣

(
T∑

t=1

etxt

)>

(β̂T − β)

∣
∣
∣
∣
∣
∣
= OP(1),

and by the ergodic theorem we get

T∑

t=1

(
x>

t (β̂T − β)
)2

= OP(1).

This completes the proof of (3.2).
Lemma B.1 and (A.2) give

∣
∣
∣
∣
∣
∣

(
T∑

t=1

etxt

)>

(β̂T − β)

∣
∣
∣
∣
∣
∣
= OP(T ),

T∑

t=1

(
x>

t (β̂T − β)
)2

= OP(1),

and therefore (3.3) follows from (C.2).

Proof of Theorem 3.2. It follows from (A.3)

γ̂` =
1

T

T−∑̀

t=1

etet+` −
1

T

T−∑̀

t=1

etx
>
t+`(β̂T − β) −

1

T

T−∑̀

t=1

et+`x
>
t (β̂T − β) (C.3)

+
1

T

T−∑̀

t=1

x>
t (β̂T − β)x>

t+`(β̂T − β).

It is easy to see that

E

(
T−1∑

`=1

K(`/h)
1

T

T−∑̀

t=1

(etet+` − Ex0x`)

)2

=
1

T 2

T−1∑

`,`′=1

T−∑̀

t=1

T−`′∑

s=1

K(`/h)K(`′/h)(E[etet+`eses+`′ ] − Ee0e`Ee0e`′)

= QT .
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Following the proof of Horváth and Rice (2015) we write by Assumption 3.2

QT = O(1/T 2)
∑

1≤t≤s≤T−1

∑

1≤`,`′≤ch

|E[etet+`eses+`′ ] − Ee0e`Ee0e`′ |

= O(1/T 2)
∑

1≤t≤s≤T−1

∑

1≤`,`′≤ch

|E[etet+`eses+`′ ] − Ee0e`Ee0e`′ |

= O(1/T )
∑

1≤v≤T−1

∑

1≤`,`′≤ch

|E[e0e`evev+`′ ] − Ee0e`Ee0e`′ |

= O(1/T )(QT,1 + QT,2),

where

QT,1 =
∑

(v,`,`′)∈GT,1

|E[e0e`evev+`′ ] − Ee0e`Ee0e`′ |

and

QT,2 =
∑

(v,`,`′)∈GT,2

|E[e0e`evev+`′ ] − Ee0e`Ee0e`′ |

with

GT,1 = {(v, `, `′) : h + 1 ≤ v ≤ T, 1 ≤ `, `′ ≤ h} ,

GT,2 = {(v, `, `′) : 1 ≤ v ≤ h, 1 ≤ `, `′ ≤ h} .

Next we define

ēv,v−`−1 = f(εv, εv−1, . . . , ε`+1, ε
′
`, ε

′
`−1, . . .)

and

ēv+`′,v+`′−`−1 = f(εv+`′ , εv+`′−1, . . . , ε`+1, ε
′
`, ε

′
`−1, . . .),

where ε′`,−∞ < ` < ∞ are independent copies of ε0, independent of εj,−∞ < j < ∞. It
follows from the Bernoulli assumption that (e0, e`) is independent of (ēv,v−`−1, ēv+`′,v+`′−`−1).
Also, according to the construction, (ēv,v−`−1, ēv−`′,v+`′−`−1) and (ev, ev+`′) are identically
distributed. Hence

E[e0e`evev+`′ ] − Ee0e`Ee0e`′ = Ee0e`[evev+`′ − ēv,v−`−1ēv+`′,v+`′−`−1].

It follows from Assumption 2.1 that

(E(ev − ēv,v−`−1)
4)1/4 ≤ c(v − `)−α and (E(ev+`′ − ēv+`′,v+`′−`−1)

4)1/4 ≤ c(v + `′ − `)−α

with some constant c for all (v, `, `′) ∈ GT,1. Hence

E|e0e`[evev+`′ − ēv,v−`−1ēv+`′,v+`′−`−1]|

≤ E|e0e`ev[ev+`′ − ēv+`′,v+`′−`−1]| + E|e0e`ēv+`′,v+`′−`−1[ev − ev−`+1]|

≤
(
Ee4

0Ee4
`Ee4

vE|ev+`′ − ēv+`′,v+`′−`−1|
4
)1/4

+
(
Ee4

0Ee4
`Eē4

v+`′,v+`′−`−1E|ev − ēv,v−`−1|
4
)1/4

≤ c∗(v − `)−α

with some constant c∗. Hence elementary arguments give that

QT,1 = O(1)
∑

(v,`,`′)∈GT,1

(v − `)−α = O(h)

∫ h

1

∫ T

h+1

(x − y)−αdxdy = O(h).
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Next we note

QT,2 ≤
∑

(v,`,`′)∈GT,2

|E[e0e`evev+`′ ]| +
∑

(v,`,`′)∈GT,2

|Ee0e`Ee0e`′ |

and
∑

(v,`,`′)∈GT,2

|Ee0e`Ee0e`′ | ≤ h

(
∞∑

`=1

|Ee0e`|

)2

< ∞.

Using the variables et,m defined in Assumption 2.1 we write for all 0 ≤ s ≤ t ≤ v ≤ 2h

e0esetev =e0es,s(et − et,t−s)(ev − ev,v−t) + e0es,s(et − et,t−s)ev,v−t + e0es,set,t−s(ev − ev,v)

+ e0es,set,t−sev,v + e0(es − es,s)(et − et,t−s)ev + e0(es − es,s)et,t−sev,v−t

+ e0(es − es,s)et,t−s(ev − ev,v−t).

It follows from the definitions of et,m that ev,v−t is independent of e0es,s(et − et,t−s), e0 is
independent of es,set,t−sev,v, ev,v−t is independent of e0(es − es,s)et,t−s and therefore

E[e0es,s(et − et,t−s)ev,v−t] = 0, E[e0es,set,t−sev,v] = 0 and E[e0(es − es,s)et,t−sev,v−t] = 0.

Using Assumption 2.1 we obtain that
∑

0≤s≤t≤v≤2h

|Ee0es,s(et − et,t−s)(ev − ev,v−t)|

≤ (Ee4
0)

1/2
∑

0≤s≤t≤v≤2h

(
E(et − et,t−s)

4
)1/4 (

E(ev − ev,v−t)
4
)1/4

= O(h).

Similarly ∑

0≤s≤t≤v≤2h

|Ee0(es − es,s)(et − et,t−s)ev| = O(h),

∑

0≤s≤t≤v≤2h

|Ee0(es − es,s)et,t−s(ev − ev,v−t)| = O(h)

and
∑

0≤s≤t≤v≤2h

|Ee0es,set,t−s(ev − ev,v)| = O(1)

∫ 2h

0

∫ 2h

s

∫ 2h

t

v−αdvdtds = O(h).

Thus we conclude that

E

(
T−1∑

`=1

1

T

T−∑̀

t=1

(etet+` − Ex0x`)

)2

= O

(
h

T

)

and therefore
T−1∑

`=1

K(`/T )
1

T

T−∑̀

t=1

etet+` =
T−1∑

`=1

K(`/h)
T − `

T
Ee0e` + OP

(
(h/T )1/2

)
. (C.4)

Let

w`,i =
1

T

T−∑̀

t=1

etxt+`,i
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and define

âT,i =
T−1∑

`=1

K(`/h)w`,i.

Similarly to (C.4) we have for all 1 ≤ i ≤ d

âT,i =
T−1∑

`=1

K(`/h)
T − `

T
Ee0x`,i + OP

(
(h/T )1/2

)
(C.5)

= O(1)
∞∑

`=1

|Ee0x`,i| + OP

(
(h/T )1/2

)

= OP(1),

since by Assumption 2.1 we have Ee0x`,i| = E(e0 − e0,`)x`,i and therefore by the Cauchy–
Schwartz inequality

∞∑

`=1

|Ee0x`,i| =
∞∑

`=1

|E(e0 − e0,`)x`,i| ≤ E(x2
0,i)

1/2

∞∑

`=1

(E(e0 − e0,`))
1/2 < ∞.

Along the lines of the arguments leading to (C.4) and (C.5) we get

b̂T,i =
T−1∑

`=1

K(`/h)
1

T

T−∑̀

t=1

xt,iet+` = OP(1) for all 1 ≤ i ≤ d, (C.6)

and

ĉT,i,j =
T−1∑

`=1

K(`/h)
1

T

T−∑̀

t=1

xt,ixt+`,j = OP(1) for all 1 ≤ i, j ≤ d. (C.7)

Thus we conclude by Lemma

σ̂2
T =

T−1∑

`=1

K(`/h)
T − `

T
Ee0e` + OP

(
(h/T )1/2

)
+ OP(T

−1/2).

Assumption 3.2 yields

T−1∑

`=1

K(`/h)
T − `

T
Ee0e` =

∞∑

`=1

Ee0e` +
hc∑

`=1

(

K(`/h)
T − `

T
− 1

)

Ee0e` −
∞∑

`=hc+1

Ee0e`

and
∣
∣
∣
∣
∣

hc∑

`=1

(

K(`/h)
T − `

T
− 1

)

Ee0e`

∣
∣
∣
∣
∣
≤

hc∑

`=1

|K(`/h) − 1| |Ee0e`| +
hc∑

`=1

K(`/h)

∣
∣
∣
∣
T − `

T
− 1

∣
∣
∣
∣ |Ee0e`|

= O(1)

(
1

h
+

1

T

) ∞∑

`=1

`|Ee0e`|.

By Assumption 2.1 we get

∞∑

`=1

`|Ee0e`| =
∞∑

`=1

`|Ee0e`| =
∞∑

`=1

`|Ee0(e` − e`,`)| ≤ (Ee2
0)

1/2

∞∑

`=1

`(E(e` − e`,`)
2)1/2 < ∞
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and
∞∑

`=hc+1

|Ee0e`| ≤
1

h

∞∑

`=1

`|Ee0e`|.

Since γ̂0 − Ee2
0 = OP (T−1/2), (3.5) is proven.

We use (B.3) to prove (3.6). It follows from (C.5)–(C.7) and Lemma B.1 that

|âT,i|‖β̂T − β‖ = OP(1), |b̂T,i|‖β̂T − β‖ = OP(1) and |ĉT,i,j |‖β̂T − β‖ = OP(1). (C.8)

The result in (3.6) is an immediate consequence of (C.3), (C.4) and (C.8).
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