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ABSTRACT 

 

Korthalsia is a genus of palms endemic to Malesian region and known for the several 

species that have close associations with ants. In this study, 101 new sequences were 

generated to add 18 Korthalsia species from Malaysia, Singapore, Myanmar and 

Vietnam to an existing but unpublished data set for calamoid palms. Three nuclear (prk, 

rpb2, and ITS) and three chloroplast (rps16, trnD-trnT and ndhF) markers were 

sampled and Bayesian Inference and Maximum Likelihood methods of tree 

reconstruction used. The new phylogeny of the calamoids was largely congruent with 

the published studies, though the taxon sampling was more thorough. Each of the three 

tribes of the Calamoideae appeared to be monophyletic. The Eugeissoneae was 

consistently resolved as sister to Calameae and Lepidocaryeae, and better resolved, 

better supported topologies below the tribal level were identified. Korthalsia is 

monophyletic, and novel hypotheses of species level relationships in Korthalsia were 

put forward.  

These hypotheses of species level relationships in Korthalsia served as a framework for 

the better understanding of the evolution of ocrea. The morphological and 

developmental study of ocrea in genus Korthalsia included detailed study using Light 

and Scanning Electron Microscopy for seven samples of 28 species of Korthalsia, in 

order to provide understanding of ocrea morphological traits. The new phylogenetic 

hypothesis allowed homology of ocrea types to be tested. Ancestral reconstructions 

revealed that the inflated ocreas are not homologous; based on these reconstructions, it 

is suggested that ocreas that provide domatia for ants evolved more than once. Despite 

their non-homology, ocreas are remarkably uniform developmentally. New time 

calibrated trees estimated the divergence time for the Korthalsia crown node to be 

19.89 MYR and ocrea to appear 17.06 MYR consistent with the published estimates for 

other groups. 

A taxonomic treatment of the ant Korthalsia species was based on material gathered 

from four herbaria and during the two field trips. Ten species were recognised in the 

treatment. Descriptions, keys and distribution maps to all species are presented.   
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Overview 

 

This thesis is a systematic study of Korthalsia Blume, a genus of palms endemic to the 

Malesian region. The genus includes several species that have close associations with 

ants. This introductory chapter has four sections. The first (Section 1.2) describes the 

Malesian region, its plant species richness and the origins of the region’s plant 

biodiversity. Next (Section 1.3), I present an overview of the palms and their 

classification, also providing an introduction to the genus Korthalsia. Ant-plant 

relationships are then reviewed, with an introduction to what is known about ant-

rattans, and ant relationships in Korthalsia. This section includes a brief introduction to 

the ocrea, a structure that forms domatia (chambers or hollow structures occupied by 

ants) in some rattan palms, including some species of Korthalsia. Finally, the objectives 

and structure of the thesis is outlined.  

 

1.2 Malesian region 

 

Malesia comprises the Malay Peninsula, Borneo, the Philippines, and the archipelago of 

islands stretching from Sumatra to New Guinea (Figure 1.1), and is a centre of plant 

megadiversity (Wallace, 1869; Myers, 1988; Marsh et al., 2009; Raes and van Welzen 

2009). Conservative estimates of the diversity of vascular plants within Malesia indicate 

that at least 45,000 species may be present (Thomas and Roos, 2016). New Guinea and 

Borneo are two major centres of plant diversity in Malesia. New Guinea, the largest of 

tropical islands, has at least 14,000 species of plants and Borneo at least 14,500 species 

(Roos et al., 2004). Phylogenetic studies are contributing to understanding of centres of 

plant diversity. For example, de Bruyn et al. (2014) recently identified Borneo and 

Indochina as ‘evolutionary hotspots’ in a phylogenetic meta-analysis of both flora and 
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fauna, and several studies cite Borneo as the centre of diversification for multiple taxa 

(Nauheimer et al., 2012; Webb and Ree, 2012). 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Map of Malesian region. Map prepared by Salwa Shahimi, using QGIS.  

 

The Malesian region has for quite some time been acknowledged as a place of 

extraordinary biogeographic intrigue (Wallace, 1869), providing numerous literature in 

this area (e.g. Croizat, 1958; MacArthur and Wilson, 1967; Michaux, 1991). The 

ancestors of the Malesia biota have arrived by three major routes (Webb and Ree, 

2012). The first route is Laurasian (including Boreotropical) clades arriving from the 

west (e.g. for plants, Trigonobalanus Forman and Lithocarpus Blume, Morley, 2000). 

The second route is that of the Gondwanan clades arriving from the west, via Africa or 

the Indian raft and Sundaland (e.g. Dipterocarpaceae; many Annonaceae, Richardson et 

al., 2004, Crypteroniaceae, Moyle, 2004). The last route is Gondwanan clades arriving 

from the east, via the Australian raft (e.g. Proteaceae, Barker et al., 2007; Cunoniaceae; 

Monimiaceae; Phyllocladus Rich. ex Mirb., Nothofagus Blume, Morley, 2000; 

Eucalyptus L'Hér., Ladiges et al., 2003). 

 

Malesia: eastern limit 

Malesia: western 

limit 
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The archipelagic nature of the region and its complex landscapes imply that allopatric 

speciation has played a major role in generating this diversity, but this may not account 

for the extremes of species richness observed in the region (Dransfield, 1987; Baker et 

al., 1998; Baker and Couvreur, 2012). Among other key drivers, the role of biotic 

interactions, such as pollinator relationships and other mutualisms, remain poorly 

explored in Malesia. Studies of phylogenetic relationships of Malesian lineages are 

beginning to shed light on the patterns and drivers of diversification within the region 

(Baker et al., 1998; Schneider et al., 2004; Nauheimer et al., 2012).  

 

The Malesian and West Pacific region represents one of the richest areas of palm 

diversity in the world. An estimated 1,200 species in 50 genera are found around in that 

area (Dransfield et al., 2008; Baker and Couvreur, 2012). There is significant 

differentiation in species richness patterns throughout the Malesian region even though 

Malesia is regarded as palm diversity hotspot (Baker and Couvreur, 2013). In the 

islands of the Malesian region, majority group of palms are still neglected by the 

general collector and seem to display a high rate of endemism (especially the rattans).  

 

1.3 Palms 

 

It is estimated that there are approximately 2,600 species (Baker and Dransfield, 2016) 

of palms (palms belonging to family Arecaceae) spread throughout the tropical and 

subtropical regions of the world (Figure 1.2) (Dransfield et al., 2005; Govaerts and 

Dransfield, 2005). They are among the most distinctive of all flowering plants, and yet 

their diversity of form and ecology is remarkable.  
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Figure 1.2 The distribution of living palms around the world. (Source: Dransfield et al., 2008). 

 

Currently, the palm family consists of five subfamilies, 28 tribes, 27 subtribes, 181 

genera (Baker and Dransfield, 2016). Malesia is home to the largest palm flora, 

estimated to consist of about 50 genera and almost 1,200 species (Dransfield, et al., 

2008). The Sunda Shelf and New Guinea are hotspots for distribution of palm species 

richness, in comparison to the Americas which is populated by only 730 species, and 

Africa with only 65 species (Dransfield et al., 2008).  

 

The palms have undergone significant diversification of growth forms to include palms 

with clustered stems, acaulescent palms and climbing palms (Dransfield, 1978; 

Dransfield et al., 2008; Balslev et al., 2011). According to Baker et al. (2000), within 

the subfamily Calamoideae, the climbing habit has evolved several times. In climbing 

plams, spines are present on almost all organs (Tomlinson and Fisher, 2000). There are 

two unique climbing organs in climbing palms which are the flagellum (a modified, 

sterile inflorescence, armed with reflexed grapnel spines, which is only found in genus 

Calamus L.) and the cirrus (an extension of the leaf rachis, is whip-like, armed with 

reflexed grapnel spines). These organs are highly effective attachment structures for 

climbing (Dransfield et al., 2008; Isnard and Rowe, 2008). 

 

Most palm stems are erect and solitary or clustered. The stem is composed of three 

discrete regions, the epidermis, cortex and central cylinder (Tomlinson, 1990). Palm 

stems are characterized by having a single apical meristem or growing point, which is 
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also referred to as the bud or heart. There are no lateral meristems or vascular cambium 

in palms. In climbing palms, the stems are narrow, elongated, flexible and internodes 

are long (Tomlinson et al., 2011). The stem can reach up to 150 m in length (Burkill, 

1966).  

 

 Many palms are recognisable by the large, evergreen leaves that emerge from the top 

of the trunk. The leaves are either fan-shaped (palmate) or feather-shaped (pinnate), and 

usually arranged in a spiral at the top of the stem (Dransfield et al., 2008). The leaves 

are usually pinnate in climbing palms and they grow along the stem instead of forming 

a dense crown. Sometimes the leaves are equipped with spines or marginal teeth on 

sheath, petiole, or blade, or on all parts (Tomlinson, 1990). The sheaths of palm leaves 

are sometimes elongated or tubular and are referred to as crown shafts when they 

appear to form a continuation from the stem.  

 

Due to their diversity, abundance and interactions, many palms play notable ecological 

roles. They provide many ecosystem services and have great economic importance 

(Johnson, 2011; Cámara-Leret et al., 2017), providing food, construction materials, and 

medicines, especially in tropical, rural, and poor communities (Jones, 1995; Cámara-

Leret et al., 2017). Coconut, date, betel nut and oil palm are some examples of major 

crops, but the majority of resources from palms are extracted from the wild. Besides 

that, rattans also have commercial value in economic importance for the cane-furniture 

industry (Corner, 1966; Wickens, 2001; Barfod et al., 2015). 

 

1.3.1 Palm classification and phylogeny 

 

Genera Palmarum is a standard reference for the palm family. The work includes a 

classification and generic-level treatments, in addition to essays providing contextual 

information. In the 12 years since the first publication of Genera Palmarum in 1987, 

data, information and research on palms increased tremendously, thus even before the 

second edition Uhl and Dransfield (1999) made some changes to the classification, 
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reducing the number of genera from 200 to 189, changing the composition of tribes and 

subtribes, but maintaining the number of subfamilies. Six years after that, Dransfield et 

al. (2005) published a paper with another new classification of the palm family. This 

classification was based on phylogenetic studies. They recognised five rather than six 

subfamilies. Phytelephantoideae (Seemann) Drude sensu Uhl and Dransfield (1987) 

was included within Ceroxyloideae Drude (as tribe Phytelepheae Horan.). There were 

further significant changes: removing the tribe Caryoteae Drude from Arecoideae 

Brunett and placement within Corypohoideae Brunett; and removing Hyophorbeae 

Luerss. from Ceroxyloideae Drude and placement within Arecoideae Brunett. There 

were several subtribes which were recognized for the first time, such as Rhapidinae J. 

Dransf., N. W. Uhl, C. Asmussen, W. J. Baker, M. M. Harley & C. Lewis, 

Basseliniinae J. Dransf., N. W. Uhl, C. Asmussen, W. J. Baker, M. M. Harley & C. 

Lewis, Carpoxylinae J. Dransf., N. W. Uhl, C. Asmussen, W. J. Baker, M. M. Harley 

& C. Lewis, Clinospermatinae J. Dransf., N. W. Uhl, C. Asmussen, W. J. Baker, M. 

M. Harley & C. Lewis, Rhopalostylidinae J. Dransf., N. W. Uhl, C. Asmussen, W. J. 

Baker, M. M. Harley & C. Lewis and Verschaffeltiinae J. Dransf., N. W. Uhl, C. 

Asmussen, W. J. Baker, M. M. Harley & C. Lewis. In 2008, a new Genera Palmarum 

(GP2) was published (Dransfield et al., 2008). In this new classification, Arecaceae was 

divided into five subfamilies, 28 tribes and 27 subtribes with 183 genera. This 

classification was based on significant molecular phylogenetic research. Eight years 

after Genera Palmarum (GP2) was published, Baker and Dransfield (2016) updated the 

classification, presenting a schematic phylogenetic tree (Figure 1.3) and making some 

changes at genus level. Currently, 181 genera are accepted, two fewer than recognised 

by Dranfield et al. (2008). 
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Figure 1.3 Summary schematic tree showing the phylogenetic relationships among subfamilies and 

tribes of the Arecaceae. (Source: Baker and Dransfield, 2016). 

 

In 2009, Baker et al. published the first complete generic level phylogenetic analysis of 

palms and brought all major phylogenetic datasets together using a supermatrix and 

supertree approach. This work was considered the most prominent contribution to 

family-wide phylogenetics of palms since GP2 (Baker and Dransfield, 2016). The 

outcomes from Baker et al. (2009) were utilized greatly as evidence to support the GP2 

classification, although they have been published after GP2. Faurby et al. (2016) 

attempted to reconstruct a species level phylogeny of all palms using model-based 

methods and building on the Baker et al. (2009) supermatrix. Fortunately, the result did 
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not challenge the classification in GP2 and the issues highlighted by Faurby et al. 

(2016) were already discussed by Baker et al. (2009).  

 

Aside from the family-wide studies, there are a few phylogenetic studies that only focus 

on genera within the family including studies of Sabal Adans. (Zona, 1990), Phoenix L. 

(Barrow, 1998; Pintaud et al., 2010), Caryota L. (Hahn and Sytsma, 1999), Hyophorbe 

Gaertn. (Lewis and Martinez, 2000), Calamus L. (Baker et al., 2000a), 

AsterogyneH.Wendl. ex Hook.f. (Stauffer et al., 2003), Chamaedorea Willd. (Thomas 

et al., 2006), Lanonia A.J. Hend. & C.D. Bacon (Henderson and Bacon, 2011), 

Livistona R.Br. (Crisp et al., 2010), Phytelepheae Horan. (Barfod et al., 2010), 

Geonoma Willd. (Henderson, 2011; Roncal et al., 2011), Astrocaryum G.Mey. (Roncal 

et al., 2012), Pritchardia Seem. & H.Wendl. (Bacon, 2012), Ceroxylon Bonpl. ex DC. 

(Sanín et al., 2016) and Johannesteijsmannia H.E.Moore (Bacon et al., 2016). 

 

1.3.2 Subfamily Calamoideae 

 

The Calamoideae consist of 17 genera and about 645 species, making it the second 

largest palm subfamily. Calamoideae are distributed throughout the wet tropical regions 

of the world (Figure 1.4). The group is ecologically diverse, but usually found within 

forest communities. Calamus is the largest genus in the palm family consisting of about 

520 species (Baker, 2015). Calamus is also the most widespread genus in the subfamily, 

distributed throughout the Western Ghats of India to the west and Fiji to the east, but 

represented by single species C. deerratus endemic to Africa (Baker and Dransfield, 

2000). Of the 17 genera, there are three endemic to Africa (Laccosperma (G. Mann & 

H. Wendl.) Drude, Eremospatha (G.Mann & H.Wendl.) Schaedtler and Oncocalamus 

(G. Mann & H. Wendl.) H.Wendl.) and three more to South America (Lepidocaryum 

Mart., Mauritia L.f. and Mauritiella Burret). Raphia P.Beauv. is mostly in Africa. In 

both Madagascar and South America, Raphia is represented by single species, R. 

farinifera in Madagascar and R. taedigerra in South America. In Madagascar, there are 

no other genera of Calamoideae found. The remaining genera occur in Asia.  
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Figure 1.4 Distribution of subfamily Calamoideae. (Source: Dransfield et al., 2008). 

 

The Calamoideae includes massive tree palms, undergrowth palms and acaulescent 

palms but is best known for its climbing members, the rattans (Dransfield, 1978). All 

rattans belong to the subfamily Calamoideae and come from the Old World (Dransfield 

and Manokaran, 1994; Vorontsova et al., 2017). The rattans (derived from the Malay 

word rotan) are spiny climbing palms. Climbing palms show a strong peak of species 

richness in Southeast Asia, unlike other palms, and this is explained by climate (present 

and past) and forest canopy height (Couvreur et al., 2015). According to Baker et al. 

(1999b), some rattan genera include species that are not climbers, and these species are 

usefully called non-climbing or acaulescent rattans given their close relationship with 

true rattans.  

 

The Calamoideae contains both pinnate and palmate leaved genera and includes a 

remarkable range of inflorescence morphology. Despite the breadth of variation 

observed in the Calamoideae, some unusual character states define the group, many 

associated with gynoecium structure (Baker et al. 1999b). All the species within the 

Calamoideae are conspicuously spiny. In some species, spines are an adaptation for 

climbing, but in some species especially in subtribe Mauritiinae, the spines are very 

inconspicuous. All the species within the Calamoideae are presence of overlapping 
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reflexed scales on the fruit, which make the fruit its distinctive and unique appearance 

(Guevara et al., 2010). 

 

All phylogenies of the palm family shows Calamoideae is resolved as a well-supported 

monophyletic group (e.g. Uhl et al., 1995; Baker et al., 1999a; Asmussen et al., 2000; 

Asmussen and Chase, 2001, Lewis and Doyle, 2001; Hahn, 2002). Asmussen and 

Chase (2001) found Calamoideae sister to the rest of the palms. However, according to 

Uhl et al. (1995) and Lewis and Doyle (2001), Calamoideae resolves as sister to all 

palms except Nypoideae. In recent studies by Asmussen et al. (2006), Baker et al. 

(2009) and Faurby et al. (2016), Calamoideae is sister to the rest of palms with high 

support. 

 

1.3.3 Genus Korthalsia 

 

Korthalsia Blume is a genus of clustering climbing palms (rattans) which belong to the 

subfamily Calamoideae. The genus name honours the Dutch botanist and explorer 

Pieter Willem Korthals (1807–1892), who first collected specimens in Indonesia (Riffle 

and Craft, 2003). The common name of Korthalsia is “ant-rattan” (Uhl and Dransfield, 

1987). They are 28 species of Korthalsia (WCSP, 2017). 

 

The genus Korthalsia is distributed from the Sunda Shelf to the north of Indochina, 

Burma and the Andaman Islands and southeastward to Celebes and New Guinea 

(Figure 1.5) with three species being found east of Wallace’s Line (Dransfield, 1981). 

Among the 28 species, about 18 species are concentrated in the Malay Peninsula, 

Borneo and Sumatra—a region which appears to be the centre of the genus (Furtado, 

1951). All species are limited to lowland and hill tropical rain forests and are absent in 

montane forest. Most species have a wide ecological range, and although plentiful in 

primary forest, also seem to be tolerant of disturbance: they are a conspicuous feature of 

old secondary forest or regenerated logged forest. It has been suggested that the 

hapaxanthic (individuals flowers only once in their lifetime and die subsequently) habit 
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may be an adaptation to colonizing secondary habitats (Dransfield, 1978). A system of 

inflorescences each subtended by a reduced leaves and are not typical of those of the 

normal vegetative phase.  

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Distribution of Korthalsia in highlighted area based on Dransfield et al. (2008). Map 

prepared by Salwa Shahimi, using QGIS. 

 

Korthalsia is slender to moderately-stemmed, clustered, spiny, high-climbing and 

aerially branching, monoecious rattan palm. The stems are hard and durable. Korthalsia 

is the only genus of Asiastic rattans which consistently branches in the canopy. In 

addition, the nodes are often uneven and marked with scars of branch (Dransfield, 

1981). Korthalsia leaves are pinnate with a cirrus, variously armed with spines, 

sometimes splitting longitudinally opposite the petiole. Leaflets are usually rhomboid, 

but in a few species, are lanceolate. In many species, the leaflets are relatively few, with 

a single fold and carried on a short laterally flattened stalk. The ocrea is refered to an 

extension of the leaf sheath beyond the insertion of the petiole (Dransfield, 1981). The 

ocrea sometimes forms a chamber inhabited by ants (see 1.4.2). The flowering 

behaviour in all Korthalsia species is hapaxanthic. The number of nodes producing 

inflorescences at the tip of flowering stems rarely exceeds six (Dransfield, 1981). 
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Inflorescences are produced simultaneously in the axils of the uppermost reduced 

leaves, branching to once or twice and producing pendulous flower. The peduncle is 

adnate to the internode above the subtending leaf (Dransfield et al., 2008). The flower 

of Korthalsia is hermaphrodite (having both male and female reproductive organs). 

Korthalsia is the only Asiatic rattan genus with a hermaphrodite flower, and in this 

aspect, it is similar to the hermaphrodite endemic African rattan genera, Eremospatha (, 

Laccosperma and Oncocalamus. (Dransfield, 1981). The calyx consists of three sepals 

while the corolla consists of three valvate petals. The calyx is usually shorter than the 

corolla. The flower contains 6–9 stamens. The fruits are globose to ovoid; scales 

arranged in regular vertical rows (Dransfield et al., 2008). The fruits of most species 

appear to be attractive to animals because of sweet thin-fleshy layer surrounding the 

seed (Dransfield, 1981). 

 

To date, there is no phylogenetic study of Korthalsia. Most higher-level studies use one 

species to represent the genus (Asmussen et al., 2006; Baker et al., 2009; Faurby et al., 

2016). Furthermore, the recent taxonomic account of Korthalsia was made by 

Dransfield (1981). Although in this account he updated descriptions with new 

information for the established species, it lacks distribution maps, some quantitative 

data and list of specimens examined. After 1981, there are several species that have 

been covered in different taxonomic account; The rattan of Sabah (Dransfield, 1984), 

The rattan of Sarawak (Dransfield, 1992), The rattan of Brunei Darussalam (Dransfield, 

1997), A field guide to Philippine rattan (Lapis, 2010) and Arecaceae (Palmae) (Barfod 

and Dransfield, 2013).  

 

1.4 Ant-plant relationships 

 

In a tropical forest, plants known as ant-plants, or mymercopyhtes, are involved with 

ants in tight, often obligatory relationships. The symbioses of ant-plants have figured 

prominently in ecology as classic examples of mutualism that coevolved for over 100 

million years (Mayer et al., 2014). Ant-plant interactions are geographically widespread 

and vary in specificity, ranging from mutualistically symbiotic relationships that 
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provide benefit to both partners to purely antagonistic ones, where ants exploit plants 

(extensively reviewed by Rico-Gray and Oliveira, 2007; Beattie, 2010). Some of these 

plants have structures that host the ant colonies, called domatia. These are specialised 

hollow structures (Bailey, 1924; Brouat and McKey, 2000; Heil and McKey, 2003; 

Edwards et al., 2006). Stems, thorns, stipules, petioles or leaves are the structures that 

are involved, depending on the plant species. These plants may produce extrafloral 

nectar (honeydew) and/or food bodies to sustain their ant colony and to stabilise these 

obligate mutualisms (Chomicki et al., 2016). The ants get benefit from the food source, 

increase their colony size and often farming of fungi, scale insects and/or aphids occurs 

in the domatia (Janzen, 1966; Miler et al., 2016). In these mutualistic interactions, ants 

contribute to protecting the plant against herbivores, fungal pathogens and competing 

plants (Miler et al., 2016). The plant also gets nutrients from decomposed matter left 

behind by the ants in the chamber within the stem (Plumber, 2000). The common ant 

genera that inhabit domatia include Camponotus Mayr (Formicinae), Iridomyrmex 

Mayr and Azteca Forel (Dolichoderinae), Pheidole Westwood and Crematogaster Lund 

(Myrmicinae), Pachycondyla Smith and Odontomachus Latreille (Ponerinae) and 

Pseudomyrmex Lund (Pseudomyrmecinae) (Beattie, 1989). 

 

The study of ant-plant interactions offers an excellent opportunity to analyze the effects 

of both historical and ecological factors on the evolution of mutualisms. Mutualisms 

have been of interest to researchers for centuries because they are good examples to 

provide a better understanding of co-evolution (Darwin, 1862, 1872; Janzen, 1966; 

Rico-Gray and Oliveira, 2007; Blatrix et al., 2009). Questions of general interest in 

ecology and evolutionary biology can be addressed using ant-plant mutualism as a 

model system (Feldhaar et al., 2000; Mayer et al., 2014).  

 

1.4.1 Ant-rattan relationships 

 

Interactions between ants and rattans have frequently been described (Holtum, 1969; 

Dransfield, 1984; Höldobler and Wilson, 1990; Dransfield and Manokaran, 1994; 

Sunderland, 2004; Miler et al., 2016). There are several morphological adaptations 
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providing nesting places for ants within several species of rattans such as inflated leaf 

sheath extensions, interlocking spine combs that form galleries, reflexed leaflets that 

tightly clasp the stem, or hollowed out acanthophylls (thorn-like organs) (Dransfield, 

2001). Figure 1.6 shows the distribution of rattans with the domatia occupied by ants. 

The extension of leaf sheath beyond petiole insertion is called the ocrea. The ocrea are 

morphologically diverse, ranging from a short, collar-like rim (e.g. Calamus australis), 

inflated chamber (e.g. Korthalsia echinometra) or to an elongate papery structure of up 

to 1.5 meters in length (e.g., Calamus paspalanthus) (Merklinger et al., 2014). 

 

 

 

 

 

 

 

 

Figure 1.6 Phylogenetic distribution of myrmecophytic rattans. Grey branches indicate rattans. The 

distribution of genera with well-developed ocrea and inhabited by ants are indicated with bold. 

Image is redrawn from Merklinger et al. (2014).  

 

Many species of rattans in the Malesian region are associated with ants (Beccari, 1884; 

Dransfield, 1979, 1984; Ridley, 1910; Zizka, 1990). Perhaps the most conspicuous or 

best known belong to genus Korthalsia. Indeed the commonly used name for the genus 

is “ant-rattan”. There is a symbiotic relationship between ants and aphids within the 

ocrea. 
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1.4.2 Ants and Korthalsia 

 

Among the 28 species of Korthalsia (WCSP, 2017), there are 10 species of Korthalsia 

which have an association with ants (Dransfield, 1981; Mattes et al., 1998; Chan et al., 

2012). All of the species with ant associations have modified ocrea serving as domatia. 

In Korthalsia, there is a diversity of ocrea forms. Dransfield (1981) classified the ocreas 

of Korthalsia into four types: inflated, divergent, tightly sheathing and fibrous net-like 

types (Figure 1.7). The first two have ant associations, whereas the latter two have no 

ant relationships.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Example types of ocrea. A) Korthalsia echinometra Becc., inflated ocrea (ants); B) 

Korthalsia hispida Blume, divergent ocrea (ants); C) Korthalsia debilis Blume, tightly sheathing 

ocrea; D) Korthalsia jala J.Dransf., conspicuous net-like ocrea. Photographs© Salwa Shahimi, John 

Dransfield. 
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There have been several studies of the ant association of Korthalsia and the biology and 

the ecology. The rattan receives protection against predators from the ants (e.g., Ridley, 

1910; Dransfield, 1979, 1984, 1992; Mattes et al., 1998; Edwards et al., 2010; Chan et 

al., 2012). Edwards et al. (2010) observed levels of cooperativeness between two 

different genera of ants that associated with Korthalsia furtadoana, Camponotus sp. and 

Crematogaster sp., and they conclude that despite some species being mutualistic, other 

ants can also be parasitic, providing no benefit to the rattan. Table 1.1 shows the 

Korthalsia species which have ant associations.  

 

Table 1.1 List of all Korthalsia species which have ant associations. The references identifying ant 

species are cited. 

 

The farming scale of aphids by the ants in Korthalsia domatia has also been studied. 

Mattes et al. (1998) studied the myrmecophytic association between Korthalsia robusta 

and its ant and aphid partners, and found that nutrition from the honeydew that the ants 

receive is dependent on their association with aphids. Cerataphis aphids responded to 

Species Notes 

Korthalsia angustifolia Blume Observation by Dransfield, 1974 

Korthalsia cheb Becc. Observation by Dransfield, 1992 

Korthalsia echinometra Becc. 
Camponotus sp. and Iridomyrmex sp. (Chan et al., 

2012); Observation by Dransfield, 1997 

Korthalsia furcata Becc. Observation by Dransfield, 1992 

Korthalsia furtadoana J.Dransf. 

Camponotus sp. and Polycharchis sp. (Chan et al., 

2012); Camponotus sp. and Crematogaster sp. 

(Edwards et al., 2010); Observation by Dransfield, 

1997 

Korthalsia hispida Becc. 
Camponotus sp. (Mattes et al., 1998); Observation 

by Dransfield, 1997 

Korthalsia robusta Blume 

Camponotus sp. (Mattes et al., 1998); Camponotus 

sp. and Dolichoderus sp. (Chan et al., 2012); 

Observation by Dransfield, 1992 

Korthalsia rostrata Blume 
Dolichoderus sp. and Philidris sp. (Chan et al., 

2012); Observation by Dransfield, 1997 

Korthalsia scaphigeroides Becc. Observation by de Guzman and Fernando, 1986 

Korthalsia scortechinii Becc. Observation by Dransfield, 1979 
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Camponotus ants by increasing the amount of honeydew and maximize excretion role 

significantly (Mattes et al., 1998). According to Chan et al. (2012), the ant-hemipteran 

association in Korthalsia echinometra and K. rostrata is between species of 

Iridomyrmex ants and the aphid Cerataphis orchidearum aptera. The aphids produce 

the honeydew from rattan phloem cells for the ants can to feed on.  

 

1.5 Aims and thesis structure 

 

This thesis takes three different approaches to better understanding genus Korthalsia, 

molecular phylogeny, anatomy and morphology and alpha taxonomy. Chapter 2 

consists of a molecular study of the subfamily Calamoideae based on DNA sequences 

data from three chloroplast regions (rps16, trnD-trnT and ndhF) and nuclear regions 

(prk, rpb2 and ITS). Both Maximum Likelihood and Bayesian Inference analyses are 

presented. Chapter 3 explores homologies of the Korthalsia ocrea, using 

complementary developmental and phylogenetic approaches. Chapter 4 focuses on 10 

species Korthalsia which have ant-association, using data from herbaria and the field to 

produce a full taxonomic revision.  
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CHAPTER 2 

A PHYLOGENETIC FRAMEWORK OF THE CALAMOIDEAE 

 

2.1 Introduction 

 

An increasing number of taxonomies are being produced based upon a backbone of 

molecular data and molecular phylogenies are also informing our understanding of 

evolutionary change. Molecular phylogenetic methodologies are being used to 

investigate taxonomic problems and address evolutionary questions at all levels, from 

the origin and higher level systematics of the angiosperms (Zeng et al., 2014; Magallón 

et al., 2015) to processes in populations (Sukumaran and Knowles, 2017). These 

methodologies are now treated as important sources of novel hypotheses within many 

biological disciplines. Furthermore, it is well established that molecular phylogenies are 

a generally reliable source upon which to build classifications. 

  

Most classical taxonomists are also morphologists, identifying plants by their external, 

physical attributes and grouping them based on inferred similarities and hypothesized 

developmental series. The majority of morphologists acknowledge the limitations of 

such work; intuitively such researchers often ‘know’ there is more to a taxonomic 

problem than meets the eye (literally), but cannot provide a definitive answer due to 

limitations of morphology and its interpretation. As decisions about classification are 

now made based on phylogenies, there are sometimes conflicts between morphological 

characters and molecular phylogenies regarding the decisions on classification 

(Schmidt-Lebuhn, 2012). Increasingly, classifications are based on molecular 

phylogenies, and new characters are sought to support novel taxa (Pennington and 

Gemeinholzer, 2000). 

 

The classification of palms, like many plant families have been significantly revised in 

the light of molecular phylogeny. In 1995, Uhl et al. conduct the first molecular study 

of palms to examine representatives of 67 taxa from all tribes (sensu Dransfield and 
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Uhl, 1986), including 10 from subfamily Arecoideae by using morphological data and 

chloroplast restriction fragment length polymorphisms (RFLP). Molecular systematics 

research of the Arecaceae is affected by one general quality of palm molecular 

evolution: palm DNA evolves slowly. There is extreme heterogeneity in the plastid 

substitution rates across the commelinid orders (Barrett et al., 2016). Slow rates for 

palms were identified as early as 1990, according to Wilson et al. (1990), in chloroplast 

DNA, the substitution rate estimate from restriction site variation was found to be 5- to 

13-fold slower than the rate estimate for grasses. This finding was confirm by Gaut et 

al. (1992), who found that the rate in the chloroplast-encoded gene rbcL in grasses was 

five times faster than that in palms. The average for palms was 0.009 substitutions per 

site per year. The estimated substitution rate between Calamus (Calamoideae) is 1.3 × 

10
−10

 substitutions per site per year compared to the other palms and 5.2 × 10
−11

 for 

Ceroxylon (Ceroxyloideae) (Comer et al., 2015). The estimates were calculated based 

on fossil data (Daghlian, 1981; Muller, 1981). Clegg et al. (1994) found that the grass 

family (Poaceae), Bromeliales, Liliales, and Orchidales have higher substitution rates 

compared to palms. Barrett et al. (2016) surveyed whole plastomes to identify rate 

heterogeneity, noting decelerations in the palms. These studies confirmed the suspicions 

of palm systematists, whose phylogenetic trees suffered from a lack of resolution and/or 

support. One partial solution to the problem has been to combine several data sets 

(Asmussen et al., 2000; Baker et al., 2000, 2000a, Asmussen and Chase, 2001; Hahn, 

2002a). The first studies combined chloroplast DNA genes and nuclear ribosomal genes 

to provide insight into higher-level palm systematic studies.  

 

Another area of emphasis has been finding new genes, particularly nuclear genes, for 

use in phylogeny reconstruction. The nuclear genome is many times larger and 

potentially contains many genes of phylogenetic utility than the chloroplast, at all 

taxonomic levels. Studies by Sang (2002), Mort and Crawford (2004) and Small et al. 

(2004), suggest that low-copy nuclear DNA regions hold valuable phylogenetic 

information and have several advantages over chloroplast DNA; particularly, when 

applied to low-level in systematic studies of plants. According to Thomas et al. (2006), 

the low-copy nuclear DNA regions are sufficiently variable and informative within 

genus Chamaedorea compare to Hahn (2000a) which he used plastid marker in his 
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study on genera of Arecoid Line. Based on these studies, it suggests that nuclear DNA 

is valuable tools for investigating phylogenic signal at low taxonomic levels in palms.  

 

All phylogenetic studies for subfamily Calamoideae based on morphological and 

molecular data for the entire palm family strongly support Calamoideae as 

monophyletic (Uhl et al., 1995; Baker et al., 1999a; Asmussen et al., 2000; Asmussen 

and Chase, 2001, Lewis and Doyle, 2001; Hahn, 2002; Asmussen et al., 2006; Baker et 

al., 2009; Faurby et al., 2016). The calamoid palms have been investigated in depth, 

and some realignment of the internal structure of the subfamily has been achieved 

(Baker et al., 1999b, 2000, 2000a, 2000b). Nevertheless, there are outstanding questions 

regarding relationships within the subfamily. 

 

2.1.1 Objectives 

 

The first objective of this study is to use DNA sequence from three plastid regions 

(rps16, trnD-trnT and ndhF) and three nuclear regions (prk, rpb2 and ITS) to generate 

phylogenetic relationships for the Calamoideae with an emphasis on the genus 

Korthalsia. This new phylogeny will allow some question regarding the relationships 

within the subfamily of Calamoideae to be answered. Specifically I ask whether 

Korthalsia is monophyletic and what its relationships within tribe Calameae are. In 

subsequent chapters, this phylogeny will be used to investigate morphological ocrea 

evolution of Korthalsia. 

 

At the outset of this study Dr. W. Baker provided sequences that had not been included 

in published studies nor uploaded onto GenBank. This chapter includes published data 

from GenBank for six regions (rps16, trnD-trnT, ndhF, prk, rpb2 and ITS), as well as 

unpublished data for two regions (prk and rpb2) and data I have generated myself for 

this study for four regions (rps16, trnD-trnT, prk, rpb2). 
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2.2 Material and methods 

 

2.2.1 Taxon sampling 

 

Representatives of all three tribes and nine subtribes of subfamily Calamoideae were 

included in this study. Nine outgroups were selected from the four remaining 

subfamilies, Nypoideae, Coryphoideae, Ceroxyloideae and Arecoideae. All samples are 

vouchered in herbarium collections. Table 2.1 shows the list of specimens included in 

the molecular study.  

 

2.2.2 DNA isolation 

 

Silica gel-dried leaf materials were used for DNA extraction (Chase and Hills, 1991). 

Approximately 0.020–0.025 gram of silica-gel dried material was ground into a thick 

slurry using pestle and mortal. All DNA extractions used a modified 

Cetyltrimethylammonium bromide (CTAB) protocol from Doyle and Dickson (1987) 

(Appendix 2.1). The extracted DNA was then stored in 40 l of TE buffer at -20℃ for 

subsequent use. 

 

2.2.3 DNA amplification and purification 

 

Templates for Polymerase Chain Reaction (PCR) amplification consist of total genomic 

DNA. Standard PCR protocols were used to amplify four regions (prk, rpb2, rps16 and 

trnD-trnT) and was performed in 20 µl reaction mixtures containing 10 µl BioMix™ of 

from Bioline, 0.50 µl of Bovine Serum Albumin (BSA), 0.75 µl of 10 µM of each 

primer: forward and reverse, 6 µl of Milli-Q dH2O and 2 µl of 50 to 100ng/µl template 

DNA. Bovine Serum Albumin (BSA) was added to remove phenolics which can have 

an inhibiting effect on the reaction. The primers used are listed in Table 2.2. All PCR 

reactions were carried out in Biometra Tgradient thermal cycler. The thermal profiles 

were unique for each region and are listed in Table 2.3. On completion, a 2 µl of PCR 
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product was run on a 1% agarose gel made up in 1 x TAE buffer with a molecular 

weight marker to find out whether or not reaction had has been successful and to 

ascertain the size of PCR products. DNA bands were visualized using UV 

transilluminator. Reactions were cleaned using QIAquick PCR Purification kit from 

QIAGEN according to the manufacturer’s instruction with the final elution of 30 µl EB 

buffer. 
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Table 2.1 List of specimens used in this study. Voucher specimens indicate the collector and collector number of specimens, and the herbarium where the specimen 

is deposited (abbreviation following Index Herbariorum). GenBank Accession Numbers are provided where sequences were deposited at the outset of this study. 

WJB in this field indicates that sequences not yet deposited were provided by Dr. W. Baker; SS indicates sequences generated for this study by Salwa Shahimi. 

 

Species 
Voucher 

specimens 

Collection 

locality 

GenBank Accession No. 

prk rpb2 ITS rps16 trnD-trnT ndhF 

Ingroup 

 

Calamus aruensis Becc. 

 

 

 

Dransfield, JD7571 

(K) 

 

 

Papua, Indonesia 

 

 

AM900751 

 

 

AM903105 

 

 

AJ242053 

 

 

AJ241279 

 

 

EU117438 

 

 

EU186191 

Calamus castaneus 

Griff. 

Baker, WJB507 

(KEP) 
Malaysia - WJB AJ242047 AJ242155 EU117439 EU186192 

Calamus calospathus 

(Ridl.) W.J.Baker & 

J.dransf 

1990-2783 (K) Not mention WJB WJB AJ242066 AJ242161 EU117444 EU186197 

Calamus concolor 

(Blume) W.J.Baker 

Baker, WJB559 

(K) 
Sabah, Malaysia - WJB AJ242068 AJ242162 EU117446 EU186199 

Calamus conirostris 

Becc. 

Baker, WJB516 

(K) 

Sarawak, 

Malaysia 
WJB WJB AJ242048 AJ242156 EU117440 EU186193 

Calamus deerratus 

G.Mann & H.Wendl. 
Tsiforkor, s.n. (K) Ghana - WJB AJ242051 AJ242157 EU117441 EU186194 

Calamus didymophyllus 

(Becc.) Ridl. 

Baker, WJB692 

(K) 

Sarawak 

Malaysia 
WJB WJB AJ242070 AJ242165 EU117436 EU186190 

Calamus dumetosus 

(Dransfield) Henderson 

& Fonda 

Baker, WJB530 

(K) 

Temburong, 

Brunei 
WJB WJB AJ242081 AJ242166 EU117447 EU186200 

Calamus fissus (Blume) 

Miq. 

Baker, WJB546 

(K) 
Sabah, Malaysia WJB WJB AJ242074 AJ242164 EU117437 EU186189 
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Table 2.1 continued 

Species 
Voucher 

specimens 
Collection locality 

GenBank Accession No. 

prk rpb2 ITS rps16 trnD-trnT ndhF 

Calamus nanodendron 

J.Dransf. 

Baker, WJB720 

(K) 
Sarawak, Malaysia WJB WJB AJ242062 AJ242154 EU117442 EU186195 

Calamus thysanolepis 

Hance 

Baker & Utteridge 

13 (K) 
Hong Kong, China WJB WJB AJ242064 AJ242158 EU117443 EU186196 

Calamus ursinus 

(Becc.) W.J.Baker 

Baker, WJB517 

(K) 
Sarawak, Malaysia - WJB AJ242076 AJ242163 EU117445 EU186198 

Eleiodoxa conferta 

(Griff.) Burret 

Dransfield, 

JD6514 (K) 
Sarawak, Malaysia WJB WJB AJ242092 AJ242179 EU117432 EU186185 

Eremospatha 

wendlandiana Becc. 

Dransfield, 

JD7004 (K) 
Not mention FR729730 FR729729 AJ242129 AJ240868 EU117426 EU186180 

Eugeissona tristis Griff. 
Baker, WJB501 

(K) 
Malaysia WJB WJB AJ242116 AJ240869 EU117427 - 

Eugeissona utilis Becc. 
Baker, WJB712 

(SAR) 
Sarawak, Malaysia WJB WJB AJ242119 AJ242180 EU117428 EU186181 

Korthalsia cheb Becc. 
Baker, WJB513 

(K) 
Sarawak, Malaysia WJB WJB AJ242101 AJ242175 EU117431 EU186184 

 

Korthalsia concolor 

Burret 

 

Baker, WJB562 

(K) 

 

Sabah, Malaysia SS SS - SS SS - 

Korthalsia debilis 

Blume 
Shahimi, SS28 (K) Sarawak Malaysia SS SS - SS SS - 

Korthalsia debilis 

Blume 

Baker, WJB526 

(K) 
Temburong, Brunei SS SS - - SS - 
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Table 2.1 continued 

Species 
Voucher 

specimens 
Collection locality 

GenBank Accession No. 

prk rpb2 ITS rps16 trnD-trnT ndhF 

Korthalsia echinometra 

Becc. 
Shahimi, SS9 (K) Terengganu, Malaysia SS SS - SS SS - 

Korthalsia echinometra 

Becc. 
Shahimi, SS10 (K) Terengganu, Malaysia SS SS - SS SS - 

Korthalsia ferox Becc. Baker, WJB515 (K) Sarawak, Malaysia SS - - SS SS - 

Korthalsia flagellaris Miq. Shahimi, SS3 (K) 
Negeri Sembilan, 

Malaysia 
SS - - SS SS - 

Korthalsia flagellaris Miq. Shahimi, SS20 (K) 
Nee Soon Swamp 

Forest, Singapore 
SS SS - SS SS - 

Korthalsia furtadoana 

J.Dransf. 
Baker, WJB553 (K) Sabah, Malaysia SS SS - SS SS - 

Korthalsia hispida Becc. Shahimi, SS11 (K) Johor, Malaysia SS SS - - SS - 

Korthalsia hispida Becc. Shahimi, SS12 (K) Johor, Malaysia SS SS - - SS - 

Korthalsia jala J.Dransf. Baker, WJB558 (K) Sabah, Malaysia SS SS AJ242104 SS SS - 

Korthalsia laciniosa 

(Griff.) Mart 

Henderson, H3610 

(NY) 

Binh Thuan Province, 

Vietnam 
SS SS - SS SS - 

Korthalsia laciniosa 

(Griff.) Mart 

Henderson, H3955 

(NY) 
Taninthayi, Myanmar SS SS - SS SS - 

Korthalsia lanceolata 

J.Dransf. 
Baker, WJB504 (K) Selangor, Malaysia SS SS - - SS - 
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Table 2.1 continued 

Species 
Voucher 

specimens 
Collection locality 

GenBank Accession No. 

prk rpb2 ITS rps16 trnD-trnT ndhF 

Korthalsia minor 

A.J.Hend. & N.Q.Dung 

Henderson, H3390 

(NY) 

Dong Nai Province, 

Vietnam 
SS SS - SS SS - 

Korthalsia minor 

A.J.Hend. & N.Q.Dung 

Henderson, H3632 

(NY) 

Binh Thuan 

Province, Vietnam 
SS - - SS SS - 

Korthalsia rigida Blume Shahimi, SS2 (K) 
Negeri Sembilan, 

Malaysia 
SS SS - SS SS - 

Korthalsia rigida Blume Shahimi, SS18 (K) 
MacRitchie 

Reservoir, Singapore 
SS SS - SS SS - 

Korthalsia robusta Blume Shahimi, SS26 (K) Sarawak, Malaysia SS SS - SS SS - 

Korthalsia rostrata Blume Shahimi, SS25 (K) 
MacRitchie 

Reservoir, Singapore 
SS SS - SS SS - 

Korthalsia rostrata Blume Shahimi, SS27 (K) Sarawak, Malaysia SS SS - SS SS - 

Korthalsia scortechinii 

Becc. 
Shahimi, SS15 (K) Penang, Malaysia SS SS - SS SS - 

Korthalsia sp. Henderson, H3990 Andaman Islands SS SS - SS SS - 

Korthalsia tenuissima 

Becc. 
Shahimi, SS14 (K) Penang, Malaysia SS SS - SS SS - 

Korthalsia zippelii Blume Utteridge, TU20 (K) 
Madang, Papua New 

Guinea 
SS SS - SS SS - 

Korthalsia zippelii Blume 
Maturbongs, 

RAM98 (K) 
Papua, Indonesia SS SS - SS SS - 
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Table 2.1 continued 

Species 
Voucher 

specimens 
Collection locality 

GenBank Accession No. 

prk rpb2 ITS rps16 trnD-trnT ndhF 

Laccosperma acutiflorum 

(Becc.) J.Dransf. 

Dransfield, JD7006 

(K) 
Not mention WJB WJB AJ242122 AJ240867 EU117424 EU186178 

Laccosperma opacum (G. 

Mann & H. Wendl.) Drude  

Sunderland 1750 

(K) 

SW Province, 

Cameroon 
WJB WJB AJ242125 AJ242181 EU117425 EU186179 

Lepidocaryum tenue Mart. 
Dransfield, JD7012 

(K) 
Ucayali River, Peru WJB WJB AJ242140 AJ242182 EU117457 EU186210 

Mauritia flexuosa L.f. Ely et al. 17 (K) 
Nicolas Suarez 

Province, U.S.A 
WJB WJB AJ242141 AJ240872 EU117456 EU186209 

Mauritiella armata (Mart.) 

Burret 
Henderson s.n. (K) Brazil WJB WJB AJ242146 AJ242183 - - 

Metroxylon sagu Rottb. 
Baker, WJB550 

(SAN) 
Sabah, Malaysia WJB WJB AJ242105 AJ242174 EU117429 EU186182 

Metroxylon salomonense 

(Warb.) Becc. 
Zona 651 (FTG) 

Western Province, 

Solomon Islands 
- WJB AJ242107 AJ242173 EU117430 EU186183 

Myrialepis paradoxa 

(Kurz) J.Dransf. 

Baker, WJB491 

(KEP) 
Selangor, Malaysia WJB WJB AJ242083 AJ242169 EU117448 EU186201 

Oncocalamus tuleyi 

Sunderl. 

Sunderland 1759 

(K) 

SW Province, 

Cameroon 
WJB WJB WJB WJB EU117455  EU186208 

Pigafetta elata (Mart.) 

H.Wendl. 
Baker, WJB508 (K) 

Kuala Lumpur, 

Malaysia 
WJB WJB AJ242112 AJ242171 EU117452 EU186205 

Pigafetta filaris (Giseke) 

Becc. 

Dransfield, JD7610 

(K) 
Papua, Indonesia - WJB AJ242114 AJ242172 EU117453 EU186206 
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Table 2.1 continued 

Species 
Voucher 

specimens 
Collection locality 

GenBank Accession No. 

prk rpb2 ITS rps16 trnD-trnT ndhF 

Plectocomia elongata 

Mart. ex Blume 
1984-4821 (K) 

Royal Botanic 

Gardens Kew, U.K 
WJB WJB AJ242085 AJ242167 EU117450 EU186203 

Plectocomia mulleri 

Blume 

Baker, WJB563 

(K) 
Sabah, Malaysia WJB WJB AJ242087 AJ242168 EU117451 EU186204 

Plectocomiopsis 

geminiflora (Griff.) 

Becc. 

Baker, WJB492 

(K) 
Pahang, Malaysia WJB WJB AJ242089 AJ242170 EU117449 EU186202 

Raphia farinifera 

(Gaertn.) Hyl. 
Rutherford 156 (K) Cultivated WJB WJB AJ242131 AJ242184 EU117454 EU186207 

Salacca glabrescens 

Griff. 
1984-3791 (K) 

Royal Botanic 

Gardens Kew, U.K 
WJB WJB AJ242095 AJ242177 EU117433 EU186186 

Salacca ramosiana 

J.P.Mogea 
1979-4409 (K) 

Royal Botanic 

Gardens Kew, U.K 
WJB WJB AJ242097 AJ242176 EU117434 EU186187 

Salacca rupicola 

J.Dransf. 

Baker, WJB710 

(K) 
Sarawak, Malaysia WJB WJB AJ242099 AJ242178 EU117435 EU186188 

 

 

Outgroups 

 

Areca triandra Roxb. ex 

Buch.-Ham. 1984-2295  Not mention AY348912 AY543115 AB271413 AJ404945 

 

 

EU117464 

 

 

AY044535 

Asterogyne martiana 

(H.Wendl.) H.Wendl. ex 

Hemsl 

L-81.0284 (BH) Not mention AF453334 AJ830154 AJ242152 AJ241314 - - 
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Table 2.1 continued 

Species 
Voucher 

specimens 
Collection locality 

GenBank Accession No. 

prk rpb2 ITS rps16 trnD-trnT ndhF 

Caryota mitis Lour. 464-85.05037 
Royal Botanic 

Gardens Kew, U.K 
AF453338 - - AJ240883 EU117461 AY044531 

Ceroxylon quindiuense 

(H. Karst) H.Wendl. 
1976-1160 (K) 

Royal Botanic 

Gardens Kew, U.K 
AJ831349 AJ830157 AJ242150 AJ241284 EU117459 EU186212 

Chamaerops humilis L. CEL99_012 Not mention AF453339 AY543097 - AM116777 EU117460 DQ273117 

Kentiopsis oliviformis 

(Brongn. & Gris) 

Brongn. 

Pintaud358 Not mention AF453353 AY543100 - AJ240892 - - 

Kerriodoxa elegans 

J.Dransf. 
1987-2685 (K) 

Royal Botanic 

Gardens Kew, U.K 
AJ831355 AJ830170 AJ242148 AJ241270 EU117458 EU186211 

Lodoicea maldivica 

(J.F.Gmel.) Pers. ex 

H.Wendl. 

1994-3231 
Royal Botanic 

Gardens Kew, U.K 
AF453357 - - AJ240864 EU117462 EU186215 

Nypa fruticans Wurmb. 
Baker, WJB512 

(SAR) 
Sarawak, Malaysia - AJ830174 - AJ242185 EU117463 AY044525 
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Table 2.2 List of primers used for amplification of all samples.  

Region Primer Name Primer Sequence (5’ to 3’) References 

prk 

PRKF GTGATATGGAAGAACGTGG Lewis and 

Doyle (2002); 

Roncal et al. 

(2005) 

PRKR ATTCCAGGGTATGAGCAGC 

rpb2 

RPB2F CAACTTATTGAGTGCATCATGG Lewis and 

Doyle (2002); 

Roncal et al. 

(2005) 

RPB2R CCACGCATCTGATATCCAC 

rps16 
RPS16F GTGGTAGAAAGCAACGTGCGACTT Oxelman et al. 

(1997) RPS16R TCGGGATCGAACATCAATTGCAAC 

trnD-

trnT 

trnD ACCAATTGAACTACAATCCC Demesure et 

al. (1995) trnT CTACCACTGAGTTAAAAGGG 

 

Table 2.3 PCR profiles.  

 prk rpb2 rps16 trnD-trnT 

Initial denaturing 

Temperature/time 
94℃/4:00 94℃/4:00 97℃/1:00 94℃/5:00 

Denaturation 

temperature/time 
94℃/0:30 94℃/0:30 97℃/1:00 92℃/0:45 

Annealing 

temperature/time 
53℃/0:30 53℃/0:30 54℃/1:00 57.5℃/0:45 

Extension 

temperature/time 
72℃/1:00 72℃/1:00 72℃/2:00 72℃/4:00 

Final extension 

temperature/time 
72℃/7:00 72℃/7:00 72℃/7:00 72℃/10:00 

No. of cycles 31 31 28 30 

 

2.2.4 DNA sequencing 

 

The PCR products were sent to Source Bioscience Sequencing in Oxford to be 

sequenced. Purified PCR products are sequenced in both directions (5’ and 3’) using a 

modification of the method of Sanger et al. (1977). Amplification primers were also 

used as sequencing primers. Contiguous sequences were assembled and edited using the 

SeqMan program (DNASTAR, Lasergene).  
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2.2.5 Sequence assembly and alignment 

 

All sequence data were uploaded in BLAST search on GenBank to ensure that none of 

the sequences acquired were contaminants. The resulting sequences together with the 

sequences from GenBank were then aligned using the multiple alignment Clustal W 

algorithm as implemented in BioEdit version 7·2·5 (Hall, 1999) with further visual and 

manual adjustments, including misaligned regions. Sequences that could not be aligned 

were excluded and indels were treated as missing data. A sequence alignment was 

prepared for each of the regions: prk, rpb2, rps16 and trnD-trnT, as well as a combined 

nuclear matrix, a combined chloroplast matrix and a total evidence 6-gene of all of the 

six regions. In combined matrices all taxa were included and missing sequences from 

each region were treated as missing data. Areas of ambiguous alignment were excluded 

prior to analysis. 

 

2.2.6 Phylogenetic analyses 

 

2.2.6.1 Maximum Likelihood 

 

Maximum likelihood analyses were conducted using GTRGAMMA Model in RAxML 

version 8.2.9 (Stamatakis, 2014) on the CIPRES web-portal. Maximum Likelihood 

bootstrap analyses and the inference of the optimal tree were conducted simultaneously. 

Branch support was assessed using 100 replicates of non-parametric bootstrap analysis. 

The best scoring trees with bootstrap values were saved and the result was viewed using 

FigTree version v1.4.2 (Rambaut, 2014). Trees figures were prepared using iTOL 

online (Letunic and Bork, 2006). 

 

2.2.6.2 Bayesian Inference 

 

Bayesian inference was conducted in MrBayes version 3.2.6 on the CIPRES portal by 

first determining the optimal substitution model using jModelTest (Guindon and 

Gascuel, 2003; Darriba et al., 2012). The best-fitting model of evolution for each region 
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was selected using the Akaike Information Criterion (AIC) as a measure of optimality. 

The models for each gene are shows in Table 2.4. Two independent runs each with four 

Markov Chain Monte Carlo replicates (MCMC) (one cold and three heated) were run 

for 1,000,000 generations for all of the regions except for rps16 and the combined 

matrices which were run for 2,000,000 generations. Analyses were run until the average 

standard deviation of split frequencies reaches a value below 0.01. 

 

Table 2.4 Models used in this study. 

 Model Partitions -lnL K 

prk GTR+G 012345 26551838 135 

rpb2 GTR+G 012345 5866.4871 139 

ITS SYM+G 012345 96339916 80 

rps16 GTR+I 012345 2286.8744 139 

trnD-trnT HKY+I+G 010010 2682.7518 140 

ndhF GTR+I+G 012345 2752.1478 88 

 

A plot of negative log likelihoods (LnL) against tree likelihood (TL) was made to 

measure the burn-in. The output log files of the two independent runs for both 

individual regions and combined matrix were assessed using Tracer v1.6 (Rambaut et 

al., 2014) to check for the convergence as well as the suitable burn-in. The first 25,000 

trees (25%) of the sampled trees were discarded as ‘burn-in’ and the phylogenetic 

inference was based on the remaining 75,000 trees for which 50% majority rule 

consensus tree with posterior probability were calculated. The consensus tree was 

exported and viewed using FigTree version v1.4.2 software (Rambaut, 2014). Trees 

were prepared using iTOL online (Letunic and Bork, 2006). 
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2.3 Results 

 

Statistics for each partitions are details in Table 2.5.  

 

Table 2.5 Alignment statistics for the different regions analysed. PICs and percentage of the 

parsimony informative characters calculated using PAUP (Swofford, 2001). PIC: Parsimony 

Informative Characters. 

 

 

Nuclear Chloroplast 

prk rpb2 ITS rps16 
trnD-

trnT 
ndhF 

Number of 

terminals 
64 66 38 66 68 40 

Aligned length (bp) 430 923 704 765 922 921 

PIC/percent 

variable 
114/26.5 207/22.4 367/52.1 54/7.1 83/9.0 83/9.0 

 

Phylogenetic trees resulting from Bayesian Inference and Maximum Likelihood 

analysis of each partition, the 6-gene alignment and the combined chloroplast and 

combined nuclear alignments are presented in Appendix 2.2. Figure 2.1 shows the 

majority rule consensus tree resulting from Bayesian Inference applied to all 6 gene 

regions, and Figure 2.2 the phylogram reconstructed under Maximum Likelihood. 

Figure 2.3 show the summarises the relationships recovered across the two 6-gene trees, 

and for combined chloroplast and combined nuclear trees.  

 

2.3.1 Monophyly of the tribes and inter-tribal relationships 

 

Each of the three tribes of the Calamoideae are recovered as monophyletic in the 6-

gene, combined chloroplast and combined nuclear analyses (Table 2.6). In the Bayesian 

analysis of all gene regions (Figure 2.1), support for each tribe is high (1pp). Maximum 

Likelihood analysis of all six regions finds 100% support for tribes Calameae and 

Eugeissona, and 96% for Lepidocaryeae (Figure 2.2). Both combined chloroplast and 
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combined nuclear partitions under Bayesian Inference and Maximum Likelihood 

reconstructions also find moderate to high support for the monophyly of each of the 

tribes. Considering the separate partitions, the monophyly of Lepidocaryeae is not 

recovered in all nuclear partitions (Table 2.6), and none of the tribes are monophyletic 

in analyses of single chloroplast regions. The failure to recover monophyletic tribes by 

individual partitions is attributed to the low variation. Instability in the placement of 

Raphia farinifera, and the anomalous placement of Eugeissona utilis as sister to 

Chamaerops humilis in ndhF tree is noted. 
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Figure 2.1 Majority rule consensus tree resulting from Bayesian Inference of the 6-gene data set. 

Tribes and subtribes are indicated, with tribes shown in colour. Values below the branches are 

posterior probabilities. The posterior probability threshold chosen for the consensus tree (0.5). 
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Figure 2.2 Phylogenetic relationships reconstructed using Maximum Likelihood of the 6-gene data 

set prescribed as on phylogram. Tribes and subtribes are indicated, with tribes shown in colour. 

Values below the branches are bootstrap value. 
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Figure 2.3 Summarises the relationships recovered across the two 6-genes trees and for combined chloroplast and combined nuclear trees. Tribal and subtribal name 

abbreviation, KOR: Korthalsiinae; CAL: Calaminae; PLE: Plectocomiinae; MET: Metroxylinae; PIG: Pigafettinae; SAL: Salaccinae; ANC: Ancistrophyllinae; 

MAU: Mauritiinae; RAP: Raphiinae; EUG: Eugeissoneae. 
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Figures 2.1 and 2.2 show a sister relationship between Calameae and Lepidocaryeae 

(1pp; 100% BS), with tribe Eugeissoneae recovered as sister to this sister pair (1pp; 

100% BS). The same inter-tribal relationships are recovered in the combined nuclear 

and combined chloroplast analyses, with very strong support from combined 

chloroplast analyses, but weak to moderate support from the combined nuclear analysis. 

To consider how individual partitions contribute to these topologies, the trees 

reconstructed using each partition were examined. None of the individual partitions 

recovered the sister relationships between tribes, mainly because the tribes themselves 

were unresolved, and not monophyletic. However, there is notable well-supported 

conflict in inter-tribal relationships when comparing the topologies from individual 

nuclear partitions. Specifically, prk finds Eugeissoneae sister to Calameae (0.95pp; 88% 

BS), and rpb2 finds Lepidocaryeae sister to Calameae (0.95pp; 65% BS). 
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Table 2.6 Support for the monophyly of the tribes, and for inter-tribal relationships. Superscripts 

indicate individual partitions not supporting the relationships shown by the combined nuclear or 

combined chloroplast phylogenies. 
*1 

not recovered by ITS (core Lepidocaryeae recovered, 

excluding Raphia farinifera). 
*2 

not recovered by trnD-trnT (part of polytomy). 
*3 

not recovered by 

ndhF because one species found outside of the Calamoideae, sister to Chamaerops humilis with 1pp 

and 98% BS. 
*4 

not recovered by ndhF (core Lepidocaryeae recovered, excluding R. farinifera), by 

trnD-trnT (part of a polytomy). 
*5 

not recovered by trnD-trnT (paraphyletic Calameae). 
*6 

not 

recovered by ndhF or trnD-trnT (polyphyletic, but groupings not supported). 
*7 

not recovered by ITS 

(Lepidocaryeae not monophyletic), nor prk (Eugeissoneae sister to Calameae). 
*8 

not recovered by 

any single partition. “Tribal” grouping describes groups and whether they were recovered, where as 

“Inter-tribal” grouping describe relationships, e.g. (Lepidocaryeae Calameae) is Lepidocaryeae as 

sister to Calameae and (Eugeissoneae (Lepidocaryeae Calameae)) is Eugeissona as sister to 

Lepidocaryeae and Calameae. The group Calamoideae was always monophyletic. 

Grouping 
Bayesian Inference Maximum Likelihood 

6-genes Nuclear Chloroplast 6-genes Nuclear Chloroplast 

Tribal 

 

Calameae 

 

1 

 

1 

 

0.99
*2

 

 

100 

 

100 

 

 

95
*5

 

 

Eugeissoneae 1 1 1
*3

 100 100 100
*3

 

Lepidocaryeae 1 0.94
*1

 0.71
*4

 98 95
*1

 90
*6

 

Inter-tribal 

 

(Lepidocaryeae 

Calameae) 

 

 

1 

 

 

0.77
*7

 

 

 

1
*8

 

 

 

100 

 

 

53
*7

 

 

 

 

100
*8

 

 

(Eugeissoneae 

(Lepidocaryeae 

Calameae)) 

 

1 1
*7

 1
*8

 100 100
*7

 100
*8

 

 

2.3.2 Monophyly of the subtribes 

 

Both 6-gene analyses, under Bayesian Inference and Maximum Likelihood, provide 

strong support for the monophyly of the subtribes. The combined nuclear phylogenies 

also provide strong support for the subtribes, but support is weak, and in some cases the 

subtribes are not monophyletic, in analyses of the combined chloroplast regions (Table 

2.7). 
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Table 2.7 Support for the monophyly of the subtribes. Subtribes described as unresolved have 

species placed in a polytomy at the base of the Calameae. The paraphyletic Plectocomiinae in the 

Bayesian Inference and Maximum Likelihood analyses of the combined chloroplast data is part of a 

monophyletic group that includes the Calaminae. 

Subtribe 
Bayesian Inference Maximum Likelihood 

6-genes Nuclear Chloroplast 6-genes Nuclear Chloroplast 

Korthalsiinae 1 1 1 100 100 100 

Salaccinae 1 1 Unresolved 100 99 43 

Metroxylinae 1 1 Unresolved 100 99 Unresolved 

Pigafettinae 1 1 1 100 100 98 

Plectocomiinae 1 1 Paraphyletic* 100 100 Paraphyletic* 

Calaminae 1 1 0.99 93 100 86 

Ancistrophyllinae 1 1 0.99 100 100 100 

Raphiinae 1 0.94 Unresolved 100 95 90 

Mauritiinae 1 1 0.86 100 100 94 

 

2.3.3 Relationship between the subtribes 

 

The relationships of the subtribes of the Calameae for the 6-gene alignment differ under 

Bayesian Inference and Maximum Likelihood. The Bayesian topology (Figure 2.1) 

finds Korthalsiinae is sister to the remainder the Calameae with high support (1pp). The 

monophyletic group comprising the remainder of the tribes also finds high support 

(1pp), with Salaccinae sister to the rest (1pp). Calaminae is sister to Plectocomiinae 

(1pp), but the relationships of Metroxylinae and Pigafettinae are unresolved. The 

Maximum Likelihood topology (Figure 2.2) also finds Korthalsiinae is sister to the 

remainder of the Calameae (100% BS). However, the reminder of the Calameae 

comprise two clades, one comprising Calaminae sister to Plectocomiinae (97% BS), 

and the other Metroxylinae sister (39% BS) to a sister pair comprising Salaccinae and 

Pigafettinae (58% BS). The notable difference between the two topologies therefore is 

the position of the Salaccinae, either as sister to all the remainder of the Calameae 

except Korthalsiinae, or nested in the Calameae as sister to Pigafettinae. 
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Relationships between subtribes of the Calameae are inconsistent also between the 

combined chloroplast and combined nuclear topologies, with the position of Salaccinae 

being unstable. Although overall the combined chloroplast topologies are poorly 

supported, Korthalsiinae is sister to the remainder in both combined chloroplast 

topologies and the Salaccinae groups with the remaining poorly supported tribes. 

However, in the combined nuclear topologies, the Salaccinae has a more basal positon, 

being sister to the remainder of the tribe in the Bayesian Inference analysis, and sister to 

Korthalsiinae in the Maximum Likelihood analysis.  

 

In contrast to relationships within the Calameae, relationships of subtribes within the 

Lepidocaryeae are stable, with Ancistrophyllinae sister to Mauritiniiae, and Raphiinae 

sister to that sister pair. Low support for the relationships might be attributed to 

instability of the placement of Raphia farinifera in the analyses of separate chloroplast 

partitions. The 6-gene topologies show weak support for the sister relationship between 

Ancistrophylinae and Mauritiinae (0.57pp; 74% BS); this is more support than the 

chloroplast partitions (not recovered; 50% BS), but less than the nuclear partitions 

(0.64pp; 74% BS). 

 

2.3.4 Species relationship with Calamus and Korthalsia 

 

2.3.4.1 Delimitation and subdivision of Calamus 

 

The result for both of the 6-gene analyses, under Bayesian Inference (Figure 2.1) and 

Maximum Likelihood (Figure 2.2), shows genus Korthalsia resolved as monophyletic 

with strong support (1pp; 100% BS). Despite overall a poorly resolved backbone for the 

Korthalsia clade, three groups are emerging. Korthalsia cheb, K. echinometra, K. 

furtadoana, K. hispida, K. robusta, K. rostrata, K. scortechinii and K. zippelii (0.57pp) 

are in one group. K. ferox, K. flagellaris, K. laciniosa and K. minor (0.92pp) are in other 

group while K. concolor, K. debilis, K. jala, K. lanceolata, K. rigida and K. sp. (0.92pp) 

are in another. There have been conflict between nuclear and chloroplast partitions for 

species relationships in both analyses. Comparing the partitions, there are no groups 
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emerging from analysis of the chloroplast partitions. Mostly the relationships between 

species in chloroplast partitions are unresolved compare to nuclear partition, so that 

phylogenetic structure in the combined analysis is congruence with the analysis of 

combined nuclear partitions. 

 

2.4 Discussion 

 

2.4.1 Evaluating higher-level classification 

 

Reviewing the status of palm systematics in 2016, Baker and Dransfield considered the 

deep relationships in the Calamoideae an open question (Baker and Dransfield, 2016). 

They highlighted conflict in the placement of Eugeissoneae, and a sometimes 

paraphyletic Lepidocaryeae as areas of uncertainty. This study finds strong support for 

a monophyletic Lepidocaryeae, and for the intertribal relationships (Eugeissoneae 

(Calameae, Lepidocaryeae)). Ambiguity in the placement of Eugeissoneae and the 

status of Lepidocaryeae is marked in previous phylogenetic studies. The tribe 

Eugeissoneae was described based on Baker at al.’s earliest molecular phylogenetic 

studies of the subfamily (Baker et al., 2000), although the position of the Eugeissoneae 

was labile. Sometimes it was recovered as sister to the sister pair (Calameae, 

Lepidocaryeae), in other analyses Eugeissoneae was nested in Lepidocaryeae, as sister 

to Raphia (Baker et al., 2000). These topologies resulted from analyses of two gene 

regions, ITS and the rps16 intron, and 25, eight and two taxa were sampled to represent 

the tribes Calameae, Lepidocaryeae and Eugeissoneae respectively. Later studies 

increased gene region sampling.  

 

A study of the family by Asmussen et al. (2006) sampled 12 Calamoideae for four 

plastid regions, trnL-F, rps16, rbcL and matK, finding (Eugeissoneae (Calameae, 

Lepidocaryeae)) but their analysis, which used parsimony, only weakly supported the 

(Calameae, Lepidocaryeae) sister relationship (59% BS). Baker at al. (2009) presented 

a supermatrix phylogeny and a supertree phylogeny for all palms, focussing sampling at 

the generic level and using available data for 14 gene regions plus restriction fragment 
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and morphological data. In total 205 taxa were sampled, of which 14 represented the 

Calameae, seven Lepidocaryeae and one Eugeissoneae. The supermatrix recovered a 

paraphyletic Lepidocaryeae with Eugeissoneae nested in it, whereas the supertree 

analysis based on Matrix Representation with Parsimony of trees from 26 analyses of 

subsets of taxa and partitions, recovered (Eugeissoneae (Calameae, Lepidocaryeae)). 

One source of conflicting relationships between the supermatrix and supertree 

topologies in this study could be the amount of missing data in the supermatrix analysis. 

Overall, the supermatrix lacked data for around half the taxa for each partition. For the 

Calamoideae, only three of the nine gene partitions included all the 14 Calameae, three 

included all seven Lepidocaryeae, and the single Eugeissoneae was represented by five 

of the partitions (Table 2.8). It is possible that using subsets of partitions to reconstruct 

subtrees reduced the impact of missing data in their study. My study limits missing data 

by focussing on a subset of 6-gene partitions and by generating new data for the 

complete or almost complete set regions for of 62 Calamoideae, almost three times as 

many as were included in the Baker et al. (2009) study (22). The Baker et al. (2009) 

study relied on parsimony methods for tree reconstruction. Model based methods have 

been used to infer relationships within the Calamoideae since 2009, but have employed 

very different gene and taxon sampling strategies. For example, Faurby et al. (2016) 

attempted to reconstruct a species level phylogeny of all palms using model-based 

methods and building on the Baker et al. (2009) supermatrix. Their topology revealed a 

paraphyletic Lepidocaryeae, and Eugeissoneae sister to Calameae.  

 

Barret et al. (2016) sequenced whole plastid genomes using next-generation sequencing 

(NGS) in a study of the commelinid monocots. They sampled seven Calamoid palms, 

and although the tribes were monophyletic, their topology (Eugeissoneae (Calameae, 

Lepidocaryeae)) was unsupported. The present study could be considered the most 

robust estimate of relationships within the Calamoideae to date, employing model-

based methods, dense taxon sampling and with minimal missing data. The next step is 

to generate more fully sampled NGS datasets and that the palm community is doing just 

that in its collaborative ambition to produce a NGS phylogeny of all palm species. 
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Table 2.8 Comparison of taxon and marker sampling between Baker et al. (2009) and this study. 

This study employs dense sampling of taxa and even represents action of markers compared to the 

study of Baker et al. (2009). Tribal name abbreviation, CAL: Calameae, LEP: Lepidocaryeae, E: 

Eugeissoneae. 

 
Baker et al. (2009) supermatrix This study 

CAL LEP E CAL LEP E 

prk - 1 - 47 7 2 

rpb2 - 1 - 50 7 2 

ITS 14 7 1 26 7 2 

rps16 14 7 1 48 7 2 

trnD-trnT 1 1 - 53 6 2 

ndhF 1 1 - 26 6 1 

18S 3 1 - - - - 

atpB 3 1 - - - - 

matK 6 5 1 - - - 

ms 3 1 - - - - 

rbcL 14 7 1 - - - 

trnL-trnF 6 5 1 - - - 

trnQ-rps16 1 1 - - - - 

 

2.4.2 New insights into the relationships among subtribes and between genera 

 

The topologies presented here, being the most densely sampled and data rich to date for 

the Calamoideae, provide insights into relationships within the tribes Calameae and 

Lepidocaryeae. Tribe Calameae resolved in previous studies as monophyletic with 

moderate to high support (Baker et al., 2000, 2000b, 2009; Asmussen et al., 2006; 

Faurby et al., 2016). The topology from the combined 6-gene analysis in this study 

supports view that tribe Calameae is monophyletic with strong support. The 

relationships among subtribes from this study are very similar to those found by Faurby 

et al. (2016). Among subtribes of the Calameae, Korthalsiinae is sister to all remaining 

Calameae with high support, with Salaccinae sister to the rest also with strong support 

(Figure 2.1) except in Maximum Likelihood and combined nuclear and chloroplast for 

both analyses. This study and previous ones find conflict in the placement of 

Salaccinae. Baker et al. (2009) found Salaccinae is sister to Korthalsiinae with 

moderate support, while in Faurby et al.’s (2016), shows Salaccinae is sister to the 

remainder of Calameae expect Korthalsiinae. In this study, the position of Salaccinae is 
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unstable with different placement in the combined chloroplast and combined nuclear 

topologies. The conflicting position of the Salaccinae in this study is not strongly 

supported. More data are needed before hypotheses to explain the conflicting placement 

of Salaccinae are put forward.  

 

There are three subtribes recognised in tribe Lepidocaryeae. This study resolved the 

relationship between subtribes as (Raphiinae (Ancistrophyllinae, Mauritiinae)) with 

strong support in both Bayesian Inference and Maximum Likelihood analyses. This 

result is contrast to the previous study by Faurby et al. (2016), which found Raphiinae 

is sister to Mauritiinae and this sister pair as sister to Ancistrophyllinae. Within subtribe 

Ancistrophyllinae, genus Laccosperma is sister to Eremospatha with strong support, in 

agreement with the study made by Faye et al. (2014) and Faye et al. (2016). 

 

2.4.3 Species relationships within genera: Calamus and Korthalsia 

 

Although the data presented here are adequate to resolve higher-level relationships, 

overall species-level relationships are poorly resolved in two genera that are represented 

by several exemplars in this study, Calamus and Korthalsia.  

 

Previous studies have found conflict between nuclear and chloroplast regions at the 

species level for Calamus. However, following previous phylogenetic studies (Baker et 

al., 2000, 2000a, 2000b), the genus Calamus was re-circumscribed to include five 

genera of Calaminae nested within it (Baker, 2015). The currently accepted 

classification for expanded Calamus includes Calospatha Becc., Ceratolobus Blume ex 

Schult. & Schult.f., Daemonorops Blume, Pogonotium J.Dransf. and Retispatha 

J.Dransf. This study places species previously placed in these five genera within a 

strongly supported Calamus sensu lato, supporting the re-circumscription of the genus.  
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For the first time, this study sampled enough exemplars of Korthalsia to make a 

meaningful test of monophyly. The recovery of the genus Korthalsia as monophyletic 

with strong support (1pp; 100% BS) (Figure 2.1 and Figure 2.2) is therefore a 

significant finding for this study. The three subgeneric groups emerging can be 

interpreted in terms of ocrea morphology (Chapter 4).  
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CHAPTER 3 

MORPHOLOGICAL CHARACTERISATION, DEVELOPMENT 

AND EVOLUTION OF THE OCREA IN KORTHALSIA  

 

3.1 Introduction 

 

Rattans the spiny, climbing palms of the Old World, belong to subfamily Calamoideae 

(Uhl and Dransfield, 1987). Although the subfamily includes tree-like, shrubby and 

acaulescent palms, the majority of species are lianas exhibiting morphological 

adaptations to the climbing habit, such as elongated stems, and climbing organs on the 

leaf (the cirrus). Leaf sheaths of rattans are thickened, elongated and surround the 

stems, conferring mechanical properties on the stem thus aiding climbing (Rowe et al., 

2004; Isnard and Rowe, 2007). A further modification of the leaf sheath is the extension 

beyond the point of insertion of the petiole, known as the ocrea (Figure 3.1). The ocrea 

may be more or less elongate or appressed to the stem, and may form domatia (small 

chamber or hollow structure) occupied by ants in some species. The ant domatia have 

rendered the rattans important species in studies of the evolution of ant-plant 

mutualisms (Mattes et al., 1998; Moog et al., 2003; Edwards et al., 2010; Merklinger et 

al., 2014).  
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Figure 3.1 Four types of ocrea according to Dransfield (1981). A) ocrea tightly sheathing; B) ocrea 

inflated; C) ocrea diverging; D) ocrea fibrous net-like. Drawn by Mohd Fadzil. 

 

To date ocreas have been characterised in detail for only three species of palms, all 

members of genus Calamus (Merklinger et al., 2014). Merklinger et al.’s (2014) study 

was the first and remains the only study of the development of the palm ocrea. The 

study confirmed the origin of the ocrea as an extension of the leaf sheath initiated 

shortly after differentiation of the lamina and sheath. It also described the 
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developmental trajectory apparently unique to the inflated, sac-like ocrea of Calamus 

longipinna. In this species plications develop on the surface of the ocrea, and persist as 

folds on the ocrea surface that allow the ocrea to expand. The relationship of the ocrea 

to the ligule (a distal projection of the leaf sheath) or to stipules (small, paired leaf-like 

appendages to a leaf petiole in Angiosperms) is uncertain (Merklinger, et al., 2014), and 

whether the developmental features of domatia in C. longipinna are shared with other 

ant-domatia forming rattan species has not been determined. 

 

Modifications to ocreas so that they serve as domatia for ants have apparently evolved 

multiple times in the Calamoideae especially in the two largest and widespread rattan 

genera, Calamus and Korthalsia. Ocreas that form domatia are present in four rattans 

according Merklinger et al., (2014), of which three are still recognised: Calamus, 

Korthalsia and Laccosperma, since Pogonotium has been placed in Calamus (Baker, 

2015). This study is focussed on the genus Korthalsia. Currently, 28 species are 

accepted (WCSP, 2017), distributed from the north of Indochina, Burma and the 

Andaman Islands and south-eastward to Celebes and New Guinea (Dransfield et al., 

2008). In Korthalsia, the ocrea is extremely diverse in form in different species (Figure 

3.2). In the species with ocreas tightly sheathing the stem, the ocrea does not serve as a 

domatium; species which have fibrous net-like ocreas do not have ant relationships 

either (Dransfield et al., 2008). However, Dransfield et al., (2008) recognised two types 

of ocrea which serve as domatia which are inflated ocreas and divergent ocreas. The 

ocrea can be unarmed or variously spiny. The inflated ocrea is a notable adaptation, 

compared to other rattan structures that are utilized by ants, since it is apparently highly 

specialized to facilitate work by ants (Ridley, 1910; Moog et al., 2003; Sunderland, 

2004; Edwards et al., 2010; Chan et al., 2012). However, divergent ocreas are also 

occupied by ants (Mattes et al., 1998; Chan et al., 2012). 
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Figure 3.2 Field photographs of ocrea. A–C: inflated ocrea (A) Korthalsia echinometra; B) K. 

rostrata; C) K. scortechinii); D–E: diverging ocrea (D) K. robusta; E) K. hispida); F–G: tightly 

sheathing ocrea (F) K. debilis; G) K. rigida); H: fibrous, net-like ocrea (H) K. jala). Photographs© 

Salwa Shahimi, William Baker, John Dransfield.  

 

3.1.1 Aims of this study 

 

Korthalsia, a genus with a diversity of ocrea types is an ideal model for exploring the 

evolution of ocrea types, yet the variation in ocrea morphology in the genus has not 

been the focus of a thorough descriptive and comparative study. Developmental studies 

inform interpretation of morphological traits, but despite recent studies characterising 

the development of Calamus longipinna (Merklinger et al., 2014), comparative 

developmental studies that could provide insights into elaboration of the ant-ocrea are 

lacking. Here I will identify the homologies of the Korthalsia ocrea, using 

complementary developmental and phylogenetic approaches. Specifically, I will use 

ancestral reconstruction to examine the evolution of the ant-ocreas, optimizing traits 

which explain ocrea diversity onto a chronogram representing species with and without 

ant domatia. Interpretation of the history of the ocrea traits is expected to shed light or 

the evolution of the ant-plant mutualism. 
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3.2 Material and methods 

 

3.2.1 Developmental anatomy  

 

3.2.1.1 Fieldwork 

 

Fresh specimens of nine species used in this study were obtained from eight localities in 

Malaysia and Singapore during field trips undertaken in November 2014 and September 

2015. Specimens of nine species had been successfully collected from eight different 

locations (Table 3.1). Voucher specimens including stem, whole leaf and ocrea were 

collected (Appendix 3.1). The ocrea was preserved in 70% ethanol for developmental 

studies (Figure 3.3). Figure 3.4 and Figure 3.5 show map localities where the specimens 

were sampled. 

 

Table 3.1 Specimens used in this study. Vouchers were collected. 

Species Voucher specimens Locality 

Korthalsia debilis Blume Shahimi, SS28 (K) Sarawak, Malaysia 

Korthalsia echinometra Becc. Shahimi, SS9 (K) Terengganu, Malaysia 

Korthalsia echinometra Becc. Shahimi, SS10 (K) Terengganu, Malaysia 

Korthalsia echinometra Becc. Shahimi, SS13 (K) Johor, Malaysia 

Korthalsia echinometra Becc. Shahimi, SS23 (K) MacRitchie Reservoir, Singapore 

Korthalsia flagellaris Miq. Shahimi, SS3 (K) Negeri Sembilan, Malaysia 

Korthalsia flagellaris Miq. Shahimi, SS20 (K) 
Nee Soon Swamp Forest, 

Singapore 

Korthalsia hispida Becc. Shahimi, SS11 (K) Johor, Malaysia 

Korthalsia hispida Becc. Shahimi, SS12 (K) Johor, Malaysia 

Korthalsia rigida Blume Shahimi, SS2 (K) Negeri Sembilan, Malaysia 

Korthalsia rigida Blume Shahimi, SS8 (K) Selangor, Malaysia 

Korthalsia rigida Blume Shahimi, SS18 (K) MacRitchie Reservoir, Singapore 

Korthalsia robusta Blume Shahimi, SS26 (K) Sarawak, Malaysia 

Korthalsia rostrata Blume Shahimi, SS27 (K) Sarawak, Malaysia 

Korthalsia rostrata Blume Shahimi, SS25 (K) MacRitchie Reservoir, Singapore 

Korthalsia scortechinii Becc. Shahimi, SS15 (K) Penang, Malaysia 

Korthalsia tenuissima Becc. Shahimi, SS14 (K) Penang, Malaysia 
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Figure 3.3 The ocrea were preserved in 70% ethanol. Photographs© Salwa Shahimi. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4 The distribution of collection site in Peninsular Malaysia and Sarawak. Peninsular 

Malaysia (Left), Sabah and Sarawak (Right). Dots are point localities of specimens collected. 
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Figure 3.5 The distribution of collection sites in Singapore. Dots are point localities of specimens 

collected. 

 

3.2.1.2 Ocrea dissection 

 

The preserved ocrea were dissected. Each sheath was removed until the outermost 

sheath was approximately the diameter of a pencil. In the case of the dissection shown 

in Figure 3.6 B, five sheaths were removed. The samples were then fixed in 70% 

ethanol (Figure 3.6).  
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Figure 3.6 The ocrea dissecting process to remove outer stages of the developing leaves. (A) the 

undissected stem as collected and preserved; (B) the stem shown in (A), with successive sheaths 

removed down to reveal innermost sheath (bottom); (C) dissected sheaths labelled and stored for 

further dissection. Photographs© Salwa Shahimi. 
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3.2.1.3 Light Microscopy (LM) 

 

The early stage of development of the ocrea of each specimen, following removal of 

several, outer sheath layers as shown in Figure 3.6 B, was imaged using a Leica Photo 

Microscope M400.  

 

3.2.1.4 Scanning Electron Microscopy (SEM) 

 

For examination of early leaf development, samples with outer sheaths removed for LM 

work were dissected further and then dehydrated through an alcohol series (Appendix 

3.2). The samples were transferred to Autosamdri 815B CPD for critical-point drying. 

After that, samples were mounted onto SEM stubs, and coated with platinum in an 

Emitech K550 sputter coater. Samples were examined using a Hitachi S-4700 cold-field 

emission SEM at RBG Kew.  

 

The mature ocrea surface of four species with different ocrea morphologies was 

examined using Scanning Electron Microscopy (SEM). They were Korthalsia debilis 

(Shahimi, SS28), K. hispida (Shahimi, SS11), K. scortechinii (Shahimi, SS15) and K. 

jala (Dransfield et al. 4652). 

 

3.2.2 Evolution of ocrea 

 

3.2.2.1 Reconstruction of a time calibrated phylogeny 

 

Using an existing matrix of DNA sequence data for calamoid palms, with emphasis on 

Korthalsia (Chapter 2), a set of time-calibrated trees was reconstructed using BEAST 

v2.4.7 (Bouckaert et al., 2014). The dataset comprises a total of 71 taxa including 62 

taxa from subfamily Calamoideae and nine outgroup taxa to represent all subfamilies in 

the Arecaceae. One of the calibration points previously identified and used by Couvreur 

et al. (2011) to reconstruct their time-calibrated genus-level phylogeny of palms was 
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used here. Couvreur et al. (2011) noted that pollen of subtribe Mauritiinae corresponds 

closely to the fossil pollen in the genus Mauritiidites, a genus recorded from the 

Maastrichtian of Africa, and with numerous subsequent records from South America 

which motivates the use of a calibration for the stem node of the Mauritiinae of 65 Ma. 

A second calibration point was used in this study: the root node was constrained to 

100.1 Ma in accordance with the Couvreur et al. (2011) study. 

 

To implement BEAST v2.4.7 the alignment was imported into BEAUti v.2.4.7 

(Bouckaert et al., 2014) to generate a BEAST input file. A relaxed clock log normal 

prior (Drummond et al., 2006) was used, and the model of molecular evolution was set 

to be GTR with gamma-distributed rate variation (G). The tree prior was a birth-death 

tree, with MCMC chain lengths 50 million generations, sampling every 5000 

generation. The convergence statistics were checked using Tracer v1.6 (Rambaut et al., 

2014). TreeAnnotator v2.4.7 (Bouckaert et al., 2014) was used to produce the 

maximum clade credibility tree. Tree files were viewed using FigTree version v1.4.2 

(Rambaut, 2014). The tree with minimum 50% clade frequency was produced using the 

sumtree.py program in DendroPy (Sukumaran and Holder, 2010). Tree figures were 

prepared using iTOL online (Letunic and Bork, 2006). 

 

3.2.2.2 Stochastic character mapping 

 

Specimens with representative mature ocrea were examined in the field (see 3.2.1.1) 

and from herbarium specimens (see chapter 4). Based on these observations, characters 

were described and scored for all 28 species recognized in the genus. An additional 

character was scored to describe whether the species had an ant association. All 

characters were scored as binary characters.  

 

The evolution of ocrea characters and ant symbioses was studied by applying stochastic 

character mapping using the R package phytools (Revell, 2012). The phytools character 

mapped fitted a continuous-time reversible Markov model for the evolution of each 
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character and then simulated stochastic character histories using that model and the tip 

states on the tree. This is the same procedure that is described in Bollback (2006). A 

maximum-clade credibility tree (mcct) from the BEAST analysis, without collapsed 

branches, was used to reconstruct ancestral states for each character using the 

commands make.simmap() and densityMap() (Revell, 2013). Prior to the 

reconstructions, the mcct was pruned to include only members of genus Korthalsia 

using the drop.tip() function in ape (Paradis et al., 2004). For each character trait, 500 

stochastic character maps were simulated (nsim=500). 

 

3.3 Results 

 

3.3.1 Ocrea development 

 

Figure 3.7 shows the results of a survey using Light Microscopy (LM), illustrating the 

comparative morphology of six species of Korthalsia, following dissection down to the 

innermost sheath of the youngest leaf. The six species represent three of the four ocrea 

types identified by Dransfield (1981). In Figure 3.7 A–C, K. echinometra, K. 

scortechinii and K. rostrata represent the inflated type sensu Dransfield (1981); in 

Figure 3.7 D, K. robusta represents the diverging type and in Figure 3.7, E–F K. debilis 

and K. rigida represent the tightly sheathing type. It is notable that the three inflated 

species, Figure 3.7, A–C, differ in the origin of the inflation. K. echinometra shows 

inflation from the point of attachment, whereas the other two species with inflated ocrea 

show several millimetres of tight clasping before the origin of inflation. At the stage 

recorded here, the tightly clasping part is almost as long as the inflated part, though in 

the mature ocrea the clasping part is much less. K. echinometra also differs from K. 

scortechinii and K. rostrata in that it lacks notching of the ocrea apex that results in a 

bifid shape in K. scortechinii and K. rostrata. In contrast the apex is truncate in the 

species with tightly sheathings ocrea (K. debilis and K. rigida; E–F). Figure 3.7 A–D 

shows ocreas with spines at this early stage while in E–F the spines are absent. Thus, at 

a relatively early stage of development of the ant ocrea, both inflated and divergent 

types have spines. They also differ from the tightly-sheathing species in that the ocrea 

apex is cleft (bifid) or angled. The tightly sheathing ocrea species investigated here lack 
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spines when visualised by LM, and have a truncate ocrea apex that is perpendicular to 

the stem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Photomacroscope images of developing ocrea (boxed area). A) Korthalsia echinometra; 

B) K. scortechinii; C) K. rostrata D) K. robusta; E) K. debilis; F) K. rigida. The spines are shown by 

arrows. Bar 10 mm. 
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Many of these differences are more clearly seen in the SEMs than in the LM images, 

although the SEMs are prepared following removal of another leaf sheath to reveal the 

ocrea at an even earlier stage. Figure 3.8 shows three inflated ocrea species K. 

echinometra, K. scortechinii and K. rostrata (Fig. 3.8 A–C), K. robusta (Fig. 3.8 D), a 

species with divergent ocreas and K. debilis and K. tenuissima (Fig. 3.8 E–F), 

representing species with tightly sheathing ocreas. The degree of inflation differs 

between K. echinometra, K. scortechinii and K. rostrata. At this early stage there is 

very slight inflation of the ocrea of K. echinometra, no inflation of K. scortechinii but 

the inflation is clearly apparent in K. rostrata as a swelling. Whether the ocrea apex is 

bifid or not is much clearer, at least in K. rostrata: Figure 3.8 C shows the strongly bifid 

ocrea of K. rostrata; K. scortechinii also appears bifid, as in the LM image Figure 3.7 

B, but this is less apparent at the angle at which the ocrea is orientated. Although spines 

were not apparent on the ocrea on K. debilis in the LM image (Fig. 3.7 E), they are 

apparent at much higher magnification in the earlier developmental stage (Fig. 3.8 D). 
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Figure 3.8 Early stages of development of the ocrea (highlighted area) (SEM). A) Korthalsia 

echinometra; B) K. scortechinii; C) K. rostrata; D) K. robusta; E) K. debilis; F) K. tenuissima. The 

spines are show by arrows. Bars 100 µm. 
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Leaf developmental series were examined for K. echinometra (Fig. 3.9) and K. debilis 

(Fig. 3.10), inflated and tightly sheathing species respectively, to observe similarities 

and differences in development between these species. Figures 3.9 A and 3.10 A both 

illustrate the smallest leaf it was possible to dissect down to, referred to here as the leaf 

primordium. Figures 3.9 B–D and 3.10 B–D show successively older stages, revealed 

when fewer layers were removed. The stage illustrated Figures 3.9 B and 3.10 B is one 

or two layers older, and the stage illustrated in Figures 3.9 C and 3.10 C is another one 

or two layers older. Although the ocreas differ in these species, these early 

developmental stages are remarkably similar. Both species have a plicate leaf surface 

either side of the lamina visible at the stage shown in Figures 3.9 B and 3.10 A. There 

are no plications apparent on the ocrea itself in either species at any stage. Figures 3.9 D 

and 3.10 D show that in both species the ocrea only becomes visible and begins to show 

differences at a late stage, at a layer approximately 3–6 layers later than the first leaf 

primordium shown in Figures 3.9 A and 3.10 A.  
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Figure 3.9 Leaf developmental series (SEM). A–D developmental stages for K. echinometra. A) 

Leaf primordium differentiated into a distal lamina but lacking plications at this stage. B) Successive 

stages of leaf elongation, with leaf plication becoming more pronounced on both sides of the lamina 

and small lobes present at the top of the leaf sheath (arrow) indicating the first stage of ocrea 

development. C) At this stage, the petiole has begun to elongate, the spines have begun to develop 

and the ocrea is more visible. D) The ocrea is a clearly visible and well-delimited structure that will 

persist into the adult organ. Bars 100 µm. la lamina, s sheath, sp spines, pe petiole, pl leaf plications. 
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Figure 3.10 Leaf developmental series (SEM). A–D developmental stages for K. debilis. A) 

Plication inception is visible on the leaf and start to develop. B) The ocrea emerge above the petiole 

(arrow). C) At this stage, the petiole begun to elongate, the spines have begun to develop and the 

ocrea become more visible. D) The ocrea is a clearly visible and well-delimited structure that will 

persist into the adult organ. Bars 100 µm. s sheath, sp spines, cr cirrus, pe petiole, pl leaf plications.  
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The mature surface ocrea of four different species examined using SEM is illustrated in 

Figure 3.11. Samples include a divergent species (Fig. 3.11 A), an inflated species (Fig. 

3.11 B), a tightly sheathing species (Fig. 3.11 C) and a fibrous net-like species (Fig. 

3.11 D).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Leaf surface of four different species of Korthalsia (SEM). a) K. robusta; b) K. 

scortechinii; c) K. debilis; d) K. jala. Bars 100 µm. The specimen of K. jala used here was 

Dransfield et al. 4652. sp spines, fb fibrous. 

 

3.3.2 Ocrea evolution 

 

Nine ocrea characters were used to describe variation in ocrea morphology amongst the 

28 species (Table 3.2). All of the ocrea characters were scored from the herbarium and 

field material. The data matrix for these nine characters and 18 species is presented in 

Table 3.3. Table 3.3 also indicates the ocrea types sensu Dransfield (1981). According 
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to my scoring, Dransfield’s ocrea types that are associated with ants are scored for key 

domatia characters as follows: 

 Divergent type: separated but not clasping 

 Inflated type: separated and clasping 

The rationale is that the term “separated” describes the separation of the ocrea from the 

stem. In inflated types, the ocrea comes into contact at a more distal point further up the 

stem, creating a chambered domatium. The divergent types are also considered 

separated because the ocrea is separated from the stem. However, in contrast, they are 

not considered clasping because there is not a more distal point of close contact, and 

therefore no chambered domatia. Dransfield’s two types that are not associated with 

ants are scored as not separated, nor clasping, but they are distinguished by the 

funnelling character because only the fibrous and net-like species are scored as 

funnelling. The sheathing character is different from the separation character because in 

some separating species there is a basal part of the ocrea that is tightly sheathing, before 

the ocrea separates from the stem.  

 

Table 3.2 The nine characters describing variation amongst the 28 species of Korthalsia.  

Character Characters states 

1. Ocrea integrity 0: not disintegrating; 1: disintegrating into a fibrous 

net 

2. Ocrea sheathing 0: no part of ocrea tightly sheathing the stem; 1: the 

basal part or all of the ocrea tightly sheathing 

3. Ocrea separation 0: not separating from the stem at all; 1: separating at 

least in part from the stem 

4. Ocrea clasping  0: absent; 1: in the case of separated ocrea, part of 

the ocrea has a more distal point of close contact to 

form a chamber 

5. Ocrea inrolling  0: absent; 1: in the case of separated ocrea, there is 

no point of close contact more distally, and instead 

the elongate ocrea continues to diverge from the 

stem and rolls into a tube 

6. Funnelling of ocrea 0: absent; 1: present 

7. Ocrea size 0: 0–5 cm long; 1: > 5 cm long 

8. Ocrea apex 0: truncate; 1: pointed and more or less bifid 

9. Spines 0: absent; 1: present 
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Table 3.3 Scores for the nine characters describing variation amongst 18 species of Korthalsia. 

Whether or not the species have an ant association and the type of ocrea sensu Dransfield (1981) is 

also indicated. I = inflated ocrea type; D = divergent ocrea type; F = fibrous, net-like ocrea type; T = 

tightly sheathing ocrea type; Y = yes; N = no. 

Species 
Characters 

Ants 

sensu 

Dransfield 

(1981) 1 2 3 4 5 6 7 8 9 

K. cheb Becc. 0 1 1 1 0 0 1 1 1 Y I 

K. echinometra Becc. 0 1 1 1 0 0 1 1 1 Y I 

K. furtadoana J.Dransf. 0 1 1 1 0 0 1 1 1 Y I 

K. rostrata Blume 0 1 1 1 0 0 0 1 1 Y I 

K. scortechinii Becc. 0 1 1 1 0 0 1 1 1 Y I 

K. hispida Becc. 0 0 1 0 1 0 1 1 1 Y D 

K. robusta Blume 0 0 1 0 1 0 1 1 1 Y D 

K. jala J.Dransf. 1 1 0 0 0 1 1 0 1 N F 

K. concolor Burret 0 1 0 0 0 0 1 0 1 N T 

K. debilis Blume 0 1 0 0 0 0 0 0 1 N T 

K. ferox Becc. 0 1 0 0 0 0 1 0 1 N T 

K. flagellaris Miq. 0 1 0 0 0 0 1 0 0 N T 

K. laciniosa (Griff.) Mart. 0 1 0 0 0 0 1 0 1 N T 

K. lanceolata J.Dransf. 0 1 0 0 0 0 0 0 1 N T 

K. minor A.J.Hend. & 

N.Q.Dung 
0 1 0 0 0 0 1 0 1 N T 

K. rigida Blume 0 1 0 0 0 0 0 0 1 N T 

K. tenuissima Becc. 0 1 0 0 0 0 0 0 0 N T 

K. zippelii Blume 0 1 0 0 0 0 1 0 1 N T 

 

The full time calibrated phylogeny for the Calamoideae showing error bars on ages is 

shown in Appendix 3.3. Figure 3.12 shows the Bayesian maximum clade credibility 

chronogram for the Calamoideae and Figure 3.13 shows the Bayesian maximum clade 

credibility chronogram for Korthalsia, clades with less than 50% posterior probability 

collapsed, and with 95% highest posterior distributions of dates indicated by blue bars. 

The evolutionary reconstructions for each of the nine characters plus the relationship 

with ants are shown in Figure 3.14a–c and all characters are summarised shown in 

Figure 3.15. 
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Figure 3.12 The Bayesian maximum clade credibility chronogram for the Calamoideae. Values 

associated with the nodes are ages. 
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Figure 3.13 The Bayesian maximum clade credibility chronogram for Korthalsia, with clades with 

less than 50% posterior probability collapsed, and with 95% highest posterior distributions of dates 

indicated by grey bars. Whether species have ant association is indicated using red font for species 

with ant associations, and black font for species without
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Figure 3.14a The morphological traits of possible importance in the evolution of domatia and the 

ant-rattan relationship, and the evolution of characters that describe the variation amongst species of 

Korthalsia. Character 1 is ocrea integrity. Character 2 is ocrea sheathing. Character 3 is ocrea 

separation. Character 4 is clasping ocrea.  
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Figure 3.14b The morphological traits of possible importance in the evolution of domatia and the 

ant-rattan relationship, and the evolution of characters that describe the variation amongst species of 

Korthalsia. Character 5 is ocrea inrolling. Character 6 is funnelling of ocrea. Character 7 is ocrea 

size.  
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Figure 3.14c The morphological traits of possible importance in the evolution of domatia and the 

ant-rattan relationship, and the evolution of characters that describe the variation amongst species of 

Korthalsia. Character 9 is spines. 
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Figure 3.15 The summarize evolution of all characters. Character 1 is ocrea integrity. Character 2 is ocrea sheathing. Character 3 is ocrea separation. Character 4 is 
clasping ocrea. Character 5 is ocrea inrolling. Character 6 is funnelling of ocrea. Character 7 is ocrea size. Character 8 is ocrea apex and Character 9 is spines. The 

colours in the species name and the pictures represent types of ocrea. Green: tightly sheathing ocrea. Turqouise: divergent ocrea. Orange: inflated ocrea. Pink: fibrous 

net-like ocrea.
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3.4 Discussion 

 

Dransfield (1981) described four ocrea types. This chapter characterises those ocrea 

types in detail, and I now have better understanding of the constituent characters that 

underpin ocrea diversity in the mature ocrea. Amongst the 28 species there were nine 

unique character combinations. These represent the unique character combinations that 

remain after grouping types that differed only in ocrea sheathing, ocrea separation, 

ocrea clasping, ocrea inrolling and funnelling of ocrea. Both the developmental and 

evolutionary origins of these characters have been identified, and this gives us 

preliminary assessments of the homologies of the Korthalsia ocrea. The analyses show 

that ocreas that provide domatia for ants evolved more than once, and also that there 

were shifts between domatia types. As I go on to discuss below, at least the inflated 

ocreas are not homologous in that this ocrea type does not have a single origins 

(following Patterson’s definition of homology, any structure that is not a synapomorphy 

is not homologous, Patterson, 1988). However, despite their non-homology, 

developmentally ocreas are remarkably uniform. Here these main findings are 

elaborated in more detail, and the significance in terms of the wider literature is 

discussed. The consideration of ocrea types and their delimitation is also pertinent to the 

new taxonomic treatment for ant-associated species of Korthalsia presented in Chapter 

4.  

 

Our time calibrated phylogenies suggest that the relationship with ants evolved at least 

twice. Throughout the discussion of the evolution of ocrea types and ant relationships, it 

is important to remember that the phylogeny on which the traits were reconstructed was 

generally weakly supported. The phylogeny used for the character mapping was the 

Bayesian maximum clade credibility chronogram; several of the branches in this 

topology find less than 0.55pp. One clade includes the ant-associated species K. 

robusta, K. hispida, K. scortechinii, K. rostrata and K. furtadoana. I refer here to this 

clade as the main ant clade, and this clade finds 0.73 posterior probability. It comprises 

species that have divergent ocreas according to Dransfield’s (1981) types, as well as 

species with inflated ocreas. Inspection of the characters that are found amongst the 
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species in this clade suggests that the separation of the ocrea was the character first 

associated with the relationship with the ants. The differentiation into the two main 

types of ant structures evolved within the clade. This presents an interesting 

evolutionary scenario, whereby the loss of tight sheathing around the stem gave rise to 

these two specialisations, these being the fully chambered inflated ocrea type and the 

divergent ocrea type where the ants inhabit an inrolled tube divergent from the main 

stem. It is interesting therefore to consider the character describing whether any part of 

the ocrea is tightly sheathing in these species. The two divergent species of this clade 

have no clasping at all, whereas the inflated species have at least the basal part of the 

ocrea tightly clasping the stem. The anatomical study of the inflated species in this 

clade shows that a clasping basal part of the ocrea is evident at early stages of 

development, though its relative size decreases as the ocrea matures. The anatomy of 

the divergent species shows no such clasping part at any stage. The character 

reconstructions suggest separation pre-dated evolution of the divergent and inflated 

ocrea, but anatomical studies show this separation is more complete in the species with 

divergent ocrea types.  

  

The timing of the origin of this main ant clade is of interest, since it is the first time that 

analyses have been carried out to explicitly put dates on the evolution of ant-ocrea 

associations in rattans. This main ant clade originated 12.52MYR (95% HPD: 8–17). 

Chomicki and Renner (2015) compiled an up-to-date list of ant domatium-bearing 

plants, and used local phylogenies for the main ant-associated groups, that represented 

nearly half of the myrmecophyte-containing lineages. They found 681 vascular plants 

with domatia distributed in 159 genera in 50 families, mostly from tropical regions of 

Australasia, Africa and the New World. Their survey revealed domatium-bearing plants 

in one family of ferns, but not in gymnosperms, absent in basal eudicots but otherwise 

widespread in angiosperms. Rubiaceae had the highest number, then Melastomataceae. 

They showed that there had been more than 150 independent origins of domatia and 

more than 40 losses in the last the last 19MYR. The lineages they performed 

reconstructions for did not include palms. The time of origin in main ant clade for 

Korthalsia falls within the 19MYR window in which Chomicki and Renner (2015) 

identified gains and losses of domatia.  
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The second clade includes two ant associated species, K. cheb and K. echinometra, both 

with the inflated type of ocrea. However, K. tenuissima is part of the clade that includes 

the most recent common ancestor of K. cheb and K. echinometra, though this species 

does not have any ant association. In fact it has the tightly sheathing ocrea type sensu 

Dransfield (1981). This represents a possible reversal to tight sheathing with loss of 

clasping. Chomicki and Renner’s (2015) study identified gains to losses of 3.75:1; my 

study identifies two gains and one loss, a 2:1 ratio. Korthalsia does not appear to be an 

outlier in terms of gains and losses of domatia. The separation of the sheath and 

clasping associated with tightly sheathing ocrea occurred 12.38MYR (95% HPD: 8–

16). This is broadly consistent with the origin of the relationship with ants in the main 

ant clade.  

 

In the light of the phylogenetic hypothesis, I asked whether there were differences 

between the inflated ocreas of species in the two ant clades, since inflated ocreas have 

evolved at least twice. There are size differences amongst the inflated ocreas, with the 

main clade including small and large inflated ocreas, but the second ant clade only 

including species with large inflated ocrea. This seems to be attributed to the reduction 

in size of the ocrea in Korthalsia rostrata. In the case of K. rostrata, the whole plant is 

small, with scaling maintained as both ocrea and plant reduce in size. It is interesting 

that there does not seem to be evolutionary pressure to maintain ocrea size, and it would 

be biologically interesting to determine what impact this has on the ants recruited to 

defend the plant, and the ants’ behaviour. In other ant-plants, the number of domatia 

rather than size of the domatia determines total nesting space and therefore may be 

limiting the population size of ants (Fonseca, 1993; 1999).  

 

I also inspected the developmental data for K. cheb and K. echinometra to see if these 

inflated ocreas showed any developmental difference to the species with inflated ocrea 

in the main ant clade, K. rostrata and K. scortechinii. There are differences between K. 

cheb and K. echinometra to take into account when comparing the inflated ocreas from 

the two clades. I found K. echinometra lacks any basal part of the ocrea in close contact 

with the stem, even in early stages, whereas K. cheb has a short part of the ocrea tightly 

sheathing the stem. These small developmental differences are apparent at an early 
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stage. Aside from these differences within the main clade inflated ocrea species, there 

are no developmental differences between the different species that Dransfield (1981) 

recognised as having inflated ocreas. These very minor developmental differences are 

unlikely to have ecological or evolutionary implications. They are highlighted here to 

illustrate that the early stage developmental differences. Apparently, convergent ocrea 

in different clades is so subtle. 

 

In 1984, Shirley Tucker, the floral developmental anatomist, building on a rich history 

of comparative anatomy to investigate evolutionary relationships (Hall, 1992) suggested 

that at least in flowers, generalized character states are expressed in early stages of 

ontogeny and that specialized character states are expressed late in ontogeny (Tucker, 

1997). She defined characters as early stage, mid-stage and late stage. She found the 

early stages differed in different lineages, and late stages differed between more closely 

related species. My findings of relatively few early stage differences in Korthalsia 

ocrea development would be expected under her Hierarchical-Significance Hypothesis, 

since I are comparing closely related species. It is interesting in this context to compare 

the development of Korthalsia to the development of Calamus longipinna described by 

Merklinger et al. (2014). They found that the result of plications which develop on the 

ocrea surface make the ocrea subsequently become sac-like and inflated. These 

plications are similar to the lamina at the early stage but the orientation is different 

compare to lamina. In other words, at deeper hierarchical levels there are earlier stage 

differences in ocrea development.  

 

The costs and benefits to host plants of ant-plant protective mutualisms have been the 

focus for field research and reviews (Mayer, 2014; Trager, 2010). These studies 

highlight cost benefit analyses as valuable approaches to examining ant-plant 

mutualism. Whether plants experience fitness benefits (Trager, 2010) is a question of 

great importance if we seek to understand the maintenance of ocrea and ant-plant 

mutualisms through evolutionary time. Our findings, suggesting loss of the mutualistic 

relationship in at least one lineage (K. tenuissma) might be interpreted in the light of 

cost-benefit analysis. The stability of mutualism is of great interest (Mayer, 2014), and 

our study highlights the loss of the mutualism in K. tenuissma as a study system to 
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better understand cost-benefits and stability. Field experiments comparing reproductive 

success in the lineage including K. tenuissma might be very informative in this context. 

Evolutionarily-informed manipulations of the ants, swapping ants between close and 

distantly related plants, might be of interest. 

 

It would be exciting to integrate what is known about the field biology of the ant 

mutualism in Korthalsia with what is found here in terms of phylogeny. Table 1.1 lists 

all the existing papers and reports of ants in association with Korthalsia species. There 

is very scanty information available, with identifications of ants made from only five 

species, of which five are sampled and included in the phylogeny. There are seven 

genera of ants in association, but only one of them is found in more than one Korthalsia 

species, Camponotus sp. Considering the distribution of species of this genus in the 

evolutionary lineages of Korthalsia, we can see little evidence of phylogenetic pattern 

in occupation of related species. Camponotus sp. is found in four species, but these are 

not in one clade, suggesting independent recruitment of these ants to these plant 

species, and no preferences amongst ants for phylogenetically close relatives. 

Considering the distribution of the plants that are found with ocrea occupied by 

Camponotus sp., we find that these species are found in Borneo and Peninsular 

Malaysia, suggesting little geographical structuring in the distribution of Camponotus 

sp. on Korthalsia. Ultimately considerably more field work is needed to characterise the 

ants in association with Korthalsia. With more data available, biogeographic patterns as 

well as phylogenetic ones might emerge. 

 

Camponotus is a hyperdiverse genus (> 1,000 species, > 400 subspecies) of carpenter 

ants; in the Neotropics, Camponatus species may be ant-gardeners (Youngsteadt et al., 

2009), nectar feeders (Josens et al., 1998) and also occupy the domatia of Cecropia 

species (Bonato et al., 2003). In South-East Asia, the ant-plant Macaranga puncticulata 

(Federle et al., 1998) and Clerodendroum fistulosum (Maschwitz et al., 1994) are also 

associated with Camponotus. Clearly Camponotus species are not uniquely recruited to 

Korthalsia domatia.  
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CHAPTER 4 

A TAXONOMIC REVISIONS OF THE ANT-RATTAN SPECIES 

KORTHALSIA 

 

4.1 Introduction 

 

The palms (Arecaceae) are among the most prominent and diverse components of 

tropical ecosystems worldwide. Almost 40% (>1,000 species) of global palm diversity 

(ca. 2,600 species) occurs in the Malesian region (Dransfield, et al., 2008).  

 

Korthalsia is endemic to this region. It is one of the eight genera of rattans, which are 

spiny climbing palms in the subfamily Calamoideae (Vorontsova et al., 2016). The 

genus has distinctive vegetative morphology with jagged, diamond-shaped leaflets and 

unusual aerially branching stems. In common with a few other palm genera, Korthalsia 

species flower in a single, terminal events that result in the death of the stem. The 

tubular sheathing base of the leaf is unusual in forming a conspicuous extension above 

the point of attachment of the leaf petiole (stalk). This structure, known as an ocrea, is 

extremely diverse in form, sometimes tightly clasping the stem or forming a fibrous 

expanded network or inflated to form an ant nest-chamber, or diverging from the stem 

with inrolled margins, also forming a chamber for ants (Dransfield et al., 2008). Several 

species from genus Korthalsia have an association with ants from genus Camponotus, 

Crematogaster, Dolichoderus, Iridomyrmex or Polycharchis sp. (Dransfield, 1981; 

Mattes et al., 1998; Edwards et al., 2010; Chan et al., 2012). The ants live in the 

chambers of inflated and diverging ocrea at the leaf base. The ants make a rustling noise 

by banging their abdomens against the ocrea to create a precautionary alarm when the 

plant is disturbed. Korthalsia is an isolated group and the sole member of its tribe 

Korthalsiinae in tribe Calameae of subfamily Calamoideae. 

 

In phylogenetic study (Chapter 2), total evidence analyses strongly support the 

monophyly of Korthalsia and its placement as sister to the remaining members of 
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subtribe Calameae. These findings consistent with some (Baker et al. 2000a, 2000b), 

but not all previously published results (Baker et al. 2000, 2006, 2009), some of which 

found relationships with genera such as Eleiodoxa (Becc.) Burret, Metroxylon Rottb., 

Pigafetta (Blume) Becc. and Salacca Reinw. 

 

Korthalsia is distributed from the north of Indochina, Burma and the Andaman Islands 

and south-eastward to Celebes and New Guinea (Dransfield et al., 2008). Currently, 28 

species are accepted (WCSP, 2017). The highest diversity of Korthalsia is found in 

Borneo, Malay Peninsula and Sumatra. The focus of this revision is on the ant-species 

of Korthalsia. Currently, 10 ant-species of Korthalsia are accepted.The ant species do 

not occur throughout the entire range of the genus and are restricted to Borneo, Malay 

Peninsula, Philippines (Palawan and Mindanao), Singapore and Thailand (Figure 4.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Distribution map of Korthalsia spp in Malesia region (full line). Distribution of ant-

species Korthalsia (broken red line). Map prepared by Salwa Shahimi, using QGIS.  
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4.1.1 Taxonomic history 

 

The genus Korthalsia was first described in 1843 by Carl Ludwig Blume, based on type 

specimen of K. rigida Blume. In the same year, Blume also described six more species 

of Korthalsia. In 1845, William Griffith described a new plant and named as 

Calamosagus Griff. It appeared that the genus has very similar morphology characters 

to Korthalsia. Because of that similarity, five species Calamosagus recognized by 

Griffiths are now included in Korthalsia. 

 

Odoardo Beccari made a tremendous contribution by describing the Calamoid palms. 

Between years 1884–1918, Beccari described almost all species of Korthalsia. In 1884, 

Beccari wrote a monograph of Korthalsia species for Malesia, raccolta d'osservazioni 

lese e papuano. In 1951, Furtado published the Malayan species of Korthalsia focusing 

with only eight recorded species of Korthalsia. 

 

In 1981, Dransfield published a synopsis of Korthalsia. In this account, Dransfield 

organized nomenclature and made new synonymies. He also updated descriptions with 

new information for the established species and described new species in full. 

Korthalsia furtadoana J.Dransf. and Korthalsia jala J.Dransf. were the two new species 

described by Dransfield. 

 

Since Dransfield’s synopsis, K. minor A.J.Hend. & N.Q.Dung was the only new species 

added to the genus (Henderson and Nguyen, 2013). The species was described based on 

a herbarium specimen of K. laciniosa (Griff.) Mart. which has significant variation in 

the size of pinnae. There are two groups of the specimen in herbaria, one with larger-

sized and the other with smaller-sized of pinnae. Henderson and Nguyen decided that 

the larger-sized specimens from Laos and Vietnam represented K. laciniosa (Griff.) 

Mart. and the smaller-sized one represented a new species (K. minor A.J.Hend. & 

N.Q.Dung) which differs from K. laciniosa (Griff.) Mart. in smaller pinnae, size, scale 

and colour of fruit and seed. 
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4.1.2 Taxonomic revision 

 

Taxonomic revisions may be mainly based on the study of herbarium collections. The 

study on early publication and field observations also are the primary component of 

taxonomic revisions. The elements of treatment are the names accepted and names put 

into synonymy, the citation of protologues, type, and other specimens examined, 

description of the species, distribution maps, and notes on habitat. Other notes might 

include ethnobotanical uses, local names, phenology, and biotic or edaphic associations. 

 

A taxonomic revision reconsiders the boundaries of the species within the study group. 

This is testing hypotheses of species (Wheeler, 2004). As part of the reviewing process, 

new species hypotheses may be put forward. Either completely new species might be 

described, or the variation and/or distribution of existing species might be redrawn. A 

revision may, therefore, present different descriptions, maps, and species to the 

previous treatment.  

 

For genus Korthalsia, a revision of 10 species of Korthalsia which has ant-association 

as the main focus here. Although the species with ant associations do not appear to 

comprise a monophyletic group (Chapter 3) they are a distinctive subcomponent of the 

genus. By treating the species with ant-associations here I provide a tool of use to the 

ecologist making field studies of these plants. A new treatment for the genus is needed 

because these species have not been the subject of a modern treatment across their 

ranges. Only regional treatments have been published. 

 

4.2 Material and methods 

 

4.2.1 Herbarium studies 

 

An extensive study of specimens at Kew herbarium and three international herbaria, 

namely E, SING and KEP (herbarium acronyms follow Holmgren et al., 1990) 
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underpins this study. Every specimen with information relating to collector name and 

number, collection date and locality, vernacular name(s), habitat and uses was collected 

and compiled in a data sheet. 

 

Living rattans and dried herbarium were fully measured and the information obtained 

was recorded in data sheets. The information on morphological features such as habit, 

stems, leaves, inflorescences, fruits and seeds observed in living rattan and dried 

herbarium specimens were used to describe each taxon and taxa. The key species was 

constructed using the information on diagnostic characters. 

 

In total, almost 230 distinct herbarium collections were studied and observed. Appendix 

4.1 shows the data sheet that has been used for data collection. The exclamation mark 

(!) indicate that where I have seen the specimens directly myself or have studied on 

online digital image. 

 

4.2.2 Field studies 

 

To gain more information and knowledge on Korthalsia, two field trips were 

conducted: Peninsular Malaysia and Singapore (November, 2014) and Borneo and 

Singapore (September, 2015). For each population, herbarium material was collected 

according to the method of Dransfield (1986). Geo referencing was carried out using a 

global positioning system (GPS) receiver to record the latitude and longitude for each 

specimen. The targeted parts of the plant such as stem, leaves were collected. The 

specimens were collected in up to three duplicates. Duplicate specimens of all 

collections made were deposited in herbaria K, KEP and SING. The ocrea was 

preserved in 70% ethanol for anatomical studies. The sample extracted from leaves for 

each specimen was dried and preserved in silica gel for molecular works. Extensive 

notes were taken for each specimen. The general morphology of the plant was recorded, 

and several photographs were taken of each rattan including images of the rattan in 

habitat. 
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4.3 Results 

 

4.3.1 Morphology of ant-associated Korthalsia 

 

4.3.1.1 Habit 

 

These species of Korthalsia are moderate to robust, clustering high-climbing rattans up 

to 60 m or more. Some species can reach the forest canopy. They are found only in 

lowland and hill tropical forest, being absent in montane forest. Most of the species 

have a wide ecological range and are abundant in primary forest. Some species (e.g. K. 

echinometra) are quite variable in habit, but others (e.g. K. furcata) appear rather 

uniform.  

 

 

 

 

 

 

 

 

 

 

Left: Habit of K. scortechinii. Right: Habit of K. echinometra. 
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4.3.1.2 The stem 

 

The stem size of the ant-associated Korthalsia varies from slender (0.2–0.8 cm in 

diameter without sheath) to moderately large (1.0–4.0 cm in diameter without sheath). 

The internodes are elongate and variable in length. Nodal scars of Korthalsia species 

are often uneven. Aerial branching sometimes occurs due to parallel forking 

(dichotomy). 

 

 

 

 

 

 

 

 

 

 

Left: Stem slender (e.g. K. rostrata). Right: Stem moderate large (e.g. K. rigida) 
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4.3.1.3 The leaf 

 

All ant-associated species of Korthalsia in this study have pinnate leaves with a cirrus. 

The sheath is tubular, bright green to green in colour and turn into light brown as they 

age, usually with caducous indumentum. The sheath is sometimes unarmed or variously 

armed with spines. The petiole ranges from absent/short (up to 1.5 cm) to long (up to 40 

cm). The leaflets are regularly arranged and usually rhomboid with distal margins 

praemorse, but in few species, they are lanceolate, still with praemorse margins. The 

adaxial surface of the leaflets is usually bright or dark green, and the abaxial surface 

was covered in white or grey indumentum, or sometimes with caducous, orange and/or 

brown to dark brown indumentum. The number of leaflets on each side of the rachis 

varies from one to 25; with the smallest number belong to K. furcata and the highest in 

K. echinometra. The main veins diverge from the leaflet base. The transverse veinlets 

are conspicuous or unclear. 

 

 

 

 

 

 

 

 

 

 

Left: Leaflets rhomboid (e.g. K. robusta). Right: Leaflets lanceolate (e.g. K. 

echinometra). 
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4.3.1.4 The ocrea 

 

The term ocrea refers to an extension of leaf sheaths above the petiole insertion. The 

ocrea is usually well-developed, unarmed or variously spiny. It is morphologically 

diverse, ranging from net-like, collar-like rim to elongate papery. In Korthalsia, it has 

four broad type of ocrea. First, the simple ocrea is truncate, tightly sheathing and 

regularly spiny (e.g. K. bejaudii, K. brassii, K. celebica, K. concolor, K. debilis, K. 

ferox, K. flagellaris, K. junghuhnii, K. laciniosa, K. lanceolata, K. merrillii, K. minor, 

K. paucijuga, K. rigida, K. rogersii, K. tenuissima and K. zippelii ). Secondly, only 

belonging to K. jala which the ocrea is expended and forming a funnel-shape fibrous 

net-like. The third ocrea type which the ocrea clasping the stem and inflated (e.g. K. 

angustifolia, K. cheb, K. echinometra, K. furcata, K. furtadoana, K. rostrata, K. 

scaphigeroides and K. scortechinii). This ocrea type associated with ants because the 

ocrea form like a chamber for the ants nested within. The fourth type is where the ocrea 

is not clasping the stem but diverging at an acute angle and margins tending to inroll 

(e.g. K. hispida and K. robusta). This ocrea is variously armed with long spines and is 

also inhabited by fierce ants. The ants are capable of making noise. 

 

 

 

 

 

 

 

 

 

 

Left: Ocrea divergence (e.g. K. robusta). Right: Ocrea inflated (e.g. K. echinometra). 
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4.3.1.5 Inflorescence 

  

The flowering behavior in the species surveyed is hapaxanthic (individual stems 

flowers only once in their lifetime and die subsequently). The inflorescences are borne 

at the apex of the stem and are lax to congested, with one to two orders of branching. 

The peduncle is adnate to the internode above the subtending leaf (Dransfield et al., 

2008). The prophylls have 2-keels and are tightly sheathing. Rachis bracts can be 

tubular, tightly sheathing and for some species somewhat inflated. The bracts can be 

unarmed or sparsely armed and densely covered with caducous indumentum. The 

rachillae are cylindrical and catkin-like, with densely arranged rachilla bracts, 

sometimes with hairs in between. The rachillae can be slender or congested. 

 

 

 

 

 

 

 

 

 

 

 

 

Left: Inflorescence congested (e.g. K. robusta). Right: Inflorescence slender (e.g. K. 

cheb). 
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4.3.1.6 Flower 

 

In all Korthalsia species examined here, the flower is hermaphrodite and borne in pits 

in the catkin-like rachillae. According to Dransfield (1981), Korthalsia is the only 

Asiatic rattan genus with a hermaphrodite flower. The calyx is tubular at the base, with 

three sepals and usually shorter than corolla. The corolla consists of three valvate 

petals. The flower contains 6–9 stamens, borne on the petal. 

 

 

 

 

 

 

 

 

 

 

Flower of K. laciniosa. 
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4.3.1.7 Fruit 

 

The fruit of Korthalsia species examined here is globose to ovoid, with one seed. The 

epicarp is thin and covered with vertical rows of imbricate scales. The scales are usually 

brown in colour, rarely straw-coloured except for K. robusta. The mesocarp develops as 

a thin sweet-fleshy layer surrounding the seed, and the endocarp is not differentiated. 

The seed is attached basally. The lack of sarcotesta (fleshy layer developed from the 

outer seed coat) makes this genus unique amongst the rattans. In most of the species, 

the endosperm is ruminate or sometimes homogeneous in a few species (e.g. K. 

hispida). The fruits of most species appear to be attractive to animals (Dransfield, 

1981). 

 

 

 

 

 

 

 

 

 

 

 

Left: Fruit of K. echinometra. Right: Fruit of K. robusta. 
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4.3.2 Keys to ant-rattan species of Korthalsia 

 

1. Ocrea not clasping, diverging at an angle from the stem, margins tending to 

inroll (Borneo, Peninsular Malaysia, Philippines)………….....……………….. 2 

1. Ocrea clasping the stem and inflated (Borneo, Malay Peninsula, Sumatra, 

Singapore, Thailand, Philippines)……………………………...………….…… 3 

 

2. Ocrea 18.5–30.0 × 3.0–4.5 cm long, ocrea, sheath and inflorescences bracts 

armed with scattered black spines, with abundant black spicules (a very slender 

brittle, needle-like structure) (Peninsular Malaysia, Borneo)……...…. K. hispida 

2. Ocrea 16.0–40.0 × 3.0–7.0 cm long, ocrea, sheath and inflorescences bracts 

armed with scattered black spines, with black spicules absent (Borneo, 

Philippines) …………………………………………………...…..….. K. robusta 

 

3. Leaflets rhomboid (rarely narrowly rhomboid) …………..……………..….…. 4 

3. Leaflets narrowly lanceolate (Peninsular Malaysia, Borneo, Singapore) ……..K. 

echinometra 

 

4. Leaflets only one on each side of the rachis (Sarawak) ………...……. K. furcata 

4. Leaflets usually more than three on one each side of rachis …………………... 5 

 

5. Stem slender, with sheath less than 1.5 cm diameter ………………...……...… 6 

5. Stem robust, with sheath at least 2.0 cm diameter …………………….………. 8 

 

6. Leaflets intensely indumentose on undersurface (Philippines). K. scaphigeroides 

6. Leaflets sparsely indumentose on undersurface …………………….…...….…. 7 

 



91 
 

7. Ocrea 2.5–5.0 × 1.0–3.0 cm, transverse veinlets space moderately close, 

rachillae slender (Peninsular Malaysia, Borneo, Singapore, Sumatra) 

………………………………………………………………….......... K. rostrata 

7. Ocrea 2.5–8.3 × 1.0–1.5 cm, transverse veinlets fine and closely spaced, 

rachillae robust and congested (Borneo) ……..………………….. K. furtadoana 

 

8. Ocrea armed with scattered triangular spines up to 2.0 cm long and ocrea about 

20–26 cm long ………………….…...…………………...………...…………... 9 

8. Ocrea armed with scattered very short triangular spines about 3 mm long and 

ocrea about 10–15 cm long (Peninsular Malaysia, Thailand) ...… K. scortechinii 

 

9. Leaflets rhomboid to broadly rhomboid, 6–8 leaflets each side of rachis and 

petiole 10–25 cm long...……...…………….…………………….……… K. cheb  

9. Leaflets rhomboid, 7–12 leaflets each side of rachis and very long petiole ca. 40 

cm long ………………………...……………...………………… K. angustifolia  

 

4.3.3 Taxonomic treatment 

 

Korthalsia Blume (1843: 166). Lectotype: K. rigida Blume. 

Calamosagus Griff. (1844: 22). Lectotype: C. laciniosus Griff. (= Korthalsia laciniosa 

(Griff.) Mart.) 

 

1. Korthalsia angustifolia Blume (1843: 172). Type:—INDONESIA. South 

Kalimantan: Sungai Dusun, Korthals & Muller s.n. (holotype L!; isotype 

FI!). MAP 1. PLATE 1.  

 

Clustering rattan climbing to 50 m. Stem with sheaths 35–50 mm diam., without 

sheaths 20–30 mm diam.; internodes 10–25 cm. Leaf 2–3 m long including cirrus and 
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petiole; sheath green, with grey indumentum, sheath sparsely armed with brown to dark 

brown triangular spines, spines more abundant near sheath mouth, spines 3–13 mm 

long, ca. 1 mm wide; ocrea 24.2–25.5 × 2.5–3.5 cm, very large and conspicuous, 

elongate inflated, clasping the stem, tough, brown (when dry), armed with 1.0–2.0 cm 

long dark brown, planar spines, ocrea occupied by ants; cirrus ca. 1 m; petiole ca. 40 

cm, 10–15 mm wide and 3–4 mm thick at base, flattened adaxially, abaxially rounded, 

with grey indumentum as sheath, sparsely armed with spines; rachis ca. 0.9 m, armed 

with recurved grapnel spines organised in whorls; 7–12 leaflets each side of rachis, 

regularly arranged, rhomboid, mid-leaf leaflets 18.0–23.0 × 4.7–5.9 cm, leaflet dark 

green above, glabrous, with caducous, grey-brown indumentum on undersurface, distal 

margin conspicuously praemorse, transverse veinlets moderately conspicuous, 

moderately spaced ca. 1.0 mm. Inflorescence lax, 47.0–61.7 cm long, branched to 2 

orders; rachis bracts up to 6.2–7.0 × 3.5–3.7 cm, tightly sheathing and splitting, with 

caducous, dark brown indumentum; primary branches 1–2, 4.0–8.0 cm apart, proximal 

primary branch 20.2–22.1 cm long, with up to 2 rachillae; rachillae 17.8–24.8 cm long, 

including 1.5–3.7 cm visible stalk, 0.7–1.0 cm wide, densely hairy between rachilla 

bracts. Flower not seen. Fruit mature fruit not seen. Seed not seen. 

 

Distribution:—Borneo (Central and South Kalimantan). 

Habitat:—Along river banks and in freshwater swamp on alluvial soils. 

Uses:—Not recorded. 

Vernacular name:—Ahas, Rotan ahas, Rotan patung (Indonesia). 

Specimens examined:—INDONESIA. Kalimantan Tengah: Pelangka Jaya, 2°12' S, 

113°50' E, 25 January 1974, Dransfield 3924 (K!, L). Kalimantan Selatan: Barito River, 

12 km upstream of Marabahan, 2°50' S, 114°29' E, 03 January 1989, Geisen 89 (K!); 

Sampit, Sei Pemalian, 2°32' S, 112°57' E, July 1986, Sutisna 70 (K!). 

Notes:—Very little herbarium material of K. angustifolia is available. Although K. 

angustifolia is vegetatively very similar to K. cheb and K. scortechinii but it has very 

long petiole compare to K. cheb and K. scortechinii. 
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MAP 1 Distribution of Korthalsia angustifolia Blume. Dots are point localities of 

specimens examined. Map prepared by Salwa Shahimi, using QGIS. 
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PLATE 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia angustifolia Blume. Top left: ocrea (Sutisna 070). Top right: inflorescence 

(Giesen 89). Bottom: leaf arrangement (Sutisna 070). 
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2. Korthalsia cheb Becc. (1884a: 67). Type:—MALAYSIA. Sarawak: Gunung 

Matang, 1 June 1866, Beccari PB 1936 (holotype FI!). MAP 2. PLATE 2. 

 

Robust, clustering rattan climbing to 30 m. Stem with sheaths 20–40 mm diam., 

without sheaths 10–25 mm diam.; internodes 25–30 cm. Leaf 2.2–3.5 m long including 

cirrus and petiole; sheath bright green, almost completely obscured by ocrea, with 

caducous, black indumentum, sheath sparsely armed with brown, triangular spines, 

spines 7–12 mm long, ca. 2 mm wide; ocrea 20.0–26.0 × 5.0–8.0 cm, very large and 

conspicuous, tightly sheathing above the petiole then inflated, clasping the stem, tough, 

brown, armed with 6–26 mm long, dark brown, planar spines, ocrea occupied by 

numerous ants, entry hole made by ants often visible; cirrus 0.7–1.0 m, armed with 

recurved grapnel spines organised in whorls; petiole 10–25 cm, 14–18 mm wide and 4–

5 mm thick at base, flattened adaxially, abaxially rounded, with brown indumentum, 

armed with spines as sheath; rachis 0.80–2.03 m, armed with recurved grapnel spines 

organised in whorls; 6–8 leaflets each side of rachis, regularly arranged, rhomboid to 

broadly rhomboid, mid-leaf leaflets 20.8–27.3 × 4.3–7.7 cm, leaflet light to dark green 

above, brownish undersurface covered with caducous, orange brown indumentum when 

young, distal margin conspicuously praemorse, transverse veinlets conspicuous, 

moderate closely spaced ca. 1.5 mm. Inflorescence lax, 52.9–54.0 cm long including 

11.5 cm peduncle, branched to 2 orders; prophyll 4.5–6.5 × 0.8–1.8 cm; rachis bract 

2.0–8.7 × 1.9–2.3 cm, tightly sheathing, with caducous, dark brown indumentum; 

primary branches 1–2, 0.5–1.0 cm apart proximal primary branch 16.8–21.0 cm long, 

with 1–4 rachillae; rachillae 13.5–23.6 cm long and slender including 0.5–1.5 cm 

visible stalk, 0.5–1.0 cm wide, densely hairy between rachilla bracts. Flower 4 × 2 mm 

in the bud. Fruit somewhat oblong, 1.4–2.2 × 0.9–1.8 cm covered in 16–18 vertical 

rows of yellow-brown scales. Seed 1.2 x 0.1 cm; endosperm ruminate. 

 

Distribution:—Borneo (in the 1st Division of Sarawak, Sabah, East and South 

Kalimantan). 

Habitat:—Hill Dipterocarp forest at altitudes up to 800 m, usually in humid valleys. 

Uses:—Making a basket and as a binding material for constructing pig-sties.  
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Vernacular name:—Wee jematang tengah (Kayan), Lasas (Petung), Wae dura 

(Penan), Uei sanam (Kenyah), Rua (Bidayuh). 

Specimens examined:—INDONESIA. Kalimantan Timur: Gunung Mendam at foot 

north of Tabang, 100 m, 0°37' N, 115°54' E, 16 January 1979, Mogea et al. 1630 (K!); 

Surroundings of Long Sungai Barang, 800 m, 1°40' N, 115°0' E, 30 December 1992, 

van Valkenburg 1206 (K!). Kalimantan Selatan: Gunung Besar, 800 m, 2°43' S, 115°37' 

E, 19 February 1979, Mogea et al. 1686 (K!). MALAYSIA. Sabah: Tambunan, Crocker 

Range National Park NW of Kampung Kuyongon close to Tundulu river, 950 m, 5°40' 

N, 116°20' E, 13 September 2000, Andersen 175 (K!, SAN, KEP, C); Tambunan, Mile 

8, road to Kampung Kaingaran, 1150 m, 26 March 1999, Diwol SAN 141821 (K!, 

SAN); Kota Kinabalu, Mile 24, Sinsuron Road, Crocker Range, 800 m, 21 August 

1979, Dransfield et al. 5535 (K!, L, SAR, SAF); Ranau, Kampung Bundu Tuhan, 5°59' 

N, 116°32' E, 08 January 1994, Soibeh 683 (K!). Sarawak: Kapit, Batang Balleh, 1°50' 

N, 113°40' , 16 July 1987, Lee S 54592 (K!, L); Kapit, Belaga, 200 m, 1°55' N, 111°11' 

E, 09 August 1975, Dransfield et al. 4671(K!, KEP); Kuching, 1st Division, Gunung 

Matang, 750 m, 09 April 1981, Dransfield et al. 5882 (K!, NY, L, B, PNH); Kuching, 

1st Division, Kampung Kakeng, 200 m, 1°9' N, 110°27' E, 20 July 1993, Bunker 51 

(K!); Kuching, Lundu, Waterfall trail Gunung Gading, 300 m, 25 April 1996, Baker 

742 (SING!, K, KEP, SAN); Kuching, Siburan, Semenggoh Arboretum, 1°24' N, 

110°18' E, 09 February 1995, Baker 513 (K!, KEP).  

Notes:—Korthalsia cheb is a very distinctive species with its very large inflated ocrea 

and broad diamond-shape (rhomboid) leaflets sometimes it can be confused with K. 

angustifolia. Based on the phylogenetic results of this study, K. cheb is sister to K. 

scortechinii with moderate support.  
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MAP 2 Distribution of Korthalsia cheb Becc. Dots are point localities of specimens 

examined. Map prepared by Salwa Shahimi, using QGIS. 
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PLATE 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia cheb Becc. Top left: inflorescence (Lee S.54592). Top right: ocrea (Van 

Valkenburg 1206). Bottom left: leaflets (Van Valkenburg 1206). Bottom right: fruit 

(Dransfield et al. 5882). 
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3. Korthalsia echinometra Becc. (1884a: 66). Type:—MALAYSIA. Sarawak: 

Gunung Matang, 1 June 1866, Beccari PB 1935 (holotype FI!). MAP 3. 

PLATE 3. 

 

Korthalsia angustifolia var. gracilis Miq. (1868: 16). Type:—INDONESIA. 

Sumatra, Palembang, De Vriese (holotype L). 

Korthalsia horrida Becc. (1884a: 66). Type:—MALAYSIA. Sarawak: Gunung 

Matang, 1 June 1866, Beccari PB 1918 (holotype FI!). 

Daemonorops ochreata Teijsm. & Binn. (1866: 74), nom. inval. 

Calamus ochreatus Miq. (1868: 29), nom. inval. 

 

Moderately robust, clustering rattan climbing to 50 m. Stem with sheaths 12–35 mm 

diam., without sheaths 9–20 mm diam.; internodes 12–25 cm. Leaf 1–2.5 m long 

including cirrus and petiole; sheath green, almost entirely obscured by ocrea, with 

indumentum grey in colour, sheath sparsely armed with scattered, brown triangular 

spines, spines more abundant near sheath mouth, spines 2–20 mm long, 1–3 mm wide; 

ocrea 6.0–15.5 x 3.5–5.0 cm, conspicuous, inflated and elongate, clasping the stem, 

tough, brown, armed with 1.0–7.7 cm long, dark brown to black, planar spines, 

numerous ants occupied within the ocrea, entry hole made by ants often visible; cirrus 

0.75–1.80 m, armed with recurved grapnel spines organised in whorls; petiole 5.0–40.0 

cm, 7–20 mm wide and 3–5 mm thick at base, flattened adaxially, abaxially rounded, 

with caducous, brown indumentum, sparsely armed with spines; rachis 0.49–1.50 m, 

armed with recurved grapnel spines at base and then the spines organised in whorls 

before the cirrus; 8–25 leaflets each side of rachis, regularly arranged, narrowly 

lanceolate, mid-leaf leaflets 24.6–31.4 × 1–2 cm, leaflets dull to dark green above, 

glabrous, with caducous, whitish indumentum on undersurface, distal margin 

conspicuously praemorse, transverse veinlets conspicuous, moderate closely spaced, 

1.0–1.5 mm. Inflorescence lax, 64.3–150 cm long including ca. 19.2 cm peduncle, 

branched to (1–)2 orders; prophyll 13.2–15.2 × 1.2–2.0 cm; rachis bracts up to 5.7–7.0 

× 2.0–2.7 cm, tightly sheathing, with caducous, dark brown indumentum; primary 
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branches 1–4, 6.5–8.5 cm apart; proximal primary branch 18.0–29.5 cm long, with up 

to 1–4 rachillae; rachillae 14.5–26.2 cm long and slender including 0.7–4.2 cm visible 

stalk, 0.7–1.0 cm wide, densely hairy between rachilla bracts, orange-brown tomentose. 

Flower not seen. Fruit ovoid, 1.9–2.7 × 1.2–1.9 cm covered in 16–21 vertical rows of 

reddish-brown scales. Seed 1.7 x 1.0 cm; endosperm ruminate. 

 

Distribution:—Peninsular Malaysia, Borneo (Central and East Kalimantan, Brunei), 

Singapore. 

Habitat:—Lowland and hill Dipterocarp forest up to 1000 m above sea level. 

Uses:—Cane used to make basket frame, weaving handicraft, and also to tie planks on 

dugouts to raise the side wall of canoes, sap can be drunk for fever. 

Vernacular name:—Wi wisro (Iban), Wee tujah (Kayan), Owei lia (Murut), Uwai 

kapot alot (Kenyah), Paikat talusuk (Dayak lawangan), Rotan keruk (Iban), Rotan 

udang (Jakun), Rotan seru (Iban), Rotan lia (Dusun), Pipit gading (Dusun), Wi serok 

(Iban), Rotan semut udang (Dayak), Semeii (Bidayuh). 

Specimens examined:—BRUNEI. Belait: along Sungai Ingei, 4°10' N, 114°43' E, 05 

January 1989, Wong s.n. (K!). Tutong: Bukit Ladan Forest Reserve, Compartment 69, 

4°38' N, 114°48' E, 13 April 1993, Ibrahim 15126 (K!); Sungai Liang, Sungai Liang 

Arboretum Reserve, 4°41' N, 114°29' E, Wong 143 (K!). Temburong: Batu Apoi, Ridge 

running W of landing place, 250 m, 4°36' N, 115°11' E, Simpson 2365 (K); Amo, 

Sungai Temburong at Kampung Belalong, ridge west of river, 150 m, 4°36' N, 115°11' 

E, 25 June 1989, Dransfield 6721 (K!). INDONESIA. Kalimantan Barat: Mendalam 

River, Betung Kerihun National Park, 200 m, 0°59' N, 113°15' E, 01 August 2001, 

Watanabe 14 (K!, BO); Sanggau, near village of Bedigong, 02 February 1996, Graefen 

2 (K!). Kalimantan Selatan: District Tabalong, Upper Tabalong Area, PT Aya Yayang 

Indonesia Concession, Misim, 50 m, 1°40' S, 115°24' E, 05 August 2000, Mogea 7403 

(BO, K!, L, NY, WAN); P.T. Yayang Tanjung, 200 m, 22 August 1985, Auggana 047 

(K); Barabai, Pergunungan Moratus, foothills of Gunung Bosar, 500 m, 2°45' S, 

115°40' E, 18 October 1972, Dransfield 2828 (K!, L, BH). Kalimantan Tengah: near 

Rekut base camp, 250 m, 0°2' S, 114°6' E, 11 April 1992, Awmack 296 (K!). 

Kalimantan Timur: Berau, RKT 92-93, Inhutani I concession, 250 m, 08 October 1991, 
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Stockdale 143 (K!); Berau, near km 37 Camp, Inhutani I, 80 m, 1°55' N, 117°10' E, 09 

August 2003, Watanabe 60 (K!); between Sinara and Entang Rivers on [floodplain] of 

Sangatta River, Kutai Reserve, 200 m, 31 October 1991, Stockdale 87 (K!). Sumatra: 

Bengkulu, Muara Aman, Ketenong, 675 m, 18 December 1984, Uhaedi 009 (K!); Silo 

Maradja, Asahan, in the vicinity of Taloen Djoring, December 1927, Toroes 64 (K!); 

Batang Tebopandak, Jambi, nearest city muarabungo, 300 m, September 1993, Trichon 

796 (K!); Riau, Bukit Suligi, 200 m, August 1986, Sutisna 081 (K!). Northern part of 

island Nunukan, N.E. Borneo (Kalimantan), km 3 from the coast, 06 November 1953, 

Meijer 2054 (K!). MALAYSIA. Johor: Muar, Ma' Okil Forest Reserve, Cpt. 218, valley 

bottom, 50 m, 4°09' N, 103°19' E, 7 June 1977, Dransfield 5019 (K!, KEP!). Pahang: 

Maran, Cehabu, near Gun Tung Kat, north of Sori Jaya, 17 July 1987, Gianno 119 

(KLU, A, BISH, BO, K!, KEP!, L, LAE, P, PNH, SAN, SAR, SING, TI, TNS, UC, 

US); Pekan, near kmomol, Ulu Jeram, 76.2 m, 02 July 1987, Gianno 79 (KLU, A, 

BISH, BO, K!, KEP!, L, LAE, P, PNH, SAN, SAR, SING, TI, TNS, UC, US); Kuantan, 

Bukit Ibam, 30 May 1987, Gianno 36 (KLU, A, BISH, BO, K!, KEP!, L, LAE, P, PNH, 

SAN, SAR, SING, TI, TNS, UC, US). Perak: Taiping, Maxwell's hill, 975.36 m, 09 

March 1924, Burkill 12787 (K); Bota, Universiti Teknologi Mara, Bandar Seri 

Iskandar, 4°21' N, 100°57' E, 09 January 2007, Chan FRI 49263 (K!, KEP!). Sabah: 

Sandakan, Kabili-Sepilok Forest Reverse, 5°50' N, 117°56' E, 12 June 1937, Enggoh 

7432 (K!); Semporna, Mapat Reserve, Timbun Mata Forest Reverse, 01 August 1937, 

Puasa 7404 (K!); Kampung Kauluan, 6°0' N, 116°35' E, 09 May 1994, Sambuling 169 

(K!); Ranau, Kampung Takutan, 6°7' N, 116°43' E, 29 March 1995, Tadong 179 (K!); 

Ranau, Kampung Poring. Minintaiku Forest Reserve, 04 May 1994, Sambuling 144 

(K!); Kampung Poring, on the hill top, 04 January 1994, Sambuling 45 (K!); Kampung 

Poring, 09 September 1992, Giking 22 (K!); Kampung Poring, 10 February 1994, 

Sambuling 82 (K!); Kampung Tensungoi, 5°7' N, 115°35' E, 02 June 1994, Sambuling 

202 (K!); Mile 55, Sandakan-Telupid, 100 m, 26 October 1979, Dransfield et al. 5818 

(K!, SAR, SAF). Sarawak: Kuching, Gunung Serapi, Kubah National Park, forest trail, 

274.32 m, 07 February 1995, Baker 509 (K!, KEP!); Kuching, 1st Division, Kampung 

Semedang, 24th Mile Penrissen Road, 11 August 1985, Saigol 15 (K!); 1st Division, 

Kampung Gayu, 250 m, 1°13' N, 110°21' E, 15 July 1993, Bunker 27 (K!); 1st Division, 

Kampung Kakeng, 200 m, 1°9' N, 110°27' E, 20 July 1993, Bunker OX39 (K!); Kapit, 

7th Division, 8 km Logging Camp, Nanga Mujong, 28 August 1985, Saigol 25 (K!); 

Lubok Antu, 2nd Division, Delok River, on slope in open secondary forest near Nanga 
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Sumpa, 250 m, 1°20' N, 112°10' E, 05 March 1993, Christensen 1211 (K!); Simunjan, 

1st/2nd Division Border Gunung Buri, near summit, 700 m, 1°10' N, 110°55' E, 22 May 

1981, Dransfield et al. 6115 (K!, NY, L); Baram, on hill behind house, Long Selatong 

Ulu, 228.6 m, 15 July 1977, Chung 2768 (K!); Belaga, 3rd Division, Sungai Masoh, 

rumah Nyaving, Kuala Linau, Ulu Belaga, 200 m, 09 August 1975, Dransfield 4688 

(K!, KEP!, L). Terengganu: Kemaman, Bukit Kajang, 14 November 1935, Corner 

30467 (K, SING); Dungun, Jerangau Dalam, 18 November 2014, Shahimi 9 (K!, 

KEP!). Singapore: Herbarium Botanic Gardens, 15 June 1949, Furtado 37946 (SING!, 

BH, K!, L, BO, AA, PNH, LAE, KEP, SAR, PAR); Chau Chu Raug, 10 December 

1892, Ridley 3521 (K!); Nee Soon jungle, Thomson Road, bin Rani 27 (SING, K); Nee 

Soon Swamp Forest, Rajasegar 18 (K!); MacRitchie Forest, 39 m, 1°21' N, 103°48' E, 

09 December 2014, Shahimi 23 (K!, SING!). 

Notes:—Korthalsia echinometra is the commonest ant species in the genus Korthalsia. 

It is a very distinctive species, yet from a distance, it can be mistaken for as a species of 

a rattan genus other than Korthalsia because of its narrow lanceolate leaflets. Its large 

inflated ocrea with long slender spines and narrowly lanceolate leaflets are diagnostic. 

The ocreas of K. echinometra are inhabited by ants of Camponotus sp. and Iridomyrmex 

sp. (Chan et al., 2012). Daemonorops ochreata and Calamus ochreatus are invalid 

name because the names have not been published properly according to Art. 6.2 in 

International Code of Nomenclature (ICN). 
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MAP 3 Distribution of Korthalsia echinometra Becc. Dots are point localities of 

specimens examined. Map prepared by Salwa Shahimi, using QGIS.  
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PLATE 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia echinometra Becc. Top left: ocrea. Top right: leaflets arrangement (Bunker 

27). Bottom left: inflorescence (Dransfield 2828). Bottom right: fruit (Dransfield 2828).  
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4. Korthalsia furcata Becc. (1918: 120). Type:—INDONESIA. West 

Kalimantan: Sungai Kenepai, Hallier 2034 (holotype BO; isotype FI!). MAP 

4. PLATE 4. 

 

Slender, clustering rattan climbing to 20 m. Stem with sheaths 4–6 mm diam., without 

sheaths 2–3 mm diam.; internodes ca. 9 cm. Leaf ca. 0.6 m long including cirrus and 

petiole; sheath brown, with caducous, brown coloured indumentum, sheath armed with 

scattered abundant brown triangular spines, spines 1–3 mm long, ca. 1 mm wide; ocrea 

20–25 × 10–11 mm, small, almost rounded and start inflated above the petiole, clasping 

the stem, tough, brownish, armed with ca. 2 mm long tiny triangular spines, ant present; 

cirrus ca. 0.28 m, armed with recurved grapnel spines organised in whorls; petiole ca. 2 

cm, ca. 4 mm wide and ca. 2 mm thick at base, flattened adaxially, abaxially rounded, 

with caducous, indumentum as sheath, sparsely armed with spines; rachis 3.5–4.0 cm in 

length, armed with recurved grapnel spines; usually only one leaflets each side of 

rachis, regularly arranged, furcate (bilobed), mid-leaf leaflets 33.8–36.7 × 4.2–4.6 cm, 

leaflet dull green above, glabrous, caducous, grey-whitish indumentum on 

undersurface, with inconspicuously praemorse margin, transverse veinlets moderately 

conspicuous, fine and closely spaced, ca 0.5 mm. Inflorescence lax, ca. 35 cm long, 

branched to 2 orders; rachis bracts up to 3.0–7.7 × 0.7–1.5 cm, splitting, with caducous, 

dark brown indumentum; primary branches 2, 3.5–8.3 cm apart; proximal primary 

branch 14.3 cm long, with up to 2 rachillae; rachillae 4.7–17.2 cm long and slender 

including 0.6–1.2 cm visible stalk, 0.6–0.7 cm wide, densely hairy between rachilla 

bracts. Flower not seen. Fruit mature fruit not seen. Seed not seen. 

 

Distribution:—Borneo (1st Division at Sarawak, Malaysia). 

Habitat:—In valley bottom in transitional between hill Dipterocarp forest and 

Kerangas at 350 m altitude. 

Uses:—Not recorded.  

Vernacular name:—Not recorded. 
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Specimens examined:—MALAYSIA. Sarawak: Serian, 1st Division, Sabal Tapang 

Forest Reserve, Block 14, 350 m, 18 May 1981, Dransfield et al. 6074 (K!, NY, L, B); 

Kuching, Sungai Kopak, Ulu Samunsam, 200 m, 21 August 1998, Rantai & Lai 74544 

(K!, KEP, L). 

Notes:—Korthalsia furcata is very similar to K. rostrata but can be readily 

distinguished by the leaf which has only two leaflets which appear forked.  

 

 

 

 

 

 

 

 

 

 

 

MAP 4 Distribution of Korthalsia furcata Becc. Dots are point localities of specimens 

examined. Map prepared by Salwa Shahimi, using QGIS.  
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PLATE 4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia furcata Becc. Top left: leaflets (Dransfield 6075). Top right: inflorescence 

(Dransfield 6075). Bottom: ocrea (Dransfield 6075). 
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5. Korthalsia furtadoana J.Dransf. (1981: 185). Type:—MALAYSIA. Sabah, 

16 October 1979, Dransfield et al. JD 5763 (holotype K!; isotype SAN, 

SAR). MAP 5. PLATE 5. 

 

Slender, clustering rattan climbing to 20 m. Stem with sheaths 8–11 mm diam., without 

sheaths 5–8 mm diam.; internodes 7–12 cm. Leaf 0.60–0.88 m long including cirrus 

and petiole; sheath green, with brown indumentum in colour, sheath armed with 

scattered abundant black triangular spines, spines 1–6 mm long, 1–2 mm wide; ocrea 

25–83 × 10–15 mm, conspicuous, tightly sheathing above the petiole and then elongate 

inflated, clasping the stem, tough, brown, armed with 1–6 mm long, triangular black 

spines, numerous ants within the ocrea, entry hole made by ants visible; cirrus 0.3–0.7 

m, armed with recurved grapnel spines organised in whorls; petiole 25–70 mm, 5–7 mm 

wide and 2–3 mm thick at base, flattened adaxially, abaxially rounded, with few spot of 

brown indumentum, armed with spines as sheath and reflexed grapnel spines; rachis 

0.27–0.43 m, armed with recurved grapnel spines; 5–6 leaflets each side of rachis, 

regularly arranged, narrowly rhomboid, mid-leaf leaflets 9.0–19.7 × 4.4–6.6 cm, leaflet 

dull to dark green above, glabrous, with lacking indumentum on undersurface, with 

inconspicuously praemorse margin, transverse veinlets conspicuous, fine and closely 

spaced, ca. 0.5 mm. Inflorescence lax, 26.5–100 cm long including ca. 10 cm peduncle, 

branched to 2 order; prophyll 1.5–6.5 × 0.5–0.7 cm; rachis bract up to 3.5–5.9 × 1.3–3.3 

cm, tightly sheathing and splitting, caducous, brown indumentum with several tiny 

spines; primary branches 1–2, 9.5–13.5 cm apart; proximal primary branch 13.5–19.5 

cm long, with up to 1–3 rachillae; rachillae 12.0–19.8 cm long and congested, stalk not 

visible, 0.7–1.4 cm wide, densely hairy between rachilla bracts. Flower 8 × 4 mm in the 

bud. Fruit ovoid, 1.3–2.2 × 0.8–1.2 cm covered in 15–23 vertical rows of yellow-

brownish scales. Seed 1.2 x 0.8 cm; endosperm ruminate. 

 

Distribution:—Borneo (Brunei, Sabah, East and South Kalimantan). 

Habitat:—Occasionally occurs at lowland Dipterocarp forest. 

Uses:—Not recorded. 
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Vernacular name:—Not recorded. 

Specimens examined:—BRUNEI. Temburong: Amo, beside the Belalong River, 4°37' 

N, 115°6' E, Wong 1326 (K!); Batu Apoi, Bukit Belitun, Sungai Sinupoi, south of 

village, 40 m, 4°36' N, 115°11' E, 21 January 1994, Dransfield 7477 (K!). Tutong: 

Lamunin, Compartment 1, 30 m, 4°41' N, 114°43' E, November 1990, Dransfield et al. 

6875 (K!). INDONESIA. Kalimantan Selatan: Tabaling, Upper Tabalong Area, PT Aya 

Yayang Indonesia Concession, Kebun Bibit, km 54, Sungai Papun, 200 m, 06 August 

2000, Mogea 7431 (BO, K!, L, NY, WAN); Tabalong, Upper Tabalong Area, PT Aya 

Yayang Indonesia Concession, cutting block 1999/2000 near km 54 Kebun Bibit, 400 

m, 12 August 2000, Mogea 7436 (BO, K!, L, NY, WAN); Upper Taba-ong Area, PT 

Aya Yayang Indonesia Concession, Misim, 50 m, 1°40' S, 115°24' E, 05 August 2000, 

Mogea 7408 (BO, K!, L, NY, WAN); PT Yayang Tanjung, 20 August 1985, Anggana 

039 (K). Kalimantan Tengah: Bukit Raya, Leighton 376 (K). Kalimantan Timur: Berau, 

near km 37 Camp, Inhutani I, 80 m, 1°55' N, 117°10' E, 09 August 2003, Watanabe 59 

(K!, BO); 7 km from Eheng (village), Barong Tongkok (district) near Kelian, upper 

Mahakan, 10 November 1991, Stockdale 101 (K!); Lingau, 2 km from Prampus, P.T. 

KEM cencession near Kelian, upper Mahakan River, 11 November 1991, Stockdale 104 

(K!); near Sangatta River, Kutai Reserve, halfway between "Prevab" camp and 

"Mentoko" camp, 20 m, 30 October 1991, Stockdale 78 (K!); Mentoko Camp, Kutai 

Reserve, 50 m, 31 October 1991, Stockdale 85 (K!). MALAYSIA. Sabah: Kalabakan, 

Hap Seng logged area, km 12, 12 June 1982, Krispinus 94884 (K); Kota Kinabatangan, 

Hutan Simpan Pin-Supu, 80 m, 2 April 1992, Dewol SAN 132477 (K!, SAN); Lahad 

Datu, Forest District Lahad Datu, 05 November 1949, Cuadra 2498 (K!); Lahad Datu, 

Block 43 Bagahak, 04 April 1962, Howroyd SAN 29366 (K!); Lahad Datu, Cpt. 54 

Bakapit, Kennedy Bay, 457.2 m, June 1962, Burgess SAN 30782 (K!); Nabawan, Mile 

2½ Rahsna Road, 19 January 1978, Abas SAN 85854 (K!, L, SAR); Pinangah, Ulu 

Sg.Melikop, 30 August 1984, Leopold SAN 64584 (K!); Ranau, Ulu Tungud Forest 

Reserve, Gunung Monkobo Expedition, 471 m, 5°49' N, 117°0' E, 25 July 2005, Saw 

SAN 146691 (SAN, KEP!, SAR, K!, L); Ranau, Kampung Poring, 11 February 1994, 

Sambuling 93 (K!); Sandakan, Sungai Menenggul, 5°30' N, 118°16' E, 27 February 

1985, Amin SAN 68050 (K!, KEP!); Sandakan, Sepilok Forest Reserve, Forest District 

Elopura, 5°52' N, 117°55' E, 24 September 1949, Kadir 2643 (K!, KEP!); Sandakan, 

Sepilok Forest Reserve, 50 m, 28 February 1995, Baker 553 (K!); Sandakan, Kabili-
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Sepilok Forest Reserve, 5°50' N, 117°56' E, 25 07 1937, Matusop 7427 (K!); Sandakan, 

Ulu Dusun Agriculture station, 7 m, 16 September 1979, Dransfield et al. 5763 (K!, L, 

SAR, SAF); Sandakan, Subak camp, Jesselton District, 19 December 1962, Madani 

SAN 33215 (K!); Tawau, St Lucia, Ranggu Mile 10 3/4, state forest, 16 September 

1949, Cuadra 2377 (KEP); Tawau, Luasong Forest Reserve, logging area, 4°38' N, 

117°24' E, 16 August 1977, Fedilis SAN 87333 (K!, L, SAR, KEP!, SING!); Tawau, 

mile 10 ó State Forest, Forest District St. Lucia, 16 September 1949, Lenedia 2377 

(K!); Tawau, Elphinstone Province, October 1922, Elmer 20476 (K!); Tenom, Paling-

paling Hills, Lagud, 300 m, 04 September 1979, Dransfield et al. 5591 (K!, L, SAR, 

SAF); Danum Valley, Ulu Segama, plot 2, west trail from field station, 150 m, 09 

March 1987, Argent 291987 (E!, K!); BetoTan, 15.24 m, 16 May 1933, Castro 3201 

(K); Kampung Wolit, ½ km from house to east, 29 August 1997, Jinuan 24 (K); Ulu 

Segama, west trail, 200 m, 16 February 1986, Dransfield 6260 (K); Kampung 

Tensungoi, 5°7' N, 115°35' E, 02 June 1994, Sambuling 198 (K!). 

Notes:—Korthalsia furtadoana is distinctive when fertile, but is much harder to 

determine when sterile. It is similar and closely related to K. rostrata but can be 

distinguished from K. rostrata by its very robust rachilla and conspicuous fine closely 

spaced transverse veinlets in leaf. K .furtadoana inhabited by ants of Crematogaster sp. 

(Edwards et al., 2010), Camponotus sp. and Polycharchis sp. (Chan et al., 2012). Based 

on the phylogenetic results of this study, K. furtadoana has a close relationship with K. 

rostrata. 
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MAP 5 Distribution of Korthalsia furtadoana J.Dranf. Dots are point localities of 

specimens examined. Map prepared by Salwa Shahimi, using QGIS.  
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PLATE 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia furtadoana J.Dranf. Top left: leaflets arrangement (Howrayd SAN 29366). 

Top right: ocrea (Howrayd SAN 29366). Bottom left: inflorescence (Dransfield 5590). 

Bottom right: fruits (Amin et al. 68050). 
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6. Korthalsia hispida Becc. (1884a: 71). Type:—INDONESIA. Sumatra, 1 

August 1878, Beccari PS 643 (holotype FI!: isotype K!). MAP 6. PLATE 6. 

 

Moderately robust, clustering rattan climbing to 20 m. Stem with sheaths 11–25 mm 

diam., without sheaths 8–10 mm diam.; internodes 10–20 cm. Leaf 1.15–2 m long 

including cirrus and petiole; sheath bright green, with caducous, brown coloured 

indumentum, sheath armed with scattered abundant, black, needle-like spines, spine 2–

30 mm long, ca. 1 mm wide; ocrea 18.5–30.0 × 3.0–4.5 cm, conspicuous, diverging 

from the angle at stem just above the petiole, the margins tending to enroll, papery, 

brown, armed with 3–30 mm long black spines and abundant chocolate spicules, 

abundant black fierce and very noise ants nested within the ocrea; cirrus 0.5–1.0 m, 

armed with recurved grapnel spines organised in whorls; petiole 10.0–35.0 cm, 10–20 

mm wide and 3–5 mm thick at base, flattened adaxially, abaxially rounded, with brown 

indumentum, sparsely armed with fine spines as sheath; rachis 0.30–1.07 m, armed with 

recurved grapnel spines; 5–8 leaflets each side of rachis, regularly arranged, rhomboid, 

mid-leaf leaflets 15.0–19.6 × 5.0–8.6 cm, leaflet dull to light green above, glabrous, 

with caducous, whitish indumentum on undersurface, distal margin conspicuously 

praemorse, transverse veinlets moderate conspicuous and moderately spaced, 1.0–1.5 

mm. Inflorescence lax to congested, 30.0–50.2 cm long including ca. 45 mm peduncle, 

branched to (1–)2 orders; prophyll 4.5 × 1.0 cm, with caducous, dark brown 

indumentum with scattered tiny spines; rachis bracts up to 8.3–9.5 × 2.6–3.4 cm, 

conspicuous, inflated and splitting, with caducous, dark brown indumentum and 

densely covered with chocolate scales and black spicules; primary branches 1–4, 4.0–

6.6 cm apart; proximal primary branch 17.0–27.5 cm long, with up to 1–3 rachillae; 

rachillae 11.5–22.3 cm long and slender, stalk not visible, 1.0–1.8 cm wide, lacking 

hairy between rachilla bracts. Flower 8–8.1 × 3.3–3.7 mm in the bud. Fruit round to 

oblong, 1.8–2.3 × 0.9–1.6 cm covered in 15–18 vertical rows of reddish-brown scales. 

Seed 1.1 x 0.8 cm; endosperm homogenous. 

 

Distribution:—Peninsular Malaysia, Borneo (Brunei, Sarawak, East and South 

Kalimantan). 
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Habitat:—Along steep-sides river valleys in lowland and hill Dipterocarp forest at 

altitudes up to 900 m above sea level. 

Uses:—Fibre for the plaiting of baskets, craft and binding constructions. 

Vernacular name:—Rotan semut (Iban), Paikat ayah pipit (Dayak Lawangan), Wi 

asas (Iban), Wi semut (Iban), Lesat (Lundaya), Uwai saar (Kenyah), Uei sanam 

(Kenyah), Laku sepuru (Punan), Ohot (Dayak Tunjung). 

Specimens examined:—BRUNEI. Belait: Labi, Teraja Longhouse, 4°23' N, 114°26' E, 

Wong & Dransfield 540 (K!, SING!). Temburong: Amo, Belalong River bank near 

Field Studies Centre, east side, 300 m, 4°33' N, 115°9' E, 06 September 1991, Stockdale 

31 (K!); Batu Apoi, Kerangan Batu Semawat, west-north-west of village, 30 m, 4°36' 

N, 115°11' E, Dransfield et al. 7494 (K!); Batu Apoi National Park, Kuala Belalong 

Field Centre Temburong river, 50 m, 15 February 1995, Baker 531 (K!, BRUN, UBD); 

South Temburong, above Kuala Belalong, 75 m, 4°30' N, 15°10' E, 21 February 1991, 

Argent et al. 9168 (K!). Tutong: Lamunin, between the rivers Batas and Tutong, 4°41' 

N, 114°43' E, Wong 1663 (K!). INDONESIA. Kalimantan Selatan: Tabalong, upper 

Tabalong area, PT Aya Yayang Indonesia Concession, km 69, 250 m, 07 August 2000, 

Mogea 7412 (BO, K!, L, NY, WAN); Tabalong, Upper Tabalong Area, PY Aya 

Yayang Indonesia Concession, Misim, 50 m, 1°40' S, 115°24' E, 06 August 2000, 

Mogea 7410 (BO, K!, L, NY, WAN); P.T. Yayang Tanjung, 100 m, 22 August 1985, 

Anggana 048 (K). Kalimantan Timur: Bordering Talib's Farm, Lingon, 2 km from 

Prampus, PT KEM concession, Kelian, upper Mohakan River, 11 November 1991, 

Stockdale 106 (K!); Surroundings WWF basecamp, Kayan Mentarang Reserve, 400 m, 

2°51' N, 115°55' E, 24 November 1991, van Valkenburg 1063 (K!); Berau, RKT 92-93, 

Inhutani I Concession, 250 m, 08 December 1991, Stockdale 142 (K!). Sumatra: 

Padang, Ayer manicior (Ajer mantjoer), August 1878, Beccari 643 (K!). MALAYSIA. 

Johor: Bekuk, Hutan Lipur Batang, 90 m, 2°20' N, 103°09' E, 24 November 2014, 

Shahimi 11 (K!, KEP!); Kota Tinggi, Panti Forest Reserve, 10 m, 10 June 1977, 

Dransfield 5035 (K!); Kota Tinggi, Gunong Panti, East Forest Reserve, 20 m, 1°50' N, 

103°54' E , 07 January 1973, Dransfield 3037 (L, K!, SING!, MAN, PAR, LAE, G, 

SAR, BH, NSW, NY, CAL, KEP, BRI, CANB, SAN, US, BO); Labis, Labis Forest 

Reserve, Ulu Endau, Gunung Janung, valley bottom, 100 m, 2°10' N, 103°22' E, 16 

June 1977, Dransfield 5090 (K!). Pahang: Kuantan, Galing Forest Reserve, 20 m, 3°52' 
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N, 103°19' E, 11 August 1977, Dransfield 5227 (K!). Sabah: Telupid, c. 8 miles, 

Entelebun-Menanam, 150 m, 24 September 1979, Dransfield et al. 5803 (K!, SAR, 

SAF); Tenom, hills above Kampung Baru Jumpa, 700 m, 05 September 1979, 

Dransfield et al. 5598 (K!, SAR, KEP!, SAF); Kampung Kiau Nuluh, 19 September 

1992, Duaneh 118 (K); Kampung Sorinsim, 17 March 1993, Sibil 162 (K!). Sarawak: 

Baram, 4th Division Around Long Selatong Lepo Ga', on hill behind house, banks of 

Benuon river, 400 m, 19 April 1980, Chin 3008 (K!); Belaga, 3rd Division, Sungai 

Masoh, rumah Nyaving, Kuala Linau, Ulu Belaga, 200 m, 10 August 1975, Dransfield 

et al. 4705 (K!, KEP!, L, BH, SING!); Kapit, upper Rejang River, Clemens 22085 (K!); 

Kuching, 1st Division, Kampung Kakeng, 200 m, 1°9' N, 110°27' E, 20 July 1993, 

Bunker 36 (K!); Tawau, Elphinstone Province, British North Borneo, October 1922, 

Elmer 21553 (K!); Lubok Antu, 2nd Division, Delok River, on steep slope in secondary 

forest near Nanga Sumpa, 200 m, 1°20' N, 112°10' E, 31 May 1993, Christensen 1188 

(K!). 

Notes:—Korthalsia hispida and K. robusta are the only two species in Korthalsia with 

ocreas that do not clasp the stem but diverge at an acute angle just above the petiole. 

These two species are the noisy rattans. The ocreas of K. hispida are inhabited by ants 

of Camponotus sp. (Mattes et al., 1998). The ants make a rustling noise by banging 

their abdomens against the ocrea when the plant is disturbed. K. hispida can be 

distinguished from K. robusta by the presence of black spicules on the ocrea and 

sheaths. Based on the phylogenetic results of this study, K. hispida is closely related to 

K. robusta. 
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MAP 6 Distribution of Korthalsia hispida Becc. Dots are point localities of specimens 

examined. Map prepared by Salwa Shahimi, using QGIS.  
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PLATE 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia hispida Becc. Top left: habit. Top right: ocrea. Bottom left: inflorescence 

(Dransfield et al. 7494). Bottom right: fruit (Argent and Mitchell 9168). 
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7. Korthalsia robusta Blume (1843: 170). Type:—INDONESIA. Sumatra, 

Praetorius s.n. (holotype L: isotype K!, L!). MAP 7. PLATE 7. 

 

Korthalsia squarrosa Becc. (1909: 620). Type:—PHILIPPINES. Palawan, 

Curran 4155 (holotype FI; isotype K!). 

Korthalsia macrocarpa Becc. (1918: 149). Type:—INDONESIA. Borneo, H. 

Winkler 2777 (holotype FI). 

 

Robust, clustering rattan climbing to 40 m. Stem with sheaths 20–35 mm diam., 

without sheaths 14–20 mm diam.; internodes 24–25 cm. Leaf 1.5–3 m long including 

cirrus and petiole; sheath bright green to green, with abundant dark brown to brown-

black floccose, sparsely armed with scattered black, triangular spine, spines 2–30 mm 

long, 1–2 mm wide; ocrea 16.0–41.0 × 3.0–7.0 cm, conspicuous, diverging from the 

angle at stem just above the petiole, the margins tending to inroll, papery, brown in 

colour, armed with abundant 2–30 mm long dark brown spines, , black ants usually 

abundant and very noisy; cirrus 0.50–1.75 m, armed with recurved grapnel spines 

organised in whorls; petiole 10–35 cm, 12–30 mm wide and 4–6 mm thick at base, 

flattened adaxially, abaxially rounded, with slightly grey indumentum, sparsely armed 

with spines as sheath; rachis 0.65–1.35 m, armed with recurved grapnel spines; 6–10 

leaflets each side of rachis, regularly arranged, rhomboid to broadly rhomboid, mid-leaf 

leaflets 20.2–27.8 × 4.2–13.8 cm, leaflet dull green to dark green above, glabrous, with 

grey-whitish indumentum under surface, distal margin conspicuously praemorse, 

transverse veinlets conspicuous, fine and closely spaced ca. 0.5 mm. Inflorescence 

congested, 34.9–51.0 cm long including 3.5–15.0 cm peduncle, branched to 2 orders; 

prophyll 2.5–8.0 × 2.2–3.7 cm, with caducous, brown indumentum; rachis bracts up to 

12.3–16.2 × 4.7–8.0 cm, conspicuous, inflated, with caducous, dark brown indumentum 

and black spicules; primary branches 3, 3.0–4.5 cm apart; proximal primary branch 

16.0–17.0 cm long, with up to 2 rachillae; rachillae 13.0–16.0 cm long and slender, 

stalk not visible, 1.2–2.0 cm wide, lacking hairy between rachilla bracts. Flower 8.4–

11.0 × 3.4–5.0 mm in the bud. Fruit round to oblong, 1.8–2.3 × 0.9–1.6 cm covered in 
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16–18 vertical rows of mid-brown scales with darker intermarginal and straw-coloured 

margins. Seed 1.8 x 1.0 cm; endosperm homogenous. 

 

Distribution:—Borneo (Sabah, Sarawak, East and South Kalimantan), Palawan 

(Philippines). 

Habitat:—Lowland Dipterocarp forest. 

Uses:—Stem used for tying and weaving of baskets, shoots edible, handicraft and 

construction. 

Vernacular name:—Oros (Kutai dialect), Rotan lasas (Kadazan), Wi semut (Iban), 

Wae asa (Kelabit language), Wae perah (Penan), Ayas (Pasir language). 

Specimens examined:—BRUNEI. Temburong: Batu Apoi National Park, Kuala 

Belalong Field Centre Jalan Tengah, path to Bukit Belalong, 1 km from field centre, 

300 m, 16 February 1995, Baker 534 (K!, BRUN, UBD). INDONESIA. Kalimantan 

Tengah: Bukit Raya, Leighton 947 (K!). Kalimantan Timur: Berau, near km 37 Camp, 

Inhutani I, 30 m, 2°22' N, 117°12' E, 18 August 2002, Watanabe 44 (K!, BO); Halfway 

between Prevab and Mentoko Camps, Kutai Reserve, floodplain of Sangatta River, 20 

m, 30 October 1991, Stockdale et al. 80 (K); Tabang, Gunung Mendam, KTI, 400 m, 16 

January 1979, Mogea 1629 (K!, KYO); Ma Ancalong, Ma Lun, Sungai Kelinjau, 04 

October 1980, Mogea 2708 (K!). Kalimantan Selatan: Sungai Rusi near Mount 

Sarempaka, 450 m, 1°49' S, 115°44' E, 04 November 1972, de Vogel 2073 (K!); Datar 

Alai, Pegunungan Meratus Barabai, 350 m, 26 October 1972, Dransfield 2967 (K!, L, 

BH). Sumatra: Lampung, NW of Kota Agung, 350 m, 5°23' S, 104°25' E, 09 May 1968, 

Jacobs 8295 (K!). MALAYSIA. Sabah: Lahad Datu, Masuri, Ulu Segama, 5°5' N, 

118°17' E, 20 November 1949, Cuadra 248 (K!, KEP!); Ranau, Kampung Bundu 

Tuhan, Kinatongan, 5°57' N, 116°32' E, 07 September 1994, Soibeh 828 (K!); Ranau, 

Poring, near hot springs, 700 m, 29 August 1979, Dransfield et al. 5563 (K!, SAR, 

KEP!, SAP); Ranau, Kampung Poring, next to Mamut Copper Mine, 03 May 1994, 

Sambuling 133 (K!); Sandakan, Elopura, Mile 15 state forest, 5°41' N, 118°6' E, 24 

March 1949, Cuadra 2226 (K!, KEP!); Sandakan, Elopura, Sapagaya River, 21 May 

1949, Cuadra 2275 (K!, KEP!); Sandakan, Sepilok Forest Reserve, 50 m, 28 February 

1995, Baker et al. 552 (K!); Sandakan, Virgin Jungle Reserve, Mile 42 Segaliud-Lokan 
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Forest Reserve, 50 m, 18 October 1979, Dransfield et al. 5772 (K!, SAR, SAF); 

Tambunan, Kampung Mansaralong mile 56 ½, 11 July 1978, Abas SAN 85923 (K!); 

Kinabatangan Besar, Kori, timber camp, 5°38' N, 118°36' E, 02 November 1948, 

Cuadra 2158 (K!, KEP!); Kota Marudu District, Kampung Serinsim, 27 April 1995, 

Bakia 339 (K!). Sarawak: Baram, Sungai Tutoh, 45.72 m, 4°0' N, 114°48' E, 11 

February 1966, Wee-Lek 1086 (K!); Kapit, 7th Division, 8 km Logging Camp, Nanga 

Mujong, 28 August 1985, Saigol 33 (K!); Miri, Gunung Mulu National Park, 4th 

Division, on banks of Sungai Melinau near base camp, 30 m, 03 October 1977, 

Dransfield 5262 (K!, NY); Miri, Gunung Mulu National Park, 35 m, 4°2' N, 114°48' E, 

14 September 2015, Shahimi 26 (K!, KEP!); 4th Division, Kelabit Highlands on slope 

in secondary forest near Ramudu, 900 m, 3°40' N, 115°50' E, 06 October 1993, 

Christensen 185 (K!). PHILIPPINES. Palawan: Balabac Island, 7°56' N, 117°0' E, 16 

October 1906, Merrill 5384 (K!); Kampo 1, 05 March 1984, Madulid 1010 (K); St. 

Paul's Bay National Park, Lion Cave, 15 m, 07 May 1984, Dransfield 6177 (K!); Pulot 

III, North of Brooke's Point, 100 m, 22 May 1984, Dransfield 6206 (K!); Puerto 

Princesa, Bagumbayan, 22.86 m, 18 November 1983, Baja-Lapis 072 (K!); Puerto 

Princesa, on road between Puerto Princesa and Palawan Consolidated Mining 

Corporation's Concession, 100 m, 9°56' N, 118°42' E, 11 April 1979, Dransfield 5492 

(K!). 

Notes:—Korthalsia robusta is similar to K. hispida but can be easily distinguished 

from K. hispida by the absence of black spicules on the sheaths, ocreas, and bracts, and 

by the very congested inflorescences. K. robusta is a noisy rattan and inhabited by ants 

of Camponotus sp. and Dolichoderus sp. (Chan et al., 2012). These ants are big, black 

and very fierce and make this rattan difficult to collect. Based on the phylogenetic 

results of this study, K. robusta is closely related to K. hispida. 
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MAP 7 Distribution of Korthalsia robusta Blume. Dots are point localities of 

specimens examined. Map prepared by Salwa Shahimi, using QGIS. 
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PLATE 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia robusta Blume. Top left: leaflets arrangement. Top right: ocrea. Bottom left: 

inflorescence (Dransfield 5262). Bottom right: fruit (Dransfield 5262). 
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8. Korthalsia rostrata Blume (1843: 168). Type:—INDONESIA. Borneo: 

Sungai Dusun, Muller s.n. (holotype L!). MAP 8. PLAT 8. 

 

Ceratolobus rostratus (Blume) Becc. (1919: 11). 

Korthalsia scaphigera Mart. (1845: 211). Calamosagus scaphiger (Mart.) Griff. 

(1850: 30). Type:—MALAYSIA. Malacca, Griffith s.n. (holotype BR; isotype 

K!).  

Korthalsia lobbiana H.Wendl. (1859: 174). Type:—MALAYSIA. Sarawak, 

Lobb 106 (holotype K!). 

Korthalsia machadonis Ridl. (1907: 216). Type:—MALAYSIA. Perak: K

 amuning, Machado s.n. 

 

Slender, clustering rattan climbing to 20 m. Stem with sheaths 5–15 mm diam., without 

sheaths 4–6 mm diam.; internodes 10–12 cm. Leaf 0.4–1.1 m long including cirrus and 

petiole; sheath green, with dark brown to black indumentum, sheath armed with 

scattered tiny abundant yellow-brown to black triangular spines, spines 1–4 mm long, 

1–2 mm wide; ocrea 25–50 × 10–30 mm, conspicuous, almost rounded and start 

inflated above the petiole, tough, pale brown to light brown in colour, armed with 2–5 

mm long, tiny triangular brown to dark brown spines, ants abundant within the ocrea; 

cirrus 0.30–1.25 m, armed with recurved grapnel spines organised in whorls; petiole 2–

18 cm, 5–19 mm wide and 2–3 mm thick at base, flattened adaxially, abaxially rounded, 

with caducous brown indumentum, sparsely armed with spines as sheath; rachis 0.25–

1.45 m, armed with recurved grapnel spines; 4–6 leaflets each side of rachis, regularly 

arranged, broadly rhomboid, mid-leaf leaflets 13.5–20.5 × 5.0–6.5 cm, sometime 

(rarely) the leaflet narrowly lanceolate, to 21.5–30.8 × 1.5–2.8 cm, leaflet dark green 

above, glabrous, with caducous, chalky-white indumentum on undersurface, distal 

margin conspicuously praemorse, transverse veinlets conspicuous, moderate closely 

spaced, 1.0–1.5 mm. Inflorescence lax, 35.2–77.5 cm long including 8.7–9.0 cm 

peduncle, branched to 2 orders; prophyll 3.5–6.0 × 0.7–0.8 cm, with caducous, brown 

indumentum; rachis bracts up to 4.5–8.7 × 0.9–3.3 cm, tightly sheathing, splitting, with 
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caducous, brown indumentum with several tiny spines; primary branches 2–4, 4.1–11.2 

cm apart; proximal primary branch 14.7–19.0 cm long, with up to 2–4 rachillae; 

rachillae 12.7–18.6 cm long and slender, including 0.7–1.7 cm visible stalk, 0.5–0.7 cm 

wide, lack to hairy between rachilla bracts. Flower 5.0–5.1 × 2.0–2.2 mm in the bud. 

Fruit 2.4–2.5 × 1.6–1.7 cm covered in 15–19 vertical rows of orange-brown scales. 

Seed 1.1–1.6 × 0.7–1.0 cm, endosperm ruminate. 

 

Distribution:—Peninsular Malaysia, Borneo (Brunei, Sarawak), Singapore, Sumatra. 

Habitat:—Occurs in a variety habitats including lowland and hill Dipterocarp forest 

and Kerangas. 

Uses:—Stems used for weaving basket and mats. 

Vernacular name:—Wi cit (Iban), Wi Semut (Iban), Uwai merah (Dusun), Rotan 

kawan (Aceh), Wee pak lavo (Kayan), Laku sepuru (Punan), Uei saman (Kenyan), 

Lempinit ralun (Murut), Wi nang (Iban), Rotan seru (Iban), Rotan semut (Iban). 

Specimens examined:—BRUNEI. Belait: Sungai Liang, Sungai Liang Arboretum 

Reserve, 4°41' N, 114°29' E, Wong 137 (K!). Temburong: Temburong River Valley, in 

area of river bed near helicopter pad, 50 m, 4°48' N, 115°3' E, Johns 7282 (K!); Jalan 

Tengah 1850 m from north end, 100 m, 4°43' N, 115°4' E, 01 August 1991, Stockdale 

14 (K); Amo, Temburong River upstream from the Wong Nguan gorge, 500 m, 4°37' 

N, 115°6' E, 10 April 1990, Wong 1738 (K!); Amo, Kuala Belalong, 300 m, 4°32' N, 

115°9' E, 14 February 1992, Dransfield 7064 (K!); Bukit Belalong, north ridge, 4°29' 

N, 115°11' E, 20 July 1989, Wong s.n. (K!). INDONESIA. Kalimantan Tengah: near 

Rekut base camp, 250 m, 0°2' S, 114°6' E, 11 April 1992, Awmack 299 (K!). 

Kalimantan Timur: Berau, RKT 92-93, Inhutani I Concession, 250 m, 08 December 

1991, Stockdale 137 (K!); near Sedulan, ca 50 km north of Sebulu, 27 December 1978, 

Mogea et al. 1535 (K!); surrounding WWF basecamp Kayan Mentarang Reserve, 350 

m, 2°51' N, 115°55' E, 23 November 1991, van Valkenburg 1055 (K!); about 30 km 

north of Sebulu, 30 December 1978, Mogea et al. 1548 (K!); Kalimantan, Sintang, HPH 

km 86 - 85, along subsidiary road south towards Riam Batang, 80 m, 0°49' S, 112°3' E, 

04 May 1994, Church 1302 (K!); Kelian, K. Equatorial Mining area, 250 m, 0°20' S, 

115°55' E, 17 March 1997, Kessler 2080 (K!, L). Sumatra: Aceh Selatan, collected on 
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Gunung Simpang Kiri, 23 October 1997, Sangaji & Barrow 11 (K!); Aceh Selatan, 

Kampong Lamee, 72.85 m, 4°1' N, 96°29' E, 21 October 1997, Sangaji & Barrow 6 

(K!); East Coast, Silo Maradja, Asahan, May 1927, Bartlett 8132 (K!); East Coast, 

General region of Marbau, Bilah, near Bilah Pertama (Parbasiran), February 1928, 

Toroes 200 (K!); Jambi, Batang Tebopandak, 300 m, 1°38' S, 101°38' E, September 

1993, Trichon 801 (K!); Lampung, NW of Kota Agung, 350 m, 5°23' S, 104°25' E, 18 

May 1968, Jacobs 8482 (K!); Pajakumbuh, Taram, sanstone region of River Tjampo, 

500 m, 23 August 1957, Meijer 6881 (K!); Sumatra Barat, Sijunjung, Muro Kulampi, 

200 m, 26 February 1974, Dransfield 3957 (K!); Bengkulu, Ketahun, 40 m, 26 

December 1984, Uhaedi 019 (K!). MALAYSIA. Sabah: Tawau, St Lucia, Ranggu, 

Mile 10, State forest, 18 September 1949, Cuadra 2383 (K!, KEP!); Tawau, Membalua 

Forest Reserve, 50 m, 4°16' N, 118°0' E, 03 November 1979, Dransfield et al. 5855 

(K!, SAR, SAF); Mile 46, Nabawan, 400 m, 11 September 1979, Dransfield et al. 5636 

(K!, L, SAR, KEP, SAF); Telupid, c 5 miles on road Telupid-Karamuak, 24 October 

1979, Dransfield et al. 5798 (K!, SAR, SAF). Sarawak: Kapit, 7th Division, 8 km 

Logging Camp Nanga Mujong, 28 August 1985, Saigol 35 (K!); Kuching, 1st Division, 

Sungai Sendok, Proposed Matang National Park, Matang, 10 May 1987, Hock 53881 

(K!, L, NY); 1st Division, Wildlife Observation Path, Bako National Park, 19 August 

1975, Jawa 36609 (K!, NY, L, SAN); Gunung Gading, Lundu District, 17 April 1996, 

Ara 73906 (K!, SING!); Gunung Santubong, 100 m, 1°44' N, 110°20' E, 06 June 1964, 

Ashton 21471 (K!, NY); Lubok Antu, 2nd Division, Delok River, on steep slope in 

secondary forest near Nanga Sumpa, 150 m, 1°20' N, 112°10' E, 04 June 1993, 

Christensen 1183 (K!); Miri, Gunung Mulu National Park, 4th Division, proposed 

extension, hills near Gunung Buda, 250 m, 14 October 1977, Dransfield 5322 (K!); 

Miri, Gunung Mulu National Park, 4th Division, lower slopes of Gunung Mulu near 

Camp 1, 250 m, 4°5' N, 114°53' E, 05 October 1977, Dransfield 5272 (K!, NY, L); 

Serian, 1st Division, Sabal Tapang Forest Reserve Mile 70, 250 m, 19 May 1981, 

Dransfield et al. 6085 (K!, NY, L); 4th Division, Dulit Range, 350 m, 09 October 1983, 

Awa 46688 (K!, L); Wooded slopes of Mount Mattang above water works, 31 

December 1963, Moore 9084 (K); 5th Division, Path to Bukit Pagon, Limbang, 29 July 

1984, Awa 47554 (K!, KEP!); 3rd Division, Sungai Masoh, rumah Nyaving, Kuala 

Linau, Ulu Belaga, 200 m, 09 August 1975, Dransfield et al. 4680 (K!, KEP, L, BH, 

SING!); Semenggoh Forest Reserve, 12 miles from Kuching, 20 December 1955, 

Tomlinson 6 (K); Semenggoh arboretum, 09 February 1995, Baker 514 (K!, KEP!); 1st 
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Division, Kampung Gayu, 250 m, 1°13' N, 110°21' E, 15 July 1993, Bunker 30 (K!); 1st 

Division, Kampung Kakeng, 200 m, 1°9' N, 110°27' E, 20 July 1993, Bunker 33 (K). 

Johor: Endau, between Bukit Petar and Sungai, 07 September 1987, Gianno 151 (A, 

BISH, BO, K!, KEP!, L, LAE, P PNH, SAN, SAR, SING!, TI, TNS, UC, US). Mersing, 

Gunung Arong Forest Reserve Cpt. 9, 20 m, 2°32' N, 103°47' E, 13 June 1977, 

Dransfield 5064 (K); Ulu Kahang, 106.68 m, 02 June 1923, Holttum 10916 (K!). 

Pahang: Aur Forest Reserve, 38 miles inland from Kuala Rompin, 50 m, 24 July 1975, 

Dransfield 4583 (K!). Perak: Ipoh, Kinta Hills Forest Reserve, Compt. 78, near 

Ampang valley bottom, 350 m, 08 July 1975, Dransfield 4477 (K!); Kuala Kangsar, 

Gunung Bubu Forest Reserve Cpt. 77 Ulu Trong, 250 m, 4°44' N, 101°22' E, 18 

November 1977, Dransfield 5381 (K!). Larut, 152.4 m, October 1883, Dr King's 

collector 5047 (K!); Ridge of main range near Kampung Temakah, downstream from 

Pos Legap, Sungai Plus, 10 January 1988, Gianno 320 (A, BISH, BO, K!, KEP!, L, 

LAE, P PNH, SAN, SAR, SING!, TI, TNS, UC, US). Selangor: Semenyih, Sungai 

Lalang Forest Reserve, 200 m, 3°4' N, 101°52' E, 22 April 1977, Dransfield 4950 (K!). 

Terengganu: Besut, Ulu Setiu Forest Reserve foothills of Gunung Lawit, 100 m, 5°8' N, 

102°18' E, 03 August 1977, Dransfield 5142 (K!). SINGAPORE. Nee Soon Swamp 

Forest, 1°23' N, 103°48' E, Rajasegar & Loo 24 (K!); MacRitchie Forest, 17 m, 1°20' 

N, 103°49' E, 11 December 2014, Shahimi 25 (K!, SING!). 

Notes:—Korthalsia rostrata is almost distinguishable vegetatively to K. furtadoana. K. 

rostrata tend to have small, almost rounded ocrea compare to K. furtadoana. When it is 

fertile, it can easily be distinguished from K. furtadoana by its slender rachillae. In 

Brunei, K. rostrata occur to have lanceolate leaflets form rather than rhomboid. There is 

an only little collection in the herbarium. Although the shape of leaflets seems to be 

distinctive, other than that it appears to be identical to K. rostrata.  
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MAP 8 Distribution of Korthalsia rostrata Blume. Dots are point localities of 

specimens examined. Map prepared by Salwa Shahimi, using QGIS.  
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PLATE 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia rostrata Blume. Top left: Habit. Top right: inflorescence (Church et al. 

1302). Bottom left: ocrea (Dransfield et al. 6085). Bottom right: fruit (Laumonier TFB 

1155). 



129 
 

9. Korthalsia scaphigeroides Becc. (1909: 619). Type:—PHILIPPINES. 

Mindanao: Zambo-anga, 1 July 1906, Hutchinson 4816 (holotype FI: isotype 

NY!, US!). MAP 9. PLATE 9. 

 

Slender, clustering rattan climbing to ca. 5 m. Stem with sheaths ca. 10 mm diam., 

without sheaths ca. 8 mm diam.; internodes 9–23 cm. Leaf ca. 1.5 m long including 

cirrus and petiole; sheath brown, with caducous, grey-black indumentum, sheath armed 

with scattered abundant, brown, triangular spines, spines 2–7 mm long, ca. 2 mm wide; 

ocrea 4.5–10.0 × 1.5–2.5 cm, conspicuous, elongate and inflated, clasping the stem, 

tough, brown, armed with 1–5 mm long tiny triangular spines, abundant black ants 

nested within the ocrea, entry hole made by ants visible; cirrus ca. 45 cm, armed with 

recurved grapnel spines organised in whorls; petiole 9.7–13.0 cm, 5–6 mm wide and ca. 

3 mm thick at base, flattened adaxially, abaxially rounded, with brown indumentum as 

sheath, sparsely armed with spines as sheath; rachis 35–38 cm, armed with recurved 

grapnel spines; 4 leaflets each side of rachis, regularly arranged, rhomboid, mid-leaf 

leaflets 17.0–27.0 × 6.0–7.6 cm, leaflet dark green above, glabrous, with caducous, 

chalky-white indumentum on undersurface, distal margin conspicuously praemorse, 

transverse veinlets conspicuous, moderate closely spaced, 1.0–1.5 mm. Inflorescence 

not seen. Flower not seen. Fruit not seen. Seed not seen. 

 

Distribution:—Philippines (Mindanao). 

Habitat:—Growing in Dipterocarp forest at low altitude. 

Uses:—Furniture and basket making. 

Vernacular name:—Kaporigid (Philippines). 

Specimens examined:—PHILIPPINES. Mindanao: Agusan del Sur, Trento near 

Simulao, 100 m, 8°3' N, 126°4' E, 18 July 1984, Fernando 411 (K!); Agusan del Sur, 

Experimental Forest, FORI, 8°02' N, 126°03' E, Baja-Lapis 112 (K!); Surigan, April 

1915, Ponce 23913 (K!). 
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Notes:—This species is still known only from the sterile material. There is very little 

herbarium material is available. Although K. scaphigeroides is quite similar to K. 

rostrata, K. scaphigeroides has ocreas more than 5 cm longer than those of K. rostrata 

and the abaxial of leaflets have very dense chalky white indumentum.  

 

 

 

 

 

 

 

 

 

 

 

MAP 9 Distribution of Korthalsia scaphigeroides Becc. Dots are point localities of 

specimens examined. Map prepared by Salwa Shahimi, using QGIS.  
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PLATE 9 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia scaphigeroides Becc. Top left: leaf arrangement (Baja-Lapis 112). Top 

right: ocrea (Baja-Lapis 112). 
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10. Korthalsia scortechinii Becc. in J.D.Hooker (1893: 475). Type:—

MALAYSIA. Perak, Scortechini s.n. (holotype FI!). MAP 10. PLATE 10. 

 

Clustering rattan climbing to 20 m. Stem with sheaths 20–25 mm diam., without 

sheaths 10–15 mm diam.; internodes 25–30 cm. Leaf 1–2.5 m long including cirrus and 

petiole; sheath green, almost entirely obscured by ocrea, with caducous, grey-black 

coloured indumentum, sheath sparsely armed with scattered short brown triangular 

spines, spines 1–4 mm long, 1.0–1.5 mm wide; ocrea 8–15 × 4–5 cm, conspicuous, 

swollen and elongate, base of ocrea tightly sheathing, margin tattering (net-like) (for 

some species), clasping the stem, tough, dull pale brown with caducous, chocolate 

indumentum, armed with 1–3 mm long, scattered short tiny triangular caducous, 

chocolate spines, numerous black ants within the ocrea; cirrus 0.30–1.25 m, armed with 

recurved grapnel spines organised in whorls; petiole 5–10 cm, 10–18 mm wide and ca. 

4–5 mm thick at base, flattened adaxially, abaxially rounded, indumentum, sparsely 

armed with spines; rachis 0.45–1.15 m, armed with recurved grapnel spines organised 

in whorls; 8–13 leaflets each side of rachis, regularly arranged, narrowly rhomboid, 

mid-leaf leaflets 21.5–30.1 × 2.5–5.2 cm, leaflet dull to dark green above, glabrous, 

with whitish indumentum on undersurface, distal margin conspicuously praemorse 

usually the upper V*, transverse veinlets moderate conspicuous, moderate closely 

spaced, 1.0–1.5 mm. Inflorescence lax, 40.5–72.7 cm long including ca. 6 mm 

peduncle, branched to 2 orders; prophyll ca. 4.0 × 0.7 cm, with caducous, dark brown 

indumentum; rachis bracts up to 4.1–9.0 × 1.7–3.7 cm, splitting, with caducous, dark 

brown indumentum with several tiny spines; primary branches 2–4, 5.7–10.6 cm apart; 

proximal primary branch 26.2–30.7 cm long, with up to 2–3 rachillae; rachillae 14.0–

28.2 cm long and slender, including 0.5–1.0 cm visible stalk, ca. 0.7 cm wide, lacking 

hairy between rachilla bracts. Flower not seen. Fruit 1.6–1.7 × 1.1–1.5 cm covered in 

16–19 vertical rows of orange-brown scales. Seed 1.3 × 0.7 cm, endosperm ruminate. 

  

Distribution:—Peninsular Malaysia, Thailand. 

Habitat:—Lowland and hill dipterocarp forest up to 900 m altitude. 

Uses:—Cane used to make baskets, also as binding material. 
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Vernacular name:—Rotan dahan (Iban), Rotan semut, Wai doa (Thailand). 

Specimens examined:—MALAYSIA. Kedah: Sungai Patani, Gunung Jerai, 600 m, 

5°47' N, 100°25' E, 06 July 1977, Dransfield 5106 (K!). Negeri Sembilan: Pasoh Forest 

Reserve, 100 m, 2°58' N, 102°18' E, 09 May 1977, Dransfield 4976 (K!). Pahang: 

Genting Highlands, 30 January 1995, Baker 497 (KEP!); Kuala Lipis, 18 August 1925, 

Somerville 10484 (K!); Tasak Bera, 3°49' N, 102°24' E, 03 September 1982, Gianno 

512 (K!). Penang: Penang Hill, 423 m, 5°25' N, 100°16' E, 03 March 2014, Shahimi 15 

(K!, KEP!). Perak: Tapah, 700 m, 4°20' N, 101°20' E, 23 October 1982, Ave 178 (K). 

THAILAND. Narathiwat: Si Sakhon, 550 m, 6°11' N, 101°30' E, 07 March 2001, 

Niyomdham & Puudjaa 6446 (K!). 

Notes:—Korthalsia scortechinii sometimes has been confused with K. echinometra 

because large swollen inflated ocrea but can be distinguished by ocrea bearing 

numerous short triangular spines and the narrowly rhomboid leaflets. Based on the 

phylogenetic results of this study, K. scortechinii has a close relationship with K. cheb. 

 

 

 

 

 

 

 

 

 

 

 

MAP 10 Distribution of Korthalsia scortechinii Becc. Dots are point localities of 

specimens examined. Map prepared by Salwa Shahimi, using QGIS.  



134 
 

PLATE 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Korthalsia scortechinii Becc. Top left: Habit. Top right: ocrea. Bottom left: leaf 

arrangement (Shahimi 15). Bottom right: inflorescence (Dransfield 4976). 
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CHAPTER 5 

GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES 

 

This thesis presents new taxonomic treatments for 10 species of Korthalsia which have 

ant-associations, including new keys and distribution maps. I have also reconstructed a 

new phylogenetic hypothesis for calamoid palms. This allows an exploration of the 

relationships between species in the calamoid tribe Calameae, with emphasis on 

Korthalsia. In terms of understanding the origins of biological diversity I have used 

ancestral reconstruction in the context of my new phylogeny to understand the 

evolution of ant-domatia in genus Korthalsia. These studies have advanced our 

knowledge of the genus Korthalsia and particularly the species of Korthalsia with 

domatia. 

 

5.1 Reflections on the work 

 

5.1.1 The phylogeny 

 

This study uses published data, and unpublished data that were made available to me. 

As such, the work depends on the available data being of high quality. Unlike many 

studies using data that have not been directly generated for the present work, I was 

lucky because the unpublished data I was provided with was all from specimens that 

had vouchers and that were determined by my supervisor, Dr. W. Baker. I am also 

confident of the identifications of the plants I sampled in the field, because I worked 

intensively on the morphology of the plants, because I included them in the taxonomic 

treatment. 

 

The species I sampled in the field for inclusion in this study were species of Korthalsia, 

and I designed my fieldwork to sample as many species of this genus as possible. 

Ultimately, my phylogeny sampled 19 of the 28 species. It would have been good to 
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have included all 28 species, but the nine species I didn’t sample are from the 

Cambodia, New Guinea, Philippines, the Andaman Islands, and Indonesia, places 

difficult for me to visit. Since previous studies had never sampled more than one or two 

species the effort in adding species has made a considerable contribution. It is common 

to increase sampling for DNA work by sampling leaf material from herbarium 

specimens, particularly as new sequencing methods make it possible to get sequence 

data from degraded DNA (Särkinen et al., 2012). I was using Sanger sequencing, and it 

seemed unlikely that PCR-Sanger methods would work for the specimens in the 

herbarium I had access to. One species without a name, provided by Dr. A. Henderson 

from his fieldwork in the Andaman Islands and included in the phylogeny here as 

Korthalsia sp. is probably K. rogersii, a species endemic to the Andaman Islands. The 

identification was provisional because there was no voucher to determine, only silica-

dried leaf material was sent. Three of the species not included in this study had ant 

ocrea. These are K. angustifolia, K. furcata and K. scaphigeroides. It would be 

particularly good to include these species, and their inclusion could contribute to the 

understanding of ocrea evolution. 

 

There were some problems with collecting sequence data for some regions. I spent a lot 

of time trying to optimise the rps16 region. One advantage of using existing 

unpublished data was that I had a lot of data to work with. But if I was to design a study 

from scratch I probably would not have included the rps16 region in the set of regions I 

sequenced. Most molecular phylogenetic studies using Sanger sequencing would 

usually carry out a pilot study and select the most variable and most tractable (easy to 

work with) regions.  

 

One aspect of my work that should be noted here relates to the outcome of the 

phylogenetic analysis: not all nodes were well supported and some relationships 

relatively poorly resolved. This is attributed to the slow evolution of palm DNA and the 

recent origin of Korthalsia. Despite the lack of resolution and support, at higher levels 

our new phylogeny of the calamoids supports revised taxonomy. Also, since the tree in 

this study has dense taxonomic sampling at species level especially in genus Korthalsia, 
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and can still serve as a valuable framework for the comparative research described in 

Chapter 3 (Heath et al., 2008). 

 

5.1.2 Ocrea evolution  

 

One thing I benefited from in the design of this Ph.D project was the ample opportunity 

for fieldwork. To see and understand ocrea in the field was essential for me to make 

sense of the palm ocrea. In the field I was able to use a machete to cut up Korthalsia 

palms, and this gave me the insights I needed to develop the comparative morphology 

and anatomy work. Fieldwork also gave me the opportunity to experience how well 

defended the rattans are by the ants that live in the domatia, as well as by the spines that 

most species have.  

 

Dissection of ocrea and the interpretation of the ocrea structures was challenging. I 

found it a challenge to interpret the ocrea morphologies because the only published 

comparative developmental data was for a species of Calamus (Merklinger et al., 

2014). The development of the Korthalsia ocrea is different. It was a significant amount 

of work to get all the stages of all the seven species I included in comparative study, 

from the field to the final images. In this light it was disappointing that the 

developmental stages were so similar. If I was starting this work again, I might focus on 

species that from the phylogeny I expected to be different, rather than trying to make a 

complete set of images for all the species I had material for. Another challenge relates 

to the description of stages in these plants. Whereas in flowering plants generally it is 

fairly straightforward to describe the ages of stages, by numbering the leaf primordia 

starting with the youngest (Bar and Ori, 2014), in the plants I worked with there is no 

clear way of identifying relative ages. This is because when I remove layers and chose 

an inner layer to image, I don’t know how many primordia there are that are younger 

than the one I have imaged. 

 

The comparative morphology is a contribution to the understanding of ocrea in its own 

right, but considering ocrea types in the light of the phylogeny allows deeper 
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understanding of ocrea. It was unfortunate that the phylogenies I had to work with were 

not very resolved or supported. Nevertheless, I do have a better understanding now of 

when ocreas evolved, and I know that different ocrea types have evolved more than 

once.  

 

5.1.3 The taxonomy 

 

As for the taxonomic treatment for the Korthalsia species, it is important that the 

differences between species are clearly understood and how they can be distinguished 

from other species. This knowledge is necessary in order to undertake important records 

of all species and to be able to consider the potential of each species for cultivation and 

sustainable management. To ensure any experimental or development work undertaken 

is replicable, a structured framework is essential. In a nutshell, conservation and 

sustainability of world remaining resource can be done by taxonomy. In order to face 

global biodiversity challenge, it is better to integrate the science of taxonomy back into 

the conservation world (Sunderland, 2012).  

 

During the fieldwork, I saw nine of the species of Korthalsia that I went on to describe. 

This is particularly important for palms because the plants are so big, and getting an 

impression of the plant from the herbarium specimen is hard. It was harder to prepare 

the descriptions of the fruit and inflorescence characters because I didn’t see them in the 

field.  

 

At the outset of this project I made a case that it was timely to make a new treatment for 

Korthalsia, since the last treatment was made in 1981 (Dransfield, 1981). Having 

completed the treatment it is possible to assess how many specimens of Korthalsia were 

available to me that were not available to Dransfield when he wrote his treatment. I 

studied 117 specimens collected in 1982 or later, including five specimens that I 

collected myself. This significant increase in specimens available to study indicates that 

as previously suggested, a revision at this time would add new information. 
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5.2 Priorities for future work 

 

5.2.1 Phylogeny and ocrea evolution  

 

With the advent of next-generation sequencing (NGS) technologies in recent years, 

improvement in high-throughput, time-saving and affordability seems poised to resolve 

many of the problematic relationships in flowering plants, thus, clarifying remaining 

problematic deep level questions in palms in the near future would much easier 

(Schuster, 2007; Soltis et al., 2010; McCormack et al., 2013). An NGS-based 

hypothesis of species relationships of Korthalsia would significantly improve the 

estimation of relationships and therefore also our hypotheses about ocrea evolution.  

 

I could also improve the developmental work I carried out. Because of the limitation of 

material available, I characterised only diverging, inflated and tightly sheathing ocrea 

using developmental series under light and electron microscopy. Future work should 

include characterisation of the fibrous net-like type of ocrea.  

 

The work I present here does not include any biogeography, such as ancestral area 

analysis (Bremer, 1992). It would be interesting to look at where the ant ocrea types 

evolved, now I know more about when they evolved. For example, it appears that all the 

ant-associated Korthalsia are on west side of the Wallace’s line and and there are only 

two species on east of Wallace’s line which are not ant associations; one species in New 

Guinea and another one in Sulawesi. There are other biological questions that could be 

interesting to consider, that are suggested by the phylogeny. It is interesting that 

divergent ocreas may have later in evolutionary time become inflated. The relative 

advantages to the plants of entirely enclosed domatia could be investigated 

experimentally. All of the experimental work on Korthalsia ocrea to date (Edwards et 

al., 2010; Chan et al., 2012; Miler et al., 2016) have been done on species with inflated 

ocreas; it would be interesting to compare the biology and ecology of ants in inflated 

and divergent ocreas.  
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5.2.2 Taxonomy 

 

The taxonomic revision in this thesis focuses only on 10 species of Korthalsia, the 

species which have ant-associations, but the other 18 species also need a new treatment 

as only a regional treatment has been published (Blume, 1843; Beccari, 1884; Martius, 

1845; Beccari, 1909; Dransfield, 1981). It is important to make a new treatment for the 

remaining species as these species have not been the subject of any integrative 

treatment across their range. 

 

Apart from that, there are no conservation status assessments for Korthalsia. None have 

ever been made. Although I think it is unlikely that any species in my treatment would 

be considered as threatened, as many of this species can be commonly found throughout 

the region with multiple individual in each population, it is important to document the 

status of each species. Conservation measures may be needed if the status of any 

species may change due to habitat loss and land use changes. 
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APPENDICES 

 

Appendix 2.1 

Modified Doyle and Dickson (1987) of DNA extraction procedure for silica-gel dried 

material: 

1. 0.02–0.03 g of leaf material were ground to a fine powder using pestle and 

mortar with acid washed sand. 

2. The powders was placed in 1.5 ml eppendorf and were added with 500 µl CTAB 

buffer, 50 µl sarkosyl and 5 µl Ɓ-mercaptoethanol. These eppendorf were then 

vortexed for 10s and incubated at 60
o
c for 1 hour with occasional mixing. 

3. An equal volume of 24:1 chloroform/isoamyl alcohol was added to the solution, 

vortexed for 10s and centrifuged at 13,000 rpm for 3 min to produce a clear 

supernatant. The upper aqueous layer in the tube was removed carefully to a 

clean tube. Re-extraction was repeated and was performed the same way for a 

second time. 

4. 2/3 volume of ice-cold 100% isopropanol was added to the supernatant and the 

samples were mixed and placed on ice for 60 min or overnight in the -20
 o

C 

freezer. The DNA precipitate was collected by centrifuging at 10,000 rpm for 3 

min. 

5. The alcohol supernatant was discarded. The DNA pellet was washed with 500 

µl of 70% ethanol and centrifuged at 13, 000 rpm for 1 min. The liquid phase 

was then released and the pellet was added with 0.1M TE buffer and 3M sodium 

acetate. This solution were mixed until the DNA was suspended followed by 

adding ice-old 100% ethanol. The solution with pellet DNA was incubated on 

ice for 60 min.  

6. The pellet then was centrifuged again at 10,000 rpm for 3 min. The ethanol was 

removed and the pellet was set to dry by overnight drying at room temperature. 

7. The pellet was re-suspended in 50 µl of 0.1M TE buffer and stored at -20
 o

C. 
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Appendix 2.2 

2.2.1 Bayesian analysis, combined chloroplast 
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2.2.2 Bayesian analysis, combined nuclear 
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2.2.3 Maximum Likelihood, combined chloroplast 
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2.2.4 Maximum Likelihood, combined nuclear 
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Appendix 3.1 

Voucher specimens including stem, whole leaf and ocrea  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3.2 

Ethanol series: 

1. The samples transfer through an ethanol series of 70% - 90% - 100% - 100%. 

Approximately 1 hour in each solution.  

2. The samples were leaves in 100% ethanol for overnight. 
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Appendix 3.3 

Bayesian maximum clade credibility chronogram for the Calamoideae 
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Appendix 4.1 

  

DATA SHEET         DATE: 

Collector & number:       Herb: 

Name:       Det by: 
 

Vernacular:      Ethnobotany: 
 

Locality:      Habitat: 
 
 

Stem 
 

STEM Solitary / Clustering 
 
 

Max height: Diam. with sheath: Diam. without sheaths: Internode length: 

 

Stem notes: 
 

 

Sheath   
 
 

Sheath spines: 
 

Sheath notes (indument, color): 
 

Ocrea:  
 
 

 
 

Leaf Cirrus: yes/no  
 

Leaf length (inc. cir, pet) Petiole length Rachis length Cirrus length 
    

 

 

Leaf notes (indumenta, hairs, spines, etc.): 
 
 

 
 

Leaflet  Leaflet shape:     Leaflet arrangement: 
 

Largest dimensions  
(L x W) 

Smallest dimension  
(L x W) 

Mid-rachis dimension  
(L x W) 

Leaflet number 
 (on 1 side) 

    
 

 
Leaflet notes (indumenta, hairs, spines, venation, transverse veinlets, etc.): 
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Inflorescence  lax/congested/erect    
 

Inflorescence length Peduncle length Prophyll length No. of orders of branching 
    

 

 
Primary branches notes (how many, Z cm apart, proximal, X–Y cm long, etc.): 
 
 

 
 
Rachilla   
 

Largest rachilla length Smallest rachilla length 
  

 

 
Rachilla bract notes: 
 
 
Rachilla notes (shape, the arrangement of flower, etc.): 
 
 

 
 
Flower  
 
(X x Y) mm in bud:   
 
 
Fruit  Mature / Immature 
 

Fruit dimension inc. beak ( H x W) No. of vertical rows of scales 
  

 

 
Fruit notes (shape, beak, color, arrangement, etc.): 
 
 

 
 
Seed  Seed dimensions (H x W x D): 
 
 
Seed notes (shape, pit ornamentation):  
 
 
Endosperm and embryo: 

 

 

 


