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Abstract

Polymer melts generally demonstrate complicated dynamic and stress relaxation be-

haviours, which are usually difficult to be described by theoretical models and typi-

cally involve many parameters. The thesis specifically centers on developing novel

models to study entangled polymer melts with the help of Monte Carlo methods. We

commence by providing a brief description of the problems and prior knowledge for

polymer and Bayesian statistics in Chapter 1.

In Chapter 2, we develop a multi-bead coarse-grained model based on single-

particle dynamics at the level of the individual molecule. Next, we show how to

embed Kalman filter into Markov chain Monte Carlo (MCMC) paradigm to draw

inferences on the model parameters. Then the estimates of parameters can be used to

reproduce the dynamics of the center of mass of single chains in molecular dynamics

(MD) simulations. We explore the performance of coarse-grained models for linear

chains with different hidden beads and find that the multi-bead model is preferable

to have Rouse-like structure rather than asymmetric star structure.

The next part of the thesis investigates two different models dealing with non-

linear systems. The first model is the extension of the multi-bead model for dealing

with nonlinear interactions and the second model is described by the generalized Lan-

gevin equation with memory kernel. The MCMC method fails for the first model

due to the fact that the particle MCMC using for parameter estimation ends up with
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noisy likelihood and is unable to explore the parameter space sufficiently. Laplace

transform and numerical approximation are applied to get the estimates of unknown

parameters for the second model. Comparing the linear multi-bead model and the

model with memory kernel, we find that the former is more promising to describe the

dynamics of entanglement polymers.

In Chapter 4, we introduce Monte Carlo methods in combination with the slip-

spring model, which was originally developed for describing dynamics of entangled

polymers, for detecting entanglements in the polymer melts obtained from MD si-

mulations. The total number, the effective lengths and the locations of the anchor

points of the slip-springs will be well decided by Bayesian statistical methods. The

Bayesian alternative can also compute the posterior distribution of different models

and provide uncertainty analysis on the estimation of model parameters.

Finally, in Chapter 5, we provide concluding remarks and discuss the limitations

of our methodologies, and point out possible future research directions.
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Chapter 1

Introduction

1.1 Overview

Polymers are large molecules composed of many elementary units called monomers.

The monomers are connected by covalent bonds. The number of covalent bonds that

constitute the polymer is referred to as the degree of polymerization, denoted as N .

N is typically quite large, ranging from 102 to 106 and some polymers of length up to

1010 can be found in the natural world. There are many types of polymers according to

their branching architectures, such as linear, star, ring, comb, dendrimers and Cayley

trees. Examples of polymer chains of different architectures are shown in Fig. 1.1.

In general, common chemical materials with the same molecular weight but con-

stituted of different units usually show dramatically different behaviours. However,

polymer materials with different monomer types but with the same global topology

often exhibit similar behaviours. Some of the polymer chemical characteristics, inclu-

ding the molecular structures, the degree of polymerization and chemical composition

are fixed after the polymerization or after being synthesized. It is interesting to note

that their conformation determined by the relative positions of their monomers con-

tinuously change under thermal fluctuativity. The conformation of a linear chain

comprised of N bonds can be described by a set of N + 1 position vectors {Ri}Ni=0.

Alternatively, its conformation can be represented by a set of bond vectors {ri}Ni=1,

1



Section 1.1 Page 2

Figure 1.1: Different type of polymer architectures

where

ri = Ri −Ri−1, i = 1, 2, ..., N. (1.1)

The end-to-end vector of the chain is defined as

Re = RN −R0 =
N∑
i=1

ri. (1.2)

The mean square of the end-to-end vector is given by

〈R2
e〉 =

〈(
N∑
i=1

ri
)
·

 N∑
j=1

rj

〉

=
N∑
i=1

N∑
j=1
〈ri · rj〉, (1.3)

where 〈R2
e〉 is often considered as a measure of the size of a linear chain. This quantity

is not well defined for polymers with other architectures, since sometimes there are

either too many ends, e.g., star and comb polymers, or no ends at all, e.g., ring

polymers. An alternative way to characterize the size of a polymer with any topology

2
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is to evaluate the radius of gyration,

R2
g = 1

N + 1

N∑
i=0

(Ri −Rcm)2 , (1.4)

where Rcm is the center of mass of the polymer defined as

Rcm = 1
N + 1

N∑
i=0

Ri. (1.5)

A polymer chain can take a large number of conformations due to thermal fluctuations

and intra- and inter-chain interactions. It is more practical to study the statistic

properties of polymer chains.

Let us start with one of the simplest models: the freely jointed model. Consider

a linear chain composed of N+1 beads {Ri}Ni=0, the length of each bond ri is b (b > 0)

and the coordinates of the bonds are independent of each other, which implies

〈ri〉 = 0, 〈ri · rj〉 =

 b2, i = j

0, i 6= j.

Therefore, the mean square distance of end-to-end vector of a freely jointed chain,

〈R2
e〉, can be written as

〈R2
e〉 =

N∑
i=1
〈r2
i 〉+

∑
i 6=j
〈ri · rj〉

= Nb2. (1.6)

Now we focus on more complex models. Assume the orientation of each bond is

independent while the length of each bond is allowed to fluctuate with 〈ri〉 = 0 and

〈r2
i 〉 = b2 where b is known as the Kuhn length. If N is large enough, it can be proved

that the distribution of 〈R2
e〉 with N bonds is Gaussian,

P (Re, N) =
( 3

2πNb2

)3/2
exp

{
− 3R2

e

2Nb2

}
, (1.7)

3
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which gives

〈Re〉 = 0 and 〈R2
e〉 = Nb2.

Further details about the chain statistic properties can be found in Doi and Edwards

[1] and Rubinstein and Colby [2]. Note that in a real polymer, the consecutive bonds

cannot be completely independently orientated due to the chain connectivity and

steric hindrance. On the other hand, if we take a coarse-graining approach by treating

a set of consecutive monomers, say n monomers, as a new segment, the new bond

vectors which connect the center of mass of consecutive coarse-graining segments

would exhibit random behaviour when n is large enough.

1.2 The Gaussian Chain

Doi and Edwards [1] showed that, in the study of statistical properties of chain end-to-

end vector Re, the local configuration of sufficiently long chains only depends on the

effective bond length b. Therefore, to analyse the statistical properties of a polymer

chain, we start with Gaussian chains.

Consider a linear chain withN bonds, {ri}Ni=1, where the length of ri is distributed

according to Gaussian distribution:

φ(r) =
( 3

2πb2

)3/2
exp

(
−3r2

2b2

)
. (1.8)

In such case, we have

〈r〉 = 0, 〈r2〉 = b2. (1.9)

The joint probability density of a chain with configuration {ri}Ni=1 is

Φ({ri}) =
N∏
i=1

[ 3
2πb2

]3/2
exp

(
−3r2

i

2b2

)
(1.10)

=
( 3

2πb2

)3N/2
exp

(
−

N∑
i=1

3(Ri −Ri−1)2

2b2

)
. (1.11)

4
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Such a chain with joint probability density described as Φ({ri}) is called the Gaussian

chain. Though the Gaussian chain does not provide us with details of the local

structure of the chain, it tells us the global properties of a chain. Compared to freely

jointed model mentioned before, the mathematical calculation involving a Gaussian

chain is much easier to achieve.

The Gaussian chain represents a chain with consecutive beads connected by har-

monic springs. The potential energy of the whole chain is given by

U({Ri} = 3kBT
2b2

N∑
i=1

(Ri −Ri−1)2, (1.12)

where kB is the Boltzmann constant and T is temperature.

Let us consider the distribution of the vector R0 −Rn between monomer 0 and

monomer n. The distribution of Rn −R0 can be written as

P (Rn −R0) =
∫
dR1...

∫
dRn−1exp

[
−3kBT

2b2

(
n∑
i=1

(Ri −Ri−1)2)
)]

. (1.13)

The integration in Eq. (1.13) can be performed in a stepwise manner,

P (R2 −R0) =
∫
dR1exp

[
−3kBT

2b2

(
(R1 −R0)2 + (R2 −R1)2)

)]

=
(

2πb2

3kBT

) d
2 1

2d/2 exp
[
−3kBT

4b2 (R2 −R0)2
]
,

where d is the dimension of the position vector R0. Similarly, to complete the inductive

step, we obtain
∫
dRn−1exp

[
− 3

2b2

( 1
n− 1 (Rn−1 −R0)2 + (Rn −Rn−1)2)

)]

=
(

2πb2

3kBT

) d
2 1

( n
n−1)d/2 exp

[
−3kBT

2b2 ·
1
n

(Rn −R0)2
]
.

5
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Hence, Rn −R0 given by induction as

P (Rn −R0) =
∫
dR1..

∫
dRn−1exp

[
−3kBT

2b2

(
n∑
i=1

(Ri −Ri−1)2)
)]

=
(

2πb2

3kBT

) d(n−1)
2 1

nd/2
exp

[
−3kBT

2nb2 (Rn −R0)2
]

=
(

2πb2

3kBT

) dn
2
(

3kBT
2πnb2

)d/2
exp

[
−3kBT

2nb2 (Rn −R0)2
]
.

(1.14)

The expression in Eq. (1.14) tells us that, in a Gaussian chain, the distribution of a

vector between any two monomers is also Gaussian.

1.3 Brownian Motion

Brownian motion was first observed by a botanist named Robert Brown in 1827 when

he was looking at the motion of pollen grains in water. It describes the random motion

of particles suspended in a fluid where the molecules of the fluid hit the particles from

different directions with different velocities. Brownian motion is governed by Newton’s

second law

F = ma, (1.15)

where a = d2R
dt2

is the acceleration of the particle and m is the mass of the particle.

Considering the dynamics of polymer chains, the random force F acting on a mono-

mer comes from frequent collisions with surrounding monomers. Due to the chaotic

character of the collisions, it is natural to assume that F is Gaussian with zero mean

and is delta-correlated in time,

〈F〉 = 0 and 〈F(t),F(t′)〉 = σ2δ(t, t′), (1.16)

where σ2 is the variance of the random force.

Assume we focus on one of the monomers of a polymer chain moving through

the liquid with constant velocity v, the surrounding liquid will resist its motion with

6
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a friction force, which is given by

f = ξv, (1.17)

where ξ is friction coefficient. If the solvent is treated as a continuum medium, the

motion of the monomers along the chain is governed by the Langevin equation of

motion [1],

m
d2Ri

dt2
= −U(R0, · · · ,RN)

∂Ri

− ξ dRi

dt
+ fi(t), i = 0, · · · , N, (1.18)

where U(R0, · · · ,RN) is the total potential of the chain. The random force fi(t) is

assumed to be delta-correlated in time and independent for different monomers as

given in Eq. (1.16). The Fluctuation-dissipation theorem [3] establishes the following

relationship between the random force fi(t) and the friction coefficient ξ,

〈fi(t) · fj(t′)〉 = 2kBTξδijδ(t− t′). (1.19)

In the overdamped case, the inertia of beads is usually negligible, leading to a reduced

form of Eq. (1.18)

ξ
dRi

dt
= −U(R0, · · · ,RN)

∂Ri

+ fi(t), i = 0, · · · , N. (1.20)

1.4 The Rouse Models

Extensive studies have been carried out on the properties of linear polymer chains.

The most successful model for studying the dynamics of short chains is the Rouse

model [4]. A Rouse chain is composed of a set of massless beads connected by harmonic

springs. Fig. 1.2 is the sketch of a Rouse chain. The intra-chain potential U({Ri}Ni=0)

shown in Eq. (1.20) is given by

U({Ri}Ni=0) = 1
2k

N∑
i=1

(Ri −Ri−1)2 , (1.21)
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Figure 1.2: Rouse chain model

where k = 3kBT
b2 , as shown in Eq. (1.12), is the spring constant which guarantees the

mean square of bond length to be b2.
In such case, the equations of motion for individual monomers along the Rouse

chain can be rewritten as:

ξ
dR0
dt

= −3kBT
b2

(R1 −R0) + f0(t),

ξ
dRi

dt
= −3kBT

b2
(Ri−1 + Ri+1 − 2Ri) + fi(t), 1 ≤ i ≤ N − 1, (1.22)

ξ
dRN

dt
= −3kBT

b2
(RN−1 −RN ) + fN (t).

Using following matrix notations

R = (R0,R1, · · · ,RN)T ,
f(t) = (f0(t), f1(t), · · · , fN(t))T .

Eq. (1.22) can be rewritten as

ξ
dR
dt

= −3kBT
b2 AR + f(t), (1.23)

where the connectivity matrix of the Rouse chain is a diagonal block matrix

A =



1 −1 0 0 · · ·

−1 2 −1 0 · · · 0
0 −1 2 −1 · · ·

· · ·
· · · 2 −1 0

0 · · · −1 2 −1
· · · 0 −1 1


.

8
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Applying orthogonal transformation Ψ on R, we have X = ΨR, Eq. (1.22) turns

out to be diagonal with new variable {Xp}Np=0,

ξp
∂Xp

∂t
= −kpXp + fp(t), (1.24)

Xp = 1
N + 1

N∑
i=0

Ricos
(
πp(i+ 1/2)
N + 1

)
, (1.25)

where Xp is known as normal mode, and the random term fp(t) is characterized by

the Fluctuation-dissipation theorem shown in Eq. (1.19),

〈fp(t)fq(t′)〉 = 2kbTξpδpqδ(t− t′). (1.26)

It is interesting to note that the first component with p = 0 is the center of mass

of the chain, which indicates that the motion of center of mass of a Rouse chain is

Brownian motion characterized by the following formula,

k0 = 0, ξ0 = (N + 1)ξ,

X0 = 1
N + 1

N∑
i=0

Ri = Rcm.

For mode numbers p larger that 0, we have

ξp = 2(N + 1)ξ,

kp = 24kBT (N + 1)
b2 sin2

(
πp

2(N + 1)

)
,

which provides the following relaxation time τp of normal mode Xp,

τp = ξp
kp

= ξb2

12kBT
sin−2

(
πp

2(N + 1)

)
(1.27)

Hence, the longest relaxation time, known as the Rouse time τR, is given by

τR = τ1 = ξb2

12kBT
sin−2

(
π

2(N + 1)

)
(1.28)

9
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If the length of the chain N is large enough, sin−2
(

π
2(N+1)

)
can be approximated with

4(N+1)2

π2 , then we obtain

τR ≈
ξb2(N + 1)2

3π2kBT
. (1.29)

Rouse time is an important concept in the study of polymer dynamics. It characterizes

the time scale for a polymer to diffuse a distance of its own size. On the time scales

that shorter than the Rouse time, the polymer will show viscoelastic features; while

on the time scales that larger than the Rouse time, the motion of the chain can be

viewed as a single-particle diffusion process [2].

1.5 The Coarse-Grained Model

The dynamics of a polymer chain in melt or solutions cover a wide range of time and

length scales, typically from picoseconds to days and from nanometers to millime-

ters, or even longer. It usually requires different techniques to study the dynamics

at different length and time scales. If we are interested only in the mesoscopic to

macroscopic behaviours of the molecular system, detailed chemical structures and

fast fluctuations at very short time scales can be neglected, and only their average

values are essential. It is possible to develop coarse-grained models that involve only

the mesoscopic variables by averaging over the unessential atomic details. Molecular

Figure 1.3: Sketches of different levels of coarse-graining for a polymer chain
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dynamics (MD) simulation is a powerful tool in studying the dynamics of polymers

which can be simulated based on different levels of coarse-graining. Fig. 1.3 shows

the schematic representation of different levels of coarse-graining for a polymer chain.

The most detailed model takes into account atomistic interactions such that specified

chemical properties are well represented. Grouping up several atoms into one bead,

we obtain the fine-grained coarse-graining model. A higher level of coarse-graining

can be achieved by lumping more atoms into a larger bead. Representing a whole

polymer chain with a single particle, one gets the most coarse-graining model. MD

simulations at the atomic level are very slow and usually take incredibly long time to

reach equilibrium states. Due to the computational power limitation, it is necessary

to develop coarse-graining models to study polymer dynamics at large time and length

scales.

In this thesis, we are interested in the most coarse-graining model where the

whole polymer chain is represented by a single particle — the chain center of mass.

We will study single-particle dynamics using trajectories extracted from fine-grained

MD simulations.

1.6 Entanglements in Polymer Melts

The Rouse model is a cornerstone of polymer dynamics which can analytically express

almost all the observables of interest. However, it is not suitable for describing the

dynamics of long polymers. It is well established that the dynamics of polymers are

heavily dependent on the length and structure of the chains [1] [5]. The melts and

concentrated solutions of long polymer chains exhibit extremely slow dynamics due

to topological constraints caused by the uncrossibility of the chains, called entang-

lements. Entanglements will restrict the lateral motion of the chains and lead more

complicated rheological properties. The dynamics and rheology of long polymers are

of great interest, especially for practical applications, such as improving the proces-

11
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sivity of polymer melts, the strength of adhesives and cracking resistance of fibres.

Fig. 1.4 shows a snapshot of the primitive paths of a long polymer chain and its

neighbouring chains.
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Figure 1.4: A long polymer chain (black) and its neighbouring chains

Extensive efforts have been devoted to defining the microscopic pictures of en-

tanglements. Several numerical tools have been reported for detecting entanglements

at microscopic scales, including primitive path analysis (PPA) method developed by

Everaers et al. [6] [7] [8] [9], the tube axis method by Likhtman [10], isoconfiguration

ensemble [11] and the contact map method by Likhtman [12] [13]. Our aim is to

introduce novel approaches based on Bayesian statistics and Monte Carlo methods to

detect the existence of entanglements and infer the number of entanglements along

the chain backbone. We will discuss these methods with further details in Chapter 4.

12
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1.7 Bayesian Statistics and Monte Carlo Methods

Bayesian statistics, named after Thomas Bayes, refers a class of methods widely used

in the field of probability and statistics. Bayesian statistics is based on the belief that

the uncertainty of unknowns should be quantified by probabilities. One of the most

important opinions of Bayesian statistics is that “probability is orderly opinion, and

that inference from data is nothing other than the revision of such opinion in the light

of relevant new information” [14]. This message delivers a key idea that Bayesian

statistics involves updating our knowledge based on the new up-to-date information.

Different from the maximum likelihood estimate (MLE) methods, which gives a

single point estimate with confidence interval estimate, Bayesian statistics provides

the full posterior probability of the unknown parameter, which means that Bayesian

statistics is able to use probability to quantify the uncertainty of the parameters.

1.7.1 Bayesian Statistics

Bayesian framework is based on a simple rule of probability, which is known as Bay-

esian formula:

P (A|B) = P (B|A)× P (A)
P (B) , (1.30)

where A and B are events of interest with probability P (A) and P (B) > 0. The

conditional probability P (A|B) indicates the probability of observing event A when

B is known, and vice versa.

Bayes’ theorem interprets the above formula as follows: event A represents a

hypothesis and event B is the observed evidence; the Bayesian rule establishes the

relationship between the prior probability of the hypothesis P (A) and the posterior

probability of the hypothesis P (A|B) after evidence B is given. Probabilities P (B|A)

and P (B) are called likelihood and evidence, respectively. Using such interpretation,
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the Bayes’ theorem can be interpreted as

Posterior probability = Likelihood
Evidence × Prior probability. (1.31)

Let us now make it more specific. Assume we observed a set of data Y = {yi}Li=1,

where L is the number of observation and yi is drawn from a probability distribution

p(·|θ) with unknown parameter vector θ. The probability of observing yi is given by

yi ∼ p(yi|θ), i = 1, · · · , L. (1.32)

Parameter θ is unknown but we have the hypothesis that θ is distributed from pro-

bability p(·|α) where α is called hyper-parameter. In such case, Eq. (1.31) can be

written as

p(θ|Y, α) = p(Y |θ, α)
p(Y |α) × p(θ|α), (1.33)

where the evidence term p(Y |α) is known as the marginal likelihood, which is the

probability of observing data Y marginalized over all possible θ,

p(Y |α) =
∫
θ
p(Y |θ, α)p(θ|α)dθ. (1.34)

We will discuss the marginal likelihood in more details later in Chapter 4.

1.7.2 Prior

Prior information is important in Bayesian statistics. It indicates the uncertainty

about the quantity of interest before we perform any analysis of the observation.

Prior knowledge is usually obtained from previous knowledge, such as from historical

data and experiments. A strong prior, which is also called informative prior, provides

specific information about the quantity. In such cases, it makes the posterior mainly

dominated by the prior and be less affected by the data. The stronger the prior is,

the more data would be needed for decreasing the impact of the prior.
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However, sometimes, we expect a non-informative prior that has less influence

on the analysis. To set up a weak prior belief, we usually adopt a prior that is rather

flat over the parameter space, e.g., uniform distribution. The good news is that the

influence of the prior will decrease as the number of observations increases. Note that

this is the case even when we use a very informative prior. The large data set will

gradually correct the belief and eventually give us the correct posterior even if the

prior available is significantly wrong!

1.7.3 Monte Carlo Integrations

Bayesian inference involves calculating integrals which are usually analytically intrac-

table. An efficient way to solve this problem is to perform numerical approxima-

tion. Monte Carlo (MC) methods are a class of methods generating repeated random

sampling to obtain the numerical approximation of the intractable integration. It

was invented by Stanislaw Ulam in the late 1940s. Combined with Metropolis al-

gorithm [15], which is the original version of Markov Chain Monte Carlo (MCMC)

methods, it is developed slowly until Hastings [16] extended it to a more general case

in 1970. However, the methods can be applied to various areas only in theory because

of the lack of powerful computation machines. The situation began to changes in 1984

when Geman proposed a particle MCMC (known as the Gibbs Sampler) for image

processing. It was not until 1990 that the paper of Gelfand and Smith [17] raised

the awareness of MC methods to the statistical community. After that, MC methods

gained broad applicability and became one of the most important tools for computer

simulations.

MC methods are used to approximate integrals that are not analytically solva-

ble. To illustrate this, let π(·) denote a probability measure which is defined on a

measurable space (E, ε). There is an integrable function f(·) of interest and our goal
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is to estimate the integral with respect to π(·):

Eπ[f(X)] =
∫
E
f(x)π(dx) (1.35)

Performing MC methods to approximate this integral, we draw independent samples

{xi}Ki=1 from probability distribution π(·), which yields

Êπ[f(X)] = 1
K

K∑
i=1

f(xi). (1.36)

According to Strong Law of Large Numbers, we know that the estimator Êπ[f(X)]→

Eπ[f(X)] almost surely as K →∞, as long as the expectation is finite.

When performing MC computational methods to approximate intractable inte-

grals, an essential criterion for evaluating the effectiveness of a method is the variance

of the estimator.

Suppose we have samples {xi}Ki=1 draw from density π of interest, if the variance

of f(X) with respect to π is finite, say σ2
f , the Central Limit Theorem tells us that

the estimator Êπ[f(X)] is asymptotically normal,

lim
K→∞

√
K(Êπ[f(X)]− Eπ[f(X)])→ N (0, σ2

f ). (1.37)

Hence, the variance of the estimator is given by σ2
f/K.

1.7.4 Markov Chain Monte Carlo Methods

Eq. (1.36) illustrates how to simulate independent and identically distributed (i.i.d.)

random variables from π(·) to approximate integral π(f). However, when performing

Bayesian inference, the posterior probability is not always analytical and sometimes

cannot be sampled from directly. An efficient method that helps us get rid of this pro-

blem is to set up a Markov chain that has the posterior as its stationary distribution.

In this section, we will give a brief introduction to MCMC methods. A comprehensive

description of the methods, techniques together with further references, can be found
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in Robert and Casella [18].

A Markov chain is a sequence of variables {xi}Ki=1 with Markov property:

p(xi|x1:i−1) = p(xi|xi−1), i = 2, · · · , K, (1.38)

where xi ∈ E denotes the state at time i. The joint distribution of a Markov Chain

is fully determined by the transition kernel p(xi|xi−1). Density π is considered to be

the invariant distribution of transition p(xi|xi−1) if it satisfies:

π(xi) =
∫
E
π(xi−1)p(xi|xi−1)dxi−1, (1.39)

which can be written as π = πp.

For a Markov chain with invariant distribution π(·), an important property is re-

versible. A Markov chain is reversible if there exists relationship between a probability

distribution π(·) and transition kernel p(xi−1|xi)

π(xi)p(xi−1|xi) = π(xi−1)p(xi|xi−1), for any xi, xi−1 ∈ E. (1.40)

The property of reversibility is also known as detailed balance. Eq. (1.41) shows that

probability distribution π(·) is a Markov chain’s invariant distribution if the chain is

reversible with respect to π(·).

∫
E
π(xi−1)p(xi|xi−1)dxi−1 =

∫
E
π(xi)p(xi−1|xi)dxi−1

= π(xi)
∫
E
p(xi−1|xi)dxi−1 (1.41)

= π(xi).

We can see from Eq. (1.39) and (1.41) that the key to constructing a Markov chain

with target π(·) is to find a proper transition kernel p(xi|xi−1). Metropolis-Hastings

(M-H) algorithm is a sufficient way to achieve it.
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1.7.5 Metropolis-Hastings Sampler

In order to obtain sequence {xi}Ki=1 with invariant distribution π(·), we apply the

MCMC Metropolis-Hastings sampling in the following procedure.

Algorithm 1 MCMC Metropolis-Hastings Sampler
1: Set initial guess of the parameters x1
2: For i = 2 to K do
3: Draw x∗ from a proposal density q

(
x∗|xi

)
4: Calculate probability π(x∗)
5: Evaluate the acceptance probability of the move γ

(
xi, x

∗
)

with

γ
(
xi, x

∗
)

= min

1, π(x∗)
π(xi)

q
(
xi|x∗

)
q
(
x∗|xi

)


6: Generate u ∼ U(0,1]

7: If u ≤ γ
(
xi, x

∗
)
, Then

8: Set xi+1 = x∗

9: Else
10: Set xi+1 = xi
11: End If
12: End For
13: Return {xi}, i = 1, ..., K

The efficiency of the algorithm depends on the proposal we choose. A poorly

designed proposal would lead to low acceptance rate and end with a poor mixing of

Markov chain. More details can be found in section 2.4.

1.7.6 Importance Sampling

An alternative way to sample from posterior is Importance Sampling (IS) which is

capable of simulating from the target distribution by making use of proposal distri-

bution. This method is useful especially when it is hard to sample from the tar-

get. Instead of drawing samples from the prior, IS draws points from an importance
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function q(·). Thus Eq. (1.33) can be rewritten as

p(θ|Y, α) = p(Y |θ, α)p(θ|α)
p(Y |α)q(θ) q(θ). (1.42)

Drawing i.i.d. samples {θi}Npi=1 from the proposal q(·), the weight wi of each sample

is given by

wi = p(Y |θi, α)p(θi|α)
q(θi)

, i = 1, · · · , Np, (1.43)

where Np is sample size.

The weighted points obtained from IS sampler provide an approximation to the

posterior distribution

p(θ|Y, α) ∼
Np∑
i=1

wiδθi . (1.44)

Importance Sampling is of wide applicability on the inference of normalized constant

which refers to the marginal likelihood p(Y |α). After plugging in proposal density

q(·) , the marginal likelihood p(Y |α) in Eq. (1.34) is given by

p(Y |α) =
∫
θ

p(Y |θ, α)p(θ|α)
q(θ) q(θ)dθ. (1.45)

Therefore, the average of the weight is an unbiased estimate of the marginal likelihood

p̂(Y |α) = 1
Np

Np∑
i=1

p(Y |θi, α)p(θi|α)
q(θi)

= 1
Np

Np∑
i=1

wi. (1.46)

For the goal of approximating posterior distribution, IS is very useful for dealing with

low-dimensional problems. However, it is not preferable over MCMC for complicated

problems. It is important to note that MCMC does not directly give an estimate of

the marginal likelihood. However, IS can provide an unbiased estimate of the marginal

likelihood. The choice of the proposal is essential to implement IS since the variance of

the estimator is governed by the distance of the proposal and the posterior distribution

[19]. Therefore, in practice, it is challenging to find an appropriate proposal, especially

for high dimensional problems. It can be seen from Eq. (1.45) that an ideal choice of
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importance proposal would be the target,

q(θ) = p(θ|Y, α) ∝ p(Y |θ, α)p(θ|α). (1.47)

In such case, the weight is constant which equals 1
Np

. However, the target distributions

are usually too complicated to be sampled from directly. Alternatively, we can choose

proper proposals that are close to the target distribution. The effective sample size

(ESS) is a useful criterion for judging the distance between the proposal and the target

ESS = Np

1 + var(w̃i)
, (1.48)

where w̃i is the normalized weight given by

w̃i = wi∑Np
j=1wj

, i = 1, · · · , Np. (1.49)

Neal [20] introduced an adaptive tempering technique, known as Annealed Impor-

tance Sampling (AIS), to approximate the intractable target distribution π(·). AIS

makes lower variance estimators than IS by introducing intermediate distributions

that bridge between the proposal and the target. The intermediate distribution πt(·)

is defined as following:

πt(θ|Y ) = p(θ)1−tp(θ|Y )t, 0 ≤ t ≤ 1.

A set of distributions {πt(θ|Y )} act as the intermediate distributions to build a smooth

path between the prior and the posterior distribution. To facilitate such annealing

scheme, we then introduce Markov transition kernel to jump from one intermediate

distribution to the next. AIS gives a lower variance estimate than IS of both the

posterior and the marginal likelihood. We will look at this in section 4.6.
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1.7.7 Pseudo Marginal

Andrieu and Roberts [21] formalised a method known as Grouped Independence

Metropolis-Hastings (GIMH), which was originally introduced by Mark Beaumont

[22]. The basic idea of GIMH is described as following:

Suppose we have a set of observed data Y , which is generated by a model associ-

ated with parameters vector θ and latent variable vector X. The target distribution

of interest is π (θ|Y ), which is the posterior distribution of θ for given data Y . A

standard approach to obtaining the approximation of intractable target π (θ|Y ) is to

set up an MCMC simulation (see Alg. 1) on the joint parameter space (θ, X). Howe-

ver, such an algorithm usually turns out to be inefficient. Since the latent variable X

is usually defined on high dimensional space which results in low acceptance rate. A

straightforward way to address this problem is to apply an approach that can update

the variables sequentially. However, such approach can be quite slow if θ and X are

highly dependent in the posterior.

The pseudo-marginal is a useful trick that helps us get rid of this. The basic idea

is to approximate the ‘ideal’ algorithm that targets the posterior

π (θ|Y ) ∝ p (θ) p (Y |θ)

with an unbiased approximation. Andrieu and Roberts [21] have established that if an

unbiased approximation is used to approximate the posterior π (θ|Y ) when evaluating

the acceptance probability, one will end up with the right target distribution. A

sufficient way to obtain such an unbiased approximation of the target density is to

make use of IS strategy. By introducing integer Np ≥ 1 and importance proposal

qθ(·), the target density can be approximated by

π̂(θ|Y ) = 1
Np

Np∑
i=1

π(θ, Xi|Y )
qθ(Xi)

, with Xi ∼ qθ(·). (1.50)

Since the hidden variable X is usually high dimensional, sampling from IS might
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not be the most efficient way to update X. However, it does help us overcome the

challenge of exploring the joint space where X and θ are highly dependent.

Andrieu and Vihola [23] state that the pseudo-marginal MCMC mixes well only

in the case that we have a low variance estimator of the posterior. A lower variance

estimator would improve the mixing of the chain. It is important to note that if X is

high dimensional, it would be difficult to obtain such a low estimator by plugging IS.

If X is a time series, we can use a particle filter (PF) to get around this.

1.8 Thesis Outline

The remainder of the thesis is structured as follows. In Chapter 2, we apply the

Monte Carlo methods to study super coarse-grained models for unentangled polymer

dynamics. Trajectories of the centre of mass of polymer chains extracted from mo-

lecular dynamics simulations are used as observations of the coarse-grained models.

MCMC method is implemented to perform parameter estimates and uncertainty as-

sessments. We will show that MCMC algorithm works well for our coarse-grained

models. By introducing the adaptive scheme, the MCMC samples have lower corre-

lation time compared with the standard MCMC paradigm. We investigate a set of

models with different complexity to reproduce the dynamics of the center of mass of

single chains in MD simulations and find that 3-bead model is adequate to represent

the time-dependent diffusion coefficient at medium and large time scales.

In Chapter 3, we introduce particle MCMC (PMCMC) to study nonlinear and

non-Gaussian system. We illustrate how the observation error and the number of

particles impact the efficiency of particle MCMC. A super coarse-grained model cha-

racterized by Generalized Langevin Equation is introduced to study the chain center

of mass diffusion.

We use the slip-spring model combined with Bayesian statistics to study polymer

entanglements in Chapter 4. Basic concepts of slip-spring model are adapted to
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describe the effects of entanglements, in which a set of slip-springs are introduced to

the target polymer for detecting the entanglements along its backbone. To estimate

the number of entanglements, Bayesian statistical methods, including RJMCMC, AIS

RJMCMC and SMC are implemented for model comparison and parameter estimates.

Our approach can detect the number of entanglements, their locations and strengths

of the entanglement effects for both concatenated polymer rings and central segment

of linear polymers.

Finally, in Chapter 5, we provide concluding remarks and discuss the limitations

of our methodologies, and point out possible future research directions.
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Chapter 2

Application of Markov Chain
Monte Carlo Methods on Studying
Coarse-Grained Models

In this chapter, we aim to develop a novel coarse-grained model to simulate entangled

polymer melts. We are going to look at single-particle dynamics on the level of

individual molecules. Unlike other coarse-grained approaches which consider both

inter- and intra-chain interactions, single-particle tracking focuses on only the chain

center of mass diffusion. In this way, we can significantly reduce the number of free

parameters in the coarse-grained model.

We first derive a simple stochastic model to describe the dynamics of the centers

of mass of the polymer chains. Next, we apply MCMC methods to draw inferences

on the unknown model parameters for given center of mass trajectories extracted

from MD simulations. Kalman filter is introduced to evaluate the likelihood function.

To explore the parameter space, Metropolis-Hastings sampler is used to propose new

samples for constructing MCMC paradigm. Adaptive techniques is introduced to tune

the Metropolis-Hastings sampler to improve the efficiency of the MCMC sampler.
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2.1 Introduction

Polymer melts and solutions show complicated dynamic behaviour in response to

deformation. The equations describing this phenomenon are usually nonlinear and

include many parameters, which renders them solvable only in either a numerical or

analytical manner by using drastic approximations. This is our first look at Bayesian

statistics and Monte Carlo methods in polymer applications. We start with a relatively

simple model that focuses on the dynamics of the center of mass of liner polymers.

Two of the most important dynamic properties used to characterize the properties

of a dynamic system are mean squared displacement (MSD) and velocity autocorre-

lation function (VAF). The mean squared displacement of the chain center of mass is

defined as

g3(t) = 〈|Rcm(t)−Rcm(0)|2〉, (2.1)

where 〈·〉 denotes averaging over all the atoms and the center of mass at time t is

given by Eq. (1.5). The displacement of center of mass Rcm(t)−Rcm(0) in time can

be described as an integral of its velocity v(t):

Rcm(t)−Rcm(0) =
∫ t

0
v(u)du. (2.2)

The square of this displacement is

(Rcm(t)−Rcm(0))2 =
∫ t

0

∫ t

0
v(u)v(u′)dudu′. (2.3)

Defining an auxiliary variable u′ = u+s, we obtain the following formula by integrating

over u and taking the ensemble average,

g3(t) = 2
∫ t

0
(t− s)a(s)ds, (2.4)

where a(s) is the velocity autocorrelation function defined as a(s) = 〈v(0)v(s)〉. Re-
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arranging Eq. (2.4) yields,

g3(t) = 2t
∫ t

0
a(s)ds− 2

∫ t

0
sa(s)ds. (2.5)

The MSD of the center of mass describing the chain diffusivity consists of two parts.

The first term on the right includes the time t explicitly. The velocity autocorrelation

function a(t) decays to zero when t is large which leads to the convergence of the

integral
∫ t

0 a(s)ds as t→∞. Since the second term also integrates to a fixed value for

large t, we have

D = lim
t→∞

1
3

∫ t

0
a(s)ds, C = lim

t→∞

∫ t

0
sa(s)ds, (2.6)

where D is the diffusion coefficient. The limiting behaviour of diffusion at large time

scales thereby can be written as

g3(t) ≈ 6Dt. (2.7)

The chain center of mass diffusion coefficient is given by

D = lim
t→∞

g3(t)
6t . (2.8)

It is important to note that the time dependence of the VAF a(t) cannot be

ignored for small t. We can see from Eq. (2.5) that the MSD must depend on VAF at

short time scales. At large time scales, the motion of the molecules becomes simple

Brownian motion where the velocity autocorrelation functions have decayed to zero,

i.e., the molecules have ‘forgotten’ the speed and direction they began with at t = 0.

2.2 Single-Particle Dynamics

Let us consider the simplest model that describes the motion of a single-particle

using Ornstein–Uhlenbeck process [24]. An Ornstein–Uhlenbeck process, xt, satisfies
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the following stochastic differential equation:

dxt = a(x0 − xt) dt+ σ dWt

where a > 0, x0, and σ > 0 are parameters and Wt denotes the Wiener process with

mean and variance given by

〈Wt〉 = W0, Var(Wt) = t.

The drift term depends on the current state of the process and the parameter x0 in

the drift term is known as the long-term mean which represents the equilibrium level

of the process. If the current state of the process is less than the long-term mean x0,

the drift will be positive; if the current value of the process is greater than x0, the

drift will be negative. Suppose Rt indicates the position of a single particle at time

t, the equation of motion of the particle is given as

dRt = −aRtdt+
√
bdWt, (2.9)

where the long-term mean is considered as R0 = 0 and drift term is proportional

to the state Rt itself, b determines the dynamic noise strength, and Wt is Wiener

process.

We aim at evaluating the posterior distribution of the model parameter θ = {a, b}

for given observed data. The position of the diffusing particle can be modelled by

discretizing Eq. (2.9) using Euler approximation with time step ∆t,

Rn −Rn−1 = −aRn−1∆t +
√
b∆tηn,

where ηn is a set of independent random variables drawn from the standard nor-

mal distribution, ηn ∼ N(0,E), E denotes identity matrix. Rearranging the above

equation, we have

Rn = (1− a∆t)Rn−1 +
√
b∆tηn, (2.10)
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from which Rn can be considered as a first-order autoregressive (AR) process, where

the current state only depends on the previous state and an extra noise term. One

has to be careful in the choice of ∆t which is essential for the stability of the Euler

approximation and the second order stationarity of the process. In order to prevent

the amplification of the errors in the iteration process, it requires |1−a∆t| ≤ 1 which

implies ∆t ≤ 2
a
.

The transition density of the process with given {a, b} can be written as

p(Rn|Rn−1, a, b) = 1√
2πb∆t

exp
(
−(Rn − (1− a∆t)Rn−1)2

2b∆t

)
. (2.11)

Therefore, the distribution of Rn with given Rn−1 is Gaussian

Rn ∼ N ((1− a∆t)Rn−1, b∆t) .

Assume we have a time series of particle positions Y = {yn}Ln=1, we will evaluate

the likelihood function in order to use Bayes’ formula shown in Eq. (1.33) to obtain

posterior distribution of the model parameters a and b. The likelihood function is

computed from the joint probability density of p(y1:L|a, b). Note that the time series

is Markov, the likelihood function will be expressed as follows,

p(Y |a, b) = p(y2:L|y1, a, b)p(y1|a, b)

= p(y1|a, b)
L∏
n=2

p(yn|yn−1, a, b)

= p(y1|a, b)(2πb∆t)−L/2exp
(
−

L∑
n=2

(yn − ŷn|yn−1)2

2b∆t

)
,

where ŷn|yn−1 is the expectation of yn conditioning on yn−1, a and b,

ŷn|yn−1 = E [yn|yn−1, a, b]

Recall that we have demonstrated how to evaluate posterior density in Eq. (1.33).
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The posterior density π(a, b|Y ) is given by

π(a, b|Y ) ∼ p(Y |a, b)P (a, b). (2.12)

where P (a, b) denotes the joint prior of (a, b). In some cases, one can choose conjugate

priors to make the posterior tractable, see section 4.4. If the posterior π(a, b|Y ) is

tractable, one can sample (a, b) from the target directly. Otherwise, to construct

MCMC based on M-H Sampler (Alg. 1) is a useful method to obtain sample from the

intractable target.

This simple model considers the motion of a polymer as a single-particle dif-

fusion and ignores the memory effects and interactions with surrounding polymers.

To capture more details of the dynamics of the polymers, we are going to look at a

more complicated model by assuming that a set of hidden variables are constantly

interacting with the target observable.

2.3 Single-Particle Dynamics with Hidden Varia-
bles

We represent a polymer chain with a single particle where the coordinate of the particle

is the chain center of mass. The effects of the surrounding media and neighbouring

chains could be described using a set of invisible particles. Suppose we have N + 1

particles with coordinates {Ri}Ni=0, the first particle with coordinate R0 is observable

representing the target chain center of mass. The rest of the particles are latent

variables and connected withR0 by harmonic springs. We assume that the probability

of future state of the system depends only on the current state and not on the sequence

of states that preceded it. Such models are known as Hidden Markov Models (HMMs)

in which the sequence of states that ‘generate’ the observable are hidden from the

observer.

HMMs are widely used in speech recognition systems, computational molecular
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Figure 2.1: (a) Molecular dynamics simulation-box snapshot; (b) a snapshot of linear
polymer chain (green) and its neighbouring chains in one of the configurations; (c)
Coarse-grained model; (d) Trajectory of the chain center of mass

biology and other areas of artificial intelligence and pattern recognition. The equation

of motion of the (N + 1)-particle system is given by

ξidRi = ki(R0 −Ri)dt+

√
2ξidWi,

ξ0dR0 =
N∑
i=1

ki(Ri −R0)dt+
√

2ξ0dW0,
(2.13)

where ki is the spring constant, ξi is the friction coefficient and Wi is Wiener process.

Rearranging the above equations in vector form yields

dR = −ARdt+ BdW, (2.14)

where

A =



∑N
i=1 ki/ξ0 −k1/ξ0 · · · · · · −kN/ξ0

−k1/ξ1 k1/ξ1
...

. . . 0
... 0 . . .

−kN/ξN kN/ξN


, B =



√
2/ξ0 √

2/ξ1 0
. . .

0 . . . √
2/ξN


.
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Let us start from the simplest model with R = (R0,R1)T , where the connectivity

matrix is of the form

A =
 k1/ξ0 −k1/ξ0

−k1/ξ1 k1/ξ1

 .
We can apply eigen decomposition to matrix A as what we have done in section 1.4.

The diagonal matrix Λ consists of eigenvalues of A,

Λ = Q−1AQ, (2.15)

where the ith column of Q is the eigenvector corresponding to the ith eigenvalue Λii.

Matrices Λ, Q and Q−1 are given by

Λ =


0 0

0 k1(ξ0+ξ1)
ξ0ξ1

 ,Q =


1 − ξ1

ξ0+ξ1

1 ξ0
ξ0+ξ1

 ,Q−1 =


ξ0

ξ0+ξ1

ξ1
ξ0+ξ1

−1 1

 .

Applying the linear operator Q−1 to R, we obtain X = Q−1R where X are the normal

coordinates of the model,

X0 = ξ0R0 + ξ1R1

ξ0 + ξ1
, X1 = R1 −R0.

Substitute R = QX and A = QΛQ−1 into Eq. (2.14) yields

dX0 =
√

2/ζ0dW
′

0, (2.16)

dX1 = − 1
τ1
X1dt+

√
2/ζ1dW

′

1, (2.17)

where ζ0 = ξ0 + ξ1 , ζ1 = ξ0ξ1
ξ0+ξ1

, τ1 = ζ1
k1

and W ′
i , i = 1, 2, is Wiener process. We

can see from Eq. (2.16) that the first mode corresponds to the center-of-mass motion

which is governed by Wiener process with diffusion coefficient D0 = 1/ζ0. Eq. (2.17)

indicates that X1 is characterized by bond vector which can be expressed as Ornstein-

Uhlenbeck process with relaxation time τ1 and diffusion coefficient D1 = 1/ζ1. It is

31



Section 2.3 Page 32

straightforward to write down the solutions of these two stochastic processes

X0(t) = X0(0) +
√

2D0

∫ t

0
dW

′

0 = X0(0) +
√

2D0W
′

0(t), (2.18)

X1(t) = X1(0)exp(−t/τ1) +
√

2D1

∫ t

0
exp

(
−t− t

′

τ1

)
dW

′

1. (2.19)

The mean-square displacements of the modes are given by

〈(X0(t)−X0(0))2〉 = 2D0t, (2.20)

〈(X1(t)−X1(0))2〉 = 2D1τ1
(
1− e−t/τ1

)
. (2.21)

Note that X and R are related by a linear operator Q−1, R0(t) and R1(t) thereby

can be expressed in terms of X0(t) and X1(t),

R0(t) = X0(t)− ξ1

ξ0 + ξ1
X1(t), R1(t) = X0(t) + ξ0

ξ0 + ξ1
X1(t)

The MSD of R0 is given by

〈
(R0(t)−R0(0))2

〉
= 2D0t+ 2D1τ2

(
ξ1

ξ0 + ξ1

)2 (
1− e−t/τ1

)
. (2.22)

For the cases of N > 1, applying diagonal decomposition A = QΛQ−1, substitu-

ting R=QX into Eq. (2.14) and rearranging the equation, we obtain the diagonal

stochastic differential equation

dX = −ΛXdt+ DdW, (2.23)

where D=diag(
√

2d0,
√

2d1, ...,
√
dN), di = 1

2
∑N
j=0 B′(i, j)2, B′ = Q−1B. Note that

the first eigenvalue is λ0 = 0, and the corresponding eigenvector is (1, 1, 1, ..., 1)T ,

which yields

〈
(X0(t)−X0(0))2

〉
= 2∑N

i=0 ξi
t. (2.24)
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For the mode numbers i, we obtain solution of MSD of mode Xi(t) with relaxation

time τi = 1/Λii

〈
(Xi(t)−Xi(0))2

〉
= 2diτi

(
1− e−t/τi

)
, i = 1, ..., N. (2.25)

Recall that R=QX, coordinate R can be written in terms of X,

Ri =
N∑
j=0

QijXj.

Therefore, the MSD of Ri is given by
〈

(Ri(t)−Ri(0))2
〉

=
N∑
j=0

Q2
ij

〈
(Xj(t)−Xj(0))2

〉
+
∑
j 6=k

QijQik 〈(Xj(t)−Xj(0)) (Xk(t)−Xk(0)〉

= 2∑N
j=0 ξj

t+
N∑
j=1

2Q2
ijdjτj

(
1− e−t/τj

)
. (2.26)

The second summation ∑j 6=kQijQik 〈(Xj(t)−Xj(0)) (Xk(t)−Xk(0)〉 vanishes since

the normal modes Xj and Xk (j 6= k) are independent of each other, which yields,

〈(Xj(t)− 〈Xj(t)〉)(Xk(t)− 〈Xk(t)〉)〉 = 0, j 6= k. (2.27)

Once the model parameters are available, Eq. (2.26) can be used to compute the

time-dependent diffusion coefficient D(t) in Eq. (2.8).
Let us consider using Bayesian inference to draw inference on model parameters(

{ki}Ni=1, {ξi}Ni=0

)
. Applying Euler approximation to Eq. (2.14) and rearranging it,

we have
Rn = MRn−1 + ηn, n = 1, ..., N, (2.28)

where M = E −A∆t is the transition matrix, E denotes the identity matrix and

ηn is a Gaussian vector with zero mean and covariance matrix S = BBT∆t.

Note that we observe only one of the particle coordinates. Without loss of gene-

rality, we assume that there exists observation error. The observation at the nth time
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step is given by

yn = CRn + ζn, (2.29)

where C = ( 1 0 · · · 0 ) is the observation operator and the observation error is

thought of being Gaussian ζn ∼ N(0, S0) and time-independent

〈ζnζm〉 = 0, for n 6= m.

Kalman filter is useful to recursively estimate the state of the system and the uncer-

tainty of the estimate [25] [26]. The forecast of state Rf
n, uncertainty P f

n and forecast

of the observation yfn are as follows,

Rf
n = MRa

n−1, P f
n = MP a

n−1M
T + S,

yfn = CRf
n,

where Ra
n−1 is the updated estimate of state and P a

n−1 is the updated uncertainty

of the estimate at n − 1. Using the difference between the observation yn and the

forecast of measurement yfn, we have

Ra
n = Rf

n +Kn(yn − yfn),

P a
n = P f

n −KnCP
f
n ,

where yn − yfn indicates the discrepancy between the predicted measurement and the

actual measurement. Matrix Kn is referred to as gain. The choice of Kn would be

the one that minimizes the posterior error covariance which gives us the most reliable

estimation. To derive such an optimal Kn, a widely used approach is to calculate the

expectation of the covariance estimate and take derivative of the trace with respect

to Kn. The optimal gain ensures that the matrix derivative equals zero, which yields
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Kn = P f
nC

T (CP f
nC

T + S0)−1

= P f
nC

T

CP f
nCT + S0

. (2.30)

Further details about the Kalman gain can be found in [26] [27].

Assume the prior distribution of R1 is Gaussian N (µ,Σ), the estimates of the

state and its uncertainty are given by

yf1 ∼ N (Cµ,CΣCT ),

Rf
1 = µ, P f

1 = Σ.

Note that the time series is Markov with given first observable y1. Therefore the like-

lihood function for parameter set θ with given observations {yn}Ln=1 can be computed

using the following formula

P (y2:L|θ, y1) =
L∏
n=2

P (yn|yn−1,θ). (2.31)

The conditional probability P (yn|yn−1,θ) is given by

P (yn|yn−1,θ) = 1√
2π|Qn|

exp
[
−1

2(yn −CMRf
n−1)TQ−1

n (yn −CMRf
n−1)

]
, (2.32)

where the innovation covariance Qn is given by Qn = CP f
nC

T +S0. Substituting Eq.
(2.32) into Eq. (2.31) and taking the logarithm of both sides yields

log P (y1:L|θ) = log p(y1) +
L∑
n=2

logP (yn|yn−1,θ)

= log p(y1)− 1
2

L∑
n=2

[
log(2π) + log |Qn|+ (yn −CMRf

n−1)TQ−1
n (yn −CMRf

n−1)
)
].

(2.33)

Given parameter set θ, Alg. 2 demonstrates how to implement Kalman filter to

evaluate the likelihood. We will show how to plug Kalman filter into MCMC in the

following section.
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Algorithm 2 Kalman Filter
1: Initialize Rf

1 ,P
f
1 and yf1

2: for n = 1 : L do
3: Calculate innovation covariance: Qn = CP f

nC
T + S0, en = yn −CMRf

n

4: Evaluate Kalman gain: Kn = P f
nC

TQ−1
n

5: Update state: Ra
n = Rf

n +Knen
6: Update estimate covariance: P a

n = P f
n −KnCP

f
n

7: Evaluate likelihood: logP (yn|yn−1,θ) = −1
2

(
log(2π) + log |Qn|+ eTnQ

−1
n en

)
8: Predict state estimate: Rf

n+1 = MRa
n

9: Predict estimate covariance: P f
n+1 = MP a

nM
T + S

10: end for
11: Return log-likelihood of the parameters:

log (y1:L|θ) = log p(y1) +∑L
n=2 logP (yn|yn−1,θ)

2.4 Application of Markov Chain Monte Carlo Met-
hods

In the previous section, we have discussed diffusion process where the particle dy-

namics can be viewed as an autoregressive stochastic process governing path of the

particles. We also demonstrated how to apply time series analysis methods directly on

the coordinate of particles to calculate the likelihood function. In this section, we will

apply Markov Chain Monte Carlo (MCMC) methods to estimate model parameters

and the uncertainty of the estimates.

MCMC provides a powerful tool for exploring the posteriors which are intractable

and difficult to sample from directly. By plugging M-H sampler (see section 1.7.5)

in MCMC algorithm, we can draw a sequence of samples distributed from the target

distribution. M-H sampler is a simple and broadly applicable method that allows the

acceptance rate of a move depend only on the ratio of the target probability. This

acceptance criterion ensures that the chain is always homogeneous and reversible,

irrespective of the chosen proposal density q(·). Fig. 2.2 shows a path exploring the

two-dimensional parameter space. The blue squares represent the accepted moves

while the red marks are the moves that are rejected.
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Figure 2.2: Sampling from a two-dimensional distribution using the Metropolis-
Hastings algorithm.

The efficiency of the sampler depends on the choice of proposal. The proposal

density q(·) is usually selected from a class of symmetric distributions which satisfy

q(θ|θ∗) = q(θ∗|θ). By doing this, the acceptance probability γ(θ,θ∗) in Alg. 1

depends only on the ratio of the posterior density

γ(θ,θ∗) = min
{

1, π(Y |θ∗)π(θ∗)
π(Y |θ)π(θ)

}
. (2.34)

Obviously, the efficiency of the sampler is determined by the acceptance rate

and the M-H sampler will fail if the acceptance rate is low. Since algorithms with

low acceptance rate will always reject the proposal moves and end up with highly

dependent samples, a straightforward way of getting rid of this issue is to make

sufficiently small moves at each step. However, ‘too high’ acceptance rate will lead to

poor mixing as well. As a results, the MCMC will be unlikely to move away from a

particular state which leads the chain getting stuck in local maxima.

There is no general construction rule for choosing a suitable proposal distribu-

tion q(·). An important criterion that evaluates the efficiency of the sampler is the
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autocorrelation function (ACF),

ACF(τ) = E[(θt − θ̂)(θt+τ − θ̂)]
var(θ) , (2.35)

where E(θ) and var(θ) denote the mean and variance of samples {θt}. For a discrete

sequence of samples {θn}Kn=1, the discrete ACF can be written as

ACF(j) =
∑K
n=j+1 θ

′
nθ
′
j∑K

n=j+1 θ
′2
n

(2.36)

where θ′j is given by

θ
′

j = θj −
1
K

K∑
i=1
θi.

ACF is a common diagnostic tool for determining the independence of sequential

samples. Successive samples in the Markov chain are not independent. Higher au-

tocorrelation function at large lags (e.g., lag=10 or 20) means that less information

about the target distribution is provided by each iteration. Therefore, larger sample

size is needed for fully exploring the whole parameter space. ACF is useful for deter-

mining the number of samples to represent proper posterior density and to guarantee

convergence of sampling process.

A practical method for generating suitable samples is to tune the proposal dis-

tribution adaptively. By doing this, one can obtain appropriate samples with the

minimum autocorrelation criterion. Roberts and Rosenthal [28] discussed optimal

scaling for various M-H algorithms. A ‘good’ proposal distribution should make the

acceptance rate as close as possible to the optimal value which minimises the auto-

correlation criterion. Roberts and Rosenthal also stated that the optimal acceptance

rate for a one-dimensional proposal is 0.44 for standard Gaussian target densities and

presented various theoretical results for the high-dimensional problems [28].

We will sequentially update the individual components of parameters which redu-

ces a multi-dimensional issue to a one-dimensional problem. Note that this dimension
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reduction method works only when the posterior dependence between the different

components is weak. We monitor the acceptance rate of each component and adapt

the scale of proposal distribution q(·) such that the approximate acceptance rate is

close to the optimal value. In our case, we sample θ∗ from Gaussian distribution

N (µ, σ2) which centres at current state µ = θi. The scale of the proposal distribution

σ2
i is tuned every 20 MCMC iterations. The variance σ2

i can be tuned according to

the acceptance rate ri−1 and previous proposal scale σ2
i−1,

σ2 =


1.5σ2

i−1, ri−1 > 55%,

0.75σ2
i−1, ri−1 < 35%,

σ2
i−1, Otherwise.

where the acceptance rate ri−1 is evaluated over the past 20 MCMC iterations. Here

we are talking about monitoring the acceptance rate and adapting the scale of the

proposals for individual components.
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Figure 2.3: The ACF of MCMC samples using different proposal scales

To demonstrate the efficiency of adaptive MCMC scheme, we first look at a toy

model. A stochastic process governed by Eq. (2.9) is investigated. The sequence

of observations {xn}1000
n=1 are generated from a latent model with drift coefficient a =

10, and noise term b = 2. The time increment is ∆t = 0.03. Fig. 2.3 shows the
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autocorrelation drops off slower when the widths of proposal distribution are either

too narrow or too wide compared with the ‘optimal’ scales. In a high-dimensional

example [28] , such issues could be more significant.

0 100 200 300 400 500 600
0

0.5

1

1.5

iteration step

st
ep

 s
iz

e 
fo

r 
a

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

iteration step

ac
ce

pt
an

ce
 r

at
e 

fo
r 

a

(a)

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

iteration step

st
ep

 s
iz

e 
fo

r 
b

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

iteration step

ac
ce

pt
an

ce
 r

at
e 

fo
r 

b

(b)

Figure 2.4: Acceptance rate and corresponding variances of proposal distributions for
a toy model

Fig. 2.4 shows the traces of the acceptance rate and the corresponding scales of

proposals for parameters a and b, respectively. We calculate the acceptance rate r

and update the scales of proposal density for each parameter every 20 steps. As we

can see from Fig. 2.4(a), in the adaptive MCMC M-H sampling, high acceptance rate

r induces an increase in the variance of proposal distribution, referred to as step size

here. Large step size leads to a drastic decline in the acceptance rate. Low acceptance

rate leads to a reduction in the step size which in turn boosts the acceptance rate.

The proposal scale is adaptively tuned in such manner until it reaches the ‘optimal’

level. After 300 MCMC iterations, the acceptance rates for both a and b converge to

approximately 0.41. To save computational efforts and ensure the reversibility of the

MCMC sampler, the adaptive scheme will be terminated after the MCMC reaches

equilibrium. With the help of adaptive scheme, we can get rid of local maximum and

explore parameter space efficiently with a reasonable acceptance rate.

ACFs of the adaptive scheme and standard scheme with optimal scales are shown
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Figure 2.5: The ACFs of MCMC samples using adaptive scheme and standard M-H
sampler with ‘optimal’ scales of proposal distribution.

in Fig. 2.5. It shows that the adaptive method is as efficient as standard scheme

facilitated by the use of ‘optimal’ scale of the proposal distribution. We can also

see that both the adaptive algorithms reach the optimal proposal scales, where σ2
a is

around 0.5 and σ2
b is close to 0.01 as shown in Fig. 2.3 and Fig. 2.4. This adaptive

strategy is easy to implement without knowing the optimal scales. Bedsides, it allows

for quicker burn-in than standard algorithms and explores parameter space more

efficiently and effectively.
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Figure 2.6: Estimation and its 95% confidence interval versus number of observations
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Next, we will investigate the impact of the number of observations on Bayesian

inference. In Fig. 2.6, the horizontal line represents the ‘true’ parameter values of

the latent system while the error bars represent 95% confidence intervals which are

symmetric to the estimates that are represented by crosses. Parameter estimates

improve as the number of the observations increases, which is a general feature of

statistic estimate.
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Figure 2.7: Forecast of the state with 95% confidence interval compared with obser-
vations

Apart from mean and variance of the posterior density, an alternative way to

represent the accuracy and efficiency of the estimates is the difference between forecast

proposed by Kalman filter and the actual observations. Fig. 2.7 plots the observations

and predictive quantities with 95% confidence intervals.

2.5 The Most Coarse-Grained Model

We have presented the feature of MCMC algorithm in the previous section with a toy

model. In this section, we are going to apply MCMC methods on studying coarse-

grained models. The model we use to generate chain trajectories is exactly the same

as the model introduced by Kremer and Grest [29]. We initialize the system with
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particle density ρ = 0.85, each chain is of length N = 16. The system is simulated

in a cubic box of 200 linear chains with periodic boundary conditions. The beads

along the chain are connected by FENE springs. Excluded volume effects between

monomers are governed by purely repulsive Lennard-Jones potential,

UFENE(r) =


− r2

0
2 k ln

(
1−

(
r

r̄0

)2
)
, r ≤ r̄0

0, r > r̄0

(2.37)

ULJ(r) =


4ε
((

σ

r

)12
−
(
σ

r

)6
+ 1

4

)
,

r

σ
≤ 21/6

0, r

σ
> 21/6,

(2.38)

where r̄0 = 1.5σ is maximum extension of the FENE spring and k = 30ε/σ2 is

the spring constant. All the quantities including the Lennard-Jones (LJ) energy ε,

Lennard-Jones radius σ and the mass of beads m are equal to unity. The Lennard-

Jones time is τLJ = σ
√
m/ε. We use Langevin thermostat with ζ = 0.5 to guarantee

constant temperature which maintains kBT = ε.

The time step dt = 0.012τLJ is used for simulations and the system is run long

enough to ensure the proper equilibration. 1000 configurations with time intervals

δt = 1.2τLJ are taken from molecular dynamics simulations. The observable is the

center of mass of a single chain. We aim to capture essential features of the diffusion

coefficient of the chain center of mass at both medium and large time scales (t ≥ δt).

To investigate the impact of the choice of the discrete time step ∆t shown in Eq.

(2.28) on the estimates of the model parameters, three iteration schemes are facilitated

using different iteration time steps ∆t = 0.025τLJ , 0.05τLJ and 0.1τLJ , respectively.

The observed time intervals δt > ∆t implies that we evaluate likelihood every n

iteration steps, where n = δt/∆t. The simplest model consists of 2 beads described

in Eq. (2.13), known as dumbbell model, is used to facilitate MCMC. We take the

MCMC estimates as the input parameters and run simulations using equation of

motion described in Eq. (2.13). The time-dependent diffusion coefficients D(t) of the
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first bead (observable) for each iteration schemes are plotted in Fig. 2.8.

Figure 2.8: Diffusion coefficient D(t) of dumbbell model (2-bead model) with frequent
intervals δt = 1.2τLJ using iteration schemes ∆t = 0.02, 0.05 and 0.1τLJ . The brown
trace (∆t = 0.012τLJ) is the target D(t) from MD simulations

Fig. 2.8 shows the diffusion coefficient D(t) of the observable characterized by

2-bead model using iteration schemes with different time steps. The brown trace is

the D(t) obtained from MD simulations using with (∆t = 0.012τLJ). We can see that

all the models are trying to ‘fit’ D(t) between time interval 1.2τLJ ∼ 12τLJ . Note that

in the multi-bead model, the diffusion coefficient converges to a nonzero constant as

t→ 0, which can be derived from Eq. (2.26),

D(t) ∝ 2∑N
j=0 ξj

+
N∑
j=1

2Q2
0jdjτj, for t→ 0. (2.39)

Besides, the minimum observed time interval is ∆t = 1.2τLJ which implies that we

cannot get any information about dynamic behaviours of the target chain at very short

time scales t < ∆t. It is worth mentioning that the total observed time duration is

T = 1200τLJ which may not be sufficient to capture the features of polymer dynamics

at large time scales. When developing coarse-grained models, we usually wish to

guarantee the consistency at large time scales first and then capture as more features

as possible for medium and short time scales.
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Figure 2.9: Diffusion coefficient D(t) of dumbbell model (2-bead model) with frequent
intervals δt = 12τLJ using iteration schemes ∆t = 0.02, 0.05 and 0.1τLJ . The brown
squares (∆t = 0.012τLJ) is the target D(t) from MD simulations

To capture the dynamic behaviours at large time scales, we increase the observed

time interval from 1.2τLJ to 12τLJ and the same number of configurations L = 1000 is

used for modelling. Fig. 2.9 reveals that the model shows good agreement with MD

simulations for D(t) at t > 12τLJ . This implies that if we want to fit the whole diffu-

sion coefficient function using 2-bead model, observations with smaller time intervals

and larger data size are essential. However, we find that the MCMC estimates using

10,000,000 configurations with observation interval δt = 1.2τLJ are not satisfactory,

which implies that 2-bead model is not adequate to describe the diffusion of the chain

center of mass. We consider to increase the number of hidden particles and simulate

a system with longer chains N = 64 as shown in Fig. 2.10.

It can be seen from Fig. 2.10 that the 2-bead model does not capture the diffusive

behaviours at large time scales. The 3-bead model and 4-bead model predict the

final plateau of D(t) well with relatively small errors. Excellent agreement is shown

between 4-bead model and MD simulations in the diffusion behaviours at time scales

10τLJ ∼ 1000τLJ . It is obvious that the more hidden beads we have, the better

prediction of the diffusion coefficient D(t) we will obtain. The problem is what is

the sufficient number of beads to describe the dynamics of the center of mass of
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Figure 2.10: Analytical solutions of time-dependent diffusion coefficient D(t) for 2-
bead (blue), 3-bead (red) model and 4-bead (green) model. Frequent interval δt =
12τLJ ; The parameters used to plot D(t) are the MCMC estimates for each model

single chains. One needs to evaluate the increased model complexity and the benefits

of increasing number of hidden variables. In Chapter 4, we will discuss a set of

approaches for Bayesian model comparison which may be helpful to solve this problem.

Figure 2.11: Estimate of E0 (2-bead model and 3-bead model)

After looking at the agreement of the multi-bead model and MD simulations in
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Figure 2.12: Estimates of friction coefficients of hidden beads 2-bead model and 3-
bead model

the diffusion behaviours at different time scales, we also investigate the estimates of

the models parameters provided by MCMC methods. Fig. 2.11 shows the trace of E0

which is the friction coefficient of the first bead (observable) in MCMC iterations. We

can see that there is excellent agreement in the estimate of E0. It is also interesting to

Figure 2.13: Estimate of spring constants (2-bead model and 3-bead model)

look at the estimates of the parameters for hidden variables. Fig. 2.12 and Fig. 2.13
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compare the estimates of friction coefficients and spring constants for the hidden beads

in 2-bead model and 3-bead model. In Fig. 2.12, the red line is the trace of friction

coefficients of hidden beads in 2-bead. The blue and green lines show trace of friction

coefficients of the second and third beads for 3-bead model, together with the black

line which is the sum of the friction coefficients of these two beads. The fluctuations of

blue line and green line imply that there is no distinct difference between the hidden

beads in 3-bead model, i.e., the MCMC methods prefer a Rouse-like coarse-grained

model to govern the dynamics of chain center of mass.

2.6 Summary

To conclude, this chapter is motivated by the need to develop novel coarse-grained

model to simulate entangled polymer melts. We propose a multi-bead coarse-grained

model to study the dynamics of chain center of mass diffusion. Unlike other coarse-

grained approaches which usually take inter- and intra-chain interactions into account,

our multi-bead coarse-grained model focuses on the chain center of mass diffusion,

which will significantly reduce the number of free parameters in the coarse-grained

model.

The multi-bead model is characterized by a sequence of linear stochastic equations

with Gaussian noise, in which the parameters of interest are friction coefficients and

spring constants. To obtain the estimates of the unknown parameters, we embed

Kalman Filter into MCMC paradigm which is sufficient to draw inferences on the

unknown parameters for linear system with Gaussian noise. Adaptive MCMC scheme

is introduced to improve the efficiency of MCMC algorithm.

This chapter explores the performance of coarse-grained models with different

hidden beads. We show that for a chain with chain length N = 64, a 3-bead model

is sufficient to describe the chain center of mass diffusion. We also find that,in multi-

bead model, it is preferable to have Rouse-like structure rather than asymmetric star

structure.

48



Chapter 3

Single-Particle Dynamics with
Memory Kernel

We have seen from the previous chapter that a linear model may not always simul-

taneously capture the dynamic features of the polymers at different time scales. As

the chain length increases, more complicated behaviours will arise due to the chain

uncrossibility. It is worth to investigate coarse-grained models with nonlinear inte-

ractions. In this chapter, we will focus on more general models, including multi-bead

models involving non-linear dynamics and single-particle dynamics with memory ker-

nel. At first, we consider a nonlinear system where standard Kalman filter does not

work any more. We then introduce particle filter and the efficiency of this approach is

discussed. After that, a more general model — single-particle dynamics with memory

kernel is introduced. In the latter case, apart from the mean square displacement, we

will also investigate the velocity autocorrelation function of the chain center of mass.
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3.1 Introduction

Consider a multi-bead coarse-grained model where the interactions between beads are

nonlinear, the equation of motion can be written as

dX = −f(X,β)dt, (3.1)

where f(·) is a nonlinear function. This nonlinear system can be described as follows:

Suppose we have time series data y1:L which involved with a set of hidden states

x1:L. It is natural to assume that the state evolution is Markov, which means the

prediction of the future state xt depends only on the current xt−1. The model evolution

equation is

xt = f(xt−1, βt−1), t = 1, · · · , L, (3.2)

where βt−1 is a random variable that describes the model error. The conditional

probability of the prediction is given by transition density q(xt|xt−1). Observation is

described as

yt = h(xt, ηt), t = 1, 2, ..., L, (3.3)

where h(·) is the measurement operator, ηt is the observation error. If the mea-

surement error is Gaussian with ηt ∼ N (0, σ2), the conditional probability of the

observation given model state xt can be written as

p(yt|xt) = 1√
2πσ2

exp
[
−(yt − h(xt))2

2σ2

]
. (3.4)

Our goal is to infer the ‘filtering distribution’ p (xt|y1:t) of xt given all the previous

observation y1:t, t = 1, 2, ..., L. If the model is linear and all the distribution are

Gaussian, one can reach the analytical form of the target distribution by using Kalman

filter and conjugate prior. However, when the model is nonlinear, or the probability

density is not Gaussian, we need to work out new methods to address this problem.
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3.2 Particle Filter

Particle filters [30] [31] are a set of Monte Carlo methods originally used to solve

filtering problems arising in signal processing and Bayesian statistical inference. The

distribution of interest is the marginal of the latent variables xt given all observati-

ons y1:t up to time t. Particle filters allow us to sequentially update the posterior

distribution at time t without modifying the previously inference made on states

x1:t−1. The fundamental idea is to facilitate importance sampling on path space.

At time t, importance sampling yields weighted points from distribution p (xt|y1:t).

For the pth particle, sample x
(p)
t+1 is drawn from proposal distribution which yields

x
(p)
t+1|x

(p)
t ∼ q(xt+1|y1:t+1, xt). The particle would get unnormalised weight evaluated

by the weight of x(p)
t

w̃
(p)
t+1 = f(y1|x(p)

1 )p(x(p)
1 )∏t

i=1 p(x
(p)
i+1|x

(p)
i )f(yi+1|x(p)

i+1)
q(x(p)

1 |y1)∏t
i=1 q(x

(p)
i+1|y1:i+1, x

(p)
i )

= w
(p)
t

p(x(p)
t+1|x

(p)
t )f(yt+1|x(p)

t+1)
q(x(p)

t+1|y1:t+1, x
(p)
t )

, p = 1, 2, · · · , Np,

where Np is the number of particles used for importance sampling. The normalised

weights are given by

w
(p)
t+1 = w̃

(p)
t+1∑NP

p=1 w̃
(p)
t+1

, (3.5)

which provides a weighted particle approximation {w(p)
t , x

(p)
t }

Np
p=1 to the marginal dis-

tribution p (xt|y1:t) at time t. The sampling procedure is described in Alg. 3. Particle

Filters are applied to solve strongly nonlinear data-assimilation problems. They have

a few strong assets, e.g., their ability to deal with nonlinear dynamics, the simplicity

of their implementation and the advantage that their behaviours do not depend on a

specification of the model state covariance matrix.
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Algorithm 3 Particle Filter
1: procedure Initialization
2: for p = 1 : Np do
3: Sample x(p)

1 ∼ q(x1|y1)
4: Weight of x(p)

1 : w̃(p)
1 = f(y1|x(p)

1 )p(x(p)
1 )

q(x(p)
1 |y1)

.

5: end for
6: Normalised weights w(p)

1 = w̃
(p)
1∑Np

p=1 w̃
(p)
1

7: end procedure
8: procedure Iteration
9: for t = 1 : L− 1 do

10: for p = 1 : Np do
11: Sample x(p)

t+1|x
(p)
t ∼ q(xt+1|y1:t+1, xt)

12: Weighted point :w̃(p)
t+1 = w

(p)
t

p(x(p)
t+1|x

(p)
t )f(yt+1|x(p)

t+1)
q(x(p)

t+1|y1:t+1,x
(p)
t )

.

13: end for
14: Normalised weights w(p)

t+1 = w̃
(p)
t+1∑Np

p=1 w̃
(p)
t+1

15: end for
16: end procedure

3.3 Reducing the Variance in the Weights

Note that one of the main drawbacks of importance sampling is that when a particle

moves away from the observations, the relative weight will become smaller if no cor-

rection made on the particle to pull it back to the observations. This always happens

as the filter runs and the dimension of the space grows. In practical applications, one

particle would always end up getting all of the weights in the end where the statistical

information of the ensemble is not meaningful. This phenomenon is called filter de-

generacy. Resampling strategy is useful to deal with the issue of particle degeneracy.

In resampling scheme, the particle ensemble is resampled. Particles with very low

weights are abandoned, while multiple copies of particles with high weights are kept

for the posterior probability distribution in the sequential implementation in order to

restore the total number of particles Np. After resampling, all the new particles are

of the same weight wi = 1
Np

. There are several widely used resampling algorithms.
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• Probabilistic resampling directly samples randomly from the density given by

the weights P (Np, {wi}). The basic idea is to draw Np independent uniforms

{Ui}1≤i≤Np on the interval (0, 1]; The new ith sample associated with Ui is set

to be a copy of particle j if Ui ∈ (Wj−1,Wj] where W is the cumulative sum of

{wi}.

• Residual sampling assumes that there are ni copies taken of particle i (ni =

[Npwi]), where [·] denotes the integer part. The rest of the particles needed to

obtain ensemble size Np are then drawn randomly from distribution P (Np −∑
ni, { Npwi−niNp−

∑
ni
}) which is the same as Probabilistic resampling described above.

• Stratified resampling is based on a method of sampling from population used

in statistical surveys. The basic idea is to equally divide interval (0, 1] into n

disjoint sets. The sequence of {Ui} are drawn independently in each of these

sub-intervals with Ui ∼ U( i−1
Np
, i
Np

]. Then the method to draw new samples from

{Ui} is the same as the one used in probabilistic resampling

• Systematic resampling takes stratified resampling one step further by determi-

nistically linking all the variables drawn in the sub-intervals. This is achieved

by setting

Ui = i− 1
Np

+ u

where u is a single random variable drawn from the uniform distribution U(0, 1/Np].

Due to the random character of the sampling, so-called sampling noise is introdu-

ced. Douc et al. [32] proved that the conditional variance of probabilistic resampling

is always larger than that of the rest of sampling schemes mentioned above. In practi-

cal applications, residual, stratified, and systematic resampling are generally found to

provide comparable results. Systematic resampling is often preferred since it is simple

to implement. In this chapter, we are going to use systematic resampling scheme.
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3.4 The Proposal Distribution

To decrease the variance in the weights, apart from resampling to generate more copies

of the particles with large weights, we can also try to increase the weight by improving

the likelihood of each point. An efficient proposal density allows one to sample from

the density that is conditioned on the new observations so that the predicted state is

much closer to the observations than the prior density. It is important to note that

the idea does not work in high-dimensional spaces with large numbers of independent

observations since the conditional proposal density would be too difficult to sample

from. This strategy is a one-time-step scheme, assuming observations available at each

time step. If the observations are not available for each step t, an approach called

Implicit Particle Filter [33] can be used. Implicit Particle Filter extends standard

particle filter to multiple time steps between observations.

There are several approaches to construct efficient proposal densities. Ensemble

Kalman filter (EnKF) [34] [35] is powerful to deal with problems involving nonli-

near dynamics and Gaussian noises. Marginal Particle Filter (MPF) [36] performed

filtering directly on the marginal distribution instead of on the joint space.

Note that using a clever proposal density is to generate particles that are close to

the observations. The choice of proposal density does not introduce any bias on the

approximation of target distribution. By doing this, we end up with particles that

have much smaller variances in weights.

3.5 Particle Markov Chain Monte Carlo Methods

In the previous section we assumed that parameters of model evolution in Eq. (3.2)

and observation operator in Eq. (3.3) are known. The joint distribution of data y1:L

and hidden state x1:L given parameter θ can be written as

p (x1:L, y1:L|θ) = p(y1|x1,θ)p(x1|θ)
L−1∏
i=1

p(xi+1|xi,θ)p(yi+1|xi+1,θ), (3.6)
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Suppose we have a prior distribution p (θ) on parameter θ, and we would like to find

the posterior distribution π (θ|y1:L) for given data y1:L. The posterior distribution can

be written as

π (θ|y1:L) ∝ p (θ) p (y1:L|θ) , (3.7)

where p (y1:L|θ) is known as marginal likelihood with integrating out the hidden states

x1:L,

p (y1:L|θ) =
∫
x1:L

p (y1:L|x1:L,θ) p (x1:L|θ) dx1:L,

where p (x1:L|θ) p (y1:L|x1:L,θ) is given by

p (x1:L|θ) p (y1:L|x1:L,θ) = p (x1|θ)
L∏
t=2

p (xt|xt−1,θ)
L∏
t=1

p (yt|xt,θ) .

If the transition kernel xt−1 → xt is linear and all the distributions involved are

Gaussian distribution, the marginal likelihood p (y1:L|θ) is tractable. In such case,

the marginal likelihood can be derived using the Kalman filter. When the system is

nonlinear, adopting the idea of standard MCMC, we can try sampling from

π (θ, x1:L|y1:L) ∝ p (y1:L|x1:L,θ) p (x1:L|θ) p (θ) .

In the ith sweep of the sampler, parameter θ(i) and latent states x(i)
1:L are updated

using the following framework,

θ(i) ∼ π
(
θ|x(i−1)

1:L , y1:L
)
,

x
(i)
1:L ∼ π

(
x1:L|θ(i), y1:L

)
.

The algorithm might be inefficient when θ and x1:L are strongly dependent in the

posterior. Besides, hidden states x1:L are usually high dimensional and difficult to get

efficient samples.

Particle MCMC (PMCMC) helps us get rid of this problem. Marginal particle
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MCMC uses a particle filter to provide an unbiased estimate p̂ (y1:L|θi) of p (y1:L|θi)

which is based on the idea of pseudo-marginal approach (see section 1.7.7). By doing

this, posterior dependence of θ and x1:L no longer is a barrier, and PMCMC provides

samples from the posterior on x1:T as a by-product.

Firstly, we are going to use the Ornstein–Uhlenbeck process shown in Eq. (2.9) to

demonstrate how to implement particle MCMC.

The data we use are synthetic data obtained from model with parameter (a, b) :

(10, 0.5).

Figure 3.1: Likelihood plot over the parameter space

The number of observations L = 50000 and time step dt = 0.001. The total time

of the simulation is T = Ldt = 50. Fig. 3.1 shows the likelihood density on parameter

space. We can see that the likelihood function is sensitive to the accuracy of the noise

term b. Therefore, if there is measurement error, it is worth investigating the impact

of the scale of measurement error on evaluation of the likelihood. We artificially add

different scales of errors on the observations and use particle filters to estimate the

likelihood. The ‘theoretical’ solution would be the likelihood evaluated by Kalman

filter without observation error. Fig. 3.2 shows the likelihood of estimate (a, b) =

(10, 0.5) computed using different number of particles on different scales of observation
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Figure 3.2: Likelihood probabilities versus the inverse of the number of particles 1/Np

for various observation error measurements: Black line is the likelihood evaluated by
Kalman filter without observation error. The scales of the errors are characterized by
the observation error variances.

errors. We can see that we need more particles to represent the proper density as the

measurement of error decreases. Since most of particles suffer degeneracy issue if

tolerance of the observation error is small.

Fig. 3.3 shows the likelihood function with respect to parameter a when b is

known. The number of particles Np varies from 600 to 5000. It can be seen that

the likelihood would not increase significantly by increasing Np for Np > 2000. Note

that PMCMC algorithm can be very computationally expensive since we need to run

particle filter for each θ(i). The question then becomes whether it is better, for a

fixed computational effort, to use more particles (larger Np) per update, or use fewer

particles and try more θ(i). Doucet et al. [37] suggests that the optimal number of

particles must ensure the log-likelihood estimate has a variance of about 1.

Fig. 3.4 and Fig. 3.5 show the trace of MCMC iterations using KF and particle

filter, respectively. The number of observations L = 5000 and time step dt = 0.001.
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Figure 3.3: Approximation of likelihood of parameter a using different number of
particles

We can see that in Fig. 3.4 the acceptance rate is high which means that the MCMC

mixes well. However, PMCMC in Fig. 3.5 ends up with noisy likelihood which leads

to low acceptance rate.

Figure 3.4: Standard MCMC iteration using KF; red points are accepted moves

3.6 Single-Particle Dynamics with Memory Kernel

As the level of coarse-graining increases, the potentials between supramolecular par-

ticles become weaker than the underlying interatomic interaction potentials. In the
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Figure 3.5: Particle MCMC iteration; red points are accepted moves

context of polymer dynamics, the uncrossability of chains gets lost at some degree

of coarse-graining. Algorithms to prevent chain crossings have been suggested in the

literature [38]. Lots of coarse-grained models just ignore the memory effects, by doing

this, the models do have a good agreement with experiments, but they may lose the

characteristics of slow dynamics. Therefore, these models perhaps are not suitable for

studying long-time rheology. In a real polymeric system, the friction and random for-

ces usually have the memory of time and uncorrelated and fully random dynamics are

not adequate. Therefore, it is natural to set up a coarse-grained model with memory

kernel.

Zwanzig [39] suggests that the motion of microscopic Brownian particles in vis-

coelastic materials is governed by the generalized Langevin equation (GLE),

m
dV (t)
dt

= −
∫ t

0
dtϕ(t− t′)V (t′)dt′ + F̃ (t), (3.8)

where m is the mass of the particle, V (t) is the velocity of the particle. F̃ (t) is a zero-

centered Gaussian noise which is correlated with the memory kernel ϕ(t) through the
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fluctuation-dissipation relation

〈F̃ (t)F̃ (s)〉 = kBTϕ(t− s), t > s, (3.9)

where T is the absolute temperature, and kB is the Boltzmann constant. We divide

both sides by the mass of particle m and redefine the memory kernel to obtain

dV (t)
dt

= −
∫ t

0
ξ(t− t′)V (t′)dt′ +

√
kBT

m
F (t), (3.10)

where 〈F (t)F (s)〉 = ξ(t− s) and ξ(t− s) = ϕ(t−s)
m

, t > s.

In simple systems, the time correlation function for memory kernel could be

described by the sum of exponentials with constant characteristic times. Let us start

from the simplest memory kernel function with a single exponential decay.

ξ(t) = ce−
t
τ , c = 6πaG

m
, (3.11)

where a is the particle radius, shear modulus G and viscosity η determine the re-

laxation time τ = η/G. In this case, the noise term F (t) can be written as an

Ornstein–Uhlenbeck process,

dF (t)
dt

= −1
τ
F (t) +

√
2c
τ
f(t). (3.12)

where f(t) is white noise with zero mean and following covariance,

〈f(t)f(s)〉 = δ(t− s) (3.13)

Note that the Langevin equation for viscous diffusion is obtained in the limit τ → 0;

that is F (t) becomes (with ξ = 6πaη)

F (t) =
√

2ξ
m
f(t), (3.14)
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To simplify Eq. (3.10), we introduce a new variable Z(t) defined by

Z(t) =
∫ t

0
e−

t−t′
τ V (t′)dt′, (3.15)

which yields
dZ(t)
dt

= −1
τ
Z(t) + V (t) (3.16)

Then we have a sequence of differential equations

dY (t)
dt

= V (t),

dV (t)
dt

= −cZ(t) +

√
kBT

m
F (t),

dZ(t)
dt

= V (t)− 1
τ
Z(t),

dF (t)
dt

= −1
τ
F (t) +

√
2c
τ
f(t),

(3.17)

where Y (t) is the observable, V (t) is the velocity, Z(t) represents an integral with

respect to V (t), F (t), as mentioned before, is Gaussian color noise. Rewritten the

above equations in vector formX(t) = (Y (t), V (t), Z(t), F (t)), we have a linear system

of stochastic differential equations

dX(t)
dt

= AX(t) +BW (t), (3.18)

where

A =


0 1 0 0
0 0 −c

√
kBT
m

0 1 − 1
τ

0
0 0 0 − 1

τ

 , B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0

√
2c
τ

 .

If the trajectory of chain center of mass is available, the above model can be viewed as

a four-layer hidden Markov process with observable Y (t) and latent states V (t), Z(t)

and F (t). To make inference on the unknowns in the above model, a standard PM-

CMC method can be used to explore parameter space {c, τ}. One can also consider

Approximate Bayesian Computation (ABC) methods [40] to draw samples from the
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posterior distribution with given observable Y or summary statistics of Y . ABC is

useful in cases where likelihood function P (Y |c, τ) cannot be evaluated analytically

or it is computationally expensive.

3.6.1 Laplace Transform of Velocity Autocorrelation Function

Multiplying both sides of Eq. (3.10) with V (0) and performing an appropriate en-

semble average 〈·〉, one obtains the memory equation for the velocity autocorrelation

function (VAF),
da(t)
dt

= −
∫ t

0
ξ(t− t′)a(t− t′)dt′, (3.19)

where a(t) = 〈V (0)V (t)〉 appears, which is related to the diffusion constant by the

integral relation

D = 1
3

∫ ∞
0

a(t)dt. (3.20)

Note that 1
2m〈V

2(0)〉 = 1
2kBT , we have a(0) = 〈V 2(0)〉 = kBT/m. Again, suppose

the memory kernel is a single exponential shown in Eq. (3.11), the Laplace transform

of the memory kernel ξ(t) can be written as

ξ̃(z) =
∫ ∞

0
e−stξ(t)dt = c

z + 1/τ .

After a Laplace transform, Eq. (3.19) reads,

ã(z) = a0[z + ξ̃(z)]−1 = a0

z + c
z+1/τ

, (3.21)

where ã(z) is the Laplace transform of a(t). The inverse Laplace transform of ã(z) is

given by

a(t) = a0e
− t

2τ

cosh
(
t
√

1− 4cτ 2

2τ

)
+

sinh
(
t
√

1−4cτ2

2τ

)
√

1− 4cτ 2

 (3.22)

Now we have the analytical solution of the VAF of chain center of mass with respect

to {c, τ}. Let us consider another important quantity – diffusion coefficient D. Recall
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that the Laplace transform of the time-domain integration is

L
[∫ t

0
a(s)ds

]
= ã(z)

z
.

Substitute the above formula into Eq. (3.20), for large t, the Final value theorem (see

Appendix) gives

D = 1
3 ã(z)|z=0 = a0

3cτ = kBT

3mcτ , (3.23)

C =
∫ ∞

0
sa(s)ds = −dã(z)

dz
|z=0 = kBT

mc2τ 2 (1− cτ 2). (3.24)

Substitute the analytical solution of a(t) into the following formula in Eq. (3.22), we
have the mean square displacement function of the chain center of mass

〈(Y (t)− Y (0))2〉 = 2
∫ t

0
(t− s)a(s)ds

= 2kBT
mcτ

(
t− 1− cτ2

cτ

)
− 2kBT

m

e−
t

2τ

c2τ2∆

[
(∆cτ2 −∆)cosh ( ∆

2τ t) + (3cτ2 − 1)sinh( ∆
2τ t)

]
,

(3.25)

where ∆ =
√

1− 4cτ 2. We can see that Eq. (3.25) is consistent with the results

given in Eq. (3.23) and (3.30) for large t

〈(Y (t)− Y (0))2〉|t→∞ = lim
t→∞

2
∫ t

0
(t− s)a(s)ds = 6Dt− 2C. (3.26)

Suppose the memory kernel ξ(t) is the sum of several exponential modes,

ξM(t) =
M∑
i=1

cie
− t
τi . (3.27)

Laplace transform of ξ(t) is

ξ̃M(z) =
∫ ∞

0
e−stξM(t)dt =

M∑
i=1

ci
z + 1/τi

.
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Substitute Eq. (3.27) into Eq. (3.19), after a Laplace transform, we have

ãM(z) = a0[z + ξ̃M(z)]−1 = a0

z +∑M
i=1

ci
z+1/τi

. (3.28)

It is challenging to analytically tackle a(t) for multi-mode memory kernel as we have

done in Eq. (3.22). Solving VAF a(t) and MSD function 〈(Y (t)−Y (0))2〉 for M -mode

memory kernel involves roots of a polynomial of degree M + 1. However, the Laplace

transform ãM(z) shown in Eq. (3.28) makes it possible to investigate the properties

of multi-mode memory kernel models. Moreover, the diffusion coefficient for large t

can also be derived from ãM(z),

D = 1
3 ãM(z)|z=0 = kBT

3m∑M
i=1 ciτi

, (3.29)

C = −dãM(z)
dz

|z=0 = kBT

m
∑M
i=1 c

2
i τ

2
i

(1−
M∑
i=1

ciτ
2
i ). (3.30)

Figure 3.6: Absolute value of VAF and its Laplace transform
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3.7 Experiments

We run molecular dynamics simulations using Kremer-Grest system introduced earlier

in section 2.5, where the particle density is ρ = 0.85 and chain length N = 64.

We simulate the system consisting of 200 linear chains in a cubic box with periodic

boundary conditions. The Fig. 3.6 shows the absolute value of VAF and its Laplace

transform in double logarithmic scales. Due to a lack of analytical solution of VAF

for the multi-mode model, we cannot extract information about parameters directly.

However, with the help of Laplace transform, one can apply numerical approximation

to ã(z) to get a rough estimation of parameters a0, ci and τi, i = 1...,M . This will

help us to set reasonable initial values of parameters in MCMC. Fig. 3.7 and Fig.

Figure 3.7: Models with different number of memory modes to fit the Laplace trans-
form of VAF

3.8 show the goodness fit of Laplace transform of VAF ã(z) and diffusion coefficient

D(t) for models with different memory modes. We can see that single-mode memory

kernel model has poor performance. Models with multi- mode memory kernel are

capable of capturing long-term diffusive behaviours. Increasing number of modes
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does not improve the goodness of fitting D(t) at short time scales. It is shown in

Fig. 3.8 that, though the curve has the same slope at short time scales, multi-mode

models still cannot fit D(t) well. This is due to the poor estimate of the initial

value of the velocity auto-correlation, a0. To improve the approximation of D(t) at

short time scales, an alternative would be running MD simulation with smaller time

step to increase data points at very short time scales which will require much longer

simulation time to get equilibrium.

Figure 3.8: Time-dependent diffusion coefficient D(t) of models with different number
of memory modes

In order to capture the diffusive behaviours at short time scales, we perform le-

ast square fitting on VAF at short time scales (t < 10) to get numerically optimal

parameters for the single mode memory kernel model. Fig. 3.9 shows the analytical

solutions of the time-dependent diffusion coefficient D(t) characterized by different

models. The parameters used to evaluate D(t) in multi-bead models are MCMC esti-

mates for each model. Parameters of single-mode memory kernel model are obtained

by numerical approximation of VAF. Fig. 3.8 and Fig. 3.9 show that multi-bead
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model and multi-mode memory kernel model can captures feature of the long-term

dynamics when we have enough beads (or modes). Models with memory kernel have

advantages on capturing diffusive features at relatively short time scales. However,

the memory kernel ξ(t) is characterized by the sum of several exponential modes,

we probably can not get further information on the latent system in MD simulati-

ons. While the multi-bead models are the structured-based coarse-grained models,

it is possible to extract the physical descriptions about the hidden variables, e.g.,

entanglement effects.

Figure 3.9: Time-dependent diffusion coefficient D(t) characterized by different mo-
dels; Analytical solutions obtained from 2-bead (blue), 3-bead (red) and 4-bead
(green) model and single mode memory kernel model (cyan) with observation interval
∆t = 12.

3.8 Summary

In this chapter, we have investigated two different models dealing with nonlinear dy-

namics in order to develop coarse-grained models to study entangled polymer melts.

The first model is the extension of multi-bead model developed in Chapter 2 with
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nonlinear interactions. The latter model is described by the generalized Langevin

equation with memory kernel. We first show how to implement particle MCMC to

draw inference on unknown parameters for the extension of multi-bead model. We

introduce resampling schemes to reduce the variance in the particle weights which

will help us to avoid filter degeneracy. A set of resampling strategies and their advan-

tages together with limitations are discussed. A more generic model associated with

observation error is proposed and the impact of the variance of the observation noise

has been investigated.

In order to evaluate the efficiency of the particle MCMC, we apply both standard

MCMC and particle MCMC on the linear toy model with Gaussian model error. We

find that particle MCMC ends up with noisy likelihood which is introduced by the

resampling scheme and the fact that the number of particles is not large enough. It

is worth to note that, in some cases, huge computational complexity will arise as the

number of particles increases.

Some recent work on “Coupling of Particle Filters” [41] and “The Correlated

Pseudo-Marginal Method” [42] have been devoted to getting around this issue by

making the errors in nearby estimates be correlated. However, it turns out that these

algorithms lack generality and schemes obtained from one model are not suitable to

apply to other models directly.

In the second model, we construct a four-layer hidden Markov process. A stan-

dard particle MCMC method can be used to explore parameter space. However, we

have demonstrated that it is challenging to implement particle MCMC to explore the

parameter space due to the noisy likelihood. An alternative method can be Approxi-

mate Bayesian Computation (ABC) method [40]. ABC is very useful in cases where

the likelihood is not tractable or it is computationally expensive to evaluate.

If the velocity autocorrelation function is available, one can apply Laplace trans-

form and perform numerical approximation or ABC to get the estimates of unknown

parameters. We compare the linear multi-bead model and the model with memory

68



Section 3.8 Page 69

kernel and find that for given MD simulations, the former is in good agreement with

the MD simulation on the center of mass diffusion at large time scale. While the latter

model shows excellent agreement with the MD simulation at very short time scales. It

is worth to note the data for modelling is extracted from simulations of Kremer-Grest

model where the dynamics at very short time scales is of less importance compared

to that at large time scales. Therefore, the multi-bead models which are capable of

capturing long-term dynamics are more promising than the latter model.
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Chapter 4

Application of Monte Carlo
Methods for Studying Polymer
Entanglements

In this chapter, we introduce a new method for detecting entanglements in polymer

melts obtained from molecular dynamics simulations based on the slip-spring model

and the Bayesian inference. A set of slip-springs will be introduced to each target

polymer for modelling the entanglements along its backbone. The total number,

the effective lengths and the locations of the anchor points of the slip-springs will

be decided by different Bayesian statistical methods. The Bayesian alternative is

capable of computing the posterior distribution of different models and also provide

uncertainty analysis on the estimation of model parameters.

4.1 Introduction

The dynamics of long polymer chains in melt or concentrated solutions is gover-

ned by intermolecular interactions [1] [43]. The uncrossibility between the chains

significantly slows down their dynamics and leads to more complicated rheological

properties than in dilute solutions. There is long-term discussion on the phenomenon

of entanglements in polymer physics. The fundamental questions to answer include
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what is the microscopic picture of entanglements and what is the best framework to

quantitatively describe entanglement effects. The work we have done may contribute

to answering these questions.

Tube model is considered as the most successful theoretical model so far for stu-

dying the dynamics of entanglements [1] [44] [45]. It introduces the mean-filed concept

of the tube which represents the topological constraints imposed by the surrounding

chains on a target chain as a tube. The motion of the chain is thus considered as being

confined in the tube-like region. By doing so, the tube model successfully represents

a multi-chain problem with a single-chain model. The tube model assumes that at

small time scales, where t is smaller than the Rouse time of an entanglement strand

τe, the dynamics of the chain shows Rouse-like behaviour. For t� τe, the motion of

the chain follows one-dimensional Rouse motion along the tube. A fully quantitative

analysis of this 1D motion can be found in [46].

In addition, the effects of constraint release (CR) and contour length fluctuations

(CLF) are taken into account. Since the tube is made from the neighbouring chains

which are fluctuating and moving around, the tube should also be allowed to move

around. CLF is the fluctuation of the primitive path length or contour length of the

tube, and CR describes the effect of the finite lifetime of the topological constraints,

arising from the motion of the surrounding chains. The most detailed treatment of

CR Rouse motion is the self-consistent theory developed by Rubinstein and Colby

where the mobilities of the Rouse tube segments are assigned randomly following a

probability distribution determined from the tube survival relaxation spectrum [47].

Likhtman and McLeish incorporated this approach into their tube theory together

with the improved treatment of CLF and the consideration of the longitudinal stress

relaxation along the tube [46].

Tube models are successful in providing qualitative and sometimes semi-quantitative

predictions on many dynamic properties of entangled polymers [1] [48]. However, its

quantitative prediction power is still limited mainly due to the incomplete description
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of constraint release effects, which requires the microscopic picture of entanglements.

There are several numerical methods for detecting entanglements. Everaers et al. de-

veloped the primitive path analysis (PPA) method [6], in which the contour lengths of

the tubes are found by turning off the thermal motion of the monomers, eliminating

excluded volume interactions between monomers on the same chain and keeping the

ends of the chains fixed while maintaining interchain uncrossability. All the chains

end up with shrinking to the shortest paths with many kinks.

Likhtman introduced a microscopic definition of polymer entanglements [12]. The

basic idea is to create a contact map between the mean paths of each pair of chains

(i, j). If the contact persists for a long enough period of time, e.g., 3τe, the two

chains are considered to be entangled. Note that under this definition, the number of

entanglements may show some quantitative, but not qualitative, change depending on

the cut-off distance used for constructing in the contact map and the smallest lifetime

of the persistent contact [13]. The results of the entanglement analysis are typically

introduced into the existing theoretical models and then tested against experimental

data.

4.2 The Slip-Spring Model

The slip-spring model, developed by Likhtman [49], is a computationally efficient

method for studying dynamic properties of entangled polymers to much large time

and length scales than the MD simulations based on fine- or coarse-grained bead-

spring models.

The slip-spring model is a single-chain model for describing the dynamics of

entangled polymers. The chain of interest is represented by a Rouse chain of N + 1

beads. The effects of the entanglements is described by a set of virtual springs of Ns

monomers. On average, there is a slip-link every Ne monomers. One end of each of

these springs is fixed in space, and the other end is connected to the Rouse chain by
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a slip-link. The chain can only slide through these slip-links which ensures that the

long time dynamics is dominated by reptation. This model contains all mechanisms

included in the tube model. Apart from the parameters describing the Rouse model,

there are extra three adjustable parameters related to entanglements: Ne, Ns, and

ξs, which is the friction of the slip-links when sliding along the chain. The values of

Ns and Ne can be tuned to fit the slip-springs model to MD data. The value of ξs is

usually fixed at 0.1ξ0 [49], where ξ0 is the bead friction of the Rouse chain.

The stochastic equations of motion for both the beads and the slip-links can be

derived from the Hamiltonian of the system. Disentanglement of the chain from a

slip-link and reentanglement with a slip-link are accomplished by the destruction and

the creation of slip-links at the chain ends. Constraint release is included by approx-

imating the entanglements as binary events. The total number of entanglements is a

constant during the simulations. This is reasonable for a large number of chains at

equilibrium; in practice, the large number translates to running the simulations with

at least 10 chains that affect each other’s dynamics only through CR. Some of the

mechanisms, like reptation, CR, and the sliding movement of the slip-links, can be

individually deactivated to isolate their contribution to the relaxation of the chains.

This is essential in the current work for separating out the CR effects on the segmental

dynamics. The slip-springs equations of motion are solved numerically to the desired

accuracy and with no uncontrolled approximations by means of Brownian dynamics

simulations. Further details of the model can be found in [49] [50].

Figure 4.1: The slip-spring model
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In this work, we study melt systems of concatenated polymer rings. The reason

we are interested in ring polymers rather than linear chains is that in the linear chains

systems, the entanglements continuously destroyed and created, while in concatenated

ring polymers, the number of entanglements is fixed, making it easier for testing of

the analysis method.

For a free ring polymer with N beads, the probability distribution function of

the bead positions {Ri}N−1
i=0 is solely determined by the harmonic potential energy,

P ({Ri}) = 1
Z0

exp
[
− 3

2b2

(
N−2∑
i=0

(Ri+1 −Ri)2 + (RN−1 −R0)2
)]

, (4.1)

where the partition function of the free ring is given by

Z0 =
∫
dR0

∫
dR1..

∫
dRN−1exp

[
− 3

2b2

(
N−2∑
N=0

(Ri+1 −Ri)2 + (RN−1 −R0)2
)]

.

(4.2)

In a melt of ring polymers with the degree of polymerization much larger than

the entanglement length Ne (N � Ne), each ring is entangled with surrounding rings

due to uncrossibility. In the framework of the slip-springs model, the topological

constraint on a given polymer ring can be represented by a set of slip-springs. Each

slip-spring is modelled as a Rouse chain of Ns bonds with one end of the chain fixed

in space called anchor points while the other end can slide along the polymer chain.

In this work, we adopt a discrete version of the slip-springs model, meaning that the

slipping-ends or slip-links are sitting on the individual monomers of the polymer chain

and can only change their positions from one monomer to another.

The potential energy of a slip-spring with one end sitting on a monomer at

position ri and the other end at the anchor points ai can be written as

Ui = 3kBT
2Nsb2 (ri − ai)2, (4.3)

where Ns is the degree of polymerization of the spring.
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4.2.1 Partition Function

Suppose that there are M slip-springs restricting the motion of a ring polymer. The

jth slip-spring has its anchor point at aj, length of the virtual slip-spring is Nsj .

Considering the location that the end of the slip-spring, namely the slip-link, sits on,

it is important to note that Likhtman introduced a continuous variable x = 0...N − 1

along the chain which allows each slip-link to be anywhere on the chain [49]. In that

work, Likhtman calculated the distribution of the anchoring points and developed

stochastic equation of motion for the chain and the slip-links position along the chain.

We adapt a discrete version of the model described in [49] by assuming that the

slipping-end can only sit on particular monomer with coordinate Rsj , where sj is the

monomer number. The slipping-end or slip-link can only move from one monomer

to another in a discrete way sj, such that sj is an integer in between 0 and N − 1.

For a given set of anchor point positions a = {aj}Mj=1 and length of slip-spring Ns =

{Nsj}Mj=1, the probability distribution function of the dynamic variables (R, s) is

P (R, s|a) = 1
Z(a)exp

− 3
2b2

N−2∑
i=0

(Ri+1 −Ri)2 + (RN−1 −R0)2 +
M∑
j=1

(Rsj − aj)
Nsj

2
 ,

(4.4)

where s = {sj}Mj=1, R = {Rj}N−1
j=0 . For simplicity, we denote the partition function

for given a as

Z(a) =
N−1∑
s1=0

N−1∑
s2=0

...
N−1∑
sM=0

Zns(a, s). (4.5)

where Zns(a, s) is the partition function for given a,Ns and s, which can be written

as

Zns(a, s) =
∫
dR0

∫
dR1..

∫
dRN−1×

exp

− 3
2b2

N−2∑
i=0

(Ri+1 −Ri)2 + (RN−1 −R0)2 +
M∑
j=1

(Rsj − aj)
Nsj

2
 . (4.6)
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In the case that both the anchor point positions a, length of slip-spring Ns and

the monomers that the slip-links sit on s, are fixed, e.g., in the Warner-Edwards

model, the probability distribution function of R can be written as

P{R|a, s} = 1
Zns(a, s)×

exp

− 3
2b2

N−2∑
i=0

(Ri+1 −Ri)2) + (RN−1 −R0)2 +
M∑
j=1

(Rsj − aj)
Nsj

2
 . (4.7)

To compute Zns(a, s), one can separate the integrals in Eq. (4.6) over the mo-

nomer coordinates Rj into two groups. One group contains the coordinates of the

monomers that are connected to slip-links, namely Rsj , j = 1, 2, ...,M . The other

group contains bead positions without slip-links.

Assuming that no bead has more than one slip-link, the M monomers with slip-

links divided the ring polymer into M segments. The segment between monomer

numbers sj and sj+1 has nj = sj+1 − sj bonds or nj + 1 monomers (assuming that

s1 < ... < si−1 < si < ... < sM). For convenience, we renumber these monomers as

i = 0, 1, 2, ..., nj. The integration over the coordinates of the monomers without slip-

springs can be done in the same way as for an ideal nj bonds with two end monomers

fixed at R0 and Rnj . Recall the probability distribution function given in Eq. (1.14),

we have

∫
dR1..

∫
dRnj−1exp

− 3
2b2

nj−1∑
i=0

(Ri+1 −Ri)2)


=
(

2πb2

3

) dnj
2
(

3
2πnjb2

)d/2
exp

[
− 3

2njb2
(
Rnj −R0

)2
]
, (4.8)

where d is the space dimension. The expression in Eq. (4.8) is the probability distri-

bution function of the end-to-end distance of an ideal chain of nj bonds with two end-
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monomers positioned at R0 and Rnj multiplying by a normalization factor
(

2πb2

3

) dnj
2 .

Therefore the integration over the positions of the monomers not connected to

slip-links can be replaced by the multiplication of the probability distribution functi-

ons of the end-to-end distances of M chain segments. The partition function Zns(a, s)

in Eq. (4.6) then takes the form of

Zns(a, s) =

 M∏
j=1

nj

−d/2(
3

2πb2

)Md/2 ∫
dRs1 ..

∫
dRsM

·

exp

− 3
2b2

M−1∑
j=1

1
nj

(
Rsj+1 −Rsj

)2 + 1
nM

(RsM
−Rs1)2 +

M∑
j=1

1
Nsj

(
Rsj − aj

)2


=

 M∏
j=1

nj

−d/2(
3

2πb2

)Md/2 ∫
dRs1 ..

∫
dRsM

exp

−β
 M∑

i,j

AijRsi
·Rsj

+
M∑

i=1
bi ·Rsi

+ c

 ,
(4.9)

where we have dropped the normalization factor (2πb2

3 ) dN2 which is constant for a given

Rouse ring. In the second step, we have defined

β = 3
2b2 , bi = − 2

Nsi

ai, c =
M∑
i=1

a2
i

Nsi

,

A =



1
n1

+ 1
nM

+ 1
Ns1

− 1
n1

0 · · · 0 − 1
nM

− 1
n1

1
n1

+ 1
n2

+ 1
Ns2

− 1
n2

· · · 0 0

0 − 1
n2

1
n2

+ 1
n3

+ 1
Ns3

· · · 0 0
...

...
...

. . .
...

...
0 0 · · · · · · 1

nM−2
+ 1
nM−1

+ 1
NsM−1

− 1
nM−1

− 1
nM

0 · · · · · · − 1
nM−1

1
nM−1

+ 1
nM

+ 1
NsM


.

(4.10)

Especially in the case of M = 2, matrix A can be simplified as follows:

A =
 1

n1
+ 1

nM
+ 1

Ns1
− 1
n1
− 1

nM

− 1
n1
− 1

nM

1
n1

+ 1
nM

+ 1
NsM

 . (4.11)
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In the simplest model with M = 1, without the normalization factor (2πb2

3 ) dN2 , the
partition function Zns(a, s) can be written as

Zns(a, s)M=1 =
( 1
N

)d/2 ( 3
2πb2

)d/2 ∫
dRs1exp

[
− 3

2b2
(Rs1 − a1)2

Ns1

]

=
( 1
N

)d/2 ( 3
2πb2

)d/2
(2πb2Ns1/3)d/2

=
(
Ns1

N

)d/2
.

(4.12)

The physical meaning of the elements in matrix A can be understood from the

effective elasticity of the chain segments or slip-springs connected to the monomers

s where the slip-links sit on. For example, the diagonal term Ajj indicates that

monomer sj is connected with two segments of lengths nj and nj+1 along the polymer

and a slip-spring of length Nsj . The elastic contributions from the three components

can be represented by a virtual chain whose effective elasticity equals to the sum of

that of the three elastic springs in parallel. The off-diagonal terms are simply the

elasticity of the chain segments connecting monomers sj and sj+1. The elements A1M

and AM1 come from the connectivity of the ring polymers.

The integral in Eq. (4.9) can be conveniently computed by separating the vari-

ables in each direction and using the n-dimensional Gaussian integral for the scalar

form of the integrals

∫ ∞
−∞

exp
−1

2

M∑
i,j=1

Aijxixj

 dMx =
∫ ∞
−∞

exp
(
−1

2x
TAx

)
dMx =

√
(2π)M
detA ,

or, more precisely, the n-dimensional Gaussian integral with linear term

∫
exp

−1
2

M∑
i,j=1

Aijxixj +
M∑
i=1

bixi

 dMx =
√

(2π)M
detA exp

(1
2b

TA−1b
)
,

because A is a symmetric positive-definite matrix. Noting that Aij and bi in these

Gaussian integrals differ from those used in Eq. (4.9) by a factor of 2β and −β,

respectively, we obtain the partition function

78



Section 4.3 Page 79

Zns(a, s,M) =

 M∏
j=1

nj

−d/2(
3

2πb2

)Md/2
(det A)−d/2

(
π

β

)Md/2
exp

1
4β

M∑
i,j=1

(biA
−1
ij ) · bj − βc


=

 M∏
j=1

nj

−d/2

(det A)−d/2exp

 3
2b2

 M∑
i,j=1

(
ai

Nsi

A−1
ij

)
· aj

Nsj

−
M∑

i=1

a2
i

Nsi

 , (4.13)

where the constant factor of
(

2πb2

3

)Md
2 has been cancelled with

(
π
β

)Md/2
. Note that in

Eq. (4.13), it is not necessary to calculate the inverse of matrix A, the term A−1a

can be determined by solving the system of equations Au = a, from which we obtain

A−1a = u.

4.3 Bayesian Inference on the Slip-Spring Model

Fixed Dimensional Problem

For given number of slip-springs M , parameters which need to be estimated are the

positions of the anchor points a = {aj}Mj=1, length of each slip-spring Ns = {Nsj}Mj=1.

Here the indices of the ring monomers s = {sj}Mj=1, where the spring-links sit on, can

be thought as being a set of hidden variables. In such fixed dimensional problem, the

set of unknown parameters reduces from {a,Ns,M} to {a,Ns}. Using trajectories

form MD simulations, standard MCMC algorithm can be employed to investigate the

posterior distribution P (a,Ns|R).

In Bayesian statistics, the posterior probability P (a,Ns|R) of the slip-spring

parameters {a,Ns} given chain coordinates R is related to the likelihood P (R|a,Ns)

and the prior P (a,Ns) as

P (a,Ns|R) = P (R|a,Ns)P (a,Ns)
P (R) . (4.14)

Recall in Eq. (1.31), the posterior probability can be written in the form of
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Posterior probability ∝ Likelihood × Prior probability.

The prior distribution of anchor point a is assumed to be Gaussian centered at the

chain centre of mass. Prior of slip-spring length is Gamma distribution.

In standard MCMC simulation with given M , the acceptance probability of move

only depends on the ratio of the posterior distribution before and after the move.

P (R) do not enter explicitly in the acceptance criterion. If we propose a move within

the model, an MCMC step involves proposing a new anchor point ãj, tuning length

of slip-spring and adjusting slip-link position s̃j for the jth slip-spring, then we will

accept it with the probability

min
(

1, P (ã, Ñs|R)
P (a,Ns|R)

)
= min

(
1, P (R|ã, Ñs)
P (R|a,Ns)

· P (ã, Ñs)
P (a,Ns)

)
. (4.15)

According to Eq. (4.7), the ratio of the likelihoods can be written as

P (R|ã, s̃)
P (R|a, s) = Zns(a, s)

Zns(ã, s̃)exp
− 3

2b2

M∑
j=1

(R̃s̃j
− ãj)2

Ñs̃j

−
(Rsj − aj)2

Nsj

 . (4.16)

There are three mainly types of trial moves in the standard MCMC propagation

algorithm:

• Changing the anchor point position asj of a randomly selected slip-spring

• Changing Rouse chain length Nsj of a randomly selected slip-spring

• Changing the monomer index sj of the slipping-end of a randomly selected slip-

spring

Note that the aj ∈ R3, Nsj ∈ R, sj represents monomer index which the slip-

spring sits on, sj = 0, ..., N − 1. Therefore acceptance of each MCMC attempt is

determined by Eq. (4.15) and Eq. (4.16). In the case where the number of slip-

springs is known, one can implement standard MCMC algorithm (see section 2.4) to

explore the fixed-dimensional parameter space. In this work, we are going to focus
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on drawing Bayesian inference on different model spaces. For the trans-dimensional

move involving increasing/decreasing the number of slip-springs, the corresponding

acceptance rate involves evaluating the ratio of posterior on different parameter space.

We are going to discuss it later in section 4.5.

4.4 Model Comparison

Our goal is to perform Bayesian inference on the posterior probability of a sequence of

slip-link models consisting of different number of slip-springs. In Bayesian community,

when people have gathered a set data and would like to investigate the mechanism

of generating the data or something of interest behind the data, they usually have

a series of possible models available, and then make inference on which model is

the most suitable one and what is the best parameters to represent the system; We

treat all the unknowns, including the model indicator and its parameters, as random

variables and aim to make inference over the uncertainty of models and parameters

based on posterior distributions, which is a joint conditional distribution of all the

unknowns and a given set of observed data.

Assume a countable set of models M are available, Bayesian model comparison

problem is to make inference on model indicator m inM and corresponding parameter

vector θm ∈ Θm, where the dimension nm of parameter space is determined by the

model indicator m. It is worth noting that nm may vary from one model to another,

and there is no need to restrict ourselves in nested models where Θm ⊂ Θ′m. For

the goal of making inference about the uncertainty of models, the model indicator

m would be of no difference to other parameters. With given observed data Y on

hands, we are going to make inference about posterior distribution p(m,θm|Y ) over

joint unknowns (m,θm).

Bayesian inference for the model comparison is based on the framework of a Bay-

esian hierarchical model. Suppose that we are given a prior p(m) of model indicator
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m. For a particular model m, the prior of parameter vector θm together with likeli-

hood p(Y |m,θm) for data Y are available. In some cases, priors p(m) and p(θm) may

not be written separately but written in the form of joint prior p(m,θm) instead. It is

obvious that this requires only an additional specification of p(m,θm) = p(m)×p(θm),

and does not cost extra effort to deal with it.

Once we have the marginal likelihood p(Y |m) of the data with given model,

it is straightforward to obtain the posterior distribution π(m|Y ) up to an unknown

normalizing constant by performing Bayesian inference

π(m|Y ) = p(m)p(Y |m)∑M
m=1 p(m)p(y|m)

, (4.17)

where the marginal likelihood p(Y |m) is an integral over θm

p(Y |m) =
∫
θm
p(θm|m)p(Y |θm,m)dθm. (4.18)

The posterior distribution across models shows the suitability of a model m for mo-

delling the data, and posterior odds in favour of model m over m′ are given by

π(m|Y )
π(m′|Y ) = p(Y |m)

p(Y |m′) ×
p(m)
p(m′) ,

where the pairwise comparison of marginal likelihood of two models is called Bayes

factor, which is written as

K(m,m′) = p(Y |m)
p(Y |m′) . (4.19)

In many cases, a uniform prior distribution over models is adopted. Therefore, the

relative strength of model m and m′ for modelling given data y can be fully represented

by Bayes factor K(m,m′). The larger K(m,m′) is, the stronger the evidence is in

favour of modelm overm′. Jefferys [51] provides a scale for interpretation ofK(m,m′).

In most of the statistical models, the marginal likelihood is intractable, since

this may involve high dimensional integration and the function to be integrated is
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usually complicated. Note that it is not necessary to process integration to compute

the marginal likelihood p(Y |m) if the prior is a conjugate prior for the likelihood

function. From Bayes’ theorem, the posterior density of parameter θm is given by

the product of likelihood p(Y |θm,m) and prior p(θm|m), normalized by the marginal

likelihood p(Y |m)

p(θm|Y,m) = p(Y |θm,m)p(θm|m)
p(Y |m) . (4.20)

A conjugate prior means for a given likelihood function, the posterior distribution

belongs to the same distribution family as the prior probability distribution does.

To make it more specific, we take the normal distribution and the inverse gamma

distribution for example. Suppose that for a given set of observation Y = {yi}Li=1, the

likelihood is given by

p(y1:n|θm,m) =
(

1√
2πθm

)L
exp

(
−
∑L
i=1(yi − µ)2

2θm

)
, (4.21)

where µ is known and θm is the unknown variance with a prior distribution of θm ∼

IG(α, β), which gives

p(θm|m) = βα

Γ(α)θ
−α−1
m exp

(
− β

θm

)
, (4.22)

where Γ(·) denotes the gamma function. Therefore, the posterior density of θm is

p(θm|y1:L,m) = p(y1:L|θm,m)p(θm|m)
p(y1:L|m)

= 1
p(y1:L|m)

(
1√

2πθm

)L
exp

(
−
∑L
i=1(yi − µ)2

2θm

)
βα

Γ(α)θ
−α−1
m exp

(
− β

θm

)

= Z × θ−α−1−L/2
m exp

(
−
β + 1

2
∑L
i=1(yi − µ)2

θm

)
,

where Z = 1
p(y1:L|m)

(
1√
2π

)L βα

Γ(α) is the normalising constant. We can see that the

density kernel of the posterior is the density kernel of inverse gamma distribution,

which is exact the distribution family of prior p(θm|m). The normalized constant Z
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is determined by the condition that the integral of a probability density must be one.

Therefore, we obtain

A×
∫ ∞

0
θ−α−1−L/2
m exp

(
−
β + 1

2
∑L
i=1(yi − µ)2

θm

)
dθm = 1.

It can be is easily derived that Z = β′α
′

Γ(α′) , where α′ = α+L/2 and β′ = β+ 1
2
∑L
i=1(yi−

µ)2. Hence the marginal likelihood can be written as

p(y1:L|m) =
(

1√
2π

)L
βα

Γ(α)
1
Z

=
(

1√
2π

)L
βα

Γ(α)
Γ(α + L/2)(

β + 1
2
∑L
i=1(yi − µ)2

)α+L/2 . (4.23)

In many cases, it is usually challenging to find a suitable conjugate prior for the

likelihood function because the integration of marginal likelihood can be hard to

evaluate in terms of the convergence. In practice, there are several efficient methods

to approximate intractable marginal likelihood of a statistical model.

4.4.1 Numerical Methods to Approximate Marginal Likeli-
hood

Laplace Approximation

Laplace Approximation is a widely-used method to approximate marginal likelihood

[52]. The basic idea is to apply Gaussian approximation on the parameter posterior

around the Maximum-a-Posteriori (MAP) estimate θ̂m. for simplicity, let d denotes

the dimension of parameter vector θm, we obtain

p(θm|Y,m) ≈ (2π)− d2 |A| 12 exp
(
−1

2(θm − θ̂m)TA(θm − θ̂m)
)
,
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where A is the d× d Hessian of the log posterior p(θm|Y,m) evaluated at θ̂m, written

as

Aij = − d2

dθmidθmj
lnp(θm|Y,m)|θm=θ̂m .

Then the marginal likelihood can be written as

p(Y |m) = p(θm, Y |m)
p(θm|Y,m) .

Evaluating lnp(Y |m) at θ̂, we obtain the Laplace approximation

lnp(Y |m) ≈ lnp(θ̂m|m) + lnp(Y |θ̂m,m) + d

2ln2π − 1
2ln|A|. (4.24)

This approximation holds adequately when the posterior density is high-peak at the

MAP estimate θ̂m. Finding θ̂m can be done by using standard optimization algorithms

such as gradient search. It also requires computing the second derivative matrix and

inverting it to obtain A, which is usually hard to calculate.

Bayesian Information Criterion

Another well-known tool for statistical model selection is Bayesian Information Cri-

terion (BIC) [53]. The BIC tries to minimize the impact of the prior, hence the MAP

estimate θ̂m is replaced with a value θ̃m which maximizes the likelihood. This can

be obtained from Laplace approximation when the prior does not dominate. In other

words, the approximation is reasonable if the size of data L is much larger then the

number of parameters. In this case, Matrix A grows as LA0 for some fixed As0 when

n increases, so we have

ln|A| → ln|nA0| = lnnd|A0| = dlnn+ ln|A0|.

Retaining only the terms that grow with n, Eq. (4.24) can be reduced to

ln p(Y |m) ≈ ln p(Y |θ̃m,m)− d

2lnn.
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When dealing with model selection, we pick the model with the highest BIC score.

Note that there is no prior in this estimate, this approximately only valid for large n.

Since large data size will decrease the dependence of posterior on the prior. when the

size of data is large enough, all the posterior parameters would be well represented.

Another limitation of BIC is that it cannot deal with a complex model in high dimen-

sion space. There are also several approaches available, such as Variational Bayes [54],

Expectation Propagation [55].

Note that the methods mentioned above somehow require approximations, they

are sensible only when the approximations are appropriate. Since the models we are

dealing with are complex, we would not consider them further. Instead, we are going

to look at Monte Carlo methods.

4.4.2 Monte Carlo Methods to Approximate Marginal Like-
lihood

Monte Carlo methods are widely used approaches to approximate probability distri-

bution that is hard to evaluate or sample from. There are mainly three classes of

Monte Carlo methods to perform the Bayesian model comparison. The first method

which is also the simplest one is to estimate the marginal likelihood for each model

separately, especially when there is no link between the parameters of different mo-

dels. It is only valid when the number of models is relatively small since it requires

to design a separate Monte Carlo algorithm for each model. If there exists a strong

connection between two models, performing direct estimation on the Bayes factor is a

good choice. However, when we have a large number of models to investigate, doing

the pairwise comparison is not practical. We can also set the index of the model as

an extra parameter, in this way, Monte Carlo methods can be used to simultaneously

explore the model and parameter space. We will look at each of these three methods

in the following sections.

When there exists no link or only weak link between two models, a straightfor-
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ward way to perform model selection is to estimate the marginal likelihood of each

model separately. For example, when performing model comparison between geome-

tric and Poison to model discrete data. In such cases, the parameter space θm is of

different dimension, and the estimate of one model is of no help with estimating the

other model. Hence, a natural choice would be to evaluate the marginal likelihood

separately. This only works for a small number of models.

There are various methods available to implement marginal likelihood approxi-

mation, such as Chib’s method, Harmonic mean estimator, Importance Sampling and

Annealed Importance Sampling.

Chib’s Method

The basic idea of Chib’s method is to rearrange the Bayes’ formula

p(Y |m) = p(Y |θm,m)p(θm|m)
p(θm|Y,m) .

Evaluating lnp(Y |m) at a high posterior estimate θ̂m

lnp(Y |m) = lnp(Y |θ̂m,m) + lnp(θ̂m|m)− lnp̂(θ̂m|Y,m),

where p̂(θ̂m|Y,m) is an estimate of the posterior density p̂(θm|Y,m) at θ̂m.

The most challenging part of the algorithm is the estimate of p̂(θ̂m|Y,m). Chib’s

make it easily achieved by approximating the posterior p(θ̂|Y,m) with the MC average

of samples from Gibbs sampler. With broad applicability of Gibbs sampling, Chib’s

method can be easily applied to high dimensional space. However, it is also caused

concern about the limit of storage, which requires generating samples from a full

conditional density and store the samples latter averaging.

When it comes to the case of a mixture, hidden Markov models and other models

involving component identifying, the difficulty and complexity of the algorithm would

rise due to the time needed for Gibbs sampler to visit all the possible components.
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Harmonic Mean Estimator

When the posterior is not analytically tractable, the most common way is using

MCMC methods to perform inference on posterior. However, MCMC does not lead

us directly to the marginal likelihood. Newton and Raftery proposed Harmonic mean

estimator [56] by applying importance sampling to obtain harmonic mean estimator.

The basic idea is to obtain an estimator of marginal likelihood based on samples drawn

from the posterior distribution, which approximates the estimate of 1
p(Y |m) with

1
p(Y |m) =

∫
θm

1
p(Y |θm,m)p(θm|Y,m)dθm. (4.25)

Suppose samples θ(1)
m ,θ(2)

m , ...θ(K)
m are drawn from posterior p(θm|Y,m), the estimate

of 1
p(Y |m) is given by the average of inverse likelihood at each sample θ(i)

m , i = 1, 2, ...K,

1
p(Y |m) ≈

1
K

K∑
i=1

1
p(Y |θ(i)

m ,m)
. (4.26)

Recall that the expectation of reciprocal likelihood can be written as

E

(
1

p(Y |θm,m)

)
=
∫
θm

1
p(Y |θm,m)p(θm|Y,m)dθm =

∫
θm

1
p(Y |θm,m)

p(Y |θm,m)p(θm|m)
p(Y |m) dθm

= 1
p(Y |m)

∫
θm
p(θm|m)dθm = 1

p(Y |m) .

Therefore the Law of Large Numbers guarantees the convergence of the approximation

in Eq. (4.26) if one uses a sufficiently large number of samples from the posterior

distribution.

However, it is easy to notice that this approximation does not work well in

practice. As is known to all that in Bayesian statistics, the posterior distribution

of a model is normally quite narrower than the prior and not significantly sensitive

to the prior, since the prior is usually set to be broad enough to ensure it covers the

region with high likelihood. The posterior would not be sensitive to the prior. Hence

when we take π(θ|Y ) as proposal while p(θ) as the target, the estimate would have
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large variance.

Importance Sampling is a efficient method to approximate the marginal likeli-

hood. We have discussed it in section 1.7.6. Comparing with IS, MCMC has broader

applicability, since we can tackle high dimensional models with a single component

update. However, difficulties would arise to design a proposal that mixes the Markov

chain well. In IS, it is hard to design a suitable proposal in high dimensions. Here is

some generalization of IS available, such as SMC, we are going to discuss it in later

section 4.7.

4.4.3 Methods for Bayesian Model Comparison

In some cases, there is a distinct link between the parameters of one model and

that of another model. The estimate of one model would help with drawing inference

on the other. For example, we would like to infer the number of components m of a

Gaussian mixture model given a set of observations. When the inference on a model

with m = 5 is available, which includes the estimators of the parameters’ mean and

variance for these 5 components. When it comes to drawing inference about m = 6,

instead of inferring from a rather flat prior, one can make use of posterior of m = 5.

In these cases, rather than estimating each model separately, it might be more

efficient to use what has been learned about one model to help with estimating a

neighbouring model. Thus we consider such algorithms, which perform pairwise model

comparison and estimate the ratio of marginal likelihoods - the Bayes’ factor - directly.

We have discussed mainly three classes of methods for Bayesian model compari-

son:

• Apply Monte Carlo methods to explore the joint parameter and model space;

• Investigate each model separately;

• Estimate on one model based on the inference on another model.
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According to the number of models of interest and the relation between models, one

can choose the most suitable approach. In this thesis, we are going to look at the first

two methods.

4.5 Reversible Jump MCMC

The most widely used Monte Carlo method to explore the joint model and parame-

ter space is reversible jump MCMC (RJMCMC), which is capable of exploring the

joint space if deterministic relations between the parameters of different models are

available. In this way, the model index m can be considered as an auxiliary variable

and RJMCMC algorithm can be viewed as an extension of the standard Monte Carlo

algorithm on more general state spaces.

We notice that in slip-spring model, the entanglements are represented by a

number of slip-spring. The models we are looking at are defined on similar parameters

space {a,Ns,M} with the different dimension nm. If we have knowledge of posterior

distribution of model with m slip-springs, the inference is useful for investigating the

posterior distribution over m − 1 and m + 1. It would be ideal if we are able to set

an invariant relation between neighbouring models. When we attempt to jump from

model m to m+ 1, a straightforward way is to add a new slip-spring and meanwhile

keep the existing slip-springs unchanged. In this thesis, we will briefly describe how

to implement RJMCMC, further details can be found in [57] [58].

Ideally, if the marginal likelihood p(Y |m) in Eq. (4.18) is tractable, the accep-

tance ratio of jump on model space from m to m′ can be written as

γ(m,m′) = p(m′)p(Y |m′)q(m|m′)
p(m)p(Y |m)q(m′ |m) . (4.27)

In reality, p(Y |m) usually turns out to be intractable. Therefore, we need to find

alternatives to propose jump between models. Reversible jump MCMC (RJMCMC)

method is an efficient method that explores the joint posterior of model and parame-
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ters. Developed by Green in 1995 [57], RJMCMC performs across-model simulation,

by which the algorithm is able to make a move from one model to another. With the

help of RJMCMC, we are able to construct a Markov chain with an invariant proba-

bility distribution that we are interested in. The proportion of times that different

models are visited gives an estimate of posterior of each model.

Suppose we are going to explore the joint parameter and model space (θ,M), and

the invariant distribution of interest is the posterior p(θm,m|Y ). Now the challenge

is to how to set up an MCMC algorithm that is capable to explore the joint space.

We are going to implement RJMCMC with M-H framework (see section 1.7.5) to

construct Markov chain that targets the posterior p(θm,m|Y ). In standard MCMC,

the M-H algorithm involves moves between two states x and x′, including (x→ x′) and

inverse move (x′ → x). Here the models are usually defined on different parameters

spaces which are usually of different dimension. The trick to deal with this issue is

to set up links between parameter spaces. In this way, we are able to view all the

distributions in the same parameter space after using a transformation of parameters

without introducing any bias.

It is important to note that we cannot set up unique mapping if the parameter

spaces are of different dimension. To get rid of this restriction, when the move is made

from a lower dimensional space to a higher dimensional space, a set of new variables

are introduced. Here we are going to design a pair of jump that allows the MCMC

move from one model to another. Consider a move from model m to model m′, which

means we propose a move from joint state (θm,m) → (θm′ ,m′) and backward move

(θm′ ,m′) → (θm,m). For the forward move, we introduce extra random numbers u

which is drawn from distribution φm. The proposed parameters θm′ can be expressed

by an invertible function hm with respect to (θm, u)

(θm′ , um′) = hm(θm, um),
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where random numbers um′ is distributed from φm′ which is needed for the reverse

move from m′ to m, using function h′m which is the reverse function of hm. The

acceptance rate of a particular move (θm,m)→ (θm′ ,m′) is

γ = min
{

1, p(θm
′ ,m′|Y )φm′(um′)q(m|m′)

p(θm,m|Y )φm(um)q(m′|m) Jm→m′

}
, (4.28)

where q(m′|m) the probability to propose a move from model m to m′, and J is the

Jacobian of the transformation hm:

Jm→m′ =
∣∣∣∣∣ ∂hm
∂(θm, um)

∣∣∣∣∣ . (4.29)

The standard RJMCMC update is described in Alg. 4

Algorithm 4 Reversible jump MCMC update

1. Propose trans-dimension move:
Given state (m,θm), sample m′ ∼ q(·|m) and um ∼ φm(·);

2. Specify the new parameters:
(θm′ , um′) = hm(θm, um)

3. Evaluate ratio of target density:

γ = min
{

1, p(θm
′ ,m′|Y )φm′(um′)q(m|m′)

p(θm,m|Y )φm(um)q(m′|m) Jm→m′

}

4. Accept the transition with probability min{1, γ}.

This algorithm allows us to explore the joint model and parameter space at the

same time. By designing reversible jump over different model space, we obtain a series

of samples from a joint distribution of parameters from different models. It can be

seen from Eq. (4.27) that the acceptance rate involves the Bayes factor between two

models. While in Eq. (4.28), we find that it evaluates the acceptance rate for a single

move, which means that we are using a single point importance sampling estimator to

approximate the Bayes factor, which may result with poor acceptance rate. Next, we

are going to use a Gaussian mixture example to demonstrate how RJMCMC works.
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4.5.1 Mixture Model

In this section, we will introduce a mixture model to show how to implement reversible

jump MCMC. By allowing the number of mixtures k to vary, we can apply reversible

jump MCMC to explore the posterior distribution of both m and the corresponding

mixture parameters. The basic framework of a mixture model for independence ob-

servation yi can be written as

yi ∼
m∑
j=1

wjf(·|θj), , i = 1, · · · , L, (4.30)

where f(·|θj) is the probability density function for a class of given distribution family

that characterized by parameter θj.

The goal is to make inference on the number of components m and the correspon-

ding parameter θj together with the component weight wj. Note that the component

weights are normalized with ∑m
j=1wj = 1. Assume the mixture is Gaussian with

θj = {µj, σ2
j} where the probability density function f(x|θj) can be written with

respect mean µj and variance σ2
j

f(x|µj, σ2
j ) = 1√

2πσ2
j

exp
(
−(x− µj)2

2σ2
j

)
. (4.31)

The priors on the parameters are thought to be independent. The number of mixture

components m is usually taken from informative priors. In this thesis, we set uniform

distribution as the prior of m. The weight wj is taken from symmetric Dirichlet,

wj ∼ D(δ, δ, · · · , δ). Mean µj and variance σ−2
j of the mixture are drawn from normal

and gamma density, respectively,

µj ∼ N (ξ, κ2), σ−2
j ∼ Γ(α, β).
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4.5.2 Birth/Death Move

Consider model state changing from (m,θm) to (m + 1,θ∗m+1), a new component

characterized by {w′, µ′, σ′2} is introduced to keep bijection between models,

w′ ∼ be(1,m), µj ∼ N (ξ, κ2), σ−2
j ∼ Γ(α, β).

The acceptance rate can be written as

γ = p(m+ 1)q(m|m+ 1)p(θ∗m+1|m+ 1)p(Y |θ∗m+1,m+ 1)
p(m)q(m+ 1|m)p(θm|m)p(Y |θm,m)p(w′, µ′, σ′2)

1
m+ 1

(m+ 1)!
m! Jm→m+1,

(4.32)

where we have

θm =
(
{wi}mi=1, {µi}mi=1, {σ2

i }mi=1

)
,

θ∗m+1 =
(
{w∗i }m+1

i=1 , {µ∗i }m+1
i=1 , {σ∗2i }m+1

i=1

)
.

When generating a new component, existing weight are re-normalized with constant

(1− w′)

w∗i = (1− w′)wi for i = 1, · · ·m.

The corresponding mean and variance keep unchanged, that means (µ∗i , σ∗2i ) = (µi, σ2
i )

for 1 ≤ i < m+ 1. The factor of 1
m+1 is associated with randomly deleting one of the

components when transiting from m+ 1 to m. The Jacobian of the transformation is

Jm→m+1 = (1− w′)m−1, (4.33)

Then Eq. (4.32) can be rewritten as

γ = p(m+ 1)dm+1p(Y |θ∗m+1,m+ 1)
p(m)bmp(Y |θm,m)be1,m(w′)

P ({w∗})
P ({w}) (1− w′)m−1, (4.34)

where dm+1 is the transit probability from m + 1 to m and bm the probability to

attempt move from m to m+ 1. The prior of model indicator M prior can be Poisson

or uniform distribution. The acceptance probability for model transiting from m to
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m+ 1 is

γm→m+1 = min{1, γ}.

For the corresponding inverse move from m + 1 to m, the acceptance probability is

min{1, γ−1}.

5 10 15 20 25 30 35

X

0

0.05

0.1

0.15

p(
X

)

Figure 4.2: The probability density function of five modes Gaussian Mixture Model

Figure 4.3: RJMCMC with birth/death move explores model space

We perform RJMCMC on Gaussian mixture model with data {yi}500
i=1 given by mo-

del m = 5 with w = {0.1, 0.1, 0.3, 0.3, 0.2}, µ = {10, 13, 20, 22, 30}, σ2 = {1, 1, 1, 1, 1}.
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The probability density function of the mixture model is shown in Fig. 4.2. The

prior of m is assumed to be uniform distribution U [1, 10]. Firstly, we randomly draw

m0 from U [1, 10], and initialize component parameters {wj}m0
j=1, {µj}m0

j=1 and {σ2
j}

m0
j=1

which are randomly drawn from the priors. Fig. 4.3 shows that the RJMCMC does

make some successful move between models at first.After only about 1000 iterations,

the MCMC gets stuck at m = 5.

Table 4.1: True underlying parameters

parameters
j 1 2 3 4 5
wj 0.1 0.1 0.3 0.3 0.2
µj 10 13 20 22 30
σ2
j 1 1 1 1 1

Figure 4.4: RJMCMC with birth/death move explores model space

When taking a look at the weights of each component with mixturem = 5, we find

that one of the weights is much smaller than the others (see Table.4.2 where j = 3).

We plot the number of significant components whose weights are larger than 1/30 as

shown in Fig. 4.4. It is obvious that between MCMC iterations t = 2000 to 20000,
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Table 4.2: Estimate of a single MCMC iteration

Estimate
j 1 2 3 4 5
wj 0.2025 0.1998 0.0024 0.2088 0.3865
µj 11.3049 30.0506 21.8627 19.7869 21.6937
σ2
j 1.5533 1.0185 24.2553 0.7955 1.1888

Table 4.3: True underlying parameters

True parameters
j 1 2
wj 0.5 0.5
µj 10 20
σ2
j 1 1

one of the components has extremely small weight wj = 0.0024 and relatively large

variance σ2
j = 24.2553. The moves of randomly deleting one of the components are

always rejected. It is also unlikely to accept the trans-dimensional move by randomly

drawing a new component from the prior. We run another toy model with parameters

shown in Table 4.3. Again, it gets stuck at m = 4 as shown in Fig. 4.6. We extract

the parameter on m = 4, and the estimate is given in Table 4.4.

Table 4.4: One of RJMCMC outputs

Estimate
j 1 2 3 4
wj 0.246 0.255 0.240 0.259
µj 10.022 19.747 20.276 10.027
σ2
j 0.814 1.056 0.861 1.154

We can see that there are obvious overlaps between modes. It separates a single

component in Table 4.3 into two with similar mean and variance. We believe that

there is no difference between these two presentations. This four-mode model can be
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Figure 4.5: The probability density function of two modes Gaussian Mixture Model
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Figure 4.6: RJMCMC explores model space

fully represented by a two-mode model. In fact, we wish to use fewer free parameters

to present the models, which is essential to model determination. One can either

avoid this situation by setting a tolerance of minimum distance between the mean

of new components or manually combining two components when we find there is

nothing particularly distinguishable between these two components in certain critical

standard before looking at the posterior distribution of the model.
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In our case, RJMCMC with birth/death move is not efficient which takes too

long to get sensible answers. The inefficiency of algorithms is due to the fact that we

are using single particle IS to approximate the Bayes factor in the acceptance ratio

in Eq. (4.27). Therefore, we need other efficient methods to approximate the Bayes

factor properly. We will look at this by applying annealed IS methods instead of

IS in section 4.6. In the next section, I am going to use a transformation to bring

the proposal closer to the target. We will see that it is useful for improving the IS

estimate of the Bayes factor.

4.5.3 Combine/Split Move

Instead of adding or deleting a component to propose jump between the model space,

an alternative is to introduce combine/split move which can maintain the moment

invariant property for the model. It would be more likely to accept the move by

combining two modes into rather than randomly delete one of the modes directly. We

would like to find a bijective transformation between different models while the first

and second moments of the mixture models keep unchanged. The first moment of the

Gaussian mixture model can be written as

E(X) =
∫
x

m∑
i=1

wipi(x)dx =
m∑
i=1

wiµi, for all m = 1, ...,M, (4.35)

where the weights are normalized with ∑m
i=1 wi = 1. Merge one of the components j1

with another j2 to get a new component j∗, while other components keep unchanged.

In such case, the number of components decreases from m + 1 to m. The second-

moment invariant property can be expressed as follows:

E(X2) =
∫
x2

m∑
i=1

wipi(x)dx =
m∑
i=1

wi(µ2
i + σ2

i ), for all m = 1, ...,M.
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The model transition between state m and m + 1. According to moments invariant,

we obtain
m∑
i=1

wm,iµm,i =
m+1∑
i=1

wm+1,iµm+1,i, (4.36)

m∑
i=1

wm,i(µ2
m,i + σ2

m,i) =
m+1∑
i=1

wm+1,i(µ2
m+1,i + σ2

m+1,i), (4.37)

where wm,i, µm,i, σ2
m,i are weight, mean and variance of the ith component in model

m. In the split move, we assume that other components will keep weighs, means,

and variances unchanged, which means that most expressions will be cancelled in

Eq. (4.36) and (4.37). For simplicity, we assume that component j is split into two

components, j1 and j2. We obtain

wj = wj1 + wj2 ,

wjµj = wj1µj1 + wj2µj2 ,

wj(µ2
j + σ2

j ) = wj1(µ2
j1 + σ2

j1) + wj2(µ2
j2 + σ2

j2).

(4.38)

The are three degrees of freedom in achieving this move, so we need to generate a

three-dimensional random vector u to specify the new parameters. Here, we use beta

distributions

u1 ∼ be(2, 2), u2 ∼ be(2, 2), u3 ∼ be(1, 1).

Random variables drawn from the beta distribution must satisfy that 0 < u1, u2, u3 <

1. Deduce from Eq. (4.38) and introduce dimension-matching parameters u, we have

wj1 = wju1, wj2 = wj(1− u1),

µj1 = µj − u2σj
√
wj2/wj1 , µj2 = µj + u2σj

√
wj1/wj2 ,

σ2
j1 = u3(1− u2

2)σ2
jwj/wj1 , σ2

j2 = (1− u3)(1− u2
2)σ2

jwj/wj2 .

We run RJMCMC with combine/split move. Data is given by the underlying

model in Table 4.1. The number of observations is L = 500. We extract 2500

iterations after RJMCMC has reached equilibrium. The trace plot of RJMCMC
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and total time spent on each model are shown in Fig. 4.7. There is a significant

improvement in the efficiency of trans-dimensional moves due to the benefits from the

moment-matching trick in the split/combine move in the mixture case. Note that the

object is to implement MCMC that is capable of jumping between model spaces in

slip-spring models. Unfortunately, there is no obvious way to do anything analogous

in the slip-spring case. It is challenging to find a bijective transformation to combine

two slip-springs into one. We need to find alternatives to implement RJMCMC that

allow us to perform trans-dimensional jump efficiently in slip-spring model when using

birth/death move.

Figure 4.7: RJMCMC with combine/split move explores model space

4.6 Annealed Importance Sampling RJMCMC

We have seen from the previous section that the efficiency of RJMCMC mainly de-

pends on the variance of the Bayes factor estimator in the acceptance ratio. Therefore,

we hope to improve the efficiency of RJMCMC by using a more accurate estimator.

Karagiannis and Andrieu [59] proposed to do this using annealed importance sam-

pling (AIS) instead of IS. AIS RJMCMC is a new method aiming to implement the
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reversible jump MCMC efficiently. We know that the inefficiency of RJMCMC is due

to the high variance of the IS estimator of the acceptance probability, which leads

to low acceptance rates for dimension changing moves. The idea of AIS is that since

the variance of IS estimators depends on the distance between the proposal q(·|θ)

and the target π, it is possible to improve the IS estimator by placing some bridging

distributions to reduce the distance between the proposal and the target.

For the transition from model m to model m′, we are going to introduce a set of

annealing densities that construct a smoother path from the proposal to the target.

The annealing densities is a sequence of intermediate distributions {ρt(·;m → m′)},

which bridge densities π(θm|m)φm(um) and π(θ′m|m′)φm′(um′). Here index t is referred

as time, t = 0, . . . , T . The annealing densities {ρt(· ;m→ m′)} is characterized by

ρ0 = π(θm|m)φm(um)Jm→m′ ,

ρT = π(θm′ |m′)φm′(um′),

where Jm→m′ is the Jacobian of transformation φm→m′ . In this thesis, we are going to

use geometric annealing distributions to construct intermediate densities {ρt(· ;m→

m′)}, for 0 < t < T . Introducing {γt}T0 ∈ [0, 1],with γt = 0, γT = 1, we define

annealing densities {ρt(· ;m→ m′)} as follows:

ρt = [π(θm|m)φm(um)Jm→m′ ]1−γt × [π(θm‘|m′)φm′(um′)]γt .

In such case, the annealed weight can be written as

r
(0:T−1)
m→m′ =

T−1∏
t=0

π(m′,θ(t)
m′)

π(m,θ(t)
m )

φm′(um′)
φm(um)

(γt+1−γt)

. (4.39)

More general methods to construct annealing densities can be found in [59] [60].

The bridge can be constructed easily if we could sample independently from each

of the bridging distributions. By estimating the ratio between each of the successive
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bridging distributions and combining them, we obtain the acceptance ratio of explo-

ring different joint space. However, we usually cannot sample independently from

each of the bridging distributions. The alternative is to use an MCMC move instead,

with the initial point being the point generated from the previous intermediate dis-

tribution. Neal [20] states that the entire procedure yields an unbiased estimate of

the overall ratio.

Now we will plug in the AIS estimate into RJMCMC. The initial point of the first

distribution will be given by the current state of the RJMCMC {θm, Um′→m′ ,m}. Af-

ter plugging in the AIS estimator, the acceptance probability of move from (m,θm)

to
(
m′,θ

(T−1)
m′

)
is given by

γm→m′ = min
{

1, q(m|m
′)

q(m′|m)r
(0:T−1)
m→m′

}
. (4.40)

The pseudo-code of the AIS RJMCMC algorithm is presented as follows:
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Algorithm 5 AIS RJMCMC transdimensional algorithm

1. Propose trans-dimension move:
Given state (m,θm), sample m′ ∼ q(·|m) and um ∼ φm(·);

2. Specify the new parameters:
(θm′ , um′) = hm(θm, um)

3. Annealing procedure:
for i = 1 : T − 1 do

Sample (θ(t)
m′ , u

(t)
m′) from target density ρt :

ρt = [π(θm|m)φm(um)Jm→m′ ]1−γt × [π(θm′|m′)φm′(um′)]γt

endfor
4. Annealing importance weight:

Compute the annealing importance weight r(0:T−1)
m→m′

5. Accept the transition with probability min{1, αm→m′}

γm→m′ = min
{

1, q(m|m
′)

q(m′|m)r
(0:T−1)
m→m′

}

By introducing a number of intermediate states between two models, we can get

rid of the problem of stuck in certain model space and visit the space with lower

posterior probability.

Andrieu and Vihola [23] indicate that the properties of pseudo-marginal algo-

rithms improves when the variance of the estimator within the algorithm improves,

and remark that a similar result is likely also to hold for AIS-RJMCMC compared to

RJMCMC. Note that when we do more AIS steps, we may have to do fewer MCMC

iterations. The results in Karagiannis and Andrieu [59] indicate that it is worthwhile

to use a few bridging distributions, then the benefit drops off. It is an open question

as to how to optimally choose the number of intermediate distributions, but we note

that there is work on an analogous question in pseudo-marginal, in choosing the num-

ber of importance points. By doing AIS RJMCMC, we are limited to a single AIS

importance point. If we use more points to approximate the ratio, we will lose the
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correctness of the algorithm and end up with a noisy algorithm [61].

4.6.1 Application of AIS-RJMCMC on Mixture Model

We run AIS RJMCMC with different annealing scheme T = 1, 2, 5, 10, 50. To inves-

tigate the independence of the sampler using different annealing scheme, we present

the integrated autocorrelation time (IAT) of each scheme in Table 4.5.

Table 4.5: IAT for different annealing time T

IAT
t 1 2 5 10 50 100

IAT 61.75 46.26 25.29 16.77 12.45 12.83

Figure 4.8: AIS RJMCMC with birth/death move explores mixture model space.
Annealing time T = 50

IAT is a criterion indicating the decrease in rate of convergence introduced by

dependent sampling. We can see that the efficiency of the algorithm does improve sig-

nificantly as the anneal time increases. However, the benefit will drop off and it is not

worthy increasing the anneal time comparing the benefit and the extra computatio-

nal effort it requires. Fig. 4.8 shows 6000 iterations after AIS RJMCMC has reached
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equilibrium. The sampler is implemented with T = 50 using combine/split move.

Data is give by underlying model Table 4.1. Number of observations is N = 500.

AIS scheme significantly improve the efficiency of RJMCMC sampler. Next, we

are going to apply AIS RJMCMC on the slip-spring models.

4.6.2 Application of AIS-RJMCMC on the Slip-Spring Mo-
del

We run a molecular dynamic simulation of 150 concatenated polymer rings, each

polymer consists of 512 monomers. The system is initialized with particle density

ρ = 0.85 in a cubic box with periodic boundary conditions. The beads along the

chain are connected by FENE springs. Excluded volume effect between monomers is

governed by purely repulsive Lennard-Jones potential. The time step of the simulation

is dt = 0.012τLJ . To obtain a system which consists of concatenated polymer rings, we

first switch off the inter-chain excluded volume interactions which allows the chains to

cross with each other. After the system is run long enough to reach proper equilibrium,

we switch on the inter-chain excluded volume interactions. In this way, we manually

set up the initial configuration of system which makes each ring polymer concatenate

with 10 ring polymers on average. We extract the configurations of mean path of

the polymers every 106 MD steps. The number of configurations used for analysis is

L = 500. The parameters of interest are the number of slip-springs M , the location

of anchor points a and the length of slip-spring Ns. The monomer indices s that

slip link sit on are hidden variables. The length of each slip-springs Ns is allow to be

varied.

Parameters a,Ns are assumed to be independent of each other. Anchor points

a is supposed to be drawn from Gaussian distribution

p(aj) = 1√
2πσ2

exp
(
−(aj − µ)2

2σ2

)
.
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The length of slip-spring Ns is drawn from Gamma distribution. The prior of model

index m is chosen from a uniform distribution between 1 and a pre-specific number

M . In this work, we set the priors of parameters as M = 20, aj ∼ N (0, 5) and

Nsj ∼ G(2, 3). The probability p(m′|m) of proposing a move from model m to m′ is

given by

q(m′|m) =


1/3, |m′ −m| ≤ 1, 1 < m < M

1/2, |m′ −m| ≤ 1,m = 1 or m = M

0, otherwise.

Figure 4.9: AIS RJMCMC with birth/death move explores slip-spring model space.
Annealing time T = 50

We implement AIS RJMCMC on the slip-spring model with annealing scheme

T = 50. Fig. 4.9 shows AIS RJMCMC iterations after 1000 steps. The total run-

ning steps is 106. We can see that it takes particularly long time for the sampler

jumping from one model space to the other. The poor mixing property of the al-

gorithm mainly comes from the complexity of the hidden states s. When proposing

a trans-dimensional move from model m to m + 1, it requires to infer the positi-

ons of slip links for individual configurations for the newly added slip-spring. By

doing this, we introduce two parameters am+1 and Nsm+1 and a set of hidden varia-
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bles {sim+1}, i = 1, · · · , L, which causes huge gap in likelihood and makes it hard to

explore the joint model and parameter space. We have seen in Fig. 4.9 that the sam-

pler gets stuck at m = 7. It indicates we can not construct a smooth path bridging

target densities π(θm|m) and π(θm′|m′) within 50 annealing steps for our slip-spring

model. Therefore, trans-dimensional moves are likely to be rejected and models with

low posterior density are rarely visited. One may obtain a better mixing sampler

by using more intermediate step in the annealing scheme. In our case, this can be

computationally expensive. We have seen in mixture case that using combine/split

move will improve the efficiency of the algorithm. However, it requires a reversible

pairwise move that is difficult to find an invariant quantity from a physical point of

view for the slip-spring model.

4.7 Sequential Monte Carlo Sampler

We have seen from the previous section that large state space problem is involved in

AIS RJMCMC, so we will look at Sequential Monte Carlo (SMC) samplers instead.

Since we consider only a small number of models, the number of slip-springs M is

usually smaller than 20.

SMC sampling is a class of methods that combine importance sampling and

resampling strategies. It is based on compute simulation to compute posterior distri-

bution. Unlike MCMC methods, SMC methods do not require complex configuration

and is easy to implement in parallel.

The idea of importance sampling is to represent the probability density with a

set of particles {xi}Npi=1. Base on this idea, all the statistical measurements that we are

interested can be easily calculated. It is a straightforward implementation of Bayes’

theorem. Firstly, the prior distribution can be expressed with respect to the particles

as follows:

p(x) =
Np∑
i=1

1
Np

δ(x− xi).
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According to Bayes Theorem,

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x)dx,

which gives

p(x|y) =
Np∑
i=1

wiδ(x− xi),

where the weights are given by

wi = p(y|xi)∑Np
j=1 p(y|xi)

, i = 1, · · · , Np,

where p(y|xi) is the likelihood of observation y given parameter xi. the weight of a

particle means the relevant importance (contribution) of a particle compared to all the

other particles. For example, if one would like to calculate the average of a function

f(·) which can be approximated by

E[f(x)] =
∫
f(x)p(x)dx ∼

Np∑
i=1

wif(xi).

Let π be a target distribution of interest on measurable space E, and {πt}Tt=1 be a

sequence of target distributions on E with πT = π. Del Moral et al. [62] demonstrate

that it is not practical doing sequential importance sampling in the cases where the

proposal for target πt+1 is a transition kernel applied to points distributed from πt.

This is mainly due to the need for calculating an integral involved in evaluating the

density of the proposal. The solution in [62] is to make the problem similar to the

one that particle filtering tackles where the sequence of distributions has increasing

dimension. We are going to have a brief description of how it works:

In SMC samplers, a sequence of artificial targets are introduced,

π̃t(x1:t) = πt(xt)
t∏

s=2
Ls−1(xs−1|xs),

on the space En, through the introduction of backward kernels Lt(·), t = 2, .., T . The
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basic idea is to apply a particle filtering methodology to this sequence of artificial

targets. If, at time t, the forward kernel Kt(.|xt−1) is used to update the point xt−1,

and γt is the unnormalised form of target πt, then the incremental weight is given by

w̃t = γt(xt)Lt−1(xt−1|xt)
γt−1(xt−1)Kt(xt|xt−1) .

In the case where Kt is a πt-invariant MCMC kernel, with a suitable choice of Lt−1,

Kt can be canceled with Lt−1, the incremental weight becomes

w̃t = γt(xt−1)
γt−1(xt−1) . (4.41)

For further details, see references in [62].

For simplicity, we will stick to using MCMC kernels, and using the incremental

weight in equation (4.41). Note that in order to get around particle degeneracy, we

also need to resample if necessary. When using MCMC kernels, we may perform

this directly after normalising the weights. Note that AIS is exactly this algorithm,

but without resampling scheme since it is implemented using only one particle. This

algorithm yields an empirical approximation of πt

π̂t =
Np∑
p=1

w
(p)
t δ

θ
(p)
t
, (4.42)

where δθ is a Dirac mass at θ, and an estimate of its normalising constant is given by

Ẑt =
t∏

s=1

Np∑
p=1

w(p)
s

πs+1
(
θ(p)
s

)
πs
(
θ

(p)
s

) . (4.43)

The normalising constant in our case is the marginal likelihood p(y|m), so we may

use this method to estimate the marginal likelihood.

Now, we are going to talk about how to choose the sequence of distributions.

For a particular model m, our target is to approximate the posterior π(θ|y,m) which

is intractable. Instead of drawing samples to approximate π(θ|y,m) directly, we
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construct a sequence of distributions {πt(θ)}Tt=0 with π0(θ) = π(θ|m) and πT (θ) =

π(θ|y,m) to build a smooth path between the prior and the target distribution.

πt(θ) ∝ π(θ|m)p(y|θ,m)a(t), (4.44)

where the number of intermediate distributions T and the annealing scheme a(t) ∈

[0, 1] may vary from model to model. Firstly, we draw samples {θp}Npp=1 from prior

π(θ|m).

Then the weight of each point can be written as

w̃p1 = wp0
π1(θp0)
π0(θp0) , (4.45)

where we assume that all the points are allocated with the same weight at t = 0 with

wi0 = 1
Np

. Then we normalize the weight w1,

w
(p)
1 = w̃

(p)
1∑Np

p=1 w̃
(p)
1
. (4.46)

If the variance of the weights are large, we have discussed this issue in section

3.3 that resampling is an effective approach to reduce the weight variance.

Algorithm 6 SMC sampler
for t = 2 : T do

Renew weight w̃t = wt−1
πt(θt−1)
πt−1(θt−1)

Normalize weight

w
(p)
t = w̃

(p)
t∑Np

p=1 w̃
(p)
t

Resample if necessary
for p = 1 : Np do

Run MCMC to obtain θpt ∼ Kπt(·|θ
p
t−1)

endfor
endfor

Next, we will look at how to adaptively tune a(t). The choice of adaptive scheme
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is quite flexible. The aim of performing adaptive scheme is to make sure that the

the distance of neighbouring targets is neither too far, which will lead the MCMC

move to be rejected. It cannot be too close which would decrease the efficiency of

the algorithm. Del Moral et al. [63] introduced a strategy to monitor the efficiency of

each iteration with conditional effective sample size (CESS).

CESS =
Np

(∑Np
p=1w

(p)
t ω

(p)
t+1

)2

∑Np
p=1

(
w

(p)
t ω

(p)
t+1

)2 , (4.47)

where ω(p)
t+1 is the incremental weight evaluating the ratio in Eq. (4.43). CESS can

monitor the discrepancy between πt−1 and πt. One can decrease the distance between

πt−1 and πt to ensure that CESS= κ, 0 < κ < 1. The choice of κ relies on the complex

of the models. In this work, we adapt κ = 0.9.

We can also use adaptive strategies in MCMC kernels to improve the efficiency

of SMC sampler. It allows us introduce apply adaptation in MCMC kernels when

exploring the space based on the past history of the sampler. A straightforward way

to adapt the proposal variance used in M-H step according to sample variance of

the current particles. In this work, we adapt the proposal scale using twice of the

sample variances suggested by Beaumont et al. [64]. Note that we investigate models

with different number on slip-springs. The ensemble sample variances evaluating

from all the particles would be in much larger than that of an individual slip-spring.

However, we do not keep unique order of the slip-springs for all the particles. Note

that the for each particle the order of the slip-spring may change. When evaluating

the sample variance of anchor point aj, we need to know the order number of aj on

each particle. Clustering a set of objects in such a way that objects in the same group

are more similar to each other than to those in other groups. k-means clustering

is one of the well-known clustering methods that can exactly distribute each point

into one of k clusters defined by centroids. We assume that there is no overlap

between entanglements. Therefore, it is easy to apply k-means clustering based on
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the spatial location of anchor points aj to group components into clusters. Then we

can adaptively take cluster variances as proposal variance.

4.8 Application of SMC and Slip-Spring Model on
Detecting Entanglements
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Figure 4.10: Contour length of a ring polymer (thick black line) as found by the
primitive path analysis. The primitive paths of some surrounding chains are also
included for reference.

The trajectories of concatenated ring polymers obtained from the MD simulations

described in section 4.6.2 are employed for entanglement analysis using the combined

SMC and slip-spring model method. Firstly, we want to learn about the concatenated

typology of the target ring polymer. We run a new set of MD simulations as described

in section 4.6.2 which takes one of the configurations obtained from the standard MD

simulation as the initial configuration. Then we turn off the thermal fluctuations of the
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monomers, eliminate excluded volume interactions between monomers on the same

chain while maintaining interchain uncrossability. All the chains end up with shrinking

to the shortest paths with many kinks as shown in Fig. 4.10. The tube-like cloud

constructed by the instantaneous configurations of the target polymer as collected

from 500 MD frames which are evenly separated by the time interval t = 10, 000τLJ
is shown in Fig. 4.11, together with the primitive path of this chain same as that

shown in Fig. 4.10. It is natural to assume that clusters with high monomer densities

in the cloud, as reflected by the deeper colours, may correspond to the locations of

the entanglements. It can be seen that the kinks of the given primitive paths do

not necessarily correspond to the high-density clusters, meaning that the shrinking

process has artificially destroyed the equilibrium configurations of the polymers. The

number of kink or so-called entanglements may not be consistent with the definition

of persistent contacts. Therefore primitive path analysis is probably not adequate to

provide a complete picture about the locations of entanglements.

To identify the locations of the entangles on a target chain, we introduce M slip-

springs, each with one end initially located on a randomly selected monomer of the

chain, the other end anchored at a random position in space and the initial end-to-end

distance of
√
Nsb.

We implement the SMC sampler with Np = 1000 to this model system for the

number of slip-springs M = 1, 2, · · · , 14. The prior distributions are the same as

specified in section 4.6.2. The logarithm marginal evidence estimated using different

m is given in Fig. 4.12. We can see that the marginal evidence increases significantly as

the number of slip-springs M increasing from 1 to 3. It indicates that each of the newly

added components does improve the performance of the slip-spring based model. As

we keep on adding slip-springs to the model system, the marginal evidence witnesses

slight fluctuations between M = 3 and M = 5. After that, the marginal evidence rises

again and reach a peak value at M = 7. After exhibiting some fluctuations between

7 ∼ 12, the marginal likelihood begins to decrease from M = 13 and onwards. The
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Figure 4.11: Tube-like cloud constructed by the instantaneous configurations of the
target polymer as collected from 500 MD frames, together with the primitive path of
this chain (thick black line) same as that shown in Fig. 4.10.

SMC sampler suggests that there are probably 7 ∼ 12 entanglements that restrict

the lateral motion of the test ring polymer. Although it might appear that M = 7

is sufficient, one should keep in mind that the marginal likelihood takes into account

both the likelihood and the model complexity. Note that the model complexity rises as

the number of slip-springs increases. Therefore the fluctuation shown between 7 and

12 reveals that the likelihood is still increasing a bit up to this point. The marginal

likelihood drops off after M = 12 indicates that the benefit to the likelihood is not

sufficient compared to the increased model complexity.

Fig. 4.13 shows a snapshot of the analysed model system with 11 slip-springs,
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Figure 4.12: Marginal evidence versus the number of slip-springs

together with the configuration cloud and primitive path of the target chain. The

instantaneous positions of the anchor points of the slip-springs as obtained from the

SMC sampler shown as scattered red points for providing direct evidence on the

mean positions and variances of the estimate. The mean positions of the slip-links

are characterize by cyan spheres. The values printed along with the slip-springs are

their mean end-to-end distances
√
〈Ns〉 of the slip-springs.

We can see from Fig. 4.13 that all the clusters with high density on the dense

cloud have been detected by the SMC sampler. The primitive path analysis suggests

that there are at least 12 kinks on the contour length. Our algorithm indicates that

we can use 12 or fewer slip-springs to represent the entanglements. It is possible that

there are more than 12 polymer rings concatenated with the target ring. However,

some of them do not have persistent interaction with the target ring presumably due

to the existence of other ring segments in between them, which are therefore not

reflected by high-density clusters in the configuration cloud.

The average end-to-end distance of each slip-spring and the standard deviation

of the estimate are given in Table 4.6.
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Figure 4.13: Snapshot of the slip-spring positions as estimated by the SMC sampler,
together with the configuration cloud and the contour length (thick black line) of the
target ring polymer. The scattered red points represent instantaneous positions of
the anchor points during the SMC sampling, and the large cyan spheres represent the
mean position of the slip-links. The short red lines link the mean positions of the
anchor point and slip-links of each slip-spring, and the numbers added next to them
are the mean end-to-end distance of the springs.

To visualize how accurate the estimate is, we plot the projections of the dense

cloud and slip-springs on the XY-plane in Fig. 4.14. It is natural that some of

the high-density clouds are characterized by more than one slip-spring. Since the

high-density clusters arise from persistent contact between the target chain and neig-
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Table 4.6: Parameter estimate and relevant uncertainty (M = 11)

j 1 2 3 4 5 6 7 8 9 10 11
std(aj) 0.2159 0.2231 0.2620 0.2494 0.2645 0.3095 0.2163 0.1709 0.1969 0.2890 0.2376
std(Nsj

) 0.0307 0.1200 0.5179 0.0309 0.0627 0.0358 0.0191 0.0273 0.0429 0.0477 0.0615√
〈Nsj
〉 4.5872 4.2576 4.9420 4.659 4.7207 5.5966 4.0235 4.2583 4.3701 5.0170 4.5298

hbouring chains, it is very likely that there are several neighbouring chains entangled

with the target chain in the high-density area.

It is interesting to note that concatenated ring polymers is a tricky situation

where the number of entanglement are fixed. Consequently, CR and CLF, which

are essential in the study of entanglements, are not taken into consideration in such

case. Therefore, it is important to consider applying SMC algorithms to describe the

entanglement dynamics in more general cases. In the following section, we will look

at the application of SMC algorithms on linear polymers.

Figure 4.14: Projections of the chain monomer density profile and slip-springs on
the XY-plane
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4.9 Application of SMC on Linear Polymers

We run molecular dynamics simulations of polymer melts using the Kremer-Grest

bead-spring model introduced in section 2.5, where the number of chain Nc = 250

and the particle number density ρ is 0.85. To guarantee there are sufficiently large

number of entanglements on each chain for analysis, we increase the chain length N

to 1023.

In the melts consisting of of linear polymers, the number of entanglements on

each chain can fluctuate over time due to the combined reptation, CLF and CR

effects. Firstly, we will investigate the CLF effects in a given time window. We aim

to analyse MD trajectories consisting of 300 configurations where the time interval

between two neighbouring configurations is τint = 1200τLJ . In Fig. 4.15 we plot the

configuration cloud of a single target chain based on all 300 configurations and its

mean path obtained at the simulation times corresponding to the first and the last

configurations by averaging the instantaneous configurations of the chain over a time

duration τint. . It is observed in Fig. 4.15 that left hand side of the target chain has

retracted from the original tube and entered a new tube mainly due to CLF effects.

It is important to note that we assume that when applying the slip-spring model

and SMC methods to study entanglements, the total number of slip-springs in the

system is fixed. To tackle this problem, we consider only the central part of the

chain conformation and the fluctuations of the chain ends are ignored. Wang and

Larson [65] demonstrated how to evaluate the maximum number of monomers escape

from the initial tube due to CLF [46]. The fraction of monomers released by CLF for

given time duration t is given by

Φ(t) = 1.5(t/τe)1/4/M, (4.48)

where τe is the entanglement time and M is the number of entanglements of the

chain. Wang, Likhtman and Larson found τe ≈ 2950τLJ for the flexible chains from
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Figure 4.15: Snapshot of mean paths together with the configuration cloud of a
target linear polymer. The red line is a snapshot of mean path of the chain and the
blue line is the snapshot of its mean path after time 360000τLJ .

the mean square displacements of chain middle monomers [66]. To estimate the

number of entanglements M , we apply PPA method [6] [67] by fixing the ends of the

chains and switching off the intra-chain excluded volume interactions, which gives us

the average number of kinks per chain M ≈ 25. The corresponding entanglement

strand length was estimated to be in the range of 60 to 85, giving the average number

of entanglements per chain M ≈ 12 ∼ 17. Therefore, on each side of the chain, the

number of monomers affected by CLF is given by

NΦ(t)/2 ≈ 150 ∼ 213 (4.49)

which implies that within time interval 360000τLJ , for a linear chain with chain length

N = 1023, there are approximately 300 ∼ 425 monomers escaped from the initial tube

due to the effect of CLF. Thus in such a time window, the central part of the chain
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with 600 ∼ 724 monomers feels very weak CLF effects. To improve the accuracy of the

estimate of the number and location of the slip-springs, in the following section, we

will focus on the 512 monomers in the central part of the chain to avoid the influence

of CLF effects.

4.9.1 Partition Function

For a free Rouse chain with N + 1 beads, the probability distribution function of

the bead positions {Ri}Ni=0 is solely determined by the harmonic potential energy,

P ({Ri}) = 1
Z0

exp
[
− 3

2b2

(
N−1∑
i=0

(Ri+1 −Ri)2
)]

, (4.50)

where

Z0 =
∫
dR0

∫
dR1..

∫
dRNexp

[
− 3

2b2

(
N−1∑
i=0

(Ri+1 −Ri)2
)]

is the partition function of the free linear chain.

For a given set of anchor point positions a = {aj}Mj=1 and length of slip-spring

Ns = {Nsj}Mj=1, the probability distribution function of the dynamic variables (R, s)

is

P{R, s|a} = 1
Z(a)exp

− 3
2b2

N−1∑
i=0

(Ri+1 −Ri)2 +
M∑
j=1

(Rsj − aj)
Nsj

2
 . (4.51)

We note that the distribution of a vector between any two monomers is given in Eq.
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(4.8). thus the partition function Zns(a, s) takes the form of

Zns(a, s) =

 M∏
j=0

nj

−d/2(
3

2πb2

)(M+1)Md/2 ∫
dR0

∫
dRs1 · · ·

∫
dRsM

∫
dRN×

exp

− 3
2b2

M−1∑
j=1

1
nj

(
Rsj+1 −Rsj

)2 + 1
n0

(Rs1 −R0)2 + 1
nM

(RN −RsM
)2 +

M∑
j=1

1
Nsj

(
Rsj − aj

)2


=

 M∏
j=0

nj

−d/2(
3

2πb2

)(M+1)Md/2 ∫
dR0

∫
dRs1 · · ·

∫
dRsM

∫
dRN×

exp

−β
 M+1∑

i=0,j=0
AijRsi ·Rsj +

M+1∑
i=0

bi ·Rsi + c

 , (4.52)

where A is given by

A =



1
n0

− 1
n0

0 0 0 0
− 1

n0
1

n0
+ 1

n1
+ 1

Ns1
− 1

n1
· · · 0 0

0 − 1
n1

1
n1

+ 1
n2

+ 1
Ns2

· · · 0 0

0 0 − 1
n2

· · ·
...

...
...

...
. . . . . . 0

...
0 0 · · · 1

nM−2
+ 1

nM−1
+ 1

NsM−1
− 1

nM−1
0

0 0 · · · − 1
nM−1

1
nM−1

+ 1
nM

+ 1
NsM

− 1
nM

0 0 0 0 − 1
nM

1
nM


.

In the second step, we have defined

β = 3
2b2 , bi = − 2

Nsi

ai, c =
M∑
j=1

a2
j

Nsj

, i = 1, ...,M,

b0 = 0, bM = 0.

It is important to note that our entanglement analysis is only carried out for the

central part of a chain with 512 monomers. The two ends of this part of the chain

are not free but connected with the rest of the original chain segments instead. Their

motion are thus subject to topological constraints analogous to those connected to
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slip-springs. Therefore we have rewritten their positions in Eq. 4.52 as

Rs0 = R0, RsM+1 = RN .

We note that no extra virtual spring energy needs to be added in the partition function

calculation, because these two monomers can still be occupied by the slip-links added

during the SMC sampling. It is interesting to note that the partition function of

linear polymers shown in Eq. (4.52) has a very similar form to that in Eq. (4.9)

for concatenated ring polymers. Thus the partition function Zns(a, s) can be easily

obtained by Eq. (4.13).

Figure 4.16: Marginal evidence versus the number of slip-springs

Next we will apply SMC sampler given by Alg. 6 to linear polymers. The

implementation of the SMC sampler is described in section 4.7. We use the same

number of particles Np = 1000 and CESS κ = 0.9 for each method. Fig. 4.16 shows

the logarithm of the marginal likelihood for models characterized by different number

of slip-springs. Similar to the concatenated ring case, the log-marginal likelihood
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estimate shows fluctuations due to sample noise introduced by the SMC sampler.

However, it is obvious that the log-marginal likelihood exhibits a clear peak between

m = 6 and m = 13.

Fig. 4.17 shows a snapshot of the slip-spring positions as estimated by the SMC

sampler with m = 12, together with the configuration cloud and the contour length

(black line) of the central part of target polymer. The contour length is obtained in

the following manner. We take one of the configurations obtained from the standard

MD simulation as the initial configuration. The ends of the chains are fixed in space.

Then we turn off the thermal fluctuations of the monomers, eliminate excluded vo-

lume interactions between monomers on the same chain while maintaining interchain

uncrossability. In the end, the target chain ends up with many kinks and shrinks to

the shortest paths as shown in Fig. 4.17.

The scattered red points represent instantaneous positions of the anchor points

during the SMC sampling, and the large cyan spheres represent the mean position of

the slip-links. We can see that the SMC sampler with 12 slip-springs is capable of

capturing nearly all the significant high-density clusters in the configuration cloud.

Fig. 4.18 provides the projection on XY-plane of snapshot.

We note that the number of m = 12 slip-springs on a chain segment of 512

monomers seems to agree with the total number of M = 25 kinks as found in PPA

for the whole chain of 1024 monomers. On the other hand, Fig. 4.16 shows that

the marginal evidence reaches the plateau regime at about m = 6 ∼ 8, which is

consistent with the number of entanglements estimated by using Ne = 60 ∼ 85. It

has been shown by Everaers et al. [6] that the number of entanglements per chain

is not directly determined by the number of kinks, but instead by the random walk

feature of the primitive path constructed by the straight lines linking the kinks. The

effective number of entanglement is thus much smaller than the number of kinks

found in PPA. The results in Figures 4.16 - 4.18 imply that different from the PPA

method which destroys the local structure of the chains, the SMC methods allow us
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to find both the number and unperturbed positions of the topological constraints, but

also the minimum number of entanglements required to describe the primitive path.

The latter could be referred to the number of entanglements generally used in tube

theories.

Figure 4.17: Snapshot of the slip-spring positions as estimated by the SMC sampler
with m = 12, together with the configuration cloud and the contour length (black
line) of the central part of target linear polymer. The scattered red points represent
instantaneous positions of the anchor points during the SMC sampling, and the large
cyan spheres represent the mean position of the slip-links. The short red lines link
the mean positions of the anchor point and slip-links of each slip-spring.

4.10 Summary

This chapter is motivated by the need of developing novel approaches to detect the

entanglements along the polymer’s backbone. We aim to draw inference on the num-

ber, the effective lengths and the locations of the anchor points of the slip-springs for

given chain trajectories. A sequence of Bayesian statistical methods, e.g, RJMCMC,
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Figure 4.18: Projections of the chain monomer density profile and slip-springs on
the XY-plane

AIS RJMCMC and SMC, are applied to implement model comparison over a set of

potential model. One of the significant advantages of the Bayesian paradigm is that

it allows us to compute the posterior distribution of different models and provides

uncertainty analysis on the estimation of model parameters at the same time.

First, we commence from describing the slip-spring model in a discrete manner

where the slip-links are only allowed to sit on the coordinates of the monomers.

The exact solution of the partition function is derived by making use of Gaussian

integral. Different methods for model comparison are reviewed and their advantages

and limitations are discussed. A Gaussian mixture model is introduced to demonstrate

how to implement RJMCMC to explore the joint parameter and model space. We find

that the RJMCMC can easily get stuck at particular model space because of a lack of

proper transdimension-move. AIS RJMCM explores the joint parameter and model

space more efficiently by introducing intermediate distribution between the proposal

and the target. However, when applying AIS RJMCM on slip-spring model, we find
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it is challenging to jump from one model to another since it is hard to find a bijective

transformation to combine two slip-springs into one slip-spring.

An attractive alternative for model comparison is SMC which allows us to investi-

gate each model independently and provides an approximation of marginal likelihood

for model comparison. One of the possible limitations of SMC for studying entang-

lement effects is the assumption that the potential model and its parameters are

fixed. However, owing to the reptation, CR and CLF effects, the tube made from the

neighbouring chains is fluctuating and moving around. To avoid the impacts of CR

and CLF, we first look concatenated ring polymers. The SMC based slip-spring mo-

del successfully captures all the significant entanglements shown in the configuration

cloud and provides the log-marginal likelihood for model comparison. We then study

melt systems consisting of entangled linear chains. To minimize the impacts of CLF,

we focus on the central part of the the liner chain and the monomers at each end of

the chain are discarded. In this way, all the significant entanglements along the target

segment of the linear chain are represented by slip-springs. In the future, we intend

to apply SMC and slip-spring model to capture more properties of the entanglements.
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Conclusions

This chapter summarizes the main contributions in this thesis and analyses the li-

mitations of the models we have developed. Also discussed in this chapter are the

possible solutions for those limitations and potential future research directions.

5.1 Contributions

In this thesis, the overall research goal is to develop novel models for studying the

dynamics of entangled polymers. We have proposed three stochastic models to study

the diffusion process of the chain center of mass. We have also applied slip-spring

model based on Bayesian statistics and Monte Carlo methods to detect the existence

of entanglements and infer the number and location of the potential entanglements.

The first substantial contribution in this thesis is applying slip-spring model ba-

sed on SMC sampler in studying entanglements. Extensive efforts have been devoted

to defining the microscopic pictures of entanglements and trying to detect entangle-

ments at microscopic scales. The slip-spring model can be considered as one of the

most promising models for describing entanglement dynamics. With the help of Bay-

esian statistical methods, the slip-spring model is capable of detecting the number of

entanglements. Besides, the location of the entanglements and the fluctuations of the

tube that constrains the motion of the target chain are well described by the locations
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of the anchor points and the lengths of the slip-springs, respectively.

We also demonstrate how to implement RJMCMC and AIS RJMCMC for explo-

ring joint model and parameter space. It is important to note that the entanglement

analysis based on slip-spring model in this work is the first practical application of AIS

RJMCMC. We report that AIS RJMCMC may not be suitable for the models that

lack appropriate bijective transformations between parameters in different models.

The second substantial contribution in this thesis is developing the linear multi-

bead coarse-grained models which have potential to describe the dynamics of entang-

lement polymers. We have applied these models to reproduce the dynamics of the

center of mass of single chains in MD simulations. The multi-bead coarse-grained

models have much less free parameters compared with existed coarse-grained models,

which allows us to run sufficiently long enough simulations for a reasonably long period

of time. It is interesting to find that, for modelling linear polymers, the multi-bead

models prefer Rouse-like topology rather than asymmetric star structure. We also

demonstrate how to implement MCMC to draw inference on the models and their

parameters and discuss strategies on how to improve the efficiency of the MCMC

sampler.

The third substantial contribution in this thesis is to investigate coarse-grained

models with nonlinear interactions. We find that the single-particle model with me-

mory kernel is capable of capturing the dynamic properties of polymer chains studied

in MD simulation at very short time scales while it fails to recover the diffusion pro-

cess of the chain center of mass at large time scales. We show that particle MCMC

is a promising Monte Carlo method for finding model parameters as long as we have

powerful computational tools for massively parallel computing.
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5.2 Limitations

Although the models we developed in this thesis have proved to be effective in

analysing dynamics of unentangled and entangled polymers, there are a number of

limitations with these models.

First, due to the fact that entanglements are caused by the uncrossibility of the

neighbouring chains and all the chains are fluctuating and moving around over time,

which implies that the number of entanglements in the system is not fixed. We assume

that the number of slip-springs in a given model is fixed, which fails to capture the

effects of CR and CLF. For analysing entanglements on a linear polymer, we have to

discard a set of monomers at each end of the chain to ensure that the CLF has weak

impact on analysis results.

Another limitation is the noise on the log-marginal likelihood estimator over

slip-spring models. One can either increase the number of particles or increase the

CESS value, which will increase the computational complexity in return. Due to

limited computational power and limited time for simulation, it is challenging to find

a solution to minimize the impact of noise on the estimate.

Turning attention to the multi-bead model, we can only perform parameter es-

timation on linear system using standard MCMC methods. It is challenging to draw

inference on nonlinear system where particle MCMC fails to explore the parameter

space. A more effective method is needed for obtaining smooth likelihood.

5.3 Future Work

In this section we point out the possible solutions to the limitations we have discussed

and also provide some potential future research directions.

The entanglement analysis should be performed over a large ensemble of tar-

get chains in order to examine the accuracy of combined the slip-spring model and

Bayesian statistics. It is also important to provide quantitative information on the
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entanglement strength using the probability distribution of the slip-spring lengths. It

would be more interesting and also more challenging to test if our slip-spring model

works for detecting entanglements for whole polymers with free-ends. In the slip-

spring model, the anchor points are assumed to be fixed in space, which might not be

sufficient for describing the effects of the CR and CLF. It is very worthwhile devoting

effort to extending the current application to study the dynamics of the entanglements

which are related to reptation, CLF and CR effects. This can be done by dividing a

large number of trajectories into subsets and finding the locations of the slip-springs

in each sub-time period. By looking at the number and location of the anchor points,

we can track the dynamics of the entanglements along the contour lengths of the

polymers.

On the other hand, we could turn our attention to the multi-chain system. We

could allow the two ends of a slip-spring to slide on two different polymers which are

potentially entangled, which may provide useful information for the development of

multi-chain slip-spring model [68] [69] [70] [71]. It important to note that this choice

will rely on the assumption that entanglements are binary events [13]. The method

we have discussed in Chapter 4 is more general which does not depend on the binary

assumption.
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List of Symbols

N Polymer length, the number of bonds per chain

b Average bond length

k Spring constant, k = 3kBT/(2b2)

R Position vector of monomer

r Bond vector

Re End-to-end vector

Rg Radius of gyration

Rcm Center of mass

W Wiener process

d Dimension

ξ Friction coefficient

D Diffusion coefficient

ρ Particle density

U Potential

τ Relaxation time

τR Rouse time

τLJ Lennard-Jones time
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L Number of observations

Θ Unknown parameter set

Np Number of particle

w Weight

π(·) Target distribution

K Length of Markov chain, sample size drawn from the target distribution

Y Observed data set

Z(·) Partition function

k Spring constant, k = 3kBT/(2b2)

Nc Number of Chains

Ne Number of entanglements

τe entanglement time

Ns Chain length of each slip-spring, the number of bonds in each slip-spring

M number of slip-springs

aj Anchor point of sj fixed end of jth slip-spring

sj Monomer index connected to jth slip-spring an integer in between 0 and N − 1

nj Segment length between sj and sj+1
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Abbreviations

ABC Approximate Bayesian Computation

AIS Anneal importance sampling

BF Bayesian Factor

BIC Bayesian Information Criterion

CESS Conditional effective sample size

CR Constraint release

CLF Contour length fluctuations

EnKF Ensemble Kalman filter

ESS Effective sample size

FENE Finitely extensible nonlinear elastic

GIMH Grouped Independence Metropolis-Hastings

HMM Hidden Markov Model

IAT Integrated autocorrelation time

IS Importance sampling

KF Kalman filter

LJ Lennard-Jones
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MAP Maximum-a-Posteriori

MC Monte Carlo

MCMC Markov chain Monte Carlo

MD Molecular Dynamics

M-H Metropolis-Hastings

MLE Maximum likelihood estimate

MPF Marginal Particle Filter

MSD Mean squared displacement

PF Particle filter

PMCMC Particle Markov chain Monte Carlo

PPA Primitive path analysis

RJMCMC Reversible jump Markov chain Monte Carlo

SMC Sequential Monte Carlo

VAF Velocity autocorrelation function
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[67] S. Shanbhag and M. Kröger, “Primitive path networks generated by annealing
and geometrical methods: Insights into differences,” Macromolecules, vol. 40,
no. 8, pp. 2897–2903, 2007.

141



Page 142

[68] T. Uneyama and Y. Masubuchi, “Multi-chain slip-spring model for entangled
polymer dynamics,” The Journal of Chemical Physics, vol. 137, no. 15, p. 154902,
2012.

[69] V. C. Chappa, D. C. Morse, A. Zippelius, and M. Müller, “Translationally invari-
ant slip-spring model for entangled polymer dynamics,” Physical Review Letters,
vol. 109, no. 14, p. 148302, 2012.
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Appendix

Laplace transform

The Laplace transform is a frequency-domain approach for continuous time signals.
The Laplace transform of a function f(t), defined for all real numbers t ≥ 0, is the
function F (s), which is a unilateral transform defined by

F (s) =
∫ ∞

0
f(t)e−st dt

where s is a complex number frequency parameter s = σ + iω , with real numbers σ
and ω.

Initial value theorem:

f(0+) = lim
s→∞

sF (s). (1)

Final value theorem:
f(∞) = lim

s→0
sF (s), (2)

The final value theorem is useful because it gives the long-term behaviour without
having to perform partial fraction decompositions or other difficult algebra.

Linearity: The Laplace transform of a sum is the sum of Laplace transforms of
each term.

L{f(t) + g(t)} = L{f(t)}+ L{g(t)}

The Laplace transform of a multiple of a function is that multiple times the Laplace
transformation of that function.

L{af(t)} = aL{f(t)}
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The Laplace transform is linear, i.e., homogeneity and superposition hold.
Differentiation in s-Domain

L[tf(t)] = − d

ds
F (s), (3)

This can be proven by differentiating the Laplace transform:

d

ds
F (s) =

∫ ∞
−∞

f(t) d
ds
e−stdt =

∫ ∞
−∞

(−t)f(t)e−stdt

Repeat this process we get

L[tnf(t)] = (−1)n d
n

dsn
F (s)

Integration in time domain

L
[∫ t

0
f(τ)dτ

]
= F (s)

s
, (4)

This can be proven by realizing that

x(t) ∗ u(t) =
∫ ∞
−∞

x(τ)u(t− τ)dτ =
∫ t

−∞
x(τ)dτ

where u(t) is the Heaviside step function. Therefore by convolution property we
have

L[x(t) ∗ u(t)] = X(s)1
s

Using final value theorem, integral
∫ t
0 f(τ)dτ is give by

∫ ∞
0

f(τ)dτ = F (0) (5)

To calculate Laplace transform of integration tf(t) in time domain,applying
Eq.(3) and Eq.(4) gives us

L
[∫ t

0
τf(τ)dτ

]
= −1

s

d

ds
F (s),

Using final value theorem, integral
∫∞
0 τf(τ)dτ is give by

∫ ∞
0

τf(τ)dτ = −dF (s)
ds
|s=0 (6)
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