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ABSTRACT: Germin and germin-like proteins (GLPs) are encoded by a family of genes found 

in all plants. They are part of the cupin superfamily of biochemically diverse proteins, a 

superfamily that has a conserved tertiary structure, though with limited similarity in primary 

sequence. The subgroups of GLPs have different enzyme functions that include the two 

hydrogen peroxide-generating enzymes, oxalate oxidase (OxO) and superoxide dismutase. This 

review summarizes the sequence and structural details of GLPs and also discusses their 

evolutionary progression, particularly their amplification in gene number during the evolution of 

the land plants. In terms of function, the GLPs are known to be differentially expressed during 

specific periods of plant growth and development, a pattern of evolutionary subfunctionalization. 

They are also implicated in the response of plants to biotic (viruses, bacteria, mycorrhizae, fungi, 

insects, nematodes, and parasitic plants) and abiotic (salt, heat/cold, drought, nutrient, and metal) 

stress. Most detailed data come from studies of fungal pathogenesis in cereals. This involvement 

with the protection of plants from environmental stress of various types has led to numerous 

plant breeding studies that have found links between GLPs and QTLs for disease and stress 
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resistance. In addition the OxO enzyme has considerable commercial significance, based 

principally on its use in the medical diagnosis of oxalate concentration in plasma and urine. 

Finally, this review provides information on the nutritional importance of these proteins in the 

human diet, as several members are known to be allergenic, a feature related to their thermal 

stability and evolutionary connection to the seed storage proteins, also members of the cupin 

superfamily.  

 

Keywords: oxalate oxidase, stress response, disease resistance, multigene family, polyploidy, 

allergen, diagnostics 
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1. INTRODUCTION 

This review will summarise recent information related to the evolution, expression and 

function of germin and related proteins, a functionally and biochemically diverse group of plant 

proteins linked to programmed cell death and expressed during specific stages of plant 

development and in response to biotic and abiotic stress. The exploitation of this most diverse of 

protein families in applied plant breeding, and in biomedical applications will also be considered. 

 

2. GERMIN AND GERMIN-LIKE PROTEINS 

Germins constitute a group of homologous proteins only found in “true cereals” including 

barley (Hordeum), maize (Zea), oat (Avena), rice (Oryza), rye (Secale) and wheat (Triticum) 

(Lane, 2002). Germin was initially identified as a specific marker for the start of germination in 

wheat embryos, from which function it was given the name “germin” (Thompson and Lane, 

1980). Many years later it was characterized as a homopentameric glycoprotein (Faye and 

Chrispeels, 1988: Jaikaran et al., 1990) with oxalate oxidase (OxO) activity (Lane et al., 1993), a 

process that generates hydrogen peroxide (H2O2) and which may help to produce refractory 

barriers against tissue invasion by predators (Lane, 2000; Schweizer et al., 1999) (for more 

details see discussion below). Woo et al. (1998, 2000) subsequently determined the structure of 

germin at 1.6 Å resolution, and showed that in contrast to the suggestion from previous 
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biochemical studies, the mature protein comprises six β-jellyroll monomers locked into a 

homohexamer (a trimer of dimers) (Fig. 1). This structure accounts for its remarkable stability to 

various denaturing agents; all germins share unusual resistance to broad specificity proteases and 

to dissociation by various agents such as heat, SDS and extreme pH (Lane et al., 1993; Lane, 

1994; Wei et al., 1998; Carter and Thornburg, 2000; Membré et al., 2000). 

In terms of sequence, all germins contain a characteristic peptide sequence, 

PHIHPRATEI, known as the germin box (Lane et al., 1991). Proteins related to wheat germin 

and containing the characteristic germin have subsequently been found in various land plants and 

designated as germin-like proteins (GLPs) (Dunwell, 1998). GLPs have a maximum of 90% 

sequence identity to wheat germin, although the average level of identity is close to 50%. 

However, there is almost complete identity in the two motifs within the conserved cupin domain 

(see below) that contain the residues involved as ligands in the active site (Fig. 1) and a common 

structure is predicted (Dunwell, 1998; Dunwell et al., 2000, 2001).  

The structural resolution of germin confirmed the prediction concerning conserved N-

glycosylation sites (NXS/T), and there is also some evidence for S-nitrosylation (Romero-

Puertas et al., 2008). It is assumed that the N-terminal signal peptide is associated with targeting 

to the cell wall/extracellular matrix (Lane et al., 1992; Heintzen et al., 1994; Lane 1994; Berna 

and Bernier 1997). However, the precise significance of these post-translational modifications 

and targeting sequences in modulating the activity of these proteins is unknown. 

 

3. GERMIN AND GLPS ARE MEMBERS OF THE CUPIN SUPERFAMILY 

Germin and GLPs were described as the archetypal members of the cupin superfamily 

(Dunwell, 1998). The cupin superfamily of proteins, named on the basis of this conserved β-
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barrel fold („cupa‟ is the Latin term for barrel), was originally discovered using the conserved 

motif found within germin, GLPs from higher plants, and spherulin (a stress-associated protein 

from the slime mould Physarum polycephalum) (Lane et al., 1991). Overall, the cupins comprise 

the most functionally diverse protein fold yet described with more than 60 different enzyme and 

non-enzyme activities (Dunwell et al., 2001; 2004; unpublished). In addition to the oxidase 

activity represented by OxO, other enzyme activities include isomerases, decarboxylases, 

dioxygenases, cyclases, and epimerases. The reason for this biochemical diversity lies in the 

flexibility of the „active site‟ within the centre of the eight stranded β-barrel mature cupin 

domain (Dunwell et al., 2001; Rajavel et al., 2008). 

 

4. GLPS ARE ENCODED BY A FAMILY OF RELATED GENES 

Although GLPs were first identified in cereals and a small number of other higher plants, 

they are now known to be ubiquitous plant proteins encoded by a family of related genes. A large 

number of GLP genes have been discovered as expressed sequence tags (ESTs) or by genome 

sequencing in higher plants like Arabidopsis (Carter et al., 1998; Membré et al., 1997), barley 

(Wu et al., 2000, Druka et al., 2002), and rice (Membré and Bernier, 1998). When reviewed by 

Bernier and Berna (2001) it was reported that “The number of different sequences related to 

germin is now close to a hundred”. At the time of preparing the present review GenBank 

contains a total of 379 proteins and 825 nucleotides annotated as germin, though the number of 

related but non-annotated ESTs is several thousand (Dunwell, unpublished). It is now known that 

the number of GLP genes in each species of higher plant exceeds 30 (Cannon et al., 2004) and 

most are present within the genome as multiple copies at a small number of loci (Kazusa et al., 

2000; Manosalva, 2006). The most complete analysis of GLPs from lower plants is that 
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conducted by Nakata et al. (2004) who identified a family of nine genes in the moss 

Physcomitrella patens, a member of the first land plant group (Qiu and Palmer, 1999; Quatrano 

et al., 2007). Similar sequences have been isolated from other mosses including Ceratodon 

purpureus and Barbula unguiculata (Yamahara et al., 1999; Nakata et al., 2002), and from a 

liverwort, Marchantia polymorpha (Nagai et al., 1999). Nakata et al. (2004) also reported a 

phylogenetic analysis of the GLP family of P. patens and proposed two novel clades designated 

bryophyte subfamilies 1 and 2, which are evidently discernible from the clades of higher plants 

(Carter and Thornburg, 2000). Interestingly, the two cysteins molecules at conserved positions in 

the N-terminus of all reported germins and GLPs, are not present in bryophytes subfamily 1, or 

in spherulin. It would seem therefore that duplication of the progenitor GLP gene had already 

occurred during evolution of the first land plant, and that a further phase of duplication took 

place during Angiosperm evolution. Indeed the GLP gene family has been used recently in 

studies of ancestral polyploidy (Senchina et al., 2003; Pfeil et al., 2005), gene duplication 

(Canon et al., 2004; Adams, 2007; Roth et al., 2007) and subfunctionalization, the process by 

which a pair of duplicated genes, or paralogs, experiences a reduction of individual expression 

patterns or function while still reproducing the complete expression pattern and function of the 

ancestral gene (Federico et al., 2006; Zimmerman et al., 2006; Liu and Adams, 2007). The 

subject of expression patterns during development is described in more detail in section 6 below, 

which is then followed by sections that consider changes in the pattern of expression in response 

to a range of biotic and abiotic influences. 

 

5. BIOCHEMICAL PROPERTIES 
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To date, three different enzymatic activities have been associated with these proteins. 

First, OxO activity is associated with the true germins (Berna and Bernier, 1997, Lane et al., 

1993); secondly, superoxide dismutase (SOD) activity is found in some germins and GLPs 

(Yamahara et al., 1999; Woo et al., 2000; Carter and Thornburg, 2002; Christensen et al., 2004; 

Zimmermann et al., 2006; Gucciardo et al., 2007), and finally ADP-glucose pyrophosphatase or 

phosphodiesterase (AGPPase) activity has been shown in a barley GLP (Rodríguez -Lόpez et al., 

2001). Two isoforms of AGPPase have been characterized using barley leaves, one of the 

isoforms designated as soluble AGGPPase1 (SAGPPase1), is soluble in low ionic strength 

buffer, the other SAGPPase2 is extractable by using high salt concentration solution. N-terminal 

and internal sequence analysis showed that both SAGPPase1 and SAGPPase2 are distinct 

oligomers of the previously designated Hordeum vulgare GLP1 (Rodríguez-López et al., 2001). 

More recently, a maize protein ZmGLP1 with sequence similarity to the barley GLP with 

AGPPase activity has also been reported (Fan et al., 2005). Additionally, a GLP which inhibits 

serine protease activity has been reported in the wheat apoplast and suggested to be part of a 

defense system against insect and bacterial proteases ((Segarra et al., 2003; Cordo et al., 2007). 

Such biotic responses are discussed below. 

In light of the biochemical diversity present in the cupin superfamily (Dunwell et al., 

2004), it is very likely that some GLPs may have additional enzyme activities that have not yet 

been identified. In addition to their direct enzymatic role some GLPs are known to be involved in 

specific protein-protein interactions. For example, the DING group of phosphate binding 

proteins (Berna et al., 2008; Griffaut et al., 2007; Moniot et al., 2007; Perera et al., 2008; Zhang 

et al., 2007b) were first identified in plants by their binding to a specific subclass of GLP. 
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6. DEVELOPMENTAL REGULATION OF GLP GENE EXPRESSION 

 It has become obvious in recent years that germins and GLPs expression is neither 

restricted to cereals as originally thought nor is specific to germination. As discussed above, 

genes or EST sequences encoding proteins with sequence similarity to germins have been 

identified from all plant species from such data are available. Additionally, there are now many 

experimental studies from various species which show a variety of expression patterns of GLP 

genes. The methods available for the numerical assessment of transcripts as a means of assessing 

patterns of gene expression include EST quantification, microarrays and Serial Analysis of Gene 

Expression (SAGE) technologies (Gibbings et al., 2003), and the information summarised below 

was generated using one or more of these methods. In the context of this review, it should be 

noted that there are few comparative studies using different techniques on the same material 

(Grimplet et al., 2007). As well as transcriptomic data derived from the various gene expression 

technologies, there is now an increasing emphasis on proteomic information in which high 

resolution protein extraction and separation methods have been allied to mass-spectrometry to 

identify the presence of specific peptide fragments. Such information will be integrated in the 

subsections below that follow (with various additions and amendments) the pattern used in an 

earlier review (Dunwell et al., 2000) to which the reader is referred; the emphasis in the present 

review is on recently published information. 

Several of these studies have identified GLPs amongst the population of proteins found in 

specific tissues including in the extracellular environment or apoplast that incorporates the cell 

wall, a highly dynamic compartment with a role in many important plant processes including 

defence, development, signaling and assimilate partitioning. For example, soluble apoplast 

proteins from Arabidopsis, wheat and rice were separated by two-dimensional electrophoresis 
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and the molecular weights and isoelectric points for the dominant proteins were established prior 

to excision, sequencing and identification by matrix-assisted laser-desorption time of flight mass 

spectrometry (MALDI - TOF MS) (Haslam et al., 2003). From the selected spots, 23 proteins 

from rice and 25 proteins from Arabidopsis were sequenced, of which nine identifications were 

made in rice (39%) and 14 in Arabidopsis (56%). This analysis revealed that the principal 

proteins identified in the aqueous matrix of the apoplast were involved in defence, i.e. GLPs or 

glucanases, and cell expansion, i.e. beta-D-glucan glucohydrolases. 

 One most important issues that must be addressed in assessing the data reported in the 

subsequent sections of this review is the ability to discriminate between expression from specific 

members of the GLP gene family. One possible method that permits such discrimination is use of 

the SAGE technology. In one relevant study of this type Gibbings et al., (2003) compared 

expression from mature leaves and immature seeds from the rice Nipponbare cultivar. The leaf 

library consisted of a total of 42,087 tags and 9,412 tags were analysed in the immature seed 

library. Tag identities were determined by matching them to EST members of the tentative 

consensus (TC) sequences of the TIGR rice gene index (http://compbio.dfci.harvard.edu/tgi/cgi-

bin/tgi/geneprod_search.pl). Analysis of these tags revealed ESTs coding for six unique GLPs 

with one represented by two fragments (from the total of 40 GLPs encoded by the rice genome). 

Four of these seven tags, derived from transcripts from chromosome 8 (Tani et al., 2008),  were 

observed in the seed data set and three in the leaf data set (Table 1) with none of the tags shared 

between the two data sets. Most significantly, the higher abundance of the tags in the seed data 

set correlates with the expression reports for these tissues from the rice gene index. These data 

thus demonstrate the power of SAGE technology in discriminating between expression of 

different members of this large gene family. 
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6.1. Leaf Development 

In an EST study of sugar cane leaves, two hundred fifty clones were randomly selected, 

subjected to single-pass sequencing, and identified by sequence similarity searches (Carson and 

Botha, 2000); two clones were identified clones as GLPs. Similarly, Fan et al. (2005) reported a 

green tissue specific GLP gene from Zea mays (ZmGLP1). The transcript of this gene was found 

to be abundant in young leaves, less frequent in mature leaves, young tassels, and cobs and not 

detectable in roots, immature kernels and stalks. RNA in situ hybridization experiments revealed 

that ZmGLP1 was only expressed in mesophyll, phloem and guard cells in the young whorl 

leaves. 

In a study of the role of the nuclear protein DET1 in the photomorphogenesis pathway in 

Arabidopsis it was found that a peroxisomal protein encoded by TED3 is essential for growth 

(Hu et al., 2002). One GLP (U75201) was among the proteins shown to be integral to this 

pathway. Also important in this same context are cryptochromes, nuclear proteins that mediate 

light control of hypocotyl elongation, leaf expansion, photoperiodic flowering, and the circadian 

clock. The blue light photoreceptor mutant cryptochrome1-304 (cry1-304) and Columbia wild-

type 4 (col-4) of Arabidopsis thaliana were grown under white light and blue light, and in 

darkness (Yang et al., 2008). To study the difference in protein expression levels between cry1-

304 and col-4, a proteomic approach was applied based on 2-D gel electrophoresis. A GLP (spot 

42) was shown to be up-regulated in cry1-304. 

Secondary growth is supported by a dividing population of meristematic cells within the 

vascular cambium whose daughter cells are recruited to differentiate within secondary phloem 

and xylem tissues. In a study of this subject Groover et al. (2006) cloned a Populus Class 1 
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KNOX homeobox gene, ARBORKNOX1 (ARK1), which is orthologous to Arabidopsis SHOOT 

MERISTEMLESS (STM). ARK1 is expressed in the shoot apical meristem and the vascular 

cambium, and is down-regulated in the terminally differentiated cells of leaves and secondary 

vascular tissues that are derived from these meristems. Transformation of Populus with either 

ARK1 or STM over-expression constructs resulted in similar morphological phenotypes 

characterized by inhibition of the differentiation of leaves, internode elongation, and secondary 

vascular cell types in stems. Analysis with a microarray comprising 55,794 nuclear and 126 

mitochondrial and chloroplast gene models, and 9,995 unigenes derived primarily from P. 

tremula x P. tremuloides EST sequences showed that 41% of genes up-regulated in the stems of 

ARK1 over-expressing plants encode proteins involved in extracellular matrix synthesis or 

modification, including proteins involved in cell identity and signaling, cell adhesion, or cell 

differentiation. Three GLPs were present in this list. These gene expression differences are 

reflected in alterations of cell wall biochemistry and lignin composition in ARK1 over-

expressing plants. The results suggested that ARK1 has a complex mode of action that may 

include regulating cell fates through modification of the extracellular matrix. These findings 

support the hypothesis that the shoot apical meristem and vascular cambium are regulated by 

overlapping genetic programs. Relevant data from field grown poplar have been reported 

recently by Sjödin et al. (2008). 

Certain plant growth-promoting rhizobacteria (PGPR), in the absence of physical contact 

with a plant stimulate growth via volatile organic compound (VOC) emissions, through largely 

unknown mechanisms. To probe how PGPR VOCs trigger growth in plants, RNA transcript 

levels of Arabidopsis seedlings exposed to Bacillus subtilis (strain GB03) were examined using 

oligonucleotide microarrays (Zhang et al., 2007a). These authors screened over 26,000 protein-
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coded transcripts and identified a group of approximately 600 differentially expressed genes 

related to cell wall modifications, primary and secondary metabolism, stress responses, hormone 

regulation and other expressed proteins. These genes included certain GLPs (eg GER2, 

At5g39190). Transcriptional and histochemical also data indicated that VOCs from the PGPR 

strain GB03 trigger growth promotion in Arabidopsis by regulating auxin homeostasis. 

As a complement to these transcriptomic studies, a recent proteomic study of Arabidopsis 

involved analysis of three set of material: leaves of fully developed rosettes containing 

differentiated cells; etiolated hypocotyls analyzed at the end of elongation; and 7-day-old cell 

suspension cultures, when cells are actively dividing and expanding (Boudart et al., 2005; Jamet 

et al., 2006). All three cell wall proteomes were obtained using comparable salt-extraction 

protocols, separation of proteins by electrophoresis, and identification by MALDI-TOF 

spectrometry. The 11 proteins common to all three organs included one GLP. Similarly, in a 

related study of a sub-proteome of Arabidopsis mature stems trapped on Concanavalin A, only 

one GLP was identified (Minic et al., 2007). Schlesier et al. (2004) also used a proteomic 

approach to compare the protein patterns of the Arabidopsis ecotypes Col-0 and Ws-2. In leaf 

extracts, pairs of protein spots were found to be diagnostic for each of the lines. Both pairs of 

spots were identified as closely related GLPs differing in only one amino acid by using peptide 

mass finger printing of tryptic digests and by gaining additional data from post-source decay 

spectra in the MALDI-TOF analysis. 

In a further study of the subject, Chitetti and Peng (2007) established the proteome map 

of Arabidopsis cotyledons and investigated the dynamic change of the cotyledon proteome in the 

time course of cell dedifferentiation. Among the 353 distinct genes, corresponding to 500 2-DE 

gel protein spots identified with high confidence, 12% had over twofold differential regulation 
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within the first 48 h of induction of cell dedifferentiation. The distribution of these genes among 

different Gene Ontology categories and gene differential regulations within each of the 

categories was also examined. Additionally, the authors investigated the cotyledon 

phosphoproteome using Pro-Q Diamond Phosphoprotein in Gel Stain followed by mass 

spectrometry analyses. Among the 53 identified putative phosphoproteins including a GLP, nine 

are differentially regulated during cell dedifferentiation. These studies have revealed yet another 

interesting facet of GLPs, namely that their activities may involve regulation by phosphorylation  

In addition to these and other studies on higher plants (Carpentier et al., 2005), similar 

methods were used in the identification of 306 proteins from the protonema of Physcomitrella 

patens (Sarnighausen et al., 2004). Proteins were separated by two dimensional electrophoresis, 

excised from the gel, analysed by means of mass spectrometry, and five GLPs were identified. 

 

6.2. Root Development 

Perhaps the most interesting recent study of this topic is that of Vellosillo et al. (2007) 

who used two Arabidopsis mutants, noxy2 (for nonresponding to oxylipins2), a new mutant 

insensitive to 9-hydroxyoctadecatrienoic acid (9-HOT), and coronatine insensitive1-1 

(jasmonate-insensitive). These results, together with the findings that noxy2 and mutants with 

defective 9-lipoxygenase (9-LOX) activity showed increased numbers of lateral roots, suggest 

that 9-HOT, or a closely related 9-LOX product, is an endogenous modulator of lateral root 

formation. Histochemical and molecular analyses revealed that 9-HOT activated events common 

to development and defense responses. A subset of 9-HOT-responding root genes, including 

GLPs (At4g14630, At5g38910) was also induced in leaves after 9-HOT treatment or pathogen 

inoculation. In a related investigation, a root cDNA library from pineapple was differentially 
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screened for mRNAs that are preferentially present in roots (Neuteboom et al., 2002). Over 300 

randomly selected cDNAs from this library were categorized into 14 classes based on their 

expression characteristics. One GLP was predominant among six mRNAs verified to be 

preferentially present in roots by analyzing in detail their abundance during field-grown plant 

and fruit development. A germin EST was also recorded among the most abundant transcripts 

found in sorghum roots (Baerson et al., 2008). 

At a protein level, there are several relevant studies, including one on the role of 

sphingolipid/sterol-rich domains so-called lipid rafts of the plasma membrane. It was shown 

recently that lipid raft domains, defined as Triton X-100-insoluble membranes, can be prepared 

from Medicago truncatula root PMs (Lefebvre et al., 2007). These domains were extensively 

characterized by ultrastructural studies as well as by analysis of their content in lipids and 

proteins, and were shown to be enriched in sphingolipids and D7-sterols, with spinasterol as the 

major compound. A large number of proteins (i.e. 270) were identified. Among them, receptor 

kinases and proteins related to signaling, cellular trafficking, and cell wall functioning, including 

a GLP (AC149038_25.1), were well represented whereas those involved in transport and 

metabolism were poorly represented. Likewise, in a study of plasma membranes from maize 

roots, Kukavica et al. (2005) reported the presence of a Mn-containing SOD that has the thermal 

stability characteristic of a GLP. Recently, in a study of salt-stressed pea roots Gucciardo et al. 

(2007) also reported SOD activity in a protein with an electrophoretic mobility similar to that of 

the PsGER1 protein. Furthermore, in developing pea nodules, PsGER1 transcript was detected in 

expanding cells just proximal to the meristematic zone and to lesser extent in the epidermis. This 

is the first report of a GLP with SOD activity associated with nodules. Similarly, the presence of 
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GLPs was shown in proteomic studies of cassava roots (Sheffield et al., 2006) and root-pressure 

xylem exudate from cut stems of Brassica napus (Kehr et al., 2005).  

 

6.3. Floral Development 

Following earlier studies on Arabidopsis (Heintzen et al., 1994) and Sinapis alba 

(Heintzen et al., 1994) that showed a diurnal pattern of expression of various GLPs in leaves and 

flowers, a more recent study of maize reported that a ZmGLP1 transcript varied with a circadian 

rhythm (Fan et al., 2005). GLPs are also expressed at high levels in some specific reproductive 

tissue. For example, about 3% of the ESTs expressed in egg cells of maize encode germin-like 

(OxO) proteins (Yang et al., 2006). By contrast, only two of the 7,165 female gametophyte ESTs 

encoded GLPs. In another study of this subject, a reference map of the Arabidopsis mature 

pollen proteome was produced by using multiple protein extraction techniques followed by 2-DE 

and ESI-MS/MS. Among the 135 distinct proteins from a total of 179 protein spots, several were 

shown to be GLPs (Holmes-Davis et al., 2005; Noir et al., 2005). 

Carter and Thornburg (2000) and Naqvi (unpublished) have demonstrated that the sugar 

rich nectar synthesized by the nectary glands of the ornamental tobacco contains five proteins 

which make act in a coordinated defense system against infection of the nectar and nectary 

glands. Among the nectar proteome, a GLP with Mn-SOD activity is proposed to play an 

important role in generation of H2O2 which may serve as a major defense molecule. A large scale 

EST study of sunflower has also reported high expression of GLP in floral tissue (Fernández et 

al., 2003), and GLP8 (At3g05930) was shown to have a reduced level of expression in male 

sterile Brassica flowers (Lou et al., 2007). 
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6.4. Zygotic and Somatic Embryogenesis 

The most comprehensive study of zygotic embryos in this context is probably that 

conducted on Arabidopsis in which a total of 11,032 EST sequences obtained from isolated 

immature seeds were used as the initial dataset. A pilot study performed using EST virtual 

subtraction followed by microarray data analysis led to the identification of 49 immature seed-

specific genes (Becerra et al., 2006). Genes that reached the maximum level of expression 

between late torpedo and early walking-stick embryo stages included five genes: At5g09640, 

encoding a serine carboxypeptidase, At5g49190, encoding a sucrose synthase, At2g34700, 

encoding a proline rich glycoprotein, and two genes encoding GLPs (At3g04170 and 

At3g04190). 

There are more data concerning somatic embryos. For example, following initial studies 

that identified several GLPs in embryogenic cultures of Caribbean pine (Pinus caribaea Morelet 

var. honduriensis) (Domon et al., 1995), a full-length GLP expressed in both somatic and zygotic 

embryos was reported by Neutelings et al. (1998). Similar sequences have been found to be 

associated with somatic embryos of Monterey pine Pinus radiata, a suspension culture of potato 

and a cell culture of lupin (Wojtaszek et al., 1998). More recently, a small number of GLP genes 

were shown to have high mRNA transcript levels in embryogenic tissue and little or no 

expression in non embryogenic (roots, shoots and needles) or callus tissue (needle and fiber 

callus culture) of Pinus radiata (Bishop-Hurley et al., 2003) and other conifers (Mathieu et al., 

2006). Similar results were obtained by Lippert et al. (2005) with Picea glauca, and Çaliskan et 

al. (2004b) who described the presence of OxO expression in embryogenic wheat callus. 

Additionally, proteomic methods have been employed to assess quantitatively the 

expression levels of proteins across four stages of somatic embryo maturation in white spruce 
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(Picea glauca) (0, 7, 21 and 35 d post abscisic acid treatment) (Lippert et al., 2005). Forty-eight 

differentially expressed proteins, including one GLP, displayed a significant change in 

abundance as early as day 7 of embryo development. Similar methods have also been applied, 

and similar results obtained, in an analysis of somatic embryogenesis in Vitis vinifera, by 

comparing embryogenic and non embryogenic calluses of the Thompson seedless cultivar 

(Marsoni et al., 2008). Changes in GLP expression have also been reported in early cotyledon 

development in Arabidopsis embryos (Chitteti and Peng, 2007), and it has been shown that 

GLP1 is expressed in the embryo axis during germination and is expressed neither in cotyledons 

nor in mature vegetative tissues of Phaseolus vulgaris (Aubry et al., 2003). These results can be 

compared with similar data from wheat germination (Çaliskan and Cuming, 2000; Çaliskan et 

al., 2003, 2004a).  

Probably the most relevant and complete study of Arabidopsis cells in vitro is that 

conducted recently by Che et al. (2007). It is known that Arabidopsis shoots regenerate from root 

explants in tissue culture through a two-step process requiring preincubation on an auxin-rich 

callus induction medium (CIM) followed by incubation on a cytokinin-rich shoot induction 

medium (SIM). During CIM preincubation, root explants acquire competence to respond to shoot 

induction signals whereas pericycle cells in root explants undergo cell divisions and 

dedifferentiate and lose the expression of a pericycle cell-specific marker. These cells acquire 

competence to form green callus only after one day CIM preincubation and to form shoots after 

2–3 days CIM preincubation. Genes requiring CIM preincubation for upregulation on SIM were 

identified by microarray analysis and included the GLP At3g10080. It can be assumed that the 

type of global modelling described by (Zeng et al., 2007) will be able to define the interaction 

between GLPs and other genes that regulate this developmental pathway. 
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6.5. Seed and Fruit Development. 

Three subtracted cDNA libraries were prepared from the lemma/palea of barley at the 

elongation stage (between pollination and milky stages) through to the dough stages of kernel 

development (Abebe et al., 2004). Differential screening and northern hybridization showed that 

the cloned genes were highly expressed in the lemma/palea, compared with the flag leaf. High 

expression levels of defence-related genes, including GLPs, strongly suggested that the 

lemma/palea constitutively accumulate defensive molecules to inhibit invasion of florets and 

kernels by pathogens (see above). 

In cotton (Gossypium hirsutum L.) a GLP (GhGLP1) shows tissue-specific accumulation 

in fibres (Kim and Triplett, 2004; Kim et al., 2004; Tu et al., 2007; Wu et al., 2007). The 

germins and GLPs with OxO and SOD activities both produce hydrogen peroxide (H2O2), which 

could be used in cross-linking reactions within the cell wall. The association of maximal 

GhGLP1 expression with stages of maximal cotton fibre elongation indicates that some GLPs 

may be important for cell wall expansion (Kim et al., 2004). 

A detailed analysis of gene expression during the development of grape berries was 

recently conducted by Grimplet et al. (2007) who validated the expression profiles obtained 

using the Affymetrix GeneChip® Vitis oligonucleotide microarray by quantitative RT-PCR on 

19 genes using gene specific primer pairs. Transcript abundance patterns were compared among 

tissues including two genes for which comparisons were confirmed between pulp and skin or 

pulp and seed tissues from berries harvested from well-watered and water-deficit stressed vines. 

Although linear regression analysis showed coefficients of variation of 0.93 or 0.94, significant 

differences were observed for several of these genes depending on the tissue examined. For 
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example, the transcript abundance in the seed for the GLP (TC45186) and 9-cis-epoxycarotenoid 

dioxygenase (NCED) (TC42536) were disproportionately higher when estimated by microarray. 

In a similar study on fruit of Citrus sinensis, a putative GLP was found to be the most 

abundant metabolism-related transcript from the whole flavedo databank with 339 reads (0.7% 

transcripts) sequenced from that tissue (Berger et al., 2007). A similarly comprehensive 

transcriptome analysis using a citrus 22K oligoarray was performed to identify ethylene-

responsive genes and gain an understanding of the transcriptional regulation by ethylene in 

mandarin fruit (Citrus unshiu Marc.). In the 72 h after ethylene treatment, 1493 genes, including 

a GLP, were identified as ethylene-responsive with more than 3-fold change in expression (Fujii 

et al., 2007). Related results have also been reported with fruit of Citrus sinensis (Goudeau et al., 

2008). 

 

6.6. Lignification and Wood Development 

To gain insights into the metabolic, developmental, and regulatory events that control 

vascular and interfascicular fibre differentiation along the axis of bolting stems in Arabidopsis, 

Ehlting et al. (2005) employed an Arabidopsis full-genome longmer microarray. More than 5000 

genes were differentially expressed, among which more than 3000 changed more than twofold, 

and were placed into eight expression clusters based on polynomial regression models. Analysis 

of differentially expressed phenylpropanoid genes identified a set known to be involved in lignin 

biosynthesis. These were used to anchor co-expression analyses that allowed the identification of 

candidate genes encoding proteins involved in monolignol transport and monolignol 

dehydrogenation and polymerization. Three GLP genes were identified by this process. 
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Wissel et al., (2003) measured the mRNA levels of 11 different genes including a GLP 

mRNA in leaves of free-growing aspen (Populus tremula) throughout the growing season (bud 

burst to leaf abscission) and reported that GLP mRNA was only expressed in the early season 

rather than the whole season like other genes tested. In a larger scale study, microarrays 

containing approximately 16,700 unique cDNAs were used to study transcript profiles that 

characterize the developmental transition in apical shoots of Sitka spruce (Picea sitchensis) from 

their vegetative tips to their woody bases (Friedmann et al., 2007). Along with genes involved in 

cell-wall modification and lignin biosynthesis, a number of differentially regulated genes 

encoding protein kinases and transcription factors with base-preferred expression patterns were 

identified. These could play roles in the formation of woody tissues inside the apical shoot, as 

well as in regulating other developmental transitions associated with organ maturation. It is 

interesting that a set of genes represented on the spruce cDNA microarray with similarity to 

these Arabidopsis genes is also up-regulated in the xylem-enriched tissue. These five spruce 

genes included one annotated as encoding a GLP. 

In order to elucidate the genetic regulation of secondary growth in hybrid aspen (Populus 

tremula L. x P. alba L.), an analysis was conducted on a series of cDNA-amplified fragment 

length polymorphism (AFLP)-based transcriptomes in vertical stem segments that represent a 

gradient of developmental stages with regard to secondary growth (Prassinos et al., 2005). This 

approach allowed the screening of >80% of the transcriptome expressed in six samples and the 

identification of genes differentially expressed with the progress of secondary growth, in a 

tissue-specific manner. By the analysis of 76,800 transcript-derived fragments, 271 were selected 

and sequenced based on their differential expression patterns. Many of the xylem-up-regulated 

genes were involved in cell wall and lignin biosynthesis, while the bark-up-regulated genes had 
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diverse functional roles. In the tissues forming secondary xylem a germin-like oxalate oxidase 

gene (Pt1037) was found to show high expression that coincided with that of at least one of the 

peroxidases. 

Similarly, the presence of GLPs was shown in a SAGE study of Eucalyptus grandis (De 

Carvalho et al., 2008) and a proteomic study of wood production in Pinus pinaster (Gion et al., 

2005). In a study of ESTs expressed during the drying process of Cryptomeria japonica 

sapwood, it was found that the second largest category of 58 sequences was annotated as being 

related to plant “defence” (Yoshida et al., 2007). This group, that represented 22 different 

transcripts, contained a large proportion (8 %) of ESTs assigned as GLPs.  

 

6.7. Senescence 

Changes in the activity of OxO and of the concentrations of oxalate and H2O2 were 

investigated during the ageing of leaf sheaths of ryegrass (Lolium perenne L.) stubble (Davoine 

et al., 2001). The accumulation of H2O2 during ageing coincides with the increases of both 

oxalate level and OxO activity. Western and Northern blot analyses using protein and RNA 

extracts of the different categories of leaf sheaths suggested that OxO gene expression, as well as 

Ca-oxalate synthesis, are crucial events of ageing for leaf sheaths. Immunocytochemistry 

experiments revealed that OxO, which is an extracellular enzyme, is nearly always present in the 

parenchymatous cells surrounding the vascular bundles and in the cells of the lower epidermis. 

Overall, results suggest that in ryegrass that synthesizes both Ca oxalate and OxO, the production 

of H2O2 and Ca
2+

 during ageing of stubble might be involved in the constitutive defences against 

pathogens, thus allowing the phloem mobilization of nutrient reserves from the leaf sheaths 
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towards elongating leaf bases of ryegrass. GLPs were also among the set of genes found to be 

expressed in a recent study of post-harvest deterioration in cassava (Reilly et al., 2007). 

One of the more comprehensive recent studies of leaf senescence in plants was that 

conducted on Arabidopsis (Masclaux-Daubresse et al., 2007). The extent to which leaf 

senescence is induced by nitrogen deficiency or by sugar accumulation varies between natural 

accessions of this species. Analysis of senescence in plants of the Bay-0 x Shahdara recombinant 

inbred line (RIL) population revealed a large variation in developmental senescence of the whole 

leaf rosette, which was in agreement with the extent to which glucose (Glc) induced senescence 

in the different lines. To determine the regulatory basis of genetic differences in the Glc 

response, the authors investigated changes in gene expression using Complete Arabidopsis 

Transcriptome MicroArray (CATMA) analysis. Genes whose regulation did not depend on the 

genetic background, as well as genes whose regulation was specific to individual RILs, were 

identified. In addition to sugar accumulation, nitrogen starvation can induce leaf senescence and 

regulation of senescence mainly depends on the relative availability of nitrogen and carbon. To 

test whether nitrogen deficiency can elicit similar effects as Glc feeding, the authors determined 

gene expression in plants grown with low (2 mM nitrate) or high (10 mM nitrate) nitrogen 

supply. Induction of the senescence marker SAG12 confirmed that senescence was induced by 

low nitrogen supply. The germin gene GER1, the Asn synthetase gene ASN2, and the Gln 

synthetase gene GS2, which were downregulated by Glc in the CATMA experiment, were 

repressed as plants senesced at low nitrogen supply. 

Another form of senescence is that associated with the formation of heart wood. This 

process, a determining factor in wood quality, is a form of senescence that is accompanied by a 

variety of metabolic alterations in ray parenchyma cells at the sapwood–heartwood transition 
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zone. Although senescence has been studied at the molecular level with respect to primary 

growth, the cell maturation and death events occurring during heartwood formation have been 

difficult to study because of their location and timing. In a transcriptomic study of this process, 

cDNA microarrays carrying 2567 unigenes derived from the bark/cambium region, sapwood and 

transition zone of a mature black locust tree were used to characterize seasonal changes in the 

expression patterns of 1873 genes from the transition zone of mature black locust trees (Yang et 

al., 2004). When samples collected in summer and fall were compared, 569 genes showed 

differential expression patterns: 293 genes were up-regulated (> twofold) in summer and 276 

genes were up-regulated in the autumn. More than 50% of the secondary and hormone 

metabolism-related genes on the microarrays were up-regulated in summer. Twenty-nine out of 

55 genes involved in signal transduction were differentially regulated, suggesting that the ray 

parenchyma cells located in the innermost part of the trunk wood react to seasonal changes. The 

authors also established the expression patterns of 349 novel genes, of which 154 were up-

regulated in summer and 195 were up-regulated in the autumn. Two GLPs (GenBank BI677524, 

BI642242) were among the list of genes whose expression was up-regulated more than twofold 

in transition zones harvested in summer. 

 

7. BIOTIC INTERACTIONS 

Plants suffering from stress, mechanical injury or pathogen attack often react with 

enhanced production of active oxygen species (AOS), a phenomenon often referred to as the 

“oxidative burst”. An important response of plants to salt stress is the accelerated production of 

AOS such as superoxide, hydrogen peroxide, and the hydroxyl radical, which constitutes 

oxidative stress (Bellaire et al., 2000; Hernández et al., 2001; Pastori and Foyer, 2002). SOD, 
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which catalyses the dismutation of superoxide to H2O2 and O2, is of major importance in 

protecting living cells from superoxide anion toxicity produced under oxidatively stressed 

circumstances. Various types of SODs are thought to have important roles in controlling 

oxidative stress in many organelles such as mitochondria, chloroplast and peroxisomes (Alscher 

et al., 2002, del Río et al., 2002). However, the occurrence and role of SOD in the cell wall are 

not well known (Alscher et al., 2002). Superoxide (i.e. the SOD substrate) can be generated from 

NADPH oxidase activity in the cell wall (Christensen et al., 2000). Although the superoxide and 

H2O2 themselves have relatively low toxicity, their metal ion-dependent conversion to the highly 

toxic hydroxyl radical via the Haber-Weiss reaction is thought to be responsible for the majority 

of biological damage associated with reactive oxygen species (Wojtaszek, 1997; Zhao et al., 

2007a). Since SOD rapidly dismutes superoxide to H2O2, the enzyme is thought to inhibit 

hydroxyl radical production and protect living cells from its toxicity. In plant cell walls, SOD 

could have a role in cell wall stiffening, through the possible action of dismutating H2O2 toward 

lignification (Christensen et al., 2000). In fact, extracellular SOD was reported to exist in lignin-

accumulated tissues (Karpinska et al., 2001). Yamazaki et al. (2004) identified nine novel 

thioredoxin target candidate proteins, including a GLP, in the cytosol together with several target 

proteins for chloroplast thioredoxin of the anti-oxidative stress system in dark grown Arabidopsis 

thaliana. 

Similarly, another GLP (HvGLP1) without OxO activity that becomes insolubilized in 

H2O2 treated leaves (Vallélian-Bindschedler et al., 1998), indicates the role of GLPs in plant 

defence. Both germin and HvGLP1 are tightly associated with the cell wall (Berna and Bernier, 

1997; Lane et al., 1992; Vallélian-Bindschedler et al., 1998) and may thus play a structural role 

in stressed leaves for cell wall reinforcement. Wheat germin was identified as functional OxO 
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(Berna and Bernier, 1997; Lane et al., 1993). OxO converts oxalate (COOH)2 into CO2 and H2O2 

and releases free Ca
++

 from Ca-oxalate. Therefore, germin (OxO) might be involved in defense 

reactions, the production of active oxygen species for cross-linking reactions (Bradley et al., 

1992; Otte and Barz, 1996) and stress-related cell signaling by enhancing extracellular Ca
++

 

levels (Bayles and Aist, 1987). Specific responses to a range of individual pathogens are 

summarised below. 

 

7.1. Viruses  

The first study implicating GLPs with response to viruses was that of Park et al. (2004) 

with the hot pepper plant (Capsicum annuum L. cv. Bugang), which exhibits an HR in response 

to infection by Tobacco mosaic virus pathotype P0 (TMV-P0). A full-length cDNA clone was 

isolated by differential screening of a cDNA library that was constructed with mRNA extracted 

from leaves during the resistance response to TMV-P0. The predicted amino acid sequence of the 

cDNA clone exhibited a high sequence similarity to a GLP, and was classified as belonging to a 

new family of PR proteins, „PR-16‟ (see also van Loon et al., 2006). More recently, Cristofani-

Yaly et al. (2007) constructed expressed sequence tag (EST) libraries with tissues collected from 

Poncirus trifoliata plants, inoculated or not with Citrus tristeza virus, and found a GLP among 

the genes upregulated at 90 d after inoculation (see also Gandía et al., 2007). Similar results have 

been reported for Capsicum chinense plants infected with pepper mild mottle virus (PMMoV) 

(Elvira et al., 2008) and pepper Huasteco yellow vein virus (PHYVV) (Gasca-González et al., 

2008). 

 Infection of Cucumber mosaic virus (CMV) and D satellite RNA (satRNA) in tomato 

plants induces rapid plant death, which has caused catastrophic crop losses. A long serial 
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analysis of gene expression (LongSAGE) investigation of control and virus-infected plants was 

conducted to identify the genes that may be involved in the development of this lethal tomato 

disease (Irian et al., 2007). The transcriptomes of mock-inoculated plants and plants infected 

with CMV, CMV/D satRNA, or CMV/Dm satRNA (a nonnecrogenic mutant of D satRNA with 

three mutated nucleotides) were compared, and the analysis revealed both general and specific 

changes in the tomato transcriptome including GLP genes after infection with these viruses. 

 

7.2. Bacteria 

In an extensive bioinformatic survey, Vargas et al. (2003) searched the sugarcane 

database for all expressed sequence tags (ESTs) preferentially or exclusively expressed in cDNA 

libraries constructed from sugarcane plants inoculated with the diazotrophic and plant hormone-

producing endophytic bacteria Gluconacetobacter diazotrophicus and Herbaspirillum 

rubrisubalbicans. It was found that various GLP homologues were exclusively or preferentially 

represented in the libraries from infected material. More recently, GLP expression was shown in 

Citrus sinensis (De Souza et al., 2007) and grape tissues (Lin et al., 2007) in response to 

infection with Xylella fastidiosa.   

Bacterial effector proteins secreted through the type III secretion system (TTSS) play a 

crucial role in causing plant and human diseases. Although the ability of type III effectors to 

trigger defense responses in resistant plants is well understood, the disease-promoting functions 

of type III effectors in susceptible plants are largely enigmatic. Previous microscopic studies 

suggest that in susceptible plants the TTSS of plant-pathogenic bacteria transports suppressors of 

a cell wall-based plant defense activated by the TTSS-defective hrp mutant bacteria. However, 

the identity of such suppressors has remained elusive. It is now known that the Pseudomonas 
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syringae TTSS down-regulate the expression of a set of Arabidopsis genes encoding putatively 

secreted cell wall and defense proteins in a salicylic acid-independent manner (Hauck et al., 

2003). The strong bias of TTSS-repressed genes toward those encoding secreted proteins can 

best be explained by suppression of extracellular plant defense. Indeed, it was found that the 

majority of TTSS-repressed genes are apparently associated with plant cell wall functions 

including hydroxyproline-rich proteins or extensins, which are known components of papillae; 

and at least four genes which share sequence similarities with genes encoding known 

extracellular defense-associated proteins:- a GLP, a nonspecific lipid transfer protein, and two 

acid phosphatases. In a related study of the same system, Mohr et al. (2007) have show that ABA 

induces susceptibility of Arabidopsis towards an avirulent strain of P. syringae pathovar (pv.) 

tomato via suppression of the accumulation of components crucial for a resistance response. 

Lignin and salicylic acid concentrations in leaves were increased during a resistant interaction 

but reduced when plants were treated with ABA. This reduction in lignin and salicylic acid 

production was independent of the development of the hypersensitive response (HR), indicating 

that in this host-pathogen system HR is not required for resistance. Genome-wide gene 

expression analysis using microarrays showed that treatment with ABA suppressed the 

expression of many defence-related genes, including those important for phenylpropanoid 

biosynthesis and those encoding resistance-related proteins such as oxalate oxidase. Together, 

these results show that resistance induction in Arabidopsis to an avirulent strain of P. syringae 

pv. tomato is regulated by ABA. Relevant recent information by Kűrkcűoglu et al. (2007) 

indicate that ESTs rapidly up-regulated after the application of a non-pathogenic bacterium 

Pseudomonas fluorescens Bk3 to Malus domestica include those encoding GLPs. 
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 Fire blight is caused by the Gram-negative bacterium, Erwinia amylovora. Hosts, which 

include apple, pear and other members of the Rosaceae, are most susceptible during blooming. 

Genes found in a sampling of 66 clones from an enriched E. amylovora-inoculated apple leaf 

cDNA pool included one GLP (Bonasera and Beer, 2002). Another study of bacterial 

pathogenesis utilized an indica rice cultivar IET8585 (Ajaya) resistant to diverse races of the 

Xanthomonas oryzae pv oryzae pathogen attack, and often cultivated as bacterial leaf blight (blb) 

resistant check in India. An analysis of the transcriptional profile of the blb infected resistant 

cultivar using a rice 22K oligo array revealed differential expression of numerous genes at both 

early (6 h) and late (120 h) stages of infection in the resistant IET8585 cultivar over the 

susceptible IR24 (Kottapalli et al., 2007). Some of the differential gene expressions were 

validated by both RT-PCR and western analysis. Genes encoding two harpin-induced 1 family 

proteins, a germin (AK059817), lipid transfer protein/par allergen, E-class P450, FAA hydrolase, 

t-snare, and NAM proteins were up-regulated, while the down-regulated genes included the 

GLP, AK060864. 

Evidence of a role for GLPs in the relationship between plants and microbes has also 

come from studies of nodulation in legumes, as well as from investigations of specific pathogen 

responses in cereals and other species. Effects seems to be exerted by production of extracellular 

reactive oxygen species which may either oxidize the infection apparatus, strengthen the cell 

wall or may perform both roles. However the association with nodule development is very 

interesting since both host and microbe seem to have evolved in such a way that neither microbe 

is killed nor it is prevented from the host. However, it is encapsulated in tough walled nodules. 

Following earlier studies, summarised in Dunwell et al. (2000), Gucciardo et al. (2007) recently 
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reported PsGER1 transcript in developing pea nodules, detected in expanding cells just proximal 

to the meristematic zone and to lesser extent in the epidermis. 

In the establishment of symbiosis between the legume Medicago truncatula and the 

nitrogen-fixing bacterium Sinorhizobium meliloti, the lipopolysaccharide (LPS) of the 

microsymbiont plays an important role as a signal molecule. It has been shown in cell cultures 

that the LPS is able to suppress an elicitor induced oxidative burst. To investigate the effect of S. 

meliloti LPS on defense associated gene expression, a microarray experiment was performed 

(Tellstrom et al., 2007). The results indicated that M. truncatula cell cultures do not respond 

strongly to the LPS of the symbiotic partner. In contrast, in suspension cells treated with 

invertase, 336 genes were identified to be at least 2-fold induced with a statistical significance of 

P ≤ 0.05, whereas 43 genes were identified to be repressed at least 2-fold. Furthermore, two 

GLPs were among the 20 genes most highly expressed in the elicited cell cultures compared with 

water controls. 

Similar methodology was applied in a study of the endophyte Azoarcus sp. strain BH72 

that expresses nitrogenase (nif) genes inside rice roots. A proteomic approach was used to dissect 

responses of rice roots toward bacterial colonization and also to jasmonic acid (JA) treatment 

(Miché et al., 2006). Proteins strongly induced in roots in both varieties by JA were identified as 

Bowman-Birk trypsin inhibitors, a GLP (Accession 5852087), a putative endo-1,3-beta-D-

glucosidase, a glutathione-S-transferase, a 1-propane-1-carboxylate oxidase synthase, peroxidase 

precursor, PR10-a, and a RAN protein previously not found to be JA induced. Data suggested 

that plant defense responses involving JA may contribute to restricting endophytic colonization 

in grasses. Remarkably, in a compatible interaction with endophytes, JA-inducible stress or 

defense responses were apparently not important. 
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7.3. Mycorrhizae 

The large majority of land plants are capable of undergoing a tight symbiosis with 

arbuscular mycorrhizal (AM) fungi. During this symbiosis, highly specialized new structures 

called arbuscules are formed within the host cells, indicating that during interaction with AM 

Glomalean fungi, plants express AM-specific genetic programmes. Despite increasing efforts, 

the number of genes known to be induced in the AM symbiosis is still low. Doll et al. (2003) 

characterized unique features of a cDNA sequence from M. truncatula (MtGLP1) and identified 

a putative orthologue in Lotus japonicus that suggested an important role of the gene product 

during AM symbiosis. This finding was confirmed by several similar studies (Wulf et al., 2003; 

Hohnjec et al., 2005; Kistner et al., 2005). 

In a similar attempt to identify novel AM-induced genes which have not been listed 

before, 5,646 ESTs were generated from two M. truncatula cDNA libraries: a random cDNA 

library (MtAmp) and a suppression subtractive hybridization (SSH) library (MtGim), the latter 

being designed to enhance the cloning of mycorrhiza-upregulated genes (Frenzel et al., 2005). In 

silico expression analysis was applied to identify those tentative consensus sequences (TCs) of 

The Institute for Genomic Research M. truncatula gene index (MtGI) that are composed 

exclusively of ESTs derived from the MtGim or MtAmp library, but not from any other cDNA 

library of the MtGI. This search revealed 115 MtAmp- or MTGim-specific TCs. For the majority 

of these TCs with sequence similarities to plant genes, the AM-specific expression was verified 

by quantitative reverse-transcription polymerase chain reaction. In this study, two GLPs were 

demonstrated to be upregulated in mycorrhizal roots. Together with the MtGLP described above, 

a total of three different AM-induced GLPs seem to be involved in AM symbiosis. 
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In a similarly comprehensive study, whole transcriptome analysis using a custom-

designed Affymetrix Gene-Chip and confirmation with real-time RT-PCR revealed 224 genes 

affected during arbuscular mycorrhizal symbiosis in rice (Güimil et al., 2005). It is noteworthy 

that three of the rice mycorrhiza responsive genes encode GLPs (OsAM4, OsAM9, OsAM85); all 

were strongly induced upon mycorrhizal colonization and cluster to a 6-kb region on 

chromosome 9. The first report of similar gene induction by a fluorescent pseudomonad and a 

mycorrhizal fungus in roots supports the hypothesis that some plant cell programmes may be 

shared during root colonization by these beneficial microorganisms (Sanchez et al., 2004). Less 

similarity existed in expression of the gene set with nodulation by S. meliloti. To determine 

common gene expression in root interactions with rhizobacteria, alterations in expression 

patterns in P. fluorescens-colonized roots were compared with S. meliloti nodulated roots by 

semiquantitative RT-PCR. Five patterns of differential gene regulation were observed for the 12 

plant genes upregulated in mycorrhiza. Expression of 12 plant genes activated in mycorrhizal 

roots of M. truncatula (Brechenmacher et al., 2004) was first compared by reverse Northern 

hybridization of corresponding ESTs using cDNA probes from M. truncatula roots inoculated or 

not inoculated with G. mosseae, P. fluorescens or S. meliloti. Activation of all 12 genes was 

confirmed in mycorrhizal roots. Genes corresponding to six of the ESTs, including a GLP, 

showed at least 2.5-fold greater expression in P. fluorescens-inoculated roots than in 

uninoculated roots. Expression was increased (P = 0.05) in both P. fluorescens and S. meliloti 

inoculated roots for genes encoding the putative wound-induced protein, nodulin 26-like 

aquaporin and glutathione-S transferase, while genes encoding a GLP, MtGmLs11, MtGmLs291 

and glutamine synthetase, which were activated in P. fluorescens-inoculated roots, were 

downregulated (P = 0.05) in nodulated roots. 
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7.4. Fungal Pathogens 

Germin and GLPs are well documented for their involvement in defense against a great 

diversity of fungal pathogens including powdery mildew, Blumeria (syn. Erisyphe) (see Dunwell 

et al., 2000 for summary) (Wei et al., 1998; Zimmermann et al., 2006). Furthermore, a related 

sequence has been isolated from barley, which shows papilla-mediated resistance to this disease 

(Wei et al., 1998). This particular transcript peaks at about 18 to 24 h after infection, specifically 

in the epidermal cells. Detailed analysis shows that this temporal and spatial pattern of 

expression closely follows the formation of papillae, which are produced as cell wall appositions 

below the primary wall and the appressorial germ tubes at the site of fungal penetration attempt 

and are thought to be composed of cross-linked proteins (Thordal-Christensen et al., 1997). Their 

presence is associated with the presence of hydrolytic enzymes (Takahashi et al., 1985) and is 

dependent on H2O2 production. Christensen et al. (2004) identified HvGLP4 as a functional 

SOD, and observed that HvGLP4 and TaGLP4 contribute to disease resistance in wheat and 

barley. Resistance and susceptibility in barley to the powdery mildew fungus (Blumeria graminis 

f. sp. hordei) is determined at the single-cell level. Even in genetically compatible interactions, 

infected plant epidermal cells defend themselves against attempted fungal penetration by 

localized responses leading to papilla deposition and reinforcement of their cell wall. This 

conveys a race-nonspecific form of resistance. However, this defense is not complete, and a 

proportion of penetration attempts succeed in infection. The resultant mixture of infected and 

uninfected leaf cells makes it impossible to relate powdery mildew-induced gene expression in 

whole leaves or even dissected epidermal tissues to resistance or susceptibility. A method for 

generating transcript profiles from individual barley epidermal cells has now been established 
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and proved to be useful for the analysis of resistant and successfully infected cells separately 

(Gjetting et al., 2004, 2007). Contents of single epidermal cells (resistant, infected, and 

unattacked controls) were collected, and after cDNA synthesis and PCR amplification, the 

resulting sample was hybridized to dot-blots spotted with genes, including some previously 

reported to be induced upon pathogen attack. Transcripts of several genes, (e.g., PR1a, encoding 

a pathogenesis related protein, and GLP4) accumulated specifically in resistant cells, while 

GRP94, encoding a molecular chaperone, accumulated in infected cells. Thus, the single-cell 

method allows discrimination of transcript profiles from resistant and infected cells. The method 

will be useful for microarray expression profiling for simultaneous analysis of many genes. In 

barley and wheat, the spatial and temporal expression pattern of GLP4, together with sequence 

similarity to the H2O2-generating oxalate oxidase (GLP1), led to speculation that this gene may 

have a role in producing the penetration associated H2O2 (Schweizer et al., 1999; Wei et al., 

1998). Additionally Zimmermann et al., (2006) have reported the role of HvGER5 to encode an 

extra-cellular SOD with antifungal activity against powdery mildew. The interaction between 

Arabidopsis and Golovinomyces cichoracearum (formerly Erysiphe cichoracearum) is an ideal 

system for exploring the compatibility between plants and obligate biotrophs. GLP (AtGER3 - 

At5g20630) was shown to one of the genes with reduced expressed during the early phase of 

inoculation with this organism (Fabro et al., 2008). Related information is available from studies 

involving the infection of grape berries with the important powdery mildew pathogen (Uncinula 

necator) (Ficke et al., 2002, 2004). Grape berries are highly susceptible to powdery mildew one 

week after bloom but acquire ontogenic resistance two to three weeks later. It was recently 

demonstrated that germinating conidia of U. necator cease development before penetration of the 

cuticle on older resistant berries. As part of this study it was concluded that a GLP (VvGLP3) 
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was expressed within 16 h of inoculation in resistant, but not in susceptible berries (Godfrey et 

al., 2007). 

A related study in wheat was that examining the effect of salicylic acid (SA) on OxO and 

peroxidase activities and hydrogen peroxide (H2O2) production in leaf cells of the susceptible 

cultivar Zhnitsa infected by Septoria nodorum, a pathogen of wheat leaf blotch (Troshina et al., 

2007). The results show that fungal hyphae spread into interstices between mesophyll cells and 

that infected tissues contain H2O2. Treatment with SA results in enhanced H2O2 production in 

mesophyll cells, which is due to activation of oxalate oxidase and peroxidase in the cell wall. 

The differentially virulent race T1 of common bunt (Tilletia tritici) was used to inoculate the 

wheat lines Neepawa (compatible) and its sib BW553 (incompatible) that are nearly isogenic for 

the Bt-10 resistance gene (Lu et al., 2005). Inoculated crown tissues were used to construct a 

suppression subtractive hybridization (SSH) cDNA library. Of the 1920 clones arrayed from the 

SSH cDNA library, approximately 10% were differentially regulated. A total of 168 

differentially up-regulated and 25 down-regulated genes were identified and sequenced; one 

GLP was amongst this latter group. 

The barley leaf stripe disease is caused by the seed-borne fungus Pyrenophora graminea. 

Haegi et al. (2008) investigated the reaction of barley embryos to this pathogen at a molecular 

and microscopic level. In the resistant genotype NIL3876-Rdg2a, fungal growth ceased at the 

scutellar node of the embryo, while in the susceptible near-isogenic line (NIL) Mirco-rdg2a 

fungal growth continued past the scutellar node and into the embryo. Also potentially related to 

cell-wall reinforcement is the production of reactive oxygen species. In this study, genes 

encoding H2O2- generating enzymes (germin F and OxO) were found to be induced in both 

resistant and susceptible barley genotypes but at a higher level in the resistant NIL. 
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To assess relative gene expression after pathogen attack, expressed sequence tag 

redundancy was compared between EST collections from susceptible Malva pusilla and 

Medicago truncatula inoculated with Colletotrichum gloeosporioides f. sp. malvae and C. 

trifolii, respectively, and resistant and susceptible Sorghum bicolor inoculated with C. 

graminicola (=C. sublineolum) (Goodwin et al., 2004). EST redundancies from the fungal-

inoculated S. bicolor and M. truncatula were also compared to healthy plants of the same 

species. Although most of the ESTs examined in this work had counterparts in the other 

Colletotrichum–plant interactions, there were also many that had very few or no matches 

between the EST collections. For example, ESTs for GTP-binding protein, auxin-binding protein 

19a and a GLP occurred with relatively high redundancy in the Ct-Medicago interaction but were 

either not observed or observed much less frequently in the other EST collections examined in 

this study. 

The necrotrophic fungal pathogen Fusarium pseudograminearum (F. 

pseudograminearum) causes crown rot disease (CR) in wheat. In a recent study using real-time 

quantitative PCR, the expression of 26 selected wheat genes was examined 1, 2 and 4 d after 

inoculation of wheat seedlings of the CR susceptible cultivar Kennedy and the partially field-

resistant cultivar Sunco (Desmond et al., 2006). Reproducible induction of eight defence genes 

including the GLP TaGLP2a was observed. Methyl jasmonate (MJ) treatment also induced these 

pathogen responsive defence genes in both cultivars while benzo(1,2,3)thiadiazole-7-

carbothionic acid S-methyl ester (BTH) treatment weakly induced them in Kennedy only. 

Similarly, treatment with MJ before inoculation significantly delayed the development of 

necrotic symptoms for 2 weeks in both wheat cultivars, while BTH pre-treatments delayed 

symptom development in Kennedy only. The chemically induced protection, therefore, 
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correlated with induction of the F. pseudograminearum-responsive genes. These results support 

the emerging role of jasmonate signalling in defence against necrotrophic fungal pathogens in 

monocots. A related study used the Chinese cultivar Ning 7840, one of a few wheat cultivars 

with resistance to the pathogen. GeneCalling™, an open-architecture mRNA-profiling 

technology, was used to identify differentially expressed genes induced or suppressed in spikes 

of Ning 7840 after infection by F. graminearum. One hundred and twenty-five cDNA fragments 

representing transcripts, including those from GLP genes, differentially expressed in wheat 

spikes were identified (Kong et al., 2007). Using the same system, it was shown that the 

Fusarium-associated mycotoxin deoxynivalenol (DON) also induced GLP expression (Boddu et 

al., 2006; Desmond et al., 2008). 

In a study of the rice blast pathogen (Magnaporthe grisea), a rice cDNA library was 

screened using OSK3 protein kinase as bait in a yeast two-hybrid system (Takano, 2004). The 

gene encoding germin OxO was one of the positive clones interacting with OSK3 protein kinase. 

The interactions were verified by detecting expression of the reporter gene lacZ. The results 

suggest that OxO is a downstream element in the disease resistance signal cascade mediated by 

OSK3 protein kinase in rice. An interesting study that demonstrates the complexity of transcript 

variation, including GLP genes, in response to rice blast infection is that published by Gowda et 

al. (2007). They exploited the power of SAGE technology (see above) and identified a high 

frequency of A-to-G and U-to-C nucleotide conversions in transcripts, as well as many antisense 

transcripts, in the M. grisea-infected plants. 

There are several additional instances of such a link between GLP expression and plant 

defence that suggest GLPs to be markers in the plant defence mechanism. A GLP was found to 

be expressed in microstems of chestnut (Castanea sativa) infected with chestnut blight fungus 
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(Cryphonectria parasitica) (Schafleitner and Wilhelm, 2002), and two GLPs were amongst 1057 

differentially expressed genes in Arabidopsis leaves infected with Peronospora parasitica 

(Mahalingam et al., 2003). 

 During the parasitic interaction between the model legume M. truncatula and the 

oomycete Aphanomyces euteiches, a plant protease inhibitor (PI)-encoding gene, MtTi2, was 

found to be induced. Sequence and database analyses showed that MtTi2 belongs to a group of at 

least four PIs, which are all specifically expressed upon pathogen infection or elicitor treatment. 

In order to investigate whether suppression of MtTi2 results in transcriptional changes, 

transcriptome profiles of MtTi2i roots and control roots were analyzed using an 8000 gene M. 

truncatula microarray (Nyamsuren et al., 2007). A cluster analysis of genes regulated in roots 

upon infection in two MtTi2i-lines or two vector lines revealed groups of genes showing 

different regulation in MtTi2i- and wild type roots. There were two GLPs among the list of genes 

down-regulated by A. euteiches infection in vector control and MtTi2i-silences roots. 

Two Brassica lines derived from an interspecific cross between Brassica napus and B. 

carinata were evaluated for tolerance to the fungal pathogen Alternaria brassicae (Sharma et al., 

2007). Pathogen-induced chlorosis and necrosis spread significantly in one line whereas it 

remained localized in the other. Proteome-level changes in response to the fungal pathogen were 

investigated using two-dimensional electrophoresis. The antioxidant enzymes identified in this 

study included a GLP in the Alternaria-tolerant line observed to be elevated at 12 h after 

infection. Interestingly, this study also identified a GLP whose intensity was reduced in the 

Alternaria-susceptible line 24 h following pathogen challenge. This suggests that the enhanced 

levels of specific GLPs may have a significant role in mediating the observed responses to the 

pathogen in these two lines. 



 39 

A recent study of Norway spruce seedlings inoculated with Rhizoctonia showed that after 

pathogen inoculation, there were significant and early increases in many root transcripts 

encoding defense-related proteins including GLPs (GLP1 and GLP2) (Jøhnk et al., 2005; Fossdal 

et al., 2007). The expression of these transcripts gradually increased in roots as a local response 

after inoculation, and reached a peak 96-192 h after treatment. In roots subjected to drought 

alone, increased levels of the same transcripts occurred later than in roots inoculated with 

Rhizoctonia, with peak values at 192 h after cessation of irrigation. In the treatment group with 

combined pathogen inoculation and drought stress, the same transcripts were elevated as in the 

other two stress groups, but the elevations were detected significantly earlier (48 h) and were 

maintained through the remaining experimental period. Related results on infection of spruce 

with the pathogenic fungus Heterobasidion annosum have been reported (Karlsson et al., 2007). 

In an interesting recent study on Moniliophthora perniciosa, the causal agent of witches‟ 

broom disease of Theobroma cacao, Ceita et al. (2007) examined active oxalate degradation and 

its possible source of origin in infected tissues. Degradation of calcium oxalate crystals is 

recognized to be due to germin OxO activity (G-OxO), and a corresponding T. cacao gene 

transcript was identified in a cDNA library produced from mRNA from infected tissue. The 

expression of this gene was analyzed by semi-quantitative RT-PCR using mRNA collected from 

meristems of infected stems, and showed significant expression in the diseased tissues. In a 

related study of this system, a total of 6884 ESTs were generated from libraries obtained from 

resistant and susceptible material (Gesteira et al., 2007). One GLP was identified as showing 

significant expression levels.  

Elicitors are molecules known to trigger plant defence responses against pathogens. A 

large-scale microarray analysis in Arabidopsis in response to treatment with the elicitor chitin 
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showed that genes encoding several stress proteins, a GLP and a leucine-rich repeat protein, are 

down-regulated from 10 min to 6 h after chitin treatment and are induced only at the 24 h time 

point (Ramonell et al., 2002). This is consistent with the model that these genes are late-acting, 

occurring at the end of signal transduction pathways. Another study of this type involved the first 

proteomic analysis of rice defense response induced by probenazole (PBZ), an agricultural 

chemical that has been widely used to protect rice plants from rice blast and the bacterial blight 

pathogen. Two-dimensional gel electrophoresis (2-DE) on extracts from seedlings identified a 

total of 40 protein spots including nine that were up-regulated by PBZ and 31 abundant protein 

spots that include a GLP (Lin et al., 2008). Additional data on this topic have been reported by 

Renard-Merlier et al. (2007). In a search for new sources of elicitors from marine algae, an 

extract was prepared from green algae, Ulva spp., and its elicitor activity was established on the 

model legume, M. truncatula (Cluzet et al., 2004). When infiltrated into plant tissues or sprayed 

onto the leaves, this extract induced the expression of the defence related marker gene PR10 

without provoking necrosis. Using a cDNA array enriched in genes potentially involved in plant 

defence, the expression of 152 genes was monitored after one or two consecutive treatments. A 

broad range of defence-related transcripts was found to be up-regulated, notably genes involved 

in the biosynthesis of phytoalexins, pathogenesis related proteins and cell wall proteins. One 

GLP was present in this list. 

Expression of defense-associated genes was analyzed in leaf tissues of near-isogenic 

resistant and susceptible barley cultivars upon infection by Rhynchosporium secalis (Steiner-

Lange et al., 2003). The genes encoding pathogenesis-related (PR) proteins PR-1, PR-5, and PR-

9 are specifically expressed in the mesophyll of resistant plants, whereas a GLP (OxOGLP) is 

synthesized in the epidermis irrespective of the resistance genotype. At least two additional 
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elicitors, therefore, must be postulated, one for the non-specific induction of OxOGLP and one 

for the resistance-specific induction of LoxA, pI2-4, and SD10. 

It is known that cell wall protein fractions (CWPs) of the biocontrol agent Pythium 

oligandrum have elicitor properties in sugar beet and wheat. Recently, the effect of treatment 

with the D-type of CWP, a fraction that contains two major forms (POD-1 and POD-2), on the 

induction of defence-related genes in sugar beet was examined (Takenaka et al., 2006). Using 

PCR-based cDNA library subtraction, the authors identified five genes that were highly 

expressed in response to CWP treatment. The five genes are probably of OxO-like germin 

(OxOLG), glutathione S-transferase (GST), 5-enol-pyruvylshikimate-phosphate synthase 

(EPSPS), phenylalanine ammonia-lyase (PAL) and aspartate aminotransferase (AAT). In 

addition, they purified and characterized POD-1 and POD-2 and found that POD-1 induced all 

five genes, whereas POD-2 induced only three of the genes excluding OxOLG and GST. 

A particularly interesting recent report concerns the possible role of microRNAs 

(miRNAs) in pathogenesis. These molecules are endogenous small RNAs that can have large-

scale regulatory effects on development and on stress responses in plants. The subject of the 

study was the endemic rust fungus Cronartium quercuum f. sp. fusiforme that causes fusiform 

rust disease in pines, resulting in the development of spindle-shaped galls (cankers) on branches 

or stems; this disease is the most destructive disease of pines in the southern USA. To test 

whether miRNAs play roles in fusiform rust gall development, 26 miRNAs were cloned and 

identified from stem xylem of loblolly pine (Pinus taeda). These 26 belonged to four conserved 

and seven loblolly pine-specific miRNA families. Forty-three targets, including a GLP (similar 

to At3g05930), were experimentally validated in vivo for nine of these 11 families and it is 

suggested that indeed these miRNAs may be implicated in disease progression (Lu et al., 2007). 
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Resistance in the host is often manifested by a hypersensitive response, which results in 

localized cell death at the site of infection, structural alterations, and production of a wide range 

of plant defense molecules such as antimicrobial proteins (Broekaert et al., 1997; Yun et al., 

1997; Grant and Mansfield, 1999). It has been suggested that the H2O2 produced by the OxO 

members of germin and GLP family may act as a messenger for the initiation of other defense 

related genes in the same cell or in neighboring cells and activate an effective defensive 

response. It is also relevant to note the tenacious association between wheat germin and the 

arabinose-rich hemicelluloses (arabinoxylans or arabinogalactans) of cereal walls (Jaikaran et al., 

1990). There is increasing evidence to support common links between the transduction pathways 

for the detection/assessment and response to biotic and abiotic stresses (see next section 8 below) 

and that active oxygen species are involved in the plant-environment interaction (Thordal-

Christensen et al., 1997; Wojtaszek, 1997). For example, it has been demonstrated by Dixon et 

al. (1991) that certain pathogenesis-related proteins accumulate within crystal idioblasts (cells 

that contain crystals of calcium oxalate and occur throughout the leaves of many plants), and 

supply of oxalate in these cells would provide a source of H2O2 depending on the levels of OxO. 

In general plant pathogenesis related (PR) proteins, PR-15 and -16 are typical of 

monocots and comprise families of germinlike OxOs and OxO-like proteins with SOD activity, 

respectively (Park et al., 2004; van Loon et al., 2006). These proteins generate hydrogen 

peroxide that can be toxic to different types of attackers or could directly or indirectly stimulate 

plant-defense responses (Quan et al., 2007). PR-15 and PR-16 are known to be widely expressed 

in a range of Citrus tissues (Campos et al., 2007). In an interesting, though relatively small scale 

evolutionary study, the genes encoding 13 classes of these PR proteins were examined for 

positive selection using maximum-likelihood (ML) models of codon substitution (Scherer et al., 
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2005). The study involved 194 sequences from 54 species belonging to 37 genera. Although the 

sizes of the sequences examined varied from 237 bp for PR12 to 1,110 bp for PR7, most classes 

(9 out of 13) contained sequences made up of more than 400 nucleotides. Signs of positive 

selection were obtained for sites in PR proteins 4, 6, 8, 9 and 15 (OxO) using an ML-based 

Bayesian method and likelihood ratio tests. These results confirm the importance of positive 

selection in proteins related to defense mechanisms already observed in a wide array of 

organisms. 

 

7.5. Insects 

Germins and GLPs are well known to function in pathogen resistance (previous section), 

but their involvement in defense against insect herbivores is more poorly understood. In the 

native tobacco Nicotiana attenuata, attack from the specialist herbivore Manduca sexta or 

elicitation by adding larval oral secretions (OS) to wounds up-regulates transcripts of a GLP 

(Hermsmeier et al., 2001). To understand the function of this gene, which occurs as a single 

copy, the full-length NaGLP was cloned and its expression silenced in N. attenuata by 

expressing a 250-bp fragment in an antisense orientation by transformation and by virus-induced 

gene silencing (VIGS) (Lou and Baldwin, 2006). Homozygous lines harboring a single insert and 

VIGS plants had significantly reduced constitutive (measured in roots) and elicited NaGLP 

transcript levels (in leaves). Silencing NaGLP improved M. sexta larval performance and 

Tupiocoris notatus preference, two native herbivores of N. attenuata. Silencing NaGLP also 

attenuated the OS-induced H2O2, diterpene glycosides, and trypsin proteinase inhibitor 

responses, which may explain the observed susceptibility of antisense or VIGS plants to 

herbivore attack. Silencing also increased nicotine contents, but did not influence the OS-elicited 
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jasmonate and salicylate bursts, or the release of the volatile organic compounds (limonene, cis-

alpha-bergamotene, and germacrene-A) that function as an indirect defense. This suggests that 

NaGLP is involved in H2O2 production and might also be related to ethylene production and/or 

perception, which in turn influences the defense responses of N. attenuata via H2O2 and 

ethylene-signaling pathways. In a similar study of gene expression in the same species of 

tobacco, increased expression of a GLP was observed in plants infested with Myzus nicotianae 

aphids (Voelckel et al., 2004). 

In a related analysis of genes induced by insect feeding, 108 cDNA clones representing 

genes related to plant responses to chewing insect-feeding, pathogen infection, wounding and 

other stresses were collected, and Northern blot and cDNA array analysis were employed to 

investigate gene expression regulated by the piercing-sucking insect, brown planthopper (BPH) 

Nilaparvata lugens (Homoptera: Dephacidae) on both the resistant and susceptible rice 

genotypes (Zhang et al., 2004). After BPH feeding in rice for 72 h, the expression of most tested 

genes was affected; 14 genes in resistant rice variety B5 and 44 genes in susceptible MH63 were 

significantly up- or down-regulated. Most of the well-regulated genes were grouped in the 

categories of signaling pathways, oxidative stress/apoptosis, wound-response, drought-inducible 

and pathogenesis-related proteins. Those related to the flavonoid pathway, aromatic metabolism 

and the octadecanoid pathway were mostly kept unchanged or down-regulated. The results 

indicated that BPH feeding induced plant responses which would take part in a jasmonic acid-

independent pathway and crosstalk with those related to abiotic stress, pathogen invasion and 

phytohormone signaling pathways. Expression of the one GLP (Accession number D40254) was 

not affected by BPH feeding. 

http://apps.isiknowledge.com/WoS/CIW.cgi?SID=N2jHFA7aekpG9GeP4em&Func=OneClickSearch&field=AU&val=Voelckel+C&ut=000223863000027&auloc=1&curr_doc=5/46&Form=FullRecordPage&doc=5/46
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As part of an approach to elucidate molecular interactions between plants and the Hessian 

fly, a cDNA library from near-isogenic lines infested by larvae of biotype L of this insect was 

constructed for expressed sequence tag (EST) analysis (Jang et al., 2003). Based on their 

putative identification, 730 ESTs that showed significant similarity with known coding 

sequences were divided into 13 functional categories. Defense- and stress-related genes 

represented about 16.1% of the total, including protease inhibition, oxidative burst, lignin 

synthesis, and phenylpropanoid metabolism. This list included three GLP sequences. It was 

suggested that these EST clones may provide valuable information related to the molecular 

interactions between plant and larva of the Hessian fly larval infestation. 

A whole-genome microarray was used to study the expression profile of Arabidopsis 

leaves after oviposition by two pierid butterflies (Little et al., 2007). For Pieris brassicae, the 

deposition of egg batches changed the expression of hundreds of genes over a period of 3 d after 

oviposition. The transcript signature was similar to that observed during a hypersensitive 

response or in lesion-mimic mutants, including the induction of defense and stress-related genes 

and the repression of genes involved in growth and photosynthesis. Deposition of single eggs by 

Pieris rapae caused a similar although much weaker transcriptional response. The overlap 

between oviposition- and herbivory-repressed genes (after feeding by P. rapae larvae) was even 

smaller. One of the 10 genes repressed by both treatments was a GLP (At5g20630). Only four 

genes were down-regulated 72 h after oviposition by P. rapae. However, three of these genes, 

including one GLP (At5g20630), were also down-regulated after oviposition by P. brassicae. 

An extension of this approach has recently been demonstrated in a microarray analysis of 

field-grown soybean (Glycine max), in which it was shown that the number of transcripts in the 

leaves affected by herbivory by Japanese beetles (Popillia japonica) was greater when plants 
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were grown under elevated CO2, elevated O3 and the combination of elevated CO2 plus elevated 

O3 than when grown in ambient atmosphere (Casteel et al., 2008). Interestingly, expression of a 

GLP sequence (Affymetrix IDGma.15727.1.S1_at) was reduced in response to insect damage. 

The response of roots to insect pests is an area of plant defense research for which less 

information is available. In one relevant study, Puthoff and Smigocki (2007) identified more than 

150 sugar beet root ESTs enriched for genes responding to sugar beet root maggot feeding from 

both moderately resistant F1016, and susceptible F1010, genotypes using suppressive subtractive 

hybridization. The largest number of identified F1016 genes grouped into the defense/stress 

response (28%) and secondary metabolism (10%) categories with a polyphenol oxidase gene, 

from F1016, identified most often from the subtractive libraries. A GLP gene was also amongst 

those most frequently observed. 

One study that approached plant-insect interactions from a novel perspective involved an 

examination of the stability of plant proteins in the insect gut. It was found that wound-inducible 

and jasmonate-inducible proteins comprised the largest group of tomato proteins in M. sexta 

frass (Chen et al., 2007). Among the proteins previously implicated in defense against 

lepidopteran insects was a GLP similar to a GLP isozyme from N. attenuata (Lou and Baldwin, 

2006). 

 

7.6. Nematodes 

The soybean cyst nematode (SCN) Heterodera glycines is the most devastating pest of 

soybean in the U.S.A. The resistance response elicited by SCN in soybean is complex, and genes 

involved in the response to a large extent are unknown and not well characterized. In a study of 

cDNA libraries made from mRNA extracted from roots of the resistant soybean Glycine max L. 
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Merr. „Peking‟ at 12 h, 2 to 4 d, and 6 to 8 d post inoculation with SCN, population NL1-RHp,  a 

total of 3454 cDNA clones were examined (Alkharouf et al., 2004). A GLP was among the list 

of genes representing at least 0.3% of the ESTs in the 6- to 8-d cDNA library. This list included 

many other stress-induced proteins. 

Related, but more precise, studies of the same material have recently been published 

(Klink et al., 2007a, 2007b). In this case, syncytial cells in soybean roots infected by 

incompatible and compatible populations of SCN were collected using laser capture 

microdissection and gene transcript abundance was assayed using Affymetrix® soybean 

GeneChips®, each containing 37,744 probe sets. By 8 d, several genes of unknown function and 

genes encoding a GLP, peroxidase, LOX, GAPDH, 3-deoxy-D-arabino-heptolosonate 7-

phosphate synthase, ATP synthase and a thioesterase were abundantly expressed. These 

observations suggest that gene expression is different in syncytial cells as compared to whole 

roots infected with nematodes. Very similar results with this system have been reported by Ithal 

et al. (2007a, 2007b) and it is also reported in Zhang et al. (2008) that germin is involved in the 

response to nematodes in sugar beet. 

 

7.7 Parasitic plants 

 A recent addition to the variety of biotic interactions relevant to this review is a study of 

Striga hermonthica, a root hemiparasite of cereals that causes devastating loss of yield. Recently, 

a rice cultivar, Nipponbare, was discovered, which exhibits post-attachment resistance to this 

parasite and quantitative trait loci (QTL) associated with the resistance were identified. Changes 

in gene expression in susceptible (IAC 165) and resistant (Nipponbare) rice cultivars were 

profiled using rice whole-genome microarrays, and in addition to a functional categorization of 
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changes in gene expression, genes that were significantly up-regulated within a resistance QTL 

were identified (Swarbrick et al., 2008). The resistance reaction was characterized by up-

regulation of defence genes, including pathogenesis-related proteins (including Os04g5272 GLP 

subfamily 1 member 11 precursor), pleiotropic drug resistance ABC transporters, genes involved 

in phenylpropanoid metabolism and WRKY transcription factors. It was suggested that these 

changes in gene expression resemble those associated with resistance to microbial pathogens (see 

above). 

 

8. ABIOTIC INTERACTIONS  

 The variety of studies that report the expression of GLPs in response to biotic stress is 

almost equal to that from biotic investigations, and some of these are summarised below. 

 

8.1. Salt 

The first evidence for induction of GLP expression by abiotic stress was provided by 

studies of salt stress in barley roots (Hurkman et al., 1991; Hurkman et al., 1994; Hurkman and 

Tanaka 1996). Previously, Ramagopal (1987) in barley and Naqvi et al., (1993) in rice observed 

induction of apparently similar GLPs during salt stress by two-dimensional electrophoresis. 

However, they did not characterize these proteins by sequencing. Similar results were reported in 

Mesembryanthemum crystallinum during the induction of Crassulacean acid metabolism during 

water and salt stress (Bohnert et al. 1988; Michalowski and Bohnert, 1992). In a more recent 

study of this species, a total of 9733 expressed sequence tags (ESTs) from cDNAs derived from 

leaf tissues of well-watered and salinity-stressed (0.5 M NaCl for 30 and 48 h) were 

characterized (Kore-eda et al., 2004). Clustering and assembly of these ESTs resulted in the 
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identification of a total of 3676 tentative unique gene sequences (1249 tentative consensus 

sequences and 2427 singleton ESTs) expressed in leaves under unstressed and salinity stressed 

conditions. Two „tentative clusters‟ encoding proteins homologous to GLPs were highly 

abundant in the 0 h cDNA library (0.47% and 0.4%), whereas only five such ESTs in total were 

present in the 30 h cDNA library and no such ESTs were found in the 48 h cDNA libraries. The 

model plant Arabidopsis has also been used in such studies. For example, in a proteomic 

analysis, it was shown that two GLPs, GLP9 (At4g14630) and OxO-like protein (At5g38940), 

increased in abundance in Arabidopsis roots subjected to NaCl treatment (Jiang et al., 2007). 

Similar results have also been reported from an investigation of the gene expression profile of 

third leaves of rice (cv. Nipponbare) seedlings subjected to salt stress (130 mM NaCl) (Kim et 

al., 2007). 

  The most comprehensive of these studies is that utilizing a promoter-glucuronidase 

(GUS) fusion (Berna and Bernier, 1997; 1999) and showing induction of the wheat germin 

promoter in transgenic tobacco treated with salt, heavy metals, aluminium and plant growth 

regulators, specifically auxin and gibberellin. The significance of GLP expression in stress 

conditions has also been discussed in a study of seedlings of two sugar beet varieties, in which 

three full-length GLP gene classes were recovered from stress-germinated seedlings of a superior 

emerging variety (De Los Reyes and McGrath, 2003). Expression of these genes, together with 

OxO enzyme activity and the H2O2 content of stressed seedlings, were induced by stress during 

germination conditions in this good emerging hybrid and were not induced in a variety that 

emerged poorly. It was postulated that a block in oxalate metabolism contributed to lower 

germination under stress in the low emerging variety. Selection for such stress induced GLP 

expression, or for down stream targets, presents the first direct target to enable breeding for 
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improved field emergence of sugar beet (De Los Reyes and McGrath, 2003; McGrath et al., 

2007). 

Tamarix androssowii is one of the most remarkable salt-tolerance woody plant species in 

China. To investigate the gene expression profile of this species in response to NaHCO3, a large 

scale EST analysis was conducted (Wang et al., 2006). This involved the construction a cDNA 

library from material treated with 0.4 mol/l NaHCO3 and the sequencing of more than 3000 

randomly selected clones. A total of 2455 high-quality ESTs were generated, 1268 (51.65%) of 

which showed significant similarity to the sequences in the NCBI Nr database. Nearly 400 ESTs 

were found to be involved in salt-tolerance; among them, a metallothionein-like protein and a 

GLP were the most abundant transcripts, and accounted for 2.44 and 1.91% of total ESTs, 

respectively. The same type of approach has been taken in a study of a mangrove plant, Acanthus 

ebracteatus Vahl. By using a bacterial functional assay, this study identified and isolated 107 

salinity tolerant candidate genes, including a GLP, (Nguyen et al., 2007). Similarly, an EST 

study of Aeluropus littoralis (Gouan) Parl., a C4 perennial halophyte monocotyledonous plant, 

identified GLP transcripts (Zouari et al., 2007). A larger scale transcriptome analysis in grape 

has been reported by Cramer et al. (2007) who also found GLP sequences among those genes 

affected by salt (and cold).   

Rice yield is most sensitive to salinity stress imposed during the panicle initiation (PI) 

stage. A recent study focused on physiological and transcriptional responses of four rice 

genotypes exposed to salinity stress during PI (Walia et al., 2007). The genotypes selected 

included two indica (IR63731 and IR29) and two japonica (Agami and M103) rice subspecies 

with contrasting salt tolerance. In an effort to search for transcripts which may be associated with 

salt tolerance of Agami, the authors identified 12 probe sets which were induced in Agami but 
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not in M103. Two of these probe sets (Os.11975.2.A1_at and OsAffx.25546.1.S1_s_at) were 

induced in Agami but down-regulated in M103. Whereas probe set Os.11975.2.A1_at had no 

sequence match to known genes, probe set OsAffx.25546.1.S1_s_at represented a GLP gene 

(GPL4), Os03g44880. 

Although barley and rice belong to the same family Poaceae, they differ in their ability to 

tolerate salt stress. In an attempt to understand the molecular bases of such differences, Ueda et 

al. (2006) compared changes in transcriptome between barley and rice in response to salt stress 

using barley cDNA microarrays. Among significantly responsive genes under salt stress only ten, 

including OxO (AU252397), were commonly observed in both species. Similarly, Affymetrix 

GeneChip1 Wheat Arrays were used to identify differentially expressed genes in roots and leaves 

of five salt-tolerant wheat lines under salt stress at electrical conductivity of 30 dS/m (Mott and 

Wang, 2007). Probe sets showing the same pattern of changes in expression level due to salt 

treatments in all five tested lines included the GLP sequences Ta.24453 and TaAffx.53596. 

In a related study Dani et al. (2005) used Nicotiana tabacum plants as a model to 

investigate changes in the soluble apoplast composition induced in response to salt stress. 

Apoplastic fluid was extracted using a vacuum infiltration procedure from leaves of control 

plants and plants exposed to salt stress. Two-dimension electrophoretic analyses and mass 

spectrometry revealed the identity of 20 polypeptides whose abundance changed in response to 

salt stress. While the levels of some proteins were reduced by salt-treatment, an enhanced 

accumulation of protein species known to be induced by biotic and abiotic stresses was observed. 

In particular, two chitinases and a GLP increased significantly. Similarly, expression of a germin 

protein was shown to be altered in tomato seedlings in response to salt stress (Amini et al., 

2007). 
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In addition to the physiological studies of OxO and GLP expression in vivo, one study 

has reported the effect of NaCl on the activity of the enzyme in vitro (Singh et al., 2006). The 

effect of NaCl stress on molecular and biochemical properties of OxO was studied in the 

seedling leaves of a grain sorghum hybrid. There was no effect on molecular weight and number 

of subunits of the enzyme but it did show some important changes in its kinetic parameters such 

as Km for oxalate and V-max. Optimum pH (5.8), activation energy (5.08 kcal mole
-1

), time of 

incubation (6 min) and Km for oxalate (1.21x10
-4

M) were increased, while V-max (0.18 mmole 

min
-1

) decreased and no change in optimum temperature was observed. This showed that 

substrate affinity and maximum activity of the enzyme were adversely affected. The specific 

activity of OxO was also increased in seedlings grown in a NaCl containing medium compared 

to normal, which reveals the increased de novo synthesis of the enzyme to sustain oxalate 

degradation. 

 

8.2. Water Stress 

In a study of gene expression in response to water stress in Arabidopsis, two GLPs were 

among the group of genes down-regulated in all three experimental conditions (Bray, 2004). 

More detailed results were achieved from Lupinus albus plants, which can withstand severe 

drought stress and show signs of recovery 24 h after rewatering (RW). Two-dimensional gel 

electrophoresis was used to evaluate the effect of water deficit (WD) on the protein composition 

of the two components of the lupin stem (stele and cortex) (Pinheiro et al., 2005). This was 

performed at three distinct stress levels: an early stage, a severe WD, and early recovery. Protein 

characterisation was performed through mass spectrometric partial sequencing. One GLP 

(gi1171937) was found to be present in stressed plants 13 d after watering. Investigations on 
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other crops including grapevine, (Hausmann et al., 2003), rice (Wang et al., 2007b), Phaseolus 

vulgaris (Kavar et al., 2008) and cassava (Lokko et al., 2007) gave similar results. 

To gain a comprehensive understanding of how cell wall protein (CWP) composition 

changes in association with the differential growth responses to water deficit in different regions 

of the elongation zone of maize roots, a proteomics approach was used to examine water soluble 

and loosely ionically bound cell wall CWPs (Zhu et al., 2007). The results revealed major and 

predominantly region-specific changes in protein profiles between well-watered and water-

stressed roots. In total, 152 water deficit-responsive proteins were identified and categorized into 

five groups based on their potential function in the cell wall: reactive oxygen species (ROS) 

metabolism, defense and detoxification, hydrolases, carbohydrate metabolism, and 

other/unknown. A large number of the proteins for which water stress-induced changes in 

abundance are known to be localized in cell walls; these include two putative OxOs and two 

probable GLP4s. In a similar proteomic study, the xylem sap of maize plants was screened using 

mass spectrometry to quantify the changes in new and previously identified sap constituents 

under extended drought (Alvarez et al. 2008). The authors detected and quantified the changes in 

the concentration of 31 compounds, including two GLPs present in sap under progressively 

increasing drought stress. 

Similarly, proteomic studies of Physcomitrella brachycyte formation identified specific 

changes in the extracellular protein spectrum, including GLPs, in response to the drought-

associated compound ABA (Cuming et al., 2007). 

 

8.3. Cold and Heat 
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The first relevant study of this subject was one designed to isolate and characterize ABA-

responsive cDNAs associated with ABA induced freezing tolerance in bromegrass cell cultures. 

A putative homolog (pBGA56) of the desiccation-related wheat germin gene (Lane et al., 1991) 

was shown to be expressed in this material (Lee and Chen, 1993). More recently, Lee and Lee 

(2003) characterized the global gene expression patterns of Arabidopsis pollen using SAGE 

methods. The expression patterns of the cold-responsive transcripts identified by SAGE were 

confirmed by microarray analysis. Amongst the genes highly expressed in pollen, one was 

closely related to nectarin (At.30848) and among those repressed by cold was another GLP 

(At.23312). 

In a related study of the effect of cold on anther development in rice, a cDNA microarray 

containing 8,987 rice ESTs was utilized (Yamaguchi et al., 2004). 160 of these ESTs were up- or 

down- regulated by chilling (12°C for 120 h). One GLP (AU174256) was among the ESTs 

significantly up-regulated by the treatment applied. In contrast, Cheng et al. (2007) in a 

transcriptome analysis in chilling tolerant japonica rice identified a subset of 121 'early response' 

genes that were upregulated in seedlings during the initial 24 h at 10°C. These genes did not 

include the rice GLP Os08g08970. However, cold stress has been shown to induce increased 

expression of a germin (related to At1g18980) in roots of Rangpur lime (Citrus limonia) 

(Boscariol-Camargo et al., 2007). 

In one of the few studies devoted to effects of heat, a microarray analysis was conducted 

using the 22K Barley1 GeneChip to monitor transcriptional alterations during high-temperature 

injury in barley (Oshino et al., 2007). Expression profiles were captured at four time points 

during the early development of panicles, and during vegetative growth of seedlings as a control, 

with or without high-temperature treatment. Abiotic or biotic stress related genes, including 
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GLPs, were equally or more dominantly up-regulated in the seedlings exposed to high 

temperatures compared with the panicles. 

 

8.4. Metals 

In order to characterise the possible mechanisms involved in aluminium (Al) toxicity 

functional characteristics were analysed in young barley (Hordeum vulgare L.) seedlings 

cultivated between moistened filter paper. The time course analysis of OxO gene expression and 

OxO activity showed that 10 mM Al increased OxO activity as soon as 3 h after exposure of 

roots to Al reaching its maximum at about 18 h after Al application. These results indicate that 

expression of OxO is activated very early after exposure of barley to Al, suggesting its role in 

oxidative stress and subsequent cell death caused by Al toxicity in plants (Tamás et al., 2004). 

The function of root border cells (RBC) during aluminum (Al) stress and the involvement of 

OxO, peroxidase and H2O2 generation in Al toxicity were studied in barley roots. The results 

suggested that RBC effectively protect the barley root tip from Al relative to the situation in 

roots cultivated in hydroponics where RBC are not sustained in the area surrounding the root tip. 

The removal of RBC from Al-treated roots increased root growth inhibition, Al and Evans blue 

uptake, inhibition of RBC production, the level of dead RBC, peroxidase and OxO activity and 

the production of H2O2. Results suggested that even though RBC actively produce active oxygen 

species during Al stress, their role in the protection of root tips against Al toxicity is to chelate Al 

in their dead cell body (Tamás et al., 2005). 

In another investigation of this subject, wheat (T. aestivum cv. Kalyansona) seedlings 

were exposed to 0, 10, 50, and 100 µM Al in a 250 µM CaCl2 solution for 24 h at pH 4.5 

(Hossain et al., 2005). Root elongation decreased gradually, while the Al content markedly 



 56 

increased with increasing supply of Al in the solution. The generation of H2O2 during Al stress 

was investigated biochemically and histochemically, together with other events related to the 

decomposition of H2O2. After 24 h treatment, root elongation inhibition was detected at all the 

concentrations of Al. The level of lipid peroxidation at 10 µM Al after 24 h treatment was 

similar to that of the control, while a significant increase in lipid peroxidation was detected at 50 

and 100 µM Al. H2O2 generation was higher at 50 and 100 µM Al than that at 10 µM Al. These 

results suggest that Al-inducible lipid peroxidation may require excessive yield of H2O2. A time 

course experiment with 10 µM Al indicated that there is a strongly positive correlation between 

root elongation inhibition and cellular H2O2 yield. There were no significant changes in the 

activities of catalase (CAT) and ascorbate peroxidase (APX) in roots at 10 µM Al after 24 h 

treatment. However, a significant decrease in the activities of CAT and APX and a large increase 

in the activities of oxalate oxidase (OxO), guaiacol peroxidase (GPX), and coniferyl alcohol 

peroxidase (CA-POX) as well as lignin deposition were observed at 100 µM Al. These results 

suggest the possible involvement of OxO in the production of a large amount of H2O2 under 

severe Al stress, whereas GPX and CA-POX may be involved in the degradation of H2O2 and the 

subsequent deposition of lignin. The potential value of OxO has also been promoted in studies of 

aluminium tolerance in alfalfa (Narasimhamoorthy et al., 2007). 

Similar results from studies of barley roots (Šimonovičová et al., 2005), maize roots 

(Maron et al., 2008), and rice leaves (Hsu and Kao, 2007) in response to cadmium (Cd) exposure 

have also been reported. In the former study, activity of OxO in several fractions of barley root 

tips was observed after 48 and 72 h of Cd-treatment. No OxO activation was detected in the 

extracellular fraction, whereas a minor increase in OxO activity was detected in soluble as well 

as in all five cell wall fractions after 48 h, and it was more pronounced and concentration-
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dependent after 72 h of Cd treatment. A significant correlation between the enhanced OxO 

activity and root growth inhibition was evident after 72 h, which was accompanied also by an 

increase in Evans blue uptake indicating the loss of plasmalemma integrity and cell death. It was 

suggested that the OxO-catalysed H2O2 production might contribute to cell wall strengthening 

resulting in root growth inhibition but also to the induction of oxidative stress leading to cell 

death. A related study examined the transcript profiles of roots of Arabidopsis and Thlaspi 

caerulescens plants exposed to Cd and zinc (Zn), with the main aim being to determine the 

differences in gene expression between the Cd-tolerant Zn-hyperaccumulator T. caerulescens 

and the Cd-sensitive non-accumulator Arabidopsis (Van de Mortel et al., 2008). In total, 48 

genes in five major clusters responded to both Zn and Cd in Arabidopsis when comparing Zn 

deficiency, Zn sufficiency, Zn excess and Cd exposure. One cluster contained five genes that 

were more highly expressed under Zn deficiency, Zn excess and Cd exposure: these genes 

encode two GLPs, the transcription factor WRKY59 and a protein kinase. A study of iron 

homeostasis in Arabidopsis found that among the 50 genes increasing their expression in roots at 

least 2X under Fe deficient conditions was the GLP At1g09560 (Maurer, 2006). 

Contrasting results were obtained with the Arabidopsis mutant ars4, which contains a 

single T-DNA insertion, which co-segregates with arsenic tolerance and is inserted in the 

Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA (Sung et al., 2007). 

The GLP5 (At1g09560) gene, located slightly more than 5 kb from the tag, was also studied. The 

expression levels of the GLP5 and At1g09575 mRNA in ars4ars5 were examined using RT-

PCR. GLP5 mRNA showed a small increase in mRNA levels in the mutant (1.32- and 1.17-fold 

in two experiments), but this apparent change is unlikely to account for the strong arsenic 
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tolerance of the double ars4ars5 mutant, and the ars4 and ars5 single mutants showed a 

recessive arsenic tolerance, suggesting that they are not gain-of function mutants. 

   

8.5. Nutrients 

Recently, the power of large scale transcript profiling techniques has been widely 

exploited to study the effects of various abiotic stress and variations in nutritional conditions. In 

addition to sugar accumulation, nitrogen starvation can induce leaf senescence (see above) and 

regulation of senescence mainly depends on the relative availability of nitrogen and carbon. To 

test whether nitrogen deficiency can elicit similar effects as glucose feeding, gene expression 

was determined in plants grown with low (2 mM nitrate) or high (10 mM nitrate) nitrogen supply 

(Masclaux-Daubresse et al., 2007). Induction of a senescence marker SAG12 confirmed that 

senescence was induced by low nitrogen supply. The germin gene GER1, one of the three genes 

which were down-regulated by glucose in the Complete Arabidopsis Transcriptome MicroArray 

experiment, was also repressed as plants senesced at low nitrogen supply. 

Another large study on Arabidopsis utilized microarrays comprising 21,500 genes 

(Müller et al., 2007) and examined gene expression in leaf segments
 
derived from phosphorus 

(P)-starved and P-replenished plants incubated with or without sucrose in order to obtain tissues
 

with contrasting combinations of P and carbohydrate levels. Among the 40 most up-regulated 

genes in response to P starvation were two GLPs (At5g39130, At5g39160). 

Full genome microarrays were used to assess transcriptional responses of Arabidopsis 

seedlings to changing external supply of the essential macronutrient potassium (K
+
) (Armengaud 

et al., 2004). Rank product statistics and iterative group analysis were employed to identify 

differentially regulated genes and statistically significant coregulated sets of functionally related 
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genes. One analysis demonstrated a strong up-regulation of some genes in roots and/or in shoots 

after K
+
 resupply with weak or non detectable change during long-term starvation. Transcripts 

presenting this profile included two GLPs (At1g72610, At5g20630). 

Methylamine, an ammonia analogue, has been used to investigate ammonia uptake 

(Shiraishi et al., 2002). This compound competes with ammonia to be taken up by plants and 

also inhibits the nitrate assimilation pathway. In a study of the effect of MA on rice plants it was 

shown that MA-treated plants had increased aerial growth and reduced root growth. Expression 

of one GLP was reduced in MA-treated shoots. 

 

8.6. Other Physical Stresses 

There are a range of other stresses that have been investigated in studies relevant to this 

review. In one of these studies, transcript profiling identified upregulation of an OxO type 

germin in response to hypoxia in wheat roots (Lee et al., 2007). A more unusual type of stress, 

namely the effect of altered gravitational forces, was the subject of a study by Centis-Aubay et 

al. (2003). These authors compared the expression patterns of selected genes from Arabidopsis 

thaliana (L.) Heynh. grown either at 1 g or on a clinostat (horizontally or vertically inverted, 1 

rpm), and either used directly or after hypergravity stimulation. They showed that one class of 

genes comprised those whose expression was either apparently unchanged (actin) or significantly 

modified in response to hypergravity (GLP, pectin methylesterase, extensin, and auxin-repressed 

dormancy associated protein). They were sensitive or insensitive to clinostat treatment but, in 

contrast to other classes of genes, they became unresponsive to a subsequent centrifugation at 5x 

g. 

In another study of the effects of exposure to stress, oligonucleotide microarray 

technology was used to identify genes that respond after exposure to UV-C radiation and to other 
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agents causing genotoxic stress (Molinier et al., 2005). The effect of these conditions on 

recombinational DNA repair was monitored in parallel. Global changes in gene expression were 

investigated in Arabidopsis wild-type plants challenged with UV-C, bleomycin, another abiotic 

agent and xylanase (a biotic factor); all lead to elevated homologous recombination frequencies. 

The comparison of the expression profile of each treatment allowed the identification of genes 

specifically involved in the dynamic response to UV. The expression profile of plants treated 

with xylanase was expected to reveal changes in genes involved in induction of pathogen defense 

response, and indeed, genes involved in signaling and regulatory pathways, such as receptor like 

kinases, non-receptor protein kinases, protein phosphatases, calcium binding proteins and 

transcription factors were found to be transiently up-regulated in the first 2 h following the 

treatment. In parallel, genes encoding proteins involved in the generation of reactive oxygen 

species, such as OxO (H2O2 production), respiratory burst oxidase protein C (O2
− 

production), 

peroxidases (H2O2, O2
−
) or enzymes involved in ROS scavenging, such as superoxide dismutase 

(SOD) were rapidly up-regulated. 

 

8.7. Integration of Stress Responses 

When stress causes protein folding in the endoplasmic reticulum (ER) to be slowed, the 

temporary presence of an abundance of unfolded proteins in the ER triggers the unfolded protein 

response (UPR). This response results in the first instance in the enhanced expression of those 

genes known to encode proteins that create the optimal polypeptide-folding environment, such as 

protein disulfide isomerase (PDI), calreticulin, calnexin, and binding protein (BiP). A detailed 

study of the breadth of the UPR in Arabidopsis has been conducted using gene expression 

analysis with Affymetrix GeneChips (Martínez and Chrispeels, 2003). With tunicamycin and 
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DTT as ER stress–inducing agents, the authors identified sets of UPR genes that were induced or 

repressed by both stresses. One GLP (At1g72610) was among the 31 genes repressed by both 

tunicamycin and DTT, and is therefore likely to be involved in the UPR response. 

One study of GLP expression has combined an investigation of abiotic and physical 

variables (Tabuchi et al., 2003). The cDNA clone encoding a putative GLP (designated as 

AlGLP, A. lentiformis GLP) was isolated from the halophyte Atriplex lentiformis (Torr.) Wats. It 

was found that AlGLP has SOD activity by in-gel assays after immunoprecipitation, and that it is 

a glycosylated oligomer in native form. The AlGLP was strongly expressed in calli and weakly 

in roots, but not in stems or leaves. Interestingly, the transcript level in roots was decreased by 

salt or abscisic acid (ABA) treatment. Evidence was also presented that the accumulation level of 

AlGLP mRNA in leaves is increased by methyl jasmonate treatment or wounding, and that the 

induction is suppressed by ABA treatment. These results suggest that AlGLP expression is 

increased to fulfil H2O2 supply to modify the structure of cell wall in response to wounding. 

Abscisic acid (ABA) is a hormone that modulates a variety of agronomically important 

growth and developmental processes and various stresses responses, but its signal transduction 

pathways remain poorly understood. ROP10, a member of ROP small GTPases in Arabidopsis, 

is a plasma membrane-associated protein specifically involved in negative regulation of ABA 

responses. To dissect the ROP10-mediated ABA signaling, transcriptome analysis was 

conducted with the Arabidopsis full-genome chip (Xin et al., 2005). The analysis revealed a total 

of 262 and 125 genes that were, respectively, up- and downregulated (≥2-fold cutoff) by 1 mM 

ABA in wild type (Wassilewskija [Ws]); 42 up-regulated and 38 down-regulated genes have not 

been identified in other studies. Among the ABA-repressed group were two GLPs (AT5G38930, 

AT5G38940). A similar approach involves jasmonates, a family of plant hormones that regulate 
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gene expression to modulate diverse developmental and defensive processes. To screen a set of 

jasmonate-responsive Arabidopsis genes expressed in the rosette leaves of 5-week-old 

Arabidopsis plants, a microarray analysis was performed using an Affymetrix GeneChip
®

 

containing about 8,300 gene probes including GLPs (Jung et al., 2007). 

An alternative approach to the investigation of global responses to abiotic stress has been 

described recently by Dinneny et al. (2008) who generated genome-wide expression maps of 

Arabidopsis roots exposed to either a high-salt medium (osmotic stress) or an iron-deficient 

medium (nutrient stress) at three organizational levels - intact roots, roots divided into four 

longitudinal zones as proxies for developmental time, and root cells segregated along the radial 

axis. Much larger numbers of regulated genes were found in the second and third of these sets 

relative to the first set, indicating a serious dilution of information when only intact roots are 

analyzed. A major finding from this comprehensive study was that cell identity determines the 

gene pool that is regulated during stress, as reflected by the high degree of cell specificity in 

functional gene categories. The significance in the context of this review is that the expression of 

20 GLPs was examined and differences were found in their relative responses to the stress 

imposed. 

All responses to the environment, whether it be biotic or abiotic stress, must be mediated 

through cell signalling pathways. Arabinogalactan proteins (AGPs) are hydroxyproline-rich 

glycoproteins
 
present at the plasma membrane and in extracellular spaces.

 
A synthetic chemical, 

β-glucosyl Yariv reagent (β-GlcY),
 
binds specifically to AGPs. A recent study examined the 

universality
 
and specificity of the inhibitory effect of β-GlcY on gibberellin

 
signaling using 

microarray analysis and found that β-GlcY
 
was largely effective in repressing gibberellin-

induced gene
 
expression (Mashiguchi et al., 2008). In addition, >100 genes, including an OxO, 
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were up-regulated by
 
β-GlcY in a gibberellin-independent manner, and many of

 
these were 

categorized as defense-related genes. These results indicated that gibberellin signaling is under 

the
 
regulation of defense-related signaling in aleurone cells. It

 
is also probable that AGPs are 

involved in the perception of
 
stimuli causing defense responses. The specific patterns of response 

to nitric oxide, another important molecule in cell signaling, have been investigated recently in 

Medicago truncatula (Ferrarini et al., 2008). GLPs were included in this analysis.   

  

9. WOUND RESPONSES 

The plant wound response includes establishment of a diffusion barrier, repair of damage, 

stimulation of new growth and differentiation around the wound region, and induction of defense 

mechanisms against potential biological invaders. In a detailed study of the role of OxO in 

wounding in Lolium perenne two bursts of H2O2 production were detected after cutting the leaf 

blades (Le Deunff et al., 2004). The second burst, which was initiated several hours later, 

coincided with the induction of germin-like OxO (G-OxO) activity. This wound-dependent 

increase of activity was the result of differential induction of four g-OxO genes. Moreover, 

expression of these genes was enhanced by an exogenous supply of H2O2 or methyl jasmonate 

(MeJa). The pattern of their expression in planta was identical to that occurring in senescing leaf 

sheaths (Davoine et al., 2001). These results emphasize the importance of G-OxOs in H2O2 

production in oxalate-producing plant species such as ryegrass, and suggest that these enzymes 

might be crucial during critical events in the life of plants such as cutting and senescence by 

initiating H2O2-mediated defences against pathogens and foraging animals. 

The promoters of genes that are induced by wounding could be valuable in regulating the 

expression of beneficial genes. The promoter of a GLP gene has recently been shown, for the 
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first time, to be induced by wounding; the OsRGLP2 promoter was observed to have a strong 

and rapid wound inducible activity in transgenic tobacco (Naqvi, unpublished). To the best of 

our knowledge this is the first ever report of wound inducibility of a GLP promoter and thus 

indicates that GLPs may have some role to play at the site of injury. 

 

10. GENETICS AND PLANT BREEDING 

 The obvious functional connection between expression of GLPs and the response of 

plants to biotic and abiotic stress has grown rapidly over the last decade and there are now many 

examples of projects that attempt to combine genomic information on the GLP gene family with 

phenotype selection.   

 

10.1. Marker Assisted Breeding 

Candidate genes involved in both recognition (resistance gene analogs [RGAs]) and 

general plant defense (putative defense response [DR]) were used as molecular markers to test 

for association with resistance in rice to blast, bacterial blight (BB), sheath blight, and brown 

plant-hopper (BPH) (Ramalingam et al., 2003). The 118 marker loci were either PCR-based 

RGA markers or restriction fragment length polymorphism (RFLP) markers that included RGAs 

or putative DR genes from rice, barley, and maize. Two GLPs (Accessions Y14203, X93171) 

were included in the test list of 20 candidate genes. On chromosome3, qBB3-2, a short BB QTL 

region accounting for 10.3% phenotypic variation, is closely associated with OxO; a portion of 

the same chromosomal region is associated with a QTL defined by percent disease leaf area. 

However, when a permutation test was conducted to determine the appropriate threshold, the 

association of qBB3-2 with OxO was not significant. Nonetheless, in other mapping populations, 
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OxO is found to provide a high level of quantitative resistance to fungal pathogens of wheat 

(Faris et al. 1999) and rice (Bin and Leung, unpublished data). For example, OxO on 

chromosome 3 is associated with BB and blast resistance (Jie and Makoto, 2004). One DR gene, 

OxO (accession number Y14203) maps within a BB resistance locus. 

Although quantitative trait loci (QTL) underpin many desirable agronomic traits, their 

incorporation into crop plants through marker-assisted selection is limited by the low predictive 

value of markers on phenotypic performance. In one study relevant to the present review, 

candidate defense response (DR) genes were used to dissect quantitative resistance in rice using 

recombinant inbred (RI) and advanced backcross (BC) populations derived from a blast-resistant 

cultivar, Sanhuangzhan 2 (SHZ-2) (Liu et al., 2004). Based on DNA profiles of DR genes, RI 

lines were clustered into two groups corresponding to level of resistance. Five DR genes, 

encoding putative OxO, dehydrin, PR-1, chitinase, and 14-3-3 protein, accounted for 30.0, 23.0, 

15.8, 6.7, and 5.5% of diseased leaf area (DLA) variation, respectively. Together, they accounted 

for 60.3% of the DLA variation and co-localized with resistance QTL identified by interval 

mapping. Advanced BC lines with four or five of these effective DR genes showed improved 

resistance under high disease pressure in field tests. These and other similar results (Wu et al., 

2004; Leach et al., 2007; Manosalva, 2006; Raghavan et al., 2007) demonstrate that the use of 

natural variation in a few candidate genes, principally OxO, can solve a long-standing problem in 

rice production, and this approach has the potential to address other problems involving complex 

traits (Wisser et al., 2005) such as disease resistance in maize (Wang et al., 2007a), and drought 

tolerance in wheat (Kirigwi et al., 2007; Diab et al., 2008) and sunflower (Fusari et al., 2008). 

In another plant breeding project, Pivorienė et al. (2008) employed the Inter-simple 

Sequence Repeat (ISSR) marker system to improve the mapping data of perennial ryegrass. This 
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method allows the detection of polymorphisms in inter-microsatellite loci without previous 

knowledge of a DNA sequence. One of the ISSRs, a 780 bp fragment amplified with (TG)8RT, 

showed identity to the H. vulgare subsp. vulgare GLP gene 4c (GER4c) and to the germin A 

(GerA) gene present within 190 bp and 140 bp segments, respectively. Such Inter-SSR mapping 

will provide useful information for gene targeting, quantitative trait loci mapping and marker-

assisted selection in this crop, and in Citrus sinensis where similar results were reported 

(Shanker et al., 2007). 

 

10.2. TRANSGENIC APPROACHES 

An associated example of the use of GLP genes in combating biotic stress is that of 

introducing germin as a means of protecting transgenic plants against the toxic effects of oxalate 

secreting pathogens such as Sclerotinia (Sclerotinia sclerotiorum) (Chipps et al., 2005; Lu, 2003; 

Zhao et al., 2007b). In the first such example, expression of a barley OxO gene in oilseed rape 

provided resistance to oxalic acid (Thompson et al., 1995; Zou et al., 2007; Dong et al., 2008) 

and a similar strategy was shown subsequently to provide disease resistance in transgenic 

soybean (Donaldson et al., 2001; Cober et al., 2003), poplar (Liang et al., 2001; 2005), potato 

(Schneider et al., 2002), sunflower (Hu et al., 2003), peanut (Livingstone et al., 2005), tomato 

(Walz et al., 2007) and American chestnut (Polin et al., 2006; Merkle et al., 2007; Welch et al., 

2007). For a review of such methods, please see Gilbert et al. (2006). Less success was achieved 

in a study involving a 2.3 kb fragment of the wheat GstA1 promoter in combination with an 

intron-containing part of the wheat WIR1a gene to drive strong and constitutive expression of 

OxO in wheat leaves (Altpeter et al., 2005). Neither transient nor stable expression provided 

resistance in infection assays with Blumeria graminis f.sp. tritici.   
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Improved resistance to European corn borer (Ostrinia nubilalis) has been demonstrated in 

maize expressing wheat OxO (Ramputh et al., 2002; Mao et al., 2007), whereas in a study of the 

effect of salt tolerance in transgenic potato expressing a barley OxO, Turhan (2005) reported no 

conclusive results.  

 

10.3. Promoter Analysis 

All genes are regulated by their promoters. Tobacco Nectarin I is a GLP, with SOD 

activity and has been suggested to be involved in the production of H2O2 (Carter and Thornburg, 

2002; Ren et al., 2007). Its promoter was analyzed by construction of full-length promoter region 

with chloramphenicol acetyl transferase (CAT) marker gene. It was observed that the deletion of 

271 nucleotides from the 5‟ end of Nectarin I promoter altered the organ specificity; the CAT 

activity was not only observed in the nectary of transformed tobacco but also appeared in the 

petals. To evaluate whether promoter deletions would affect marker gene expression, the CAT 

gene was fused with two 5‟ promoter deletions and the shortest promoter was observed to be 

non-functional in the nectaries (Carter and Thornburg, 2002). Staiger et al. (1999) indicated that 

clock-responsive elements contributing to high-amplitude AtGer3 promoter oscillations largely 

reside between -299 and -967. In another related study (Fan et al,. 2005), the promoter of 

ZmGLP1 was analyzed by deletion studies in transgenic Arabidopsis to identify the regions 

responsible for activity and tissue specificity as well as the circadian rhythm. ZmGLP1 promoter 

activity was found in filaments and most of the green tissue i.e., rosette leaves, cauline leaves, 

stem, pedicels, sepals, stigmas, green carpel, and dissepiments while no activity was observed in 

roots of seedlings and mature plants. The tissue specificity was observed to change with different 

promoter deletions. Further, it was also observed that a positive and a negative regulatory 
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element responsible for circadian rhythm-responsiveness might be located within the regions -

739 to -349 and -349 to -161, respectively. In another comprehensive wheat germin promoter 

(fused with GUS) analysis Berna and Bernier (1997; 1999) reported the induction of the 

promoter in transgenic tobacco treated with salt, heavy metals, aluminum and plant growth 

regulators, specifically auxin and gibberellin. Naqvi et al. (unpublished) have demonstrated the 

expression of one germin in Arabidopsis root tips and another in whole root except root tip, by 

cloning a -glucuronidase (GUS) gene under the control of the respective homologous 

promoters. Recently Mahmood et al. (2007) reported five common regions of different sizes 

(CR1-CR5) in the OsRGLP2 promoter, which are repeated at 3-5 other locations in a 30 Kb 

region of Oryza sativa chromosome 8 in which this OsRGLP2 gene is located. Interestingly it 

was found that all the genes driven by promoters harboring these common regions are 

GLPs/putative germins. 

Also relevant in this context is the study of Pinus caribea promoter GUS fusions in 

tobacco Bright Yellow 2 (BY-2) cells (Mathieu et al., 2003). The PcGER1 promoter sequence 

was cloned upstream of the GUS reporter gene and transferred to BY-2 cells via Agrobacterium 

tumefaciens-mediated transformation. Optimal growth, maximum cell-wall yield and PcGER1 

promoter activity were observed in the presence of 2,4-D and BA at day 4, the end of the 

exponential growth phase where 70–75% cells have a 2C DNA content. Analysis of promoter 

activity during the cell cycle in an aphidicoline-synchronized culture suggested that the 

expression is maximal in G1 cells. 

A more complex genetic approach showed that the MYB11, MYB12 and MYB111 genes 

share significant structural similarity and represent subgroup 7 (SG7) of the Arabidopsis thaliana 

R2R3-MYB gene family. They all display very similar target gene specificity, principally for 
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several genes of flavonoid biosynthesis. To determine the global regulatory potential of these 

three transcription factors, a combination of genetic, functional genomics and metabolite analysis 

approaches was used (Stracke et al., 2007). Screening by transcriptome analysis identified the 

At4g14630 (GLP9) gene as a SG7 MYB candidate target. 

 

11. MEDICAL AND COMMERCIAL IMPORTANCE 

Several members of the GLP family of proteins, particularly OxO, have considerable 

commercial significance. These various applications have been reviewed previously (Dunwell et 

al., 2000) and will not be repeated here. One method of assessing this topic is by inspection of 

the various patent databases (Dunwell, 2005a), a valuable source of information that relates to 

protection of intellectual property, and a summary of some US patents in this field are given in 

Table 2. Of equal importance is the role of GLPs in the medical context and this is described in 

the following sections.  

 

11.1 GLPs and Allergy 

It is now well known that many plant-derived members of the cupin superfamily have 

allergenic properties (Breiteneder and Mills, 2005; Radauer and Breiteneder, 2006; 2007). 

Although the peanut allergen Ara h 1 (Kang et al., 2007) and related globulins are the most 

important subgroup in this context (Dunwell, 2005b), germin and other GLPs are now being 

increasingly recognized as significant allergens. Jensen-Jarolim et al. (2002) studied germins and 

GLPs produced in transformed tobacco to estimate their impact for IgE-binding to these 

allergens, examined their capabilities to cross link via IgE, the high affinity IgE receptor, and 

reported that germin and GLPs are plant glycoproteins with allergenic properties. Model antigens 
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used in their study were wheat germin and Atger3. There is accumulating evidence for the 

participation of glycans in IgE epitopes recognition (Garcia-Casado et al., 1996). Ahrazem et al. 

(2006) have reported a 24-kDa purified allergen, designated Cit s 1, from orange and identified it 

as a germin-like glycoprotein. It was subsequently established (Crespo et al. 2006; Ebo et al., 

2007) that Cit s 1 is a major allergen found in oranges and most recently Poltl et al. (2007) 

revealed the molecular characterization of Cit s 1 which explains the immunological cross-

reactive properties of Cit s 1 as well as its equivocal nature as a clinically relevant allergen. 

Recently the first case was reported of a peanut allergic patient who exhibited cosensitivity to 

citrus seeds and who had experienced anaphylaxis to lemon soap (Glaspole et al., 2007). 

 

11.2 Germin and Medical Diagnostics 

An important challenge faced in medicine is the need for efficient and cost effective 

diagnostic techniques, and one of the GLP proteins, OxO is already used in this context. Barley 

OxO (98% identical to wheat germin) is used in kits to assay levels of oxalate in blood plasma 

and urine (Porowski et al., 2008), a process required in the treatment of patients with kidney 

stones (a crystallized form of calcium oxalate) (Marengo and Romani, 2008). Because of the 

importance of these diagnostic protocols, there is a continuous effort to improve the accuracy 

and efficiency of the assay (Fiorito et al., 2005; Bhambi and Pundir, 2007; Capra et al., 2007; 

Kumar et al., 2008; Pundir et al., 2008), and to develop more efficient heterologous expression 

systems for production of the purified enzyme, either in bacteria (Cassland et al., 2004) or yeast 

(Pan et al., 2007). 

 

12. CONCLUDING COMMENTS 
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The various summaries provided in this review have provided a background 

understanding of one of the most ubiquitous of plant gene families, the expression of which is 

intimately linked to many diverse responses to the environment. Amongst the analyses relevant 

to this review is a recent study of the respiratory burst oxidase in which it was concluded that the 

production of reactive oxygen intermediates (ROI) is among the earliest temporal events 

following pathogen recognition in plants (Torres and Dangl, 2005). Initially, ROI were thought 

to be cell-death executioners. Emerging evidence, however, suggests a broader role for ROI as 

signals that mediate responses to infection, the abiotic environment, developmental cues, and 

programmed cell death in different cell types. In this context, it is interesting to consider results 

from using a T-DNA knockout of the Arabidopsis homologue of the tomato disease resistance 

gene Asc. The asc gene renders plants sensitive to programmed cell death (PCD) triggered by the 

fungal AAL toxin. To obtain more insights into the nature of AAL-toxin-induced cell death and 

to identify genes of potential importance for PCD, transcription profiling of AAL-toxin-induced 

cell death in this knockout was conducted using an oligonucleotide array representing 21,500 

Arabidopsis genes (Gechev et al., 2004). Genes responsive to reactive oxygen species and 

ethylene were among the earliest to be upregulated, suggesting that an oxidative burst and 

production of ethylene played a role in the activation of the cell death. This suggestion was 

corroborated by induction of several genes encoding ROS-generating proteins, including a 

respiratory burst oxidase and germin-OxO. 

At a practical level, the overall features of germin and the GLP gene family are important 

and significant for plant breeders (Wang et al., 2007c), biochemists and molecular biologists 

working in the field of stress tolerance. More work is required in order to understand the 

increasing list of biochemical functions being assigned to the products of this gene family, an 
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understanding that may also be utilized in the production of genetically modified crops resistant 

to biotic and abiotic stresses (Dunwell, 2000). Further, there is a real incentive for an 

investigation of the evolutionary process in which members of germin and GLP family 

underwent a rapid duplication and diversification that coincided with the evolution of land 

plants.  
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Tables 

 

TABLE 1 

GLP derived SAGE tags identified in libraries from mature leaves and immature seed of rice 

(data modified from Gibbings et al., 2003) 

 

No. TC
a
  Location

b
 Sequence  GLP No.  Tag count 

          Seed   Leaf 

1 298368 3  GCTACAGCAT 7  0  1 

2 305106 8  CACCTGATGC 16  8  0  

3 309308 8  ATATGCTAAA 3 (fragment) 3  0 

4 321372 8  GAATATGTTG 3 (fragment) 7  0 

5 321848 1  CAAAATGTAG 2  0  1 

6 332166 8  TTACTATGGA 16  2  0 

7 356070 8  ACAAGCCAGC 1  0  5 

 
a
TIGR tentative concensus number 

b
 Chromosome 

 

 

TABLE 2 

Summary of US Patents that include reference to germins 

Patent No. Date Inventors   Subject 

7,271,314 2007 Hirochika and Okamoto Genes in tobacco 

7,253,341 2007  Wang, W. et al.   Protease resistant proteins 

7,109,033 2006  Harper et al.  Stress regulation 

7,094,952 2006  Pagniez et al.   Transgenic plants 

6,441,275 2002 Bidney et al. Pathogen resistance 

6,235,530 2001  Freyssinet and Sailland Oxalate oxidase 

5,866,778 1999  Hartman et al.   Oxalate oxidase 
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Figure legends. 

 

FIG 1. Sequence and structure of the archetypal germin, oxalate oxidase from barley (PDB code  

1FI2). Primary peptide sequence and secondary structure, adapted from the PDBsum database 

(http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/) entry for 1FI2. The dots above the 

residues H88, H90, E95, and H137 identify the four residues acting as ligands for the single 

active site manganese ion. The two boxed regions represent the two conserved cupin motifs, each 

spanning two beta strands (broad arrows) and separated by the intermotif region with two strands 

and one loop.  

B. Quaternary structure showing the homohexameric assembly of six monomers, each containing 

a manganese ion (small sphere). 
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