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ABSTRACT  

Abnormal lipid concentrations have been shown to be risk factors for cardiovascular disease, 

which is influenced by a complex interaction between lifestyle (such as diet) and genetic 

factors. Given that lipoprotein lipase (LPL) and apolipoprotein E (APOE) are key regulatory 

proteins in lipid metabolism, the main aims of this thesis were to examine the association of 

single nucleotide polymorphisms (SNPs) at the LPL and APOE genes with lipid-related 

outcomes and to investigate the interaction of the SNPs with dietary factors on lipids. A total 

of six studies with different study designs were used. These studies included a postprandial 

study (n=261), a case-control study (CURES, Asian India, n=1,845), three cross-sectional 

studies [PRECISE study (UK, n=468; Denmark, n=192) and CaPS study (UK, n=1,238)], a 16-

week intervention study DIVAS (n=120) and a crossover trial (n=18). For the LPL gene, the 

SNP rs328 showed a consistent association with HDL-C concentrations in the postprandial 

(P=0.015) and CURES studies (P=0.0004). In addition, in the CURES, there was an interaction 

between LPL SNP rs1121923 and fat intake (energy %) on HDL-C concentrations (P=0.003). 

For the APOE gene, significant associations were detected between the APOE haplotype (E2, 

E3, and E4) and APOE SNP rs445925 and total cholesterol (P=4x10-4 and P=0.003, 

respectively) in the PRECISE study. These associations were further replicated in the CaPS 

cohort. In the DIVAS study, the TT homozygotes of the APOE SNP rs1064725 showed a 

significant reduction in total cholesterol after the MUFA diet compared to the SFA (P=0.001). 

In the crossover trial, we examined the association vitamin D-related SNPs with lipids in 18 

men with sup-optimal vitamin D status and found that the TT homozygotes of the SNP 

rs12785878 (T/G) at nicotinamide-adenine dinucleotide synthetase 1 gene had higher HDL-C 

levels compared to G allele carriers (P=0.0003). In conclusion, our findings suggest a role of 

dietary factors in modifying the genetic effect of LPL and APOE SNPs on lipid levels. Given 

the smaller sample size of some of the cohorts studied, replication of the findings is warranted.  
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Chapter 1 Introduction to thesis 

1.1 Introduction  

Epidemiological studies have consistently shown that decreased high-density 

lipoprotein (HDL-C) levels accompanied by elevated levels of low-density lipoprotein (LDL-

C), triacylglycerol (TAG) and total cholesterol, play a key role in the development of 

cardiovascular disease (CVD) risk [1, 2]. Several biomedical studies have investigated the 

correlation between genotype and phenotype, to identify the specific genetic variants 

responsible for phenotypic variation amongst individuals [3]. Many candidate genes have 

been studied in relation to their potential role in lipid metabolism, and an association between 

these genes and lipid levels has been confirmed [4, 5]. Genome-wide association studies 

(GWAS) have identified several single nucleotide polymorphisms (SNPs) in different genes, 

which are associated with CVD risk and variations in lipid and lipoprotein concentrations [6]. 

The SNPs identified to date, however, explain a relatively small fraction of the inherited risk 

of CVD. Lipid levels are not a homogeneous phenotype and are known to be responsive to 

changes in diet, and are dependent on the quality and quantity of fat. Controlling diet is often 

the first recommendation in the outpatient setting [7, 8]. Thus, it is important to examine 

interactive effects between dietary and genetics factors on lipids.  

 The nutrigenetics or gene-diet interaction approach helps to investigate how the 

genetic makeup of an individual influences response to diet.  This approach helps to 

determine whether a diet can modulate genetic susceptibility by altering lipid responses, 

which may be beneficial in prevention and treatment of CVD [9, 10]. It also may provide 

evidence for tailoring optimal dietary recommendation, for individuals [11].  
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This chapter will: (i) discuss the evidence of the role of genes and diet separately on 

circulating lipids; (ii) outline the need for a nutrigenetics approach to promote cardiovascular 

health and reduce the burden of CVD. 

1.2 CVD prevalence and public health concerns  

CVD encompasses a broad range of disorders that affect the heart and blood vessels, 

i.e. coronary heart disease (CHD), angina, peripheral arterial disease, heart attack, congenital 

heart disease and rheumatic heart disease, and stroke [12, 13]. The circulation of blood to the 

heart, brain or body can be compromised due to a blood clot or accumulation of fat deposits 

inside an artery, leading to the hardening and narrowing of the artery (called atherosclerosis). 

Acute events usually cause heart attacks and stroke, as a result of a blockage that prevents 

blood from reaching the heart or brain respectively [13]. Every day, the number of 

individuals diagnosed with CVD is increasing, placing a huge burden on society [14]. The 

mortality rate of CVD in the UK alone, is one of the highest in the world, and approximately 

48% of deaths in Europe are due to CVD [15]. CVD is a global health problem and has been 

ranked top by the World Health Organisation (Figure 1.1) [14].  

 

Figure 1.1 Proportion of global deaths under the age 70 years from non-communicable 
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diseases  (source WHO, 2012). 

The epidemic of CVD is increasing globally in both developed and developing 

countries [16]. The cost of treating CVD patients in NHS hospitals was around £6.8 billion in 

England (between 2012-2013). Hospital statistics indicated that around 1.6 million episodes 

were related to CVD in UK hospitals, among these 10.1% of all inpatient episodes were in 

men and 6.3% in women. The number of operations performed to treat CVD in the UK, was 

>90,000 which is two times higher than a decade earlier [17]. In India, CVD contributed to 

two thirds of total number of mortality cases due to non-communicable diseases. The 

mortalities from CVD under age 70 were 52% in India compared with 23% in Western 

populations. The cost of health care spent on treating CVD was $237 billion in a period of 10 

years (from 2005-2015) [18]. Therefore, identifying risk factors for CVD and treatments 

against these factors will have a significant effect on disease prevention. 

1.3 Lipid as a risk factor for CVD 

A lipid profile that includes abnormal levels of total cholesterol, TAG and lipoprotein 

is a traditional CVD risk factor and biomarker [19]. These biomarkers can be measured in 

both fasting and postprandial states. Several observational studies have confirmed that 

increased fasting and postprandial TAG and TAG-rich particles are significant predictors of 

CVD [2]. A meta-analysis of prospective studies on a general population demonstrated that 

TAG increased CVD risk by approximately 30% in men and 75% in women (data for 46,413 

men and 10,864 women) where the relative risk remained statistically significant after 

adjustment for HDL-C and other risk factors [20]. A recent meta-analysis of 61 prospective 

studies investigated the association between TAG levels and CVD mortality and showed that 

the risk ratio of CVD mortality for the lowest TAG (< 90 mg/dl) was 0.83, borderline-high 

TAG (150–199 mg/dl) was 1.15, and high TAG (≥ 200 mg/dl) was 1.25, which confirmed 
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dose dependent effect for TAG levels [21]. The association between postprandial TAG and 

CVD was confirmed in 86,261 participants (men and women) in the Norwegian Counties 

Study [22]. Therefore, these results suggest that elevated TAG concentration is a powerful 

risk factor for CVD [23].  

Furthermore, lipoproteins (LDL-C and HDL-C) play a pivotal role in the progression 

of CVD. Their major function is to transport cholesterol, which is used for the maintenance 

of cell membranes, in the circulation system between the liver and peripheral tissues. The 

pathogenesis of atherosclerosis is highly correlated with LDL-C levels and is a therapeutic 

target to reduce the CVD risk. If there is an infection, HDL-C levels decrease rapidly; 

consequently, lower concentrations of HDL-C predict a serious CVD risk [24]. In a meta-

analysis of seven placebo-controlled statin trials, it was shown that concentrations of LDL-C 

reduced by 21% and non-HDL-C reduced by 20% thereby resulting in a reduced risk of 

coronary heart disease (CHD). Changes in LDL-C and non-HDL-C within each trial caused a 

significant risk reduction of CVD risk [25]. In a prospective study on 27,791 initially healthy 

women in the Women's Health Study, there were 899 incidents of CVD during the ten-year 

follow-up period. The risk of developing CVD was 1.47 times higher for women with 

elevated LDL-C (121mg/dl; 3.12 mmol/L) [26]. This evidence confirmed the key association 

between lipoprotein levels and CVD risk.  

The role of lipoproteins and lipids in the pathogenesis of CVD can be explained by 

increased accumulation of LDL-C particles, cholesterol, in the inner lining of the arterial 

wall. This leads to arterial plaques, which is the principal driver of the initiation for the 

pathogenesis of atherosclerosis [27]. The LDL-C and apolipoprotein B (apoB)-containing 

lipoproteins can pass the endothelial barrier and gain access to the sub-endothelial space, 

where they accumulate. Retained lipoproteins are oxidised and combined with other 



 5 

atherogenic factors to promote activation of endothelial cells. The activated endothelial cells 

increase the recruitment of monocytes into the intima by inflammatory process and also 

promote the recruitment of other immune cells.  The monocytes differentiate into 

macrophages and express receptors that mediate the internalization of very low density 

lipoprotein, apolipoprotein E (apoE) remnants, and modified LDL to become foam cells. In 

macrophage foam cells, inflammatory signalling pathways are activated resulting in more cell 

recruitment and LDL modification. Foam cells are considered as intermediate atherosclerotic 

lesions, which occupy much of the lesion volume and leads to the progression of the 

atherosclerosis [28, 29]. On the other hand, HDL-C and apolipoprotein A-I (apoA-I) protect 

against atherosclerosis via mechanisms independent of cholesterol efflux resulting in reduced 

inflammation [28].   

Thus, this thesis aimed to study factors affecting lipid levels. Lipid concentrations are 

affected by a number of factors, which include modifiable factors such as diet, obesity and 

physical activity, and non-modifiable factors such as age, gender, and genetic factors [30, 

31]. Controlling modifiable factors may reduce the risk of developing CVD. In this thesis, 

genetic factors and dietary factors will be investigated.  

1.4 Lipid metabolism  

Following the digestion and absorption of dietary lipids into free fatty acids, TAG are 

resynthesized within the intestinal wall and combined with cholesterol and protein to form 

chylomicrons. Because of insolubility of TAG and lipids, they need to combine with protein 

to form lipoprotein [32]. Lipoproteins consist of a mixture of apolipoproteins, phospholipid, 

cholesterol, and TAG. Lipoproteins are involved in the transport of lipids through the 

circulation from intestine and liver to other tissues that require these lipids as their energy 

suppliers or use them as structural materials in their membrane. Based on the density 
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lipoproteins are mainly divided into five major classes including chylomicrons, very low 

density lipoprotein (VLDL), LDL-C, intermediate-density lipoproteins (IDL), and HDL-C 

[33]. Chylomicrons and VLDL have higher amount of TAG within their core; in contrast, 

LDL-C and HDL-C have higher amount of cholesterol ester within their core [34]. 

Apolipoproteins (APO) coat lipoprotein particles and transport lipids in the lymphatic 

and circulatory systems, for instance apoA, apoB, apoC and apoE. They have a number of 

other functions including cofactors for enzymes and ligands for cell-surface receptors. For 

example, apoC-II activates the enzyme lipoprotein lipase (LPL), which is involved in the 

hydrolysis of TAG in chylomicrons and VLDL, to convert them to remnant particles and 

remove TAG from circulation [35]. Remnant chylomicrons bind to LDL receptor-related 

protein (LRP) receptors on the surface of hepatocytes, which recognizes apoE on the surface 

of remnant chylomicrons. In the liver, VLDL is synthesized from TAG in the remnant 

chylomicrons, cholesterol and apoB-100, apoC-II and apoE. Then, VLDL is secreted into the 

plasma, where they are hydrolyzed by LPL to convert to IDL and release TAG. The IDLs are 

hydrolyzed by hepatic lipase to form LDL-C. One of the apolipoproteins components in 

LDL-C is apoB-100, which facilitates binding between the lipoprotein particles and LDL-

specific receptors on the surface of many cells. After binding, cholesterol in the LDL-C is 

used as a structural component of cell membranes or is converted to steroid hormones [34]. 

The HDL-C is synthesized by liver and gut. Cholesterol from peripheral tissues bind 

to HDL-C through apoA-I, which mediates transportation of cholesterol to the liver [36]. 

Several enzymes, proteins, and receptors are involved in HDL-C metabolism pathway. 

Lecithin cholesterol acyltransferase (LCAT) enzyme esterifies free cholesterol in nascent 

HDL-C to cholesteryl esters. ATP-binding cassette protein (ABCA1) is responsible for 

adding free cholesterol from cells to HDL-C resulting HDL-C particles that is rich in free 

cholesterol. Furthermore, cholesteryl esters and phospholipids are transferred from HDL-C to 

http://en.wikipedia.org/wiki/Circulatory_system
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apoB-containing lipoproteins, including the triglyceride rich lipoproteins (TRLs) via 

cholesteryl ester transfer protein (CETP). Scavenger receptor BI (SR-BI) binds to HDL-C in 

order to transport back cholesterol ester to the liver [37, 38].  

1.5 Factors affecting lipid levels 

1.5.1 Dietary factors   

The last few decades have seen fundamental changes in dietary patterns in almost every 

region of the world [39]. This shift has raised a global concern as an unhealthy diet is a major 

cause of the increased burden of diseases such as CVD [40]. Therefore, nutritional science 

has designed and implemented strategies to reduce the incidence of diet-related diseases [41]. 

One of the key public health strategies for CVD prevention is to reduce saturated fatty acid 

(SFA) intake to < 10 % of total energy (%TE) [42], as high intake of SFA is associated with 

elevated LDL-C concentrations [8]. A clinical trial showed that lowering intake of SFA by 

5% and 8% reduced LDL-C levels by 6.8% and 11.7%, respectively [43]. Therefore, it is 

recommended that SFA should be replaced with alternative macronutrients such as 

unsaturated fat [44]. It has been found that replacing 1% TE of SFA with either 

polyunsaturated fatty acids (PUFA) or cis-monounsaturated fatty acids (cis-MUFA) lowers 

LDL-C by 0.009 and 0.019 mmol/l respectively [8]. Furthermore, in a recent intervention 

study, it was reported that isoenergetic replacement of 9.5-9.6%TE from SFA with MUFA or 

n-6 PUFA had a beneficial effect on lipid response, with a reduction of 8.4% and 9.2% 

respectively in total cholesterol, 11.3% and 13.6% respectively in LDL-C, and total 

cholesterol to HDL-C ratio of 5.6% and 8.5% respectively [45]. In a randomised controlled 

trial, a moderate substitution 9%TE of SFA with MUFA for three months induced a reduction 

in the concentrations of cholesterol and TAG [46]. Moreover, a recent randomised controlled 
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trial suggested that intervention of n-6 PUFA diet (flax and safflower oils) for four weeks 

lowered total cholesterol [47].  

High SFA intake is linked with unfavourable lipid profiles, however if carbohydrates 

are replaced with SFA, concentrations of TAG have been shown to increase particularly 

simple carbohydrates [48, 49]. Two cross-sectional studies, have indicated that higher intakes 

of carbohydrate was associated with lower HDL-C levels and increased TAG in healthy 

adults, which may have further health implications for CHD [50, 51]. A moderate 

carbohydrate restriction (39%TE) with low SFA (9%TE) for three weeks resulted in a 

reduction in TAG, small LDL mass, and total cholesterol to HDL-C ratio [52]. Some studies 

investigated on specific type of carbohydrates such as complex carbohydrates and whole 

grains, which postulated to have positive effect on lipid levels. For complex carbohydrates, a 

randomized crossover study conducted on 16 gestational diabetes mellitus women who were 

given either lower-carbohydrate/high fat diet (40% carbohydrate/45% fat/15% protein) or 

higher-complex carbohydrate /lower-fat diet (60 carbohydrate /25 fat /15% protein) for three 

days. Complex carbohydrates defined as polysaccharides and starches primarily derived from 

grains, vegetables, and fruits. higher-complex carbohydrate /lower-fat diet significantly 

lowered postprandial free fatty acids but not postprandial TAG [53].  

Additionally a large cross sectional study, that included 12,745 men and women from 

the Polish Norwegian study, found that, among users of statin, individuals who consumed 

adequate amount of whole grains (≥3oz/day) showed an association with lower total 

cholesterol and LDL-C levels compared with individuals who consumed inadequate amount 

of whole grains [54]. Results from randomized control trial showed (total n=45 men and 

women) that healthy participants who consumed adequate amount of whole grain (corn, rice, 

and wheat) based on their caloric need for six weeks had decreased total, LDL, and non-HDL 
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cholesterol levels compared to those who received refined grains [55]. However, in a 

crossover study, where 33 men and women received either whole grain or refined grain 

(50g/1000 kcal in each diet) for 8 weeks, showed that whole grain diet significantly 

decreased diastolic blood pressure but not total and LDL cholesterol [56].  

Few studies have investigated the effect of protein-rich diets on lipid levels. In a 

randomised controlled trial, a high-protein diet (20-34%TE) was shown to reduce fasted 

TAG, LDL-C, and total cholesterol compared with a diet high in carbohydrates and a 

standard protein diet [57]. Conversely, there was no significant difference in LDL-C and 

HDL-C levels with a high-protein diet compared to a high-carbohydrate diet [58]. A recent 

study investigated the effect of milk proteins on risk markers of CVD. Thirty-eight 

participants were given either 2 × 28 g whey protein/day, 2 × 28 g calcium caseinate/day, or 

2 × 27 g maltodextrin (control)/day for 8 weeks separated by a 4-weeks washout after each 

study arm. Participants received both whey protein and calcium caseinate had significantly 

lower total cholesterol, while TAG decreased after whey protein diet only [59]. Also, another 

study looked at the effect of consuming either 25 g/day lupin protein isolate or 25g/day milk 

protein isolate for 4 weeks in 33 hypercholesterolemic participants. Findings showed that 

LDL-C was significantly decreased after both dietary interventions but LDL:HDL cholesterol 

ratio was decreased only after consuming lupin protein isolate [60].  

Overall, the effect of dietary macronutrients on lipids is still controversial [61] with 

high individual heterogeneity in serum lipid response to the same dietary intervention [10]. 

1.5.2 Genetic factors  

Lipid and lipoprotein metabolism are complex biological pathways containing 

multiple steps. A large number of nuclear factors, binding proteins, apolipoproteins, 

enzymes, and receptors involving hundreds of genes are involved in the lipid metabolism 
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pathway [4]. Between 25 % and 80 % of the inter-individual variation in lipid concentrations 

is explained by SNPs at several genes [62]. There is growing interest in the development of 

in-depth knowledge regarding how genetic factors affect the regulation of plasma lipid 

absorption, transport and catabolism [63]. Within the past two decades, a plethora of genes 

have been identified in humans, which are associated with lipid metabolism and plasma 

lipoprotein profiles [63].  

Some of the most important genes involved in lipid metabolism are APOA-I, APOE, 

LPL, hepatic lipase (LIPC), and cholesteryl ester transfer protein (CEPT) [4, 64, 65]. It has 

been confirmed that the CEPT, LPL and LIPC proteins play an important role in determining 

the circulating HDL-C levels [66-68], and many studies have implicated that selected SNPs 

within these genes are the cause of changes in HDL-C concentrations [69-71]. Moreover, 

inheritance of the levels of the fasting and postprandial TAG has been linked to SNPs at the 

LPL gene [72, 73]. Apolipoproteins are vital components of the lipoprotein molecules due to 

the role they play in the metabolism of lipoproteins. Some act as ligands for receptors and 

play roles as cofactors, activators or inhibitors of enzymes in lipid metabolism [74]. 

Therefore, genes that encode these proteins have been found to have a significant impact on 

lipid levels. It has been confirmed that common polymorphisms at the APOE gene account 

for inter-individual variation in LDL-C, TAG and total cholesterol concentrations [75-79]. 

The APOA-I protein is a principal component of HDL-C particles [80]; forty-three SNPs 

have been reported within the gene associated with low HDL-C concentrations [37] .  

Recent GWAS studies have reported a significant increase in the number of loci 

associated with lipid and lipoprotein profiles [81, 82]. Two large-scale GWAS study meta-

analyses have identified 157 genomic loci contributing to inter-individual variation in the 

lipid concentrations in >100,000 individuals [83, 84]. Of these loci, 46 demonstrated the 
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strongest evidence of associations with HDL-C, 16 with TAG, 18 with total cholesterol, and 

9 with LDL-C. Some of the identified loci affected multiple lipid outcomes, i.e. four variants 

showed associations with total cholesterol, HDL-C, LDL-C, and TAG [84]. 

Genes alone, however, do not explain the variation in lipid concentrations as lifestyle 

factors, i.e. dietary factors, also influence lipids. Therefore, this is investigated by identifying 

gene-diet interactions (also called Nutrigenetics) [85-88]. In my thesis, I aimed to investigate 

the interaction between dietary factors (modifiable factor) and genetic markers (non-

modifiable factor) on lipid outcomes.  

1.6 Nutrigenetics approach 

Nutrigenetics is the study of genetic background of an individual that effects response to diet, 

the ultimate goal of which is to generate evidence of gene-diet interactions to personalise 

dietary recommendations to help prevent or delay the onset of disease [4, 89]. Investigations 

in nutrigenetics have undergone rapid development due to the increasing demand of new 

optimal dietary strategies for general public health.  

1.6.1 Rational for studying gene-diet interactions 

Many SNPs associated with CVD risk factors have been identified [4, 5], and represent a 

small fraction of the heritability of the CVD [62]. However, environmental factors including 

dietary factors can also modulate the effect of genes on CVD and hence, interaction between 

genetic and dietary factors must be taken into account [90]. Genes can trigger the incidence 

of CVD in individuals carrying risk alleles, when these individuals are exposed to a high-risk 

environmental factor [91]. Thus, findings from gene–diet interactions will contribute to the 

identifying the involvement of both gene and diets in the development of multifactorial 

disease such as CVD. This knowledge is crucial for the primary prevention of CVD, and also 

to develop more effective dietary strategies for preventing or delaying of CVD [90].  
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Figure 1.2 shows the interaction between genetic (non-modifiable) and dietary factors 

(modifiable) on lipoprotein concentrations, which eventually leads to the development of 

cardiometabolic diseases. 

1.7 Genetic variations and ethnic background   

In humans, 99.9% of the genome is identical; variations exist in the remaining 0.1% 

of the genome,  making a person unique [92]. Approximately 85% of all SNPs are common 

to all human populations and only 15 % of SNPs are population-specific [93]. Therefore, if a 

common allele is significantly associated with a disease, it is more likely to be shared by 

multiple populations [94]. However, some gene frequencies vary across different ethnic 

groups, resulting in differences in the prevalence of disease risk across ethnicities [95]. For 

example, the highest frequency for the E4 allele (risk allele) at the APOE gene has been 

reported for African and North European populations compared to Indian and Asian 

populations [96]. Additionally, environmental factors also contribute to the disease 

prevalence. Moderate changes in lifestyle factors, such as reducing SFA intake, have an 

impact on reducing CVD risk if adopted by large groups of the population [97].  Thus, the 
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importance of studying different ethnic groups is to identify the effect of different lifestyle 

factors, mainly dietary pattern, across populations.  

1.8 Selection of candidate genes for the study  

This thesis focuses on two candidate genes, LPL and APOE, because of their key role 

in lipid metabolism (Figure 1.2).  The LPL enzyme is located on the luminal surface of the 

vascular endothelium, and regulates the lipolytic processing of TAG-rich lipoproteins. LPL 

hydrolyses the circulating TAG-rich lipoproteins, resulting in the formation of chylomicron 

remnants and intermediate density lipoproteins (IDL), the VLDL remnants, and LDL. 

Therefore, LPL modulates circulating TAG and HDL-C concentrations [67, 98]. LPL has 

another non-enzymatic function in the binding of lipoprotein particles to cell-surface 

molecules, which mediate uptake of lipoproteins [99]. Furthermore, deficiencies in LPL 

enzyme expression have been implicated in the pathogenesis of hypertriacylglycerolaemia, 

and CVD [67, 100]. Thus, LPL is suggested to have anti-atherogenic effects through clearing 

circulating lipoprotein particles and pro-atherogenic effects through enhancing the uptake of 

potentially atherogenic TAG-rich lipoproteins by the arterial wall [101].  

The APOE protein, which is a component of VLDL particles, chylomicrons, and their 

remnants, has an anti-atherogenic function.  The APOE is a ligand for the LDL receptor-

related protein, which mediates cellular removal of lipoprotein remnants and acts as a 

cofactor in VLDL synthesis, mainly hydrolysing VLDL remnants to produce LDL-C [102]. 

Thus, it is considered to be an important determinant of serum LDL-C levels [103]. 

Given these important functions of LPL and APOE in lipid metabolism, it would be 

timely to examine the interaction between SNPs of LPL and APOE genes and dietary factors 

on lipid outcomes.  
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Figure 1.3 Role of lipoprotein lipase and apolipoprotein E in lipid metabolism; LPL; 

lipoprotein lipase, APOE; apolipoprotein E, LACT; lecithin: cholesterol acyl transferase is an 

enzyme that produces cholesteryl esters in plasma and promotes the formation of HDL-C; 

CETP; cholesteryl ester transfer protein which facilitates transfer of CE and TAG between 

lipoproteins, SRB-1; scavenger receptor B-1 found in liver and facilitates uptake of CE and 

HDL-C; IDL; intermediate density lipoprotein; CE; cholesterol ester.   

1.8.1 Lipoprotein lipase 

The LPL gene is located on chromosome 8q22 and includes 10 exons encoding 475 

amino acids, of which 448 amino acids are part of the mature protein and 27 are part of the 

signal peptide [104]. The SNPs at this gene have previously been associated with changes in 

circulating TAG and HDL-C [105, 106]. Few studies have investigated the interaction 

between LPL SNPs and diet on lipids.  

The interaction between the SNP rs328 (C/G) and the intake of dietary fat (energy %) 

on HDL-C concentrations was significant in ≈ 9,000 Caucasian Americans (men and 

women). The fat intake was found to be positively correlated with fasted HDL-C among CC 
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homozygotes and CG heterozygotes, but inversely correlated with GG homozygotes. 

Moreover, interactions were observed between SNP rs328 with saturated fatty acid (SFA) (as 

g/day) and monounsaturated fatty acid (MUFA) (as g/day and energy %) on HDL-C [85]. 

Unsaturated fat was shown to interact significantly with SNP rs10503669 on HDL-C 

concentrations in Korean participants (5,314 men and women) [107]. Furthermore, the 

association between SNP rs13702 (T/C) and the reduction in plasma TAG in response to 

unsaturated fat (30 grams/day during a 3-year intervention) was evaluated, and a greater 

reduction in fasted TAG was observed in C minor allele carriers [108].  

A study of 452 participants consuming their habitual diet from the European 

LIPGENE human study showed a significant gene-nutrient interaction between LPL SNPs 

(rs328 [C/G] and rs1059611 [A/G]) and total n-6 polyunsaturated fatty acid (PUFA) intake 

with fasted plasma TAG concentrations. The G minor allele carriers of both SNPs were 

associated with lowered concentrations of TAG in individuals consuming a diet low in n-6 

PUFA (35.48% of total lipid) compared with common homozygotes. This interaction was 

replicated in another population, where n-6 PUFA interacted with both SNPs (rs328 and 

rs1059611) on HDL-C [109]. In a meta-analysis based on 27,756 individuals from 10 

cohorts, a significant interaction between another SNP rs13702 at the LPL gene and PUFA 

(energy %) on TAG was identified, with an inverse association between PUFA intake and 

TAG concentrations[110].  

Data from these studies demonstrates that the strongest interaction was between LPL 

variation and PUFA intake on TAG concentrations. Replication for other fat types (SFA and 

MUFA) is required in addition to investigating other macronutrients (protein and 

carbohydrates). The diversity in ethnicity within these studies is limited and therefore, 

examining other ethnicities is warranted.  
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1.8.2 Apolipoprotein E 

The most commonly studied apolipoprotein gene polymorphism is APOE due to its 

key role in lipid metabolism [111]. The human APOE gene is located on chromosome 

19q13.2 and encodes a polymorphic protein of 299 amino acids [112]. Two SNPs in exon 4 

(rs429358, and rs7412) give rise to three major isoforms encoded by three alleles: E2, E3, 

and E4 [113]. Most populations studied reported that the E4 allele is associated with a high 

risk of CVD due to an increase in TAG and LDL-C levels, whereas E2 carriers is associated 

with low levels of circulating LDL-C [111]. Therefore, APOE is considered as a potential 

modulator of plasma lipid response, which is altered by dietary fat composition [114].  

In healthy individuals from Costa Rica, a statistically significant interaction was 

observed between the APOE common genotype (rs429358 and rs7412; E2, E3, and E4) and 

SFA intake on VLDL and HDL-C. The E2 allele carriers who consumed high SFA [13.5% 

total energy (TE)] were associated with higher VLDL and lower HDL-C concentrations, 

while the opposite association was observed in E4 allele carriers [87]. Moreover, an 

interaction was demonstrated between the APOE (rs405509) and dietary SFA intake on 

plasma LDL-C and HDL-C in an Inuit population [115]. Conversely, other studies have not 

shown a significant interaction between the APOE common genotype and dietary fat on lipid 

levels in Caucasian and Black American populations [116, 117].  

E4/E4 individuals who followed a lower-fat-cholesterol diet (34% fat, 265 mg 

cholesterol/day) showed a significant reduction in total cholesterol, but there was a 

significant increase in total cholesterol among the E4/E4 group who followed a high-fat-

cholesterol diet (38% fat, 300 mg cholesterol/day) [118]. In a chronic intervention study in 

which prospectively genotyped participants were randomised to a low-SFA diet (8% TE) 

versus a high-SFA diet (18%TE) supplemented with 3.45g docosahexaenoic acid (DHA)/day, 
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the E3/E3 and E4/E4 groups were reported to have lowered TAG with a high-SFA diet 

supplemented with DHA compared to those with a low-SFA diet [79]. In two fish oil 

supplementation studies (2-3g eicosapentaenoic acid (EPA)/DHA per day), the APOE 

genotype was demonstrated to have a significant effect on the plasma lipid profile [119, 120]. 

Individuals with the E2 allele displayed a marked reduction in postprandial TAG response 

[120], while men with the E4 allele exhibited a reduction in TAG [119]. The dependent effect 

of the APOE genotype on carbohydrates and MUFA has also been investigated, with lowered 

LDL-C found in E2 allele carriers compared with E3 and E4 allele carriers with a high-

carbohydrate diet [121].  

The most convincing evidence is the effect of fish oil supplementation on the APOE 

genotype. Despite extensive research on the interactions between the APOE genotype and 

dietary fat and fat composition (i.e. SFA, MUFA, and cholesterol), the reported outcomes are 

somewhat inconsistent.  

1.9 Other genes related to lipid outcomes  

This chapter, also, will summarize the findings from gene-diet interactions on lipid-

related outcomes focusing on the most commonly studied candidate genes including 

Adiponectin (ADIPOQ), apolipoprotein CIII (APOCIII), apolipoprotein A5 (APOA5), 

apolipoprotein AI (APOAI), cholesteryl ester transfer protein (CETP), hepatitis lipase (LIPC), 

peroxisome proliferator–activated receptor (PPARA, and PPARG), and tumour necrosis 

factor-alpha (TNFA) genes.  

1.9.1 Adiponectin gene 

The ADIPOQ, gene coding for adiponectin, is a common genetic marker associated 

with serum lipid level. Adiponectin is an adipocyte-derived hormone and the gene is  located 
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on chromosome 3q27 [122]. Adiponectin has been shown to affect energy metabolism and 

insulin sensitivity that includes increasing mitochondrial fatty acid oxidation and enhancing 

TAG catabolism and fatty acid uptake, which consequently regulates lipid metabolism in 

skeletal muscle [123]. PPARA is also activated by adiponectin and regulates APOAI and 

apolipoprotein A2, leading to increased secretion of hepatic HDL-C. Therefore, plasma levels 

of TAG are negatively associated with adiponectin, while HDL-C concentrations are 

positively correlated with adiponectin. A minimum of 53 SNPs have been identified in the 

ADIPOQ gene [124]. Among these, SNPs +274G>T (rs1501299), -11377C>G (rs266729), 

and +45T>G (rs2241766) have been shown to be associated with CVD in previous studies 

[125, 126]. 

Recent studies have investigated the interaction between these SNPs and diet on 

determining lipid profile levels. A cross-sectional study has reported that three ADIPOQ 

haplotypes of SNPs rs1501299 (G/T), rs266729 (C/G), and rs2241766 (T/G) were found to 

interact with MUFA:SFA ratio on determining TC, and LDL-C levels (P=0.002 and 0.02, 

respectively) in Korean children (n=687). Individuals carrying the G-T-G haplotype exhibited 

higher levels of TC and LDL-C than non-carriers when the ratio of MUFA:SFA was <1 

[127]. Inconsistent responses of lipids (TAG, LDL-C, HDL-C, TC) to SFA-rich diet followed 

by a carbohydrate-rich or MUFA-rich diet by SNP rs266729 (C/G) were not significant in 

healthy Caucasian individuals (n=59) [128]. Carbohydrate intake was found to interact with 

the ADIPOQ SNP rs1501299 (G/T) on HDL-C concentrations (P=0.01) in Korean patients 

with type 2 diabetes (n=673). High carbohydrate intake (>65%) was inversely related to 

HDL-C concentrations in carriers of GG homozygotes [129]. However, this finding cannot be 

generalized to other populations or ethnic groups given that the participants were type 2 

diabetic patients. Findings from ADIPOQ gene- diet interaction studies were inconsistent and 

these discrepancies in the results could be due to the type of study design, small sample size, 
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and heterogeneity in age and ethnicity of the participants. 

1.9.2 Apolipoprotein genes 

The most widely studied genetic markers, in relation to CVD risk factors and dietary 

intake, are the apolipoprotein genes (APOAI, APOCIII, APOA5, and APOE). The number of 

published articles investigating interaction of dietary factors with these genes have increased 

considerably [111].  

1.9.2.1 Apolipoprotein A5 

The APOA5 regulates plasma TAG levels by enhancing the activity of lipoprotein 

lipase and inhibiting TAG-rich lipoprotein production [111, 130].  It is located on TAG-rich 

lipoproteins and HDL-C particles [131]. Polymorphisms in the APOA5 gene, which is part of 

the apolipoprotein (APOAI-A4-A5-CIII) gene cluster on human chromosome 11q23, 

represent the most commonly studied candidate SNP with regard to lipid outcomes [132, 

133]. Genetic studies have consistently demonstrated associations of APOA5 SNPs with 

increased TAG and increased risk of CVD [134, 135]. The APOA5 SNP -1131T>C 

(rs662799) has been shown to be a strong candidate for its relevance to plasma lipid levels 

[134, 136].  

Several gene-diet interaction studies have investigated the impact of APOA5 and 

dietary intake on plasma lipid [137, 138]. Cross-sectional studies conducted on the Caucasian 

population (n=1465) and Puerto Ricans (n=802) have demonstrated that SNP rs662799 (T/C) 

interacts with total fat intake [(TE) %, and grams] in determining TAG, TC and VLDL 

concentrations (Pinteraction ranges from 0.002 to 0.03) [137, 138]. Participants with the C minor 

allele had higher TAG levels when they consumed fat >31% of TE in Puerto Ricans, while in 

Spanish Caucasians, among those who consumed high fat intake, the C allele carriers had 
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lower TAG and VLDL levels [137, 138]. This could be because the Spanish Caucasians 

consumed a traditional Mediterranean Diet, which mainly consists of MUFA from olive oil. 

In contrast, two studies from a Slavic Caucasian population (n=5487) and Mexican 

population (n=200) failed to demonstrate a significant interaction between SNPs, rs662799 

(T/C) and rs3135506 (C/G), and dietary fat (as total, SFA, or PUFA) on lipid [139, 140]. The 

lack of interaction could be because only 2% of the participants carried the minor APOA5 

gene allele, participants were relatively old [139] and the sample size of the Mexican study 

was very small [140].     

A significant interaction between SNP rs662799 (T/C) and n-6 PUFA intake, in 

determining fasted TAG concentration, was demonstrated in Caucasians (n=2418) from the 

Framingham Study. In carriers of the C allele, higher PUFA intakes (>6 % energy) were 

shown to be associated with higher TAG [141]. In a 2-year longitudinal study (multi ethnic 

majority Caucasian) in which participants (n=734) were randomised to a high fat diet or a 

low-fat-diet group, G allele carriers at SNP rs964184 (C/G) were reported to have a greater 

decrease in TC and LDL-C, and a greater elevation in HDL-C levels than non-carriers after a 

low fat diet [142]. Following a diet high in carbohydrates and low in fat (70% and 15% of 

TE, respectively), C allele carriers of the SNP rs662799 (T/C) had higher TAG and TAG-rich 

lipoprotein than TT genotype carriers [143].  

An interaction between dietary carbohydrate intake (as whole grain and legumes) and 

APOA5 SNP rs662799 (T/C) on TAG levels was reported in Korean type 2 diabetic patients 

(n=185). Individuals carrying the C risk allele had higher TAG concentrations than TT 

genotype carriers after consuming refined rice [144]. From these reported findings, 

consistencies were found in APOA5 SNP–fat interactions on lipid levels. Further studies are 

required to explore subgroups of dietary fat (SFA, MUFA, and PUFA) and carbohydrates in 
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addition to investigating other ethnicities using different study designs.    

1.9.2.2 Apolipoprotein A-I 

The APOA-I is the major structural apolipoprotein component of HDL-C. Its function 

is to activate lecithin: cholesterol acyltransferase and facilitate reverse cholesterol transport. 

The APOAI genes are located in the apolipoprotein (APOAI-A4-A5-C3) gene cluster on 

chromosome 11q23-q24 [145].  The most commonly and widely studied genetic variation is 

SNP rs670 (G/A) which is located in the promoter region of the gene. The presence of the 

minor A allele has been shown to be associated with increased HDL-C and APOA-I plasma 

levels [146, 147]. The studies have reported interaction between diet and APOAI genes and 

have focused mainly on dietary fat and its subgroups (SFA, MUFA and PUFA) [115, 148].  

Fat intake and SFA was reported to interact significantly with SNP rs670 (G/A) and 

on fasted TC, LDL-C, and LDL-C/HDL-C ratio in Caucasian (n=1754) and Inuit (n=553) 

populations [115, 148]. Among those who consumed habitual high fat diet (>35% TE), GG 

genotype carriers had higher LDL-C/HDL-C ratio compared to those carrying A allele [148]. 

Additionally, SNP rs5070 at APOAI gene significantly interacted with total fat and SFA 

intake on LDL-C and HDL-C levels (P interaction range= 0.03 to 0.01) [115].  

There was significant interaction between SNP rs670 and PUFA intake on HDL-C 

(P=0.005) where higher PUFA intake (>8% TE) was associated with higher HDL-C 

concentration in women carrying the A allele compare to those carrying GG genotype [149]. 

The response to a MUFA diet (22% TE) was also investigated where healthy men carrying 

GA heterozygous genotype had increased LDL-C levels, compared to GG genotype carriers 

[150]. Although, it is apparent from previous studies that A allele carriers are presented with 

favorable lipid levels in response to various types of fat i.e. SFA and PUFA, replication of 
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these findings is warranted, as well as use of randomly controlled dietary interventions, 

which give stronger evidence for implementing dietary recommendation.  

1.9.2.3 Apolipoprotein C-III 

The APOCIII is primarily produced by the liver and is a major protein of VLDL and 

HDL particles [111, 151]. An in vitro study reported that this protein play a role in inhibiting 

activity of LPL and hepatic lipase enzymes and also the uptake of TAG-rich lipoproteins by 

hepatic receptors [152]. Thus, the APOCIII gene strongly correlates with higher TAG 

concentration [153]. A number of APOCIII gene SNPs [-455T>C (rs2854116), -625 del, 

3238C>G (rs5128)] have been described as possible genetic markers, exhibiting variability in 

lipid responsiveness to modified fat intake [115, 154].  

Cross-sectional studies have examined the interaction between the APOCIII 

polymorphisms [rs2854116 (T/C, -455T>C), -625 del, rs5128 (C/G, 3238C>G)], total fat, 

and saturated fat on lipid levels. A significant interaction was found between APOCIII SNPs, 

rs2854116, rs5128, and-625 del and total fat intake and SFA intake on TC and LDL-C in 

Puerto Ricans (n=336) and Inuit (n=553) populations [115, 154]. Carriers of the T allele at 

SNPs, rs2854116 and -625T, had lower TC and LDL-C concentrations after consuming a 

lower SFA diet (<11 % of TE) [154]. In a Chinese population (n=56), where individuals 

followed a diet high in carbohydrates and low in fat (70% and 15% of TE, respectively), T 

allele carriers of SNP rs2854117 had higher TAG and TAG-rich lipoproteins than CC 

genotype carriers [143]. Inconsistencies in the effect of T allele on lipids can be explained in 

part by different study designs, heterogeneity in ethnicity, and possibly different sources of 

fats.  

In response to a high MUFA diet (22% TE) for 28 days, carriers of the G allele of SNP 

rs5128 were reported to have a greater decrease in LDL-C (P=0.0003) and TC (P=0.009) in 
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young men (n=90) [155]. A significant interaction between SNP rs5128 and habitual western 

dietary patterns (high in fast food, salty snacks, and soft drinks) in determining HDL-C 

concentration (P = 0.02 in men) was demonstrated in metabolic syndrome (MetS) patients 

and controls from Iran. In the carriers of the G allele, higher adherence to western dietary 

patterns were shown to be associated with lower HDL-C compared to CC homozygotes 

[156]. Although there is some consistency in the reported findings regarding fat intake (SFA) 

and circulating lipids according to APOCIII gene polymorphisms, more investigations are 

required including a larger sample size to confirm these associations.  

1.9.3 Cholesteryl ester transfer protein gene 

The CETP is a plasma lipid transfer protein which plays a fundamental role in the 

metabolism of HDL-C. It has the ability to facilitate the transfer of cholesteryl esters from 

HDL to apolipoprotein B-containing lipoproteins such as TAG rich lipoproteins (CM and 

VLDL), with TAG, increasing HDL-C metabolism and clearance, resulting in lower 

circulating HDL-C concentrations [68, 157]. The most widely studied polymorphism in the 

CETP gene is the SNP rs708272 (C/T) (TaqIB) polymorphism, which has been shown to be 

associated with decreased CETP activity, resulting in greater HDL-C concentrations in 

Caucasian and Black individuals [158, 159]. Currently, a strong consistency exists among 

studies, indicating that T (B2) carriers exhibit greater HDL-C and lower CETP activity than 

CC (B1B1) subjects [69]. 

The reported interactions between CETP gene SNP rs708272 (C/T) and fat intake on 

circulating HDL-C levels have been conflicting. In diabetic Caucasian men, significant 

interactions were observed between SNP rs708272 (C/T) and total fat intake (P=0.003), SFA 

(P=0.02) and MUFA (P=0.04) intake on HDL-C [160]. However, this SNP rs708272 did not 

interact with total fat intake on HDL-C in the Framingham Study (n=12000) and in a Spanish 
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population (n=4210) [85, 161]. Conflicting findings could be due to differences in age and 

health status of the groups, and possibly the impact of habitual diets. 

A significant interaction between another SNP at CETP gene rs5882 and total fat 

intake in determining total cholesterol concentration (P=0.04) has been demonstrated in an 

Inuit population (n=553) [115]. Recently, gene-diet interactions have been reported by 

intervention studies investigating diet high in MUFA [162]. The concentrations of HDL-C, 

and TAG (P=0.006, P=0.040 respectively) were significantly affected by the interaction 

between Mediterranean diet (35% TE fat, 22% TE MUFA) and SNP rs3764261 (G/T) in 

MetS patients (n=424), with carriers of T allele displaying higher HDL-C concentration and 

lower TAG concentration compared to GG common genotype carriers [162].  Findings from 

interactions between CEPT SNPs and diet (i.e. fat intake) did confirm strong evidence for 

interactions on HDL-C, thus, further investigations are required for strong evidence and 

additional randomized clinical trials are needed.   

1.9.4 Hepatic lipase gene  

Hepatic lipase (LIPC) is a lipolytic enzyme that hydrolyzes TAG and phospholipids 

in all major classes of lipoproteins. Also, it serves as a ligand that facilitates the binding and 

uptake of lipoproteins, including HDL-C, through the proteoglycan receptor pathways. Given 

these roles, hepatic lipase has an important impact on circulating HDL-C concentrations [66, 

163], and hence, it has been studied in relation to CVD risk factors [164]. In addition, 

deficiency in hepatic lipase causes elevated HDL-C levels [165]. The common SNP 

rs1800588 (C/T; -514C→T) that is located in the promoter region of LIPC gene is the most 

commonly studied polymorphism in relation to HDL-C concentrations, where the minor T 

allele is associated with decreased activity of this enzyme and contributes to higher fasted 

HDL-C [166, 167].   



 25 

Observational studies have reported a strong gene-nutrient interaction between SNP 

rs1800588 (C/T) at LIPC gene and total fat intake on determining HDL-C levels in different 

ethnic groups such as Caucasian, African, Inuit, and Indian populations [85, 115, 168, 169]. 

Among those who consumed a low-fat diet (< 30% TE), T allele carriers had higher HDL-C 

concentration compared to those with the CC genotype [85, 168, 169]. Additionally, SNP 

rs1800588 (C/T) at LIPC gene significantly interacted with SFA intake on HDL-C in 

Caucasian men with type 2 diabetes (n=780), where T allele carriers displayed elevated 

HDL-C concentration with low SFA intake (<11% TE) [170]. The same SNP, also, showed 

interactions with total fat and SFA intakes on TAG levels in Inuit and East Asian populations 

[115, 169].  

1.9.5 Peroxisome proliferator–activated receptor genes  

Peroxisome proliferator–activated receptors (PPARs) are ligand-activated 

transcription factors belonging to the nuclear hormone receptor superfamily, with 3 isotypes 

expressed in humans and encoded by different genes (PPARA, PPARG, and PPAR delta) 

[171].  

1.9.5.1 Peroxisome proliferator–activated receptor alpha genes 

PPARA gene is involved in numerous biological processes, and is strongly implicated 

in pathways connected with lipid metabolism, including mitochondrial fatty acid beta-

oxidation. Given these roles, PPARA is primarily expressed in tissues with high levels of 

fatty acids, such as liver, heart, and skeletal muscle. PPARA has also been stated to be 

associated with concentrations of TAG, HDL-C, and the overall plasma lipid profile [171]. In 

humans, 50 coding SNPs in PPARA gene have been described, and the SNP rs1800206 (C/G; 

Leu162Val) is the most widely studied SNP. Association between PPARA SNP rs1800206 

and lipid traits have been examined in many studies, providing evidence for an association 
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with TAG, LDL-C, and HDL-C levels [124].  

Fatty acids, primarily PUFA, have been identified as natural or synthetic ligands for 

PPARA, and studies have shown that high concentrations of fatty acids increase the 

transcriptional activation of the gene [172, 173]. Thus, extensive research has investigated the 

interaction between PUFA and the PPARA gene on lipid outcomes. A significant interaction 

between SNP rs1800206 (C/G) and n-6 PUFA intake on TAG concentrations (P=0.04) was 

shown in Caucasian Americans (n=2106). The G allele carriers had higher TAG levels than C 

allele carriers among those who consumed <4% TE n-6 PUFA, whereas the opposite was 

observed when >8% TE n-6 PUFA was consumed [174]. Also, significant gene-diet 

interactions were observed between SNP rs6008259 (G/A; in the untranslated region of gene) 

and n-6 PUFA on TC and LDL-C (P for all comparisons <0.03) in Caucasian Americans, 

where among those who consumed high n-6 PUFA intake (>8 g/d) AA genotype carriers had 

significantly lower levels of TC and LDL-C [175].  However, results obtained from 

randomised clinical trials were inconsistent. In response to a 4 week diet with a high 

PUFA:SFA ratio (10%:9% TE), G allele carries had lower TC compared to those with CC 

genotype in healthy men (n=20) [176]. While no significant interaction between the same 

SNP and n-3 PUFA (5g supplementation of fish oil for 6 weeks) on lipids was found in 

young healthy men (n=28) [177]. These discrepancies could be due to differences in the type 

of PUFA and duration of intervention.  

Besides the SNP rs1800206, which is rare in Asian and African American populations 

[178, 179], another SNP rs1800234 (T/C; V227A) has been identified in Chinese and 

Japanese populations. In Chinese women, an interaction between PUFA intake and SNP 

rs1800234 (T/C) on HDL-C concentrations (P=0.049) was reported. In women carrying the C 

allele, increased PUFA intake (g) was inversely associated with HDL-C concentration [179]. 
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In African Americans, significant gene-diet interactions were observed between SNP 

rs3892755 (C/T) and n-3 PUFA on TC and LDL-C (P= 0.03, and 0.02, respectively), where 

among those who consumed high n-3 PUFA intake (>0.32 g/d), TT genotype carriers had 

significantly lower levels of TC and LDL-C. [175].  

1.9.5.2 Peroxisome proliferator–activated receptor gamma genes 

Another member of the nuclear hormone receptor superfamily is PPARG, which has 

been shown to control the expression of genes involved in adipogenesis, regulation of insulin 

sensitivity and lipid homeostasis [180]. It acts by stimulating hydrolysis of the circulating 

TAG and the subsequent entry of fatty acids into the adipose cells [181]. PUFA is a major 

natural ligand of PPARG, which exists in two protein isoforms: PPARG1 and PPARG2. 

PPARG1 is expressed in many tissues in low levels, while PPARG2 is exclusively expressed 

in adipose tissue.  

The PPARG SNP rs1801282 (C/G; Pro12Ala) is a common polymorphism that has 

been extensively studied [124]. A significant effect of SNP rs1801282 (C/G) on the TAG 

response to a high n-3 PUFA diet (3.6g/d for 3 months) was reported, where G allele carriers 

had lower TAG levels compared to those with CC genotype [182]. Other studies have 

examined the interaction between the same SNP and PUFA:SFA ratio on lipid responses. 

Findings showed that G allele carriers had higher TC and LDL-C when PUFA:SFA ratio was 

<0.33, while G allele carriers had lower TC and TAG levels when PUFA:SFA ratio was 

>0.34 [183].  

In an Inuit population, interaction between total fat and SFA intake and SNP 

rs10865710 on TC (P= 0.01, and 0.007 respectively) and LDL-C concentrations (P= 0.01, 

and 0.008 respectively) was observed [115]. Findings from previous studies have 

demonstrated robust evidence for the interaction between PPARG gene cluster and PUFA 
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intake  

1.9.6 Tumour necrosis factor-alpha  

The pro-inflammatory cytokine, tumour necrosis factor-A (TNFA), is secreted by 

both macrophages and adipocytes and has an important effect on lipid metabolism. Elevated 

levels of TNFA are related to increased serum TAG and VLDL-C, and decreased levels of 

circulating HDL-C [184]. Studies have also shown an association of TNFA with 

dyslipidaemia [185]. In support of this, the TNFA SNP rs1800629 (G/A -308G/A) has been 

shown to increase transcription of the TNFA gene; thereby increasing TNFA production 

[186]. This association may be mediated through interactions between dietary fat intake and 

polymorphisms within the TNFA gene [187]. The SNP rs1800629 has been shown to 

modulate the relationship between dietary fat intake and lipid outcomes in various 

populations [187, 188].  

In black South African women, SNP rs1800629 (G/A) interacts with alpha linolenic 

acid and PUFA on modulating TC/HDL-C ratio (P= 0.036) and LDL-C (P= 0.026), 

respectively. Increased intake of alpha linolenic acid (% TE) was associated with increased 

TC/HDL-C ratio in those carrying GG genotype compared with A allele carriers, whereas 

increased intake of PUFA (% TE) was associated with decreased LDL-C in GG genotype 

carriers compared with A allele carriers [189]. In healthy and type 2 diabetic Caucasians, 

both SNPs rs1800629 (G/A) and rs361525 (G/A; -238G/A) significantly interacted with 

PUFA on HDL-C (P=0.04 and 0.0003, respectively). In carriers of the GG genotype of the 

SNP rs1800629, PUFA intake (%TE) was positively associated with HDL-C but negatively 

associated with A allele carries [187, 188]. The minor A allele carriers of the SNP rs361525 

(G/A) had higher HDL-C with increase in PUFA intake [187]. 

In white South African women, a significant interaction between SFA intake and SNP 
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rs1800629 (G/A) on TC (P=0.04) was reported. Increased intake of SFA (%TE) was 

associated with a decrease in TC levels in those with GG genotype compared with A allele 

carriers [88]. Furthermore, in response to a Mediterranean diet (> 35% fat TE, mostly from 

MUFA) for 12 months, MetS patients with GG genotype had significantly lower TAG 

concentrations (P=0.005) compared with A minor allele carriers (n=507) [190]. These 

findings indicate that the TNFA gene SNPs strongly interacts with dietary fat (i.e. PUFA, 

SFA, and MUFA) in determining lipid levels, where GG genotype carriers were found to 

have favourable lipid levels.  

1.10 Study designs and their role in identifying gene-diet interactions  

Study designs are generally categorised as observational studies, such as cross-

sectional, or case-control and experimental studies, such as randomized clinical trials [191]. 

One of the most common designs is a cross-sectional study, which determines the association 

between exposure and disease-related outcomes in specified populations at a given one time 

point. Disease develops over a period of time, thus, in cross sectional studies it is difficult to 

identify the causal relationship between a risk factor and disease, at a single point in time. 

Another limitation in cross sectional studies is confounding factors, which are factors 

associated with both the exposure and outcome.  Thus, when running statistical analysis, 

adjustment for these confounders can be included in the regression model to minimize their 

confounding effects. The food frequency questionnaire (FFQ), is a questionnaire consisting 

of a finite list of foods and beverages.  Participants indicate their usual frequency and portion 

size of consumption according to response categories over a period of time. The FFQ is the 

most popular measure of food consumption in large observational studies, easy to use, low 

burden on participants, and representative of a long term dietary intake [41]. Another 

example of an observational study is a case-control design, where a group of cases affected 
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with a disease of interest are collected together with a group of control individuals free from 

the disease at a given point of time [192]. This study design is similar to a cross sectional 

design, thus, it shares the same limitation. The main strength of an observational study is that 

a large number of samples can be collected [191]. From a nutrigenetics perspective, 

observational studies (cross sectional and case control) are affected by inherent bias, 

phenotypes have higher levels of variability over time, when testing gene-diet interactions. 

For example, TAG concentrations are variable over time and using fasting values at a single 

point is considered as a limitation [193]. Lack of replication of the initial findings is a 

common limitation. The other limitation includes reporting bias in FFQs, as it is self-reported 

by participants, can limit the study power. However, GWAS studies have identified disease-

predisposing variants from cross-sectional study design, and these variants are less likely to 

be affected by confounding factors [194].  

The other type of study design is experimental (randomized clinical trials), in which a 

group of volunteers, who meet specified selection/inclusion criteria, are randomly assigned to 

receive either the experimental treatment (intervention), or the control treatment (commonly 

the standard treatment for the condition). Thus, observed changes in the outcome; i.e. serum 

TAG, is a result of the intervention treatment. One of the main advantages of an experimental 

trial is the use of a blinding approach where the volunteer and/or researcher does not know 

whether he or she is receiving the treatment or control diet [191]. The common limitation in 

an intervention study is the small sample size (<200 participants) due to logistics of study 

management and costs, drop outs during the intervention period (especially with long periods 

of intervention) and insufficient volunteer adherence to their assigned treatment [41]. The 

crossover design is an alternative to the randomized clinical trial, which allows comparison 

within- and between-groups. In this type of study, half of the volunteers are randomly 

assigned to start with the control diet and then switch to the experimental treatment and the 
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other half are assigned in an opposite sequence. In this design, a washout period are generally 

required to avoid any carry-over influence of prior treatments [191]. The main strength of 

using randomized clinical trials for investigating gene-diet interaction studies is that they 

provide direct evidence to instruct genotype-based dietary modifications for future public 

health strategies. Another advantage of intervention studies is that it minimizes the effect of 

confounding factors, which introduces bias when exploring gene-diet interactions. However, 

the major concern of dietary intervention trials is  the small sample size, which can reduce the 

power of detecting gene-diet interaction effect sizes [194].  

The last study design is the postprandial study, which refers to calculation of 

variations in lipid, mainly TAG, values during follow up period after certain diet was given. 

Circulating TAG increases (postprandial lipaemia) within 2-3 hours of meal ingestion and 

can remain elevated for up to 5h after intake of a meal containing (30–60g fat). Given that 

most people usually consume fat-containing meals every 4–5h, it is clear that the most 

appropriate state of TAG metabolism is postprandially. The specificity of the postprandial 

state is an accumulation of lipoprotein particles in the circulation derived from both the liver 

and small intestine. During the postprandial state, TAG and cholesterol can be exchanged 

between lipoproteins; this is important in reverse cholesterol transport mediated by HDL-C 

particles and cholesterol homeostasis but it can also cause the generation of atherogenic lipid. 

These changes in lipid circulation during the postprandial state highlights the importance of 

the postprandial design in investigating gene-diet interactions [195].  

1.11 Relationship between vitamins D and lipid outcomes 

Vitamin D is an essential fat-soluble vitamin, which has several vital functions 

including formation of bone through regulation of calcium and phosphate homeostasis [196]. 

Besides these physiological functions, vitamin D has shown to play a role in modulating 
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immune function [197], blood pressure control, and prevention of CVD [198]. Also, vitamin 

D has been reported to be associated with lipids [199]. Lower vitamin D status has been 

shown to be associated with dyslipidemia (reduced HDL-C, elevated TAG) in adult men 

[200]. In a cross sectional study in children, it was found that each 10 nmol/L increase in 

vitamin D was associated with decreased concentrations of non-HDL-C, total cholesterol, and 

TAG [201]. This association may be, in part, explained by increased absorption of intestinal 

calcium, which could reduce synthesis and secretion of hepatic TAG [202]. Another 

explanation could be that vitamin D is associated with increased activity of LPL enzyme 

resulting in lower TAG concentrations and increase HDL-C [203]. Previous studies have 

demonstrated associations between SNPs at vitamin D binding protein (GC) and cytochrome 

P450 family 2 subfamily R member 1 (CYP2R1) genes and risk factors related to gestational 

diabetes mellitus [204].  

1.12 Personalised nutrition approach   

A beneficial approach from a nutrigenetics perspective will be the development of 

tailored nutritional advice for individuals, revising individualized dietary guidelines and 

developing personalised nutrition regimes based on their individual genomes, which will 

promote health, or prevent or reduce the incidence of disease [11]. However, at present, a 

large gap exists between nutrition recommendations and individual eating behaviour. 

Therefore, the implementation of a personalised approach could be more widely-accepted by 

the public. A recent study found that gene-based personalised nutrition to reduce SFA intake 

was more effective than general dietary guidelines for E4 allele carriers [205]. It is also 

important to determine whether individuals would agree to undergo genetic tests for the 

purpose of designing a personalised nutrition regime [15]. Ultimately, clear guidance from 

nutrigenetics studies is required for the implementation of personalised nutrition, which can 

only be achieved through the use of large, statistically powered studies, examining various 
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ethnic groups, considering the variety in dietary patterns worldwide, and conducting 

additional testing for other modifiable factors such as physical activity and smoking status. 

1.13 Conclusions 

The findings from these studies indicate that lifestyle (diet) modification, which 

attempts to optimize plasma lipid concentrations and prevent CVD, must consider underlying 

genetic factors. Gene-diet interaction studies contribute to elucidating the potential 

relationships between nutrients, genetic factors, and diseases such as CVD.  

Despite growing evidence from nutrigenetics studies, consistent challenges emerge 

which affect decisions surrounding dietary strategies to improve health. This limitation is 

seen through conflicting results in the existing literature [206, 207]. An additional limitation 

lies in the single hypothesis test; each study investigated interactions between single genetic 

variants and dietary components on a single phenotype; hence, there is considerable risk of 

overestimating the significance of positive interactions. An additional limitation is that the 

majority of published literature on nutrigenetics is secondary analysis of studies which were 

not initially conducted to investigate gene-diet interactions [4]. Moreover, the majority of 

nutrigenetics studies have been conducted in Caucasian populations, with limited research in 

South Asian and Arab populations.  

The requirements for future studies include appropriate study design including 

appropriate sample size. The effect of some of the gene variants may impact on postprandial 

metabolic stress, therefore, gene-diet interactions studies should be designed to examine the 

fasting and postprandial state [208].  

In summary, an increased number of nutrigenetics studies are needed to determine the 

link between SNPs, dietary exposure, and health outcomes in order to determine consistent 



 34 

data for CVD prevention. Understanding how these interactions influence metabolic 

pathways at the molecular level is necessary to determine mechanisms of action. Only then 

can a personalised dietary approach become a potential therapy for the prevention of diet-

related diseases.  

1.14 Aims and outline of the thesis   

Based on the hypothesis that the dietary factors would influence lipid concentrations 

and that this may be modulated by common SNPs in the LPL and APOE genes, the aims of 

this thesis were  

• to examine the association between selected common SNPs at the LPL and 

APOE genes with lipid outcomes (TAG, HDL-C, LDL-C, and total 

cholesterol),  

• to examine the interaction between these SNPs and dietary factors (fat, 

carbohydrate, and protein as total energy %) on lipids using several study 

designs: 1) chronic dietary intervention studies, 2) acute postprandial dietary 

intervention studies, 3) case-control, 4) cohort-based cross sectional 5) dietary 

intervention crossover on two different ethnic populations (Caucasian, and 

Asian Indian).  

The aims and the hypothesis of each chapter are outlined below.  

Chapter 2: It was hypothesized that LPL gene was associated with postprandial lipid 

concentration and this association might provide a more physiological perspective of 

disturbances in lipoprotein homeostasis compared to assessment in the fasting state. 

Therefore, the aim of this chapter was to investigate the influence of two commonly studied 

LPL polymorphisms (rs320, HindIII; rs328, S447X) on postprandial lipaemia in 261 
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participants using a standard sequential meal challenge.  

Chapter 3:  It was hypothesized that LPL SNPs interacted with dietary factors on 

determining lipid concentrations. Also, given that there were no gene-diet interaction studies, 

to date, in Asian Indian populations, this chapter examined the association of four common 

LPL SNPs (rs1121923, rs328, rs4922115, and rs285) with lipid outcomes and investigated 

the interactions of these four polymorphisms with dietary factors on lipid in up to 1,845 

Asian Indian participants (788 type 2 diabetes cases and 1,057 controls) from the cross-

sectional Chennai Urban Rural Epidemiological Study (CURES).  

Chapter 4:  The hypothesis of this chapter was that APOE and LPL SNPs were associated 

with lipid levels and this association might be modulated by dietary factors. Therefore, this 

chapter investigated the association of two common SNPs (rs320 and rs328) at LPL, seven 

tagSNPs (rs405509, rs769450, rs439401, rs445925, rs405697, rs1160985, and rs1064725) at 

the APOE gene, and a common APOE haplotype (rs429358, and rs7412; E2, E3, and E4) 

with blood lipid. It also examined the interaction of these SNPs with dietary factors in 660 

Caucasians from the baseline data of the Prevention of Cancer by Intervention with Selenium 

(PRECISE) study. The findings of the PRECISE study were replicated using 1,238 

individuals from the Caerphilly cohort. 

Chapter 5: It was hypothesized that the replacement of energy from SFA with MUFA or 

PUFA would have a beneficial effect on lipid levels and that LPL and APOE genotypes 

would contribute to the individual variability. It has been revealed, however, that inter-

individual variability in lipid responses to dietary fat intake is influenced by genetic variation. 

Therefore, the aim of this chapter was to determine whether the LPL and APOE genotypes 

modified lipid responses after substituting SFAs with MUFAs or n-6 PUFAs in adults with 

moderate CVD risk. A retrospective analysis was conducted on 120 participants in the 
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Dietary Intervention and VAScular function (DIVAS) study.  

Chapter 6: The hypothesis of this chapter is that SNPs of genes involved in vitamin D may 

affect lipid levels, and this effect may be influenced by vitamin D supplementation. 

Therefore, this chapter aimed to evaluate the association of the SNPs at LPL, APOE and 4 

SNPs related to vitamin D genes with lipid and investigated the interaction between vitamin 

D fortified dairy drink and SNPs on lipid outcomes in 18 men with sub-optimal vitamin D 

status. 

Chapter 7: This chapter will focus on the discussion, which will be based on the findings 

from all the chapters, and the future prospects of this PhD work. 
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Table 1.1 Summary of SNPs that were examined in each chapter  

Chapters Study design  SNPs analyzed 

Chapter 2 Impact of 

Lipoprotein Lipase gene 

polymorphism, S447X, on 

postprandial triacylglycerol 

and glucose response to 

sequential meal ingestion 

Postprandial 

study  

LPL SNPs (rs320 and rs328) and seven 
APOE tagSNPs (rs405509, rs769450, 
rs439401, rs445925, rs405697, rs1160985, 
and rs1064725) 

Chapter 3 High fat diet 

modifies the association of 

LPL gene polymorphism 

with HDL-C in an Asian 

Indian population 

Case-control 

study 

LPL SNPs (rs1121923, rs328, rs4922115 
and rs285) 
 
APOE SNPs were not available in the 

dataset 

Chapter 4 Apolipoprotein 

E and lipoprotein lipase 

gene polymorphisms, 

dietary factors and blood 

lipids 

Cross 

sectional 

study  

LPL SNPs (rs320 and rs328), seven APOE 
tagSNPs (rs405509, rs769450, rs439401, 
rs445925, rs405697, rs1160985, and 
rs1064725), and one APOE haplotype 
(rs7412 and rs429358), 

Chapter 5 Apolipoprotein 

E gene polymorphism 

modifies fasting total 

cholesterol concentrations 

in response to replacement 

of dietary saturated with 

monounsaturated fatty acids 

in adults at moderate 

cardiovascular disease risk 

Intervention 

study  

LPL SNPs (rs320 and rs328) and seven 
APOE tagSNPs (rs405509, rs769450, 
rs439401, rs445925, rs405697, rs1160985, 
and rs1064725)  

Chapter 6 Impact of 

polymorphisms in genes 

related to vitamin D 

Crossover 

study  

LPL SNPs (rs320 and rs328), seven APOE 
tagSNPs (rs405509, rs769450, rs439401, 
rs445925, rs405697, rs1160985, and 
rs1064725), and four vitamin D-related 
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metabolism and serum 

lipids on vitamin D 

concentrations and lipid 

responses to vitamin D 

fortified test meals. 

SNPs NADSYN1 SNP rs12785878, 
CYP24A1 SNP rs6013897, GC SNP 
rs2282679, CYP2R1 SNP rs12794714  
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Table 1.2 Summary of studies that have investigated gene-diet interactions on lipids  

Gene 
name  

Gene 
symbol  

SNP Study 
populati
on, 
Sample 
size, N 
(healthy, 
disease) 

Age  Ethnicity Study 
design 

Lipid 
outcome
s 

Dietary 
factors 

P value 
for 
interactio
n 

Reference  

1-
acylglycer
ol-3-
phosphate 
O-
acyltransf
erase 4 

AGPAT
4 

rs3798943 

 

N=210 
(healthy 
overweig
ht)  

18-50 Caucasian 
(Canadian
)  

Intervent
ion study 

TAG Fish oil 
supplement 

P=0.02 [209] 

rs9458172       P=0.01  

Adiponect
in  

ADIPO
Q  

rs266729  N=59 
(healthy) 

21-25 

 

Caucasian 
(European
, Spanish)  

Intervent
ion study 

TAG, 
LDL-C, 
HDL-C, 
TC 
 

SFA-rich 
diet 
followed by 
CHO-rich 
diet or 
MUFA-rich 
diet 

Not 
significant 

[128] 

rs2241766 
rs1501299 
rs266729 
(haplotype) 

N=687 
(healthy 
Children) 

7-11 Korean  Cross 
sectional 
study 

TC 
  

MUFA:SFA 
intake ratio  

 

P=0.002  

 

[127] 

     LDL-C  P=0.02  

 rs1501299 N= 673 
(Type 2 
diabetes 
patients) 

40-85 Korean Cross 
sectional 
study 

HDL-C CHO intake  P=0.01 [129] 
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Angiopoi
etin-like 4  

ANGPT
L4 

rs11684306
4 

N=8511 
(healthy) 

45-64 Caucasian 
(U.S)  

Cross 
sectional 
study 

HDL-C  

 

CHO intake P=0.04 in 
men only 

 

[210] 

Angiotens
inogen 

AGT rs699 N=553 
(healthy) 

36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

TC  Total fat 
intake 

P=0.006  [115] 

     TC  SFA intake P=0.002  
     LDL-C Total fat 

intake 
P=0.01  

      LDL-C SFA intake P=0.003  
Apolipoprotein A5  

APOA5 

rs662799 N= 2148 
(healthy)  

49-51 Caucasian 
(U.S) 

Cross-
sectional 
study 

TAG n-6 PUFA 
intake 

P=0.001 [141] 

    VLDL  P=0.006  

rs662799 N=802 
(healthy) 

45-75 Puerto 
Ricans  

Cross-
sectional 
study 

TC  
 

Total fat 
intake 

P=0.03  [138] 

     TAG  P=0.03  

rs662799 N=1465 
(healthy, 
overweig
ht and 
obese) 

20-65 Caucasian 
(European
, Spanish)   

Cross-
sectional 
study 

TAG 
 

Total fat 
intake 

P=0.003 [137] 

  VLDL  P=0.002  

rs964184 

 

N=734 
(healthy, 
overweig
ht and 
obese) 

30-70 Multi-
ethnic 
(majority 
Caucasian
) 

Intervent
ion study   

 

TC  Fat diet 
(low 
compared to 
high) 

P=0.007 [142] 

   LDL-C P=0.01  

   HDL-C P=0.006  
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rs662799 
rs3135506 

N=5487 
(healthy) 

45-69 Caucasian 
(European
, Czech)   

Cohort 
study  

TC, 
TAG, 
HDL-C  

Total fat 
intake  

 

Not 
significant  

[139] 

rs662799 
 

N= 185 
(type 2 
diabetic 
patient) 

48-52 Korean Intervent
ion study 

TAG Dietary 
CHO source 
(whole 
grains and 
legumes) 

 

P=0.001 [144] 

rs662799 
rs3135506 

N=200 
young 
healthy  

18-25 Mexican Cross 
sectional  

TAG, 
TC, 
HDL-C, 
LDL-C 

Total fat 
intake and 
SFA intake 

Not 
significant 

[140] 

rs662799 N=56 
young 
adult 

22-26 Chines  Intervent
ion study  

TAG 
TAG-
rich 
lipoprote
in 

High CHO 
low fat diet  

P=0.05 
P=0.01 

[143] 

Apolipopr
otein B 

 APOB 

  

  

  

rs693 N=87 
(healthy) 

40-65 Caucasian 
(European
, Finnish)   

Intervent
ion study 

VLDL  

 

Low SF 
diet, low 
cholesterol 
diet  

P=0.05 
 

[211] 

     HDL-C  P=0.05  

rs693 N=72 
(Healthy 
men) 

19-23  

 

Caucasian 
(European
, Spanish)   

Intervent
ion study 

TAG High 
MUFA diet 

P=0.03 [212] 

rs693 N=553 
(healthy) 

36-38 Inuit 
populatio
n 

Cross 
sectional 
study 

TC 
 

Total fat 
intake 

P=0.02 [115] 
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rs1042034 N=1128 
(healthy, 
and 
carotid 
artery 
disease)  

 

49-82  

 

Caucasian 
(America
n) 

Case- 
control 
study 

TC Dietary 
cholesterol 
intake 

P=0.01 [213] 

Apolipopr
otein A1 

APOA1 rs670 N=50 
(healthy 
men) 

19-29 Caucasian 
(European
, Spanish) 

Intervent
ion study 

LDL-C MUFA diet P=0.01 [150] 

rs670 N=1577 
(healthy) 

28–
79 

 

Caucasian 
(America
n)  

Cross 
sectional 
study 

HDL-C PUFA 
intake  

P=0.005 
in women 

 

[149]  

rs670 N=1754 
(MetS 
and 
control) 

35-60 Caucasian 
(European
, French)  

A 
prospecti
ve Case 
control 
study  

LDL-
C/HDL-
C  

 

Total fat 
intake 

P=0.05 [148] 

rs670 
 
 

N=553 
(healthy) 

36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

TC SFA intake P=0.02 
 

[115] 

     LDL-C Total fat 
intake 

P=0.02 
 

 

     LDL-C SFA intake P=0.02 
 

 

rs5070     HDL-C Total fat 
intake 

P=0.03 
 

 

     HDL-C SFA intake P=0.01  
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Apolipopr
otein A4 

APOA4 

 

rs675  N=41 
(healthy 
men) 

19-23 Caucasian 
(European
, Spanish) 

Intervent
ion study 

TC 
 

SFA diet, 
low fat diet, 
MUFA diet 

P=0.03 
 

[214] 

     LDL-C  P=0.03  

rs5110     TC  P=0.03  

     LDL-C  P=0.031  

rs675 N=91 
(healthy) 

21-42 Caucasian 
(America
n)  

Intervent
ion study 

TAG Egg 
consumptio
n  

P=0.0001 [215] 

Apolipopr
otein E 

APOE rs429358 
rs7412 
 

N=103 
(healthy) 

22- 
65 

Black and 
Caucasian 
(America
n) 

Intervent
ion study 

TC 
LDL-C 

Change in 
SFA diet 

Not 
significant  

[116] 

rs429358 
rs7412 

N=420 
(healthy) 

20-65 Costa 
Ricans 

Cross 
sectional 
study 

VLDL 
 

SFA intake P=0.03  [87] 

     HDL-C  P=0.02  

rs429358 

rs7412 

N=65 
(healthy 
men) 

26-48  Caucasian 
(Canadian
)  

Intervent
ion study 

LDL-C  High CHO 
diet  

P=0.04 [121] 

rs429358 

rs7412  

N=90 
(healthy) 

35-70 Caucasian 
(British)  
 
 
 
 

Intervent
ion study 

TAG High SFA-
DHA diet 

P=0.03 [79] 
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rs429358 

rs7412  

N=996 
(healthy) 

25-46 Caucasian 
(European
, 
Lithuania
n) 

Cross 
sectional 
study 

TC 
LDL-C 

SFA intake Not 
significant 
 

[216] 

rs405509 N=553 
(healthy) 

36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

LDL-C 
 

Total fat 
intake 
 

P=0.02 [115] 

  HDL-C Total fat 
intake 
 

P=0.04 
 

 

  HDL-C SFA intake P=0.01  

Apolipoprotein C-III  

APOCIII 

rs5128  N=90 
(healthy 
men) 

18- 
26  

Caucasian 
(European
, Spanish 

Intervent
ion study  

TC  

 

High 
MUFA diet 

P=0.009 [155] 

    LDL-C  P=0.0003  

rs2854116 

-625 del 

N=336 29-53  

 

Costa 
Rica (a 
mixture 
of 
Caucasian 
and 
Amerindi
an ethnic 
groups). 

Cross 
sectional 
study 

TC  

 

SFA intake P=0.0004  [154] 

    LDL-C  P=0.01  

rs5128 N=553 
(healthy) 

36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

LDL-C 

 

Total fat 
intake 
 

P=0.03  [115] 

      SFA intake P=0.03  
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rs5128  

 

N=1510 
(MetS, 
and 
control) 

 

29-55  Iran  Case-
control 
study  

 

HDL-C  

 

Western 
dietary 
patterns 
intake 

P=0.02 in 
men 

[156] 

rs2854117 

 

N=56 
young 
adult 

22-26 Chines  Intervent
ion study  

TAG 
TAG-
rich 
lipoprote
in 

High CHO 
low fat diet  

P=0.01 
P=0.05 

[143] 

ATP-
binding 
cassette 
(ABC) 
transporte
r 

ABCA1 rs9282541 

 

N=3591 
(healthy) 

 

34-62 Mexican 

 

Cross 
sectional 
study  

HDL-C  

 

CHO intake  P=0.03 in 
premenop
ausal 
women 

[217] 

rs2230806 N=553 
(healthy) 

36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

TAG SFA intake 
 

P=0.04 
 

[115] 

ATP-
binding 
cassette, 
sub-
family G 

ABCG1 rs4148102 N=1941 
(healthy) 

21-85 Caucasian 
(European
, Spanish) 

Cross 
sectional 
study 

TC 

 

PUFA 
intake 

P=0.006  [218] 

   LDL-C  P=0.003  

acyl-CoA 
oxidase 1, 
palmitoyl 

ACOX1  rs17583163  

 

N= 208 
(healthy)  

 

22-38 Caucasian 
(Canadian
) 

 

 

Intervent
ion study 

TAG PUFA diet  

 

P=0.004 
 
 

[219] 
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Cholester
yl ester 
transfer 
protein 

CETP rs708272 N=780 
diabetic 
men  

40-75 Caucasian 
(America
n) 

Cross 
sectional 
study 

HDL-C Total fat 
intake 

 

P=0.003 [160] 

SFA intake P=0.02 

MUFA 
intake 

P=0.04 

rs708272   

 

N=12000 
(healthy) 

45-64 Caucasian 
(America
n) and 
African 
American  

Cohort 
study 

HDL-C Total fat 
intake 

 

Not 
Significan
t  

[85] 

rs708272   

-4,502C>T 

N=4210 
high 
CVD risk 
individua
ls  

55-80 Caucasian 
(European
, Spanish) 

Cross 
sectional 
study 

HDL-C Total fat 
intake 

 

Not 
Significan
t  

[161] 

rs5882 N=553 
(healthy) 

36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

TC Total fat 
intake 

P=0.04 [115] 

rs3764261 N=424 
(MetS 
patients) 

20-75 Caucasian 
(European
, Spanish)     

Intervent
ion study 

HDL-C  Mediterrane
an diet  

P=0.006  [162] 

  TAG  P=0.04  

Cytochro
me P450, 
family 1, 
subfamil
y A, 
polypepti
de 1 

CYP1A1 rs1048943 N=553 
(healthy) 

36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

TC Total fat 
intake 

P=0.03 [115] 
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CD36 
molecule  

CD36 rs6969989  N=4210 
(healthy 
women) 

39-70 Korean  Cross 
sectional 
study  

HDL-C Oily fish 
intake 

P=0.0001 [220] 

     TAG  P=0.0001  

Endotheli
al lipase 

 

LIPG rs2000813 N=497 
(healthy)  

17-79 Caucasian 
(Canadian
) 

Cohort 
Study 

HDL3-C  Total fat 
intake 

 

P=0.03 in 
women 

[221] 

    HDL3-C PUFA 
intake 

P=0.003 
in women 

 

Fatty acid 
desaturase 

FADS1 rs174546 N=3575 
(healthy)  

30-50    Caucasian 
(European
, Dutch)  

Cohort 
Study 
 

TC n-3 PUFA 
intake 

P=0.006  [222] 

   HDL-C n-6 PUFA 
intake 

P=0.004  

rs174547 

 

N=4,635 
(healthy) 

45–
68 

Caucasian 
(European
, 
Swedish) 

Cohort 
Study 

LDL-C n-3 PUFA 
intake 

P=0.01 [223] 

     HDL-C Ratio of n-3 
PUFA and 
n-6 PUFA 
intakes 

P=0.03  

Glycerol-
3-
phosphate 
acyltransf
erase 

GPAM rs17129561 
 

N=210 
(healthy 
overweig
ht) 

18-50 Caucasian 
(Canadian
)  

Intervent
ion study 

TAG Fish oil 
supplement 

P=0.04 [209] 

 rs2792751   P=0.004  
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Glucokina
se 
regulatory 
protein 

GCKR 

 

rs780094 

 

N=20986 
(healthy) 

40-79 Caucasian 
(European
) 

Cohort 
study  

TAG 
TC  

Mediterrane
an diet 
 

Not 
significant 

[224] 

Hepatic 
lipase  

LIPC 

 

rs1800588 N=2130 
(healthy) 

28-79 Caucasian 
(U.S) 

Cross-
sectional 
study 

HDL-C  Total fat 
intake 

 

P=0.001 

 

[168] 

rs1800588 N=2170 
(healthy) 

29-51 Chinese, 
Malaysian 
and Asian 
Indians 

Cross-
sectional 
study 

TAG 
 

Total Fat 
intake  

P=0.001 [169] 

   HDL-
C/TG 

 P=0.001  

   HDL- 
C (only 
with 
Indian) 

 P=0.01  

rs1800588 N=780 
(Type 2 
diabetic 
men) 

40–
75 

 

Caucasian 
(America
n) 

Cross-
sectional 
study 

HDL-C SFA intake 

 

P=0.003 [170] 

rs1800588 N=12000 
(healthy) 

45-64 Caucasian 
(America
n) and 
African 
American 

Cohort 
study 

HDL-C Total fat 
intake 

 

P=0.01 [85] 

rs1800588 N=553 
(healthy) 

36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

TAG Total fat 
intake 

SFA intake 

P=0.02 

 

P=0.03  

[115] 
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Interleuki
n 6 

IL-6 rs1800796  N=581 
(healthy) 

40-65 Chinese Cross-
sectional 
study 

HDL-C n-3 PUFA 
intake 

P=0.02 in 
men 

[225] 

rs2069845 N=268 
(healthy 
and obese 
women) 

18-45 Black and 
Caucasian 
(South 
African) 

Cross-
sectional 
study 

TAG 
 

Total fat 
intake 

 

P=0.04 (in 
black) 

[226] 

  TC/HDL
-C ratio  

Total fat 
intake 

P=0.02 (in 
black) 

 

rs1800795  TAG 

 

n-3PUFA 
intake 

P=0.04 (in 
white) 

 

     TC/HDL
-C 

EPA intake P=0.02 (in 
white) 

 

     TC/HDL
-C 

DHA intake P=0.01  

Lipoprote
in lipase  

 

LPL  

 

rs328 N=12000 
(healthy) 

45-64 Caucasian 
(America
n) and 
African 
American  

Cohort 
study 

HDL-C Total fat 
intake 

 

P=0.002 
in white 

 

[85] 

rs328  

 

N=452 
(MetS) 
replicated 
in 1754 

 

35-70 Caucasian 
(European
, 8 
countries)  

Cohort 
study 

TAG  n-6 PUFA 
intake 

 

P=0.04  
 

[109] 

rs1059611 

 

  TAG  n-6 PUFA 
intake 

P=0.04  
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rs13702  

 

Ten 
cohorts 
study 

27,756 
individua
ls 

32- 
77 

Caucasian 
(European
, and 
American
) 

Meta-
analysis  

 

TAG PUFA 
intake  

P=0.001  

 

[110] 

rs13702 N=7187 
(healthy) 

55-80 Caucasian 
(European
, Spanish) 

Intervent
ion study 

TAG MUFA 
intake, 
baseline  

P=0.03 
 

[108] 

    Unsaturated 
fat intake, 
baseline 

P=0.03  

      After 
intervention
, with 
Mediterrane
an diet 

P=0.02  

Liver X 
receptorα  LXR𝛼 rs12221497  N=732 

(healthy) 
40-60 Caucasian 

(French-
Canadian) 

Cross 
sectional 
study  

TC Dietary 
cholesterol 
intake  

P=0.04 [227] 

       LDL-C  P=0.02  

  rs3758674     TC 
 

Dietary 
cholesterol 
intake  

P=0.03 
 

 

       LDL-C  P=0.02  

  -840C>A     TC 
 

Dietary 
cholesterol 
intake  

P=0.04 
 

 

       LDL-C  P=0.02  
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Lipin 1 LPIN1  rs4315495 N=373 
(healthy, 
obese or 
overweig
ht) 

34-48 Caucasian 
(European
) 

Intervent
ion study 

TAG Protein diet P=4x10-6 [228] 

Monoglyc
eride 
lipase 

MGLL rs782440  N=210 
(healthy) 

18-50 Caucasian 
(Canadian
)  

Intervent
ion study 

LDL-C 
 

n-3 PUFA 
supplementa
tion 

P=0.01 [229] 

 rs6776142    P=0.008  

 rs555183      P=0.04  

  rs782444       P=0.04  

  rs6787155       P=0.02  

  rs1466571       P=0.02  

Methylen
e- 
tetrahydro
folate 
reductase 

MTHFR 

 

rs1801133 N=574 
(healthy) 

31-59  Caucasian 
(European
, Greece)  

Cross 
sectional 
study  

Oxidize
d LDL 

Mediterrane
an diet 

 

P=0.001 [230] 

Nitric 
oxide 
synthase 
3 

NOS3  

 

rs1799983  N=450 
(MetS 
patients) 

53-55  Caucasian 
(European
, 8 
countries)  

Intervent
ion study 

 

TAG n-3 PUFA 
diet 

 

P=0.01 [231] 

Niemann-
Pick C1-
like 1 

NPC1L1 rs2072183 N=1128 
(healthy, 
and 
carotid 
artery 
disease) 

49-82  

 

Caucasian 
(America
n 

Case 
control 
study 

TC Dietary 
cholesterol 
intake 

P=0.01 [213] 
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Nuclear 
factor 
kappa B  

NFKB1 rs28362491  N = 593 
(healthy)  

20-29  Caucasian 
(Canadian
) 

Cross 
sectional 
study 

HDL-C PUFA 
intake  

P=0.02 [232] 

   N = 103 
(type 2 
diabetes) 

42–
75  

 

  HDL-C PUFA 
intake 

P=0.005  

Paraoxon
ase  

PON1 rs662 N=654 
(healthy 
men) 

25-74 Caucasian 
(European
, Spanish) 

Cross-
sectional 
study  

HDL-C Oleic acid 
intake  

Not 
significant  

[233]  

Peroxiso
me 
proliferat
or-
activated 
receptor- 
alpha   

PPARA  

 

 

rs1800206 N=2106 
(healthy)  

 

44-64 Caucasian 
(U.S)  

Cross-
sectional 
study  

TAG n-6 PUFA 
intake 

P=0.01 [174] 

rs1800206 N=20 
(healthy 
men) 

23- 
49 

 

Caucasian 
(Canadian 

Intervent
ion study  

TC  
 

PUFA: SFA  
diet ratio  

P=0.04 

 

[176] 
 

rs1800234 N=2899 
(healthy) 
 

25-49 Chinese Cross-
sectional 
study 

HDL-C PUFA 
intake 

P=0.04 (in 
women.)  

 

[179] 

rs1800206 N=28 
(healthy 
men) 

21- 
53 

 

Caucasian 
(Canadian
)  
 
 
 
 

Intervent
ion study  

TC 
HDL-C 
LDL-C 
TAG 

n-3 PUFA 
diet 

No 
significant 

[177] 
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rs6008259 
 

N=13614 
(healthy) 

45-64 Caucasian 
(America
n) and 
African 
American 

Cross-
sectional 
study 

TC 
 

n-6 PUFA 
intake  

P=0.03 

in white 

[175] 

     LDL-C n-6 PUFA 
intake 

 

P=0.03  

in white 

 

rs3892755     TC n-3 PUFA 
intake 

P=0.03 

in African 

 

     LDL-C n-3 PUFA 
intake 

P=0.02  

in African 

 

Peroxiso
me 
Proliferat
or-
Activated 
Receptor 
Gamma 

PPARG rs1801282 N=151 
(healthy) 

30-65 Caucasian 
(European 
4 
countries, 
and 
Australian
) 

Intervent
ion study  

TAG 

 

n-3 PUFA 
diet 
compared to 
high fat diet   

P=0.003  [182] 

    TAG n-3 PUFA 
diet 
compared to 
SFA diet 

P=0.006  

rs1801282 N=347(h
ealthy) 

30-70 Caucasian 
(British) 

Intervent
ion study 

TC  
 

PUFA: SFA 
diet ratio  

P=0.02  [183] 

     LDL-C  P=0.002  
     TAG  P=0.02  
rs10865710 N=553 

(healthy) 
36-38 

 

Inuit 
populatio
n 

Cross 
sectional 
study 

TC  

 

Total fat 
intake 

P=0.01  [115] 

     TC SFA intake P=0.01  
     LDL-C Total fat 

intake 
P=0.007  

     LDL-C SFA intake P=0.008  
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Peroxiso
me 
proliferat
or-
activated 
receptor 
delta 

PPAR-
delta 

 

rs2016520  

 

N=340 
(healthy) 

37-60 Caucasian 
(French 
Canadians
)  

Cross 
sectional 
study 

HDL-C 
 

Total Fat 
intake 

P=0.003 [234] 

      TC\HDL
-C ratio 

 P=0.04  

Retinoid 
X 
receptor, α 

RXRA  rs11185660 N= 208 
(healthy)  

18-50 Caucasian 
(Canadian
) 

Intervent
ion study 

TAG Total fat 
diet 

P=0.004 
 
 

[219] 

 rs11185660    TAG SFA diet P=0.002  
 rs10881576    TAG SFA diet P=0.004  
 rs12339187    TAG SFA diet P=0.01  

Toll-like 
receptor 4  

 

TLR4  

 

rs5030728  

 

N= 676 
(healthy)  

 

20 -
29  

 

Caucasian 
(Canadian
) 

Cross 
sectional 
study 

HDL-C SFA intake P=0.003 [235] 

Transcript
ion factor 
7-like 2 

TCF7L2 rs7903146  N=1083 
(healthy) 

17-92 Caucasian 
(European
an 
American
) 

Intervent
ion study  

VLDL 
 

PUFA diet P=0.01  [236] 

     Postpran
dial 
TAG 

 P=0.02  

Tumor 
necrosis 
factor- 
alpha  

TNFA  rs361525 

 

N=109 
(Type 2 
diabetes) 

42–
75 

Caucasian 
(Canadian
) 

Cross 
sectional 
study 

HDL-C PUFA 
intake 

P=0.003 

 

[187]  

rs1800629  HDL-C PUFA 
intake 

P=0.001  

rs1800629 

rs361525  

N=595 
(healthy) 

20-29 Caucasian 
(Canadian
) 

Cross 
sectional 
study 
 
 
 
 

HDL-C  PUFA 
intake 

P=0.04 [188] 
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rs1800629 N=223 
(healthy 
and obese 
women) 

18-45 Black  Cross 
sectional 
study 

TC/HDL
-C ratio  
 
 

α -linolenic 
acid 
intake 
 

P=0.03 
 

[189] 

   LDL-C PUFA 
intake 

P=0.02  

rs1800629 N=148 
(healthy 
and obese 
women) 

18-45 Caucasian 
(South 
Africa) 

Cross 
sectional 
study 

TC  SFA intake P=0.04 [88] 

rs1800629 N=507 
(MetS 
patients) 

20-75 Caucasian 
(European
, Spanish) 

Intervent
ion study 

TAG Mediterrane
an diet 

P=0.005  [190] 

Vascular 
endothelia
l growth 
factor A 

VEGFR
2 

 

rs2071559 N=136 
(healthy) 

30-65 Japanese Cross-
sectional 
study 

 

LDL-C Western 
Diet 

P=0.01 [237] 

rs1870377 N=179 
(healthy) 

 Chinese 
Malaysian 

LDL-C 

 

Meat, rice 
and noodles 
diet 

P=0.001 
 

 

Abbreviations TAG; triacylglycerol, HDL-C; high-density lipoprotein, LDL-C; low-density lipoprotein, TC; total cholesterol, VLDL; very low 

density lipoprotein, SFA; saturated fatty acids, MUFA; monounsaturated fatty acids, PUFA; polyunsaturated fatty acids, EPA; eicosapentaenoic 

acid, DHA; docosahexaenoic acid; CHO; carbohydrates, MetS; metabolic syndrome. 
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Chapter 2 
 

For this study, I was involved in getting the dataset from the collaborators and 

cleaning the dataset. I ran the entire statistical analysis using the SPSS software and wrote the 

first draft of the manuscript. I revised the manuscript based on the comments from all the co-

authors before the manuscript was submitted to the journal. I was also involved in drafting 

the responses to the comments from reviewers.  

For the APOE genetic analysis, I had to prepare the DNA samples to be transported to 

the LGC Genomics company in London to run the genotyping analysis of the candidate SNPs 

from the APOE gene.   
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Chapter 2 Impact of Lipoprotein Lipase gene polymorphism, S447X, on postprandial 

triacylglycerol and glucose response to sequential meal ingestion 

 

Published 
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Jackson, Karani S Vimaleswaran (2016) Impact of Lipoprotein Lipase gene polymorphism, 

S447X, on postprandial triacylglycerol and glucose response to sequential meal ingestion. 

International journal of molecular sciences 17 (3):397 

2.1 Abstract 

Lipoprotein lipase (LPL) is a key rate-limiting enzyme for the hydrolysis of 

triacylglycerol (TAG) in chylomicrons and very low-density lipoprotein. Given that 

postprandial assessment of lipoprotein metabolism may provide a more physiological 

perspective of disturbances in lipoprotein homeostasis compared to assessment in the fasting 

state, we have investigated the influence of two commonly studied LPL polymorphisms 

(rs320, HindIII; rs328, S447X) on postprandial lipaemia, in 261 participants using a standard 

sequential meal challenge. S447 homozygotes had lower fasting HDL-C (P=0.015) and a 

trend for higher fasting TAG (P=0.057) concentrations relative to the 447X allele carriers. In 

the postprandial state, there was an association of the S447X polymorphism with postprandial 

TAG and glucose, where S447 homozygotes had 12% higher TAG area under the curve 

(AUC) (P=0.037), 8.4% higher glucose-AUC (P=0.006) and 22% higher glucose- 

incremental area under the curve (IAUC) (P=0.042). A significant gene-gender interaction 

was observed for fasting TAG (P=0.004), TAG-AUC (Pinteraction=0.004) and TAG-IAUC 

(Pinteraction=0.016), where associations were only evident in men. In conclusion, our study 

provides novel findings of an effect of LPL S447X polymorphism on the postprandial glucose 

and gender-specific impact of the polymorphism on fasting and postprandial TAG 
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concentrations in response to sequential meal challenge in healthy participants. 

2.2 Introduction  

Large prospective cohort studies have identified elevated non-fasting triacylglycerol 

(TAG) concentrations as an independent risk factor for cardiovascular disease (CVD) [1]. 

The Copenhagen City Heart Study [2] and US Women’s Health Study [3] showed that non-

fasting TAG concentrations of ≥5.0 mmol/L were associated with myocardial infarction and 

the Norwegian Counties Study [4] showed that non-fasting TAG levels of >3.5 mmol/L were 

associated with a 5-fold increase in risk of death from coronary heart disease. Endothelial 

associated Lipoprotein lipase (LPL) (E.C. 3.1.1.34) plays an important role in the metabolism 

and clearance of triacylglycerol (TAG)-rich lipoproteins from the circulation [5] and 

atherogenesis, where it influences the interaction between atherogenic lipoproteins and 

receptors on the vascular wall [6]. Hence, enzymes such as lipoprotein lipase (LPL) (E.C. 

3.1.1.34) that regulate lipoprotein metabolism in the postprandial state [7] are of interest to 

the prevention of CVDs.  

Several polymorphisms in the LPL gene have been shown to lead to a reduction in 

enzyme synthesis and activity and, to date, rs320 [HindIII (T/G)] and rs328 [Serine 447 Stop 

S447X (C/G)] have been the most extensively studied. These variants with a prevalence of 

40-75% (rs320) and 17-22% (rs328) among Caucasians [8, 9], respectively, have been shown 

to be associated with coronary artery disease, myocardial infarction [10-12] and pronounced 

fasting hypertriacylglycerolemia [13, 14]. Only limited number of studies has examined their 

impact on postprandial lipaemia [15-17] and these studies have used only a single test meal, 

which does not reflect the habitual eating pattern in humans.  

Given that we spend nearly 75% of the time in a postprandial state, the normal 

physiological pattern of meal intake and the impact of LPL gene polymorphisms on the 
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clearance of dietary TAG may be more evident after a sequential meal challenge. Hence, in 

the present study, we investigated the association of the two commonly studied LPL 

polymorphisms [rs320 (HindIII) and rs328 (S447)] with fasting and postprandial lipid 

concentrations by using a standard sequential meal challenge and examined the penetrance of 

genotype according to gender, with gender previously shown to be a modulator of the impact 

of other variants on postprandial TAG handling [18].  

2.3 Experimental Section 

2.3.1 Subjects  

All individuals included in this study were obtained from postprandial studies using identical 

inclusion/exclusion criteria, and all underwent the same sequential meal postprandial 

protocol, at University of Reading between 1997-2007, as previously described [19]. Briefly, 

261 participants (109 women and 153 men) aged 22–71 years and BMI 17.6-37.3 kg/m2, 

were included in the dataset. The postprandial study excluded participants who had CVD, 

including angina stroke; diabetes or fasting glucose > 6.5 mmol/l, liver or other endocrine 

dysfunction; were pregnant or lactating; who were smoking > 15 cigarette per day; doing 

aerobic exercise more than three times per week; who had hemoglobin levels < 130g/L for 

men and 120g/L for women or taking medication or supplements. The University of Reading 

Ethics and Research Committee and the West Berkshire Health Authority Ethics Committees 

approved the experimental protocol. Informed consent to participate in the study was 

obtained. 

2.3.2 Sequential test meal protocols  

Details of the postprandial protocol have been described previously [19]. Briefly, study 

participants were asked to refrain from alcohol or organised exercise regimens on the 
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previous day and were provided with a relatively low fat (<10 g fat) evening meal to 

standardise short-term fat intake. After a 12 h overnight fast, the participants were cannulated 

and fasting blood sample was taken. Following a standard test breakfast (0 min; 3.9 MJ 

energy, 111 g carbohydrate, 19 g protein and 49 g fat) and lunch (330 min; 2.3 MJ energy, 

63 g carbohydrate, 15 g protein and 29 g fat), blood samples were taken from the cannula at 

30–60 min intervals until 480 min after the test breakfast.  

2.3.3 Biochemical measurements 

Plasma glucose and lipid concentrations were measured using an automated analyzer assay 

(Instrumentation Laboratory (UK) Ltd, Warrington, UK). In the fasting sample, HDL-C was 

estimated in the supernatant following precipitation of the apolipoprotein B (apoB)-

containing lipoproteins with a dextran-manganese chloride reagent. The LDL-C 

concentration was calculated using the Friedewald formula. Insulin levels were determined 

by ELISA (Dako Ltd, High Wycombe, UK). The total area under the curve (AUC, 0-480 

min) was calculated using the trapezium rule, and incremental area under the curve (IAUC) 

calculated by subtracting the fasting levels from the total AUC. For NEFA, AUC and IAUC 

were calculated from the time of suppression until the end of the postprandial period (120-

480 min) due to initial drop in NEFA concentrations after the meal. The homeostasis model 

assessment of insulin resistance (HOMA-IR) was calculated using formula: [fasting insulin 

(pmol/l) x fasting glucose (mmol/l)]/135.  

2.3.4 DNA extraction and genotyping  

DNA was isolated from the buffy coat layer of 10 ml of EDTA blood using the Qiagen DNA 

Blood Mini Kit (Qiagen Ltd, Crawley, UK). Allelic discrimination of two LPL gene 

polymorphisms (rs320, HindIII and rs328, S447) was conducted using a ‘Assay-on-Demand’ 

SNP genotyping assays (Applied Biosystems, Warrington, UK).  
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2.3.5 Statistical analyses  

The statistical significance of associations between biochemical data and genotypes 

was established using a general linear model adjusted for covariates such as age, gender, and 

BMI, which are highly correlated to lipid concentrations. Genotype distribution for LPL 

SNPs was assessed using the Hardy-Weinberg equilibrium. Given the small number of rare 

homozygotes, we applied a dominant model in which carriers of 1 or 2 copies of the minor 

allele of the two polymorphisms HindIII and S447X were grouped and compared with major 

allele homozygotes. Interaction between gender and polymorphisms on outcomes was 

examined by introducing the interaction terms into the linear regression analysis models with 

adjustment to same variables in association test. All data presented in the text and tables 

represents mean ±SD. We used SPSS software (version 21; SPSS Inc, Chicago, IL) for all 

statistical analyses. Probability values under 0.05 were considered significant. 

2.4 Results 

The study participants included 153 men (mean±SD, age 53±10 years; BMI  27.3±3.1 kg/m2) 

and 109 women (mean±SD, age 52±11 years; BMI 25.4±3.5 kg/m2). The prevalence of S447 

homozygotes was 81% (n=213) versus 18% 447X minor allele carriers (n=48). The frequency 

of carriers of 447X in this study was consistent with published reports in Caucasian 

population [20]. 56% of participants were homozygous for the H1 major allele for HindIII 

(n=131) with 43% H2 minor allele carriers (n=100).  

Table 2.1 describes the baseline characteristics of participants according to the S447X 

polymorphism. There was a borderline genotype-related association with fasting serum TAG 

levels after adjusting for age, gender, and BMI (P=0.057). Circulating HDL-C concentrations 

were markedly lower in S447 homozygotes than 447X allele carriers (P=0.015). None of the 
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other fasting biochemical parameters were significantly associated with S447X (Table 2.1) or 

HindIII polymorphisms (Table 2.2) (all P >0.05).  

A greater TAG AUC was observed in S447 allele homozygotes following the 

sequential meals (P=0.037). The AUC and IAUC of the glucose response was 8.4% 

(P=0.006) and 22.6% (P=0.042) lower in 447X allele carriers (P=0.006), respectively than 

common homozygotes. The postprandial summary measures did not show any association 

with HindIII genotypes (Table 2.2).   

The S447X polymorphism showed a significant interaction with gender on fasting 

TAG (P=0.004) (Figure 2.1), TAG AUC (P=0.004) (Figure 2.2) and TAG IAUC (P=0.016) 

(Figure 2.3), with the major S447 allele homozygotes at S447X in men showing higher 

values for fasting and postprandial TAG compared with X minor allele carriers.  

Given the strong linkage disequilibrium between the two LPL polymorphisms [15], 

we also examined the combined effects of the polymorphisms on baseline characteristics and 

postprandial TAG and glucose. Nine possible genotype combinations were generated. 

However, given the small sample size, only 3 combinations [S447S - H1/H1 (n=131), S447S 

– H1/H2 (n= 55) and S447X – H1/H2 (n=45)] were available in our study participants. The 

frequencies of these three genotype combinations are presented in the Table 2.3. In the 

genotype-genotype analysis, we found that individuals with the S447S genotype irrespective 

of HindIII alleles (i.e., SS/H1H1 and SS/ H1H2) had higher TAG AUC (P=0.040) and 

glucose AUC (P=0.034) levels than 447X allele carriers (Table 2.4) suggesting that the 

associations are driven mainly by the S447X polymorphism.  
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Table 2.1: Baseline and postprandial characteristics of the participants according to 

LPL-S447X polymorphism 
Participants characteristics  S/S (n=213) S/X (n=48) Passociation 

Age (years) 53 ±11 52 ±11 0.648 

Men/Women 125/88 27/21 - 

BMI (kg/m2) 26.3 ±3.4 27.4 ±3.2 0.015 
Baseline characteristics 

TC (mmol/l) 5.78 ±1.05 5.62 ±1 0.285 

TAG (mmol/l) 1.67 ±0.90 1.48 ±0.51 0.057 

HDL-C (mmol/l) 1.29 ±0.42 1.40 ±0.33 0.015 

LDL-C (mmol/l) 3.73 ±1.02 3.53 ±0.92 0.167 

Glucose(mmol/l) 5.16 ±0.66 5.14 ±0.45 0.534 

Insulin (pmol/l) 48.3 ±31.2 50.3 ±26.2 0.517 

NEFA (μmol/l) 519 ±184 477 ±170 0.102 

HOMA-IR 1.96 ±1.40 1.99 ±1.09 0.376 
Postprandial summary measures 
TAG AUC (mmol/l × 480 min) 1193 ±593 1046 ± 429 0.037 

TAG IAUC (mmol/l × 480 min)  353 ±228 305 ±210 0.149 

NEFA AUC mmol/l × 300 min 153 ±45 149 ±32 0.410 

NEFA IAUC (mmol/l × 300 min) 96 ±39 100 ± 26  0.792 

Glucose AUC (mmol/l × 480 min) 3114 ±460 2850 ± 763 0.006 

Glucose IAUC (mmol/l × 480 min) 595 ±284 460 ± 238 0.042 

Insulin AUC (nmol/l × 480 min) 139 ±94 123 ±38 0.858 

Insulin IAUC (nmol/l × 480 min)  114 ± 89 100± 34 0.876 

Values are mean ± standard deviation. P-values are from a linear model testing the 

association with LPL-S447X, adjusted for age, gender, BMI. Abbreviations: TC, total 

cholesterol; TAG, triacylglycerol; HDL-C, high density lipoprotein cholesterol; LDL-C, low 

density lipoprotein cholesterol; NEFA, non-esterified fatty acids; HOMA-IR, homeostasis 

model assessment - insulin resistance. For the baseline analysis, the insulin and HOMA-IR 

values were available for 166 participants (men = 124, women = 42). For the postprandial 

analysis, the insulin AUC and IAUC data was available for 79 participants (men = 68, 
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women = 11). 

Table 2.2: Baseline and postprandial characteristics of the participants according to 

LPL- HindIII polymorphism 
Participants characteristics H1 (n=131) H1/H2 (n=100) Passociation 

Age (years) 53 ±11 52 ±10 0.567 

BMI (kg/m2) 26.0 ±3.4 26.6 ±3.1 0.095 
Baseline characteristics 

TC (mmol/l) 5.62 ±1.02 5.67 ±1 0.517 

TAG (mmol/l) 1.53 ±0.87 1.55 ±0.65 0.972 

HDL-C (mmol/l) 1.35 ±0.42 1.36 ±0.39 0.526 

LDL-C (mmol/l) 3.59 ±0.96 3.59 ±0.98 0.872 

Glucose(mmol/l) 5.14 ±0.69 5.10 ±0.50 0.413 

Insulin (pmol/l) 45.9 ±30.0 52.2 ±31.9 0.414 

NEFA (μmol/l) 530 ±200 498 ±173 0.177 

HOMA-IR 1.87 ±1.36 2.06 ±1.35 0.680 
Postprandial summary measures 
TAG AUC (mmol/l × 480 min) 1086 ±549 1098 ±464 0.947 

TAG IAUC (mmol/l × 480 min)  321 ±212 335 ±230 0.677 

NEFA AUC mmol/l × 300 min 155 ±40 153 ±49 0.600 

NEFA IAUC (mmol/l × 300 min) 99 ±33 94 ±45  0.231 

Glucose AUC (mmol/l × 480 min) 3109 ±408 2958 ±705 0.065 

Glucose IAUC (mmol/l × 480 min) 590 ±287 558 ± 269 0.648 

Insulin AUC (nmol/l × 480 min) 128 ±59 134 ±130 0.782 

Insulin IAUC (nmol/l × 480 min)  105 ±54 109±125 0.879 

Values are mean ± standard deviation. P-values are from a linear model testing the 

association with LPL-S447X, adjusted for age, gender, BMI. Abbreviations: TC, total 

cholesterol; TAG, triacylglycerol; HDL-C, high density lipoprotein cholesterol; LDL-C, low 

density lipoprotein cholesterol; NEFA, non-esterified fatty acids; HOMA-IR, homeostasis 

model assessment - insulin resistance. For the baseline analysis, the insulin and HOMA-IR 

values were available for 166 participants (men = 124, women = 42). The fasting and 
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postprandial insulin and HOMA-IR were not available for all participants (n= 151). 

 

Figure 2.1 Mean (SEM) for fasting triacylglycerol (TAG) according to S447X polymorphism 

in men and women. Carriers of one or two copies of X minor allele are combined and 

presented by white bars. Gene-gender interaction was statistically significant for fasting TAG 

levels (Pinteraction=0.031).  

  

Figure 2.2 Mean (SEM) for the AUC TAG response according to S447X polymorphism after 

consumption of a test breakfast (49 g fat) at 0 min and a test lunch (29 g fat) at 330 min. S447 

homozygotes (n=213) had 12% higher TAG area under the curve (AUC) (P=0.037) 

compared to 447X carriers (n=48) for men. Carriers of one or two copies of X minor allele 

are combined and presented by white bars. Gene-Gender interaction was statistically 
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significant for area under the TAG curve values (Pinteraction=0.004).  

 

Figure 2.3 Mean (SEM) for the IAUC TAG response according to S447X polymorphism 

after consumption of a test breakfast (49 g fat) at 0 min and a test lunch (29 g fat) at 330 min 

in men, and women. Carriers of one or two copies of X minor allele are combined and 

presented by white bars. Gene-Gender interaction was statistically significant for IAUC TAG 

(Pinteraction=0.016).  

Table 2.3: Distribution of study participants according to combined LPL HindIII and S447X 

markers 

S447X-HindIII S/S S/X X/X 
H1/H1 131 0 0 
H1/H2 55 45 0 
H2/H2 0 0 0 
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Table 2.4 Association between the combined genotypes of LPL S447X-HindIII 
polymorphisms and fasting and postprandial characteristics.  

Participants characteristics SS/H1 

(n=131) 

SX/H1H2 

(n=45) 

SS/H1H2 

(n=55) 

Passociation 

Age (years) 53 ±11 52 ±11 52 ±9 0.570 

BMI (kg/m2) 25.9 ±3.4 27.2 ±3.1 26.1±2.9 0.052 
Baseline characteristics 

TC (mmol/l) 5.62 ±1.02 5.58 ±0.99 5.75±1.01 0.649 

TAG (mmol/l) 1.53 ±0.87 1.44 ±0.47 1.64±0.76 0.230 

HDL-C (mmol/l) 1.35 ±0.42 1.41 ±0.33 1.32±0.43 0.128 

LDL-C (mmol/l) 3.59 ±0.96 3.50 ±0.91 3.67±1.04 0.596 

Glucose(mmol/l) 5.14 ±0.69 5.12 ±0.49 5.09±0.53 0.708 

Insulin (pmol/l) 45.9 ±30.0 49.9 ±26.6  54.18±36 0.298 

NEFA (μmol/l) 530 ±200 471 ±171 519±173 0.145 

HOMA-IR 1.87 ±1.36 1.97 ±1.11 2.13±1.54 0.434 
Postprandial summary measures 
TAG AUC (mmol/l × 480 min) 1086 ±549 995 ±369 1183±518 0.040 

TAG IAUC (mmol/l × 480 
min)  

321 ±212 302 ±215 361±241 0.262 

NEFA AUC mmol/l × 300 min 155 ±40 149 ±33 156±59 0.554 

NEFA IAUC (mmol/l × 300 
min) 

99 ±33 100 ±27  89±55 0.333 

Glucose AUC (mmol/l × 480 
min) 

3109 ±408 2831 ±797 3057±617 0.034 

Glucose IAUC (mmol/l × 480 
min) 

590 ±287 454 ± 248 636±260 0.051 

Insulin AUC (nmol/l × 480 
min) 

128 ±60 119 ±38 145±169 0.948 

Insulin IAUC (nmol/l × 480 
min)  

105 ±54 95±303 118±164 0.967 

Abbreviations: TC, total cholesterol; TAG, triacylglycerol; HDL-C, high density lipoprotein 

cholesterol; LDL-C, low density lipoprotein cholesterol; NEFA, non-esterified fatty acids; 

HOMA-IR, homeostasis model assessment - insulin resistance; AUC, area under the curve; 

IAUC, incremental area under the curve. 



 

 95 

2.5 Discussion  

Our postprandial study using a standard sequential meal challenge demonstrates that 

individuals homozygous for the common allele of the S447X polymorphism had significantly 

lower fasting HDL-C levels and a significantly elevated postprandial TAG and glucose 

response relative to 447X allele carriers. In addition, a gender-specific association between 

the S447X polymorphism and fasting and postprandial TAG concentrations was observed, 

where the effect of the genotype was evident only in men.  

Several studies have demonstrated the association between S447 genotype and elevated 

fasting plasma TAG levels and lower HDL-C levels [21, 22]. Our study also has shown a 

borderline association of the S447 allele with higher TAG and a significant association with 

lower HDL-C levels, which is in accordance with a meta-analysis (n=45,079) that showed 

0.05 mmol/L lower HDL-C levels and 0.15 mmol/L higher TAG among the S447 

homozygotes [12]. Furthermore, the association of the S447 genotype with postprandial TAG 

in our study has also been confirmed in previous studies (Table 3.5). However, the 

mechanism by which this polymorphism affects lipid levels still remains obscure. Functional 

studies have demonstrated that the 447X variant that results in a 2 amino acid truncation on 

the carboxyl-terminal domain of the LPL increases the ability of the cell surface receptors to 

bind with TAG-lipoproteins [8]; but it is not clear how this truncation increases the ability of 

LPL to bind TAG. While a few studies have reported that S447X polymorphism might 

increase or decrease the LPL activity [23-25], some have failed to show a significant effect 

[24, 26]. The probable mechanism by which LPL S447 allele lowers HDL-C could be related 

to higher TAG concentrations. A delayed clearance of triglyceride-rich lipoproteins (TRLs) 

drives the transfer of TAG from TRLs to both LDL and HDL by cholesteryl ester transfer 

protein (CETP), which makes them suitable substrates for lipases. This leads to the formation 
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of smaller denser HDL particles, which are rapidly removed from the circulation, thus 

decreasing HDL-C concentrations [27]. 

We also observed a novel association between LPL S447X polymorphism and 

postprandial glucose using the sequential meal challenge, where S447 homozygotes had 

higher glucose AUC and IAUC. Previous postprandial studies have shown higher 

postprandial glucose concentrations in response to three meals [28, 29]. Given that the 

postprandial studies examining the effects of LPL polymorphisms have used only a single 

meal [15-17], it is possible that the effects of LPL polymorphisms on postprandial glucose 

have been missed previously. One of the reasons for higher postprandial glucose could be due 

to the decreased insulin sensitivity in the S447 homozygotes [30]. LPL has been considered 

as a link between insulin resistance and atherosclerosis, given its role in controlling the 

delivery of free fatty acids to muscle, adipose tissue and vascular wall macrophages, wherein 

lipid uptake influences insulin sensitivity [31]. It was also shown in the Quebec Family study 

that the LPL markers (HindIII and S447X) combination influenced the insulin AUC during an 

oral glucose tolerance test [32]. In our study, we did not find any association with fasting and 

postprandial insulin and HOMA-IR, which might be due to limited power for this analysis as 

insulin concentrations were not available for all participants (n<166). However, given that 

low HDL cholesterol and high TAG are frequently found with insulin resistance [33], it is 

possible that decreased insulin sensitivity could be a possible mechanism for higher 

postprandial glucose concentrations in the S447 homozygotes. This was also shown in a 

previous study where individuals with insulin resistance had elevated fasting and postprandial 

TAG, and lower HDL-C levels [34].  

Our results also demonstrated gender-specific effect of LPL S447X polymorphism on 

fasting and postprandial TAG, where the association was significant only in men. The 

gender-specific effects of other SNPs (LEPR [35], APOA5 [18] and APOB [36]) in men have 
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already been shown in our postprandial cohort which is characteristic of men with higher 

BMI, fasting TAG, insulin and lower HDL-C than women irrespective of the genotype. A 

postprandial study in 63 men also showed that those with low fasting HDL-C and high TAG 

concentrations had higher postprandial TAG [37]. It is possible that men from our cohort 

were at a greater metabolic stress which may be a contributory factor in the gender-specific 

effect of S447 genotype on the fasting and postprandial responses.  

Previous studies have shown associations between the HindIII polymorphism and 

elevated lipids [10]. In this study, we did not find any significant difference in fasting and 

postprandial lipid levels across the genotypes of the polymorphism. However, the 

combination of HindIII and S447X markers revealed significant associations with TAG and 

glucose AUC, which might be due to the strong linkage disequilibrium between the HindIII 

and S447X markers. In addition, previous studies have investigated the effect of this 

polymorphism on postprandial lipids using only a single meal [15]. Hence, our finding with 

HindIII polymorphism requires a replication using a sequential meal challenge, which 

reflects the habitual eating pattern.   

In conclusion, our study provides novel findings of an effect of LPL S447X 

polymorphism on the postprandial glucose and gender-specific impact of the polymorphism 

on fasting and postprandial TAG levels in response to sequential meal challenge in healthy 

participants. The elevated fasting and postprandial TAG and postprandial glucose and lower 

fasting HDL-C concentrations are likely to result in prolonged appearance of lipids, in 

particular remnant particles, which might be one of the reasons for the increased prevalence 

of CVD in participants carrying the S447 allele. Further studies are required to confirm our 

gender-specific associations between the LPL polymorphism and fasting and postprandial 

TAG levels with an assessment of serum LPL concentrations and activity using a sequential 
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meal challenge. This will further shed light on the size-effect of LPL polymorphisms on lipid 

and glucose metabolism in population subgroups.   
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Table 2.5 List of postprandial studies determining the effects of LPL gene polymorphisms (S447X and HindIII) on fasting and 
postprandial lipids.  

Reference  Sample  Meal Composition Size LPL  

Polymorphism  

Outcome  

 

Association (P 
Value)  

 
Lopez-Miranda 
et al. 2004 [15] 

 

51 High fat meal (60 g fat and 420 mg 
cholesterol—60% fat, 15% protein, and 25% 
carbohydrate)  

 

HindIII  

 

Postprandial Small 
triacylglycerol-rich 
lipoproteins (TRL)-
retinyl palmitate (RP)  

P=0.030  

 

  S447X  

 

Small TRL-RP  P=0.028  

  Large TRL-B48  P=0.046 

  Small TRL-B48  P=0.048 

  HindIII- 
S447X  

 

Fasting Triacylglycerol 
(TAG)  

P=0.047  

  Large TRL-TG  P=0.048 

  Large TRL-RP P= 0.004 
  Small TRL-RP P=0.014 
  Large TRL-B48 P=0.036 
Humphries et al. 
1998 [17] 

2181 Oral liquid lipid load (42 g saturated fat, 22 g 
protein, 56 g carbohydrate, and 417 mg 
cholesterol)  

H-/X447 Fasting TAG P=0.01 

   Postprandial TAG P< 0.05 
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Anagnostopoulou 
et al. 2009 [16] 

 

80 High fat meal (5.3 g protein- 2.5%, 24.75 g 
carbohydrate- 14.0%, 240 mg cholesterol, and 
65.2 g fat—83.5% fat)  

S447X  Fasting / Postprandial 
TAG  

No association  
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Chapter 3 
 

For this study, I was involved in getting the dataset from the collaborators and 

cleaning the dataset. I ran the entire statistical analysis using the SPSS software and 

wrote the first draft of the manuscript. As part of the initial stages of statistical analysis, I 

had run the analyses separately in controls and cases; however, for final version of the 

manuscript, I had to run the analysis on total sample size to increase the statistical power 

of the study findings. I revised the manuscript based on the comments from all the co-

authors before the manuscript was submitted to the Nutrition and metabolism journal. I 

was also involved in drafting the responses to the comments from reviewers.  
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polymorphism with high density lipoprotein cholesterol in an Asian Indian 

population  

Published 

Kuppuswamy A Ayyappa*, Israa Shatwan*, D Bodhini, Laura R Bramwell, K Ramya, V 

Sudha, RM Anjana, Julie A Lovegrove, Vismanathan Mohan, Venkatesan Radha, Karani 

S Vimaleswaran (2017) High fat diet modifies the association of lipoprotein lipase gene 
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*Equally contributed  

3.1 Abstract  
 
Background: 

Single nucleotide polymorphisms (SNPs) in lipoprotein lipase gene (LPL) have been 

shown to influence metabolism related to lipid phenotypes. Dietary factors have been 

shown to modify the association between LPL SNPs and lipids; however, to date, there 

are no studies in South Asians. Hence, we tested for the association of four common LPL 

SNPs with plasma lipids and examined the interactions between the SNPs and dietary 

factors on lipids in 1,845 Asian Indians. 

Methods: 

The analysis was performed in 788 Type 2 diabetes cases and 1,057 controls randomly 
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chosen from the cross-sectional Chennai Urban Rural Epidemiological Study. Serum 

triacylglycerol (TAG), serum total cholesterol, and high-density lipoprotein cholesterol 

(HDL-C) were measured using a Hitachi-912 autoanalyzer (Roche Diagnostics GmbH, 

Mannheim, Germany). Dietary intake was assessed using a semi-quantitative food 

frequency questionnaire. The SNPs (rs1121923, rs328, rs4922115 and rs285) were 

genotyped by polymerase chain reaction followed by restriction enzyme digestion and 

20% of samples were sequenced to validate the genotypes obtained. Statistical Package 

for Social Sciences for Windows version 22.0 (SPSS, Chicago, IL) was used for 

statistical analysis. 

Results: 

After correction for multiple testing and adjusting for potential confounders, SNPs rs328 

and rs285 showed association with HDL-C (P=0.0004) and serum TAG (P=1x10-5), 

respectively. The interaction between SNP rs1121923 and fat intake (energy %) on HDL-

C (P=0.003) was also significant, where, among those who consumed a high fat diet 

(28.4 ± 2.5 %), the T allele carriers (TT + XT) had significantly higher HDL-C 

concentrations (P=0.0002) and 30% reduced risk of low HDL-C levels compared to the 

CC homozygotes. None of the interactions on other lipid traits were statistically 

significant.  

Conclusion: Our findings suggest that individuals carrying T allele of the SNP 

rs1121923 have increased HDL-C levels when consuming a high fat diet compared to CC 

homozygotes. Our finding warrants confirmation in prospective studies and randomized 

controlled trials.  
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3.2 Introduction 

The Asian Indian population has a greater predisposition to non-communicable 

diseases such as type 2 diabetes (T2D) [1, 2] and cardiovascular disease (CVD) [3] 

compared to Europeans. Despite low body mass index (BMI), Indians are characterized 

by a higher frequency of hyperinsulinemia [4], insulin resistance [5], dyslipidemia with 

hypertriacylglycerolemia and low high-density lipoprotein cholesterol (HDL-C) levels [6] 

and increased visceral fat, which are referred to as ‘Asian Indian Phenotype’ or 

‘Atherogenic Lipoprotein Phenotype’ [7, 8]. Blood lipid levels are heritable phenotypes 

and findings from previous studies show that the blood concentrations of HDL-C, low 

density lipoprotein cholesterol (LDL-C) and triacylglycerol (TAG) have a strong 

inheritance [9]. 

Genetic studies have implicated several gene loci in the predisposition to dyslipidemia in 

Asian Indians [10-13], one of which is lipoprotein lipase (LPL) [14-16]. LPL plays an 

important role in the metabolism of HDL-C, where it has been shown to hydrolyze TAG 

in TAG-rich lipoproteins such as chylomicrons and very low density lipoproteins [17]. It 

has been postulated that increased activity of LPL enzyme enhances the release of 

components of TAG-rich lipoproteins which are then transferred to HDL to raise HDL 

levels; conversely, lack of LPL can retard the transfer of these components to HDL [18]. 

Several candidate gene studies have shown an association between single nucleotide 

polymorphisms (SNPs) in LPL and lipid traits in various populations including Asian 

Indians [11, 12, 19-22]. Genome wide association studies have also demonstrated strong 

evidence for the association of LPL polymorphisms with HDL-C concentrations [23-25]. 

A few studies have examined the LPL gene–diet interactions in association with HDL-C 
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[26-30]; however, the findings have been quite inconsistent due to variations in sample 

size, dietary factors and the selection of LPL polymorphisms.  

Given that there are no gene-diet interaction studies, to date, in Asian Indian 

populations, we examined the association of four common LPL SNPs [Val135Val C/T 

(rs1121923), Ser447Ter C/G (rs328), G/A (rs4922115) and Pvu II C/T (rs285)] with 

HDL-C and investigated the interactions of these four polymorphisms with dietary 

carbohydrate, fat and protein percentage on HDL-C in up to 1,845 participants (788 T2D 

cases and 1,057 controls) from the cross-sectional Chennai Urban Rural Epidemiological 

Study (CURES). In addition, we examined the genetic associations and interactions for 

other lipid traits such as TAG, LDL-C and total cholesterol in these participants. 

3.3 Methods 

3.3.1 Study population 

One thousand eight hundred and forty five participants comprising 788 cases 

with T2D and 1,057 controls with normal glucose tolerance (NGT) were randomly 

chosen from the urban component of the Chennai Urban Rural Epidemiological Study 

(CURES), an epidemiological study conducted on a representative population (age >20 

years) of Chennai (formerly Madras), the fourth largest city in India. The detailed 

methodology of the study participants is published elsewhere [31]. Briefly, in Phase 1 

of CURES, 26,001 individuals were recruited based on a systematic random sampling 

technique. Participants with self-reported diabetes taking drug treatment for diabetes 

were classified as “known diabetes subjects.” All known diabetes participants (n = 

1,529) were invited to visit the center for detailed studies. In addition, every 10th 
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individual of the 26,001 individuals without known diabetes was invited to undergo 

oral glucose tolerance tests using a 75-g oral glucose load (dissolved in 250 ml of 

water) (Phase 3 of CURES). Those who were confirmed by oral glucose tolerance test 

to have 2-h plasma glucose value ≥11.1 mmol/l based on World Health Organization 

(WHO) consulting group criteria were labeled as “newly detected diabetes subjects” 

and those with 2-h plasma glucose value <7.8 mmol/l as being NGT [32]. CURES 

participants who were on lipid lowering drugs such as statins, fibrates and niacin were 

excluded  from  the  study (n=134). On the basis of the National Cholesterol Education 

Program-Adult Treatment Panel III (NCEP-ATP III) guidelines [33] the study 

population was divided into those with normal HDL-C (≥1.03 mmol/l for men; ≥1.3 

mmol/l for women) and low HDL-C (<1.03 mmol/l for men; <1.3 mmol/l for women). 

Written informed consent was obtained from each study participant, and the study was 

approved by the Madras Diabetes Research Foundation Institutional Ethics Committee. 

  

3.3.2 Phenotype measurements 

Anthropometric measurements including weight, height, and waist were obtained using 

standardized techniques. The BMI was calculated as weight (in kg) divided by the 

square of height (in m). Biochemical analyses were performed on a Hitachi-912 Auto 

Analyzer (Hitachi, Mannheim, Germany) using kits supplied by Roche Diagnostics 

(Mannheim). Fasting plasma glucose (glucose oxidase–peroxidase method), serum total 

cholesterol (cholesterol oxidase-phenol-4-amino-antipyrene peroxidase method), serum 

TAG (glycerol phosphatase oxidase-phenol-4-amino-antipyrene peroxidase method), 

and HDL-C (direct method; polyethylene glycol-pretreated enzymes) were measured. 
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Low-density lipoprotein cholesterol was calculated using the Friedewald formula [34]. 

Glycated haemoglobin (HbA1c) was estimated by high-performance liquid 

chromatography using a Variant™ machine (Bio-Rad, Hercules, CA, USA). Serum 

insulin concentration was estimated using an enzyme-linked immunosorbent assay 

(Dako, Glostrup, Denmark).  

 

3.3.3 Dietary assessment 

Dietary intakes were assessed using a previously validated and published [35] 

interviewer administered semi-quantitative food frequency questionnaire (FFQ) 

containing 222 food items to estimate food intake over the past year. Briefly, 

individuals were asked to estimate the usual frequency (number of times per day, week, 

month or year/never) and the usual serving size of the portion of the various food items 

in the FFQ. Common household measures such as household cups, bowls, ladles, 

spoons (for the cooked foods like vegetables), wedges, circles of different diameter and 

visual atlas of different sizes of fruits (small, medium, large) were shown to assist the 

individuals in estimating portions. A detailed description of the development of FFQ 

and the data on reproducibility and validity had been published [35]. EpiNu, an in-

house database was used to assess the average daily food and nutrient intake. 

 

3.3.4 SNP selection and Genotyping 

Four common SNPs in the LPL gene (rs285, rs328, rs4922115 and rs1121923) were 

chosen for the present study. The SNPs rs328 and rs285 were chosen based on their 

previous associations with lipid outcomes in several populations [11, 12, 22, 36]. The 



 
 

112 

SNPs rs1121923 and rs4922115 were identified from the dbSNP database 

(http://www.ncbi.nlm.nih.gov/SNP/) based on their location in the exon 3 and 3’UTR 

regions, respectively, assuming that variations in the coding and regulatory regions 

might confer a functional effect on the gene expression. The SNPs were genotyped by 

polymerase chain reaction on a GeneAmp® PCR system 9700 thermal cycler (Applied 

Biosystems, Foster City, CA) followed by restriction enzyme digestion (New England 

Biolabs, Inc., Beverly, MA). The program usually had the following steps: initial 

denaturation at 95°C for 10 min, 30-35 cycles of denaturation at 95°C for 45 sec, 

primer-annealing at 58oC for rs1121923 and rs285 SNPs and 60oC for rs328 and 

rs4922115 SNPs for 45 sec, and primer extension at 72°C for 45 sec, followed by a 

final extension at 72°C for 5 min. The restrictions enzymes used for genotyping the 

SNPs were Sau96I for rs1121923, Mnl I enzyme for rs328, the Eco RV enzyme for 

rs4922115 and Pvu II for rs285. Agarose gel electrophoresis was used to detect the 

amplification of PCR reaction and the restriction enzyme digested products. To ensure 

that the genotyping was of adequate quality, we performed random duplicates in 10% 

of the samples. The assays were performed by a technician who was masked to the 

phenotype, and there was 98% concordance in the genotyping. Variants were also 

confirmed by direct sequencing using an ABI 3500 genetic analyzer (Applied 

Biosystems, Foster City, CA). Population stratification was performed using a case-

control approach at 6 unlinked marker loci believed to be unrelated to the disease under 

study, but known to have allelic diversity among different populations [37]. 

 

 

http://www.ncbi.nlm.nih.gov/SNP/
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3.3.5 Statistical analysis 

Statistical Package for Social Sciences for Windows version 22.0 (SPSS, Chicago, IL) 

was used for statistical analysis. The effects of the variants on quantitative and 

categorical variables were analyzed. Allele frequencies were estimated by gene 

counting. Agreement with Hardy–Weinberg equilibrium (HWE) expectations was 

tested using a χ2goodness-of-fit test. Comparison of the means between the two groups 

was analyzed by independent t-test. The χ2 test was used to compare the proportions of 

genotypes or alleles. Dominant model was used, given the low frequency of minor 

allele homozygotes. Linear regression was used to examine the association of the LPL 

SNPs with various lipid outcomes. The SNP-diet interactions on lipid traits were tested 

by including the interaction term in linear regression models. Models were adjusted for 

age, gender, BMI (as continuous), T2D status and total energy intake wherever 

appropriate. Multiple testing correction using Bonferroni method was applied 

separately for the testing of main and interaction effects (i.e., association of the four 

SNPs with HDL-C and interaction with dietary factors on HDL-C levels) [P≤ 0.003 

(= 0.05/20) was considered statistically significant] and additional analyses (i.e., 

association of the four SNPs with other lipid traits and interaction with dietary factors 

on other lipid traits) [P≤ 0.001 (= 0.05/48) was considered statistically significant].  

 

3.4 Results  

Table 3.1 shows the anthropometric and biochemical characteristics of NGT and T2D 

participants. T2D cases had markedly increased levels of TAG, LDL-C and total 

cholesterol, while HDL-C was significantly lower in cases compared to controls 
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(P<0.003 for all comparisons). In our study population, the genotype distributions for 

the four LPL polymorphisms were GG: 68.5%, GA: 27.5% and AA: 4.0% (rs4922115); 

CC: 87.5%, CT: 12.0% and TT: 0.5% (rs1121923); CC: 72.8%, CG: 25.2% and GG: 

2.00% (rs328); and CC: 40.9%, CT: 45.6% and TT: 13.5% (rs285).  All the four SNPs 

were in HWE (P>0.05).  

The association between LPL SNPs and HDL-C levels is presented in Table 3.2. 

Of the four LPL variants, the SNP rs328 alone showed a significant and a consistent 

association with HDL-C concentrations [both as continuous and categorical variable 

(stratified based on NCEP ATP III guidelines)] under a dominant model after 

correction for multiple testing (P=0.0004 for the continuous variable and P=0.001 for 

the categorical variable). The minor allele (G) carriers of the SNP rs328 had 5% higher 

HDL-C compared to the homozygous carriers of the common ‘C’ allele. 

In the interaction analysis, after correction for multiple testing, none of the 

interactions were statistically significant except for the interaction between SNP 

rs1121923 and fat intake (energy %) on HDL-C (P=0.003) (Table 3.3), where among 

those who consumed a high fat diet (3rd tertile: 28.4± 2.5%), the T allele carriers had 

significantly higher HDL-C concentrations compared to the CC homozygotes 

(P=0.0002) (Figure 3.1).  To test whether this interaction was significant on HDL-C as 

a categorical variable, we stratified the data based on normal and low HDL-C levels 

according to the NCEP ATP III guidelines for dyslipidemia [33] and found that among 

those who consumed a high fat diet, the individuals who carried the T allele had 30% 

reduced risk of low HDL-C levels compared to the CC homozygotes (P=0.001) 

(Figure 3.2). We further investigated the interaction of the SNP with various fat 
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subclass intakes on HDL-C but none of the interactions were statistically significant 

[monounsaturated (MUFA) (P=0.36), polyunsaturated (PUFA) (P=0.22) and saturated 

fatty acids (SFA) (P=0.46)]. 

Table 3.1: Baseline characteristics of the CURES study participants  

 Participants with Normal 

Glucose Tolerance 

(N=1,057) 

Participants with 

Type 2 diabetes 

(N=788) 

P value 

Age (year) 38.5 ± 13.6 50.6 ± 11.1 <0.0001 

Gender (men / women) 608/ 449 433/ 355 0.2 * 

BMI (kg/m2) 23.2± 4.5 25.2 ± 4.4 <0.0001 

Fasting Glucose (mmol/l) 4.7± 0.5 8.8± 3.8 <0.0001 

Fasting Insulin (lIU/mL) 8.2 ± 5.6 11.6 ± 7.0 <0.0001 

Total serum Cholesterol (mmol/l) 4.6± 0.9 5.2± 1.1 <0.0001 

Serum TAG (mmol/l) 1.3± 0.7 1.9± 1.3 <0.0001 

HDL-C (mmol/l) 1.12± 0.25 1.08 ± 0.24 0.003 

LDL-C (mmol/l) 2.9± 0.8 3.2± 0.9 <0.0001 

Glycated hemoglobin (%) 5.56 ± 0.47 8.64± 2.26 <0.0001 

Systolic pressure (mmHg) 117.0 ± 17.4 128.9 ± 21.5 <0.0001 

Diastolic pressure (mmHg) 73.2 ± 11.2 77.1 ±12.0 <0.0001 

Protein intake (energy %) 11.3 ± 1.2 11.4 ±1.2 0.03 

Carbohydrate intake (energy %) 64.4 ± 6.4 64.9 ± 5.8 0.1 

Fat intake (energy %) 23.5 ± 4.7 23.4 ± 4.6 0.8 
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Total energy intake (kcal) 2627.2 ± 725.4  2533.5 ± 907.2 0.02 

Total saturated fat intake (%) 2.4 ± 0.9 2.1 ± 0.9 <0.0001 

Total monounsaturated fat (%) 1.9 ± 0.7 1.7 ± 0.8 0.0002 

Total polyunsaturated fat (%) 1.6 ± 0.8 1.7 ± 0.9 0.04 

Data shown are represented as means ± SD, wherever appropriate 

P values for the differences in the means/ proportions between cases and controls 

P values were calculated by using Independent t test.  

* P value was calculated using a Chi-square test. 

CURES, Chennai Urban Rural Epidemiological Study; TAG, triacylglycerol; HDL-C, 

high density lipoprotein; LDL-C, low density lipoprotein cholesterol   
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Table 3.2: Association of the lipoprotein lipase single nucleotide polymorphisms 

(SNPs) with HDL-C levels 

Association of the SNPs with HDL-C levels (continuous variable) 
 

SNP   HDL-C levels  
(means ± SD) 

 

SNP rs4922115   
GG 1.1 ± 0.3  
GA 1.1 ± 0.2  
AA 1.1 ± 0.2  

Dominant model(GG vs GA+AA) 
(P value) 

 
0.02 

 

SNP rs1121923   
CC 1.1 ± 0.3  
CT 1.2± 0.3  
TT 1.0 ± 0.2  

Dominant model(CC vs CT+TT)  
(P value) 

 
0.02 

 

SNP rs328   
CC 1.1 ± 0.3  
CG 1.2 ± 0.3  
GG 1.2 ± 0.2  

Dominant model(CC vs CG+GG)  
(P value) 

 
0.0004 

 

SNP rs285   
CC 1.1± 0.3  
CT 1.1 ± 0.2  
TT 1.2 ± 0.2  

Dominant model(CC vs CT+TT)  
(P value) 

 
0.03 

 

Association of the SNPs with HDL-C (categorical variable) 
 

 Low HDL-C levels  
Number (%) 

Normal HDL-C levels  
Number (%) 

SNP rs4922115   
GG 366 (65%) 497 (71.3%) 
GA 171 (30.4%) 167 (25.3%) 
AA 26 (4.6%) 24 (3.4%) 

Dominant model (GG vs GA+AA) 
(P value) 

 
0.02 

SNP rs1121923   
CC 530 (91.7%) 642 (84.7%) 
CT 45 (7.8%) 112 (14.8%) 
TT 3 (0.5%) 4 (0.5%) 
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Dominant model (CC vs CT+TT) 
(P value) 

 
0.1 

SNP rs328   
CC 336 (78.3%) 540 (69.8%) 
CG 88 (20.5%) 215 (27.8%) 
GG 5 (1.2%) 19 (2.5%) 

Dominant model (CC vs CG+GG) 
(P value) 

 
0.001 

SNP rs285   
CC 336 (45.6%) 421 (38%) 
CT 330 (44.8%) 515 (46.5%) 
TT 71 (9.6%) 171 (15.4%) 

Dominant model (CC vs CT+TT) 
(P value) 

 
0.001 

HDL-C: High density lipoprotein cholesterol  

P values are adjusted for age, gender, body mass index, and Type 2 diabetes status 

Those p values that are in bold implicates those values that are significant after 

Bonferroni correction  
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Table 3.3: Interaction between lipoprotein lipase single nucleotide polymorphisms 

and dietary factors on HDL-C levels 

Beta coefficients ± standard error (Pinteraction) for interaction on HDL-C (continuous 

variable) 

Interaction between 

rs4922115* fat energy 

intake (%) 

Interaction between 

rs4922115* protein energy 

intake (%) 

Interaction between 

rs4922115* carbohydrate 

energy intake (%) 

-0.01 ± 0.002 

(0.1) 

-0.02 ± 0.01 

(0.2) 

0.01 ± 0.02 

(0.06) 

Interaction between 

rs1121923* fat energy 

intake (%) 

Interaction between 

rs1121923* protein energy 

intake (%) 

Interaction between 

rs1121923* carbohydrate 

energy intake (%) 

-0.01 ± 0.01 

(0.003) 

-0.3 ± 0.01 

(0.02) 

0.01 ± 0.002 

(0.05) 

Interaction between rs328* 

fat energy intake (%) 

Interaction between rs328* 

protein energy intake (%) 

Interaction between rs328* 

carbohydrate energy 

intake (%) 

-0.01 ± 0.002 

(0.16) 

-0.02 ± 0.01 

(0.12) 

0.01 ± 0.002 

(0.07) 

Interaction between rs285* 

fat energy intake (%) 

Interaction between rs285* 

protein energy intake (%) 

Interaction between rs285* 

carbohydrate energy 

intake (%) 

0.01 ± 0.002 0.02 ± 0.01 -0.01 ± 0.002 
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(0.05) (0.04) (0.03) 

HDL-C, High density lipoprotein cholesterol 

Pinteraction values adjusted for age, gender, body mass index, type 2 diabetes and total 

energy intake 

(*) refers to the interaction between SNP and dietary factor  

Those p values that are in bold implicates those values that are significant after 

Bonferroni correction  

Figure 3.1 Interaction between Lipoprotein lipase gene SNP rs1121923 and fat energy 

intake (%) on HDL-C concentrations (Pinteraction=0.003). Among those who consumed a 

high fat diet, T allele carriers had significantly higher levels of HDL-C compared to the 

CC homozygotes (P=0.0002). 
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Figure 3.2 Interaction between Lipoprotein lipase gene SNP rs1121923 and fat energy 

intake (%) on HDL-C as a categorical variable (Pinteraction=0.01). Among those who 

consumed a high fat diet (28.4%), the individuals who carried the T allele have 30% 

reduced risk of low HDL-C levels compared to those who carry the CC genotype 

(P=0.001). Data shown are represented as means ± SE. Pinteraction values adjusted for age, 

gender, body mass index, type 2 diabetes and total energy intake. 
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The SNP rs285 alone showed a significant association with serum TAG (P=1x10-

5), where CC genotype carriers had higher TAG concentrations than T allele carriers 

(Table 3.4). In the interaction analysis, there was an interaction of the LPL SNP 

rs4922115 with fat intake (energy %) on TAG, where, among those who consumed a 

low (1st tertile: 18.1 ± 2.6 %) or medium fat (2nd tertile: 23.4 ± 1.1 %) diet, individuals 

carrying the GG genotype had significantly lower TAG concentrations compared to ‘A’ 

allele carriers (P=0.01 for low fat intake; P=0.02 for medium fat intake). However, 

after correction for multiple testing, this interaction was not statistically significant. 

None of the other interactions between the SNPs and dietary factors on total 

cholesterol, serum TAG and LDL-C were statistically significant (Table 3.5). 
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Table 3.4: Association between single nucleotide polymorphisms (SNPs) at 

lipoprotein lipase gene and lipid traits 

SNPs Total 
cholesterol 

mmol/l 

Triglycerides 
mmol/l 

LDL-C mmol/l 

SNP rs4922115    

GG 4.9 ± 1.1 1.6 ± 1.0 3.1 ± 0.9 
GA 4.8 ± 1.1 1.9 ± 1.8 3.0 ± 0.9 
AA 4.7 ± 0.9 1.7± 0.8 2.9 ± 0.8 

Dominant model 
(GG vs GA+AA) 

(P value) 

 
0.4 

 
0.001 

 
0.1 

SNP rs1121923    

CC 4.8 ± 1.1 1.7 ± 1.4 3.0 ± 0.9 
CT 5.1 ± 1.0 1.7± 1.0 3.2 ± 0.9 
TT 4.9 ± 0.6 1.4 ± 0.4 3.3 ± 0.4 

Dominant model 
(CC vs CT+TT) 

(P value)  

 
0.4 

 
0.3 

 
0.9 

SNP rs328    

CC 4.9 ± 1.0 1.7± 1.1 3.1 ± 0.9 
CG 4.9 ± 1.1 1.5± 0.9 3.1 ± 0.9 
GG 5.0 ± 0.9 1.4± 0.5 3.2 ± 0.8 

Dominant model 
(CC vs CG+GG) 

(P value) 

 
0.3 

 
0.1 

 
0.3 

SNP rs285 
 

   

CC 4.8 ± 1.1 1.7± 1.2 3.0 ± 0.8 
CT 4.8 ± 1.1 1.5± 0.9 3.1 ± 0.9 
TT 4.8 ± 1.0 1.4± 0.8 3.0 ± 0.8 

Dominant model 
(CC vs CT+TT) 

(P value) 

 
0.7 

 
0.00009 

 
0.4 

    
LDL-c, Low density lipoprotein cholesterol Results are expressed as mean ± SD. P 

values adjusted for age, gender, body mass index and type 2 diabetes Those p values that 

are in bold implicates those values that are significant after Bonferroni correction  
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Table 3.5 Interaction between single nucleotide polymorphisms (SNPs) at 

lipoprotein lipase gene and dietary factors on lipids traits  

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs4922115 with 
dietary factors on total cholesterol 

Interaction between 
rs4922115* fat energy 

intake 

Interaction between 
rs4922115* protein energy 

intake 

Interaction between 
rs4922115* carbohydrate 

energy intake 

-0.1 (0.5) 

0.8 

-0.2 (1.9) 

0.9 

-0.01 (0.4) 

0.9 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs4922115 with 
dietary factors on serum triglycerides 

Interaction between 
rs4922115* fat energy 

intake 

Interaction between 
rs4922115* protein energy 

intake 

Interaction between 
rs4922115* carbohydrate 

energy intake 

-3.5  (1.4) 

0.01 

7.4 (5.4) 

0.2 

-0.8 (1.1) 

0.5 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs4922115 with 
dietary factors on LDL-C 

Interaction between 
rs4922115* fat energy 

intake 

Interaction between 
rs4922115* protein energy 

intake 

Interaction between 
rs4922115* carbohydrate 

energy intake 

-0.03 (0.4) 

0.9 

0.61 (1.6) 

0.7 

-0.08 (0.3) 

0.8 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs1121923 with 
dietary factors on total cholesterol 

Interaction between 
rs1121923* fat energy 

intake 

Interaction between 
rs1121923* protein energy 

intake 

Interaction between 
rs1121923* carbohydrate 

energy intake 

-0.2 (0.7) 

0.8 

0.5 (2.4) 

0.8 

0.03 (0.5) 

0.9 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs1121923 with 
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dietary factors on serum triglycerides 

Interaction between 
rs1121923* fat energy 

intake (%) 

Interaction between 
rs1121923* protein energy 

intake (%) 

Interaction between 
rs1121923* carbohydrate 

energy intake (%) 

2.5 (1.9) 

0.2 

3.8 (6.8) 

0.6 

-2.5 (1.5) 

0.09 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs1121923 with 
dietary factors on LDL-C 

Interaction between 
rs1121923* fat energy 

intake (%) 

Interaction between 
rs1121923* protein energy 

intake (%) 

Interaction between 
rs1121923* carbohydrate 

energy intake (%) 

-0.2 (0.6) 

0.7 

0.9 (1.9) 

0.6 

0.1 (0.4) 

0.8 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs328 with 
dietary factors on total cholesterol 

Interaction between rs328* 
fat energy intake (%) 

Interaction between rs328* 
protein energy intake (%) 

Interaction between rs328* 
carbohydrate energy intake 

(%) 

0.5 (0.5) 

0.3 

0.1 (0.2) 

0.7 

-0.1 (0.4) 

0.8 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs328 with 
dietary factors on serum triglycerides 

Interaction between rs328* 
fat energy intake (%) 

Interaction between rs328* 
protein energy intake (%) 

Interaction between rs328* 
carbohydrate energy intake 

(%) 

0.6 (1.3) 

0.6 

-0.6 (5.0) 

0.9 

-0.7 (0.9) 

0.5 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs328 with 
dietary factors on LDL-C 

Interaction between rs328* Interaction between rs328* Interaction between rs328* 
carbohydrate energy intake 
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fat energy intake (%) protein energy intake (%) (%) 

0.7 (0.5) 

0.1 

-0.2 (0.2) 

0.3 

-0.4 (0.3) 

0.3 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs285 with 
dietary factors on total cholesterol 

Interaction between rs285* 
fat energy intake (%) 

Interaction between rs285* 
protein energy intake (%) 

Interaction between rs285* 
carbohydrate energy intake 

(%) 

-0.2 (0.4) 

0.5 

-0.8 (1.5) 

0.6 

0.3 (0.3) 

0.3 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs285 with 
dietary factors on serum triglycerides 

Interaction between rs285* 
fat energy intake 

Interaction between rs285* 
protein energy intake 

Interaction between rs285* 
carbohydrate energy intake 

-1.6 (0.9) 

0.1 

-1.0 (3.4) 

0.8 

1.2 (0.7) 

0.08 

Beta coefficients (standard error) Pinteraction*  for interaction of SNP rs285 with 
dietary factors on LDL-C 

Interaction between rs285* 
fat energy intake 

Interaction between rs285* 
protein energy intake 

Interaction between rs285* 
carbohydrate energy intake 

-0.09 (0.3) 

0.8 

-1.0 (1.3) 

0.5 

0.1 (0.3) 

0.7 

Pinteraction values adjusted for age, gender, body mass index, type 2 diabetes and total 

energy intake  
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3.5 Discussion 

To our knowledge, this is the first genetic epidemiological study to investigate 

the interaction between SNPs at LPL gene and dietary factors on blood lipids in an 

Asian Indian population. Our study provides evidence for a novel interaction between 

SNP rs1121923 and fat intake (energy %) on HDL-C, where the T allele carriers had 

significantly higher levels of HDL-C compared to the CC homozygotes among those 

who consumed a high fat diet. Given that the total fat intake has increased in India in 

the last few decades and Asian Indians are characterized by altered lipid levels and at a 

higher risk of premature coronary artery disease (CAD) [38], our study findings have 

significant public health implications.     

Several LPL polymorphisms have been extensively studied in association with 

various lipid traits [12, 22, 25, 26]. The most notable of these known functional 

common polymorphisms is rs328, also known as S447X (premature truncation at codon 

447). SNP rs328 is a gain-of-function polymorphism that has been shown to be 

consistently associated with higher HDL-C [12]. Our study has also shown a significant 

association of the SNP rs328 with HDL-C concentrations, where the minor ‘G’ allele 

carriers had significantly higher HDL-C compared to those with common CC genotype. 

The rs285 (Pvu II) variant located in the intron 6 of the LPL gene has been shown to be 

associated with dyslipidemic phenotypes such as low HDL-C and high TAG among 

Caucasians [39], which is in accordance with our study findings in Asian Indians where 

the CC genotype carriers of the SNP rs285 had significantly higher TAG than T allele 

carriers. The ‘A’ allele of the SNP rs4922115 (located in the 3' UTR region) and ‘C’ 

allele of the SNP rs1121923 (Val135Val) (located in the exon 3) were also associated 
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with lower HDL-C levels in our study; however, after correction for multiple testing 

they were not significant. Our findings confirm the previously reported associations 

and reveal that LPL SNPs play an important role in lipid metabolism in this Asian 

Indian population.  

Total fat intake has increased considerably in India in the last few decades [40]. 

The National Sample Survey Organization survey has reported that the fat intake of 

urban component of Indian populations has increased from 42.0 g/d/capita in 1993–

1994 to 52.5 g/d/capita in 2011–2012 [41]. Interestingly our study in this South Indian 

population has identified an interaction between LPL SNP rs1121923 and fat intake 

(energy %) on HDL-C, where, among those who consumed a high fat diet (28.4%), 

individuals carrying the T allele had significantly higher HDL-C concentrations 

compared to the CC genotype carriers. Even though our study is the first to report this 

gene-diet interaction, previous studies in developing countries have shown that the 

quantity of dietary fats can affect the lipid profile and is directly related to the 

development of metabolic diseases such as obesity and diabetes [42, 43]. Quality of 

dietary fat has also shown to alter blood lipid levels [43] but the present study failed to 

identify an interaction of the LPL SNP with MUFA, PUFA and SFA, respectively, on 

lipid traits. Vegetable oils used in Indian cooking represent 80% of the visible fat 

consumed [44] and a study in an Indian population showed that the higher ratio of n6:n3 

was attributed to the type and quantity of oil used [45]. Previous studies have shown 

that dietary fat increases HDL-C [46], which is partially explained by our study 

findings where the T allele carriers of the SNP rs1121923, who consumed a high fat 

diet, had higher HDL-C concentrations compared to CC genotype carriers. Even 
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though the exact mechanism by which T allele contributes to the increase in HDL-C 

levels under conditions of high fat diet is unknown, the finding is suggestive of the 

complex inheritance pattern of the HDL-C levels [47], where several 

genes/polymorphisms are likely to contribute to the alteration of HDL-C levels through 

gene-gene and gene-diet interactions. Our findings are supported by animal studies [48] 

where mice that are challenged with a high fat diet showed a strong correlation between 

LPL activity and HDL cholesterol suggesting the link between LPL, fat intake and 

HDL levels.   

Besides HDL-C, there were interactions of the LPL SNP rs4922115 with fat 

energy intake (%) on TAG, where, among those who consumed a low or medium fat 

diet, individuals carrying the GG genotype had significantly lower TAG concentrations 

compared to ‘A’ allele carriers. The SNP rs4922115 has not been studied previously in 

other populations except in Hispanics [49], where this SNP was identified by direct 

sequencing. However, the study did not explore the individual effect of the SNP on 

blood lipids and hence we are unable to compare our findings with the Hispanic study. 

Even though the interaction between SNP rs4922115 and fat energy intake (%) was not 

statistically significant after Bonferroni correction in our study, replication of these 

interactions in another large cohort is highly warranted.  

One of the main limitations of the study is the small sample size. Given that there 

are no previously reported effect sizes for the LPL SNP-diet interaction on blood lipids, 

we are unable to calculate the statistical power for our study. However, we were still 

able to identify significant gene-diet interactions on HDL-C even after correction for 

multiple testing. The interaction was significant only with total fat intake (energy %) 
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but not when split as PUFA, MUFA and SFA, which might be due to small sample 

size. Nevertheless, our study is well powered to identify the effect sizes for association 

between the SNPs and lipids. To increase the statistical power, individuals with and 

without T2D were included and hence it is possible that the T2D status could have 

introduced a bias in our study as the dietary pattern is likely to be changed among 

‘known’ diabetic participants. However, T2D status was adjusted in all the analyses 

and the interaction findings were borderline significant even after excluding the 

‘known’ diabetic participants from our analysis (data not shown), which could also be 

due to the small sample size after exclusion. Another limitation is that, our study was 

cross-sectional and therefore was unable to examine the casual relationship between fat 

intake and lowering of HDL-C levels; randomized controlled trials with prospective 

genotyping are required to explore the causality using genetic markers. The main 

strength of the present study is that a validated interviewer-administered FFQ was used 

to measure the usual long-term intake of the population. Furthermore, the sampling is 

representative of the overall population of Chennai. Indeed, the intake of major foods 

in our study was similar to the findings of the pooled urban data of the National 

Nutrition Monitoring Bureau for ten states in India [50] and hence, the results of the 

present study could be reasonably extrapolated to urban Indian population. 

 

3.6 Conclusions 

Our study confirms the association between LPL SNP rs328 and HDL-C 

concentrations and also provides an evidence for a novel interaction between SNP 

rs1121923 and fat intake (energy %) on HDL-C levels in this Asian Indian population. 
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Given that Asian Indians have altered lipid profile and an increased predisposition to 

premature CAD [38, 40], our study suggesting that individuals carrying T allele of the 

SNP rs1121923 have increased HDL-C levels when consuming a high fat diet has 

significant public health implications. This finding warrants confirmation in 

prospective studies and randomized controlled trials.  
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Chapter 4 Apolipoprotein E and lipoprotein lipase gene polymorphisms, dietary 

factors and blood lipids  

Under review in Lipids in Health and disease   

4.1 Abstract  
Background: Several candidate genes have been identified in relation to lipid 

metabolism, and among these, lipoprotein lipase (LPL) and apolipoprotein E (APOE) 

gene polymorphisms are major sources of genetically determined variation in lipid 

concentrations. This study investigated the association of two single nucleotide 

polymorphisms (SNPs) at LPL, seven tagging SNPs at the APOE gene, and a common 

APOE haplotype (two SNPs) with blood lipids, and examined the interaction of these 

SNPs with dietary factors. Methods: The population studied for this investigation 

included 660 individuals from the Prevention of Cancer by Intervention with Selenium 

(PRECISE) study who supplied baseline data. The findings of the PRECISE study were 

further replicated using 1,238 individuals from the Caerphilly Prospective cohort (CaPS). 

Dietary intake was assessed using a validated food-frequency questionnaire (FFQ) in 

PRECISE and a validated semi-quantitative FFQ in the CaPS. Interaction analyses were 

performed by including the interaction term in the linear regression model adjusted for 

age, body mass index, sex and country. Results: There was no association between 

dietary factors and blood lipids after Bonferroni correction and adjustment for 

confounding factors in either cohort. In the PRECISE study, after correction for multiple 

testing, there was a statistically significant association of the APOE haplotype (rs7412 

and rs429358; E2, E3, and E4) and APOE tagSNP rs445925 with total cholesterol 

(P=4x10-4 and P=0.003, respectively). Carriers of the E2 allele had lower total cholesterol 
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concentration (5.54± 0.97 mmol/L) than those with the E3 (5.98± 1.05 mmol/L) 

(P=0.001) and E4 (6.09± 1.06 mmol/L) (P=2x10-4) alleles. The association of APOE 

haplotype (E2, E3, and E4) and APOE SNP rs445925 with total cholesterol (P=2x10-6 

and P=3x10-4, respectively) was further replicated in the CaPS. Additionally, significant 

association found between APOE haplotype and APOE SNP rs445925 with low density 

lipoprotein cholesterol in CaPS (P=4x10-4 and P=0.001, respectively). After Bonferroni 

correction, none of the cohorts showed a statistically significant SNP-diet interaction with 

lipid outcomes. Conclusion: In summary, our findings from the two cohorts confirm that 

genetic variations at the APOE locus influence plasma total cholesterol concentrations, 

however, the gene-diet interactions on lipids require further investigation in larger 

cohorts. 

4.2 Background 
Cardiovascular diseases (CVD) are common multifactorial conditions 

characterized by dyslipidaemia, type 2 diabetes and hypertension [1, 2]. Elevated 

triacylglycerol (TAG) and reduced high density lipoprotein cholesterol (HDL-C) 

concentrations are associated with an increased risk of developing CVD [3-5]. 

Furthermore, several studies have reported that certain genetic variants influence 

susceptibility to altered circulating lipid concentrations, leading to an increased risk of 

CVD events [6-8]. Genetic variations have been shown to be associated with lipid 

outcomes, while dietary factors appear to modulate the effect of such genes on lipid 

concentrations [9, 10]. Previous studies have shown that single nucleotide 

polymorphisms (SNPs) of the apolipoprotein E (APOE) [6, 11] and lipoprotein lipase 

(LPL) [12-14] genes contribute to significant variation in lipid concentrations.  

The APOE protein plays a key role in the transport and metabolism of cholesterol 
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and TAG containing particles by serving as a receptor-binding ligand that mediates the 

clearance of dietary derived chylomicrons, and hepatically derived very low density 

lipoprotein (VLDL) and their remnants from the circulation [6]. The three most 

recognized alleles of the APOE gene are E2, E3 and E4, with carriage of E4 associated 

with CVD risk factors and increased low density lipoprotein cholesterol (LDL-C) 

concentrations [11, 15, 16], and hence increased CVD risk [17, 18].  

Genetic variations in the LPL gene have been reported to be involved with lipid 

metabolism and partly explain the phenotypic variation in blood lipid levels [19]. LPL is 

a lipolytic enzyme that catalyses hydrolysis of TAG in all of the major classes of TAG-

rich lipoproteins [20]. High enzyme activity is associated with favourable lipid levels, 

including relatively low TAG concentrations [21]. The two most widely studied LPL 

SNPs, rs328 (S447X) and rs320 (HindIII) [22, 23]. The ‘G’ minor alleles of both the 

SNPs, rs328 and rs320, are associated with decreased TAG concentrations and increased 

HDL-C concentrations, whereas the opposite association was found for the ‘C’ allele and 

‘T’ allele respectively [24-26].  

Data from several studies supports the role of genetic factors in lipid metabolism 

[27]; however, only a few studies have examined the effects of lifestyle factors such as 

diet on the association of polymorphisms with lipid-related outcomes [10, 28, 29]. 

Therefore, the present study aimed to investigate the effect of seven APOE tagSNPs 

(rs405509, rs769450, rs439401, rs445925, rs405697, rs1160985, and rs1064725), one 

APOE haplotype (rs7412 and rs429358), and two commonly studied LPL SNPs (rs328 

and rs320) on blood lipids profile in 660 participants (baseline data) from the Prevention 

of Cancer by Intervention with Selenium (PRECISE) study. As diet type and intake is 
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also known to modify lipid levels [30-32], the potential impact of the interaction between 

these SNPs and dietary factors on lipid levels was also investigated. To confirm the 

findings, the Caerphilly Prospective Study (CaPS; n=1,238) was used as a replication 

cohort.   

4.3 Material and methods 

4.3.1 PRECISE cohort 

4.3.1.1 Participants and methods 

Baseline data of 660 individuals from the PRECISE study, conducted in two 

populations [UK (n=468) and Denmark (n=192)] were used for the analysis [33, 34]. 

Briefly, study participants were selected from four general practices (study centres) in 

various areas of the UK that were affiliated with the Medical Research Council General 

Practice Research Framework (MRC GPRF). Between June 2000 and July 2001, research 

nurses recruited similar numbers of men and women from each of three age groups: 60–

64, 65–69 and 70–74 years. The Danish participants were men and women recruited from 

the same three age groups from the County of Funen in Denmark.  

The UK study obtained approval from the appropriate UK Local Research Ethics 

Committees [South Tees (ref: 99/69), Worcestershire Health Authority (ref: LREC 

74/99), Norwich District (ref: LREC 99/ 141), Great Yarmouth and Waveney (under 

reciprocal arrangements with Norwich District LREC)], and the participants provided 

written informed consent. The regional Danish Data Protection Agency and Scientific 

Ethical Committees of Vejle and Funen counties approved the Danish study (Journal 

number. 19980186).  
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4.3.1.2 Dietary information  

Information about each participant’s usual dietary intake was obtained using 

validated EPIC food frequency questionnaires (FFQ) [35]. Total energy intake and 

macronutrient composition were analysed using the FETA software program [36].  

4.3.1.3 Anthropometric measurements and biochemical analysis   

Body mass index (BMI) was calculated as body weight in kilograms divided by 

height in square metres (kg/m2). Participants provided non-fasting blood samples for 

biochemical analysis and these samples were stored at −80°C. Total cholesterol and 

HDL-C concentrations in lithium-heparin plasma were measured using an Architect 

c16000 analyser (Abbott) with dedicated reagents. Measurements were performed by 

enzymatic colorimetric analysis. Traceability for total cholesterol and HDL-C was 

ensured through participation in the National Reference System for Cholesterol 

(NRS/CHOL), as established by the Clinical and Laboratory Standards Institute, with 

isotope dilution-MS used as the reference method, and reference material taken from the 

National Institute of Standard and Technology. Evidence of equivalence in the analytical 

performance of the cholesterol-oxidase assays performed in the UK and Denmark from a 

comparison of total cholesterol on forty-four serum samples which produced a limit of 

variation of 2% [33].  

4.3.1.4 SNP selection 

The APOE gene is located on chromosome 19q13.32. It comprises four exons, 

which are transcribed into the APOE mRNA which is 1,180 nucleotides long. The seven 
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tagSNPs for the APOE gene were chosen based on International HapMap Phase II 

collected from individuals of Northern and Western European ancestry (CEU) (HapMap 

Data release 27 Phase 2+3, Feb 09, NCBI B36 assembly, dbSNP b126). The Haploview 

software V3.3 (http://www.broadinstitute.org/haploview/haploview-downloads) was used 

to assess the linkage disequilibrium between SNPs. Tagger software was used to select 

tagSNPs with the ‘pairwise tagging only’ option. Two criteria were used to filter the 

SNPs included in the analysis, minor allele frequency ≥5% and Hardy–Weinberg 

equilibrium P-value >0.01. In total, seven tagSNPs [rs405509 (G>T), rs1160985 (C>T), 

rs769450 (G>A), rs439401 (C>T), rs445925 (G>A), rs405697 (G>A), and rs1064725 

(T>G)] representing the entire common genetic variations across the APOE gene were 

selected for the study. The APOE haplotype/SNPs [6, 11, 37-44] and LPL [12, 13] SNPs 

were chosen based on their previous association with various lipid outcomes.  

4.3.1.5 DNA isolation and genotyping  

The genotyping for the selected SNPs using a KASP assay with a competitive 

allele-specific PCR assay® was performed on DNA samples by LGC Genomics 

(Hoddesdon, Herts, UK).  The eleven SNPs were in Hardy Weinberg Equilibrium (HWE) 

(P>0.05 for all comparisons) (Table 4.6). 

 

4.3.2 Caerphilly Prospective Study (CaPS) 

4.3.2.1 Participants and methods 

The CaPS was used to replicate the findings from the PRECISE study. The phase 

1 (July 1979 to September 1983) recruitment for the CaPS included 2,512 men aged 45-
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59 years who were living in the town of Caerphilly and five of its adjacent villages in the 

UK; these participants were followed up at regular intervals [45, 46]. The follow-up data 

collection included periods from 1984 to1988 (phase 2), from 1989 to 1993 (phase 3), 

from 1993 to 1997 (phase 4), and from 2002 to 2005 (phase 5). For the current study, the 

data analysed were taken from phase 3 (n=1,238), which had the maximum number of 

samples and variables appropriate to this analysis (total cholesterol and dietary 

information), and from phase 5 (n=529) (HDL-C and LDL-C). Ethical approval was 

obtained from the South Wales Research Ethics Committee D, and each subject provided 

written informed consent. 

4.3.2.2 Dietary information  

Participants completed validated semi-quantitative FFQ in phase 3 [47, 48]. The 

FFQ included 50 typical food items in the British diet in order to estimate the mean daily 

energy intake and macronutrients and micronutrients consumption.   

4.3.2.3 Anthropometric measurements and biochemical analysis   

Height and weight was recorded in order to calculate the BMI. Height was 

measured on a staidiometer and weight was measured on a beam balance. Plasma 

prepared from blood samples taken after an overnight fast were transported at 4°C to the 

laboratories on the day of venepuncture. Total cholesterol and HDL-C, LDL-C 

concentrations were measured using enzymatic procedures [49]. and the LDL-C levels 

were calculated using the Friedewald Formula [50]. 
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4.3.2.4 DNA isolation and genotyping  

DNA was extracted from blood samples collected during the period 1992–1994. 

SNP information was obtained from the Illumina Cardio Metabochip, which includes 

data on 200,000 SNPs from regions previously identified for associations with risk 

factors for cardiometabolic disease [51]. Imputation was conducted against the 1000-

genomes reference panel, providing information on approximately two million typed or 

imputed SNPs. Duplicate samples were genotyped to compute the error rate. Quality 

control on genotyped samples has been previously reported [52] and the SNPs had a call 

rate of >98%. The SNPs were in HWE (P>0.05) (Table 4.6). 

4.3.3 Statistical analysis  

Statistical analysis was performed using the SPSS software package, version 22.0. 

Univariate linear regression analysis was applied to test for association of the SNPs with 

total cholesterol and HDL-C, controlling for age, sex, BMI and country. SNP-diet 

interactions on total cholesterol and HDL-C were investigated using a univariate general 

linear model. In this model, total cholesterol and HDL-C were the dependent variables, 

SNPs were fixed factors, and dietary factors (fat energy %, protein energy %, 

carbohydrate energy %), sex, age BMI, and country were covariates. The dominant 

model was applied for all SNPs with minor allele frequency ≤0.3 and the additive model 

applied for SNPs with minor allele frequency ≥0.4. For analytical purposes, the six APOE 

genotype groups (E2/E2, E2/E3, E3/E3, E3/E4, E4/E4, and E2/E4) were classified into 

three groups. The E3/E3 genotype was classified as a group as it occurs at high frequency 

in the population (wild type). The E2/E2 and E2/E3 genotypes were combined and 

presented as E2 carriers. The E3/E4 and E4/E4 genotypes were also combined, and 
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presented as E4 carriers [29]. Previous studies have shown that the impact of the E2 allele 

on serum lipids is greater than that of the E4 allele [17], therefore, the E2/E4 genotype 

was excluded from the analysis. The Bonferroni correction was applied separately for 

association and interaction analyses. For association between phenotypic and dietary 

factors, the Bonferroni-corrected P value was 0.008 (2 lipid outcomes* 3 dietary factors) 

for the PRECISE study and P value was 0.01 for CaPS (total cholesterol was the only 

variable available). For association between SNPs and lipids, the Bonferroni corrected P 

value was 0.003 (10 SNPs*2 lipid outcomes = 20 tests). For interactions, the Bonferroni 

corrected P value was 0.001 (10 SNPs*2 lipid outcomes*3 dietary factors = 60 tests). In 

the replication analysis, the Bonferroni corrected P value for association was 0.002 (10 

SNPs*3 lipid outcomes = 30 tests), while for interactions it was 0.001 (10 SNPs*1 lipid 

outcome* 3 dietary factors = 30 tests).  

 

4.4 Results 

4.4.1 Participant characteristics  

The general characteristics of the participants by sex are presented in Table 4.1. 

In the PRECISE study, women were found to have significantly higher total cholesterol 

and HDL-C concentrations than men (P=2.31x10-10 and P= 2.71x10-16, respectively). The 

consumption of carbohydrates (P=1.42x10-9) and protein (energy %) (P=5x10-5) were 

higher in women than in men, whereas the consumption of fat (energy %) and total 

energy intake were lower in women than in men (P=0.01). Characteristics of the 

individuals from CaPS are given in Table 4.1. Elevated total cholesterol levels were 

observed among men at phase 3. Dietary-pattern data showed higher consumption of 
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energy from total fat.    

4.4.2 Association between dietary factors and blood lipids 

In both the PRECISE and CaPS, there was no association between the dietary 

factors and total cholesterol or high-density lipoprotein after Bonferroni correction and 

adjustment for confounding factors (Table 4.2). 

 
4.4.3 Genotypes and serum lipid levels in the PRECISE study 

As shown in Table 4.3, of the seven tagSNPs at APOE, tagSNP rs445925 was 

significantly associated with total cholesterol (P=0.003) after correction for multiple 

testing. The ‘A’ allele carriers (5.65± 0.98 mmol/L) had 5% lower levels of total 

cholesterol than GG homozygotes (5.99± 1.06 mmol/L).  

The levels of HDL-C were significantly different among the LPL SNP genotypes, rs328 

(P=0.04) and rs320 (P=0.02), where the carriers of the ‘G’ minor allele of both SNPs had 

higher levels of HDL-C (1.68 ± 0.41 mmol/L for rs328 and 1.66 ±0.40 mmol/L for rs320) 

than CC homozygotes (rs328) and TT homozygotes (rs320) (1.61 ± 0.38 and 1.60 ±0.39 

mmol/L) respectively. However, these associations were not statistically significant after 

Bonferroni correction.  
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Table 4.1: Baseline characteristics of the PRECISE and Caerphilly 

Prospective studies participants  

 PRECISE study Caerphilly 
Prospective 

study (CaPS) 

Characteristics Men  

(N=248 UK, 95 Danish) 

Women  

(N=220 UK, 97 
Danish) 

P value Men  

(N=1,238) 

 Age (years) 67 ± 4 67± 4 0.12 62± 4 

Body mass index (kg/m2) 27.2± 4.9 27.3± 4.9 0.82 26.8± 3.7 

Total Cholesterol (mmol/L) 5.6± 0.9 6.2± 1.1 2.31x10-10 6.1± 1.1 

High density lipoprotein 
cholesterol (mmol/L)* 

1.5± 0.3 1.7± 0.4 2.71x10-16 1.3± 0.3 

Protein intake (total energy 
%) 

17.6± 3.7 18.8± 3.7 5X10-5 14.9± 2.7 

Carbohydrate intake (total 
energy %) 

42.8± 13.3 48.2± 8.7 1.42x10-9 48.4± 7.5 

Fat intake (total energy %) 35.3± 7.1 33.9± 6.9 0.01 36.5± 6.9 

Total energy intake (kcal) 2256 ± 658 1992± 613 2.63x10-7 1964 ± 625 

Total energy intake (MJ) 9.4± 2.7 8.3± 2.6 2.63x10-7 8.2± 2.6 

Data shown are represented as means ± SD, wherever appropriate. P values are for the 
differences in the means between men and women. P values were calculated by using 
independent t-test.  
*For CaPS, HDL-C levels were obtained from phase 5 while all other variables were 
obtained from phase 3. 



 151 

Table 4.2: Association between dietary factors and lipids in PRECISE and 

Caerphilly Prospective studies 

PRECISE study 
Association between dietary factors and total cholesterol 

Fat total energy % intake 
Beta (± S.E),  

Passociation  

Protein total energy % 
intake 

Beta (± S.E),  
Passociation 

Carbohydrate total energy % 
intake 

Beta (± S.E),  
Passociation 

0.01 (0.01) 
0.47 

-0.01 (0.01) 
0.13 

-0.004 (0.01) 
0.40 

Association between three dietary factors and HDL-C high density lipoprotein 
Fat total energy % intake Protein total energy % 

intake 
Carbohydrate total energy % 

intake 
-0.002 (0.002) 

0.29 
-0.002 (0.004) 

0.59 
-0.004 (0.002) 

0.02 
Caerphilly Prospective study 

Association between three dietary factors and total cholesterol 
Fat total energy % intake 

Beta (± S.E),  
Passociation 

Protein total energy % 
intake 

Beta (± S.E),  
Passociation 

Carbohydrate total energy % 
intake 

Beta (± S.E),  
Passociation  

0.01 (0.004) 
0.06 

-0.01 (0.01) 
0.26 

-0.01 (0.004) 
0.17 

P values were obtained using linear regression adjusted for age, sex, body mass index and 
country. HDL-C high density lipoprotein cholesterol. 

 

4.4.4 APOE haplotype and serum lipid levels in the PRECISE study 

The effects of APOE haplotypes (E2, E3, and E4) on serum lipids are shown in 

Table 4.3. These haplotypes (E2, E3, and E4) were significantly associated with total 

cholesterol (P=4x10-4) after correction for multiple testing. The carriers of the E2 allele 

(5.54± 0.97 mmol/L) had lower total cholesterol concentrations than the carriers of the 

E3 (P=0.001) (5.98± 1.05 mmol/L) and E4 alleles (6.09± 1.06 mmol/L) (P=2x10-4).   
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4.4.5 Interactions between genotypes and dietary factors on serum lipids in the PRECISE 

study 

None of the dietary factors significantly interacted with the APOE SNPs, 

haplotypes and LPL SNPs with plasma lipids after correction for multiple testing (P 

>0.001) (Table 4.4).  

4.4.6 Replication analysis: Effect of SNPs at APOE and LPL on serum lipids in the CaPS 

The associations of APOE and LPL SNPs with blood lipids in the CaPS are 

presented in Table 4.3. The association of APOE haplotype (E2, E3, and E4) and APOE 

SNP rs445925 with total cholesterol (P=2x10-6 and P=3x10-4, respectively) was 

replicated. The ‘A’ allele carriers of APOE SNP rs445925 had lower total cholesterol 

(5.96±1.24 mmol/l) than ‘GG’ genotypes (6.24±1.08 mmol/L). In the APOE haplotype 

analysis, the carriers of the E2 allele had 5% and 14% lower total cholesterol than carriers 

of the E3 (P=4x10-4) and E4 alleles (P=3x10-6), respectively. Additionally, significant 

association was seen between APOE haplotypes (E2, E3, and E4) and APOE SNP 

rs445925and LDL-C (P=4X10-4, 0.001, respectively). 

There was an interaction between fat (% energy) and APOE haplotype (E2, E3, 

and E4) on total cholesterol (P=0.038) in CaPS. However, after correction for multiple 

testing, all the SNP-diet interactions were consistent with chance variation (Table 4.5). 
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Table 4.3: Association of APOE and LPL SNPs with HDL-C, LDL-C and total 
cholesterol levels in the PRECISE and Caerphilly prospective studies 

 

SNP MAF HDL-C 
(mmol/L) 

Total 
Cholesterol 
(mmol/L) 

LDL-C * 
(mmol/L) 

PRECISE  
LPL     
rs320 0.26    
TT  1.6 ±0.3 5.9 ±1.1  
T/G  1.7 ±0.4 5.8 ±1.0  
P value  0.02 0.19  
rs328 0.10    
CC  1.6 ± 0.3 5.9 ±1.1  
C/G  1.7 ± 0.4 5.7 ± 0.9  
P value  0.04 0.06  
APOE     
rs405509 0.47    
GG  1.7± 0.4 5.8± 1.1  
GT  1.5± 0.3 5.8± 1.1  
TT   1.6± 0.3 6.1± 1.0  
P value  0.07 0.23  
rs769450 0.39    
GG  1.6± 0.3 5.9± 1.1  
A allele   1.6± 0.4 5.9± 1.1  
P value  0.72 0.97  
rs439401 0.33    
CC  1.6± 0.4 5.9± 1.1  
T allele  1.6± 0.3 5.9± 1.1  
P value  0.43 0.51  
rs445925 0.11    
GG  1.6± 0.3 5.9± 1.1  
A allele  1.7± 0.4 5.6± 0.9  
P value  0.25 0.003  
rs405697 0.25    
GG  1.6± 0.4 5.9± 1.1  
A allele   1.6± 0.3 5.9± 1.0  
P value  0.71 0.96  
rs1160985 0.43    
CC  1.6± 0.3 5.9± 1.1  
CT  1.6± 0.4 5.8± 1.0  
TT  1.7± 0.4 5.9± 1.1  
P value  0.12 0.44  
rs1064725 0.04    
TT  1.6± 0.4  5.9± 1.0  
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G allele   1.7± 0.3 6.1± 1.2  
P value  0.17 0.38  
(rs7412- 
rs429358) 
E2, E3, and E4 

    

E3  1.6± 0.3 5.9± 1.1  
E4  1.5± 0.3 6.1± 1.1  
E2  1.7± 0.4 5.5± 0.9  
P value  0.09 4X10-4  

Caerphilly  
LPL     
rs320 0.26    
TT  1.3± 0.3  6.1± 1.1  2.7± 0.8  
T/G  1.4± 0.3  6.2± 1.2  2.8± 0.8  
P value  0.05 0.55 0.05 
rs328 0.10    
CC  1.3± 0.3  6.1± 1.1  2.7± 0.8  
C/G  1.3± 0.3  6.1± 1.1  2.9± 0.9  
P value  0.63 0.71 0.05 
APOE     
rs405509 0.46    
GG  1.4± 0.3  6.0± 1.1  2.7± 0.9  
GT  1.3± 0.3  6.2± 1.1  2.8± 0.8  
TT  1.3± 0.3  6.3± 1.1  2.9± 0.9  
P value  0.16 0.02 0.29 
rs769450 0.41    
GG  1.3± 0.2 6.1± 1.2 2.8± 0.9 
A allele   1.4± 0.3 6.2± 1.1 2.8± 0.8 
P value  0.10 0.41 0.82 
rs439401 0.35    
CC  1.4± 0.3  6.2± 1.1 2.8± 0.9  
T allele  1.3± 0.3  6.1± 1.1 2.7± 0.8  
P value  0.72 0.42 0.32 
rs445925 0.11    
GG  1.3± 0.3  6.2± 1.1  2.8± 0.8  
A allele  1.3± 0.3  5.9± 1.2  2.5± 0.9  
P value  0.99 3X10-4 0.001 
rs405697 0.26    
GG  1.4± 0.4  6.1± 1.1  2.8± 0.9  
A allele   1.3± 0.3  6.1± 1.1  2.8± 0.8  
P value  0.30 0.88 0.9 
rs1160985 0.45    
CC  1.34± 0.29  6.2± 1.1  2.8± 0.9  
CT  1.35± 0.35  6.2± 1.2  2.7± 0.8  
TT  1.37± 0.40  6.1± 1.0  2.8± 0.8  
P value  0.61 0.30 0.73 
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rs1064725 0.01    
TT  1.3± 0.3 6.2± 1.1 2.8± 0.8 
G allele   1.4± 0.3 6.1± 1.1 2.8± 0.7 
P value  0.18 0.60 0.68 
(rs7412- 
rs429358) 
E2, E3, and E4 

    

E3  1.4± 0.4 6.2± 1.1 2.8± 0.8 
E4  1.4± 0.3 6.4± 1.1 3.0± 0.9 
E2  1.3± 0.3 5.8± 1.3 2.4± 0.8 
P value  0.95 2X10-6 4X10-4 
 

Values are given as mean ± SD. P values for differences between genotypes were 
obtained using linear regression model adjusted for age, sex, body mass index, and 
country.  

Bonferroni corrected P value <0.003 was considered statistically significant. 

MAF; minor allele frequency. HDL-C high-density lipoprotein cholesterol, LDL-C; low-
density lipoprotein cholesterol.   
* LDL-C values available only in Caerphilly prospective study.  
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Figure 4.1 Association of APOE haplotypes (E2, E3, and E4) with total cholesterol 

concentrations in the Prevention of Cancer by Intervention with Selenium (PRECISE) 

study and Caerphilly Prospective study (CaPS). E2 allele carriers have significantly lower 

levels of total cholesterol than E3 (P=0.001 and P=4x10-4 in the PRECISE and CaPS, 

respectively) and E4 (P=2x10-4 and P=3x10-6 in the PRECISE and CaPS, respectively) 

allele carriers.   
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Table 4.4: Interaction between APOE and LPL SNPs and dietary factors on HDL-C and total cholesterol in the PRECISE 
study 
 

Interaction between rs320 at LPL*dietary factors on HDL-C 
Interaction between SNP rs320* fat energy % 

intake 
Interaction between SNP rs320* protein energy % 

intake 
Interaction between SNP rs320* carbohydrate 

energy % intake 
0.003 (0.004) 

0.46 
0.002 (0.01) 

0.76 
-0.0004 (0.002) 

0.87 
Interaction between rs320 at LPL *dietary factors on Total Cholesterol 

Interaction between SNP rs320* fat energy % 
intake 

Interaction between SNP rs320* protein energy % 
intake 

Interaction between SNP rs320* carbohydrate 
energy % intake 

0.01(0.01) 
0.27 

-0.03 (0.02) 
0.13 

-0.01 (0.01) 
0.06 

Interaction between rs328 at LPL *dietary factors on HDL-C 
Interaction between SNP rs328* fat energy % 

intake 
Interaction between SNP rs328* protein energy % 

intake 
Interaction between SNP rs328* carbohydrate 

energy % intake 
0.01 (0.01) 

0.09 
-0.001 (0.01) 

0.89 
0.001 (0.003) 

0.63 
Interaction between rs328 at LPL *dietary factors on Total Cholesterol 

Interaction between SNP rs328* fat energy % 
intake 

Interaction between SNP rs328* protein energy % 
intake 

Interaction between SNP rs328* carbohydrate 
energy % intake 

-0.002 (0.02) 
0.88 

0.003 (0.03) 
0.90 

-0.01 (0.01) 
0.55 

Interaction between rs405509 at APOE*dietary factors on HDL-C 
Interaction between SNP rs405509* fat energy % 

intake 
Interaction between SNP rs405509* protein energy 

% intake 
Interaction between SNP rs405509* carbohydrate 

energy % intake 
0.01 (0.01) 

0.11 
-0.001 (0.01) 

0.75 
-0.01 (0.003) 

0.09 
Interaction between rs405509 at APOE *dietary factors on Total Cholesterol 

Interaction between SNP rs405509* fat energy % 
intake 

Interaction between SNP rs405509* protein energy 
% intake 

Interaction between SNP rs405509* carbohydrate 
energy % intake 

0.02 (0.02) -0.04 (0.03) -0.01 (0.01) 
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0.39 0.26 0.59 
Interaction between rs769450 at APOE *dietary factors on HDL-C 

Interaction between SNP rs769450* fat energy % 
intake 

Interaction between SNP rs769450* protein energy 
% intake 

Interaction between SNP rs769450* carbohydrate 
energy % intake 

-0.001 (0.004) 
0.88 

0.001 (0.01) 
0.88 

0.003 (0.003) 
0.19 

Interaction between rs769450 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs769450* fat energy % 

intake 
Interaction between SNP rs769450* protein energy 

% intake 
Interaction between SNP rs769450* carbohydrate 

energy % intake 
-0.001 (0.01) 

0.94 
0.01 (0.02) 

0.63 
0.01 (0.01) 

0.51 
Interaction between rs439401 at APOE *dietary factors on HDL-C 

Interaction between SNP rs439401* fat energy % 
intake 

Interaction between SNP rs439401* protein energy 
% intake 

Interaction between SNP rs439401* carbohydrate 
energy % intake 

0.01 (0.004) 
0.11 

0.01 (0.01) 
0.39 

-0.001 (0.003) 
0.64 

Interaction between rs439401 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs439401* fat energy % 

intake 
Interaction between SNP rs439401* protein energy 

% intake 
Interaction between SNP rs439401* carbohydrate 

energy % intake 
0.003 (0.01) 

0.79 
-0.02 (0.02) 

0.37 
-0.001 (0.01) 

0.89 
Interaction between rs445925 at APOE *dietary factors on HDL-C 

Interaction between SNP rs445925* fat energy % 
intake 

Interaction between SNP rs445925* protein energy 
% intake 

Interaction between SNP rs445925* carbohydrate 
energy % intake 

-0.003 (0.01) 
0.53 

0.01 (0.01) 
0.52 

0.0003 (0.003) 
0.93 

Interaction between rs445925 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs445925* fat energy % 

intake 
Interaction between SNP rs445925* protein energy 

% intake 
Interaction between SNP rs445925* carbohydrate 

energy % intake 
-0.03 (0.01) 

0.05 
0.01 (0.03) 

0.66 
0.01 (0.01) 

0.36 
Interaction between rs405697 at APOE *dietary factors on HDL-C 
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Interaction between SNP rs405697* fat energy % 
intake 

Interaction between SNP rs405697* protein energy 
% intake 

Interaction between SNP rs405697* carbohydrate 
energy % intake 

0.01 (0.004) 
0.06 

-0.002 (0.01) 
0.80 

-0.004 (0.002) 
0.16 

Interaction between rs405697 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs405697* fat energy % 

intake 
Interaction between SNP rs405697* protein energy 

% intake 
Interaction between SNP rs405697* carbohydrate 

energy % intake 
0.01 (0.01) 

0.22 
-0.03 (0.02) 

0.19 
-0.003 (0.01) 

0.72 
Interaction between rs1160985 at APOE *dietary factors on HDL-C 

Interaction between SNP rs1160985* fat energy % 
intake 

Interaction between SNP rs1160985* protein 
energy % intake 

Interaction between SNP rs1160985* carbohydrate 
energy % intake 

-0.01 (0.01) 
0.08 

-0.002 (0.01) 
0.97 

0.01 (0.004) 
0.03 

Interaction between rs1160985 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs1160985* fat energy % 

intake 
Interaction between SNP rs1160985* protein 

energy % intake 
Interaction between SNP rs1160985* carbohydrate 

energy % intake 
-0.01 (0.01) 

0.58 
0.05 (0.03) 

0.28 
-0.001 (0.01) 

0.19 
Interaction between rs1064725 at APOE *dietary factors on HDL-C 

Interaction between SNP rs1064725* fat energy % 
intake 

Interaction between SNP rs1064725* protein 
energy % intake 

Interaction between SNP rs1064725* carbohydrate 
energy % intake 

-0.001 (0.01) 
0.90 

0.004 (0.02) 
0.77 

-0.002 (0.004) 
0.73 

Interaction between rs1064725 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs1064725* fat energy % 

intake 
Interaction between SNP rs1064725* protein 

energy % intake 
Interaction between SNP rs1064725* carbohydrate 

energy % intake 
0.03 (0.03) 

0.28 
0.02 (0.04) 

0.62 
-0.01 (0.01) 

0.48 
Interaction between APOE (E2, E3, and E4)*dietary factors on HDL-C 

Interaction between SNP APOE (E2, E3, and E4)* 
fat energy % intake 

Interaction between SNP APOE (E2, E3, and E4)* 
protein energy % intake 

Interaction between SNP APOE (E2, E3, and E4)* 
carbohydrate energy % intake 
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-0.01 (0.01) 
0.39 

0.001 (0.01) 
0.99 

0.002 (0.003) 
0.17 

Interaction between APOE (E2, E3, and E4)*dietary factors on Total Cholesterol 
Interaction between SNP APOE (E2, E3, and E4)* 

fat energy % intake 
Interaction between SNP APOE (E2, E3, and E4)* 

protein energy % intake 
Interaction between SNP APOE (E2, E3, and E4)* 

carbohydrate energy % intake 
-0.03 (0.02) 

0.18 
-0.02 (0.04) 

0.32 
0.01 (0.01) 

0.51 
 
Values represented β regression coefficients (± S.E), and Pinteraction. P values were obtained by using a general linear model adjusted for 
age, sex, body mass index, country and total energy intake, wherever appropriate.  

Bonferroni corrected P value <0.001 was considered statistically significant. 

HDL-C; high density lipoprotein cholesterol.  



 161 

Table 4.5: Interaction between APOE and LPL SNPs and dietary factors on total cholesterol in the Caerphilly prospective 
study 

Interaction between rs320 at LPL *dietary factors on Total Cholesterol 
Interaction between SNP rs320* fat energy % 

intake 
Interaction between SNP rs320* protein energy % 

intake 
Interaction between SNP rs320* carbohydrate 

energy % intake 
0.01 (0.01) 

0.48 
-0.01 (0.03) 

0.57 
-0.004 (0.01) 

0.64 
Interaction between rs328 at LPL *dietary factors on Total Cholesterol 

Interaction between SNP rs328* fat energy % 
intake 

Interaction between SNP rs328* protein energy % 
intake 

Interaction between SNP rs328* carbohydrate 
energy % intake 

-0.01 (0.01) 
0.58 

-0.04 (0.03) 
0.17 

0.01 (0.01) 
0.29 

Interaction between rs405509 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs405509* fat energy % 

intake 
Interaction between SNP rs405509* protein energy 

% intake 
Interaction between SNP rs405509* carbohydrate 

energy % intake 
0.03 (0.01) 

0.11 
-0.04 (0.04) 

0.52 
-0.02 (0.01) 

0.31 
Interaction between rs769450 at APOE *dietary factors on Total Cholesterol 

Interaction between SNP rs769450* fat energy % 
intake 

Interaction between SNP rs769450* protein energy 
% intake 

Interaction between SNP rs769450* carbohydrate 
energy % intake 

-0.01 (0.01) 
0.10 

0.05 (0.02) 
0.04 

0.01 (0.01) 
0.42 

Interaction between rs439401 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs439401* fat energy % 

intake 
Interaction between SNP rs439401* protein energy 

% intake 
Interaction between SNP rs439401* carbohydrate 

energy % intake 
-0.003 (0.01) 

0.77 
-0.01 (0.03) 

0.68 
0.004 (0.01) 

0.65 
Interaction between rs445925 at APOE *dietary factors on Total Cholesterol 

Interaction between SNP rs445925* fat energy % 
intake 

Interaction between SNP rs445925* protein energy 
% intake 

Interaction between SNP rs445925* carbohydrate 
energy % intake 

-0.0003 (0.01) 
0.97 

-0.02 (0.03) 
0.55 

0.002 (0.01) 
0.87 
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Interaction between rs405697 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs405697* fat energy % 

intake 
Interaction between SNP rs405697* protein energy 

% intake 
Interaction between SNP rs405697* carbohydrate 

energy % intake 
0.01 (0.01) 

0.51 
-0.03 (0.03) 

0.24 
-0.002 (0.01) 

0.84 
Interaction between rs1160985 at APOE *dietary factors on Total Cholesterol 

Interaction between SNP rs1160985* fat energy % 
intake 

Interaction between SNP rs1160985* protein 
energy % intake 

Interaction between SNP rs1160985* carbohydrate 
energy % intake 

-0.01 (0.01) 
0.13 

-0.004 (0.03) 
0.19 

0.01 (0.01) 
0.43 

Interaction between rs1064725 at APOE *dietary factors on Total Cholesterol 
Interaction between SNP rs1064725* fat energy % 

intake 
Interaction between SNP rs1064725* protein 

energy % intake 
Interaction between SNP rs1064725* carbohydrate 

energy % intake 
-0.01 (0.03) 

0.66 
0.05 (0.11) 

0.62 
0.01 (0.03) 

0.74 
Interaction between APOE (E2,E3, and E4)*dietary factors on Total Cholesterol 

Interaction between SNP APOE (E2, E3, and E4)* 
fat energy % intake 

Interaction between SNP APOE (E2, E3, and E4)* 
protein energy % intake 

Interaction between SNP APOE (E2, E3, and E4)* 
carbohydrate energy % intake 

-0.02 (0.02) 
0.038 

0.02 (0.04) 
0.83 

0.01 (0.01) 
0.08 

Values represented β regression coefficients (± S.E), and Pinteraction.  
P values were obtained by using a general linear model adjusted for age, sex, body mass index, country and total energy intake, 
wherever appropriate. 
Bonferroni corrected P value <0.001 was considered statistically significant. 
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Table 4.6: Genotype distribution of SNPs at LPL and APOE genes and Hardy 
Weinberg Equilibrium P values 
 

SNP Common 
homozygous 

N (%) 

Heterozygous 
N (%) 

Rare 
homozygous 

N (%) 

Chi square HWE P 
value 

PRECISE 
rs320  354 (0.53) 271 (0.40) 39 (0.05) 1.8 0.17 
rs328 522 (0.80) 127 (0.19) 3 (0.005) 2.6 0.11 
rs405509 183 (27.6%) 330 (49.8%) 149 (22.5%) 0.0001 0.99 
rs769450   228 (34.5%) 339 (51.4%) 92 (13.8%) 3.66 0.06 
rs439401  291 (44.2%) 290 (44.1%) 76 (11.5%) 0.08 0.77 
rs445925  506 (77.3%) 142 (21.7%) 6 (0.9%) 1.33 0.24 
rs405697 365 (54.9%) 257 (38.7%) 42 (6.3%) 0.13 0.71 
rs1160985 200 (30.2%) 344 (52%) 117 (17.7%) 2.18 0.13 
rs1064725 606 (91.4%) 56 (8.4%) 1 (0.1%) 0.06 0.81 
Caerphilly Prospective study 
rs320  721 (0.53)  536 (0.39)  86 (0.06) 1.05 0.31 
rs328 1068 (0.79)  266 (0.19) 9 (0.006) 3.01 0.08 
rs405509 381 (0.28) 675 (0.50)  287 (0.21) 0.13 0.71 
rs769450   452(0.33) 672(0.50) 219(0.16) 1.35 0.24 
rs439401  560 (0.41) 615 (0.45)  168 (0.12) 0.0018 0.96 
rs445925  1056 (0.78)  271 (0.20) 16 (0.01) 0.08 0.77 
rs405697 728 (0.54) 513 (0.38) 102 (0.07) 0.77 0.38 
rs1160985 394 (0.29)  688 (0.51)  261 (0.19) 1.61 0.20 
rs1064725 1076 (0.96) 35 (0.03) 0  0.28 0.59 
HWE; Hardy Weinberg Equilibrium 
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4.5 Discussion  

Our findings demonstrated significant associations between the APOE haplotype 

(E2, E3, and E4) and APOE SNP rs445925 with total plasma cholesterol and LDL-C 

(only CaPS) concentration, which were further replicated in an independent UK 

Caucasian cohort. The levels of total cholesterol were significantly lower in carriers of 

the APOE E2 allele and the ‘A’ allele of the SNP rs445925 than carriers of E3, E4 and 

‘GG’ genotype of the APOE SNP rs445925, respectively. Given that our findings confirm 

that genetic polymorphisms of APOE influence the inter-individual variation in total 

plasma cholesterol, a marker of dyslipidemia, changes in dietary consumption to reduce 

disease susceptibility could be implemented for individuals at genetic risk. 

  The effects of APOE polymorphisms on lipid concentrations have previously been 

investigated in different ethnic groups [11, 53, 54] and studies have shown that the APOE 

gene variants contributed to 7% variability in total cholesterol  [55]. The results of the 

current study were in line with previously reported findings that APOE haplotypes (E2, 

E3, and E4) are associated with serum total cholesterol and LDL-C, with E4 carriers 

associated with increased concentrations compared with E3/E3 wildtype and particularly 

E2 carriers [16, 53, 56]. One of the primary roles of APOE is binding the low density 

lipoprotein receptor (LDLR) and the LDLR-related protein, to facilitate cellular uptake of 

lipoprotein particles [57]. The three alleles, E2, E3, and E4, differ in their amino-acid 

sequences, resulting in functional differences in receptors-binding affinity. Amino-acid 

sequences of the E2 allele have lower binding affinity than those of the E3 and E4 alleles, 

causing decreased hepatic VLDL and chylomicron remnants clearance, thus reducing the 

uptake of postprandial lipoprotein particles [57]. E2 carriers also have an impaired 

conversion of the VLDL particles to LDL-C compare to E4 carriers [58], who have a 
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higher rate of VLDL catabolism [59], which explains in part the lower total cholesterol 

and LDL-C in E2 allele carriers.  

Furthermore, our study highlights an association between APOE SNP rs445925, 

which is one of the selected tagSNPs within the APOE gene, and total cholesterol. The 

SNP rs445925 has not been extensively studied, however, a genome-wide association 

study showed a significant association between SNP rs445925 and LDL-C levels in 3,644 

black and white individuals from the US and Europe [60]. In addition, previous genome-

wide linkage and association studies have shown linkage disequilibrium (LD) between 

APOE SNPs rs7412 and rs445925 [61] and between ‘A’ allele carriers at SNP rs445925 

and E2 haplotype [62], respectively, which could explain in part a similar function in 

cholesterol synthesis.  

Besides genetic associations, our study also identified an interaction of APOE 

haplotypes (E2, E3, and E4) with intake from fat (%) on total cholesterol in the CaPS, 

where, among those who consumed a low-fat diet (%), individuals carrying the E2 allele 

had significantly lower total cholesterol concentrations than to E4 allele carriers. 

However, this interaction was not statistically significant after correction for multiple 

testing. A previous study has examined the response of APOE genotype to fat intake in 

45 individuals using a prospective design, where after consumption of a lower-fat-

cholesterol diet (34% fat, 265 mg/day) according to modified National Cholesterol 

Education program there was a significant reduction in total cholesterol by 14%, 9%, and 

4% in E4/E4, E3/E4, and E3/E3 genotypes, respectively [63]. Another study showed that 

the response to a diet high in cholesterol increases total cholesterol in E3 and E4 

compared to E2 allele carries in a study comprising 29 healthy men [64]. By contrast, a 
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cross sectional study in European Caucasians (n=996) reported that E2 allele carriers had 

lower total cholesterol levels, but there were no reported between interactions between 

saturated fatty acids and total cholesterol [65]. Given that the previous studies have given 

inconsistent results and have used various types of fatty acids, replication of our gene-diet 

interaction finding in a large well-designed randomized controlled trial is highly 

warranted.  

Previous studies have shown that the minor allele of LPL SNP rs328 enhance 

lipolytic activity [12]. Increased activity of LPL results in enhance clearance of TAG 

from the circulation, and  associated with higher HDL-C concentrations [66]. The LPL 

SNP rs320 (HindIII) is in LD with rs328 (S447X) and they have been shown to have 

similar effects on HDL-C, where minor allele was reported to increase HDL-C [24, 67]. 

In our study, in accordance with findings from other studies, there were associations 

between LPL SNPs, rs320 and rs328, and HDL-C concentrations, where common 

homozygotes of both SNPs had lower HDL-C [22-24, 26]. However, in our study, these 

associations were no longer statistically significant after Bonferroni correction. 

Furthermore, there were no significant LPL SNP-diet interactions with HDL-C or total 

cholesterol concentrations in either cohort. To date, there has only been one study that 

has shown an interaction between LPL rs328 and total fat intake on HDL-C in 8,764 

individuals from the US population, where high fat intake associated with increase HDL-

C in CC homozygotes and CG heterozygotes carriers [28]. One of the main reasons we 

did not identify a significant interaction may be our small sample size; however, we 

cannot rule out an effect of differences in dietary fat sources between European and the 

US population. 
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The present study has some limitations. Importantly, some lipid-related outcomes, 

such as LDL-C and TAG concentrations, were not measured in the PRECISE study. The 

PRECISE study was also conducted in two populations, a UK cohort and a Danish 

cohort, which used different food frequency questionnaires and this might have 

introduced measurement bias, even though the current results were adjusted for country 

in the regression analysis to avoid confounding. Another possible limitation is the use of 

a cross-sectional design (in both studies) to investigate genetic effects at a single point in 

time, whereas a longitudinal analysis design would have captured the genetic effects on 

lipid outcomes over a specific time period. The effect-size of the minor allele of some of 

the studied SNPs was relatively small, and hence a large sample size is required to detect 

reliably detect any interaction between SNPs and dietary factors. Despite the fact that this 

study was not adequately powered to detect such an interaction, it was sufficiently 

powered to detect the main effects (association). Significant gene-diet interactions were 

identified, however these did not reach the Bonferroni-corrected P value (P=0.001) and 

hence need to be confirmed in larger cohorts. This study is strengthened by the fact that it 

is the first study to investigate the role of tagSNPs at the APOE gene in relation to dietary 

factors and lipid outcomes. The fact that genetic associations from the PRECISE study 

were replicated in another Caucasian cohort (CaPS) confirms the validity of our findings. 

Additionally, CaPS was based on a cohort with a very high response rate, and is therefore 

closely representative of the general population.  

4.6 Conclusion 

Our study, carried out in two Caucasian populations, confirmed that genetic 

variations at the APOE gene locus influence plasma lipid concentrations. Thus, our 
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results suggest that APOE gene variants affect risk of dyslipidemia in individuals who 

carry the E4 risk allele and GG genotype at SNP rs445925. Future studies with a larger 

sample size examining tagSNPs at APOE, particularly prospectively genotyped dietary 

intervention studies are required to confirm the gene-diet interactions identified in our 

study.
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Chapter 5 
 

For this study, I was involved in getting the dataset from the collaborators and 

cleaning the dataset. I ran the entire statistical analysis using the SPSS software and 

wrote the first draft of the manuscript. I revised the manuscript based on the comments 

from all the co-authors before the manuscript was submitted to the Lipids in health and 

disease journal. I was also involved in drafting the responses to the comments from 

reviewers.  

For the genetic analysis, I had to collect and prepare DNA samples from the 

freezer to be transferred to LGC Genomics Company to run genotyping of the selected 

candidate SNPs. Before running the statistical analysis, I prepared the analysis plan, 

which summarized the steps for the statistical methods to be used for meeting the 

objectives of my study. 
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Chapter 5 Apolipoprotein E gene polymorphism modifies fasting total cholesterol 

concentrations in response to replacement of dietary saturated with 

monounsaturated fatty acids in adults at moderate cardiovascular disease risk 
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health and disease 16:222 

5.1 Abstract 

Background: Consumption of ≤10% total energy from fat as saturated fatty acids (SFA) 

is recommended for cardiovascular disease risk reduction in the UK; however there is no 

clear guidance on the optimum replacement nutrient. Lipid-associated single-nucleotide 

polymorphisms (SNPs) have been shown to modify the lipid responses to dietary fat 

interventions. Hence, we performed a retrospective analysis in 120 participants from the 

Dietary Intervention and VAScular function (DIVAS) study to investigate whether 

lipoprotein lipase (LPL) and apolipoprotein E (APOE) SNPs modify the fasting lipid 

response to replacement of SFA with monounsaturated (MUFA) or n-6 polyunsaturated 

(PUFA) fatty acids.  

Methods: The DIVAS study was a randomized, single-blinded, parallel dietary 

intervention study performed in adults with a moderate cardiovascular risk who received 

one of three isoenergetic diets rich in SFA, MUFA or n-6 PUFA for 16 weeks.  
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Results: After the 16-week intervention, a significant diet-gene interaction was observed 

for changes in fasting total cholesterol (P=0.001). For the APOE SNP rs1064725, only 

TT homozygotes showed a significant reduction in total cholesterol after the MUFA diet 

(n=33; −0.71±1.88 mmol/l) compared to the SFA (n=38; 0.34±0.55 mmol/l) or n-6 PUFA 

diets (n=37; −0.08±0.73 mmol/l) (P=0.004). None of the interactions were statistically 

significant for the other SNPs.  

Conclusions: In summary, our findings have demonstrated a greater sensitivity of the 

APOE SNP rs1064725 to dietary fat composition, with a total cholesterol lowering effect 

observed following substitution of SFA with MUFA but not n-6 PUFA. Further large 

intervention studies incorporating prospective genotyping are required to confirm or 

refute our findings. 

5.2 Background  
 

A high consumption of saturated fatty acids (SFA) has been linked to increased 

circulating concentrations of low-density lipoprotein cholesterol (LDL-C) [1], and is 

consequently associated with an increased cardiovascular disease (CVD) risk [2]. 

Therefore, dietary guidelines have focused on reducing intakes of SFA by ≤10% of total 

energy (TE) for CVD risk reduction [3]. It is important to consider the nutrients that 

replace SFA and previous findings have suggested substitution of SFA with unsaturated 

fatty acids may provide a greater reduction in CVD risk than refined carbohydrates [4, 5]. 

In particular, replacement with cis-monounsaturated fatty acids (MUFA) or 

polyunsaturated fatty acids (PUFA) has been shown to significantly lower fasting total 

and LDL-C [6, 7]. However, the inter-individual variability in fasting plasma lipid 

responses to dietary fat intake is high; evidence supports that this is influenced by lipid-
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associated single-nucleotide polymorphisms (SNPs) such as apolipoprotein E (APOE) 

and lipoprotein lipase (LPL) genotypes [8-10].  

Several genes are involved in the regulation of lipid transport and metabolism 

[11]. Among these, the most commonly studied genes with central roles in lipid 

metabolism are LPL and APOE [12-14]. The LPL SNPs, rs320 (HindIII) and rs328 

(S447X), have been proposed as important genetic determinants of the inter-individual 

variability in fasting and postprandial triacylglycerol (TAG) concentrations and high-

density lipoprotein cholesterol (HDL-C) [15-17].  Increased activity of the LPL enzyme 

in minor allele carriers of LPL SNP rs328 has been shown to be associated with lower 

plasma TAG and higher HDL-C levels [18]. To date, there has only been one study 

reporting an interaction between LPL rs328 and n-6 PUFA intake on fasting TAG 

concentrations [19]. The effect of genetic variations of APOE on lipid concentrations (i.e. 

LDL-C) [20-23] and the effect of the APOE polymorphisms on the circulating lipid 

response to dietary fat (i.e. SFA and MUFA) have been previously demonstrated; 

however, the findings have been inconsistent [24-26]. In addition, investigations into 

other SNPs of the APOE gene are limited.  

In the Dietary Intervention and VAScular function (DIVAS) study, the 

isoenergetic replacement of 9.5 - 9.6 % TE from SFA with cis MUFA or n–6 PUFA for 

16 weeks in 195 adults at moderate CVD risk resulted in significant reductions of 8.4% 

and 9.2%, respectively, in total cholesterol, and 11.3% and 13.6%, in LDL-C, in the 

fasted state [6]. To investigate whether genetic polymorphisms contributed to the 

observed reductions in total and LDL-C, a retrospective post hoc analysis of the DIVAS 

study was performed. We examined whether the two LPL and seven tagging SNPs 
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(TagSNPs) in the APOE gene modified the response of the fasting lipid profile to 

substitution of SFA with MUFA or n-6 PUFA in this study population at moderate CVD 

risk.  

5.3. Participants and methods 

5.3.1 Study participants  

A detailed description of the DIVAS study design and methods has been reported 

elsewhere [6, 27]. Briefly, participants were recruited from Reading, UK and the 

surrounding area in three cohorts between November 2009 and July 2012. Participants 

were aged between 21 and 60 years and were all non-smoking men and women with a 

moderate risk of CVD. A scoring tool [27] was used to determine CVD risk based on the 

presence of single or multiple risk factors, including elevated fasting total cholesterol or 

fasting glucose, raised blood pressure, low HDL-C, being overweight or obese, and/or 

having a family history of premature myocardial infarction or type 2 diabetes. Eligible 

participants had a risk score of ≥ 2 combined points, reflecting a moderate CVD risk 

(≥50% above the population mean). Other criteria for exclusion were the presence of 

abnormal fasting blood biochemistry, taking dietary supplements or the use of 

medications that affect lipid metabolism or hypertension, and having inflammatory 

disorders. The West Berkshire Local Research ethics committee (09/ H0505/56) and the 

University of Reading Research Ethics Committee (09/40) gave a favourable ethical 

opinion for conduct. The trial was registered at www.clinicaltrials.gov as NCT01478958. 

All participants provided written informed consent before participating. In our 

retrospective analysis, 120 of the 195 participants who completed the DIVAS study 

consented to genetic analysis, and were included in the present study. 

http://www.clinicaltrials.gov/
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5.3.2 Study design and diets  

The DIVAS study was a randomized, single-blinded, parallel design. The 

participants completed 16 weeks of dietary intervention, receiving one of three 

isoenergetic diets based on a minimization program that matched for age, sex, body mass 

index (BMI), and total CVD risk score. The three intervention diets (%TE derived from 

SFA:MUFA:n-6 PUFA) were either rich in SFAs (17:11:4), MUFAs (9:19:4), or n-6 

PUFAs (9:13:10). Given that dietary guidelines recommend limiting n-6 PUFA intake to 

≤10% TE [28], SFA were replaced with 6% TE n-6 PUFA and 2% TE MUFA in the n-6-

PUFA-rich diet. The total fat content of all three intervention diets was 36% TE, and 

intakes of protein, carbohydrates, and n-3 PUFA were unchanged. A greater SFA 

exchange than the target 8% TE was achieved: SFA vs MUFA was 9.5% TE and SFA vs 

n-6 PUFA was 9.6% TE [27]. 

Further details of the dietary intervention procedure and measures of compliance 

have been published previously [27]. In summary, these interventions were based on a 

flexible food-exchange model to achieve the target fatty acid intakes in free-living 

individuals for 16 weeks. Participants, who were randomly assigned to one of three 

intervention diets, replaced routinely consumed sources of exchangeable fats with study 

foods. The study foods included spreads, oils, dairy products, and commercially available 

snacks of a specific fatty acid composition. Specially formulated spreads (80% total fat) 

and oils (Unilever Research and Development) were used for the MUFA-rich diet 

(refined olive oil and olive oil/rapeseed oil blended spread) and n–6 PUFA-rich diet 

(safflower oil and spread). Butter (Wyke Farm) was used as both a spread and oil 
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replacement in the SFA-rich diet.  

5.3.3 Anthropometric measurements and biochemical parameters  

Clinical visits took place at the Hugh Sinclair Unit of Human Nutrition, 

University of Reading, during weeks 0 (baseline; V1) and 16 (after intervention; V2) as 

described elsewhere [6]. Alcohol and aerobic exercise were avoided 24 h before visits. 

Participants consumed a provided low-fat meal the evening before visits and fasted for 12 

h, only drinking low-nitrate water during this time. Height and weight was recorded at the 

study visits at weeks 0 and 16 in order to calculate BMI. Height was recorded to the 

nearest 0.5 cm using a wall-mounted stadiometer and weight was measured using a 

digital scale (Tanita Europe) using standard settings (normal body type and 1 kg for 

clothing).  

At weeks 0 and 16, fasting blood samples collected into a serum separator 

vacutainer and a K3EDTA-containing vacutainer (week 0 only) were used for the 

measurement of the fasting lipid profile and isolation of the buffy coat, respectively. The 

K3EDTA-containing vacutainer was kept on ice for 30 min before the blood tubes were 

centrifuged at 1700 g for 15 min at 20 °C (for serum) and 4 °C (for plasma). The buffy 

coat was stored at -20°C and serum samples stored at -80°C prior to analysis of total 

cholesterol, TAG, and HDL-C, and glucose (baseline only) concentrations using an 

autoanalyzer (reagents and analyzer: Werfen UK Ltd). Fasting LDL-C was estimated 

using the Friedewald formula [29]. With the use of A/A grade automated oscillometric 

ambulatory blood pressure (ABP) monitors (A&D Instruments Ltd.), baseline 24 h ABP 

was measured every 30 min from 07:00 to 21:59 and every 60 min from 22:00 to 06:59, 

approximately 48 h before the clinical visits.  
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5.3.4 SNP selection and genetic analysis 

The APOE gene is located on chromosome 19q13.32 and comprises of four 

exons, which are transcribed into the 1,180 nucleotides long APOE mRNA. The seven 

tag SNPs for the APOE gene were chosen based on International HapMap Phase II 

collected in individuals of Northern and Western European ancestry (CEU) (HapMap 

Data release 27 Phase 2+3, Feb 09, NCBI B36 assembly, dbSNP b126). The Haploview 

software V3.3 (http:// www.broadinstitute.org/haploview/haploview-downloads) was 

used to assess the linkage disequilibrium structure between SNPs. Tagger software was 

used to select tag SNPs with the ‘pairwise tagging only’ option. Two criteria were used to 

filter the SNPs included in the analysis - minor allele frequency ≥5% and Hardy–

Weinberg equilibrium P-value >0.01. Seven tagSNPs (rs405509 (G>T) [30, 31], 

rs1160985 (C>T) [32], rs769450 (G>A) [33], rs439401 (C>T) [34], rs445925 (G>A) 

[35], rs405697 (G>A) [36], and rs1064725 (T>G)) representing the entire common 

genetic variations across the APOE gene were selected for the study. In addition, the two 

commonly studied LPL SNPs, rs320 and rs328, were chosen. In total, nine SNPs were 

examined in the present study.    

DNA was extracted from the buffy coat using a QIAamp DNA blood kit 

(QIAGEN) and stored at -20°C. The genotyping of the LPL and APOE SNPs was 

outsourced to LGC Genomics (http://www.lgcgroup.com/services/genotyping), which 

employs the competitive allele-specific PCR-KASP® assay.  

5.3.5 Statistical analysis  

The data are presented as mean ± standard deviation (SD) in the tables and text, 

http://www.broadinstitute.org/haploview/haploview-downloads
http://www.lgcgroup.com/services/genotyping
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and as standard error in the figure. The normal distribution was tested for variables, and 

none of the variables skewed the distribution. The minor allele frequency was calculated 

by counting. The dominant models were a better fit for SNPs rs320, rs328, rs769450, 

rs439401, rs445925, rs405697, and rs1064725; thus, homozygosity for the common allele 

was compared with carriers of the minor allele (heterozygous and homozygous for the 

minor allele) in the analysis. The additive model was applied for SNPs rs405509 and 

rs1160985 (major allele homozygotes vs. heterozygotes vs. minor allele homozygotes). 

The genotype distributions of the nine SNPs at the LPL and APOE genes were in Hardy-

Weinberg equilibrium (P>0.05) (Table 5.2). Independent t-tests were used to compare 

means between men and women at baseline. The baseline and over 16 weeks’ 

associations of the selected SNPs with continuous phenotypes were evaluated by the 

general linear model (GLM). Moreover, potential interactions between genotype and 

dietary intervention on 16-week changes of lipids were analyzed by using GLM, where 

an interaction term was included in the model. Potential confounders associated with the 

outcomes were adjusted in all GLM analyses (i.e. age, sex, BMI, and ethnicity). When a 

significant diet x genotype interaction was found, data were split by genotype group and 

analyzed further by using GLM. A Bonferroni correction was applied and the significant 

P value was 0.0013 (0.05/9 SNPs*4 lipid outcomes). For all analyses, the statistical 

package SPSS version 22.0 (SPSS, Chicago, IL, USA) was used.  

5.4 Results  

In this retrospective analysis, 120 participants (mean age, 47± 9 years; BMI, 26.4 

± 4.0 kg/m2) were included. Table 5.1 illustrates the main characteristics of the study 

participants stratified according to sex at baseline. Women had significantly lower levels 
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of fasting TAG (P<0.0001), LDL-C (P=0.01), glucose (P=0.02), blood pressure (P≤0.03), 

and higher levels of fasting HDL-C (P<0.0001) compared to men.  

The genotype distributions of both LPL and APOE polymorphisms are shown in 

Table 5.2. The participants’ characteristics at the beginning of the dietary interventions 

(week 0) are presented in Table 5.3 according to LPL and APOE genotypes. None of the 

variables (including fasting TAG, total cholesterol, LDL-C, and HDL-C) were associated 

with the LPL and APOE SNPs at baseline.  After 16 weeks of intervention, there was also 

no significant association of the LPL and APOE SNPs with changes in the lipid outcomes 

after Bonferroni correction (Tables 5.4-8).  

Table 5.1: Baseline characteristics of study participants in the whole group and 

stratified by sex 

Characteristics Whole 

group 

(N=120) 

Men (N=54) Women (N=66) P value 

Age 47±9 48± 9 46± 9 0.37 

BMI 26.3± 3.9 26.7± 3.6 26.2± 4.3 0.58 

Systolic blood pressure  122± 10 126± 9 120± 9 0.01 

Diastolic blood pressure 75± 7 77± 7 74± 7 0.03 

Total cholesterol 5.58± 1.11 5.75± 1.15 5.45± 1.06 0.16 

TAG 1.28± 0.60 1.62± 0.61 1.02± 0.44 <0.0001 

HDL-C 1.54± 0.35 1.36± 0.32 1.68± 0.32 <0.0001 

LDL-C 3.79± 0.99 4.06± 1.01 3.57± 0.93 0.01 

Glucose  5.11± 0.42 5.23± 0.44 5.03± 0.39 0.02 
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Data shown are represented as means ± SD, wherever appropriate. P values for the 
differences in the means between men and women. P values were calculated by using 
independent t-test. BMI; body mass index, TAG; triacylglycerol, HDL-C; high-density 
lipoprotein cholesterol, LDL-C; low-density lipoprotein cholesterol  
 
Table 5.2: Genotype and minor allele frequencies of the SNPs at LPL and APOE 
genes in the DIVAS cohort of adults with moderate CVD risk 
 

SNP MAF Common 
homozygous 

N (%) 

Heterozygous 
N (%) 

Rare 
homozygous 

N (%) 
LPL  

 
rs320  
(T>G) 

0.30  56 (0.47) 54 (0.45) 9 (0.07) 

rs328 
(C>G) 

0.13 89 (0.74) 30 (0.25) 1 (0.008) 

APOE  
 

rs405509 
(G>T) 

0.47 31 (0.25) 64 (0.53) 25 (0.20) 

rs769450   
(G>A) 

0.37 44 (0.36) 61 (0.50) 15 (0.12) 

rs439401  
(C>T) 

0.35  50 (0.42) 52 (0.44) 16 (0.13) 

rs445925  
(G>A) 

0.11  91 (0.77) 25 (0.21) 1 (0.008) 

rs405697 
(G>A) 

0.25  70 (0.58) 38 (0.31) 11 (0.09) 

rs1160985 
(C>T) 

0.45 33 (0.27) 64 (0.53) 23 (0.19) 

rs1064725 
(T>G) 

0.05 108 (0.90) 12 (0.10) - 

 
MAF; minor allele frequency, LPL; lipoprotein lipase, APOE; apolipoprotein E. 
 

At 16 weeks, after adjustment for age, sex, ethnicity and baseline BMI, a 

significant interaction between the APOE SNP rs1064725 and dietary intervention (SFA 

vs. MUFA vs. n-6 PUFA) on changes in fasting total cholesterol (Pinteraction=0.001) was 

observed (Figure 5.1). The ‘TT’ homozygotes (n=108) of SNP rs1064725 had 

significantly lower total cholesterol concentrations after the MUFA (n=33; −0.71±1.88 
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mmol/l) compared with the SFA (n=38; 0.34±0.55 mmol/l; P=0.003) and n-6 PUFA-rich 

diets (n=37; −0.08±0.73 mmol/l; P=0.15) (Passociation=0.004) (Figure 5.1).   

Figure 5.1 Mean (±SE) of changes in total cholesterol concentrations following three 

intervention diets [rich in either saturated fatty acids (SFA), monounsaturated fatty acids 

(MUFA), and n-6 polyunsaturated fatty acids (PUFA)] according to the APOE SNP 

rs1064725 genotype (Pinteraction=0.001). A general linear model analysis was performed 

with adjustments for age, sex, body mass index, and ethnicity. Individuals carrying the 

‘TT’ genotype had lower total cholesterol levels after consuming the MUFA diet 

compared to the SFA or n-6 PUFA diets (Passociation=0.004).   
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Table 5.3: Baseline characteristics of the DIVAS study participants according to the LPL and APOE genotypes 
SNP Age Sex 

(M/F) 
TAG (mmol/l) HDL-C 

(mmol/l) 
LDL-C 

(mmol/l) 
Total cholesterol 

(mmol/l) 
LPL       

rs320       
TT 46± 9 27/29 1.28± 0.63 1.54± 0.41 3.73± 0.96 5.52± 1.15 

T/G 48± 9 27/36 1.27± 0.57 1.53± 0.31 3.81± 1.01 5.59± 1.07 
P value   0.83 0.41 0.71 0.53 

rs328       
CC 46± 9 42/47 1.29± 0.63 1.52± 0.37 3.72± 1.01 5.49± 1.17 

C/G 48± 10 12/19 1.23± 0.47 1.58± 0.27 3.96± 0.88 5.79± 0.83 
P value   0.51 0.93 0.42 0.49 

APOE       
rs405509       

GG 47± 10 17/14 1.41± 0.63 1.42± 0.39 3.71± 1.01 5.41± 1.20 
GT 47± 9 21/43 1.18 ± 0.57 1.58± 0.31 3.77± 1.00 5.58± 1.05 
TT 45± 11 16/9 1.34± 0.61 1.55± 0.38 3.85± 0.94 5.67± 1.12 

P value   0.57 0.24 0.81 0.70 
rs769450       

GG 47± 10 24/20 1.30± 0.61 1.57± 0.37 3.88± 0.96 5.71± 1.11 
G/A 46± 9 30/46 1.25± 0.59 1.51± 0.34 3.71± 1.00 5.47± 1.10 

P value   0.89 0.24 0.99 0.74 
rs439401       

CC 48± 9 25/25 1.37± 0.61 1.53± 0.36 3.88± 0.84 5.68± 0.95 
T allele 46± 10 29/39 1.22± 0.59 1.53± 0.34 3.69± 1.07 5.47± 1.19 
P value   0.43 0.95 0.54 0.54 

rs445925       
GG 46± 10 40/51 1.26± 0.58 1.53± 0.35 3.72± 1.00 5.50± 1.13 

A allele 49± 8 13/13 1.36± 0.67 1.56± 0.38 3.97± 1.00 5.80± 1.04 
P value   0.95 0.77 0.64 0.61 
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rs405697       
GG 47± 9 35/35 1.32± 0.62 1.52± 0.39 3.77± 0.91 5.56± 1.01 

A allele  46± 10 19/30 1.22± 0.57 1.55± 0.31 3.77± 1.08 5.56± 1.22 
P value   0.77 0.91 0.95 0.95 

rs1160985       
CC 46± 11 17/16 1.24± 0.62 1.55± 0.34 3.73± 0.96 5.53± 1.11 
CT 47± 8 24/40 1.27± 0.61 1.57± 0.33 3.87± 0.96 5.69± 1.02 
TT 46± 11 13/10 1.35± 0.51 1.38± 0.40 3.57± 1.08 5.23± 1.30 

P value   0.98 0.58 0.51 0.49 
rs1064725       

TT 47± 9 48/60 1.26± 0.59 1.55± 0.34 3.79± 1.00 5.59± 1.11 
G allele  45± 10 6/6 1.40± 0.65 1.42± 0.46 3.60± 0.85 5.29± 1.00 
P value   0.39 0.32 0.79 0.65 

P values for association between genotypes and lipids levels were obtained by using general linear model adjusted for age, sex, body 
mass index, and ethnicity. Values are mean ± SD.  

TAG; triacylglycerol, HDL-C; high-density lipoprotein cholesterol, LDL-C; low-density lipoprotein cholesterol, LPL; lipoprotein 
lipase, APOE; apolipoprotein E.  

The dominant model was applied for all SNPs (rare homozygotes were grouped with heterozygotes and compared with common 
homozygotes), except SNPs rs405509 and rs1160985 where additive model was applied (common homozygotes vs. heterozygotes vs. 
rare homozygotes).  
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Table 5.4: Changes in lipid levels after dietary intervention over 16 weeks relative to baseline according to the APOE 
rs1064725 genotype 

 SFA  MUFA  n-6 PUFA  Pinteraction 

 TT (N=38) G allele 
(N=3)  

P association TT 
(N=33) 

G allele 
(N=3) 

P association TT 
(N=37) 

G allele 
(N=6)  

P association 

TAG 0.001± 1.76 0.22± 
0.51 

0.81 -0.01± 
0.35 

0.30± 
0.32 

0.15 -0.66± 
2.05 

0.04± 
0.23 

0.12 0.67 

HDL-C 0.06± 1.70 -0.003± 
0.14 

0.87 0.003± 
0.17 

-0.06± 
0.11 

0.63 0.21± 
2.08 

0.20± 
0.23 

0.85 0.99 

LDL-C 0.05± 1.48 2.90± 
4.41 

0.02 -0.55± 
2.47 

1.49± 
2.70 

0.27 -0.22± 
2.24 

1.99± 
3.71 

0.03 0.88 

P values for association between genotypes and changes of means over 16 weeks with one of three diets were obtained by using 

general linear model adjusted for age, sex, body mass index, and ethnicity. P values for interaction between genotypes and changes of 

means over 16 weeks of intervention with one of three diets were obtained by using general linear model adjusted for age, sex, body 

mass index, and ethnicity. Values are mean ± SD.  

TAG; triacylglycerol, HDL-C; high-density lipoprotein cholesterol, LDL-C; low-density lipoprotein cholesterol, SFA; saturated fatty 

acids, MUFA; monounsaturated fatty acids, PUFA; polyunsaturated fatty acids. 
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Table 5.5: Changes in lipid levels after dietary intervention over 16 weeks according to LPL rs320 genotypes 

 SFA  MUFA  n-6 PUFA  Pinteraction 

 TT 
(N=21) 

G allele 
(N=20) 

P association TT 
(N=11) 

G allele 
(N=24) 

P 
association 

TT 
(N=24) 

G allele 
(N=19) 

P 
association 

Total 
cholesterol 

0.37± 
0.60 

0.29± 
0.45 

0.59 0.21±2.66 -0.67± 
2.07 

0.21 -0.32± 
1.67 

-0.12± 
0.64 

0.92 0.34 

TAG -0.04± 
2.35 

0.07± 
0.59 

0.84 0.04± 0.50 0.01± 
0.29 

0.58 -0.07± 
0.32 

-1.19± 
2.78 

0.02 0.15 

HDL-C 0.09± 
0.15 

0.01± 
2.33 

0.94 -0.07± 
0.17 

0.03± 
0.15 

0.04 0.02± 
0.25 

0.43± 
2.91 

0.78 0.75 

LDL-C 0.29± 
2.71 

0.27± 
0.40 

0.95 -1.70± 
2.85 

0.16± 
2.22 

0.11 0.91± 
2.23 

-1.00± 
2.50 

0.007 0.005 

P values for association between genotypes and changes of means over 16 weeks with one of three diets were obtained by using 

general linear model adjusted for age, sex, body mass index, and ethnicity. P values for interaction between genotypes and changes of 

means over 16 weeks of intervention with one of three diets were obtained by using general linear model adjusted for age, sex, body 

mass index, and ethnicity. Values are mean ± SD.  

TAG; triacylglycerol, HDL-C; high-density lipoprotein cholesterol, LDL-C; low-density lipoprotein cholesterol, SFA; saturated fatty 

acids, MUFA; monounsaturated fatty acids, PUFA; polyunsaturated fatty acids. 
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Table 5.6: Changes in lipid levels after dietary intervention over 16 weeks according to LPL rs328 genotype  
 SFA  MUFA  n-6 PUFA  Pinteraction 

 CC 
(N=31) 

G allele 
(N=10) 

P association CC 
(N=24) 

G allele 
(N=12) 

P association CC 
(N=34) 

G allele 
(N=9) 

P 
association 

Total 
cholesterol 

0.35± 
0.59 

0.26± 
0.25 

0.63 -0.25± 
2.26 

-0.81± 
2.28 

0.46 -0.29± 
1.42 

-0.01± 
0.65 

0.86 0.55 

TAG 0.06± 
1.92 

-0.12± 
0.49 

0.76 0.06± 
0.35 

-0.09± 
0.35 

0.11 -0.56± 
1.72 

-0.62± 
2.77 

0.79 0.97 

HDL-C -0.19± 
1.31 

0.82± 
2.32 

0.11 -0.04± 
0.16 

0.07± 
0.15 

0.16 0.01± 
1.79 

0.97± 
2.44 

0.53 0.45 

LDL-C 0.29± 
2.19 

0.23± 
0.23 

0.59 -0.90± 
2.09 

0.82± 
3.06 

0.24 -0.10± 
2.82 

-0.15± 
0.38 

0.78 0.25 

P values for association between genotypes and changes of means over 16 weeks with one of three diets were obtained by using 
general linear model adjusted for age, sex, body mass index, and ethnicity. P values for interaction between genotypes and changes of 
means over 16 weeks of intervention period with one of three diets were obtained by using general linear model adjusted for age, sex, 
body mass index, and ethnicity. Values are mean ± SD.  

TAG; triacylglycerol, HDL-C; high-density lipoprotein cholesterol, LDL-C; low-density lipoprotein cholesterol, SFA; saturated fatty 
acids, MUFA; monounsaturated fatty acids, PUFA; polyunsaturated fatty acids. 
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Table 5.7: Changes in lipid levels after dietary intervention over 16 weeks according to APOE rs405509 and rs1160985 
genotypes 

 SFA  MUFA  n-6 PUFA  Pinteraction 

APOE 
SNP 

rs405509  

GG 
(N=12) 

GT 
(N=20) 

TT 
(N=9) 

P 
association 

GG 
(N=7) 

GT 
(N=26) 

TT 
(N=3) 

P 
association 

GG 
(N=12) 

GT 
(N=18) 

TT 
(N=13) 

P 
association 

Total 
cholesterol 

0.22± 
0.65 

0.23± 
0.45 

0.67± 
0.41 

0.12 -0.23± 
0.57 

-0.51± 
2.59 

-
0.12± 
0.17 

0.77 -
0.001± 
0.80 

0.05± 
0.76 

-0.84± 
2.00 

0.24 0.55  

TAG -0.03± 
0.64 

0.02± 
2.43 

0.07± 
0.44 

0.94 0.19± 
0.51 

-0.01± 
0.31 

-
0.03± 
0.49 

0.45 -0.52± 
2.32 

-0.50± 
1.71 

-0.71± 
2.01 

0.99 0.98  

HDL-C -0.60± 
2.12 

0.44± 
1.64 

0.07± 
0.14 

0.32 -
0.002± 
0.11 

-0.01± 
0.18 

0.02± 
0.03 

0.98 0.63± 
2.12 

-0.31± 
1.75 

0.55± 
2.03 

0.48 0.18  

LDL-C 0.20± 
0.55 

0.61± 
1.88 

-0.29± 
2.91 

0.60 -1.06± 
1.73 

0.22± 
2.03 

-
3.88± 
4.56 

0.01 -1.11± 
3.47 

0.56± 
2.12 

0.40± 
1.77 

0.23 0.10  
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APOE 
SNP 

rs1160985  

CC 
(N=11) 

CT 
(N=19) 

TT 
(N=11) 

P 
association 

CC 
(N=8) 

CT 
(N=22) 

TT 
(N=6) 

P 
association 

CC 
(N=14) 

CT 
(N=23) 

TT 
(N=6) 

P 
association 

Pinteraction 

Total 
cholesterol 

0.64± 
0.38 

0.34± 
0.54 

-0.02± 
0.46 

0.01 0.05± 
0.32 

-0.66± 
2.82 

-
0.20± 
0.66 

0.78 -0.67± 
1.94 

0.01± 
0.81 

-0.17± 
0.90 

0.36 0.40  

TAG 0.04± 
0.41 

-
0.001± 
2.50 

0.03± 
0.66 

0.95 0.05± 
0.29 

-0.05± 
0.33 

0.26± 
0.55 

0.27 -0.66± 
1.93 

-0.30± 
1.64 

-1.51± 
3.07 

0.52 0.62  

HDL-C 0.05± 
0.14 

0.49± 
1.68 

-0.70± 
2.21 

0.23 -0.01± 
0.18 

0.002± 
0.17 

-
0.01± 
0.13 

0.94 0.54± 
1.94 

0.06± 
2.18 

-0.03± 
0.21 

0.84 0.57  

LDL-C -0.14± 
2.61 

0.72± 
1.92 

-0.02± 
0.43 

0.65 -1.36± 
3.21 

0.21± 
2.23 

-
1.24± 
1.95 

0.38 0.69± 
1.81 

-0.01± 
2.79 

-1.32± 
2.72 

0.25 0.44  

P values for association between genotypes and changes of means over 16 weeks with one of three diets were obtained by using 
general linear model adjusted for age, sex, body mass index, and ethnicity. P values for interaction between genotypes and changes of 
means over 16 weeks of intervention period with one of three diets were obtained by using general linear model adjusted for age, sex, 
body mass index, and ethnicity. Values are mean ± SD.  

TAG; triacylglycerol, HDL-C; high-density lipoprotein cholesterol, LDL-C; low-density lipoprotein cholesterol, SFA; saturated fatty 
acids, MUFA; monounsaturated fatty acids, PUFA; polyunsaturated fatty acids. 
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Table 5.8: Changes in lipid levels after dietary intervention over 16 weeks according to APOE rs769450, rs439401, rs445925 
and rs405697 genotypes 

 SFA  MUFA  n-6 PUFA  Pinteraction 

APOE SNP 
rs769450  

GG 
(N=12) 

A allele 
(N=29) 

P association GG 
(N=11) 

A allele 
(N=25) 

P association GG 
(N=21) 

A allele 
(N=22) 

P 
association 

Total 
cholesterol 

0.56± 
0.46 

0.23± 0.53 0.06 -0.22± 
0.74 

-0.53± 
2.74 

0.74 -0.55± 
1.66 

0.06± 
0.81 

0.14 0.34 

TAG 0.05± 
0.39 

0.001± 
2.04 

0.74 0.01± 
0.37 

0.02± 
0.35 

0.83 -0.48± 
1.60 

-0.65± 
2.22 

0.86 0.92 

HDL-C 0.05± 
0.13 

0.05± 1.98 0.94 -0.06± 
0.19 

0.03± 
0.14 

0.26 0.72± 
2.21 

-0.26± 
1.57 

0.15 0.21 

LDL-C -0.17± 
2.49 

0.48±1.59 0.51 -0.77± 
3.24 

-0.15± 
2.10 

0.91 0.36± 
3.34 

-0.22± 
1.47 

0.39 0.51 

 

APOE SNP 
rs439401  

CC 
(N=19) 

T allele 
(N=22) 

P association CC 
(N=17) 

T allele 
(N=19) 

P association CC 
(N=14) 

T allele 
(N=27) 

P 
association 

Pinteraction 

Total 
cholesterol 

0.13± 
0.48 

0.50± 0.51 0.03 -0.23± 
0.59 

-0.60± 
3.07 

0.77 -0.06± 
0.64 

-0.26± 
1.55 

0.77 0.63 

TAG -0.42± 
1.79 

0.38± 1.55 0.19 -0.03± 
0.39 

0.06± 
0.32 

0.23 -0.001± 
0.94 

-0.87± 
2.27 

0.38 0.13 
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HDL-C 0.02± 
2.47 

0.08± 0.17 0.94 0.02± 
0.18 

-0.02± 
0.15 

0.91 0.001± 
2.99 

0.33± 
1.38 

0.66 0.92 

LDL-C -0.36± 
2.01 

0.79± 1.71 0.09 -0.37± 
0.68 

-0.35± 
3.44 

0.85 -.043± 
2.98 

0.33± 
2.40 

0.34 0.59 

 

APOE SNP 
rs445925  

GG 
(N=31) 

A allele 
(N=8) 

P association GG 
(N=26) 

A allele 
(N=9) 

P association GG 
(N=34) 

A allele 
(N=9) 

P 
association 

Pinteraction 

Total 
cholesterol 

0.35± 
0.48 

0.26± 0.76 0.89 -0.39± 
2.68 

-0.43± 
0.79 

0.99 -0.22± 
1.42 

-0.26± 
0.70 

0.74 0.98 

TAG 0.08± 
1.96 

-0.22± 
0.49 

0.75 0.07± 
0.34 

-0.05± 
0.34 

0.47 -0.69± 
2.15 

-0.09± 
0.16 

0.65 0.68 

HDL-C 0.31± 
1.32 

-0.84± 
2.49 

0.12 0.02± 
0.14 

-0.05± 
0.22 

0.65 0.26± 
2.17 

-0.02± 
0.22 

0.89 0.33 

LDL-C 0.27± 
2.21 

0.28± 0.64 0.75 -0.53± 
2.82 

0.14± 
1.79 

0.66 -0.24± 
2.29 

1.21± 
3.19 

0.18 0.61 

     

APOE SNP 
rs405697  

GG 
(N=25) 

A allele 
(N=16) 

P association GG 
(N=24) 

A allele 
(N=12) 

P association GG 
(N=21) 

A allele 
(N=21) 

P 
association 

Pinteraction 

Total 
cholesterol 

0.26± 
0.58 

0.45± 0.44 0.39 -0.25± 
2.24 

-0.81± 
2.33 

0.60 -0.04± 
0.73 

-0.39± 
1.67 

0.28 0.61 
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TAG -0.36± 
1.53 

0.60± 1.80 0.11 0.02± 
0.39 

-0.002± 
0.27 

0.91 -0.35± 
1.82 

-0.46± 
1.53 

0.87 0.20 

HDL-C 0.05± 
2.11 

0.06± 0.17 0.97 0.03± 
0.15 

-0.06± 
0.17 

0.15 0.05± 
2.41 

0.36± 
1.54 

0.73 0.87 

LDL-C 0.22± 
2.46 

0.36± 0.36 0.98 -0.34± 
1.48 

-0.40± 
4.09 

0.94 -0.21± 
3.49 

0.29± 
1.37 

0.52 0.86 

P values for association between genotypes and changes of means over 16 weeks with one of three diets were obtained by using 

general linear model adjusted for age, sex, body mass index, and ethnicity. P values for interaction between genotypes and changes of 

means over 16 weeks of intervention period with one of three diets were obtained by using general linear model adjusted for age, sex, 

body mass index, and ethnicity. Values are mean ± SD. TAG; triacylglycerol, HDL-C; high-density lipoprotein cholesterol, LDL-C; 

low-density lipoprotein cholesterol, SFA; saturated fatty acids, MUFA; monounsaturated fatty acids, PUFA; polyunsaturated fatty 

acid. 
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In addition, we also observed an interaction between LPL SNP rs320 and the 

dietary fat intervention (SFA vs. MUFA vs n-6 PUFA) on changes in LDL-C 

concentrations after 16 weeks (Pinteraction=0.005) (Table 5.5). In the n-6 PUFA diet group, 

the G allele carriers (n=19) of the LPL SNP showed a reduction in LDL-C levels 

(−1.0±2.51 mmol/l) compared to the TT genotype (n=24; 0.91±2.23 mmol/l) 

(Passociation=0.007). However, this interaction was not statistically significant after 

correction for multiple testing. None of the other SNPs showed a significant interaction 

on changes in lipid concentrations after the 16-week dietary intervention (Tables 5.6-8). 

5.5 Discussion  

To our knowledge, this is the first study to investigate the effects of SNPs in both 

LPL and APOE genes on fasting serum lipid response after substituting SFA with MUFA 

or n-6 PUFA. Our findings, from this retrospective analysis of the DIVAS study, showed 

that ‘TT’ homozygotes (90% of study population) at APOE SNP rs1064725 had 

significantly lower total cholesterol concentrations after the 16-week replacement of SFA 

with MUFA in adults at moderate risk of CVD. Our findings indicate a greater sensitivity 

of this genotype group to dietary fat composition, particularly with respect to replacement 

of SFA with MUFA, which may have important public health implications.     

Findings from cross-sectional studies are not adequate to prove the beneficial 

impact of a dietary component on disease prevention; therefore, data from chronic dietary 

intervention studies are preferable to detect changes in disease biomarkers over a period 

of time [37]. A dietary intervention study has shown a reduction of 51% in fasting total 

cholesterol in non-diabetic adults with mild abdominal obesity after two weeks of 

following a MUFA-rich diet (20% TE) compared to a SFA-rich diet (19% TE) [38]. In 
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support of the beneficial effect of MUFA-rich olive oil, a Mediterranean diet 

supplemented with extra-virgin olive oil for 4.8 years in older adults has also been shown 

to reduce the incidence of major CVD events [39], which suggests the potential role of 

MUFA and/or nutraceuticals such as polyphenols found in extra-virgin olive oil in the 

prevention of CVD-related outcomes [40]. Our retrospective data analysis has 

demonstrated a significant interaction between APOE SNP rs1064725 and a MUFA-rich 

diet on total cholesterol levels in adults at moderate CVD risk, where the MUFA-rich diet 

reduced fasting total cholesterol in ‘TT’ homozygotes compared to the SFA- and n-6 

PUFA-rich diets. Our finding is in line with a previous study that also showed APOE 

genotypes to modulate changes in plasma total cholesterol and LDL-C in healthy 

individuals after consuming MUFA- (22% TE, virgin olive oil), SFA- (20% TE), and 

carbohydrate- (55% TE) rich diets for 4 weeks, where levels were higher in the E4/E3 

carriers, intermediate in E3/E3 carriers, and lower in E3/E2 carriers [24]. Another study 

showed that a MUFA-rich dietary intervention (mainly olive oil) for 12 months increased 

the secretion of TAG-rich lipoproteins (TRL) containing apoE and decreased the 

secretion of those without apoE. As a result, a MUFA-rich diet shortened the residence 

time of very low density lipoprotein (VLDL) particles in the circulation and increased the 

direct clearance of TRL from the circulation (due to the enrichment of TRLs with apoE, a 

ligand for receptor mediated uptake), decreasing their conversion to LDLs [41]. Hence, it 

can be hypothesised that a MUFA-rich diet is likely to regulate the clearance rate of TRL 

among ‘TT’ genotype carriers of the APOE SNP rs1064725 via effects on TRL particle 

apolipoprotein composition. However, the underlying mechanism of how the ‘TT’ 
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genotype acts differently from the ‘G’ allele on TRL metabolism in response to a MUFA-

rich diet remains unclear and requires further investigation.   

In our study, the common LPL SNP rs320 was found to modify the association 

between the n-6 PUFA-rich diet with changes in LDL-C levels, where the ‘G’ allele 

carriers had a tendency for a greater reduction in LDL-C concentrations compared to TT 

homozygotes. As far as the authors are aware, there are currently no studies to compare 

our findings with, except for one which showed that minor allele (‘G’) carriers of LPL 

SNP rs328 had lower fasting TAG concentrations when the participants had n-6 PUFA 

intake below 35.48% of total fat (below 35.48% of total fat median intake of LIPGENE 

study population) [19]. Besides LPL, evidence also suggests that the genetic effect of 

SNPs in APOA5 and TNFA on lipid metabolism is modulated by n-6 PUFA [42, 43]. In 

mice, n-6 PUFA intake have been shown to play a role in the upregulation of genes 

encoding proteins involved in adipogenesis [44]. Thus, dietary n-6 PUFA may upregulate 

LPL gene expression and/or activity, leading to lower circulating lipid concentrations [19, 

45]. In addition to the role of LPL in hydrolysing TRL, LPL plays a role in binding TRL 

(i.e. VLDL) to hepatic LDL receptors, which help to mediate the clearance of these 

particles [46]. This leads to a reduced conversion of VLDL to LDL, resulting in lower 

plasma LDL-C levels [47]. Even though the interaction between the LPL SNP rs320 and 

n-6 PUFA-rich diet on LDL-C concentrations in the current data analysis was not 

statistically significant after Bonferroni correction, which could be due to the small 

sample size, further large studies are required to explore this gene-diet interaction.  

Statistically significant interactions were demonstrated in this study, however 

there are some limitations. The sample size was relatively small for some of the genotype 
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groups as the genotyping was performed retrospectively, and investigation of the lipid 

response according to APOE and LPL SNPs was not the main objective of the DIVAS 

study. Compared with cross-sectional studies, randomized clinical trials are conducted 

with smaller sample sizes. In our study, only 120 participants out of 195 consented to 

genetic analysis and hence this resulted in a small sample size for the analysis. However, 

we were able to identify significant gene-diet interactions on total cholesterol after 

Bonferroni correction. Thus, this hypothesis testing analysis has identified the need for 

suitably-powered dietary intervention trials using prospective genotyping to investigate 

the impact of dietary fat composition on plasma lipid responses according to APOE 

genotypes. A selection bias may also have existed because the participants were multi-

ethnic (Asian 7% and Black 7%). However, to reduce this potential confounding effect, 

the analyses were adjusted for ethnicity. Furthermore, the interaction between SNP 

rs1064725 at APOE and the intervention diets on total cholesterol was still significant 

(P=0.003) even after excluding other ethnic groups from the analysis (data not shown). 

One of the main strengths of our study was that it examined the effects of three types of 

dietary fat (isoenergetically) consumed for a long duration (16 weeks) on lipid 

phenotypes in a robust randomised controlled intervention study, which addressed current 

dietary fat recommendations. Furthermore, we used a tagSNP approach whereby all the 

genetic variations in the APOE gene have been investigated in this study.   

In conclusion, our study shows an interaction between APOE SNP rs1064725 and 

dietary fat intake on fasting total cholesterol concentrations, suggesting a greater 

sensitivity of the ‘TT’ homozygotes (90%) to dietary fat composition, with a total 

cholesterol lowering effect observed following substitution of SFA with MUFA but not 
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with n-6 PUFA. However, given that the present study was conducted in a relatively 

small group of individuals, further large studies using prospective genotyping are 

required to confirm our findings.  
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Chapter 6 
 

For this study, I was involved in getting the dataset from the collaborators at Reading. I 

ran the statistical analysis using the SPSS software and wrote the first draft of the manuscript. 

For the genetic analysis, I had to collect and prepare DNA samples from the freezer to be 

transferred to LGC Genomics Company to run genotyping of the selected candidate vitamin D-

related genetic variants. Before running the statistical analysis, I prepared the analysis plan, 

which summarized the steps for the statistical methods to be used for meeting the objectives of 

my study. 
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Chapter 6: Impact of polymorphisms in genes related to vitamin D metabolism and serum 

lipids on vitamin D concentrations and lipid responses to vitamin D fortified test meals. 

6.1 Abstract 

Deficiency in vitamin D has been associated with cardiovascular disease (CVD) risk and lipid 

concentrations. Genome-wide association studies have identified single-nucleotide 

polymorphism (SNPs) of genes involved in vitamin D metabolism, which have effects on 

vitamin D status. Additionally, SNPs of apolipoprotein E (APOE) and lipoprotein lipase (LPL) 

genes demonstrated associations with lipid concentrations. Hence, we aimed to examine the 

association of four vitamin D metabolism related SNPs with blood lipids and investigate whether 

these SNPs modified lipid response to dairy drink fortified with vitamin D in 18 men with sub-

optimal vitamin D status. Also, we examined whether SNPs of APOE and LPL had an impact on 

lipid responses to dairy drinks fortified with Vitamin D The study was an acute, double-blind, 

randomised, controlled, crossover study consisting of 3 intervention arms. Men (age 49± 3 years; 

BMI 26.4± 0.6 kg/m2) with sub-optimal vitamin D status were randomly assigned to one of three 

diets: controls diet, or fortified dairy drink with either 20μg 25- hydroxycholecalciferol 

(25(OH)D3) or 20μg cholecalciferol (vitamin D3). Fasting blood samples were collected for 

genetic and lipid profile analyses at baseline and end of intervention period (24 hour). 

Genotyping was performed by competitive allele-specific PCR-KASP® assay. The 

nicotinamide-adenine dinucleotide synthetase 1 gene (NADSYN1) SNP, rs12785878 (T/G), 

showed a significant association with high density lipoprotein cholesterol (HDL-C) (P=0.0003) 

after Bonferroni correction. The TT genotype had higher HDL-C levels compared to G allele 

carriers. None of the other genetic associations were statistically significant after correction for 

multiple testing. Our study provides evidence for an association between NADSYN1 SNP 
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rs12785878 and HDL-C concentrations in men with sub-optimal vitamin D status, which 

requires confirmation in future large human intervention studies.  

 
6.2 Introduction 
Low vitamin D status is a common global health problem affecting all age groups [1]. The 

prevalence of vitamin deficiency is around 50% among older people worldwide [2], and between 

20-30% in European adults [3]. Deficiency in vitamin D has been shown to be associated with a 

number of chronic conditions including cardiovascular disease [4, 5]. Several studies have 

suggested an association between vitamin D status and lipid levels [6-8]. In a meta-analysis of 17 

cross-sectional studies, serum 25-hydroxy-vitamin D (25(OH) vitamin D; a biomarker of vitamin 

D status) was shown to be associated with fasted HDL-C, while an inverse association with 

triacylglycerol (TAG), low density lipoprotein cholesterol (LDL-C) and total cholesterol was 

found [6]. In a further study each 10 nmol/L increase in serum 25(OH) vitamin D was related to 

a significant decrease of 0.89 mg/dl of non-HDL-C, 1.08 mg/dl in total cholesterol, and 2.34 

mg/dl in TAG concentrations in multi ethnic children in Canada [7]. Furthermore, 

supplementation of vitamin D (100,000 units) was associated with increased HDL-C in 29 

children from Argentine [8].  

A genome wide association study has identified a number of SNPs in genes involved with 

cholesterol synthesis, hydroxylation and vitamin D transport which have been shown to affect 

vitamin D status. These genes include NADSYN1, CYP24A1 (encoding cytochrome P450, family 

24, subfamily A, polypeptide 1), GC (encoding group-specific component vitamin D binding 

protein) and CYP2R1 (encoding cytochrome P450, family 2, subfamily R, polypeptide 1) gene 

[9]. The functions of encoded protein of these genes are; CYP2R1 produces active vitamin D 

[1,25-dihydroxyvitamin D3 (1,25(OH)2D3)] through hydroxylation the 25-hydroxylase in the 
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liver and 1-alpha-hydroxylase in the kidney, CYP24A1 is transcriptionally stimulated in vitamin 

D target cells (liver and bones) by the action of 1,25-dihydroxyvitamin D3, its role includes 

inactivating the pathway from 1,25-dihydroxyvitamin D3 to calcitroic acid, GC is the vitamin D-

binding protein involved with the transport of vitamin D, and NADSYN1 is involved with 

cholesterol synthesis [10]. Several studies have demonstrated the association of SNPs in these 

genes with vitamin D status in different ethnic groups [11-14]. A few studies have also reported 

association between these SNPs and some diseases associated with vitamin D deficiency 

including gestational diabetes mellitus [15] and hypertension [16].  

The SNPs at LPL and APOE genes have been demonstrated to be associated with lipid 

concentrations [17-20]. Given that no study to date has examined whether SNPs in these genes 

effect lipid response to diet fortified with vitamin D, we investigated the whether LPL and APOE 

SNPs may modulate lipid response to vitamin D. Thus the aim of this study was to investigate 

whether four SNPs in genes relating to vitamin D (rs12785878 (G/T) at NADSYN1 gene, 

rs6013897 (T/A) at CYP24A1 gene, rs2282679 (A/C) at GC gene, rs12794714 (G/A) at CYP2R1 

gene), in addition to LPL and APOE SNPs (rs439401, rs405509, rs445925, rs1160985, rs405697, 

rs769450) modified the lipid responses to fortified dairy drink with either 20μg 25(OH)D3 or 

20μg vitamin D3 in this study population compared with non-fortified dairy drink control in 18 

men with sub-optimal vitamin D status. A secondary aim was to examine the association 

between vitamin D related SNPs and vitamin D status.  

6.3 Participants and methods 

6.3.1 Study participants  

A detailed description of the study design and methods has been reported elsewhere [21]. 
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Briefly, participants were recruited from Reading, UK and the surrounding area between May to 

October 2015. Participants were aged between 30 and 65 years, BMI 20-35 kg/m2 and were all 

non-smoking men with sub-optimal vitamin D status (plasma 25(OH) D <50 nmol/L). Criteria 

for exclusion were: the presence of cardiovascular, renal, gastrointestinal, respiratory and 

endocrine diseases, diabetes or cancer; hypertension, taking nutritional supplements; on long-

term medication; having milk allergy/intolerance or lactose intolerance; outdoor workers and 

those who used tanning beds; overseas holidays two months before or during the study period; 

vigorous exercise (>3 times of 30 min aerobic exercise/week) and excessive alcohol intake (>14 

units/week). The University of Reading Research Ethics Committee (approval no: 15/15) gave a 

favourable opinion for conduct and the trial was registered at www.clinicaltrials.gov 

(NCT02535910). All participants provided written informed consent.  

6.3.2 Study design  

The study was an acute, double-blind, randomised, controlled, crossover study consisting 

of three intervention arms. During the intervention period, men consumed either control, 20μg 

25(OH)D3, or 20μg vitamin D3 in a random order (see details below). There was a 2-week 

washout period between the 3 study arms. The randomization of participants to diet order was 

achieved by using a web-based random letter sequence generator (https://www.randomizer.org/). 

The 20μg dose was used in the single meal study as it approximated to the fortification level used 

in the US and Canada. Detailed dietary advice including maintenance of normal diet and 

lifestyle, avoidance of dietary supplements and to minimize sun exposure was given to 

participants. Moreover, participants were asked to complete a 4-day diet diary (including 3 

weekdays and 1 weekend day within the same week) to assess dietary intake. Dietplan 6.6 

software was used to estimate dietary intake, before the first study visit. Fasting (12-h fast) blood 

http://www.clinicaltrials.gov/
https://www.randomizer.org/
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samples were collected at the beginning (baseline) and end of each intervention arm (24 hour) to 

investigate whether lipid concentrations (TAG, total cholesterol, LDL-C, and HDL-C) were 

modified in response to fortification with vitamin D.  

6.3.3 Test meal protocols  

Details of the test meal protocol have been described previously [21]. Briefly, 

participants were asked to refrain from alcohol and caffeine consumption and excessive exercise 

and to consume a low-fat meal (<10 g fat) as their main evening meal before each clinical visit. 

Also, participants were advised not to consume any fortified food or food high in vitamin D 

(such as egg yolk, oily fish) and they were provided with a low-nitrate water to consume the day 

before the study visit and during the study visit day until 24 hours (end point of experiment).  

The manufactured crystalline vitamin D3 and 25(OH) D3 were supplied by Dishman 

Netherlands BV. Vitamin D3 and 25(OH) D3 were dissolved in refined olive oil to reach a 

concentration of 1 μg/100 μl vitamin D3 or 25(OH) D3 stock fortified oil. Aliquots of vitamin 

D3 test oil (containing 20 μg vitamin D3), 25(OH) D3 test oil (containing 20 μg 25(OH) D3), 

and control (olive oil only) were given a random code and stored at -20 °C. On the morning of 

each study visit, the dairy drink was prepared using 300 ml full fat non-fortified milk.  

After a 12 h overnight fast, the participants were cannulated and fasting blood sample 

was taken. The three study dairy drinks were control, 20μg 25(OH)D3, or 20μg vitamin D3.  

Participants were given a standard test breakfast that includes the study dairy drink, three slices 

(120 g) of toasted white bread (Hovis Ltd) with 40 g strawberry jam (Sainsbury’s Supermarkets 

Ltd) and 15 g unsalted butter (Co-operative Ltd) (4.54 MJ energy, 125 g carbohydrate, 23 g 

protein and 51 g fat).   
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6.3.4 Anthropometric measures and biochemical analysis  

Clinical visits took place at the Hugh Sinclair Unit of Human Nutrition, University of 

Reading, UK. Height was recorded to the nearest 0.5 cm using a wall-mounted stadiometer and 

weight was measured using a digital scale (Tanita Europe) using standard settings (normal body 

type and 1 kg for clothing). Fasting blood samples were collected into serum separator and 

K3EDTA-containing vacutainers. After resting at room temperature for 15 min, samples were 

centrifuged at 1700 g for 15 min after which the serum/plasma was aliquoted and stored at - 20 

°C (for serum) and -80 °C (for 25(OH)D3 and vitamin D3) until analysis. Serum total 

cholesterol, HDL-C and TAG were measured using the ILAB 600 autoanalyser with standard 

kits and appropriate quality controls (reagents and analyser: Werfen (UK) Ltd. The LDL-C  

concentration was calculated using the Friedewald formula [22]. Plasma  25(OH)D3 [as sum of 

25(OH) D3 and 3-epi-25(OH) D3] was analyzed by DSM Nutritional Products Ltd using a 

validated method [23, 24].  

6.3.5 Genotyping for selected SNP 

DNA samples collected in October 2016 and were outsourced to LGC Genomics 

Company. The genotyping was performed for the LPL gene SNPs (rs320 and rs328), APOE gene 

SNPs (rs439401, rs405509, rs445925, rs1160985, rs405697, rs769450, NADSYN1 gene SNP 

rs12785878, CYP24A1 gene SNP rs6013897, GC gene SNP rs2282679, and CYP2R1 gene SNP 

rs12794714 using a KASP assay with a competitive allele-specific PCR assay®.  

6.3.6 Statistical analysis  

The data are presented as mean ± standard deviation (SD). Before analysis, data 

distribution and normality (skewness and kurtosis) were checked. The skewed data was log10 
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transformed for normality. The minor allele frequency was calculated by counting. The dominant 

models were a better fit for all SNPs except SNPs rs405509 and rs1160985 where the additive 

model was applied. The SNP rs328 at LPL and SNP rs1064725 at APOE were excluded from 

analysis as all the 18 participants were common homozygotes. The genotype distributions of the 

SNPs were in Hardy-Weinberg equilibrium (P>0.05) (Table 6.1). The association of the selected 

SNPs on continuous phenotypes was evaluated by the general linear model (GLM). Potential 

confounders that were associated with the outcomes were adjusted in all GLM analyses (i.e. age, 

BMI). A Bonferroni correction was applied and the significant P value was 0.0004 [0.05/10 

SNPs*4 lipid outcomes* 3 times (before and after interventions and changes in values from 

baseline)], while for association with vitamin D, the significant P value was 0.001 [0.05/4 

SNPs*3 diets * 3 times vitamin D levels measured (before and after interventions and changes in 

values from baseline)]. For all analyses, the statistical package SPSS version 22.0 (SPSS, 

Chicago, IL, USA) was used.  

6.4 Results  

6.4.1 Association between SNPs at LPL, APOE, and genes related to vitamin D with lipid 

levels 

There was a significant association between SNP rs12785878 (T/G) at NADSYN1 gene and 

HDL-C levels at baseline (P=0.0003) and after intervention with control diet (P=0.0004) (Table 

7.2). The TT genotype (n=9) had higher HDL-C concentrations (1.40± 0.18 mmol/L baseline, 

and 1.45± 0.17 mmol/L after intervention) compared to G allele (n=9) (1.03± 0.11mmol/L 

baseline, and 1.12±0.11 mmol/L after intervention) (Figure 6.1). However, the change in 

circulating HDL-C from baseline was not significant (P<0.05).  
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Figure 6.1 Association between SNP rs12785878 (T/G) at NADSYN1 gene and high density 

lipoprotein at baseline and post-intervention in control group. The values are mean and stander 

errors.  

There were no other significant associations between LPL and APOE SNPs and other genes 

related to vitamin D (CYP24A1 gene, GC gene, and CYP2R1 gene) with lipid concentrations at 

baseline or after interventions (P>0.0004) (Table 6.2-5). 

 6.4.2 Association between SNPs and vitamin D concentrations 

An association was observed between SNP rs12785878 (T/G) at NADSYN1 gene and 

25(OH) vitamin D concentrations (a biomarker for vitamin D) at baseline of three diet groups 

(P=0.01) (Table 6.6), but did not remain statistically significant after Bonferroni correction 

(P>0.001). A higher 25(OH) vitamin D concentration was observed in TT genotype compared to 

G allele carriers. There were no other association observed between genes relating to vitamin D 

(CYP24A1 gene, GC gene, and CYP2R1 gene) and 25(OH)D concentrations (Table 6.6).  
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Table 6.1: Genotype distribution of SNPs at LPL, APOE, NADSYN1 CYP24A1, GC and 
CYP2R1 genes and Hardy Weinberg Equilibrium P values  

SNP MAF Common 
homozygous 

N (%) 

Heterozygous 
N (%) 

Rare 
homozygous 

N (%) 

HWE P 
value 

LPL      
rs320 0.22 11 (0.61) 6 (0.33) 1 (0.05) 0.88 
rs328  18     
APOE      
rs439401 0.36 9 (0.5) 5 (0.27) 4 (0.22) 0.09 
rs405509 0.41 6 (0.33) 9 (0.5) 3 (0.16) 0.91 
rs445925 0.11 14 (0.77) 4 (0.22)  0.59 
rs1160985 0.52 3 (0.16) 11 (0.61) 4 (0.22) 0.34 
rs405697 0.19 12(0.66) 5 (0.27) 1 (0.05) 0.63 
rs769450 0.41 5 (0.27) 11 (0.61) 2 (0.11) 0.27 
rs1160985  17    
NADSYN1 gene 
rs12785878 (T/G) 

0.66 3 (0.16) 6 (0.33) 9 (0.5) 0.28 

CYP24A1 gene 
rs6013897 (T/A) 

0.19 13 (0.72) 3 (0.16) 2 (0.11) 0.05 

GC gene 
rs2282679 (A/C) 

0.20 10 (0.58) 7 (0.41)  0.28 

CYP2R1gene 
rs12794714 (G/A) 

0.36 7 (0.38) 9 (0.5) 2 (0.11) 0.72 

MAF; minor allele frequency, HWE; Hardy Weinberg Equilibrium 
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Table 6.2: The baseline and post- intervention associations between SNPs and HDL-C (mmol/L) and HDL-C response to the 
three test meals  
 Control diet vitamin D3 fortified dairy drink 25(OH) D3 fortified dairy 
 Baseline After 

intervention 
changes in 

values  
Baseline After 

intervention 
changes in 

values  
Baseline After 

intervention 
changes in 

values  
SNPs          
LPL gene          
rs320          
TT 1.24± 0.19 1.31± 0.21 0.07± 0.06 1.23± 0.26 1.28± 0.24 0.04± 0.07 1.24± 0.23 1.33± 0.25 0.08± 0.06 
G allele 1.19± 0.31 1.23± 0.25 0.04± 0.08 1.13± 0.24 1.18± 0.24 0.04± 0.03 1.21± 0.27 1.24± 0.22 0.04± 0.06 
P value 0.81 0.61 0.42 0.55 0.59 0.75 0.86 0.61 0.21 
APOE gene          
rs405509          
GG 1.10± 0.23 1.17± 0.19 0.07± 0.08 1.13± 0.19 1.21± 0.23 0.07± 0.08 1.13± 0.23 1.21± 0.20 0.07± 0.06 
GT 1.32± 0.24 1.38± 0.22 0.06± 0.06 1.26± 0.29 1.29± 0.26 0.02± 0.04 1.32± 0.25 1.39± 0.26 0.07± 0.08 
TT  1.15± 0.14 1.22± 0.16 0.06± 0.05 1.08± 0.21 1.13± 0.18 0.05± 0.04 1.14± 0.14 1.18± 0.16 0.04± 0.04 
P value 0.24 0.19 0.96 0.63 0.75 0.30 0.33 0.31 0.85 
rs439401          
CC 1.21± 0.27 1.28± 0.25 0.07± 0.07 1.21± 0.30 1.25± 0.28 0.04± 0.04 1.24± 0.27 1.30± 0.25 0.05± 0.07 
T allele 1.23± 0.21 1.29± 0.19 0.06± 0.07 1.17± 0.21 1.22± 0.21 0.05± 0.08 1.21± 0.21 1.29± 0.24 0.08± 0.06 
P value 0.71 0.67 0.98 0.85 0.83 0.54 0.96 0.84 0.37 
rs445925          
GG 1.22± 0.23 1.28± 0.22 0.06± 0.06 1.17± 0.26 1.21± 0.24 0.03± 0.03 1.21± 0.22 1.27± 0.22 0.05± 0.06 
A allele 1.21± 0.28 1.28± 0.22 0.06± 0.08 1.26± 0.24 1.35± 0.23 0.08± 0.12 1.29± 0.31 1.40± 0.31 0.11± 0.07 
P value 0.91 0.93 0.89 0.52 0.32 0.17 0.61 0.39 0.21 
rs769450          
GG 1.13± 0.21 1.22± 0.18 0.09± 0.06 1.13± 0.25 1.16± 0.20 0.03± 0.05 1.17± 0.26 1.25± 0.31 0.07± 0.06 
A allele 1.25± 0.24 1.31± 0.23 0.05± 0.06 1.21± 0.26 1.27± 0.25 0.05± 0.06 1.25± 0.23 1.31± 0.22 0.06± 0.07 
P value 0.47 0.75 0.12 0.88 0.83 0.99 0.75 0.89 0.53 
rs405697          
GG 1.20± 0.24 1.28± 0.23 0.08± 0.06 1.21± 0.27 1.27± 0.26 0.05± 0.07 1.24± 0.25 1.33± 0.25 0.08± 0.06 
A allele  1.26± 0.23 1.29± 0.20 0.03± 0.05 1.14± 0.22 1.18± 0.21 0.04± 0.02 1.21± 0.23 1.23± 0.21 0.02± 0.05 
P value 0.34 0.51 0.21 0.99 0.98 0.70 0.90 0.69 0.046 



 224 

rs1160985          
CC 1.17± 0.17 1.25± 0.20 0.07± 0.05 1.16± 0.31 1.18± 0.24 0.01± 0.07 1.31± 0.26 1.38± 0.35 0.07± 0.08 
CT 1.31± 0.23 1.35± 0.22 0.04± 0.06 1.24± 0.26 1.28± 0.25 0.03± 0.03 1.28± 0.23 1.33± 0.22 0.05± 0.06 
TT 1.01± 0.15 1.11± 0.13 0.11± 0.07 1.07± 0.17 1.16± 0.24 0.09± 0.11 1.04± 0.18 1.14± 0.18 0.10± 0.05 
P value 0.11 0.18 0.31 0.51 0.66 0.33 0.12 0.21 0.52 
NADSYN1 
gene 

         

rs12785878          
TT 1.40± 0.18 1.45± 0.17 0.04± 0.07 1.35± 0.23 1.37± 0.22 0.02± 0.04 1.37± 0.23 1.43± 0.25 0.05± 0.07 
G allele 1.03± 0.11 1.12±0.11 0.08± 0.06 1.03± 0.15 1.11±0.18 0.06± 0.07 1.09± 0.14 1.16±0.14 0.07± 0.05 
P value 0.0003 0.0004 0.21 0.01 0.02 0.09 0.02 0.03 0.64 
CYP24A1 
gene 

         

rs6013897          
TT 1.16± 0.22 1.22± 0.18 0.05± 0.06 1.11± 0.20 1.18± 0.21 0.06± 0.06 1.16± 0.20 1.22± 0.20 0.06± 0.06 
A allele 1.36± 0.23 1.45± 0.22 0.09± 0.06 1.39± 0.27 1.40± 0.26 0.01± 0.05 1.41± 0.24 1.49± 0.24 0.08± 0.07 
P value 0.17 0.06 0.32 0.06 0.14 0.031 0.06 0.04 0.61 
GC gene          
rs2282679          
AA 1.14± 0.19 1.21± 0.16 0.06± 0.06 1.14± 0.19 1.19± 0.21 0.04± 0.07 1.18± 0.24 1.27± 0.25 0.09± 0.08 
C allele 1.27± 0.24 1.33± 0.21 0.06± 0.08 1.17± 0.24 1.23± 0.22 0.05± 0.03 1.23± 0.18 1.27± 0.18 0.03± 0.03 
P value 0.28 0.23 0.86 0.95 0.98 0.77 0.73 0.88 0.10 
CYP2R1 
gene 

         

rs12794714          
GG 1.13± 0.22 1.20± 0.18 0.06± 0.07 1.14± 0.17 1.21± 0.21 0.07± 0.08 1.14± 0.22 1.22± 0.19 0.07± 0.05 
A allele 1.27± 0.24 1.34± 0.23 0.06± 0.06 1.22± 0.29 1.25± 0.26 0.03± 0.04 1.28± 0.24 1.34± 0.26 0.06± 0.07 
P value 0.28 0.23 0.99 0.71 0.83 0.19 0.30 0.37 0.65 
HDL-C; high-density lipoprotein-cholesterol. P values for association between genotypes and HDL-C levels were obtained by using 
general linear model adjusted for age, and body mass index. Values are mean ± SD.  
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Table 6.3: The baseline and post- intervention associations between SNPs and total cholesterol levels (mmol/L) and total 
cholesterol response to the three test meals 
 Control diet vitamin D3 fortified dairy drink 25(OH) D3 fortified dairy 
 Baseline After 

intervention 
changes in 

values  
Baseline After 

intervention 
changes in 

values  
Baseline After 

intervention 
changes in 

values  
SNPs          
LPL gene          
rs320          
TT 5.23± 0.86 5.76± 0.93 0.53± 0.34 5.39± 1.07 5.80± 1.25 0.41± 0.41 5.69± 1.28 0.39± 0.39 1.55± 0.74 
G allele 4.89± 1.01 5.19± 0.77 0.30± 0.34 4.75± 0.67 5.36± 0.87 0.61± 0.30 5.42± 0.74 0.51± 0.35 1.27± 0.37 
P value 0.63 0.33 0.25 0.32 0.65 0.25 0.84 0.55 0.51 
APOE gene          
rs405509          
GG 4.87± 0.84 5.26± 0.59 0.38± 0.31 5.08± 0.80 5.68± 0.98 0.60± 0.46 5.53± 0.71 0.58± 0.33 1.52± 0.83 
GT 5.33± 1.04 5.84± 1.11 0.51± 0.43 5.33± 1.18 5.83± 1.26 0.49± 0.31 5.89± 1.33 0.45± 0.39 1.35± 0.57 
TT  4.84± 0.64 5.21± 0.44 0.36± 0.19 4.67± 0.55 4.94± 0.91 0.27± 0.39 4.79± 0.59 0.07± 0.04 1.53± 0.49 
P value 0.58 0.39 0.79 0.77 0.77 0.42 0.49 0.14 0.70 
rs439401          
CC 5.13± 1.03 5.54± 1.06 0.41± 0.29 5.31± 1.18 5.78± 1.20 0.47± 0.33 5.79± 1.17 0.46± 0.31 1.32± 0.37 
T allele 5.07± 0.82 5.54± 0.76 0.46± 0.42 4.98± 0.75 5.48± 1.07 0.51± 0.42 5.39± 1.02 0.40± 0.43 1.56± 0.81 
P value 0.71 0.56 0.61 0.97 0.89 0.79 0.81 0.72 0.21 
rs445925          
GG 5.18± 0.89 5.64± 0.94 0.45± 0.37 5.14± 1.02 5.55± 1.12 0.41± 0.33 5.56± 1.16 0.37± 0.36 1.45± 0.42 
A allele 4.81± 1.04 5.21± 0.74 0.40± 0.31 5.15± 0.91 5.91± 1.19 0.74± 0.42 5.68± 0.91 0.65± 0.34 1.41± 1.20 
P value 0.49 0.41 0.81 0.96 0.61 0.18 0.82 0.17 0.76 
rs769450          
GG 4.58± 0.86 5.02± 0.59 0.44± 0.27 4.65± 0.69 4.98± 0.85 0.32± 0.28 4.91± 0.65 0.32± 0.38 1.24± 0.60 
A allele 5.30± 0.87 5.74± 0.93 0.44± 0.39 5.33± 1.02 5.88± 1.12 0.55± 0.39 5.85± 1.13 0.47± 0.36 1.51± 0.64 
P value 0.33 0.39 0.75 0.68 0.41 0.21 0.29 0.39 0.64 
rs405697          
GG 5.24± 0.84 5.76± 0.89 0.51± 0.36 5.44± 0.96 6.02± 0.97 0.58± 0.35 5.96± 0.96 0.56± 0.34 1.52± 0.68 
A allele  4.81± 1.04 5.11± 0.80 0.29± 0.31 4.54± 0.71 4.85± 1.02 0.31± 0.36 4.85± 1.02 0.17± 0.27 1.27± 0.51 
P value 0.77 0.45 0.29 0.32 0.17 0.18 0.13 0.01 0.81 
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rs1160985          
CC 4.91± 0.66 5.26± 0.45 0.35± 0.20 4.91± 0.70 5.15± 1.06 0.23± 0.36 5.19± 0.76 0.35± 0.52 1.13± 0.79 
CT 5.31± 0.94 5.77± 1.02 0.45± 0.41 5.24± 1.11 5.77± 1.19 0.53± 0.29 5.74± 1.26 0.36± 0.32 1.39± 0.45 
TT 4.65± 0.97 5.12± 0.66 0.47± 0.34 5.03± 0.90 5.60± 1.08 0.56± 0.57 5.48± 0.90 0.68± 0.37 1.81± 0.91 
P value 0.42 0.42 0.96 0.67 0.91 0.61 0.90 0.35 0.48 
NADSYN1 
gene 

         

rs12785878          
TT 5.37± 1.04 5.83± 1.10 0.46± 0.41 5.44± 1.16 5.89± 1.30 0.54± 0.27 5.75± 1.39 0.35± 0.37 1.21± 0.51 
G allele 4.83± 0.71 5.25± 0.56 0.42± 0.31 4.84± 0.63 5.37± 0.88 0.53± 0.46 5.43± 0.72 0.52± 0.35 1.67± 0.67 
P value 0.28 0.23 0.88 0.28 0.52 0.41 0.65 0.40 0.03 
CYP24A1 
gene 

         

rs6013897          
TT 4.90± 0.93 5.25± 0.78 0.35± 0.30 4.86± 0.91 5.34± 1.12 0.48± 0.41 5.39± 1.16 0.43± 0.36 1.47± 0.63 
A allele 5.62± 0.66 6.29± 0.78 0.66± 0.41 5.87± 0.79 6.38± 0.71 0.51± 0.24 6.11± 0.71 0.44± 0.42 1.36± 0.68 
P value 0.18 0.03 0.11 0.06 0.13 0.81 0.29 0.86 0.38 
GC gene          
rs2282679          
AA 4.69± 0.89 5.19± 0.85 0.49± 0.30 4.82± 0.98 5.29± 1.26 0.46± 0.41 5.44± 1.28 0.55± 0.40 1.33± 0.78 
C allele 5.44± 0.53 5.78± 0.57 0.34± 0.44 5.30± 0.56 5.85± 0.51 0.55± 0.36 5.56± 0.59 0.28± 0.30 1.53± 0.36 
P value 0.11 0.22 0.37 0.53 0.59 0.96 0.93 0.18 0.91 
CYP2R1 
gene 

         

rs12794714          
GG 4.71± 0.77 5.13± 0.54 0.42± 0.28 4.78± 0.72 5.35± 1.11 0.56± 0.45 5.25± 0.85 0.48± 0.38 1.51± 0.78 
A allele 5.35± 0.93 5.81± 1.00 0.45± 0.41 5.37± 1.07 5.81± 1.12 0.44± 0.32 5.81± 1.21 0.41± 0.37 1.40± 0.54 
P value 0.18 0.15 0.92 0.26 0.49 0.42 0.36 0.73 0.61 
P values for association between genotypes and total cholesterol levels were obtained by using general linear model adjusted for age, 
and body mass index. Values are mean ± SD.  
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Table 6.4: The baseline and post-intervention associations between SNPs and TAG levels (mmol/L) and TAG response to the 
three test meals 
 Control diet vitamin D3 fortified dairy drink 25(OH) D3 fortified dairy 
 Baseline After 

intervention 
changes in 

values  
Baseline After 

intervention 
changes in 

values  
Baseline After 

intervention 
changes in 

values  
SNPs          
LPL gene          
rs320          
TT 1.66± 0.73 1.63± 0.62 -0.03± 

0.33 
1.62± 0.85 1.73± 1.02 0.11± 0.27 1.55± 0.74 1.55± 1.02 0.01± 0.19 

G allele 1.21± 0.38 1.32± 0.43 0.11± 0.27 1.26± 0.53 1.57± 0.62 0.31± 0.17 1.27± 0.37 1.41± 0.62 0.14± 0.14 
P value 0.22 0.31 0.51 0.39 0.94 0.17 0.51 0.91 0.25 
APOE gene          
rs405509          
GG 1.55± 0.69 1.61± 0.54 0.06± 0.39 1.60± 0.81 1.78± 0.71 0.18± 0.26 1.52± 0.83 1.69± 0.76 0.16± 0.13 
GT 1.38± 0.63 1.40± 0.54 0.01± 0.32 1.26± 0.41 1.45± 0.61 0.19± 0.23 1.35± 0.57 1.34± 0.51 -0.01± 

0.16 
TT  1.67± 0.79 1.63± 0.82 -0.04± 

0.15 
1.90± 1.38 2.10± 1.79 0.20± 0.41 1.53± 0.49 1.60± 0.75 0.06± 0.27 

P value 0.68 0.69 0.66 0.49 0.53 0.83 0.70 0.46 0.05 
rs439401          
CC 1.40± 0.53 1.40± 0.42 0.003± 

0.41 
1.39± 0.51 1.61± 0.54 0.22± 0.25 1.32± 0.37 1.41± 0.30 0.08± 0.18 

T allele 1.57± 0.76 1.61± 0.68 0.04± 0.18 1.57± 0.95 1.72± 1.14 0.15± 0.27 1.56± 0.81 1.59± 0.84 0.03± 0.18 
P value 0.41 0.41 0.83 0.61 0.83 0.14 0.21 0.83 0.12 
rs445925          
GG 1.49± 0.61 1.51± 0.53 0.01± 0.34 1.45± 0.74 1.63± 0.91 0.18± 0.28 1.45± 0.42 1.49± 0.47 0.03± 0.19 
A allele 1.46± 0.88 1.53± 0.76 0.07± 0.20 1.58± 0.88 1.81± 0.82 0.22± 0.18 1.41± 1.20 1.55± 1.11 0.14± 0.11 
P value 0.87 0.97 0.76 0.91 0.81 0.98 0.76 0.95 0.35 
rs769450          
GG 1.45± 0.67 1.50± 0.66 0.05± 0.18 1.63± 1.06 1.86± 1.35 0.23± 0.31 1.24± 0.60 1.37± 0.68 0.13± 0.21 
A allele 1.50± 0.66 1.51± 0.55 0.1± 0.35 1.42± 0.63 1.60± 0.67 0.17± 0.24 1.51± 0.64 1.55± 0.62 0.03± 0.16 
P value 0.83 0.99 0.64 0.46 0.78 0.47 0.64 0.59 0.98 
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rs405697          
GG 1.59± 0.59 1.61± 0.46 0.02± 0.37 1.53± 0.59 1.74± 0.61 0.21± 0.25 1.52± 0.68 1.59± 0.62 0.06± 0.18 
A allele  1.27± 0.76 1.30± 0.72 0.02± 0.15 1.38± 1.05 1.52± 1.31 0.13± 0.27 1.27± 0.51 1.32± 0.64 0.04± 0.18 
P value 0.55 0.26 0.42 0.66 0.23 0.07 0.81 0.45 0.11 
rs1160985          
CC 1.54± 0.92 1.51± 0.92 -0.04± 

0.15 
1.79± 1.46 2.03± 1.85 0.23± 0.38 1.13± 0.79 1.27± 0.93 0.14± 0.28 

CT 1.33± 0.58 1.38± 0.48 0.05± 0.30 1.20± 0.43 1.41± 0.56 0.21± 0.22 1.39± 0.45 1.40± 0.41 0.01± 0.17 
TT 1.86± 0.63 1.86± 0.49 -0.01± 

0.47 
2.01± 0.58 2.12± 0.58 0.11± 0.31 1.81± 0.91 1.94± 0.83 0.13± 0.09 

P value 0.32 0.38 0.50 0.050 0.17 0.85 0.48 0.35 0.43 
NADSYN1 
gene 

         

rs12785878          
TT 1.20± 0.58 1.28± 0.50 0.08± 0.28 1.13± 0.31 1.23± 0.34 0.09± 0.11 1.21± 0.51 1.21± 0.41 -0.01± 

0.15 
G allele 1.77± 0.61 1.74± 0.55 -0.03± 

0.34 
1.83± 0.90 2.11± 1.03 0.28± 0.32 1.67± 0.67 1.80± 0.67 0.13± 0.18 

P value 0.03 0.05 0.35 0.02 0.004 0.05 0.03 0.01 0.11 
CYP24A1 
gene 

         

rs6013897          
TT 1.47± 0.66 1.51± 0.60 0.03± 0.31 1.58± 0.85 1.76± 1.00 0.18± 0.27 1.47± 0.63 1.56± 0.65 0.08± 0.16 
A allele 1.52± 0.68 1.51± 0.52 -0.01± 

0.34 
1.22± 0.23 1.43± 0.38 0.20± 0.23 1.36± 0.68 1.35± 0.56 -0.01± 

0.22 
P value 0.88 0.83 0.92 0.29 0.36 0.98 0.38 0.26 0.36 
GC gene          
rs2282679          
AA 1.31± 0.68 1.48± 0.64 0.14± 0.24 1.34± 0.71 1.53± 0.75 0.19± 0.21 1.33± 0.78 1.44± 0.78 0.10± 0.16 
C allele 1.62± 0.54 1.56± 0.51 -0.05± 

0.31 
1.71± 0.85 1.91± 1.09 0.20± 0.34 1.53± 0.36 1.58± 0.42 0.04± 0.17 

P value 0.46 0.81 0.24 0.51 0.61 0.83 0.91 0.65 0.76 
          



 229 

CYP2R1 
gene 
rs12794714          
GG 1.40± 0.61 1.52± 0.54 0.12± 0.25 1.42± 0.77 1.61± 0.75 0.18± 0.19 1.51± 0.78 1.61± 0.76 0.10± 0.18 
A allele 1.54± 0.69 1.50± 0.60 -0.04± 

0.34 
1.51± 0.77 1.71± 0.97 0.19± 0.30 1.40± 0.54 1.43± 0.54 0.03± 0.18 

P value 0.74 0.89 0.34 0.82 0.98 0.92 0.61 0.52 0.49 
 
TAG; triacylglycerol. P values for association between genotypes and TAG levels were obtained by using general linear model 
adjusted for age, and body mass index. Values are mean ± SD.  
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Table 6.5: The baseline and post-intervention associations between SNPs and LDL-C (mmol/L) and LDL-C response to the 
three tests meals 
 Control diet vitamin D3 fortified dairy drink 25(OH) D3 fortified dairy 
 Baseline After 

intervention 
changes in 

values  
Baseline After 

intervention 
changes in 

values  
Baseline After 

intervention 
changes in 

values  
SNPs          
LPL gene          
rs320          
TT 3.23± 0.57 3.70± 0.67 0.46± 0.26 3.41± 0.83 3.73± 0.94 0.32± 0.31 3.35± 0.86 3.65± 1.00 0.30± 0.31 
G allele 3.14± 0.75 3.35± 0.60 0.21± 0.22 3.04± 0.57 3.46± 0.77 0.41± 0.26 3.13± 0.44 3.53± 0.57 0.40± 0.29 
P value 0.91 0.45 0.09 0.54 0.83 0.38 0.76 0.98 0.46 
APOE gene          
rs405509          
GG 3.06± 0.69 3.35± 0.56 0.28± 0.19 3.22± 0.61 3.65± 0.73 0.43± 0.36 3.11± 0.38 3.55± 0.39 0.43± 0.28 
GT 3.38± 0.65 3.82± 0.74 0.43± 0.34 3.49± 0.87 3.87± 0.95 0.37± 0.22 3.49± 0.90 3.88± 1.03 0.39± 0.28 
TT  2.92± 0.42 3.24± 0.22 0.31± 0.19 2.72± 0.20 2.85± 0.49 0.13± 0.29 2.87± 0.51 2.87± 0.42 -0.001± 

0.09 
P value 0.54 0.24 0.55 0.45 0.41 0.39 0.42 0.31 0.12 
rs439401          
CC 3.27± 0.73 3.62± 0.79 0.34± 0.24 3.46± 0.91 3.78± 0.98 0.32± 0.23 3.47± 

0.387 
3.84± 0.96 0.37± 0.25 

T allele 3.12± 0.54 3.51± 0.52 0.38± 0.32 3.08± 0.53 3.47± 0.76 0.38± 0.34 3.06± 0.49 3.37± 0.67 0.31± 0.35 
P value 0.85 0.75 0.45 0.77 0.97 0.43 0.52 0.52 0.79 
rs445925          
GG 3.28± 0.57 3.66± 0.63 0.38± 0.31 3.30± 0.77 3.60± 0.88 0.29± 0.24 3.32± 0.78 3.61± 0.93 0.29± 0.30 
A allele 2.92± 0.82 3.22± 0.67 0.30± 0.17 3.17± 0.73 3.73± 0.94 0.56± 0.36 3.08± 0.45 3.57± 0.51 0.49± 0.28 
P value 0.31 0.27 0.63 0.82 0.74 0.14 0.64 0.95 0.23 
rs769450          
GG 2.78± 0.66 3.11± 0.48 0.33± 0.19 2.77± 0.49 2.96± 0.66 0.19± 0.23 2.84± 0.41 3.03± 0.49 0.18± 0.31 
A allele 3.36± 0.56 3.74± 0.64 0.37± 0.31 3.46± 0.75 3.88± 0.81 0.42± 0.29 3.42± 0.76 3.83± 0.85 0.40± 0.28 
P value 0.22 0.27 0.76 0.41 0.22 0.18 0.41 0.24 0.22 
rs405697          
GG 3.31± 0.61 3.74± 0.68 0.42± 0.28 3.52± 0.75 3.95± 0.77 0.43± 0.25 3.45± 0.73 3.91± 0.75 0.44± 0.26 
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A allele  2.97± 0.66 3.22± 0.46 0.25± 0.24 2.77± 0.41 2.98± 0.70 0.21± 0.32 2.88± 0.56 3.01± 0.72 0.12± 0.26 
P value 0.71 0.41 0.49 0.24 0.14 0.25 0.36 0.11 0.03 
rs1160985          
CC 3.03± 0.50 3.32± 0.28 0.28± 0.21 2.92± 0.51 3.04± 0.78 0.11± 0.27 3.01± 0.47 3.23± 0.59 0.21± 0.41 
CT 3.40± 0.60 3.78± 0.68 0.38± 0.34 3.45± 0.82 3.85± 0.91 0.40± 0.21 3.45± 0.84 3.76± 0.99 0.31± 0.25 
TT 2.78± 0.69 3.16± 0.59 0.37± 0.13 3.04± 0.65 3.46± 0.76 0.41± 0.45 2.93± 0.30 3.45± 0.45 0.52± 0.32 
P value 0.21 0.19 0.98 0.51 0.64 0.58 0.40 0.76 0.43 
NADSYN1 
gene 

         

rs12785878          
TT 2.98± 0.55 3.34± 0.48 0.35± 0.23 2.97± 0.48 3.31± 0.64 0.33± 0.35 3.05± 0.34 3.44± 0.46 0.38± 0.32 
G allele 3.42± 0.65 3.79± 0.74 0.37± 0.33 3.57± 0.86 3.95± 0.97 0.38± 0.22 3.47± 0.94 3.77± 1.11 0.29± 0.28 
P value 0.21 0.15 0.98 0.09 0.13 0.99 0.23 0.42 0.57 
CYP24A1 
gene 

         

rs6013897          
TT 3.06± 0.67 3.34± 0.57 0.28± 0.21 3.02± 0.66 3.36± 0.83 0.33± 0.33 3.13± 0.75 3.46± 0.91 0.32± 0.31 
A allele 3.56± 0.30 4.14± 0.49 0.57± 0.34 3.91± 0.57 4.33± 0.53 0.41± 0.13 3.62± 0.52 3.99± 0.51 0.37± 0.28 
P value 0.15 0.01 0.05 0.01 0.03 0.89 0.22 0.24 0.74 
GC gene          
rs2282679          
AA 2.96± 0.69 3.32± 0.66 0.36± 0.24 3.06± 0.72 3.39± 0.92 0.32± 0.32 3.10± 0.83 3.51± 0.99 0.41± 0.31 
C allele 3.42± 0.36 3.73± 0.51 0.31± 0.31 3.34± 0.55 3.75± 0.61 0.41± 0.27 3.33± 0.37 3.56± 0.51 0.23± 0.29 
P value 0.17 0.25 0.52 0.66 0.71 0.97 0.64 0.94 0.24 
CYP2R1 
gene 

         

rs12794714          
GG 2.93± 0.65 3.24± 0.50 0.31± 0.20 2.99± 0.55 3.41± 0.82 0.41± 0.37 2.94± 0.42 3.29± 0.58 0.35± 0.32 
A allele 3.37± 0.58 3.77± 0.67 0.40± 0.32 3.45± 0.82 3.77± 0.91 0.32± 0.23 3.47± 0.81 3.81± 0.94 0.33± 0.29 
P value 0.18 0.10 0.56 0.22 0.45 0.43 0.15 0.24 0.88 
LDL-C; low-density lipoprotein cholesterol. P values for association between genotypes and low density lipoprotein levels were 
obtained by using general linear model adjusted for age, and body mass index. Values are mean ± SD.  
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Table 6.6: The baseline and post-intervention associations of SNPs at NADSYN1 CYP24A1, GC, and CYP2R1 genes with 
25(OH)D levels and 25(OH)D response to three test meals 

 25(OH)D (nmol/L) 
 Control diet vitamin D3 fortified dairy drink 25(OH) D3 fortified dairy drink 
SNP Baseline After 

intervention 
changes in 

values 
Baseline After 

intervention  
changes in 

values 
Baseline After 

intervention 
changes in 

values 
NADSYN1 
gene 

         

rs12785878          
TT 41.80± 

20.32 
45.98± 
23.47 

4.18± 5.51 44.70± 
16.24 

50.22± 
17.71 

5.52± 5.01 43.65± 
17.84 

52.13± 
16.54 

8.48± 3.70 

G allele 21.97± 
8.03 

21.69± 7.60 -0.27± 
1.78 

22.32± 
9.89 

26.92± 
10.91 

4.61± 2.91 22.53± 
9.44 

31.11± 
11.66 

8.58± 3.79 

P value 0.01 0.01 0.81 0.01 0.01 0.65 0.01 0.01 0.79 
CYP24A1 
gene 

         

rs6013897          
TT 31.84± 

20.05 
32.68± 
22.39 

0.84± 3.01 32.36± 
18.20 

38.11± 
20.01 

5.74± 4.24 31.44± 
17.81 

40.27± 
17.31 

8.83± 2.97 

A allele 32.01± 
13.83 

36.84± 
18.99 

4.82± 6.92 36.49± 
16.66 

39.77± 
16.48 

3.28± 2.91 37.39± 
18.23 

45.14± 
19.88 

7.75± 5.35 

P value 0.58 0.86 0.17 0.91 0.71 0.22 0.96 0.97 0.42 
GC gene          
rs2282679          
AA 32.83± 

23.68 
34.26± 
26.10 

1.43± 2.98 35.79± 
21.06 

40.41± 
23.51 

4.62± 4.71 33.85± 
21.16 

41.68± 
21.42 

7.83± 3.61 

C allele 30.03± 
9.11 

31.75± 
14.44 

1.72± 6.17 27.98± 
10.28 

33.79± 9.15 5.81± 3.31 30.56± 
13.43 

39.08± 
11.49 

8.51± 2.91 

P value 0.62 0.62 0.79 0.28 0.41 0.73 0.39 0.25 0.84 
CYP2R1 
gene 

         

rs12794714          
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GG 23.74± 
8.62 

24.41± 8.84 0.67± 1.33 26.06± 
10.98 

31.35± 
11.14 

5.29± 2.71 24.26± 9 34.25± 
11.52 

9.99± 3.27 

A allele 37.07± 
20.93 

39.83± 
24.56 

2.76± 5.73 38.25± 
19.46 

43.17± 
21.35 

4.92± 4.76 38.71± 
19.71 

46.32± 
19.61 

7.61± 3.69 

P value 0.13 0.15 0.43 0.25 0.34 0.82 0.12 0.18 0.15 
25(OH)D; 25-hydroxy-vitamin D, P values for association between genotypes and vitamin D levels were obtained by using general 
linear model adjusted for age, and body mass index. Values are mean ± SD. 
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6.5 Discussion   

In this study, we investigated whether SNPs in LPL, APOE and vitamin D related genes 

modified lipid responses to fortified dairy drink (20μg 25(OH)D3, or 20μg vitamin D3). A 

significant association between SNP rs12785878 (T/G) at NADSYN1 gene and circulating HDL-

C was observed at baseline of control diet, where individuals carrying the TT genotype had 

higher HDL-C concentrations compared to G allele carriers. Our result suggested a favorable 

effect of TT genotype in SNP rs12785878 (T/G) at NADSYN1 gene on HDL-C levels, however, 

due to the small sample size replication of our result in larger groups are required for robust 

finding.  

 Evidence from cross-sectional and intervention studies reported association between 

vitamin D levels and lipid concentrations (i.e TAG, HDL-C, and total cholesterol) [6, 7]. In a 

cohort of 3240 middle age and elderly European adults increased 25-hydroxyvitamin D was 

associated with higher fasted HDL-C [25]. The results of the current study were in line with 

previously reported finding from a cross-sectional study conducted in 323 non-diabetic African 

[26], which reported that GG genotype of SNP rs12785878 (T/G) in NADSYN1 gene was 

associated with dyslipidemia (defined as higher total cholesterol, TAG, and LDL-C or lower 

HDL-C concentrations). However, another study in 36 Egyptian men (controls and patients with 

coronary artery disease) did not find SNP rs12785878 in NADSYN1 as a risk marker for coronary 

artery disease, which could be due to a small sample size [27].  A proposed function of vitamin 

D is related to increased activity of LPL enzyme, which is associated with higher HDL-C levels 

[28]. However, the underlying mechanism of how the TT genotype could differentially influence 

HDL-C concentrations compared to G allele remains unclear and requires further investigation.  

Furthermore, our study highlights an association between the SNP rs12785878 (T/G) at 
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NADSYN1 and circulating 25(OH) vitamin D, where the TT homozygotes had higher 25(OH) 

vitamin D concentrations compared to G allele carriers. A similar association was also 

demonstrated in previous studies [26, 29]. NADSYN1 gene is located close to the gene 

dehydrocholesterol reductase (DHCR7), which encodes for dehydrocholesterol reductase 

enzyme, that converts 7-dehydrocholesterol into cholesterol, essential for vitamin D synthesis [9, 

30]. Thus, it could be speculated that the TT genotype could enhance the activity of 

dehydrocholesterol reductase enzyme, thus increasing vitamin D synthesis. However, this 

association was not statistically significant in our study possibly due to the small sample size.  

In this study, we examined whether lipid response to 20μg 25(OH)D3 or 20μg vitamin 

D3 were modulated by SNPs at LPL or APOE, or vitamin D related genes. There was significant 

association between SNP rs12785878 (T/G) at NADSYN1 gene and HDL-C levels after the 

control diet, but the changes from baseline was not significant. However we did not observe any 

significant effects of the other SNPs on lipid responses after test meals of varying vitamin D 

composition.  

This study has some strengths and limitations. A crossover study design was considered a 

strength as it allowed for comparison within- and between-groups which minimised the influence 

of cofounding factor as each participant acted as his/her matched control [31]. Overall, although 

a significant association was achieved between SNP rs12785878 (T/G) at NADSYN1 and HDL-

C, our sample size was relatively small, which is the main limitation and further investigation is 

required to confirm our findings.  Another limitation is that the participants were retrospectively 

genotyped which resulted in unequal numbers in each genotype group. Ideally a prospective 

genotyping should be performed. This study included only men and hence may not be 

extrapolated to women.  
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In conclusion, the TT genotype of the SNP rs12785878 (T/G) at NADSYN1 was found to 

be associated with higher HDL-C concentrations. Given that our study was conducted in a small 

group of men with sub-optimal vitamin D status, further statistically powered studies are 

required to replicate or refute these findings.  
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Chapter 7 Discussion and conclusion 
 
7.1 Discussion  
 

The field of nutrigenetics contributes to the understanding of the interactive effects of 

genes and diet on lipid outcomes. The knowledge of nutrigenetics will help to develop and 

implement better dietary guidelines and health strategies based on the genotype of individuals 

to improve healthcare and reduce the burden of chronic diseases such as cardiovascular 

disease (CVD) [1, 2]. However, multiple challenges are being faced in nutrigenetics research 

as many genes and environmental factors are involved in the development of chronic diseases 

[3]. This thesis has set out to examine the interaction between candidate genes involved in 

lipid metabolism and dietary factors on lipid outcomes. Two lipid metabolism-related genes, 

lipoprotein lipase (LPL) and apolipoprotein E (APOE), were considered as candidates for this 

study, given that the single nucleotide polymorphisms (SNPs) of the APOE [4, 5] and LPL 

[6-8] genes have been extensively studied and shown to be significantly associated with 

variation in lipid concentrations. 

In this thesis, we investigated the association of common SNPs at the LPL gene and 

seven tagging SNPs (tagSNPs) at APOE with various lipid outcomes. Also, we the examined 

interaction between these SNPs and dietary factors (fat, carbohydrates, and protein) on lipid 

concentrations. Given that one of the aims of this thesis was to replicate findings obtained 

from one study in another independent cohort, various studies were used. A total of six 

different study designs from two populations [Chennai Urban Rural Epidemiological Study 

(CURES) Asian Indian, and European Caucasian from the UK and Denmark] were used to 

test our study objectives. The studies used were a postprandial study (n=261), a case-control 

study (Asian India, n=1,845), three cross-sectional studies [Prevention of Cancer by 

Intervention with Selenium (PRECISE study; UK, n=468; Denmark, n=192), and the 

Caerphilly prospective study (CaPS; UK, n=1,238)], a 16-week dietary intervention Dietary 
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Intervention and VAScular function (DIVAS) study (n=120) and a randomized, controlled, 3-

way crossover, double-blind vitamin D trial (n=18). The statistical analysis for examining the 

associations and interactions was carried out applied using the general linear regression 

model using SPSS version 22. Potential cofounders were adjusted in the analyses such as age, 

sex, body mass index and ethnicity (wherever appropriate). A summary of findings obtained 

in this project are discussed below.  

 

7.1.1 Findings relating to LPL gene 

The main function of the LPL enzyme is hydrolysis of triacylglycerol (TAG) from 

chylomicrons and very low density lipoprotein (VLDL) [9]. Several SNPs at the LPL gene 

have been shown to be associated with TAG and high density lipoprotein cholesterol (HDL-

C) [10, 11]. In my PhD work, I found that there was a tendency for the G minor allele at LPL 

SNP rs328 (C/G) to be positively associated with HDL-C compared with CC common 

homozygotes in the Asian Indian and Caucasian (postprandial and PRECISE cohorts) 

populations; however, this association was not statistically significant after Bonferroni 

correction in the PRECISE study. The LPL SNP rs320 (T/G) was also associated with HDL-

C in the PRECISE study, where the G minor allele carriers had higher HDL-C. In the Asian 

Indian population, LPL SNP rs285 showed a significant association with TAG levels, while 

the association between rs328 and TAG in the CaPS (Caucasian population) was not 

statistically significant after Bonferroni correction (see Appendix Table 9.4). Given that 

postprandial TAG concentrations are identified as an independent risk factor for CVD [12], 

we examined association between two LPL SNPs (rs320 and rs328) and postprandial TAG 

levels. We found a significant association between SNP rs328 (C/G) and postprandial TAG 

in the postprandial study, where CC homozygotes had 12% higher TAG area under the curve. 

The findings from this thesis have demonstrated evidence for the association between the 



 243 

LPL gene SNPs and HDL-C and TAG concentrations in the Asian Indian and Caucasian 

populations, although these need confirmations in further RCTs.  

A novel finding of the thesis is the potential interaction between LPL SNP rs1121923 

(C/T) and dietary intake of fat (energy %) as a determinant of HDL-C concentration in an 

Asian Indian population after adjustment for age, sex, BMI, and type 2 diabetes. Carriers of 

the T allele of the LPL SNP rs1121923 were associated with a greater increase in HDL-C 

when they consumed a high fat diet compared to the CC homozygotes. There are no previous 

studies that have reported an interaction between SNP rs1121923 at LPL and fat intake on 

lipids. However, a study in Caucasian Americans found that another LPL SNP rs328 (C/G) 

was found to interact with fat intake (energy %) on HDL-C levels, where, among those who 

consumed a high fat diet, the CC homozygotes and CG heterozygotes had significantly 

higher HDL-C concentrations compared to the GG homozygotes [13]. Although these two 

studies (our Asian Indian study and the study in Caucasian Americans [13]) were conducted 

in two different ethnic groups, both of them reported the protective effect of T allele at SNP 

rs1121923 and CC homozygotes at SNP rs328 of LPL gene in those who consumed a high 

fat. However, in the PRECISE and CaPS studies, we did not observe the interaction between 

LPL SNPs rs328 and rs320 and fat intake on HDL-C. This could be due to the fact that the 

sample size (n=660 and 1238, respectively) of these two cohorts was small and hence the 

study did not have the statistical power to detect the small interaction effect sizes. 

Furthermore, the DIVAS study found a tendency for a lower serum low density lipoprotein 

cholesterol (LDL-C) concentrations in G allele carriers of the SNP rs320 (T/G) at LPL than in 

TT homozygotes in response to n-6 polyunsaturated fatty acid (PUFA); however, this effect 

was not statistically significant after Bonferroni correction. Previous results from cross 

sectional studies support the interaction between LPL SNPs and PUFA intake on TAG and 

HDL-C [14, 15]. The role of n-6 PUFA is to upregulate LPL gene expression, leading to 
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lower circulating concentrations of TAG and LDL-C [16, 17]. The LPL plays a role in 

binding TAG- rich lipoprotein (TRL) (i.e. VLDL) to LDL receptors, which helps to mediate 

clearance of these particles [18]. This action reduces the conversion of VLDL to LDL-C, 

which explains the reduction in LDL-C levels [19]. No other significant interactions were 

observed between LPL SNPs and dietary factors in other studies investigated in this thesis.  

7.1.2 Findings related to APOE gene 

The APOE protein plays a key role in the transport and metabolism of cholesterol and 

TRL particles by serving as a receptor-binding ligand that mediates the clearance of dietary 

derived chylomicrons, and hepatically derived VLDL and their remnants from the circulation 

[4]. Thus, the effects of seven tagSNPs (rs405509, rs769450, rs439401, rs445925, rs405697, 

rs1160985, and rs1064725) in the APOE gene along with the common haplotype (rs7412 and 

rs429358; E3, E2, E4) on lipid concentrations in the PRECISE (Caucasian participants), 

CaPS (Caucasian participants), DIVAS (majority Caucasian participants), and postprandial 

studies were examined. The APOE haplotypes (E2, E3, and E4) and APOE SNP rs445925 

were associated with total cholesterol in the PRECISE study and CaPS study. Around 7% of 

the variance in the total cholesterol levels have been shown to be determined by the APOE 

gene polymorphism [20]. Similarly, Suwalak et al. and El-Lebedy et al. [21, 22] found a 

significant association between APOE haplotypes (E2, E3, and E4) and total cholesterol. In 

addition, a genome-wide association scan has reported a significant association between 

APOE SNP rs445925 and LDL-C levels [23]. The mechanism explaining the differences in 

total cholesterol levels in the APOE alleles, is related to differences in APOE protein binding 

affinity to receptors such as LDL receptors. The E2 allele has reduced binding affinity, 

causing lower efficiency of the clearance of VLDL and chylomicron remnants from the blood 

to the liver, therefore slowing the uptake of postprandial lipoprotein particles compared with 

carriers of the E3 and E4 alleles [24]. Impaired conversion of the intestinal VLDL particles to 
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LDL-C in E2 [25] compared with E4, which have a higher rate of catabolism of VLDL 

particles [26], also, could explains the lower total cholesterol in E2 allele carriers. None of 

the other SNPs (rs405509, rs769450, rs439401, rs1160985, rs405697 and rs1064725) in the 

APOE gene showed an association with lipid concentrations in studies examined in my PhD 

work (PRECISE, Caerphilly, and DIVAS). Even in the postprandial cohort, the APOE SNPs 

did not show any association with fasting lipid concentrations and postprandial TAG (see 

Appendix Table 9.2 and 9.3) after sequential meal challenge [breakfast (0 min; 49 g fat) and 

lunch (330 min; 29 g fat)], which could be due to a small sample as analysis was performed 

retrospectively. In contrast, a previous postprandial study in 51 healthy European Caucasian 

men showed that the TT homozygotes of the APOE SNP rs405509 (G/T) had higher 

postprandial TAG in response to a fatty meal rich in vitamin A (1g of fat/ kg body weight and 

60,000 IU vitamin A) compared to G allele carriers [27]. From my PhD work, I have 

demonstrated and confirmed the association between APOE haplotypes (E2, E3, and E4) and 

APOE SNP rs445925 and total cholesterol in the Caucasian population.   

In terms of the APOE gene-diet interaction analysis, in the DIVAS study, 

isoenergetically substituting a high saturated fatty acid (SFA) diet with high monounsaturated 

fatty acid (MUFA) diet had a significant effect on reducing total cholesterol concentrations in 

the TT homozygotes of the APOE SNP rs1064725 (T/G). A previous study showed that a 

MUFA-rich dietary intervention (mainly olive oil) for 12 months increased the secretion of 

TRL containing APOE and decreased the secretion of those without APOE. As a result, a 

MUFA-rich diet shortened the residence time of VLDL particles in the circulation and 

increased the direct clearance of TRL from the circulation by APOE, a ligand for receptor 

mediated uptake, which eventually decreased their conversion to LDLs [28]. In the CaPS 

study, a tendency for an interaction between APOE haplotypes (E2, E3, and E4) and fat 

energy intake (%) on total cholesterol was observed, where, among those who consumed a 
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low fat diet (%), individuals carrying the E2 allele had significantly lower total cholesterol 

concentrations compared to E4 allele carriers. However, this interaction was not considered 

statistically significant after correction for multiple testing. The PRECISE study, also failed 

to show a significant interaction between APOE SNPs and dietary factors on lipid 

concentrations. Given that PRECISE and CaPS studies were relatively small and CaPS was 

only in men, future replication of these findings is warranted.  

7.1.3 Findings from vitamin D intervention trial  

In this thesis, given that vitamin D status has been shown to be associated with CVD 

related traits and lipid-related outcomes [29, 30], we examined the association between 

vitamin D related SNPs (rs12785878 (G/T) at nicotinamide-adenine dinucleotide synthetase 1 

(NADSYN1) gene, rs6013897 (T/A) at encoding cytochrome P450, family 24, subfamily A, 

polypeptide 1 (CYP24A1) gene, rs2282679 (A/C) at encoding group-specific component 

vitamin D binding protein (GC) gene, rs12794714 (G/A) at encoding cytochrome P450, 

family 2, subfamily R, polypeptide 1 (CYP2R1) gene) and lipid outcomes using a crossover 

study in 18 Caucasian men with sup-optimal vitamin D status. The study was an acute, 

double-blind, randomised, controlled, crossover study consisting of 3 intervention arms. 

Participants were randomly assigned to one of three diets: a control diet, or fortified diary 

drink with either 20μg 25(OH)D3 or 20μg vitamin D3. In this study, the TT genotype of the 

SNP rs12785878 (T/G) at NADSYN1 gene showed an association with higher HDL-C levels 

compared to G allele carriers. This is in line with a previous study  in 323 non-diabetic 

Africans, where TT  genotype of the SNP rs12785878  was associated with decreased risk of 

dyslipidemia [31]. In the present study, we also found that TT homozygotes of the SNP 

rs12785878 had higher vitamin D levels, but not after Bonferroni correction. It was found 

that the fortified diary drink with either 20μg 25(OH)D3 or 20μg vitamin D3 did not affect 

lipid levels. From this study, I conclude that the TT genotype of the SNP rs12785878 (T/G) 
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at NADSYN1 may have a favorable effect on HDL-C levels, however, the finding requires a 

replication in a similar independent study.  

7.1.4 Limitations and strengths   

A major limitation was that some of these studies had a small sample size and hence 

did not have sufficient statistical power to detect an interaction effect. However, despite this 

limitation, we found significant interactions of the SNPs at LPL and APOE with dietary 

factors on lipid outcomes in Asian Indian and Caucasian populations. In this PhD project, the 

cross-sectional study design was predominantly used (PRECISE, Caerphilly, and CURES) 

which examined the genetic effects at a single point in time compared to a longitudinal study 

design, which captures the genetic effects that vary during a specific time period. Thus, it is 

difficult to identify the causal relationship between a risk factor and disease outcome.  Also, 

there were some factors that could have introduced bias in the studies that were used, such as 

type 2 diabetes participants in CURES (selection bias), the use of two different food 

frequency questionnaires in the PRECISE cohort as this study was conducted in two different 

countries (UK and Denmark) (measurement bias), and use of multi-ethnic (Asian 7% and 

Black 7%) participants in the DIVAS study (selection bias); therefore, to reduce these 

potential bias, the analyses were adjusted for these factors (diabetes status, country and 

ethnicity, wherever appropriate) in the statistical analysis. The data was limited in some of 

the studies, for example, lipid outcomes were limited by HDL-C and total cholesterol in the 

PRECISE cohort, and dietary information was not available for phase 5 of the CaPS study 

and I was not able to run the SNP-diet interaction analysis. The main strengths of this thesis 

was that consistent associations were found between the LPL SNP rs328 and HDL-C and 

between APOE haplotypes (E2, E3, and E4) and the APOE SNP rs445925 and total 

cholesterol. Also, in this thesis, I used different study designs (cross sectional, intervention, 

postprandial, crossover) to confirm the observed findings. The use of the tagging approach 
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helped me to select seven tagSNPs representing the entire common genetic variations across 

the APOE gene. Furthermore, my study was the first to report a gene-diet interaction on lipid 

outcomes in an Asian Indian population.  

7.2 Conclusion 

In conclusion, my thesis work has confirmed significant interactions between LPL 

and APOE SNPs and dietary factors (in particular, fat intake) on lipid outcomes. Given that 

reduced intake of fat, especially SFA, is recommended for CVD prevention [32], my gene-

diet interaction findings will have significant public health implications where people with 

the risk alleles of the LPL and APOE genes could be advised to consume a low fat diet. These 

findings add to the evidence base for possible associations between increased fat intake and 

elevated lipids which may be used to inform personalised dietary guidance Also, findings 

obtained in this thesis contributes to a better understanding of the interaction between genetic 

and dietary factors in relation to the progression of CVD. Replication of these findings in 

other studies with a larger sample size and with participants of different ethnic origin is 

required to confirm or refute the study findings. Additionally, prospective genotyping should 

be performed to prevent imbalance in the different genotype groups which could confound 

the results and randomized control trials should be carried out to identify the cause and the 

effect.  This thesis addressed only lipid outcomes as one of the risk factors of CVD and 

hence, other risk factors need to be taken into consideration in order to implement dietary 

strategies for the prevention of CVD. Furthermore, a genetic risk scoring approach also 

provides evidence for the genetic effect on phenotypes. A recent study showed that the 

genetics risk score (comprising 6 SNPs) was associated with lipid levels and coronary artery 

disease in a Chinese population [33].  

In conclusion, my study has demonstrated a consistent association between LPL rs328 
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and HDL-C, and APOE haplotypes (E2, E3, and E4) and APOE SNP rs445925 and total 

cholesterol. However, the gene-diet interactions require a replication in an independent larger 

cohort.   
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Table 7.1 Summary of the results and interpretations from this PhD project 

Chapters Study 
design  

SNPs 
analyzed 

Results Interpretation 

Chapter 3 
Impact of 
Lipoprotein 
Lipase gene 
polymorphism, 
S447X, on 
postprandial 
triacylglycerol 
and glucose 
response to 
sequential meal 
ingestion 

Postprandial 
study  

LPL SNPs 
(rs320 and 
rs328) 
 
seven APOE 
tagSNPs 
(rs405509, 
rs769450, 
rs439401, 
rs445925, 
rs405697, 
rs1160985, 
and 
rs1064725) 

Significant 
association was 
observed 
between LPL 
SNP rs328 and 
fasting HDL-C 
and postprandial 
TAG.  
No association 
with lipid was 
found for the 
APOE SNPs.  

The CC homozygotes 
of the SNP rs328 had 
lower fasting HDL-C 
concentrations and 
higher postprandial 
TAG area under the 
curve compared to the 
G allele carriers.  

Chapter 4 High 
fat diet modifies 
the association of 
LPL gene 
polymorphism 
with HDL-C in 
an Asian Indian 
population 

Case-
control 
study 

LPL SNPs 
(rs1121923, 
rs328, 
rs4922115 
and rs285) 
 
APOE SNPs 
were not 
available in 
the dataset 

Signification 
association was 
observed 
between SNPs 
rs328 and rs285 
with HDL-C 
and serum TAG. 
The interaction 
between SNP 
rs1121923 and 
fat intake 
(energy %) on 
HDL-C was also 
significant  

The CC homozygotes 
at SNP rs328 had 
lower fasting HDL-C 
relative to the G allele 
carriers. 
The CC homozygotes 
of the SNP rs285 had 
higher TAG 
concentrations than T 
allele carriers. 
Among those who 
consumed a high fat 
diet, the T allele 
carriers of the SNP 
rs1121923 had 
significantly higher 
HDL-C compared to 
the CC homozygotes. 

Chapter 5 
Apolipoprotein E 
and lipoprotein 
lipase gene 
polymorphisms, 
dietary factors 
and blood lipids 

Cross 
sectional 
study  

LPL SNPs 
(rs320 and 
rs328) 
 
seven APOE 
tagSNPs 
(rs405509, 
rs769450, 
rs439401, 
rs445925, 
rs405697, 
rs1160985, 
and 

A statistically 
significant 
association of 
the APOE 
haplotype 
(rs7412 and 
rs429358; E2, 
E3, and E4) and 
APOE tagSNP 
rs445925 with 
total cholesterol 
was observed in 
the PRECISE 

Carriers of the E2 
allele had lower total 
cholesterol 
concentration than 
those with the E3 and 
E4 alleles. 
 
The ‘A’ allele carriers 
at SNP rs445925 had 
lower levels of total 
cholesterol compared 
to GG homozygotes. 
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rs1064725)  
one APOE 
haplotype 
(rs7412 and 
rs429358), 

study. This 
association was 
further 
replicated in the 
CaPS study 

Chapter 6 
Apolipoprotein E 
gene 
polymorphism 
modifies fasting 
total cholesterol 
concentrations in 
response to 
replacement of 
dietary saturated 
with 
monounsaturated 
fatty acids in 
adults at 
moderate 
cardiovascular 
disease risk 

Intervention 
study  

LPL SNPs 
(rs320 and 
rs328) 
 

seven APOE 
tagSNPs 
(rs405509, 
rs769450, 
rs439401, 
rs445925, 
rs405697, 
rs1160985, 
and 
rs1064725)  

After the 
intervention, a 
significant diet-
SNP rs1064725 
interaction on 
change in total 
cholesterol was 
observed. 

The TT homozygotes 
of the APOE SNP 
rs1064725 showed a 
significant reduction 
in total cholesterol 
after the MUFA diet 
compared to the SFA 
and n-6 PUFA diet. 

Chapter 7 
Impact of 
polymorphisms 
in genes related 
to vitamin D 
metabolism and 
serum lipids on 
vitamin D 
concentrations 
and lipid 
responses to 
vitamin D 
fortified test 
meals 

Crossover 
study  

LPL SNPs 
(rs320 and 
rs328) 
 
seven APOE 
tagSNPs 
(rs405509, 
rs769450, 
rs439401, 
rs445925, 
rs405697, 
rs1160985, 
and 
rs1064725)  
 
Four vitamin 
D-related 
SNPs 
NADSYN1 
SNP 
rs12785878, 
CYP24A1 
SNP  
rs6013897, 
GC SNP 
rs2282679, 
CYP2R1 SNP 
rs12794714  

The SNP 
rs12785878 at 
NADSYN1 
showed a 
significant 
association with 
HDL-C at 
baseline.  
 
None of the 
SNPs showed  
an effect on 
changes in lipids 
after the 
intervention of 
fortified diary 
drinks with 
either 
25(OH)D3 or 
vitamin D3.   

The TT genotype at 
SNP rs12785878 had 
higher HDL-C levels 
compared to G allele 
carriers. 
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7.3 Future prospects  

Although remarkable improvements have been achieved in epidemiological studies in 

the field of nutrigenetics, future research should focus on understanding the metabolic 

pathways underlying gene-diet interactions [34-36]. Therefore, the science that identifies the 

connection between compounds in food and diet, and genetic susceptibility is needed [37]. 

Food scientists and nutritionists have described a new discipline called “Foodomics”, which 

is defined as the application of new methodologies, or “omics”, to improve individual health 

[36, 38]. This field has helped to identify the interactions of bioactive compounds from the 

diet at a molecular and cellular level to provide evidence on their health benefits, and to 

understand variations and differential response to nutrition interventions [36]. For instance, 

several studies have investigated the therapeutic activities of dietary polyphenols with respect 

to their ability to control intracellular signalling and biochemical mechanisms for the 

prevention of cancer [39, 40].  

Another approach is nutrigenomics, which investigates the effect of diet and its 

bioactive components on gene expression. This field of research will help in understanding 

how diet interacts with the metabolic pathways, which may have a role in diet-related 

diseases [41]. While nutrigenetics investigates gene-diet interaction or in other words, 

explores how the genes (at the levels of SNPs) causes the disease in response to a particular 

diet [42, 43]. The knowledge from these two fields will help in designing optimal diets that 

allow health maintenance and disease prevention in an individual [41, 44]. However, at 

present, a large gap exists between nutrition recommendations and individual eating 

behaviour. Therefore, the implementation of a personalised approach could be more widely-

accepted by the public [45]. Personalised nutrition advice has been found to be more effective 

in improving dietary behaviours compared to population-based ‘one size fits all’ advice [46]. 
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A recent study has also reported that gene-based personalised nutrition was more effective in 

reducing SFA intake than standard dietary advice in APOE gene carriers [47]. Besides 

personalised nutrition, Precision nutrition is another approach, which is aimed to develop 

more comprehensive nutritional recommendations based on the interaction between internal 

and external parameters of an individual’s environment throughout life. Precision nutrition 

takes into account the genetic factors, dietary habits, food behavior, physical activity, the 

microbiota and the metabolome [48].  

In summary, clear guidance from nutrigenetics studies is required for the 

implementation of personalised nutrition and foodomics, which can only be achieved by 

using large and well powered studies, examining various ethnic groups, considering the 

variety in dietary patterns globally, and conducting additional testing for other modifiable 

factors such as physical activity.  
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Chapter 8 Appendices  
8.1 Appendix A: Genotype and minor allele frequencies of the SNPs at APOE genes in 
postprandial study  

SNP MAF Common 
homozygous 

N (%) 

Heterozygous 
N (%) 

Rare 
homozygous 

N (%) 

HWE  
P value 

rs405509 
(G>T) 

0.46 47 (0.28) 85 (0.51) 34 (0.20) 0.69 

rs769450   
(G>A) 

0.40  53 (0.31) 92 (0.55) 21 (0.12) 0.05 

rs439401  
(C>T) 

0.39  62 (0.37) 77 (0.46) 26 (0.15) 0.79 

rs445925  
(G>A) 

0.12  125 (0.75) 38 (0.23) 2 (0.01) 0.63 

rs405697 
(G>A) 

0.28  87 (0.51) 68 (0.40) 14 (0.08) 0.88 

rs1160985 
(C>T) 

0.42 49 (0.29) 94 (0.56) 24 (0.14) 0.05 

rs1064725 
(T>G) 

0.05 149 (0.89) 17 (0.10) - 0.48 

MAF; minor allele frequency, HWE; Hardy Weinberg Equilibrium 
 
8.2 Appendix B: Baseline and postprandial characteristics of the participants according 
to APOE SNP rs405509 
Participants 
characteristics 

GG GT TT P value 

TC (mmol/l) 5.62± 0.96 5.58± 1.05 5.81± 0.88 0.47 
TAG (mmol/l) 1.66± 0.73 1.48± 0.75 1.48± 0.65 0.68 
HDL-C (mmol/l) 1.35± 0.42 1.37± 0.43 1.34± 0.42 0.43 
LDL-C (mmol/l) 3.51± 0.98 3.53± 1.01 3.79± 0.85 0.20 
TAG AUC (mmol/l 
× 480 min) 

1164.46± 
501.37 

1063.48± 493.24 1114.72± 527.02 0.93 

TAG IAUC 
(mmol/l × 480 min)  

358.96± 230.39 327.35± 200.28 321.32± 233.20 0.75 

 
Abbreviations: TC, total cholesterol; TAG, triacylglycerol; HDL-C, high density lipoprotein 
cholesterol; LDL-C, low density lipoprotein cholesterol; AUC, area under the curve; IAUC, 
incremental area under the curve. P values were obtained by using a general linear model 
adjusted for age, sex, BMI.  
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8.3 Appendix C: Baseline and postprandial characteristics of the participants according 
to APOE SNPs rs439401, rs769450, rs445925, rs405697, rs1160985, and rs1064725 
 

rs439401 

Participants characteristics CC T allele  P value 
TC (mmol/l) 5.79± 1.02 5.53± 0.97 0.34 
TAG (mmol/l) 1.59± 0.72 1.48± 0.73 0.39 
HDL-C (mmol/l) 1.38± 0.42 1.34± 0.43 0.47 
LDL-C (mmol/l) 3.68± 1.01 3.51± 0.94 0.64 
TAG AUC (mmol/l × 480 min) 1137.58± 499.21 1081.99± 507.15 0.61 
TAG IAUC (mmol/l × 480 min)  359.28± 233.62 322.01± 204.52 0.26 

rs769450 
 GG A allele   
TC (mmol/l) 5.69± 0.97 5.60± 1.00 0.43 
TAG (mmol/l) 1.44± 0.63 1.57± 0.77 0.44 
HDL-C (mmol/l) 1.42±0.50 1.33± 0.38 0.39 
LDL-C (mmol/l) 3.59± 1.01 3.57± 0.95 0.66 
TAG AUC (mmol/l × 480 min) 1078.26± 535.27 1116.99± 485.51 0.94 
TAG IAUC (mmol/l × 480 min)  311.81± 218.52 347.76± 213.94 0.47 

rs445925 
 GG A allele   
TC (mmol/l) 5.65± 0.95 5.62± 1.17 0.41 
TAG (mmol/l) 1.54± 0.76 1.55± 0.68 0.61 
HDL-C (mmol/l) 1.32± 0.39 1.48± 0.51 0.07 
LDL-C (mmol/l) 3.64± 0.88 3.39± 1.27 0.04 
TAG AUC (mmol/l × 480 min) 1089.13± 490.48 1186.13± 578.20 0.08 
TAG IAUC (mmol/l × 480 min)  329.93± 211.65 362.44± 271.47 0.21 

rs405697 
 GG A allele   
TC (mmol/l) 5.65± 0.99 5.61± 1.00 0.72 
TAG (mmol/l) 1.53± 0.71 1.56± 0.78 0.95 
HDL-C (mmol/l) 1.41± 0.44 1.29± 0.40 0.05 
LDL-C (mmol/l) 3.56± 0.98 3.60± 0.96 0.83 
TAG AUC (mmol/l × 480 min) 1086.61± 493.85 1125.83± 505.76 0.76 
TAG IAUC (mmol/l × 480 min)  331.65± 222.34 340.16± 206.45 0.99 

rs1160985 
 CC T allele  
TC (mmol/l) 5.65± 0.97 5.63± 1.00 0.76 
TAG (mmol/l) 1.39± 0.62 1.58± 0.76 0.33 
HDL-C (mmol/l) 1.45± 0.51 1.31± 0.38 0.18 
LDL-C (mmol/l) 3.56± 1.03 3.60± 0.95 0.94 
TAG AUC (mmol/l × 480 min) 1052.45± 532.46 1125.55± 484.90 0.97 
TAG IAUC (mmol/l × 480 min)  312.56± 223.84 346.91± 210.43 0.67 

rs1064725 
 TT G allele  
TC (mmol/l) 5.69± 0.98 5.17± 1.00 0.35 
TAG (mmol/l) 1.59± 0.76 1.24± 0.54 0.49 
HDL-C (mmol/l) 1.33± 0.43 1.50± 0.32 0.64 
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LDL-C (mmol/l) 3.65± 0.97 3.17± 0.89 0.58 
TAG AUC (mmol/l × 480 min) 1126.06± 501.45 906.14± 455.51 0.51 
TAG IAUC (mmol/l × 480 min)  341.57± 217.13 288.72± 203.65 0.82 

 
Abbreviations: TC, total cholesterol; TAG, triacylglycerol; HDL-C, high density lipoprotein 
cholesterol; LDL-C, low density lipoprotein cholesterol; AUC, area under the curve; IAUC, 
incremental area under the curve. P values were obtained by using a general linear model 
adjusted for age, sex, BMI.  
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8.4 Appendix D: Association of the APOE and LPL SNPs with triacylglycerol in the 
Caerphilly prospective study 

SNP Triacylglycerol (mmol/L) 
LPL  
rs320  
TT 1.82± 0.90  
T/G 1.74± 0.89  

P 0.055 
rs328  
CC 1.82± 0.91  
C/G 1.65± 0.87  

P 0.004 
APOE  

rs405509  
GG 1.77± 0.91  
GT 1.82± 0.91  
TT 1.71± 0.87  
P 0.47 

rs769450  
GG 1.77± 0.93 

A allele  1.79± 0.88 
P  0.73 

rs439401  
CC 1.82± 0.89  

T allele 1.76± 0.90  
P 0.11 

rs445925  
GG 1.76± 0.86  

A allele 1.86± 1.01  
P 0.043 

rs405697  
GG 1.80± 0.90  

A allele  1.77± 0.89  
P 0.64 

rs1160985  
CC 1.73± 0.87  
CT 1.82± 0.91  
TT 1.77± 0.91  

 0.40 
rs1064725  

TT 1.79± 0.91 
G allele  1.53± 0.65 

P 0.09 
(rs7412- rs429358) E2, E3, and E4 

E3 1.79± 0.85  
E4 1.82± 0.90  
E2 1.88± 0.99  
P 0.025 

Values are given as mean ± SD. P values for differences between genotypes were obtained 



 263 

using linear regression model adjusted for age, and BMI. Adjusted P value after correction 
for multiple testing was 0.001. MAF; minor allele frequency.  

 
8.5 Appendix E: Interaction between APOE and LPL SNPs and dietary factors on 
triacylglycerol in the Caerphilly prospective study 

Interaction between rs320 at LPL*dietary factors on Triacylglycerol 
Interaction between SNP 

rs320* fat energy % intake 
Interaction between SNP 
rs320* protein energy % 

intake 

Interaction between SNP 
rs320* carbohydrate energy 

% intake 
-0.01 (0.01) 

0.28 
-0.01 (0.02) 

0.60 
0.01 (0.01) 

0.21 
Interaction between rs328 at LPL *dietary factors on Triacylglycerol 

Interaction between SNP 
rs328* fat energy % intake 

Interaction between SNP 
rs328* protein energy % 

intake 

Interaction between SNP 
rs328* carbohydrate energy 

% intake 
-0.02 (0.01) 

0.02 
-0.03 (0.03) 

0.32 
0.02 (0.01) 

0.01 
Interaction between rs405509 at APOE *dietary factors on Triacylglycerol 

Interaction between SNP 
rs405509* fat energy % 

intake 

Interaction between SNP 
rs405509* protein energy % 

intake 

Interaction between SNP 
rs405509* carbohydrate 

energy % intake 
0.01 (0.01) 

0.61 
0.03 (0.03) 

0.52 
-0.01 (0.01) 

0.44 
Interaction between rs769450 at APOE *dietary factors on Triacylglycerol 

Interaction between SNP 
rs769450* fat energy % 

intake 

Interaction between SNP 
rs769450* protein energy % 

intake 

Interaction between SNP 
rs769450* carbohydrate 

energy % intake 
-0.003 (0.01) 

0.71 
-0.01 (0.02) 

0.77 
0.004 (0.01) 

0.63 
Interaction between rs439401 at APOE *dietary factors on Triacylglycerol 

Interaction between SNP 
rs439401* fat energy % 

intake 

Interaction between SNP 
rs439401* protein energy % 

intake 

Interaction between SNP 
rs439401* carbohydrate 

energy % intake 
0.002 (0.01) 

0.81 
-0.03 (0.02) 

0.12 
0.003 (0.01) 

0.70 
Interaction between rs445925 at APOE *dietary factors on Triacylglycerol 

Interaction between SNP 
rs445925* fat energy % 

intake 

Interaction between SNP 
rs445925* protein energy % 

intake 

Interaction between SNP 
rs445925* carbohydrate 

energy % intake 
-2.01*10-5 (0.01) 

0.99 
-0.03 (0.02) 

0.17 
0.004 (0.01) 

0.66 
Interaction between rs405697 at APOE *dietary factors on Triacylglycerol 

Interaction between SNP 
rs405697* fat energy % 

intake 

Interaction between SNP 
rs405697* protein energy % 

intake 

Interaction between SNP 
rs405697* carbohydrate 

energy % intake 
0.01 (0.01) 

0.30 
-0.02 (0.02) 

0.42 
-0.01 (0.01) 

0.50 
Interaction between rs1160985 at APOE *dietary factors on Triacylglycerol 
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Interaction between SNP 
rs1160985* fat energy % 

intake 

Interaction between SNP 
rs1160985* protein energy 

% intake 

Interaction between SNP 
rs1160985* carbohydrate 

energy % intake 
-0.01 (0.01) 

0.61 
-0.01 (0.02) 

0.95 
0.01 (0.01) 

0.61 
Interaction between rs1064725 at APOE *dietary factors on Triacylglycerol 

Interaction between SNP 
rs1064725* fat energy % 

intake 

Interaction between SNP 
rs1064725* protein energy 

% intake 

Interaction between SNP 
rs1064725* carbohydrate 

energy % intake 
-0.01 (0.03) 

0.67 
0.06 (0.09) 

0.45 
0.01 (0.03) 

0.80 
Interaction between APOE (E2,E3, and E4)*dietary factors on Triacylglycerol 

Interaction between SNP 
APOE (E2, E3, and E4)* fat 

energy % intake 

Interaction between SNP 
APOE (E2, E3, and E4)* 
protein energy % intake 

Interaction between SNP 
APOE (E2, E3, and E4)* 
carbohydrate energy % 

intake 
-0.004 (0.01) 

0.92 
-0.03 (0.03) 

0.22 
0.01 (0.01) 

0.66 
Values represented β regression coefficients (± S.E), and Pinteraction. P values were obtained by 
using a general linear model adjusted for age, sex, BMI, country and total calorie whenever 
appropriate. 
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8.6 Appendix F: Genotype, and major and minor allele frequencies of the SNPs at LPL and APOE genes of all SNPs studied in various 
cohorts     
SNP Common 

homozygous N 
(%) 

Heterozygous 
N (%) 

Rare 
homozygous N 
(%) 

Major allele 
frequency  

Minor allele 
frequency  

Chi square  Hardy 
Weinberg 
Equilibrium 
 P value 

Postprandial study  
rs320 131 (0.56) 100 (0.43) 0 0.78 0.22 2.69 0.10 
rs328 213 (0.81) 48 (0.18) 0 0.91 0.09 2.67 0.10 
CURES 
rs4922115 864 (0.68) 347 (0.27) 50 (0.39) 0.82 0.17 4.02 0.05 
rs1121923 1147 (0.87) 157 (0.12) 7 (0.005) 0.93 0.06 0.4 0.52 
rs328 877 (0.72) 303 (0.25) 24 (0.02) 0.85 0.14 0.13 0.71 
rs285 758 (0.41) 845(0.45) 252 (0.13) 0.63 0.36 0.45 0.50 
PRESICE study  
rs320 354 (0.53) 271 (0.40) 39 (0.05) 0.74 0.26 1.8 0.17 
rs328 522 (0.80) 127 (0.19) 3 (0.005) 0.89 0.10 2.6 0.11 
rs405509 183 (27.6%) 330 (49.8%) 149 (22.5%) 0.52 0.47 0.0001 0.99 
rs769450 228 (34.5%) 339 (51.4%) 92 (13.8%) 0.60 0.39 3.66 0.06 
rs439401 291 (44.2%) 290 (44.1%) 76 (11.5%) 0.66 0.33 0.08 0.77 
rs445925 506 (77.3%) 142 (21.7%) 6 (0.9%) 0.88 0.11 1.33 0.24 
rs405697 365 (54.9%) 257 (38.7%) 42 (6.3%) 0.74 0.25 0.13 0.71 
rs1160985 200 (30.2%) 344 (52%) 117 (17.7%) 0.56 0.43 2.18 0.13 
rs1064725 606 (91.4%) 56 (8.4%) 1 (0.1%) 0.95 0.04 0.06 0.81 
Caerphilly prospective study  
rs320 721 (0.53)  536 (0.39)  86 (0.06) 0.73 0.26 1.05 0.31 
rs328 1068 (0.79)  266 (0.19) 9 (0.006) 0.89 0.10 3.01 0.08 
rs405509 381 (0.28) 675 (0.50)  287 (0.21) 0.53 0.46 0.13 0.71 
rs769450 452(0.33) 672(0.50) 219(0.16) 0.58 0.41 1.35 0.24 
rs439401 560 (0.41) 615 (0.45)  168 (0.12) 0.64 0.35 0.0018 0.96 
rs445925 1056 (0.78)  271 (0.20) 16 (0.01) 0.88 0.11 0.08 0.77 
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rs405697 728 (0.54) 513 (0.38) 102 (0.07) 0.73 0.26 0.77 0.38 
rs1160985 394 (0.29)  688 (0.51)  261 (0.19) 0.54 0.45 1.61 0.20 
rs1064725 1076 (0.96) 35 (0.03) 0  0.98 0.01 0.28 0.59 
DIVAS study 
rs320 57 (0.46) 57 (0.46) 9 (0.07) 0.69 0.30 1.07 0.30 
rs328 93 (0.75) 30 (0.24) 1 (0.008) 0.87 0.12 0.72 0.39 
rs405509 31 (0.25) 65 (0.52) 28 (0.22) 0.51 0.48 0.29 0.59 
rs769450 47 (0.37) 62 (0.5) 15 (0.12) 0.62 0.37 0.63 0.42 
rs439401 50 (0.40) 53 (0.43) 19 (0.15) 0.62 0.37 0.61 0.43 
rs445925 95 (0.78) 25 (0.20) 1 (0.008) 0.88 0.11 0.21 0.64 
rs405697 71 (0.57) 38 (0.30) 14 (0.11) 0.73 0.26 5.58 0.01 
rs1160985 36 (0.29) 65 (0.52) 23 (0.18) 0.55 0.44 0.44 0.51 
rs1064725 111 (0.89) 13 (0.05) 0 0.94 0.05 0.37 0.54 
Vitamin D study  
rs320 11 (0.61) 6 (0.33) 1 (0.05) 0.77 0.22 0.02 0.88 
rs328 18     NS  
rs405509 9 (0.5) 5 (0.27) 4 (0.22) 0.63 0.36 0.014 0.91 
rs769450 5 (0.27) 11 (0.61) 2 (0.11) 0.58 0.41 1.19 0.27 
rs439401 6 (0.33) 9 (0.5) 3 (0.16) 0.58 0.41 2.85 0.09 
rs445925 14 (0.77) 4 (0.22) 0 0.88 0.11 0.28 0.59 
rs405697 3 (0.16) 11 (0.61) 4 (0.22) 0.47 0.52 0.23 0.63 
rs1160985 12(0.66) 5 (0.27) 1 (0.05) 0.80 0.19 0.91 0.34 
rs1064725 17 (0.94) 0 0   NS  
rs12785878  3 (0.16) 6 (0.33) 9 (0.5) 0.33 0.66 1.12 0.28 
rs6013897 13 (0.72) 3 (0.16) 2 (0.11) 0.80 0.19 3.94 0.05 
rs2282679 10 (0.58) 7 (0.41) 0 0.79 0.20 1.14 0.28 
rs12794714 7 (0.38) 9 (0.5) 2 (0.11) 0.63 0.36 0.12 0.72 
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Abstract

Recent evidence suggests that lifestyle factors influence the association between the Mela-

nocortin 4 receptor (MC4R) and Transcription Factor 7-Like 2 (TCF7L2) gene variants and

cardio-metabolic traits in several populations; however, the available research is limited

among the Asian Indian population. Hence, the present study examined whether the associ-

ation between the MC4R single nucleotide polymorphism (SNP) (rs17782313) and two

SNPs of the TCF7L2 gene (rs12255372 and rs7903146) and cardio-metabolic traits is modi-

fied by dietary factors and physical activity. This cross sectional study included a random

sample of normal glucose tolerant (NGT) (n = 821) and participants with type 2 diabetes

(T2D) (n = 861) recruited from the urban part of the Chennai Urban Rural Epidemiology

Study (CURES). A validated food frequency questionnaire (FFQ) was used for dietary

assessment and self-reported physical activity measures were collected. The threshold for

significance was set at P = 0.00023 based on Bonferroni correction for multiple testing [(0.05/

210 (3 SNPs x 14 outcomes x 5 lifestyle factors)]. After Bonferroni correction, there was a sig-

nificant interaction between the TCF7L2 rs12255372 SNP and fat intake (g/day) (Pinteraction =

0.0001) on high-density lipoprotein cholesterol (HDL-C), where the ‘T’ allele carriers in the

lowest tertile of total fat intake had higher HDL-C (P = 0.008) and those in the highest tertile

(P = 0.017) had lower HDL-C compared to the GG homozygotes. In a secondary analysis of

SNPs with the subtypes of fat, there was also a significant interaction between the SNP

rs12255372 and polyunsaturated fatty acids (PUFA, g/day) (Pinteraction <0.0001) on HDL-C,

where the minor allele carriers had higher HDL-C in the lowest PUFA tertile (P = 0.024) and

those in the highest PUFA tertile had lower HDL-C (P = 0.028) than GG homozygotes. In addi-

tion, a significant interaction was also seen between TCF7L2 SNP rs12255372 and fibre intake

(g/day) on HDL-C (Pinteraction<0.0001). None of the other interactions between the SNPs and
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lifestyle factors were statistically significant after correction for multiple testing. Our findings indi-

cate that the association between TCF7L2 SNP rs12255372 and HDL-C may be modified by die-

tary fat intake in this Asian Indian population.

Introduction

Genetic variants, unhealthy dietary intake, physical inactivity and their multiple interactions
are considered to be contributory factors to the development of obesity and type 2 diabetes
(T2D) [1–3]. After China, India has the highest number of people with T2D in the world and
according to the Indian Council of Medical Research–INdia DIABetes (ICMR–INDIAB)
study, T2D cases have reached 62.4 million and 77.2 million people are pre-diabetic [4]. Fur-
thermore, obesity and T2D are risk factors for non-communicable diseases (NCDs) such as
cardiovascular disease (CVD) and it is estimated that India will have the highest rate of CVD
mortality in the world [5]. Asian Indians have different biochemical characteristics from other
populations from birth, often referred to as the ‘Asian Indian Phenotype’ which consists of
increased visceral fat and waist circumference, hyperinsulinemia and insulin resistance [6].

The association between several genes and metabolic diseases has been identified by the
candidate gene approach and genome-wide scans; to date, besides the FTO (Fat mass and obe-
sity associated) gene, the strongest obesity risk loci known so far [1, 3, 7, 8], two commonly
studied candidates for obesity and T2D have been the Melanocortin 4 Receptor (MC4R) and
Transcription Factor 7-Like 2 (TCF7L2) genes. Strong association between the MC4R gene
and risk of obesity was identified by a genome-wide association (GWAS) study [9] whereas the
association between the Transcription Factor 7-Like 2 (TCF7L2) gene and risk of T2D was
identified by a genome wide linkage study [10]. MC4R is expressed in the hypothalamus within
the brain and therefore it is suggested that it contributes to body weight regulation by its effect
on food intake and energy homeostasis [11]. A strong association was identified between
MC4R rs17782313 genetic variant and risk of obesity in a European population [12] which was
then replicated in other populations [13–15], including Asian Indians [16]. The TCF7L2 gene
is involved in the Wnt signalling pathway where it affects the expression of pro-glucagon and
consequently blood glucose regulation [10]. In addition, the effect of pro-glucagon on Gluca-
gon-like peptide 1 (GLP-1) also influences blood glucose regulation with insulin [17].
Decreased insulin secretion and increased glucose production in the liver is suggested to be
the result of over expression of the TCF7L2 gene [18]. A couple of studies [19, 20] have shown
strong associations between the two TCF7L2 single nucleotide polymorphisms (SNPs)
(rs7903146, rs12255372) and risk of T2D among Asian Indians living in India, in addition to a
meta-analysis [17].

In recent years, several studies have examined whether the association between the genetic
variants of MC4R and TCF7L2 genes and cardio-metabolic traits is modified by lifestyle factors
such as diet and physical activity in various populations [21–25], however there are no studies
to date among Asian Indians [26]. Whilst most studies in European populations found no sig-
nificant interactions between the MC4R SNP rs17782313 and dietary factors on obesity traits
[11, 22, 23], a prospective cohort study reported significant interactions between the SNP and
fat and protein intake on body mass index (BMI) and risk of T2D [27]. Similarly some studies
identified significant interactions between TCF7L2 SNPs and fibre and fat intake on T2D[28–
30]; however there were discrepancies between the studies which could be due to differences
in sample size, study design, dietary assessment and genetic heterogeneity. The objectives of
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this paper were to determine whether the MC4R SNP rs17782313 and TCF7L2 SNPs
(rs7903146, rs12255372) were associated with cardio-metabolic traits and whether the associa-
tion was modified by diet and physical activity in a sample size of up to 1,682 adults from the
Chennai Urban Rural Epidemiology Study (CURES).

Materials and methods

Study participants

A random, unrelated sample of normal glucose tolerant (NGT) (n = 821) and T2D (n = 861)
participants were recruited from the urban part of the cross sectional Chennai Urban Rural
Epidemiology Study (CURES) which included 26,001 individuals in total as a representative
sample of Chennai city. Full details of the methodology have been explained previously [31].
Briefly 26,001 adult subjects (>20 years of age) were recruited in Phase 1 of CURES using a
systematic random sampling method covering the whole Chennai city. This included 1,529
‘self-reported’ diabetic subjects. In Phase 2, all self-reported or ‘known diabetic’ subjects were
invited to our centre for detailed studies of whom 1382 responded (response rate: 90.4%). In
Phase 3, every tenth subject from Phase 1, excluding those with self-reported diabetes, under-
went an oral glucose tolerance test (OGTT). Subjects who had fasting plasma glucose<5.6
mmol/l (100mg/dl) and 2 hr plasma glucose value 7.8 mmol/l (140mg/dl) were categorized as
having NGT [32]. Those who were confirmed by OGTT to have 2 hr plasma glucose value 11.1
mmol/l (200 mg/dl) were classed as ‘newly detected diabetic subjects’ (n = 222).For the present
study, the NGT subjects were selected from Phase 3 and subjects with T2D which included
‘known diabetic’ and ‘newly detected diabetic’ subjects were selected from Phase 2 and Phase 3
of the Chennai Urban Rural Epidemiology Study. The Madras Diabetes Research Foundation
Institutional Ethics Committee granted the ethical approval and informed consent was
obtained from the study participants.

Anthropometric and biochemical measurements

Weight, height and waist circumference were measured by standard methods. The BMI calcu-
lation was based on the body weight (kg) divided by the square of body height (m). Roche
Diagnostics (Mannheim) provided the equipments in order to be able to carry out the bio-
chemical analyses on a Hitachi-912 Auto Analyzer (Hitachi, Mannheim, Germany)(8). Fasting
plasma glucose, serum cholesterol, serum triglycerides (TG) and high-density lipoprotein cho-
lesterol were measured by glucose oxidase-peroxidase, cholesterol oxidase-phenol-4-amino-
antipyrene peroxidase, glycerol phosphatase oxidase-phenol-4-amino-antipyrene peroxidise
and polyethylene glycol-pretreated enzyme methods respectively(8). The Friedewald formula
was used to estimate low-density lipoprotein cholesterol concentrations [33]. Glycated haemo-
globin (HbA1c) and serum insulin were determined by high-performance liquid chromatogra-
phy (HPLC) on a Variant instrument (Bio-Rad, Hercules, CA, USA) and an enzyme-linked
immunosorbent assay (Dako, Glostrup, Denmark) respectively [8].

Assessment of dietary intake and physical activity

A validated, interviewer administered semi-quantitative food frequency questionnaire (FFQ)
[34] consisting of a list of 222 different foods was used in order to evaluate dietary intake for
the previous year including macronutrient and total energy intake. Frequencies (per day,
week, month, year, never) and portion sizes were estimated by the participants with the help of
visual aids of measurement equipments and food sizes. Daily average food and nutrient intake
was calculated by the EpiNu database system.
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A validated self-report questionnaire was used to measure physical activity [5]. Individuals
were divided into the vigorously active group when they both exercised and engaged in
demanding work activities whereas within the moderately active group the participants either
exercised or carried out heavy physical work. The remainder of the study participants were
separated into the sedentary group.

SNP selection and genotyping

A strong association was identified between MC4R rs17782313 genetic variant and risk of obe-
sity in a European population [12] which was then replicated in other populations (13–15),
including Asian Indians [16]. Strong associations have also been found between TCF7L2 SNPs
(rs12255372 and rs7903146) and risk of T2D in a meta-analysis [17] in the Japanese population
[35] as well as in Asian Indians [19, 20]. Although the TCF7L2 SNPs (rs12255372 and rs7903
146) have showed significant linkage disequilibrium (r2 = 0.746), the rs7903146 variant has
been shown to have the strongest effect in Caucasian populations [36, 37]. Based on the previ-
ous studies, the above mentioned three SNPs were selected for the present study.

Phenol-chloroform method was used to extract DNA from whole blood. The methodology
for genotyping TCF7L2 rs12255372 (G/T) and rs7903146 (C/T) SNPs has been previously pub-
lished [20]. Direct sequencing by an ABI 310 genetic analyzer (Applied Biosystems, Foster
City, CA) helped to confirm the efficiency of the genotyping which was in 99% concordance
based on random duplicates of 20% of the samples [20].

MC4R rs17782313 (T/C) SNP: PCR volume (10 μl) consisted of 1X reaction buffer, 200
mmol of dNTP, 1.5 mmol of MgCl2, 1 U taq DNA polymerase and 100 ng of genomic DNA.
The concentrations for primers included 15 pmol of common primer, 15 pmol of allele 1
primer and 1 pmol of allele 2 primer, equal to a 15:1 ratio of short primers to long primer.
Cycles for PCR were carried out at 96˚C for 12 min, then 35 cycles at 94˚C for 30 sec, followed
by 30 sec at 57˚C, 30 sec at 72˚C and finally for 10 min at 72˚C. Electrophoresis was carried
out with a 3% agarose gel.

Inner primers
F: AAGTTTAAAGCAGGAGAGATTGTATACC (C allele 222bp)
R: GCTTTTCTTGTCATTTCCAGCA (T allele 149bp)
Outer primer
F: TTACTGATTTTAAGGGCATAAGCAA
R: TATCATGCTGAGACAGGTTCATAAA (321bp)

Statistical analyses

Statistical analyses were carried out by using SPSS software (version 21). BMI� 25 kg/m2 was
categorised as obese and BMI< 25 kg/m2 as non-obese. Descriptive statistics for continuous
variables are shown as means and standard deviation (SD). Fasting serum insulin and triglyc-
eride values were log transformed to obtain normal distribution. Genotype frequencies
between cases and controls were compared by Chi Square test. The difference in the means of
continuous variables between the genotypes was analysed by independent sample t test. Based
on an additive model of analysis, dominant models were used for all 3 single nucleotide poly-
morphisms (SNPs) where the common homozygous allele was compared to the combined het-
erozygous and rare homozygous alleles due to the low allele frequency of rare homozygotes.
Association analyses between SNPs and continuous and categorical variables were carried out
by linear and logistic regression models, respectively, adjusting for age, gender with the addi-
tion of BMI, when T2D was the outcome, and, adjusting for T2D, when obesity was the out-
come. Linear and logistic regression models were also used for interaction analyses between
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SNPs and dietary factors (continuous variables) / physical activity (categorical variable) on
continuous and categorical outcomes respectively, where the interaction terms were included
into the models and were adjusted for age, gender, BMI, T2D and total energy intake when
appropriate. Bonferroni correction for multiple testing was calculated by multiplying 3 SNPs
with 14 outcomes (T2D, obesity, BMI, waist circumference, fasting blood glucose, HbA1c, fast-
ing insulin, systolic and diastolic blood pressure, HDL, LDL, VLDL, TG and total cholesterol)
and 4 dietary factors (carbohydrate, protein, fat, fibre) and physical activity level. The P value
of 0.05 was then divided by 210 (3 SNPs x 14 outcomes x 5 lifestyle factors) which set the sig-
nificant p value for all results at P = 0.00023.

As a secondary analysis, given the significant SNP-fat intake interaction, individuals were
grouped into tertiles based on the fatty acid subtypes [monounsaturated (MUFA) and polyun-
saturated (PUFA) fatty acids] for testing the interaction between SNPs and these fatty acid sub-
types on lipids. In addition, PUFA was further stratified into ALA (alpha linolenic acid) and
LA (linoleic acid) for the interaction analysis.

Given that there are no previously reported effect sizes for the gene-diet interaction, we
were unable to perform a prospective power calculation. However, based on the most signifi-
cant interaction observed in the present study, we performed retrospective power calculations
using QUANTO software, Version 1.2.4 (May 2009). We performed power calculations in the
form of least detectable effects based on the assumption of significance levels and powers of 5
and 80%, respectively. At 80% power, the minimum detectable effects ranged from beta 0.02
mg/dl (HDL-C) for a SNP with MAF of 5% to beta 1.0 mg/dl for a SNP with MAF 50% in the
case-control analysis. For the TCF7L2 SNP–fat intake interaction on HDL-C (most significant
interaction), the beta was 0.067, which is within the range of effect sizes for which the power
was calculated.

Results

Phenotypic associations

Based on the clinical and biochemical characteristics of the individuals from the CURES
study as illustrated in Table 1, individuals with T2D were older (P<0.0001), had higher
BMI (P<0.0001), waist circumference (P<0.0001), fasting plasma glucose (P<0.0001),
HbA1c (P<0.0001), fasting plasma insulin (P<0.0001), systolic and diastolic blood pressure
(P<0.0001), low density and very low density lipoproteins (P<0.0001), total cholesterol
(P<0.0001), TG (P<0.0001) and lower high density lipoprotein (P = 0.001) than NGT
individuals.

Genetic associations

The minor allele (‘T’) of SNPs (rs12255372 and rs7903146) of TCF7L2 gene showed significant
susceptibility to T2D; however, in the present study after correction for multiple testing only
the association between SNP rs7903146 and T2D remained statistically significant (P = 0.0001)
(S1 Table).After Bonferroni correction, statistically significant association between the ‘C’
allele of theMC4R SNP rs17782313 and T2D was also observed (P = 0.00022) (S2 Table). None
of the associations between the three SNPs and continuous variables remained significant after
correction for multiple testing (P>0.00023) (S1 and S2 Tables).

TCF7L2 –dietary fat intake interactions on HDL-C

Individuals were grouped into tertiles based on their fat and subtypes of fat intake (g/day). The
means for fat intake in the 1st tertile: 41 g/d; 2nd tertile: 62 g/d; 3rd tertile: 95 g/d. Means for
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PUFA intake in the 1st tertile: 9g/d; 2nd tertile: 17 g/d; 3rd tertile: 29 g/d. Means for MUFA
intake in the 1st tertile: 12 g/d; 2nd tertile: 18 g/d; 3rd tertile: 29 g/d. Means for ALA intake in
the 1st tertile: 0.38 g/d; 2nd tertile: 0.58 g/d; 3rd tertile: 0.89 g/d. Means for LA intake in the 1st

tertile: 8 g/d; 2nd tertile: 17 g/d; 3rd tertile: 29 g/d.
The interaction between the TCF7L2 SNP rs12255372 and fat intake (g/day) on HDL-C was

statistically significant after correction for multiple testing (Pinteraction = 0.0001). The ‘T’ allele
carriers of the TCF7L2 SNP rs12255372 had 2.26 mg/dl higher HDL-C level in the lowest tertile
of fat intake (mean: 41 g/day) than the ‘GG’ homozygotes (P = 0.008) and in the highest tertile
of fat intake (mean: 95 g/day), HDL-C was 1.87 mg/dl lower in the risk ‘T’ allele carriers in
comparison to the ‘GG’ homozygotes (p = 0.017) (Fig 1).

Stratification to fat subgroups showed significant interactions between the SNP rs12255372
and PUFA (g/day) on HDL-C (Pinteraction<0.0001), where the ‘T’ allele carriers had 1.96 mg/dl
higher HDL-C (P = 0.024) in the low PUFA tertile (mean: 9 g/day) in comparison to the ‘GG’
homozygotes and in the 3rd tertile (mean: 29 g/day), the HDL-C level of the ‘T’ allele carriers
was 1.64 mg/dl lower than the ‘GG’ homozygotes (P = 0.028) (Fig 1). A similar interaction was
also found between the SNP rs12255372 and MUFA (g/day) on HDL-C (Pinteraction = 0.0003),

Table 1. Anthropometric and biochemical characteristics of T2D and NGT participants.

NGT T2D P value*

N 821 861

(men/women) (345/476) (398/463) 0.08

Age (yrs) 41.31±11.73 50.57±10.49 <0.0001

BMI (kg/m2) 23.66±4.69 25.34±4.30 <0.0001

WC (cm) 83.55±11.66 90.60±9.84 <0.0001

FPG (mg/dl) 84.82±8.36 161.73±69.13 <0.0001

HbA1c (%) 5.58±0.48 8.78±2.36 <0.0001

INS (μIU/ml) 8.41±5.81 11.78±7.69 <0.0001

Log INS (μIU/ml) 6.85±1.87 9.68±1.90 <0.0001

Systolic BP (mmHg) 117.72±18.05 129.16±21.65 <0.0001

Diastolic BP (mmHg) 74.06±11.32 76.76±11.85 <0.0001

HDL (mg/dl) 43.36±9.91 41.71±9.50 0.001

LDL (mg/dl) 113.13±30.55 124.49±35.38 <0.0001

VLDL (mg/dl) 23.95±14.30 35.96±27.37 <0.0001

TC (mg/dl) 180.02±36.02 199.51±42.40 <0.0001

TG (mg/dl) 120.18±71.46 180.31±137.12 <0.0001

Log TG (mg/dl) 105.68±1.62 152.75±1.71 <0.0001

Total energy (Kcal/day) 2622.43±702.77 2468±893.75 <0.0001

Total Carbohydrate (g) 419.69±112.33 399.96±147.98 0.002

Fat (g) 68.57±24.29 64.25±27.31 0.001

Total PUFA (g) 18.22±9.09 18.75±10.04 0.25

Total MUFA (g) 20.51±7.77 18.79±8.37 <0.0001

Protein (g) 73.82±20.97 69.93±24.56 0.001

Dietary fibre (g) 31.41±9.83 31.66±12.19 0.64

Data presented as Mean±SD.

*P values are showing the differences in mean values between NGT and T2D participants.

Abbreviations: NGT, normal glucose tolerance; BMI, Body mass index; WC, waist circumference; HbA1C, glycated haemoglobin; FPG, Fasting plasma

glucose; INS, Fasting plasma insulin; HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein; TC, Total Cholesterol;

TG, triglycerides.

https://doi.org/10.1371/journal.pone.0188382.t001
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where the ‘T’ allele carriers had 1.77 (mg/dl) higher HDL-C in the lowest MUFA tertile (mean:
12 g/day) (P = 0.03) and had 1.61 (mg/dl) higher HDL-C in the 2nd tertile (mean: 18 g/day)
(P = 0.045) than the ‘GG’ carriers, however in the highest MUFA tertile (mean: 29 g/day) the
‘T’ allele carriers had 1.59 (mg/dl) decreased HDL-C (P = 0.041) than individuals with the
‘GG’ genotype.

PUFA was further stratified to linoleic acid (LA) and alpha linolenic acid (ALA) to investi-
gate whether omega-3 and omega-6 fatty acids modified the association between the TCF7L2
SNP rs12255372 and HDL-C. Significant interaction was found between the SNP and ALA
on HDL-C (Pinteraction = 0.012), where the ‘T’ allele carriers had 2.42 (mg/dl) higher HDL-C
than the ‘GG’ homozygotes (P = 0.004) in the lowest tertile (mean: 0.38 g/day) (Fig 1).A
similar interaction was also found between the SNP rs12255372 and LA (g/day) on HDL-C
(Pinteraction<0.0001). S1 Table shows the interactions of TCF7L2 SNP rs12255372 with fat,
PUFA and ALA intakes on HDL-C under an additive and dominant model.

Additional gene-diet interactions

In addition to the main significant findings, there was a significant interaction between TCF7L2
SNP rs12255372 and fibre intake (g/day) on HDL-C (Pinteraction< 0.0001), where in the lowest
tertile (mean: 20 g/day) individuals carrying the ‘T’ allele had 1.95 (mg/dl) higher HDL-C
(P = 0.02), in the 2nd tertile (mean: 30 g/day), the ‘T’ allele carriers had 2.39 (mg/dl) higher
HDL-C (P = 0.003) and in the highest tertile (mean: 44 g/day), the HDL-C level of the ‘T’ allele
carriers was 2.37 mg/dl lower in comparison to the ‘GG’ homozygotes (P = 0.002). There were
several other interactions which did not reach statistical significance after correction for multi-
ple testing and these interactions are shown in the Table 2 and S2 and S3 Tables).

Gene-physical activity interactions on cardio-metabolic traits

No statistically significant interactions were observed after correction for multiple testing between
the three SNPs and physical activity on obesity- and T2D- related traits (Pinteraction>0.0002).

Fig 1. Interaction of the TCF7L2 gene polymorphism (rs12255372) with fat (g) intake, PUFA intake and
Alpha Linolenic Acid (g) intake on HDL-C. Individuals carrying the ‘XT’ genotype had 2.26 mg/dl higher
HDL-C in the lowest fat tertile (P = 0.008), while those in the highest tertile had 1.87 mg/dl lower HDL-C
(P = 0.017) than those who carry the ‘GG’ allele. Carriers of the ‘XT’ genotype had 1.96 mg/dl higher HDL-C in
the 1st tertile of PUFA intake (g) (P = 0.024), while those in the 3rd tertile had 1.64 mg/dl lower HDL-C in
comparison to the carriers of the ‘GG’ genotype (P = 0.028). In the 1st tertile of Alpha Linolenic acid intake (g),
individuals with the ‘XT’ genotype had 2.42 mg/dl higher HDL-C than the ‘GG’ homozygotes (P = 0.004).

https://doi.org/10.1371/journal.pone.0188382.g001
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Interactions observed between TCF7L2SNP rs7903146 and physical activity on VLDL (Pinteraction =
0.012) and TG (Pinteraction = 0.014), where the risk ‘T’ allele carriers had higher TG and VLDL levels,
did not reach statistical significance after correction for multiple testing (S4 Table).

Discussion

This is the first study to investigate interactions between TCF7L2 and MC4R SNPs and lifestyle
factors on cardio-metabolic traits among Asian Indians. The main findings suggest that total
fat and PUFA intakes may modify the association between the TCF7L2 SNP rs12255372 and
HDL-C. In the lowest total fat and PUFA tertiles, participants carrying the ‘XT’ genotype (GT
+TT) had significantly higher HDL-C, whereas in the highest tertile participants carrying the
‘XT’ genotype had lower HDL-C, as compared to those with the GG genotype. This finding is
of public health significance given that Asian Indians tend to have low HDL-C which puts
them at markedly increased risk for CVD [38, 39].

The fat intake consists of invisible, hidden and visible fat (vegetable oils, ghee, butter) in
India where in the urban areas the minimum average daily intake of visible fat is approxi-
mately 22–45 g/day [40]. The recommended omega 3 PUFA intake is 0.1 gram/day, however
the median of combined intake of LA and ALA is 13 g/day and the recommended ratio
between LA and ALA is 5:1 to 10:1 [40]. In comparison, the results of our study suggest that
total fat intake below 53 g/day, PUFA intake below 13 g/day, and ALA intake below 0.49 g/day
may help maintain high levels of HDL-C in the ‘T’ allele carriers of the TCF7L2 SNP rs1225
5372. The findings that MUFA intake above 22 g/day reduces HDL-C and only ALA intake
below 0.5 g/day maintains high HDL-C level in risk carriers are unexpected results; however,
the effect of polygenic traits cannot be ruled out.

HDL-C is generally considered to be protective against CVD due to its role in the reverse
cholesterol transport; however, the recent Mendelian randomization (MR) studies [41, 42]
have failed to show a causal effect of low HDL-C on cardiovascular disease risk. But, none of
these MR studies have taken dietary factors into account. Furthermore, fatty acids have shown
to have different modulating effect on HDL-C for which the mechanism is not fully under-
stood [43]. On the other hand, it is argued that the total fat intake is more influential on post-
prandial lipoprotein abnormalities, which is a characteristic of T2D, than the type of fatty
acids [44]. However, studies have also shown that different fatty acids can have differential
effects on postprandial TG [45–47]. In our study, we found that those in the lowest fat intake

Table 2. Interactions of TCF7L2 SNPs rs12255372 and rs7903146 with carbohydrate, fibre and protein intake on HDL-C, fasting blood glucose and
diastolic blood pressure.

rs12255372 SNP*Carbohydrate (g) SNP*Fibre (g) SNP*Protein (g) SNP*Fat (g)

β ± SE** (P for interaction on FPG) 0.039 ± 0.019 (0.041) 0.437 ± 0.222 (0.049) 0.132 ± 0.108 (0.222) 0.119 ± 0.095 (0.210)

β ± SE** (P for interaction on HDL-C) 0.009 ± 0.003 (0.007) 0.168 ± 0.041 (<0.0001) 0.072 ± 0.020 (0.0003) 0.067 ± 0.017 (0.00017)

β ± SE** (P for interaction on DBP) -0.003 ± 0.004 (0.551) -0.107 ± 0.050 (0.033) -0.028 ± 0.024 (0.251) -0.032 ± 0.021 (0.130)

rs7903146 SNP*Carbohydrate (g) SNP*Fibre (g) SNP*Protein (g) SNP*Fat (g)

β ± SE** (P¥ for interaction on T2D) 0.002 ± 0.001 (0.011) 0.014 ± 0.010 (0.180) 0.011 ± 0.005 (0.024) 0.008 ± 0.004 (0.071)

β ± SE** (P for interaction on HDL-C) 0.006 ± 0.003 (0.057) 0.128 ± 0.040 (0.002) 0.050 ± 0.020 (0.010) 0.052 ± 0.017 (0.003)

*Interaction term

**P values are adjusted for age, gender, BMI, T2D and Total energy intake.
¥ P values are adjusted for age, gender, BMI and Total energy intake.

Abbreviations: SNP, Single nucleotide polymorphism; HDL-C, High density lipoprotein cholesterol; FPG, Fasting plasma glucose; DBP, Diastolic blood

pressure.

https://doi.org/10.1371/journal.pone.0188382.t002
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subgroups had higher HDL-C while those in the highest tertile groups had lower HDL-C
among the risk allele carriers. A previous intervention study in the US population [30] also
found significant interaction between SNP rs12255372 and fat intake where positive changes
in body composition were observed in the ‘T’ risk allele carriers only on the low-fat diet (20%
from total energy). Other studies only reported significant interactions between SNP
rs7903146 and high saturated fat intake on increased metabolic syndrome risk [29] and high
(n-6) PUFA intake (�6.62% of energy intake) on increased VLDL and TG [24] among the risk
‘T’ allele carriers.

High omega 6 to omega 3 ratio has been shown to increase HDL in mice [43], whereas the
results from this study in humans contradict those findings. It has been shown in cell and ani-
mal studies that high omega 6 PUFA intake is pro-inflammatory leading to an increased risk
for CVD and diabetes [48] and in the present study reduced HDL was observed in the minor
allele carriers in response to high intake of omega 6 PUFA (>21.6 g/d). According to our find-
ings, a low omega 6 (<12.8 g/d) and a low ALA intake (<0.5 g/d) may help maintain HDL
above 44 (mg/dl) in the risk allele carriers.

Though there was no significant difference in mean HDL levels in the different tertiles of
total fat and PUFA intakes in the study participants (data not shown), in the presence of
TCF7L2 rs12255372 genotype, a clear interaction between the genotype and fat/ PUFA intake
on HDL-C was observed. While the carriers of ‘XT’ genotype had increased HDL-C in the
presence of a low fat/ low PUFA diet, there was a decrease in HDL-C levels in the carriers of
‘XT’ genotype in the presence of a high fat / high PUFA diet. It is to be noted that among those
who carry the GG genotype, irrespective of the dietary fat/PUFA intake, there is no effect on
HDL-C levels.

Another interesting interaction was the one between TCF7L2 SNP rs12255372 and fibre
intake on HDL-C. The results suggest that low and medium fibre intake (means: 20, 30 g/day),
respectively, increase HDL-C whereas high fibre intake (mean: 44 g/day) may reduce HDL-C
among risk allele carriers of the TCF7L2 SNP rs12255372. The average fibre intake in India is
30–40 g/day [40] which is consistent with the mean intake in the medium and high tertiles and
also higher compared to the mean fibre intake in the UK (~18g/day) and the US (~16g/day). A
previous study investigated interaction between SNP rs7903146 and fibre intake on T2D risk
[28],where the minor allele carriers had increased T2D risk with higher fibre intake (mean
intake: 13.1 ± 2.2 g/4,184 kJ). High fibre intake is generally recommended to improve glycemic
control in T2D individuals [49] and to reduce total and LDL-C in order to reduce CVD risk. A
meta-analysis of data from clinical studies (n = 2,990) [50] indicated that high fibre diets (20–
30 g/day) reduced HDL-C. Similarly, another meta-analysis of data from 24 clinical studies
also suggested that medium and high carbohydrate, high fibre (�20 g/day) diets also decreased
HDL by 4% [51].However, it was argued, that the decrease in LDL-C and TG values would
reduce CVD risk by 16.4% which would outweigh the increased risk of CVD by 11.9% due to
decreased HDL [51]. But it is of note that these meta-analyses did not consider the genetic
component and, furthermore, we also observed gene-diet interaction on other lipid outcomes
such as VLDL and TG, which did not remain significant after correction for multiple testing.

The risk of coronary artery disease is increased in individuals with circulating HDL-C con-
centration of<40 mg/dl [52]. In our study, within the high fibre intake tertile (�35g/day), the
mean HDL-C level of the minor risk allele carriers was 39.46 mg/dL in comparison to 42.27
mg/dl of the ‘GG’ carriers of the TCF7L2 SNP rs12255372. The results of our study suggest that
high fibre intake (35–102 g/day) may help maintain HDL-C level above 40 mg/dl whereas
below 35 g/day may lower HDL-C in the ‘GG’ genotype carriers of SNP rs12255372. Mecha-
nisms on how low/high fibre intake decreases/increases HDL-C are not well understood and
more research is needed to clarify the effects of dietary fibre on HDL-C metabolism [52, 53].
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No studies, to date, have investigated interactions between the TCF7L2 SNPs
(rs12255372 and rs7903146) and MC4R SNP rs17782313 and physical activity on cardio-
metabolic traits in Asian Indians. Despite the fact that the majority of people are physically
inactive in India [54], no significant interactions were found after correction for multiple
testing between the three polymorphisms and physical activity on cardio-metabolic traits,
which could be due to a small sample size and measurement bias associated with self-
reported physical activity questionnaire. However, our finding is in support of the previ-
ous study in a Spanish population [21] with a much larger sample size (n = 7,052) which
also did not find a significant interaction between MC4R SNP rs17782313 and physical
activity on obesity traits. Though the inclusion of a representative sample of Chennai for
analysis and the use of a comprehensive, validated, interviewer administered semi-quanti-
tative FFQ for dietary assessment could be considered the strengths of this study, there are
some underlying limitations. The data used to calculate the measures of dietary intake and
physical activity came from self-report and hence, measurement bias associated with self-
reported questionnaire cannot be ruled out. Given that obesity and diabetes are multifac-
torial traits, several genetic and lifestyle factors are likely to contribute to the disease.
While 97 loci have been shown to be associated with body weight [55], the present study
examined only three common variants, given their consistent associations with obesity
and diabetes, respectively, in Europeans and Asian Indians. The cross sectional study
design gives only a snapshot of the prevalence and cause—effect cannot be established due
to lack of follow up which is another limitation of this study. However, several outcomes
and risk factors were assessed and there was no loss to follow up.

In conclusion, this study has found significant interactions between the TCF7L2 SNP
rs12255372 and dietary factors on HDL-C in this Asian Indian population. The results of
this study indicate that high total fat and PUFA intakes may be associated with lower
HDL-C whereas low intake is associated with higher HDL among the risk allele carriers.
More research is required to better understand the interactions between the TCF7L2 gene
variant and lifestyle factors on cardio-metabolic traits. Exact mechanisms identifying the
effect of different fatty acids on HDL-C and whether/how high fat- and PUFA- intake may
reduce HDL-C should also be established before public health recommendations and per-
sonalised nutrition advice can be developed for this Asian Indian population in order to
reduce the burden of cardiometabolic diseases.
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