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Decoding the Australian Electricity Market:  

New Evidence from the Three-Regime Hidden Semi-Markov Model 
 

Abstract 

The hidden semi-Markov model (HSMM) is more flexible than the hidden Markov model 

(HMM). As an extension of the HMM, the sojourn time distribution in the HSMM can be 

explicitly specified by any distribution, either nonparametric or parametric, facilitating the 

modelling for the stylised features of electricity prices, such as the short-lived spike and the 

time-varying mean. By using a three-regime HSMM, this paper investigates the hidden 

regimes in five Australian States (Queensland, New South Wales, Victoria, South Australia, 

and Tasmania), spanning the period from June 8, 2008 to July 3, 2016. Based on the 

estimation results, we find evidence that the three hidden regimes correspond to a low-price 

regime, a high-price regime, and a spike regime. Running the decoding algorithm, the 

analysis systemically finds the timing of the three regimes, and thus, we link the empirical 

results to the policy changes in the Australian National Electricity Market. We further discuss 

the contributing factors for the different characteristics of the Australian electricity markets at 

the state-level. 

 

Keywords: Australian electricity markets; hidden semi-Markov model; time-varying mean; 

price spikes; regime-switching. 
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 1. Introduction 

Unlike financial assets or other commodities, electricity has its own special features since it 

cannot be stored economically and requires immediate delivery. In a deregulated electricity 

market, the price can shoot up to an extremely high level and come back to normal level 

within a short period of time. These abrupt, short-lived and extreme fluctuations in electricity 

prices are referred to as spikes in the literature (Higgs and Worthington, 2008; Janczura and 

Weron, 2010; Mount et al., 2006). As pointed out by Mount et al. (2006), the price spike is 

the standard feature of the Australian electricity market since it uses a uniform price auction 

and imposes fewer restrictions on the supplier. It is worthwhile to note that the spikes in the 

electricity price are fundamentally different from the jumps in stock prices as “spikes are 

temporal level shifts that die out rather quickly and do not lead to sustainable higher price 

levels” (Huisman and Mahieu, 2003: 428). Therefore, the stochastic jump process used in the 

literature to model the sudden level shifts in stock prices cannot explicitly model the spikes in 

the electricity price.  

Numerous attempts have been made to model the behaviour of the spikes in the 

electricity price. Among them, the hidden Markov model (HMM)
1

 is one of natural 

candidates because of its elegance in accommodating the different regimes involved in the 

data generation process. Various versions of the HMM have been developed to compete with 

the goodness-of-fitting for the empirical data. Huisman and Mahieu (2003) model the 

electricity price by a three-regime HMM with constant transition probabilities. Their three 

regimes are defined as a normal regime, an initial jump regime, and a regime reverting back 

to a normal regime after the initial jump regime. Mount et al. (2006) employ a two-regime 

HMM of time-varying transition probability depending on the current market conditions. 

They show that the price spikes can be predicted accurately if the reserve margin and the 

                                                           
1
 In economics and finance, HMMs are also known as Markov regime-switching models (e.g. Rydén et al., 

1998). 
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system load are provided. Janczura and Weron (2010) conduct an empirical comparison of 

alternate regime-switching models for electricity spot prices. They suggest that the best 

structure of the regime-switching models should set to be an independent three-regime model 

with time-varying transition probabilities, heteroscedastic diffusion-type base regime 

dynamics and shifted spike regime distributions.  

Nevertheless, one limitation of the HMM is that the sojourn time distribution can only 

follow an exponential distribution implicitly, which sometimes does not fit the empirical data 

well, particularly for the spikes which typically last for a short period of time. The hidden 

semi-Markov model (HSMM) is more flexible than the traditional HMM because the sojourn 

time distribution in the HSMM can be explicitly specified by any distribution, either 

parametric or nonparametric, allowing us to model the very short sojourn time of the spikes. 

This is the novelty of the paper in relevance to the price spikes in the electricity markets.  

In addition to the spikes, we also observe that the mean of the electricity prices is 

time-varying. As an example, the log electricity price in the New South Wales (NSW) market 

is plotted in Figure 1, showing that the mean level from 2012 to 2014 is significantly higher 

than that in other periods. To this end, we take consideration of the stylised features of 

electricity prices in Australia, namely spikes and the time-varying mean, and employ a three-

regime HSMM to investigate the hidden regimes in the Australian National Electricity 

Market (NEM), spanning the period from June 8, 2008, to July 3, 2016. We find evidence 

that the first regime is the low-price regime, the second regime is the high-price regime, and 

the third regime is the spike regime.  

Running the Viterbi (1967)’s algorithm, the analysis systemically finds the timing of 

the three regimes, and thus, we link the empirical results to the policy changes in the 

Australian electricity market. We discuss the policy implications and the contributing factors 

for the different characteristics of the Australian electricity markets at the state-level. Our 
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findings are important from the policy perspective, since environmental policy reforms can 

possibly provide policy uncertainty in relation to the climate change policy. For example, the 

persistence of the high-price regime in the period from 2012 to 2014 coincides with the 

environmental policy reforms adopted by the Australian government. The new energy policy 

can consider the development of a renewed reform agenda for the Council of Australian 

Government (COAG) Energy Council, in a sense that addresses all these issues with a focus 

on outcomes, rather than being mired in process, as it has been the case so far.  

The rest of the paper is organised as follows. Section 2 briefly reviews the previous 

literature. Section 3 explains the features of the data and illustrates the summary of 

descriptive statistics. Section 4 introduces the econometric methodology, while Section 5 

provides the empirical results. Section 6 discusses the potential implications of the empirical 

findings and finally, Section 7 concludes the paper. 

 

Figure 1. New South Wales – Electricity Price (at the Log–Level) 
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2. Brief Literature Review 

There are a limited number of studies that investigate the market behaviour and the price 

dynamics (between and within) of Australia’s NEM. For example, Hu et al. (2005) review the 

strategic bidding and the rebidding behaviour of Australia’s NEM, spanning the period from 

May 1, 2002 to May 31, 2003. The authors observe that large generators are more likely to 

use the capacity quotations rather than the price quotations to control market prices. The 

authors also show that larger generators do not suppress market prices during the peak 

periods by exploiting market rules; this especially leads to an inefficient market problem 

during the peak periods. Higgs (2009) also empirically analyses the degree of electricity 

market integration across the states of New South Wales, Queensland, South Australia, and 

Victoria for the period from January 1, 1999, to December 31, 2007. The empirical findings 

from the constant conditional correlation (CCC) model indicate that two pairs of the 

electricity market (New South Wales–Queensland and New South Wales–Victoria) are 

significantly interlinked at the higher degree when those are compared to the remaining pairs. 

The author also argues that the introduction of the Queensland and New South Wales 

Interconnector (QNI) on February 18, 2001 constitutes the main reason for the 

interconnections between the related pairs. However, Higgs (2009) concludes that despite the 

related findings for the interconnections between the related pairs, Australia’s NEM can be 

characterised by the limited inter-linkages across the states, meaning that Australia’s NEM at 

the regional level is relatively isolated for the period from January 1, 1999 to December 31, 

2007.  

In addition, Cutler et al. (2011) consider the 30-mins spot electricity price data in 

South Australia over the period September 2008–August 2010. They search for the potential 

implications of an expanded wind generation in South Australia and observe that the demand 

for electricity is the crucial factor that determines the electricity price (rather than supply). 
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The wind power also significantly affects electricity prices since the authors find a negative 

correlation between the wind generation and the spot electricity prices. In addition, their 

findings illustrate that the wind power outputs can be related to the extreme prices, but it is 

difficult to provide a causal relationship between the spot electricity prices and the wind 

generation in South Australia. In other words, finding a correlation does not indicate that 

there is also a significant causality between the related variables. These findings document 

the potential relationship between the demand and the spot prices at the regional level. 

It is also important to note that the recent literature has extensively analysed the 

volatility spillovers across the energy markets. A strand of this literature investigates the 

volatility spillovers between energy (mainly oil) and stock markets (Arouri et al., 2012), 

while another strand focuses on the spillovers between energy and the commodity markets 

(mainly agricultural commodity and precious metals markets) (Du et al., 2011; Ewing and 

Malik, 2013; Gozgor and Memis, 2015). There is also a technical part of the literature that 

explicitly investigates whether the econometric methodologies that have been employed to 

analyse volatility spillovers are robust to the frequency of the data (Yarovaya et al., 2016), to 

the different time horizons (Gozgor et al., 2016) (e.g. splitting the data as the pre- and the 

post-crisis period), and to the presence of asymmetric effects across different (energy) 

markets (Barunik et al., 2015; Chang et al., 2010). 

Different from these studies, investigating whether there is a systematic price 

volatility transmission across the states (regions) in Australia’s NEM is a relatively new 

research task. For instance, in their recent empirical analysis, Apergis et al. (2017b) show that 

there is a statistically significant convergence in the wholesale electricity prices across three 

Australian states: New South Wales, Queensland, and Victoria. This finding indicates that 

there are common market characteristics across these three states, which is associated with 

the carbon tax regimes in the related states. A more significant factor would be a greater 
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degree of interconnectedness via greater transfer capacity on interstate interconnectors, 

linking QLD, NSW and VIC relative to the interconnectors linking TAS and SA to VIC. In 

particular, the lack of congestion on transmission branches between different markets would 

lead to a wholesale price convergence across these markets. Furthermore, Apergis et al. 

(2017a) analyse the price volatility spillovers across four Australian states (i.e. New South 

Wales, Queensland, South Australia, and Victoria) by using the intraday 5-minutes electricity 

price data, spanning the period December 8, 1998, to May 5, 2016. The authors also consider 

the presence of the asymmetric characteristics in terms of the price volatility, known as the 

‘good volatility’ and ‘bad volatility’. Their findings highlight that Australia’s NEM is 

asymmetrically interconnected with the presence of the different degrees.  

As for modelling the spike behaviour in the electricity price, the HMM is one of the 

widely used models due to its elegance in accommodating different regimes mixing in the 

data generation process. Numerous versions of the HMM have been developed to compete 

with the goodness-of-fitting. One of the early studies is conducted by Deng (2000) who 

considers a two-regime HMM with the setting of one base regime driven by an AR(1) 

process and another spike regime driven by the same AR(1) process shifted by an exponential 

distributed random variable. Huisman and De Jong (2003) propose to use a simple 

independent spike two-regime model for deseasonalised log-prices. Their base regime is also 

driven by an AR(1) process, but the spike regime in their setting is a normal distributed 

random variable whose mean and variance were higher than those of the base regime. In a 

follow-up study, De Jong (2006) modified the basic independent spike two-regime model 

with the Poisson-driven spike regime. The results show that the previous model with 

Gaussian spikes is nearly as good as the new model with Poisson spikes. In an alternative 

setting, Husiman and Mahieu (2003) employ an HMM with three regimes, which contain a 

normal regime, an initial jump regime, and a regime reverting back to a normal regime after 
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the initial jump regime. This setting is implicitly set to the restriction of the so-called ‘one 

day spike’ since the reverting regime has to be immediately followed by the jump regime.  

Diebold et al. (1994) argue that it is restrictive to treat transition probabilities as fixed 

parameters. A loose assumption could be that the transition probabilities are time-varying and 

depend on exogenous variables. Mount et al. (2006) associate the transition probability in a 

two-regime HSMM with current market conditions and show that the price spikes can be 

predicted accurately if the reserve margin and the system load are provided. Janczura and 

Weron (2010) empirically compare a range of regime-switching models for electricity spot 

prices in terms of the performance in goodness-of-fitting and in reproducing the special 

features of electricity prices. The suggested best model should set to be an independent three-

regime model with time-varying transition probabilities, heteroscedastic diffusion-type base 

regime dynamics and shifted spike regime distributions.  

As a matter of fact, the sojourn time in the HMM can only follow an exponential 

distribution, which is too restrictive for some empirical data. The HSMM is an extension of 

HMM by explicitly specifying the sojourn time distribution, which facilitates a better fitting 

for the short-lived spikes. It is noteworthy to indicate that the HSMM was initially developed 

in 1980 for the speech recognition. Since then, it has been applied in many scientific areas, 

including handwriting recognition, human activity recognition, functional magnetic 

resonance imaging (MRI) brain mapping (Yu, 2010). In terms of the applications in the 

economics and the finance literature, Bulla and Bulla (2006) employ the two-regime HSMM
2
 

to model 18 series of the United States daily sector returns and they found that the HSMM 

outperform the hidden Markov models (HMM) in terms of the better description about the 

stylised facts of daily returns. By using two-regime HSMM and three-regime HSMM, Lau et 

al. (2017) provide some insights into the characteristics of white precious metal markets. Liu 

                                                           
2
 The two-regime HSMM is also referred to as the two-state HSMM. Similarly, the three-regime HSMM is also 

known as the three-state HSMM. In order to avoid the confusion with states (regions) in Australia, we choose to 

use the term “regimes” rather “states”.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

10 

 

and Wang (2017a) use the three-regime HSMM to decode the Chinese stock market returns. 

The authors observe that the time-varying distribution of the Chinese stock market returns 

depends on the hidden regimes, which turns out to be three market conditions, namely the 

bear, the bull, and the sidewalk markets. Liu and Wang (2017b) further use the same method 

and compare the market conditions across eight countries. However, this robust method, 

HSMM, has still not been used by the papers in the energy field. To the best of our 

knowledge, our paper provides the first analysis to use the HSMM in the energy economics 

and the energy finance literature. 

To conclude the literature review, we observe that there is still a gap in the literature 

for using HSMM to understand the spikes and the time-varying mean in Australia’s NEM at 

the state (regional) level. Considering that the weekly data span the period from June 8, 2008, 

to July 3, 2016, and using the HSMM modelling framework, our paper examines the timing 

and transitions of hidden regimes in the Australian NEM, and further discuss the contributing 

factors and policy implications.  

 

3. Data and Descriptive Statistics 

The paper employs weekly wholesale electricity prices, spanning the period June 8th, 2008 to 

July 3th, 2016 as the earliest data available for the weekly volume weighted average spot 

prices is on June 8th, 2008
3
. The sample consists of five Australian regions, i.e. Queensland 

(QLD), New South Wales (NSW), Victoria (VIC), South Australia (SA), and Tasmania 

(TAS).
 
In line with the literature, the variable of interest is the logarithm of the electricity 

prices that can be written as: 

𝑝𝑡 = ln(Pt)                                                                                                         (1) 

                                                           
3

 The related data can be downloaded from http://www.aer.gov.au/wholesale-markets/wholesale-

statistics/weekly-volume-weighted-average-spot-prices. 
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where ln(Pt) is the natural logarithm of the electricity price at time t. There are 422 active 

observations available in total. At this point, Table 1 presents the summary statistics of the 

electricity prices
4
 across the five electricity markets, which contains the sample means, 

medians, maximums, minimums, standard deviations, skewness, kurtosis, and the Jarque-

Bera (JB) statistic. 

Table 1. Summary Statistics (NEM Regions) 

  QLD NSW VIC SA TAS 

Mean 48.36 45.51 42.65 57.41 48.49 

Median 36.00 36.00 34.00 40.00 38.50 

Maximum 420.00 627.00 619.00 693.00 405.00 

Minimum 14.00 20.00 15.00 6.00 0.00 

Standard Deviation 43.84 40.99 40.04 75.94 42.90 

Kurtosis 35.11 107.93 110.68 40.87 24.52 

Skewness 5.02 8.78 8.79 5.82 4.23 

Jarque–Bera Test 19,903 199,011 209,299 27,604 9,397 

P-value 0.00 0.00 0.00 0.00 0.00 
Notes: Weekly volume weighted average prices ($/MWh). All data range from 08/06/2008 to 03/07/2016.  

 

The weekly volume weighted average spot prices for the five markets ranges from 

$42.65/MWh (TAS) to $57.41/MWh (SA). The standard deviations of the spot electricity 

prices range from $40.04 (VIC) to $75.94 (SA). Therefore, South Australia is the most 

volatile market, while Victoria is the most stable market. Table 1 shows clear evidence that 

the unconditional distributions depart from normality (as implied by the significant JB test 

statistics and p-values).  

Another observation from Table 1 is that the maximum value of the price can be 

considerably higher than the mean and the median. This is caused by the spikes in the price. 

Due to the presence of spikes, the distribution of prices has a large positive skewness and 

substantially high kurtosis. These issues further indicate that the distribution of the price is 

positively skewed with right tail outliers, which motivates us to use the HSMM method. In 

the next section, we explain the details of the HSMM. 

                                                           
4
 We present the descriptive statistics of the original prices, rather than the log price. This is because they are 

more straightforward for the reader.    
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4. Econometric Methodology: The Hidden Semi-Markov Model (HSMM) 

The sojourn time in the HMM implicitly follows a geometric distribution, which is restrictive 

for many empirical applications. For example, it is unlikely that such a type of implicit 

sojourn time distribution has been always appropriate for empirical data, such as speech 

segment duration, the length of the segments of the DNA sequences, and the length of 

branching zones in plants (Guédon, 2003). Such a type of implicit sojourn time distribution is 

also unlikely to be suitable for the time lengths of the regimes in electricity prices, 

particularly for the short-lived spikes which typically last for a short period of time. The 

HSMM generalises the HMM by explicitly specifying the sojourn time distribution. After 

being initially developed for the speech recognition in 1980, the HSMM has been 

successfully applied in various scientific areas, including handwriting recognition, human 

activity recognition, functional magnetic resonance imaging (MRI) brain mapping, and 

network anomaly detection (Yu, 2010). For the general description of semi-Markov models, 

please refer to the book of Kulkarni (2016). 

 The HSMM is constituted by a pair of two stochastic processes, namely an output 

process (a.k.a. observation process) {𝑋𝑡} and a regime process (a.k.a. state process) {𝑆𝑡}. The 

regime process {𝑆𝑡}  is a semi-Markov chain with finite regime space {1, . . , 𝐽} , and it is 

unobservable but can be decoded from the observable regime process {𝑋𝑡}. A semi-Markov 

chain
5
 is an embedded first-order Markov chain, which is constructed by a first-order Markov 

chain and sojourn time distributions (a.k.a. occupancy distributions, duration distributions). 

Firstly, the transition probabilities are defined in Equation (2): 

 𝛾𝑖,𝑗 = 𝑃(𝑆𝑡+1 = 𝑗|𝑆𝑡+1 ≠ 𝑖, 𝑆𝑡 = 𝑖) with ∑ 𝛾𝑖,𝑗 = 1𝑗≠𝑖  and 𝛾𝑖,𝑖 = 0 (2) 

                                                           
5
 We only consider non-absorbing regimes and exclude absorbing regimes. 
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The transition probability matrix (TPM) can be arranged as a 𝐽 × 𝐽 matrix with 𝛾𝑖,𝑗 in 

row 𝑖 and column 𝑗. The diagonal entries in the TPM are zeros in the HSMM because the 

self-transition (transition from 𝑖 to 𝑖) probabilities are zero.  

More importantly, a sojourn distribution is associated to each regime in the embedded 

first-order Markov chain 

 𝑑𝑗(𝑢) = 𝑃(𝑆𝑡+𝑢+1 ≠ 𝑗, 𝑆𝑡+𝑢−𝑣 = 𝑗, 𝑣 = 0, … , 𝑢 − 2|𝑆𝑡+1 = 𝑗, 𝑆𝑡 ≠ 𝑗) (3) 

Due to this ‘bonding’, the sojourn time in an HSMM can explicitly follow any arbitrary 

distributions, either nonparametric or parametric. It should be noted that the sojourn time in 

an HMM can only follow the geometric distribution, which sometimes cannot fit the data 

well, especially for the very short sojourn time in the spike regime of the NEM. The release 

of assumption on the sojourn time gives the flexibility of an HSMM to capture the 

complexity in the sojourn time distribution of real data.  

There is a complication with the last visited regime. Since the assumption that the last 

observation always coincides with the exit from a regime is unrealistic, it is necessary to 

consider the right-censoring setting and use the survival function of the sojourn time in 

regime 𝑗 

 𝐷𝑗(𝑢) = ∑ 𝑑𝑗(𝑣)

𝑣≥𝑢

 (4) 

In the semi-Markov chain, the Markovian property is converted at the level of the 

first-order embedded Markov chain, rather than at each time point in a Markov chain.  

The output process {𝑋𝑡} generates observations by conditional distributions (a.k.a. 

component distributions, emission distributions) depending on the current regime at time 𝑡 

 𝑏𝑗(𝑦) = 𝑃(𝑋𝑡 = 𝑦|𝑆𝑡 = 𝑗) with ∑ 𝑏𝑗(𝑦) = 1𝑦  (5) 

The way of defining output process indicates the assumption that the observations at 

time 𝑡 only depend on the underlying semi-Markov chain at time 𝑡.  
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For the sake of convenience, we need to introduce some notations. The upper-case 

notations Xt and St stand for the variables at time t, and the lower-case notations xt and st 

represent the realised values at time t. The observation sequence from time 0 to time T, 

{X0 = x0, … , XT = xT}, is abbreviated as 𝐗0
T. Similarly, the regime sequence from time 0 to 

time T, {S0 = s0, … , ST = sT}, is abbreviated as 𝐒0
T.  

4.2. Estimation Method: EM Algorithm 

Unlike the HMM, the likelihood of the HSMM cannot be represented conveniently in a 

tractable form. Guédon (2003) provided the complete-data likelihood, i.e. the observations 𝒙1
𝑇 

as well as the unobserved sequence 𝒔1
𝑇+𝑢, for the right-censored HSMM, which is shown in 

Equation (6): 

 

𝑳(𝜃) = ∑ ∑ 𝐿𝑐(𝑺1
𝑇+𝑢, 𝑿1

𝑇|𝜃)

𝑢𝑇+𝑆1,…,𝑆𝑇

 

𝐿𝑐(𝑺1
𝑇+𝑢, 𝑿1

𝑇|𝜃) = 𝑃(𝑿1
𝑇 = 𝒙1

𝑇, 𝑺1
𝑇 = 𝒔1

𝑇, 𝑺𝑇+1
𝑇+𝑢−1 = 𝑠𝑇 , 𝑆𝑇+𝑢 ≠ 𝑠𝑇 , |𝜃) 

(6) 

where 𝜃 stands for the complete set of parameters,  Σ𝑆1,…,𝑆𝑇
 denotes the summation over every 

possible regime sequence, and Σ𝑢𝑇+
 represents the sum over every supplementary sojourn 

time after 𝑇. As shown in Equation (6), the completed regime sequence stops at 𝑇 + 𝑢, rather 

than 𝑇 without right-censoring (Guédon, 2003).  

 However, the likelihood function is difficult to be calculated in Equation (6) as it 

needs to consider all possibilities of the regime sequence, which is unrealistic. Following 

Bulla and Bulla (2006), we estimate the parameters in the HSMM by using the Expectation-

Maximisation (EM) algorithm, which is an iterative two-step procedure to increase the 

likelihood monotonically until the stopping criterion is satisfied. Here are the main steps of 

the algorithm:  

1) Give an initial guess 𝜃(0) of the parameter set. 
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2) E-step: compute the 𝑄 -function, which is the conditional expectation for the 

complete-data likelihood. 

𝑄(𝜃, 𝜃(𝑘)) = 𝐸{𝐿𝑐(𝑺1
𝑇+𝑢, 𝑿1

𝑇|𝜃)|𝑿1
𝑇 = 𝒙1

𝑇, 𝜃(𝑘)} 

where 𝜃(𝑘) is the 𝑘𝑡ℎ iteration of the estimate of the parameter set 𝜃.  

3) M-step: update the 𝜃(𝑘+1), which is to maximise the 𝑄-function with respect to 𝜃. 

𝜃(𝑘+1) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝜃

𝑄(𝜃, 𝜃(𝑘)) 

4) Check whether the stopping criterion is met. If not, go back to the E-step. 

In the E-step, the aim is to calculate the 𝑄 -function given that the parameter set θ(k)  is 

calculated in the kth iteration of the M-step. In the M-step, the aim is to update the estimated 

parameter set 𝜃(𝑘+1) given that the 𝑄-function is calculated in the E-step. By the iterative 

procedure of two steps, the likelihood increases monotonically until the stopping criterion is 

met (Baum et al., 1970; Dempster et al., 1977). The stopping criterion is that the successive 

change of likelihood is less than an arbitrarily small number. Note that the EM algorithm is 

not guaranteed to reach the global maxima, and the limit of this sequence of estimates, i.e. 

{θ(0), θ(1), … }, reaches a local maximum of the likelihood function. Interested readers can 

refer to Bulla and Bulla (2006) for the mathematical details of the EM algorithm for the 

HSMM. They provided the convenient expression of the 𝑄 -function in the E-step by 

separating it into four components, namely the initial probability, the transition probability, 

the sojourn time distribution, and the observation probability. By this separation, the four 

components can be maximised individually in the M-step.  

4.3. Decoding Method: Viterbi Algorithm 

After estimating the parameters in the HSMM, the next step is to decode the most likely 

sequence of regimes in the semi-Markov chain. There are two popular decoding algorithms 

(Zucchini et al., 2016), namely the global decoding and the local decoding algorithms, which 

are based on different rules. The global decoding determines the most likely sequence of 
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regimes for the whole sample period simultaneously, whilst the local decoding determines the 

most likely regime for each time point individually. In this paper, we focus on the global 

decoding. The problem is formulated by Equation (7): 

 

max
𝑠1,…,𝑠𝑇

𝑃(𝑺1
𝑇 = 𝒔1

𝑇 , 𝑿1
𝑇 = 𝑿1

𝑇)

= max
𝑠𝑡

{ max
𝑠𝑡+1,…,𝑠𝑇

𝑃(𝑺𝑡+1
𝑇 = 𝒔𝑡+1

𝑇 , 𝑿𝑡+1
𝑇 = 𝑿𝑡+1

𝑇 | 𝑆𝑡+1 ≠ 𝑠𝑡, 𝑆𝑡 = 𝑠𝑡)

× max
𝑠1,…,𝑠𝑡−1

𝑃(𝑆𝑡+1 ≠ 𝑠𝑡, 𝑺0
𝑡 = 𝒔0

𝑡 , 𝑿0
𝑡 = 𝒙0

𝑡 )} 

(7) 

The exhaustive attack method is only feasible for short sequence data. The Viterbi 

algorithm (Guédon, 2003), at the computational complexity level 𝑂(𝐽𝑇(𝐽 + 𝑇)) in time for 

the worst case and 𝑂(𝐽𝑇)  in space, is an efficient dynamic programming algorithm to 

maximisation problems by taking advantage of the Markov property of the HSMM. Let us 

define 

 𝛼𝑗(𝑡) = max
𝑠1,…,𝑠𝑡−1

𝑃(𝑆𝑡+1 ≠ 𝑗, 𝑆𝑡 = 𝑗, 𝑺0
𝑡−1 = 𝒔0

𝑡−1, 𝑿0
𝑡 = 𝒙0

𝑡 ) (8) 

Then, Equation (8) can be written as  

 

max
𝑠1,…,𝑠𝑇

𝑃(𝑺1
𝑇 = 𝒔1

𝑇 , 𝑿1
𝑇 = 𝑿1

𝑇)

= max
𝑗

{ max
𝑠𝑡+1,…,𝑠𝑇

𝑃(𝑺𝑡+1
𝑇 = 𝒔𝑡+1

𝑇 , 𝑿𝑡+1
𝑇 = 𝑿𝑡+1

𝑇 | 𝑆𝑡+1 ≠ 𝑠𝑡, 𝑆𝑡 = 𝑠𝑡)𝛼𝑗(𝑡)} 

(9) 

We can construct the following recursion for 𝑡 = 1, … , 𝑇 − 1; 𝑗 = 1, … , 𝐽: 

 

𝛼𝑗(𝑡) = max
𝑠1,…,𝑠𝑡−1

𝑃(𝑆𝑡+1 ≠ 𝑗, 𝑆𝑡 = 𝑗, 𝑺0
𝑡−1 = 𝒔0

𝑡−1, 𝑿0
𝑡 = 𝒙0

𝑡 ) 

= 𝑏𝑗(𝑥𝑡) max [[ max
1≤𝑢≤𝑡

{∏ 𝑏𝑗(𝑥𝑡−𝑣)

𝑢−1

𝑣=1

} 𝑑𝑗(𝑢) max
𝑖≠𝑗

{𝑝𝑖,𝑗𝛼𝑖(𝑡 − 𝑢)}] , {∏ 𝑏𝑗(𝑥𝑡−𝑣)𝑑𝑗(𝑡

𝑡

𝑣=1

+ 1)𝜋𝑗}] 

(10) 

where 𝜋𝑗 is the initial probability for regime 𝑗. The right-censoring of the sojourn time in the 

last visited regime is the special case that 𝑡 = 𝑇; 𝑗 = 1, … , 𝐽: 
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𝛼𝑗(𝑇) = max
𝑠1,…,𝑠𝑇−1

𝑃(𝑆𝑇 = 𝑗, 𝑺0
𝑇−1 = 𝒔0

𝑇−1, 𝑿0
𝑇 = 𝒙0

𝑇) 

= 𝑏𝑗(𝑥𝑇) max [[ max
1≤𝑢≤𝑇

{∏ 𝑏𝑗(𝑥𝑇−𝑣)

𝑢−1

𝑣=1

} 𝐷𝑗(𝑢) max
𝑖≠𝑗

{𝑝𝑖,𝑗𝛼𝑖(𝑇 − 𝑢)}] , {∏ 𝑏𝑗(𝑥𝑇−𝑣)𝐷𝑗(𝑇 + 1)𝜋𝑗

𝑇

𝑣=1

}] 

(11) 

The recursion above largely facilitates the computation of the most likely trajectory 

for each regime up to time 𝑡. At time 𝑇, the optimal regime sequence inferred from the 

observation sequence is max𝑗{𝛼𝑗(𝑇))} , which is selected as the corresponding trajectory for 

the solution in the Viterbi algorithm.  

Here, we briefly demonstrate the principle why the Viterbi algorithm can largely 

facilitate the computational implementation. Essentially, two back-pointers are recorded for 

each time t and each regime j. The first backpointer is the optimal preceding regime, and the 

second backpointer is the optimal preceding time of transition from this preceding regime. In 

the ‘backtracking’ stage, the optimal regime sequence is tracing backward via those 

backpointers from time point at T  to the initial time point at 1 . Hence, an efficient 

implementation can be realised through the forward and backward recursion
6
. 

4.4. Practical Setting 

 We choose two settings for the sojourn time distributions. The first setting is to use 

nonparametric distribution with an upper limit. The advantage of nonparametric 

distribution is that there is no need to arbitrarily specify the parametric form of the 

sojourn time distribution. Additionally, we can set an upper limit for the sojourn time 

distribution of the spike regime. In our implementation, the upper limit for the spike 

regimes is set to be 2 weeks
7
 for QLD. NSW, VIC, and SA. However, the EM 

algorithm cannot converge for TAS with the upper limit of 2 weeks in the spike 

regime. We investigate the reason of the fail in convergence and find that there was a 

                                                           
6
 The pseudo-code of the forward-backward algorithm for the HSMM is provided in Guédon (2003). 

7
 We have also tried higher upper limits, such as 3, 4, and 5 weeks, and there is no obvious difference in the 

empirical results.  
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major 6-month outage of the Basslink interconnector
8
, resulting in a continuous 

period of abnormally high price in TAS over 2015-2016. Hence, the upper limit is 

modified to be 30 weeks for TAS. For the sake of comparison, we also employ the 

second setting of a parametric distribution, namely the negative binomial distribution, 

which is used by Bulla and Bulla (2006). 

 The number of regimes is set to be three. This is our choice based on the fact that the 

inspection of the empirical histogram of the data is multimodal, which is featured with 

two modes and the right-tailed outliers. Additionally, we aim to capture the low-price 

regime, the high-price regime, and the spike regime.  

 There are two motivations for us to set the conditional distribution as the Gaussian 

distribution. Firstly, a mixture of Gaussian distributions
9
 can generally give good 

fitting for multimodal distributions (McLachlan and Peel, 2004). Secondly, using the 

Gaussian distribution as conditional distribution can facilitate straightforward 

interpretation. This choice has been used by in the literature of HMM (Huisman and 

De Jong, 2003) and also in the literature of HSMM (Lau et al., 2017; Liu and Wang, 

2017a; Liu and Wang, 2017b). 

 Our implementation is based on the R package “HSMM” (Bulla and Bulla, 2013).  

 

5. Empirical Results 

Our empirical analysis consists of three main steps. In the first step, we use the EM 

algorithm
10

 to estimate the parameter set 𝜃 in the HSMM. The parameter set includes the 

parameters in the conditional distributions, the transition probabilities, and the sojourn time 

                                                           
8
 For details, visit https://en.wikipedia.org/wiki/2016_Tasmanian_energy_crisis. 

9
 Note that Hidden (semi-) Markov Models are different from Gaussian Mixture Models. Hidden (semi-)Markov 

Models have temporal dependence captured by (semi-)Markov chain, while Gaussian Mixture Models do not 

have temporal dependence. 
10

 We have tried different initial values of parameters in order to check that the converged result is the global 

maximum rather than the local maximum.  
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distributions. Table 2 shows the estimation results of the three-regime HSMM. To illustrate 

the feature of bimodal distributions with right outliers, Figure 2 displays the densities for the 

three regimes along with the empirical densities, from the nonparametric setting. It is more 

convenient to show the nonparametric sojourn time distributions in Figure 3, and we did not 

report the sojourn time distribution in the nonparametric setting for Regimes 1 and 2 in Table 

2 because they are large vectors.  

Given the estimated parameters, the second step is to employ the Viterbi algorithm to 

globally decode the most likely sequence of regimes, revealing the information of the timing 

and transitions of regimes. The sequence of the regimes in the parametric setting is similar to 

that in the nonparametric setting. For the sake of conciseness, we present the most likely 

sequence of the regimes, from the nonparametric setting, for the five States over the sample 

period in Figure 4.  

In order to fully reveal the information of sojourn time, we further collect the ex post 

sojourn time information in the third step. Based on the most likely sequence of regimes 

decoded by the Viterbi algorithm, each time-point of transition can be identified. Then we cut 

the regime sequence into pieces between the time-points of transition and count the sojourn 

time for each piece. After that, the number of weeks and the number of times are collected to 

calculate the average sojourn time and frequency of the three regimes. Table 3 reports the 

sojourn time information, ex post, from the global decoding. We notice that there is a slight 

difference between the nonparametric setting and the parametric setting. The reason is that 

the parametric setting has the assumption that the sojourn time follows a negative binomial 

distribution, whilst the probability of the sojourn time in the nonparametric setting is 

clustered in some integers, which can be seen in Figure 3.  

5.1 Results of Conditional Distribution: Evidence of Three Regimes 
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In all five Australian states, ‘Regime 1’ is featured with both a low mean and a small variance; 

therefore, ‘Regime 1’ corresponds to the low-price regime. ‘Regime 2’ has both a high mean 

and small variance, indicating that ‘Regime 2’ refers to the high-price regime. It can be 

inferred that ‘Regime 3’ is the spike regime because of its conditional distribution and 

sojourn time distribution. In ‘Regime 3’, the mean is abnormally high, and the variance is 

considerably higher than those in the other two regimes. Our estimation result of the spike 

regime is consistent with Huisman and De Jong (2003) who set the spike regime in their 

model as a normal distributed random variable whose mean and variance were higher than 

those of the base regime. In order to better convince the reader, we provide further evidence 

of the spike regime in terms of the sojourn time in Section 5.2.  

Figures 2(A) to 2(E) illustrate the probability densities for the three regimes from the 

nonparametric setting
11

. It is clear that the distribution is the bimodal with the number of the 

outliers (mainly the right-tail outliers), verifying our choice that the number of regimes is set 

to be three. The three regimes clearly stand out of the empirical histogram. The area of the 

left mode corresponds to the low-price regime (highlighted in green), the area of the right 

mode refers to the high-price regime (highlighted in purple), while the outliers are placed on 

the spike regime (highlighted in red). We notice that the density function of the spike regime 

is very flat, which marginally moves above the horizontal axis. This is due to the fact that the 

frequency of the spike regime (reported in Table 3) is very small, which is typically no more 

than 6% in the nonparametric setting and less than 9% in the parametric setting. Hence, it is 

reasonable to observe the flat density of the spike regime as it only covers the right-tail 

outliers, which is not frequently occurred. Interestingly, the shape of the histogram in the case 

of the TAS is different from the other four States, which is featured with the higher density 

                                                           
11

 The probability densities for the three regimes from the parametric setting can be provided upon request.  
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for the high-price regime and the lower density for the low-price regime, while the other four 

states display contrasting situations. 

5.2 Results of Sojourn Time Distribution: Further Evidence of the Spike Regime 

The ex post sojourn time information in Table 3 provides further evidence to support that 

‘Regime 3’ is the spike regime. Except for TAS, the average sojourn time in ‘Regime 3’ is no 

more than 2 weeks in the nonparametric setting and less than 3 weeks in the parametric 

setting. Unlike the definition of jumps, the spike is an abrupt and substantial price change, but 

more importantly, it will revert to a normal level after a short period of time. Hence, the very 

short sojourn time that we observed in our results exactly matches the characteristics of the 

spike, which are defined as “temporal level shifts that die out rather quickly” (Huisman and 

Mahieu, 2003: 428). Based on the two facts: i) the abnormally high mean and large variance 

of ‘Regime 3’ (in Table 2); and ii) the very short sojourn time of ‘Regime 3’ (in Table 3), 

‘Regime 3’ should be deemed as the spike regime. 

It should be highlighted that the average sojourn time of the spike regime in TAS is a 

special case. Due to the major 6-month outage of the Basslink interconnector in late 2015, 

TAS was isolated from the transmission grid of the mainland states in the NEM, resulting in a 

continuously long period of abnormally high prices. This particularly long sojourn time of the 

spike regime only happened once, which can be observed in Figure 4(E). This is also the 

reason that the EM algorithm cannot converge for TAS if the upper limit of the sojourn time 

distribution is set to be 2 weeks in the spike regime.  

5.3 Results of Transition Probabilities 

In both settings, the transition probability from the high-price regime to the spike regime (γ2,3) 

is generally higher than the transition probability from the low-price regime to the spike 

regime (γ1,3) for all five Australian states. In the nonparametric setting, the VIC has the 

highest transition probability from the high-price regime to the spike regime, γ2,3 = 61.72%, 
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while SA and TAS have a relatively higher transition probability from the low-price regime 

to the spike regime, γ1,3 = 45.56% and 40.01%, respectively. In the parametric setting, the 

VIC has the highest transition probabilities to the spike regime, including both γ1,3 =

52.85% and γ2,3 = 59.86%. It can be concluded that the spikes can occur in a comparatively 

easier manner in the VIC. We will revisit this finding with the discussion in Section 6.2. 

Comparing results in both settings, the nonparametric setting is more reasonable than the 

parametric setting since the transition probability from the low-price regime to the spike 

regime (γ1,3) is always non-zero.  

5.4 Results of the Regime Sequence 

For the sake of simplicity, we only plot the most likely sequence of regimes from the 

nonparametric setting
12

 in Figure 4. Four interesting periods are highlighted:  

 From January 2009 to May 2012, the QLD, the NSW, the VIC and the SA are mainly 

in the low-price regime, with the several short periods of the high-price regime and 

some spikes. In the TAS, there are some high-price regimes and two spike regimes 

before mid-2009. Afterwards, the TAS is similar to the other four States until 2012. A 

contributing factor in the low-price outcomes would be a general trend reduction in 

average and peak scheduled demand observed over this period by many states in the 

NEM, especially over the period 2011-2012 relative to the earlier years, i.e. 2007-

2008 (and 2010 in the case of the VIC and the QLD). The low electricity regime was 

the result of energy efficiency programs, structural change of electricity intensive 

industries, and the responses of residential consumers to high electricity prices since 

2010 (Saddler, 2013)
13

.  

                                                           
12

 The most likely sequence of regimes from the parametric setting can be requested upon a request. 
13

 For example, Saddler (2013) found evidence that Victorian retailer energy efficiency obligation schemes have 

contributed to the reduction in demand.  
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 Between June 2012 and June 2014, the QLD, the NSW, the VIC and the SA are in the 

high-price regime. We will revisit this special period with a detailed discussion in 

Section 6.1. Note that the TAS enters this remarkable high-price regime earlier in 

January 2012 and exits later in October 2015.  

 Over the period July 2014 to mid-2015, the QLD, the NSW, the VIC and the SA all 

have the period of the low-price regime, while the TAS is in the high-price regime. It 

can be observed that the timing of regimes in the TAS is not synchronised with the 

other four states, which will be revisited with discussion in Section 6.3.  

 From May 2016 and onwards, the QLD, the NSW, the VIC, and the SA enter the 

high-price regime, and there are some spikes at the end of the sample period. Due to 

the major outage of the Basslink interconnector, the TAS enters an abnormally long 

spike regime earlier in October 2015 and leaves in May 2016. It is an untypically long 

spike which lasts for 28 weeks. 
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 Table 2. Estimation Results of the Three-Regime HSMM for the Australian States 

Nonparametric Setting 

  
QLD NSW VIC SA TAS 

  
Regime1 Regime2 Regime3 Regime1 Regime2 Regime3 Regime1 Regime2 Regime3 Regime1 Regime2 Regime3 Regime1 Regime2 Regime3 

Conditional 

Distribution 

Mean 3.291 3.992 5.148 3.339 3.895 5.041 3.277 3.830 4.983 3.388 4.082 4.951 3.292 3.787 4.854 

Variance 0.036 0.057 0.234 0.019 0.051 0.374 0.032 0.052 0.337 0.043 0.084 1.628 0.058 0.037 0.256 

TPM 

from/to 
               

Regime 1 0.00% 85.38% 14.62% 0.00% 85.69% 14.31% 0.00% 59.99% 40.01% 0.00% 54.44% 45.56% 0.00% 87.40% 12.60% 

Regime 2 54.77% 0.00% 45.23% 64.13% 0.00% 35.87% 38.28% 0.00% 61.72% 45.30% 0.00% 54.70% 78.02% 0.00% 21.98% 

Regime 3 28.92% 71.08% 0.00% 52.39% 47.61% 0.00% 45.09% 54.91% 0.00% 28.99% 71.01% 0.00% 39.36% 60.64% 0.00% 

Sojourn 

Time 

Distribution 

P(Spike Sojourn=1) 
  

66% 
  

61% 
  

58% 
  

66% 
  

25% 

P(Spike Sojourn=2) 
  

34% 
  

39% 
  

42% 
  

34% 
  

19% 

P(Spike Sojourn=3) 
              

26% 

P(Spike Sojourn=28) 
              

30% 

P(Spike Sojourn=others) 
  

0% 
  

0% 
  

0% 
  

0% 
  

0% 

Parametric Setting 

  
QLD NSW VIC SA TAS 

  
Regime1 Regime2 Regime3 Regime1 Regime2 Regime3 Regime1 Regime2 Regime3 Regime1 Regime2 Regime3 Regime1 Regime2 Regime3 

Conditional 

Distribution 

Mean 3.322 4.021 4.601 3.341 3.890 4.635 3.322 3.878 4.678 3.387 4.043 4.843 3.255 3.726 4.543 

Variance 0.044 0.035 0.476 0.019 0.049 0.645 0.040 0.028 0.436 0.046 0.065 1.209 0.044 0.043 0.574 

TPM 

from/to 
               

Regime 1 0.00% 75.65% 24.35% 0.00% 100.00% 0.00% 0.00% 47.15% 52.85% 0.00% 56.61% 43.39% 0.00% 100.00% 0.00% 

Regime 2 50.68% 0.00% 49.32% 59.96% 0.00% 40.04% 40.14% 0.00% 59.86% 59.46% 0.00% 40.54% 48.08% 0.00% 51.92% 

Regime 3 34.60% 65.40% 0.00% 61.17% 38.83% 0.00% 32.59% 67.41% 0.00% 43.12% 56.88% 0.00% 19.66% 80.34% 0.00% 

Sojourn 

Time 

Distribution 

𝑟̂ 0.505 0.156 1.275 0.793 0.065 0.127 0.511 0.505 0.083 0.898 0.163 0.545 2.219 0.082 0.123 

𝑝̂ 0.045 0.033 0.454 0.083 0.008 0.047 0.029 0.068 0.102 0.072 0.018 0.236 0.165 0.006 0.011 

Notes: we use the expectation-maximization (EM) algorithm to estimate the model. There are two settings for the sojourn time distribution: 1) nonparametric setting with an 

upper limit; 2) parametric setting of negative binomial distribution used by Bulla and Bulla (2006). The negative binomial distribution has the probability mass function 

𝑃(𝑋 = 𝑥|𝑟, 𝑝) = (
𝑥 + 𝑟 − 1

𝑥
) 𝑝𝑥(1 − 𝑝)𝑟 , where 𝑥 is the number of success, 𝑟 is the number of failures, 𝑝 is the probability of success, and the quantity in parentheses is the 
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binomial coefficient. The number of regimes is set to be three as the empirical histogram of the data featured with the two modes and the right-tailed outliers. The conditional 

distributions are set to be Gaussian distributions.  The diagonal entries of the TPM in HSMM are always zero. We did not report the sojourn time distribution in the 

nonparametric setting for Regime 1 and 2 because they are large vectors, which are displayed in Figure 3.  

 

 

 

 

Table 3. Sojourn Time Information, ex post, from Global Decoding 

Nonparametric Setting 

  QLD NSW VIC SA TAS 

  Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3 

No. of Weeks 
214 188 20 192 217 13 205 200 17 215 184 23 161 218 43 

No. of Times 
20 29 15 20 23 10 10 13 12 16 23 18 17 19 6 

Average No. of Weeks 10.70 6.48 1.33 9.60 9.43 1.30 20.50 15.38 1.42 13.44 8.00 1.28 9.47 11.47 7.17 

Frequency 50.71% 44.55% 4.74% 45.50% 51.42% 3.08% 48.58% 47.39% 4.03% 50.95% 43.60% 5.45% 38.15% 51.66% 10.19% 

Parametric Setting 

  QLD NSW VIC SA TAS 

  Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3 Regime 1 Regime 2 Regime 3 

No. of Weeks 
235 151 36 190 213 19 246 154 22 216 176 30 119 247 56 

No. of Times 
20 24 13 17 21 8 12 18 16 16 15 11 8 14 7 

Average No. of Weeks 11.75 6.29 2.77 11.18 10.14 2.38 20.50 8.56 1.38 13.50 11.73 2.73 14.88 17.64 8.00 

Frequency 55.69% 35.78% 8.53% 45.02% 50.47% 4.50% 58.29% 36.49% 5.21% 51.18% 41.71% 7.11% 28.20% 58.53% 13.27% 

 

Notes: the ex post sojourn time information is obtained in the following procedure. Firstly, the Viterbi algorithm is employed to global decode the most likely sequence of 

regimes. Secondly, the time points of transition are identified in the regime sequence. Then we cut the regime sequence into pieces between the time points of transition and 

count the sojourn time for each piece. Lastly, the number of weeks and number of times are collected to calculate the average sojourn time and frequency of the three regimes.
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Figure 2. Probability Densities for the Three-Regime HSSM 

 

A) Queensland (QLD) 

 

B) New South Wales (NSW) 

 

C) Victoria (VIC) 
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D) South Australia (SA) 

 

E) Tasmania (TAS) 

 

F 
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Figure 3. Nonparametric Sojourn Time Distribution for the Three-Regime HSSM 

A) Queensland (QLD) 

 

B) New South Wales (NSW) 
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C) Victoria (VIC) 

 

 

 

 

 

D) South Australia (SA) 
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E) Tasmania (TAS) 
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Figure 4. Regimes Decoding Results for the Three-Regime HSSM 

 

A) Queensland (QLD) 

 
 

B) New South Wales (NSW) 

 

C) Victoria (VIC) 
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D) South Australia (SA) 

 

 

E) Tasmania (TAS) 
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6. Discussion and Implications 

In this section, we link the empirical results to the policy changes in the Australian electricity 

market and further discuss the policy implications and the contributing factors for the 

different characteristics of the Australian electricity markets at the state-level.  

6.1. Discussion on the Policy Reforms 

From our empirical results, we observe that the persistence of the high-price regime between 

2012 and 2014 coincides with the environmental policy reforms adopted by the Australian 

States. For the period from 2009 to 2010, the Australian government could not implement the 

key 2007 election commitment relating to the introduction of the greenhouse gas emissions 

trading scheme until 2010. The legislation underpinning the scheme was passed by the House 

of Representatives, but it has been rejected by the Senate. Eventually, the greenhouse gas 

emissions trading scheme was adopted in July 2012 to become ineffective in July 2014. For 

example, Nelson et al. (2012) argue that the lack of policy certainty in relation to the climate 

change policy effectively prevented firms from investing in projects mitigating carbon 

emissions and in investing in non-fossil energy sources. They provide the empirical evidence 

that delaying the provision of the policy certainty resulted in firms investing too heavily in 

open-cycle gas turbines, investments that minimise the risk associated with the investment of 

the capital. This led to the significant increase in wholesale electricity prices, thus, imposing 

the largely deadweight loss cost on society. Indeed, the greenhouse gas emissions trading 

scheme was only adopted in July 2012, while we can see that Regime 2 was already present 

even prior to July 2012 in several states, albeit for short periods.  

Reports from the Australian government in 2013 indicate a 7.7 percent decline in 

greenhouse gas emissions in the NEM system per year as resulted in the operation of the 

carbon tax regime (Commonwealth of Australia, 2013). Although carbon emissions declined 

after the carbon tax was imposed, the net effect was a pure deadweight cost to the economy. 
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In particular, as part of the compensation package for the carbon tax, the Australian 

Government increased marginal tax rates for around 2 million taxpayers (Meng et al., 2014). 

At the same time, although it did achieve a reduction in the country's carbon emissions, the 

initiative faced significant challenges as it resulted in increased energy prices for both 

households and industry and was finally repealed in 2014. Moreover, instead of mitigating 

the adverse effects of the carbon tax on the labour market, these changes to the personal tax 

system have likely exacerbated those effects. That had exactly the opposite policy of what 

policymakers would do if they were trying to capture a ‘double dividend’ from environmental 

taxation. The carbon tax scheme caused an increase in electricity costs for households and 

industry
14

, which led to business closures and other economic hardships for businesses: i) the 

tax reportedly increased the cost of electricity for the average family by 10 percent; ii) 

approximately 75,000 businesses paid the carbon tax directly or paid an equivalent penalty 

through changes to duties and rebates. They typically passed on part or all of this cost to their 

customers, smaller businesses and households, which experienced higher prices as a result of 

the tax. It has been estimated by the Treasury to have increased the cost of living of 

households by around AUD9.90 per week on average, while it increased the Consumer Price 

Index by 0.7 percent (Aldy and Stavins, 2012; Meng et al., 2014). 

The Australian environmental policy experience has been very limited. Many 

opportunities to increase environmental policy capacity have been sidestepped. The view, 

according to which, investments in environmental protection represent a win-win for both 

business and society has enjoyed only limited penetration in Australia’s environmental policy 

design (Young, 2000). In 2014, energy policymakers repealed the carbon price, wound back 

the Renewable Energy Target and established the Emissions Reduction Fund (ERF), which 

has contracted for more than 100 million tons of CO
2
 emission reductions, but it largely 

                                                           
14

 Trade exposed emission intensive industries were exempted from having to pay the carbon tax. Therefore, the 

actual implementation would seem to preclude the carbon price acting as a tax on either exports or import-

competing industries, at least from export and import-competing industries perspectives. 
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sidestepped the reforms needed to address emerging energy trends, such as low demand 

growth, the rise of distributed wind power generation, the boom in domestic solar power and 

the dramatic growth of coal seam gas. In Figure 3, we observe that wholesale prices did not 

revert back to their pre-carbon tax 2012 mean levels after it was repealed in 2014. This 

evidence indicates that a carbon tax has changed the price change dynamics across the region 

(Apergis and Lau, 2015). The upshot was that the period 2013-16 left the energy industry 

with huge uncertainty about what is in store, at a time when it craves reassurance more than 

ever. The country needs an energy policy that should give priorities to build on current 

climate change policies in order to generate a stable, long-term approach that will lead the 

transition to a low-emissions economy, to revive energy market reforms through the COAG 

Energy Council, and to maximise the value of Australia’s gas resources and ensure continuity 

of supply. Such policies do require galvanising cooperation across states and territory 

governments and energy groups. Moreover, the new energy policy should develop a renewed 

reform agenda for the COAG Energy Council, in a sense that addresses all these issues with a 

focus on outcomes, rather than being mired in process, as it has been so far. 

6.2. Discussion on the Price Spikes 

The spikes in energy-only power markets are normal events that take place whenever the 

systems run short of reserves and get close to load shedding (Higgs and Worthington, 2008). 

According to both parametric and nonparametric results, the transition probability to the 

spike regime in Victoria is generally highest among all five states
15

 (see nonparametric and 

parametric results in Table 2). One contributing factor for Victoria to have a higher transition 

probability to the spike regime is that Victoria has a relative paucity of baseload or 

intermediate gas-fired generation plant (apart from the NewPort power station) in comparison 

                                                           
15

 A high transition probability to the spike regime in Victoria indicates that it is easier for Victoria to have 

spikes, but it does not necessarily imply a large number of times in the spike regime (there are only 12 times of 

spikes realised in Victoria by the nonparametric setting). 
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with other mainland NEM States.
16

 Higgs et al. (2015) found evidence that the generation 

mix in wholesale electricity influences wholesale price volatility, and there is an increasing 

price volatility for coal, open-cycle gas turbine, and hydro generation. In line with Higgs et al. 

(2015), the use of coal affects not only price volatility, but also the transition probability to 

the spike.  

Additionally, we observe that the transition probability from the high-price regime to 

the spike regime is generally higher than the transition probability from the low-price regime 

to the spike regime. The high-level gas prices, the shutdown of older coal-fired generators, 

and the shift to renewables have not only increased the prices, but also the volatility and the 

price spikes across the state. The potential factor would be represented by the changes in the 

bidding behaviour of the generation companies as we saw with Stanwell after they were 

directed by the Queensland Government to moderate the impact of their bidding on observed 

increases in Queensland wholesale market prices. Strategic changes in bidding behaviour of 

generation companies may have wider impact on the behaviour of generation companies in 

other states, including Victoria. Moreover, the shift to renewables is expected to moderate 

wholesale price increases via the merit order effect as outlined in Bell et al. (2017), for 

example. 

6.3. Discussion on Tasmania 

According to our empirical results, Tasmania has different characteristics in terms of hidden 

regimes. For example, we observe that there is a higher density for the high-price regimes 

and a lower density for the low-price regime in Tasmania. Furthermore, there is a relatively 

longer sojourn in the spike regime in Tasmania, and the timing of hidden regimes in 

Tasmania is not synchronized with the other four states. We can suggest that there are several 

                                                           
16

 With more than 65 million tons of brown coal burnt every year, Victoria is the number one brown coal 

consumer (i.e. brown coal contributes 92 percent of electricity generation in Victoria). Higgs et al. (2015) find 

the evidence for the generation mix in wholesale electricity.   
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aspects in Tasmania, which give rise to the different characteristics in terms of the hidden 

regime.  

The first issue is related to geographical reasons. Tasmania is geographically 

separated from the mainland and there are limited inter-linkages in the electricity market in 

Tasmania. This could be among the main reasons for the different features of its electricity 

market. Secondly, the market position in Tasmania presents a number of potential risks to the 

investors. For example, the electricity production in the region uses a lot of wind for 

electricity generation (Bell et al., 2017). Thirdly, from a wholesale market perspective, the 

price behaviour might be linked (from 2012-13 onwards) to the observed aggressive bidding 

by Hydro Tasmania that occurred over the period 2013-2014 that led to hydro storages being 

run down significantly and lower inflows occurring after that period. This is linked, in turn, to 

the special nature of the generation structure in Tasmania - mainly hydro and wind power - 

and their sensitivities to rainfall and wind conditions (Minshull, 2017). Lastly, the relatively 

longer sojourn in the spike regime is mainly due to the major 6-month outage of the Basslink 

interconnector that also occurred effectively in late 2015, islanding Tasmania from the 

mainland states in the NEM. Therefore, due to the four potential reasons above, the electricity 

market in Tasmania contains the different characteristics of regimes when it is compared with 

other states. 

Through the empirical results from the HSMM, we reveal many new insights about 

the hidden regimes in the Australian NEM. Those insights are potentially helpful for the 

policy-makers and market participants. It is worthwhile to note that the limitation of this 

study is that the policy discussion is based on our observations and a more formal analysis 

(e.g. causality test) is needed to establish such an association/relationship. However, the 

formal causality analysis goes beyond the scope of this work and is left for future research. 
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7. Conclusion 

In this paper, we took the consideration of the stylised features of the spikes and the time-

varying mean in the Australian electricity prices and employed a three-regimes HSMM to 

analyse the hidden regimes in five Australian states (New South Wales, Queensland, South 

Australia, Tasmania, and Victoria) for the period from June 8, 2008 to July 3, 2016. As for 

the estimation results, we find evidence that the three hidden regimes correspond to a low-

price regime, a high-price regime, and a spike regime. With the exception of Tasmania, the 

sojourn time in the spike regime is typically very short, no more than two weeks in the 

nonparametric setting and less than three weeks in the parametric setting. Victoria has higher 

transition probabilities to the spike regime. Running the decoding algorithm, the analysis 

systemically finds the timing of the three regimes, and thus, we link the empirical results to 

the policy changes in the Australian electricity market. The persistence of high-price regime 

during 2012 and 2014 coincides with the environmental policy reforms adopted by the 

Australian States. There are higher transition probabilities to the spike regime in Victoria, and 

Tasmania has different characteristics in terms of hidden regimes. The limitation of this study 

is that the policy discussion is based on our observations and a more formal analysis (e.g. 

causality test) is needed to establish such an association/relationship. Future work can focus 

on employing formal econometric methods to study the causal relationship between the 

policy changes and the transition of different hidden regimes.  
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Highlights: 

 We model the Australian electricity prices by a three-regime HSMM 

 Price spikes can be modelled as one special regime with very short sojourn time   

 The other two regimes correspond to a low-price regime and a high-price regime 

 We link the empirical results to the policy changes in the Australian NEM 
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