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Abstract 

DNA barcoding of herbal medicines has raised awareness of species substitution and 

adulteration, highlighting issues surrounding their safety and quality. Regulation of 

herbal medicines is a pressing issue for regulatory agencies and, in response, DNA 

barcodes have recently been incorporated into the British Pharmacopoeia. Previous 

studies have found that DNA barcoding to species-level may be impaired by 

evolutionary mechanisms. This thesis investigates evolutionary relationships of genus 

Berberis and their impacts on DNA barcoding. Phylogenetic relationships within genus 

Berberis in the Himalayas and the Hengduan Mountains are studied using whole plastid 

genomes and hundreds of nuclear loci. The phylogenies reveal pronounced 

biogeographic structures in the Sino-Himalayan region and suggest that the relatively 

recent orogeny of the Hengduan Mountains has a strong impact on in situ 

diversification of Berberis species. Low phylogenetic resolution at species-level may be 

explained by incomplete lineage sorting. The phylogenies suggest that evolutionary 

mechanisms hinder DNA barcoding to species-level and, therefore, a method is devised 

for identifying evolutionary lineages. A strategy for generating DNA barcodes based on 

diagnostic nucleotides using whole plastid genomes is presented. These barcodes are 

tested on commercial samples, and their utility for regulatory purposes outlined. 

Furthermore, species substitution and adulteration in global trade are evaluated with 

two different specimen identification methods. The first uses the phylogenetic 

placements of commercial samples of Berberis for specimen identification. The second 

approach applies DNA metabarcoding to commercial samples of Phyllanthus amarus. 

The results of these analyses show that congeneric species are in trade and further 

reveal a high congruence between species in global and local markets, emphasizing the 

dependency of global medicinal plant trade on local trade systems. Finally, sequencing 

data from genus Arabidopsis is analysed to identify the effect of assembling nuclear 

loci that belong to paralogous clusters on phylogenomic inference. Read mapping from 

cognate paralogues in Arabidopsis has little to no effect on outcomes from 

phylogenomic inference. 
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Chapter 1 Introduction 

1.1 Preface 

Since Darwin’s On the Origin of Species, biologists have recognized the crucial 

importance of heredity, variation and natural selection as forces in creating biological 

diversity. Through the development of novel DNA sequencing techniques, researchers 

nowadays have unprecedented opportunities for analysing this diversity imprinted in 

the genetic material of organisms. Genomics has played a subordinate role in medicinal 

plant research, but is receiving growing attention. Phylogenetic tools have been 

proposed to be useful in predicting lineages for bioprospecting (Ernst et al., 2016; 

Saslis-Lagoudakis et al., 2012), whole genome sequences of medicinal plants are 

published with the aim of exploring biosynthetic pathways of active compounds (e.g. 

Zhao et al., 2017), and DNA barcoding is emerging as a routine tool for quality control 

of marketed herbal medicines (de Boer et al., 2015; Sgamma et al., 2017). 

Medicinal plant use demonstrates the utility of biological diversity. According 

to the World Health Organisation (WHO), between 70 – 95% of populations in 

developing countries depend on traditional medicines including herbal medicines 

(Robinson and Zhang, 2011). The WHO defines herbal medicines as “herbs, herbal 

materials, herbal preparations and finished herbal products, that contain as active 

ingredients parts of plants, or other plant materials, or combinations” (WHO, 2002). 

The use of these medicines is divided into ‘Traditional Medicine’ (TM) and 

‘Complementary Medicine’ (CM; WHO, 2014). TM is defined as “the sum total of the 

knowledge, skill, and practices based on the theories, beliefs, and experiences 

indigenous to different cultures […]”. CM is defined as “a broad set of healthcare 

practices that are not part of that country’s own tradition […] and are not fully 
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integrated into the dominant healthcare system […]”. The use of CM as a category 

reflects the integration and commercialization of traditional and herbal medicine on a 

global scale. The market for herbal medicines is growing, with an estimated annual 

global market value of US$ 83 billion in 2008 (Robinson and Zhang, 2011). The raw 

materials contributing to this market are mainly collected in the wild by local 

harvesters, and are traded regionally before entering global trade (Mander, 1998; Olsen, 

1998). 

The growing use of medicinal plant products raises concerns about their safety 

and efficacy. In response, the European Union (EU) has published several directives 

addressing these issues (Directive 2001/83/EC, 2001; Directive 2004/83/EC 2004). 

Standards of herbal medicines are represented in pharmacopoeias (e.g. British 

Pharmacopoeia, 2016) and are mainly based on anatomical, physical and chemical 

properties. An integral aspect of quality control is species authentication (European 

Medicines Agency, 2006), which is now complemented with DNA barcoding 

techniques (British Pharmacopoeia Commission, 2017). 

1.2 Methodological considerations 

The rise of the field of genomics offers opportunities for fundamental and 

applied research. This thesis explores ways of using genomics for the study of 

evolution, as well as providing tools for using genomics in DNA barcoding of herbal 

medicines, and identifies areas of further development within the field.  

1.2.1 From phylogenetics to phylogenomics 

Phylogenetics is the reconstruction of evolutionary relationships between 

organisms and is fundamental practice for virtually all evolutionary studies (Delsuc et 

al., 2005). Providing that homologous characters are used, any type of data (e.g. 
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morphological or molecular) can be used for phylogeny estimation. The field of 

molecular phylogenetics uses mainly DNA sequences. In recent years, DNA 

sequencing technology has made dramatic steps forward. The most commonly-used 

Sanger method, where relatively short, targeted sequences are produced, is being 

replaced by so-called next-generation sequencing (NGS) technologies, where high-

throughput parallel sequencing enables researchers to sequence whole genomes within 

short periods at relatively low cost. The impact of NGS in non-model organismic 

biology is immense and revolutionizes fields such as molecular ecology (Ekblom and 

Galindo, 2011; Tautz et al., 2010) or crop genetics (Varshney et al., 2009). The vast 

amount of data that can be generated with new sequencing methods is transforming the 

discipline of phylogenetics into phylogenomics, where genome-scale data is used for 

the reconstruction of the tree of life (Delsuc et al., 2005). The assembly of whole 

genome sequences are labour- and resource-intensive and researchers studying non-

model organisms usually use a range of techniques to target specific parts of the 

genome (Cronn et al., 2012). One such technique uses in-solution hybridization capture 

of specific regions with biotinylated oligonucleotides, where hundreds of nuclear genes 

can be targeted (Lemmon et al., 2012). Prior to sequencing, the biotinylated 

oligonucleotides are hybridized to the sequencing library and the hybridized fraction is 

then sequenced. Phylogenomic inference depends on targeting orthologous, single-copy 

genes, since comparing paralogous sequences may produce misleading signals 

(Philippe et al., 2011; Struck, 2014). 

1.2.2 DNA barcoding in the era of next-generation sequencing 

DNA barcoding refers to the identification of taxa based on short, unique and 

standardized DNA sequences. The concept of genetic identification of species using 
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sequence data was first applied to microorganisms, where morphological differentiation 

of species can be challenging (Nanney, 1982). The practice has subsequently been 

applied to many different organisms (Eggert et al. 2002; Floyd et al. 2002). The term 

‘barcoding’ was introduced in a paper about the identification of strains/lineages of 

parasites (Arnot et al., 1993) but did not receive much attention as a new concept from 

the scientific community. The work of Hebert et al. (2003) later led to a wider 

appreciation for the potential of barcoding practices. Within their work, the authors 

promoted the use of the cytochrome oxidase1 (CO1) as a taxonomic tool for species 

identification across the animal kingdom. It is important to note that their work is 

focused on identification and is not, as suggested by Tautz et al. (2003), a proposition 

for DNA taxonomy. Hebert et al. (2003) demonstrated that a single region in the 

mitochondrial genome could serve as a universal sequence to distinguish between 

animal taxa in a standardized procedure, and began to build up a shared CO1 gene 

database. Moreover, they argued that DNA barcoding can aid the delineation of species 

by applying genetic distance thresholds. The paper provoked mixed responses. One 

criticism was of the single barcode approach due to low resolution among closely-

related species made inclusion of several markers necessary (Mallet and Willmott, 

2003). Others supported incorporating DNA barcodes in taxonomic identification 

(Blaxter, 2003; Janzen, 2004), and several groups confirmed the usefulness of the CO1 

gene as an animal barcode (e.g. Smith et al. 2008; Smith et al. 2006; Ward et al. 2005; 

Clare et al. 2007). In contrast to the situation for animals, there was no single region for 

barcoding found in plants and no easy consensus about the set of regions that might be 

selected for plant identification (Taylor and Harris, 2012). 

NGS approaches are not yet commonly used by the DNA barcoding community 

and concerns about the “continued resistance to improvement” of the DNA barcoding 



Chapter 1 Introduction 

7 

enterprise has been expressed (Taylor and Harris, 2012). With Sanger sequencing 

approaches, plant researchers typically use small regions of the plastid genome or the 

nuclear ITS region for barcoding a species. In contrast, NGS techniques allow 

sequencing of whole plastid genomes in a single sequencing run. For plant DNA 

barcoding, whole plastid DNA (cpDNA) and complete ITS sequencing has been 

proposed to be a valuable source for identification at species- and even population-level 

(Coissac et al., 2016; Kane et al., 2012). Several plastid genomes have been sequenced 

using long-range Polymerase Chain Reaction (PCR) with subsequent multiplex 

sequencing (Cronn et al., 2008; Parks et al., 2009; Whittall et al., 2010). Other studies 

show the potential of target enrichment strategies, where the whole genomic DNA is 

reduced to a genomic fraction of interest (for a review, see Cronn et al. 2012). 

Furthermore, the method of genome skimming (Straub et al., 2012) – sometimes 

referred to as ‘Ultra-Barcoding’ (Kane et al., 2012) – is particularly appealing for DNA 

barcoding, because of the simplicity of the laboratory workflow. Genome skimming is a 

shallow sequencing approach and takes advantage of the high abundance of plastid 

DNA in total genomic DNA and the repetitive nature of the ITS region, which ensures 

enough sequencing depth for the regions of interest. Numerous whole plastid genomes 

have been sequenced with this approach (e.g. Theobroma sp., Kane et al. 2012; 

Asclepias sp., Straub et al. 2011). 

1.3 Study organisms  

This thesis is primarily focused on the evolution and DNA barcoding of genus 

Berberis from the family Berberidaceae (Chapters 2, 3 and 4). Data from genus 

Phyllanthus (Phyllanthaceae) are used for investigating commercial, internationally 
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traded samples (Chapter 4). Data from genus Arabidopsis (Brassicaceae) are used for 

investigating the effect of paralogy on target enrichment studies (Chapter 5). 

1.3.1 Berberis L. 

Genus Berberis from the family of Berberidaceae contains more than 600 

species (incl. Mahonia Nutt.; Mabberley, 2008). There have been conflicting views on 

the delineation of Berberis and Mahonia and they are commonly now treated as one 

genus (Mabberley, 2008; Marroquin and Laferriere, 1997). Here, Berberis sensu lato 

(s.l.) is referred to genus Berberis including Mahonia, and Berberis sensu stricto (s.s.) 

is used for simple–leaved Berberis (in the sense of Ahrendt, 1961). Berberis s.s. is 

divided into two groups: Septentrionales, with ca. 300 species, is distributed in Eurasia, 

and group Australes, with ca. 169 species, in South America (Ahrendt, 1961). The 

taxonomy of Berberis is still changing, with several instances where taxa recognized by 

Ahrendt (1961) were combined to single species (Adhikari et al., 2012; Landrum, 1999) 

and where new species are described (Adhikari et al., 2012; Harber, 2017a, 2017b). 

Most of the species of the genus are diploid (Rounsaville and Ranney, 2010). The 

antitropical disjunction of Berberis s.s. has drawn considerable attention from 

biogeographers and the debate of how this pattern arose is ongoing (Adhikari et al., 

2015; Li et al., 2010). 

Several species of Berberis are used in traditional medicine (e.g. Manandhar 

2002), among which B. aristata DC. seems most important. B. aristata is a diploid 

species and is widely distributed in the Himalayas at elevations between 1,300 to     

3,400 m. The species is included in the British Pharmacopoeia (2016) and the the 

Ayurvedic Pharmacopoeia of India (2001). Berberis species produce the 

benzylisoquinoline alkaloid Berberine, which, in modern medicine, has drawn 
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considerable attention for its cholesterol-lowering properties (Kong et al., 2004) and its 

potential efficacy as a hypoglycemic agent for patients with type 2 diabetes mellitus 

(Yin et al., 2008). 

1.3.2 Phyllanthus L. 

Genus Phyllanthus L. (Phyllanthaceae) has a pantropical distribution 

(Mabberley, 2008). The main species in focus here is P. amarus Schumach. & Thonn, 

which is likely to be native to the tropical Americas but exhibits a pantropic distribution 

(Mabberley, 2008). The plant is traditionally used in many tropical and subtropical 

regions of the world (Patel et al., 2011). It is also used in Ayurvedic practice 

(Ayurvedic Pharmacopoeia of India, 2001), where it is considered a cure for problems 

relating to the stomach, genitourinary system, liver, kidney and spleen (Patel et al., 

2011). The plant raised interest within modern biomedicine because of its potential to 

treat Hepatitis B patients (Blumberg et al., 1989) and was biochemically thoroughly 

investigated (Patel et al., 2011).  

1.3.3 Genomic resources for Arabidopsis (DC.) Heynh. 

Arabidopsis thaliana (L.) Heynh. (Brassicaceae) is a well-studied model 

organism in plant biology and was the first plant from which the complete genome was 

sequenced (Kaul et al., 2000). This landmark publication was followed with a series of 

large-scale projects intending to understand gene functions (Bevan and Walsh, 2005) 

and the evolution of this species (Long et al., 2013). Evolutionary studies were soon 

extended to genus Arabidopsis (Novikova et al., 2016) and vast amounts of raw 

sequencing data is available in public databases such as the Short Read Archive (SRA, 

https://www.ncbi.nlm.nih.gov/sra; last accessed 14/08/2017). These data, in conjunction 

https://www.ncbi.nlm.nih.gov/sra
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with such detailed knowledge about gene functions or gene clusters, provide excellent 

opportunities for testing analysis methods developed for non-model organisms. 

1.4 Thesis organisation 

This thesis is organized into four data chapters, all demonstrating the use of 

genome-scale sequence data. The main findings are summarized in Chapter 6, where 

emerging fields for phylogenomics and DNA barcoding are also discussed. 

In Chapter 1, I describe the evolution of genus Berberis in the Himalayas and 

the Hengduan Mountains. The study is based on phylogenies inferred from target-

enrichment of hundreds of nuclear genes and whole plastid genomes, and gives an 

unprecedented view on the evolution of the genus in these mountain systems.  

In Chapter 2, I investigate new barcoding approaches for the Himalayan species 

B. aristata and closely related taxa using whole plastid genomes. The study focuses on 

providing suitable DNA barcodes for regulatory purposes. 

In Chapter 3, genomic identification techniques are applied to commercial 

Berberis and Phyllanthus samples in global trade. This study aims to give insights into 

the diversity of traded species and further explores the structure of global herbal 

medicines trade. Results from Phyllanthus samples were published in the article “DNA 

Barcoding for Industrial Quality Assurance” (Sgamma et al., 2017), where I authored 

the next-generation sequencing section. The results in this chapter are slightly modified 

from the publication and discussed in a different context. 

Chapter 4 describes an in silico target enrichment experiment on genus 

Arabidopsis. I address the potential impact of capturing reads from paralogous copies 

on phylogenomic inference. This study indicates how our understanding of comparative 

genome evolution intersects with pipelines for handling next-generation sequence data, 
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and highlights how some of the methodologies used in Chapter 1 and 3 are at an early 

stage of development. This chapter was produced in collaboration with Vincent 

Manzanilla (University of Oslo), who performed the raw read processing (quality 

filtering) and the read mapping.



Chapter 2 A phylogenetic hypothesis for Berberis (Berberidaceae) in the Himalayas and Hengduan Mountains 

12 

Chapter 2 A phylogenetic hypothesis for Berberis 

(Berberidaceae) in the Himalayas and the Hengduan 

Mountains 

2.1 Introduction 

The phylogeny and biogeography of Berberidaceae have drawn considerable 

attention from botanists and several studies have investigated phylogenetic patterns 

within the family (Adhikari et al., 2015; Kim et al., 2004; Wang et al., 2007). The 

family Berberidaceae comprises  14 genera , mainly distributed in the Northern 

Hemisphere, with only the genus Berberis extending to the Southern Hemisphere in 

South America (Mabberley, 2008). Berberis s.l. contains more than 600 species 

(Mabberley 2008), including the simple-leaved Berberis s.s. and the compound-leaved 

species formerly included in Mahonia Nutt. For many years, authors disagreed about 

whether to consider Berberis and Mahonia as one genus or two, but most now support 

the transfer of Mahonia species to Berberis (Mabberley, 2008; Marroquin and 

Laferriere, 1997; Berberis including Mahonia is henceforth referred to as Berberis s.l.). 

Two groups of compound-leaved species are recognized, Occidentales that grow in 

North and Central America and Orientales from China and the Himalayas. Berberis s.s. 

has two major centers of diversity: the ca. 169 species placed in Australes are 

distributed in South America and the ca. 300 species placed in Septentrionales are 

distributed in Eurasia (Ahrendt, 1961). The actual number of species is likely to change, 

since  recent revisions have synonymized several described taxa (Adhikari et al., 2012; 

Landrum, 1999) and new species are described (Adhikari et al., 2012; Harber, 2017a, 

2017b). Simple-leaved Berberis have an antitropical distribution, and the debate over 

how this pattern emerged is ongoing (Adhikari et al., 2015; Li et al., 2010). 
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This study focuses on the evolution of Berberis in a mountain system, 

specifically the Himalayan and the Hengduan Mountains which form the southern and 

eastern border regions of the Qinghai-Tibetan Plateau (QTP). Both harbour a 

spectacular biodiversity and are listed among the biodiversity hotspots in the Northern 

Hemisphere (Myers et al., 2000). The uplifts of the QTP and the Himalayas resulted 

from the collision of the Indian and Eurasian continental plates. The elevation history of 

the Himalayas is still uncertain (Miehe and Weidinger, 2015; Mulch and Chamberlain, 

2006), but the main uplift of the Himalayas is thought to have occurred 21-13 Myr ago 

(Searle, 2011). Available data on the elevation history of the QTP suggests that 40 Myr 

ago, the plateau was already at an elevation of 4,000 m (Royden et al., 2008; Wang et 

al., 2008). The Hengduan mountains are considerably younger than the Himalayas and 

the QTP, with major uplifts in the late Miocene and late Pliocene (Favre et al., 2015; 

Wang et al., 2012). Berberis species are found in the Himalayas and the younger 

Hengduan Mountains in montane habitats at elevations between 1,000 m (B. asiatica) 

to as high as 4,700 m (B. tsarica, Adhikari et al., 2012). The distribution within two 

mountain systems of different age raises the question of how this distribution pattern 

was formed. The distribution could either arise by frequent dispersal events between the 

two mountain systems or by infrequent colonization in conjunction with in situ 

diversification. 

Until recently, the poor resolution at shallow phylogenetic levels has precluded 

asking precise questions about the evolution of genus Berberis in the Himalayan and 

Hengduan Mountains. However, the development of methods for generating large 

amounts of DNA sequences via high-throughput sequencing technologies is 

revolutionizing molecular phylogenetics. The inference of evolutionary relationships 

among organisms from genome-scale data has given rise to the field of phylogenomics 
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(Delsuc et al., 2005; Eisen and Fraser, 2003). Phylogenomics applies the well-

established principles of phylogenetics, using homologous characters to reconstruct 

evolutionary relationships among organisms, but using genome-scale data. For model 

organisms, whole genome sequences are generally available (e.g. Arabidopsis thaliana; 

Arabidopsis Genome Initiative, 2000). However, phylogeneticists studying non-model 

organisms focus on subsets of genomic regions for phylogenetic inference by enriching 

specific regions of the genome (Cronn et al., 2012). Two main strategies for target 

enrichment have emerged in recent years (for a comparison, see Harvey et al., 2016). 

The first strategy encompasses enrichment of anonymous sequences in the genome 

where no prior knowledge of the DNA sequence is necessary. These methods usually 

use enzyme-based genomic DNA restriction for selecting appropriate DNA fragments, 

such as the restriction site associated DNA (RAD) tags (Baird et al., 2008). The second 

category uses the polymerase chain reactions (PCR) or hybridization capture to enrich 

known regions (Prum et al., 2015). The latter uses hybridization probes to separate the 

genomic sequences of interest. One hybridization enrichment approach is to use probes 

designed to target hundreds of genetic loci, which are then sequenced (e.g. McCormack 

et al., 2013; Weitemier et al., 2014). Genome skimming, the shallow sequencing of a 

shotgun library, effectively selects part of the genome, delivering sufficient read 

coverage for sequence reconstruction of multi-copy genes and multi-copy genomes 

such as the plastid genome (Straub et al., 2012). Plant phylogenomic studies usually 

include whole plastid sequences (Parks et al., 2012), a set of nuclear markers (De Sousa 

et al., 2014) or a combination of both (Folk et al., 2016; Weitemier et al., 2014). 

The premise of including hundreds of low-copy genomic sequences and fully 

sequenced organellar genomes, rather than a few gene sequences, is to increase the 

number of informative characters for phylogenetic inference. Methodologically, two 
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types of analysis have emerged to handle massive multi-gene datasets. Concatenation of 

regions into large, total-evidence alignments prior to analysis of the combined data 

usually leads to a single, well-supported phylogeny (e.g. Rokas et al., 2003). However, 

several studies have shown that gene trees may differ substantially from so-called total-

evidence trees, and so the second type of analysis summarizes evidence from multiple 

gene-trees (Kubatko and Degnan, 2007; Salichos and Rokas, 2013). As the number of 

phylogenomic studies of plants in the literature has increased, so has awareness of the 

impact of complex evolutionary processes such as incomplete lineage sorting (ILS) or 

chloroplast capture on phylogenomic datasets (Folk et al., 2016; Liu et al., 2015; 

Salichos and Rokas, 2013). 

This chapter describes the generation of a phylogenetic hypothesis for Berberis 

in the Himalayas and Hengduan Mountains using several phylogenetic inference 

techniques for hybridization-captured nuclear loci and plastid genomes. The methods of 

data collection for phylogenomic analyses are emphasized, as are the analysis pipeline 

and the investigation of phylogenetic discord between genomes and between nuclear 

partitions. 

Both the datasets and phylogenetic hypotheses find application in the regulation 

and authentication of medicinal plants (Chapters 4 and 5). However, the phylogenetic 

hypotheses generated for this study also have great potential to address questions about 

the origins of the montane flora found in the mountain ranges adjoining the QTP. 

Although finalising robust time-calibrated phylogenetic analyses and identifying shifts 

in diversification rate is beyond the scope of this thesis work, preliminary ancestral 

distribution analyses are performed, and the phylogenetic hypotheses for 

Himalayan/Hengduan Mountains Berberis are discussed in the context of their possible 

contribution to the emerging view of montane diversification in this area. 
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2.2 Material and methods 

2.2.1 Sampling 

Five silica-dried leaf samples from B. aristata (n=4) and B. asiatica (n=1) were 

used for hybridization probe design (Table 2-1). For the phylogeny, silica-dried leaf 

material from 85 samples, representing 53 species were included in this study 

(Appendix Table AT-1). One sample was extracted twice and was used as a technical 

replicate (B. petiolaris1 and B. petiolaris2). This study focuses on Berberis species 

from the Himalayas and the Hengduan Mountains, which belong to a previously 

identified clade within the group Septentrionales (Adhikari et al., 2015). A total of 73 

samples representing 44 species were included from this clade. This corresponds to 

about 14 percent of the known species from the group Septentrionales. In addition, nine 

samples representing eight species from the group Australes and three compound-

leaved Berberis samples were included as outgroups.  We used up-to-date taxonomic 

treatments for identification of Himalayan Berberis species (Adhikari et al., 2012). 

However, the identification of specimens is often difficult when only vegetative 

characters are available and some of the specimens could not be identified to species 

level. A monograph of Berberis species from China is in the process of completion 

(Harber, pers. communication) and, therefore, the new species (B. new_sspA, B. 

new_sspB) in the phylogeny are not formally described and published yet.  

2.2.2 Laboratory work 

2.2.2.1 DNA extraction 

DNA was extracted using either the Qiagen DNeasy Plant Kit following the 

manufacturer’s protocol or the CTAB method (Doyle and Doyle, 1987). The quality of 

the extractions was checked for the degree of degradation on 1% or 1.5% agarose gels. 
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Furthermore, we performed PCR amplifications of the rbcL gene in different dilutions 

(1:1, 1:10 and 1:100) and finally we measured the DNA concentration on a Qubit® 

Fluorometer (Life Technologies, Carlsbad, CA, USA), using the dsDNA High 

Sensitivity kit. The concentrations after extraction ranged from 1.5 ng/µl to 34.8 ng/µl. 

2.2.2.2 Library preparation and Sequencing 

For DNA marker development, shotgun sequencing libraries were prepared for 

six samples (Table 2-1). We used the Nextera XT kit according to the manufacturer’s 

guidelines. The average fragment length of the libraries was between 500 – 700 bp. The 

samples were sequenced on an Illumina MiSeq® with a MiSeq v2 reagent kit with the 

paired-end option and 500 cycles (resulting in 250 bp paired-end sequences). The six 

samples comprised 95% of the final pooled library. These samples were used for 

marker development (see below). 

Table 2-1 Summary of Berberis samples used for shotgun sequencing. Voucher 

specimens are deposited at the Royal Botanic Garden Edinburgh (RBGE). 

Sample Species Voucher (RBGE) 

B. marker1 B. aristata EA243 

B. marker2 B. aristata EA249 

B. marker3 B. aristata WP21.1 

B. marker4 B. aristata WP21.5 

B. marker5 B. aristata EA109 

 

The library preparation for the target-enrichment and shotgun sequencing was 

performed according to Meyer and Kircher (2010). The libraries were sequenced in two 

runs on a MiSeq® (run 1) and a NextSeq® (run2). Depending on their integrity, the 

DNA samples were shared mechanically to a fragment size of approximately 400 bp 

using a Covaris © sonicator with peak incident power of 75; duty factor of 10%, and 
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200 cycles per burst. The duration of treatment was chosen according to the observed 

fragment size on agarose gels and ranged between 30s (medium degradation) and 40s 

(genomic DNA). 

We followed the protocol for blunt-end repair, adapter ligation and adapter fill-

in. After each of these steps, the DNA was cleaned-up with AMPure® XP beads 

(Agencourt®). Before the indexing PCR, the DNA quantity was measured on a Qubit 

©. Depending on the concentration of adapter-ligated libraries, we aimed to use 

between 50 – 100 ng of DNA as input for the indexing PCR where possible. Higher 

concentrations may impair the PCR reaction. In order to avoid high duplication levels 

in target-enriched libraries, a minimal number of PCR cycles were applied. Libraries 

with concentrations lower than 40 ng were amplified with 16 PCR cycles.  If more than 

40 ng of library was used for the PCR, 12 cycles were applied. We used the index 

sequences (“barcodes”) as suggested by the protocol. The final libraries were washed 

using AMPure® XP beads (Agencourt®). We then measured for concentration with 

Qubit © and assessed the fragment size using Bioanalyzer® (Agilent). Libraries with 

similar concentration levels were then pooled for target enrichment in equimolar 

concentrations to a total of eight pools. The number of samples per pool varied from 8 

to 22, depending on the library concentration of samples after indexing PCR (Appendix 

Table AT-2). Generally, samples with higher concentrations were pooled with more 

other samples. Several samples that were captured are not described in this chapter. In-

solution hybrid capture was conducted following the MYbaits v. 3.02 protocol, where 7 

µl of pooled libraries is the starting point. The total amount of DNA per pool used for 

the capture varied between 147 ng to 400 ng. The incubation time was 30 hours. After 

the cleanup of the captured library, we applied 14 cycles of reamplification using the 

reamplification primers suggested by Meyer and Kircher (2010). A large part of the 
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libraries was used to achieve the necessary concentration levels for the target 

enrichment. However, libraries of 64 samples contained enough DNA for shotgun 

sequencing / genome skimming. These libraries were diluted to 10 mM and pooled 

together..  

The libraries were sequenced in two runs on a MiSeq® (run 1) and a NextSeq® 

(run2). Target-enriched libraries of six samples were sequenced on an Illumina MiSeq 

in run 1. Shotgun libraries of 5 of these samples were sequenced in run2 on the Illumina 

NextSeq run. The target enrichment libraries of the remaining 79 samples and 63 

shotgun libraries were sequenced in run 2. In total, 85 target enrichment libraries were 

sequenced of which 63 shotgun libraries were sequenced in parallel (Appendix Table 

AT-2). 

2.2.3 Bioinformatics 

2.2.3.1 Baits design 

This section describes how the reference markers and the corresponding 

hybridization probes (“baits”) for in-solution target enrichment were designed. De novo 

assemblies of five samples (Table 2-1) and the transcriptome of Nandina domestica 

(scaffold-YHFG-2011734-Nandina_domestica, Wong 2013, www.onekp.com) were 

used for developing DNA markers. Raw reads from the shotgun sequencing were 

trimmed using Trimmomatic v.0.33 (Bolger et al., 2014) with the options LEADING:3, 

TRAILING:3, SLIDINGWINDOW:4:20. This step ensures that only high quality reads 

are used in down-stream analyses. Reads shorter than 50 bp were discarded. The read 

quality was checked with FastQC (Andrews, 2010). Reads that map to organellar 

genomes were removed. Initially, all reads were mapped to an Arabidopsis thaliana (L.) 

Heynh. mitochondrium reference (GenBank accession: NC_001284.2) with Burrows-

Wheeler Alignment tool (BWA; Li and Durbin, 2009). The reference sequence was 

http://www.theplantlist.org/tpl1.1/record/kew-2645262
http://www.theplantlist.org/tpl1.1/record/kew-2645262
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indexed with ‘bwa index’ and mapped with the command ‘bwa mem’ with default 

options. The sequence alignment in SAM format was transformed to its binary version 

BAM with SAMtools (Li et al., 2009). This format stores information on read mapping, 

such as which reads mapped to the reference. The unmapped reads were then extracted 

with the ‘bam2fastq’ tool from BEDtools (Quinlan and Hall, 2010), resulting in a file 

where the mitochondrial reads are discarded. The mapping and filtering process was 

repeated for filtering plastid reads against the reference plastid genome of Berberis 

bealei Fortune (GenBank accession: NC_022457.1) and ribosomal reads against the 

ITS sequence from an Arabidopsis thaliana accession (GenBank accession 

LC089989.1). The final set of reads only contained nuclear sequences that were used 

for a de novo assembly using SOAPdenovo2 (Luo et al., 2012). Before running the 

assembly, the optimal k-mer size was estimated with kmgergenie (Chikhi and 

Medvedev, 2014). The de novo assembly was run with the 123mer version of 

SOAPdenovo with the options ‘pair_num_cutoff=30’, where an overlap of at least 30 

bp is needed for making connections between two contigs or pre-scaffolds; 

‘avg_ins=600’, which sets the estimated average fragment length of libraries to 600 bp; 

and ‘asm_flags=3’, which sets to run a contig and a scaffold assembly. The quality of 

the assemblies was checked with QUAST (Gurevich et al., 2013). 

The selection of markers by comparing transcriptome data and de novo 

assembled contigs followed a script written by Vincent Manzanilla (University of Oslo, 

unpublished). In summary, contigs from the de novo assembly that were shorter than 

400 bp were removed with the python script python_cleaner.py 

(http://biopython.org/wiki/Sequence_Cleaner; last accessed 16/08/2017). The contigs 

from the de novo assembly were then clustered using the program cd-hit (Li and 

Godzik, 2006) and contigs that shared a sequence similarity >80% were removed. This 

http://www.theplantlist.org/tpl1.1/record/kew-2673471
http://biopython.org/wiki/Sequence_Cleaner
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prevents that the baits target genetically similar regions in the genome. The same two 

steps were applied to the transcriptome sequences, where sequences shorter that 119 bp 

were discarded. The transcriptome sequences were then mapped against the de novo 

contigs using BLAT (Kent, 2002) and single hits were extracted. The extracted 

transcriptome sequences were mapped against the de novo contigs with BWA (Li and 

Durbin, 2009) with default options and de novo contigs that exhibited a coverage > 1 

were removed. This step prohibits contigs with duplicated copies in the genome from 

being used for marker design. Only de novo contigs that were longer than 400 bp were 

used as markers and, if applicable, were trimmed to 980 bp. The resulting de novo 

contigs were used as reference markers comprising of 607 sequences with lengths 

between 400 to 980 bp. The selected DNA markers were used to produce MYbaits® 

bait probes (MYcroarray©; Ann Arbor, Michigan, USA), which are RNA sequences 

with a length of 120 bp each. The baits were designed to cover each marker four times 

(4x tiling), which resulted in a total of 13,248 unique baits. 

2.2.3.2 Raw read processing and quality control 

Samples were sequenced on an Illumina MiSeq or NextSeq sequencer. Adapters 

were removed either with the built-in Illumina software on sequencers or using cutadapt 

v. 1.10 (Martin, 2011). Raw reads were trimmed using Trimmomatic v.0.33 (Bolger et 

al., 2014) with the options LEADING:3, TRAILING:3, SLIDINGWINDOW:4:20. 

Reads from Illumina NextSeq were discarded when shorter than 30 bp and from MiSeq 

when shorter than 50 bp. The read quality was checked with FastQC (Andrews, 2010). 

2.2.3.3 Nuclear DNA marker assembly 

The reference DNA marker file was indexed with the command ‘bwa index’ in 

BWA and paired-end reads from each sample were mapped to the reference with ‘bwa 

mem’ with default options. The average read coverage was calculated with SAMtools 
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(‘samtools depth’). The resulting BAM files were sorted and indexed with SAMtools 

(‘samtools sort’, ‘samtools index’). In order to extract two alleles per sample for each 

marker, the command ‘samtools phase’ was applied to the sorted and indexed BAM 

files. The algorithm extracts two alleles per sequence alignment (He et al., 2010), 

resulting in two BAM files (allele0.bam, allele1.bam). Single-nucleotide 

polymorphisms on these alleles were called using ‘samtools mpileup’ and ‘bcftools 

call’. The final sequence of alleles was called with the command ‘vcfutils.pl vcf2fq’ 

from VCFtools (Danecek et al., 2011). The sequences in fastq format were transformed 

to fasta with seqtk (https://github.com/lh3/seqtk). The final sequence was generated by 

calling the consensus of the allele sequences. The fraction of recovered sequence 

compared to the length of the reference sequence was calculated as 

𝑓 =
𝐿−𝑁

𝐿
 , 

where L is the length of the consensus sequence per locus and sample and N is the 

number of missing data in the consensus sequence. 

2.2.3.4 Filtering of nuclear DNA markers 

The reference DNA markers were designed using whole genome draft 

assemblies of B. aristata and B. asiatica. However, a draft genome is partial, and it is 

possible that at least some targeted loci may have paralogues in the reference genome, 

or that gene duplication events in species other than B. aristata may have occurred. 

During capture, the targeted loci may therefore be contaminated with reads from 

paralogous copies. We addressed this issue by developing a pipeline for filtering loci 

that are potentially contaminated with reads that derive from paralogous copies 

(Chapter 2). Through phasing read alignments with SAMtools, two putative allelic 

sequences per locus were extracted. We used two approaches for identifying outlier loci 

by analyzing the putative allelic copies of a locus. The first approach depended on 

https://github.com/lh3/seqtk
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calculating the sequence similarity of each pair of alleles. The reasoning behind this 

step was that reads from different paralogous copies will be represented in each of the 

phased alleles. The assumption is that higher divergence between a pair of alleles is 

indicative of contaminant reads from different paralogous copies. Average sequence 

divergence and standard deviation for allele pairs across all loci was calculated. In the 

second approach, gene trees for each locus were built from alignments containing all 

allelic copies. Maximum likelihood (ML) gene trees were inferred using RAxML v. 

8.2.9 with 100 rapid bootstrap replicates, resulting in 607 gene trees each containing 

170 alleles from 85 samples. For each gene tree, we calculated the pairwise distance 

between pairs of alleles with the cophenetic.phylo function in the R package ape 

(Paradis et al., 2004), which uses branch lengths to calculate pairwise distances. The 

assumption is that distance on a phylogenetic tree between true allelic copies is smaller 

than the distance between alleles that represent paralogous copies. All distances 

between pairs of alleles from each gene tree were averaged and the standard deviation 

calculated. With these methods, we retrieved for each marker the average and the 

standard deviation for allelic sequence divergence and allelic phylogenetic distance. A 

threshold was applied for both measures and loci that did not meet the criteria were 

discarded. 

2.2.3.5 Nuclear marker phylogeny 

The first approach was to infer species phylogenies based on concatenation of 

gene alignments. Aligned DNA markers were concatenated using phyutility v.2.2.6 

(Smith and Dunn, 2008), resulting in a data matrix of 303,754 bp length. The data 

matrix was analysed with RAxML v. 8.2.10 (Stamatakis, 2014) with 1,000 fast 

bootstrap replicates (option ‘-f a’). The concatenated alignment was partitioned where 

each of the 396 individual loci represents an independent partition. The best fitting 
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model of substitution was inferred with jModeltest2 and was GTR+G for 70% of loci 

(versus 26% GTR+I+G and 4% GTR). The model of substitution in RAxML was 

therefore set to GTRGAMMA for all partitions. Members of the compound-leaved 

Berberis were set as outgroup (B. nervosa, B. polyodonta and B. nevinii). Clades with 

bootstrap support lower than 50 were collapsed to polytomies. 

For Bayesian phylogenetic inference, the data matrix was partitioned by locus 

and the best-fitting model of substitution assessed with PartitionFinder 2.1.1 (Lanfear et 

al., 2016). The data matrix was analyzed in Bayes Phylogenies (Pagel and Meade, 

2006) with 15 independent chains where each was run for a minimum of 45 million 

generations. The burn-in was set to 10 million. Convergence of the chains was checked 

in Tracer v. 1.6 (Rambaut et al., 2014,).  In order to avoid autocorrelation, only a 

fraction of the sampled trees were used for further analysis, resulting in 984 trees.  The 

MCMC samples from the posterior distribution were summarized to a consensus tree 

with minimal clade frequency of 95% using SumTrees (Sukumaran and Holder, 2015). 

A Bayesian consensus network was calculated with the R package phangorn (Schliep, 

2011).  

Recent studies have shown that concatenation of genes may produce misleading 

results and researchers therefore use alternative approaches using gene trees. The 

incorporation of numerous genes for estimating phylogenies has found considerable 

discordance across gene trees which is often accounted to incomplete lineage sorting 

(ILS, e.g. Degnan and Rosenberg, 2009; Kubatko and Degnan, 2007). In order to 

account for topological variation in gene trees and to compare the results to the 

concatenation approach, we applied the multi-species coalescence (MSC) method in 

ASTRAL-II (Mirarab and Warnow, 2015). The algorithm implemented in ASTRAL 

provies a statistically consistent estimate of the species tree, calculated from unrooted 
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gene trees under the multi-species coalescent model. The algorithm finds the species 

tree that agrees with the largest number of quartet partitions in the unrooted gene trees 

(Mirarab et al., 2014; Mirarab and Warnow, 2015). Unrooted gene trees were inferred 

with RAxML, using 100 rapid bootstrap replicates (option ‘-f a’). The best trees of each 

gene and the corresponding bootstrap trees were used as input in ASTRAL and species 

trees were estimated with 100 bootstrap replicates. 

2.2.3.6 Plastid assembly and alignment 

The quality filtered paired-end reads were mapped to a reference genome of B. 

aristata (Kreuzer et al., unpublished) with Burrows-Wheeler Alignment tool (BWA, 

ver. 0.7.12, Li and Durbin, 2009). The reference genome was indexed using option 

‘bwa index’. Read pairs that survived the quality check were mapped with default 

options of the command ‘bwa mem’. The resulting SAM file was converted to BAM 

format with ‘samtools view’ and sorted with ‘samtools sort’ in SAMtools v. 1.2. The 

average coverage was calculated with ‘samtools stats’. Optical read duplicates were 

removed with Picard tools (http://broadinstitute.github.io/picard; last accessed 

30/06/17). We used the SNP calling workflow in GATK (McKenna et al., 2010; Van 

der Auwera et al., 2013). Regions that contain insertions and deletions are often badly 

aligned. Therefore, a local realignment process was applied with the command ‘–T 

IndelRealigner’ in GATK. Variant calling was performed on the realigned BAM files 

with the ‘–T HaploTypeCaller’ module with haploid settings (‘-ploidy 1’). The output is 

a “genomic VCF” file (GVCF) that contains base call information for all sites of the 

markers. The variant calls were then exported with ‘–T GenotypeGVCFs’ to the 

standard variant call format (VCF). SNP and indel variants were then filtered 

separately. The first SNP filter applied is quality by depth (QD), which can be 

considered as the quality of the variant call standardized by the depth of coverage. QD 

http://broadinstitute.github.io/picard
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avoids inflation of the Phred quality score for the variant call caused by deep coverage. 

Variants that had a QD < 2 were filtered out as recommended by Van der Auwera et al. 

(2013). The FisherStrand (FS) quality filter is a Phred-scaled probability that strand bias 

exists at a specific site. Specifically, the score is a measure for whether an alternate 

allele was seen more or less often on either forward or reverse reads. The mapping 

quality (MQ) in GATK is calculated as the root mean square quality over all reads at a 

given site. Variants with an MQ score <M 40 were removed from the dataset. The final 

sequence was reconstructed with the command ‘–T FastaAlternateReferenceMaker’ in 

GATK. We checked our pipeline by visual comparison of the final plastid sequence 

with the BAM file for selected samples. 

The reconstructed plastid genomes were then aligned using MAFFT v7.215 with 

default options. The inverted repeats were removed from the alignment. SNP calling on 

inverted repeat regions is not straight-forward since reads with polymorphisms in only 

one region will map to the other repeat as well. Random mapping to inverted repeat 

regions often results in apparently heterozygous read alignments, precluding unique 

assignments of SNPs to a specific inverted repeat. The alignment was checked 

manually and badly-aligned regions were removed. 

2.2.3.7 Plastid phylogeny 

The best model of substitution was calculated under the Aikaike Information 

Criterion in jModeltest2. The ML phylogeny was estimated with 1,000 bootstrap 

replicates under the GTRGAMMA + I substitution model in RAxML using the online 

CIPRES portal. The whole alignment was considered as a single partition. Members of 

the compound-leaved Berberis were set as outgroup (B. nervosa, B. polyodonta and B. 

nevinii). In order to calculate how many nuclear gene trees are in agreement with the 

plastid phylogeny, we used ASTRAL-II to produce branch support values (Mirarab and 
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Warnow, 2015). The support value shows how many of the quartet trees in the gene 

trees support the quartet tree in the species tree. 

2.2.3.8 Ancestral range estimation 

We used a concatenated ML tree, pruned to include one exemplar per species, to 

infer ancestral areas with the R package BioGeoBEARS. The package implements the 

models Dispersal-Extintion-Cladogenesis (DEC; Ree et al., 2005); DIVALIKE, a 

modified version of DIVA (Ronquist, 1997); and BAYAREALIKE from BayArea 

(Landis et al., 2013). The program allows for estimating ancestral areas with an extra 

free parameter j, which considers founder-event speciation (Matzke, 2014). The areas 

were coded to SA = South America, NA = North America, HE = Hengudan Mountains 

and HI = Himalayas. The data were run under all three models considering only 

dispersal and extinction (d and e parameters) and in a second calculation, the parameter 

j was estimated. The likelihood scores were compared using the Aikaike Information 

criterion (AIC) and data interpreted under the model with the highest AIC value. 
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2.3 Results 

2.3.1 Nuclear DNA marker assembly 

The average depth of coverage of the 86 samples is shown in Figure 2-1. The 

minimum number of loci per sample, where at least part of the sequence could be 

reconstructed, is 602 (B. microphylla2). For 66 out of 85 samples, all 607 genes could 

be at least partly reconstructed. The breadth of coverage of each locus for the 85 

samples is displayed in the heatmap as the fraction of loci recovered (Figure 2-2). 

 

 

Figure 2-1 Average coverage per sample across all loci. 

 

2.3.2 Filtering of nuclear DNA markers 

The allelic divergences and pairwise distances are shown in Figure 2-3. After 

inspection of the plots, a threshold for sequence similarity (mean <= 94, standard 

deviation <= 6) and phylogenetic distance (mean <= 0.0625, standard deviation <= 
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0.04) was determined. From the initial 607 DNA markers, 210 were discarded (34.6%), 

resulting in 396 DNA markers for further analysis. 

 

 

Figure 2-2 The heatmap shows the fraction recovered of each loci (n=607) for samples 

that were included in the phylogenetic analysis. Grey bars indicate loci where no 

sequence could be retrieved. 
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Figure 2-3 Top left: The plot shows the average sequence similarity and standard 

deviation (grey bars) per gene. The red line is the set arbitrary threshold. Top right: Plot 

of sequence similarity and standard deviation per locus (black dot). Loci outside the red 

rectangle were discarded for further analysis (mean <= 94, sd <= 6). Bottom left: 

Average pairwise phylogenetic distance per loci with standard deviation (grey bars). 

Genes that exceeded the threshold of 0.625 were discarded. Bottom right: Plot of the 

mean pairwise phylogenetic distance and standard deviation of each loci (black dots). 

Loci outside the red rectangle were discarded (average > 0.625, sd > 0.4). 

 

2.3.3 Plastid assembly and alignment 

The average coverage of the mapping is shown in Figure 2-4 and ranged from 

16 to 664. The SNP filtering step removed 60 polymorphisms (54 SNPs and 6 Indels), 
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leaving 29,785 polymorphisms (22,123 SNPs and 7602 indels) across 64 samples 

(Figure 2-4). After removing the inverted repeats and badly-aligned regions, the 

alignment of the plastid genomes resulted in a data matrix of 93,697 bp length and 

contained a total of 1,229 parsimony informative sites. 

 

Figure 2-4 Quality filtering and coverage plots. Note that mapping quality is usually 

not applied to indels. 

 

2.3.4 Phylogenetic hypotheses 

Phylogenetic hypotheses generated here are as follows: firstly, the concatenated ML 

phylogeny, the best-scoring tree is presented, with bootstrap values, alongside a map 
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with the locality information of the samples from the Himalayas and the Hengduan 

Mountains. (Figure 2-5); secondly, the phylogeny inferred under the MSC is shown 

alongside the majority rule consensus tree from Bayesian analysis (Figure 2-6)thirdly, 

the plastid ML phylogeny mirrored to a reduced ML phylogeny with matching 

sampling (Figure 2-8). The MCMC sampling for the Bayesian inference was performed 

for at least 45 million generations. The trace file and the marginal probability plot for 

the 15 independent runs are shown in Figure 2-7. One of the 15 runs was discarded due 

to a lower likelihood score, suggesting misconvergence. The consensus network is 

shown in Appendix Figure AF-1. 

2.3.5 Ancestral range estimation 

The data used for ancestral range estimation in BioGeoBEARS is best explained 

by the model DIVALIKE+J (lowest AIC, Table 2-2). The ancestral ranges estimated 

under this model favour the Himalayan Mountain range with high probability as the 

ancestral range of Himalayan and Hengduan Mountain Berberis species (Node 4, 

Figure 2-9), deciduous (Node 10) and evergreen species (Node 7). The same result 

holds for deciduous Hengduan species, where B. tsarica is sister and the only member 

of the clade which is distributed in the Himalayas (Node 11). However, the ancestral 

range of the ingroup of this clade is with high probability the Hengduan Mountains. 

Within the evergreen clade, Node 9 is highly ambiguous with almost equal probabilities 

for the ancestral range being either of the two regions. Thus, no assumption of founder-

effect speciation can be made. The ancestral area for the South American clade is, 

unsurprisingly, well-supported (Node 3). The sampling of species is equilibrated for 

Himalayan/Hengduan mountain species, but not for all other clades, which may 

influence ancestral area reconstruction at deeper phylogenetic levels. 



Chapter 2 A phylogenetic hypothesis for Berberis (Berberidaceae) in the Himalayas and Hengduan Mountains 

33 

 

Figure 2-5 Top: Maximum likelihood tree of concatenated gene alignments. Only 

bootstrap values below 100 are shown above branches. The tree scale describes the 

mean substitutions per site. Numbers in circles indicate the major clades. Bottom: Map 

with specimen localities. Colours correspond to clades in the phylogeny. 
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Figure 2-6 Left: Bayesian phylogeny inferred from concatenated marker alignments. All nodes have a posterior probability of 1. Right: 

Phylogeny based on the MSC inferred with ASTRAL-II. Numbers above branches are quartet scores, no displayed number stands for full 

support. 



Chapter 2 A phylogenetic hypothesis for Berberis (Berberidaceae) in the Himalayas and Hengduan Mountains 

35 

 
Figure 2-7 Top: The traces of the likelihoods of the15 independent runs. The burnin of 
10 million generations is not shown. The runs were run for a minimum of 45 million 
generations. Bottom: The marginal probabilities are displayed as a density plot. Note 
that the likelihood curve of one run is slightly shifted, indicating that the run has not 
converged. The results from this run were excluded from further analysis. 
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Figure 2-8 Mirrored plastid and nuclear phylogeny showing the connections between 

samples (coloured lines). Numbers on clades show whole clade shifts, as discussed in 

the text. 
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Table 2-2 Output from BioGeoBears analysis. The parameters are d=dispersal, 

e=extinction and j=founder-event speciation. The model was chosen according to the 

Akaike information criterion (AIC). 
 

LnL Num. 

Parameters 

d e j AIC 

DEC -44.54 2 5 1.00E-12 0 93.08 

DEC+J -35.19 3 3.01 8.37E-02 0.025 76.39 

DIVALIKE -49.22 2 5 7.03E-07 0 102.44 

DIVALIKE+J -34.64 3 4.92 8.88E-04 0.026 75.29 

BAYAREALIKE -97.62 2 5 5.00E+00 0 199.25 

BAYAREALIKE+J -38.85 3 4.47 5.00E+00 0.034 83.72 

 

 

Figure 2-9 Ancestral range estimation of Berberis using a pruned ML tree. Note that 

Node 11 favours with high probability the Himalayan Mountains as the ancestral area. 

Furthermore, the ancestral area for Node 9 is highly ambiguous, favouring slightly an 

ancestral range in the Hengduan Mountains.  
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2.4 Discussion 

2.4.1 Species tree inference from nuclear data 

Phylogenetic hypotheses are generated here using multiple approaches (Figures 

2-5 – 2-8). Sources of discordance between gene trees and the species tree include 

evolutionary processes such as incomplete lineage sorting (ILS) or gene flow through 

hybridization, as well as paralogy (Chapter 5), and appropriate methods at different 

stages of a phylogenetic study are needed to account for them. Considering 

phylogenetic reconstruction using concatenation or coalescent-based approaches, Folk 

et al. (2016) argued that using alternative approaches is a  reasonable strategy for 

analysis of multi-locus data, since different approaches make different assumptions, and 

for empirical systems there are few grounds for making these a priori (Folk et al., 

2016). McVay and Carstens (Mcvay and Carstens, 2013) noted that coalescent-based 

approaches are generally preferred in phylogeographic study since in this case 

incomplete sorting can be very marked; conversely concatenation is often used by those 

working at deeper taxonomic levels. However, McVay and Carstens (2013) challenged 

the implicit reasoning for using concatenation at higher levels – that processes of 

incomplete lineage sorting are less relevant at deeper levels - noting that populations-

level processes occurred throughout the history of life. On these grounds, Edwards 

(2009) argued that coalescent-based approaches are preferable on philosophical 

grounds. This view is upheld by several authors who have highlighted deficiencies 

when using phylogenetic inference from concatenated multi-locus data (Degnan and 

Rosenberg, 2009; Edwards et al., 2016; Kubatko and Degnan, 2007). It can be 

misleading due to discordance between gene trees and the species tree (Kubatko and 

Degnan, 2007; Salichos and Rokas, 2013), and commonly-used node support metrics 

https://www.omicsonline.org/open-access/phylogeography-of-the-bamboo-locust-ceracris-kiangsu-acrididaeceracrinae-based-on-mitochondrial-nd2-sequences-2169-0111-1000144.php?aid=70135
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such as bootstrap values or posterior probabilities are often overestimated, giving the 

impression of fully resolved species trees without conflicting signals (Rokas et al., 

2003). In this study, concurring with Edwards (2009) that coalescent-based approaches 

are more suitable, the phylogeny of Berberis was estimated under the multispecies 

coalescent (MSC) implemented in ASTRAL-II, which models ILS. Simulating gene 

tree distributions directly from species trees can indicate whether discordances are 

likely to occur under the coalescent alone (Garcia et al., 2017 de Portugal et al., 2017). 

If not, and once paralogues are excluded, hybridization rather than ILS is inferred to 

explain discordance. Analyses of this type are not carried out here, so we consider two 

sets of evidence that point towards conflict resulting from ILS or hybridization: whether 

MSC and concatenated conflicts are deep or shallow, and whether plastid and nuclear 

hypotheses conflict. Although the overall topologies between MSC and concatenated 

topologies were largely congruent, quartet scores were lower than support calculated in 

concatenated analyses for some terminal clades, and where the concatenated analyses 

failed to resolve relationships, suggestive of ILS at shallow phylogenetic levels. This 

was often true when several members of a single species contributed to low support. 

The alternative placements of the specimen of B. pendryi, as sister to or nested in a B. 

angulosa clade, may reflect ILS since it is at a shallow phylogenetic level. A deeper 

conflict between concatenated and MSC topologies is observed for one of the 

specimens of B. hookeri. This species is one that shows alternative placements in the 

plastid and nuclear topologies, apparently the result of chloroplast capture in this 

individual. This conflict supports the interpretation of deep conflict between MSC and 

concatenated topologies as the result of hybridization.  
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2.4.2 Phylogenetic relationships 

The phylogeny presented here gives an unprecedented view of the phylogenetic 

structure of Berberis species from the Himalayan and Hengduan Mountains. The 

nuclear and plastid phylogeny resulted in very different topologies (see 2.4.3) and, 

given the problematic nature of plastid phylogenies for reconstructing species 

relatedness and evolution (e.g. Rieseberg and Soltis, 1991), we consider the nuclear 

phylogenies more likely to best reflect species relationship. Examination of nuclear 

phylogenies reveals five clades (see clade numbers in Figure 2-5): compound-leaved 

Berberis (Clade 1); simple-leaved South American Australes (Clade 2); a clade with 

species belonging to the Septentrionales group (Clade 3); within the remainder of the 

Septentrionales, an evergreen clade (Clade 4) and a deciduous clade (Clade 5). The 

simple-leaved South American Berberis species form a strongly supported clade here 

and in the studies of Adhikari et al. (2015) and Kim et al. (2004). The Septentrionales 

clade was also recovered by Adhikari et al., (2015). However, the evergreen and 

deciduous clades are recovered here for the first time. We find that the clade comprising 

B. petiolaris, B. jamesiana and the North American species B. fendleri, is sister to the 

remainder of the Septentrionales. Thus, our results confirm the close relatedness of B. 

fendleri to Eurasian species, and support the long-distance dispersal hypothesis for this 

species. 

Previous phylogenies based on a few genetic markers (ndhF and ITS) exhibit 

low resolution at shallow phylogenetic levels and poor support overall (Adhikari et al., 

2015; Kim et al., 2004). The data set in this study comprises 396 nuclear loci and, in 

addition to recovering monophyletic groups representing the evergreen and deciduous 

traits for the first time, reveals considerable phylogenetic structure at species level. 

Both the evergreen and deciduous clades comprise species from the mountain ranges 
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surrounding the Qinghai–Tibetan Plateau (QTP), specifically the Hengduan Mountains 

and Himalayan ranges. Figure 2-5 shows that both the deciduous and the evergreen 

clades comprise two subclades. The two subclades of the deciduous clade show a strong 

geographical signal for either the Himalayan mountain range (orange colour in Figure 

2-5) or the Hengduan Mountain (red colour in Figure 2-5). The geographical signal is 

less pronounced in the “evergreen” clade. One “evergreen” subclade consists of B. 

hookeri from the Himalayan mountain range, B. calliantha from the QTP and four 

species from the Hengduan mountains. Its sister subclade is mainly distributed in the 

Himalayan mountain range. The biogeographic hypotheses suggested by these 

distributions are further explored in section 3.4.4. 

The taxonomy of Berberis is complicated, with revisionary work challenging 

the species numbers and delineations proposed by Ahrendt (1961). For example, 

Adhikari et al., (2012) revised the Nepalese species and Landrum (1999) the Chilean 

species, resulting in a reduction of the number of species. Revisonary studies for 

Chinese Berberis species are ongoing, and a monograph is in preparation (Harber, pers. 

communication). All our specimens were identified by taxonomic experts using the 

most recent published or draft taxonomic treatments. However, in complex groups there 

can be synergy between taxonomic and phylogenetic studies, and for at least one taxon 

our results challenge current taxonomy. Our phylogeny suggests B. concinna var. 

extensiflora should be raised to species rank, since it is only distantly related to B. 

concinna var. concinna. Three paraphyletic species are recovered, B. asiatica, B. 

aristata, B. angulosa and B. wilsoniae. Many species are paraphyletic (Rieseberg and 

Brouillet, 1994) and whether a phylogenetic species concept recognizing only 

monophyletic species should be applied is controversial (Agapow et al., 2004). 
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Certainly, the polyphyletic nature of the economically-important species B. asiatica and 

B. aristata may have repercussions for their recognition in trade (Chapter 4).  

2.4.3 Conflict between nuclear and plastid hypotheses 

Incongruence between nuclear and plastid phylogenies is a well-documented 

phenomenon (e.g. Rieseberg and Soltis, 1991), beginning to be reported using 

phylogenomic data (Folk et al., 2016). Nuclear and plastid phylogenies differ 

dramatically for Berberis species from the Himalayan and Hengduan Mountains. In the 

plastid phylogeny, evergreen and deciduous species do not form distinct clades as 

suggested by the nuclear phylogeny. We identify two distinct patterns of incongruence, 

whole-clade shifts and single-species shifts. Whole clade shifts have strong effects on 

the backbone of the phylogeny. For example, Clade 3 in the plastid phylogeny is not 

sister to the rest of the Himalayan and Hengduan Mountain species (see Figure 2-8). 

Another dramatic clade shift encompasses the clade with B. aristata which groups with 

evergreen species from the Hengduan Mountains in the plastid phylogeny (Clade 2; 

Figure 2-8). Similarly, the nuclear clade with B. hookeri species (Clade 2; Figure 2-8) 

groups with deciduous species in the plastid phyologeny. Whole clade shifts indicate 

ancient hybridization and introgression of the plastid genome between ancestral species 

that occurred in sympatry. Our data suggests that a common ancestor of species in the 

“aristata” clade (Clade 2; Figure 2-8) occurred in sympatry with a common ancestor of 

B. grodtmanniana, B. phanera and B. pruinosa. Similar patterns of incongruence have 

been shown in genus Heuchera, where an organellar capture event between an ancestral 

species of section Heuchera with a member of section Holochloa has been reported 

(Folk et al., 2016). The shifts of single species that we identify here point towards more 

recent events of chloroplast capture. For example, the evergreen B. hookeri5 groups 



Chapter 2 A phylogenetic hypothesis for Berberis (Berberidaceae) in the Himalayas and Hengduan Mountains 

43 

with deciduous specimens B. angulosa1+3, B_cooperi and B. koehneana, rather than 

with conspecifics, as in the nuclear phylogenies. B. angulosa1+3, B_cooperi and B. 

koehneana are distantly related to B. hookeri in the nuclear phylogenies, but all 

specimens in this plastid clade are in geographic proximity (Eastern Nepal or Bhutan). 

The phenomenon of geographical grouping in plastid phylogenies has been 

documented, for example in genus Nothofagus Blume (Acosta and Premoli, 2010). 

Hybridization has been reported in Berberis (e.g. Adhikari et al., 2012) and it is likely 

that chloroplast capture happened via hybridization and introgression of organellar 

DNA. Models for chloroplast capture suggest that this process can occur beyond 

species barriers, and is in fact promoted by nuclear genome incompatibilities under 

certain conditions (Tsitrone et al., 2003). A further mechanism that may act as driver of 

chloroplast capture on species that occur in sympatry is grafting (Stegemann et al., 

2012). The example of incongruence between nuclear and plastid phylogenies in 

Berberis confirms that plastid phylogenies are not a reliable source for reconstructing 

the species evolution, but in conjunction with nuclear phylogenies can be used to track 

ancient and recent chloroplast capture events. In terms of the development of markers 

for species identification (Chapter 4), our results strongly caution against using plastid 

markers.  

2.4.4 Biogeography and evolution 

The phylogeny and historical biogeography analyses of Berberis species from 

the Hengduan Mountains and the Himalayas shed light on how species are recruited to 

these two mountain systems, and whether frequent dispersal or in situ diversification 

explain this pattern. The geographical split of the two clades within deciduous species 

points towards in situ diversification within both of these clades, rejecting the 
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hypothesis of frequent dispersal events between the two mountain systems in deciduous 

Berberis. A recent study has compared in situ diversification rates versus colonization 

rates in both mountain systems across several plant genera, finding that the Hengduan 

Mountains flora was mainly assembled by in situ diversification (Xing and Ree, 2017). 

Although diversification rates were not calculated, genetic differentiation between 

species in the Hengduan Mountains is low, suggesting a young clade where lineage 

sorting has not yet completed. Sister to the Hengduan Mountains clade is B. tsarica, a 

species that is reportedly the highest growing Berberis distributed in the Himalayan 

chain (Adhikari et al., 2012) and in the southern margins of the QTP (www.efloras.org; 

last accessed 17/07/2017; Harber, pers. communication). The current distribution of this 

taxon and its phylogenetic placement suggests that the Hengduan Mountains were 

colonized by species that were at least partly distributed in the QTP and further 

diversified within this mountain system. In the case of Berberis, the QTP acted as a 

bridge between the already established Himalayan Mountains and the uplifting 

Hengduan mountains. The orogenesis of the Hengduan Mountains and rapid radiations 

have been shown for several taxa, for example for lineages Ciliatae and Porphyrion of 

the family Saxifragaceae, where the QTP acted as source for species colonization 

(Ebersbach et al., 2017). The emergence of mountainous habitats is known to trigger 

speciation by the emergence of island-like systems, so-called ‘sky islands’ (Hughes and 

Atchison, 2015). Although the uplift of the Hengduan Mountains may have played an 

important role in Berberis diversification, Berberis is not a typical alpine genus where 

radiations happen in island-like alpine habitats. The complex physiographic structure of 

these mountains may facilitate allopatric speciation below the tree line. 

http://www.efloras.org/
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2.4.5 Conclusion 

Phylogenomic data sets are powerful for resolving phylogenies to species level 

and highlight the importance of inferring phylogenies with multiple approaches. The 

nuclear phylogenies of Berberis show that evergreen and deciduous species form two 

distinct lineages and that deciduous species show a strong geographical structure with 

two lineages either in the Himalayas or the Hengduan Mountains. Furthermore, 

dramatic differences between plastid and nuclear phylogenies in genus Berberis were 

revealed, suggesting ancient and more recent chloroplast capture events. 
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Chapter 3 New approaches for DNA barcoding herbal 

medicines: a case study of genus Berberis 

3.1 Introduction 

DNA barcoding has two major objectives: specimen identification, where an 

unknown sequence is matched to a sequence of a known species, and species discovery, 

which is equivalent to species delimitation and species description (DeSalle, 2006). 

DNA barcoding of herbal medicines is mainly concerned with authentication, the 

identification of specimens for quality assurance (Sgamma et al., 2017). In the last 

decade, DNA barcoding of herbal medicines has raised awareness of species 

substitution and adulteration, highlighting issues surrounding the quality of herbal 

medicines in the global market (Newmaster et al., 2013; Srirama et al., 2017). 

Regulation of herbal medicines is a pressing issue for regulatory agencies (Directive 

2001/83/EC, 2001; Directive 2004/83/EC, 2004; Vlietinck et al., 2009). Published 

pharmacopoeial standards for authentication predominantly rely on chemical and 

anatomical methods (e.g British Pharmacopoeia, 2016). DNA barcoding offers new 

tools for regulatory purposes (de Boer et al., 2015) and DNA barcodes have recently 

been incorporated into the British Pharmacopoeia for the first time (British 

Pharmacopoeia Commission, 2017). Here we investigate opportunities and limits of 

DNA barcoding using next-generation sequence data of an evolutionarily complex 

genus as a case study. The aim is to provide methodological approaches for producing 

DNA barcodes for regulatory purposes, pharmacovigilance and quality assurance. 

The initial proposition of DNA barcoding using the small, single DNA sequence 

of the cytochrome c oxidase subunit 1 (CO1) for species identification (Hebert et al., 

2003) complies with its core principles of standardization, minimalism and scalability 
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(Hollingsworth et al., 2011). Whilst DNA barcoding with the CO1 region has proven to 

be effective for many groups in the animal kingdom (e.g. Hebert et al., 2004; Smith et 

al., 2008), research shows that mtDNA of plants evolves at a much slower rate than the 

plastid and nuclear DNA (Wolfe et al., 1987), and that the divergence of the CO1 gene 

among plants is very low (Cho et al., 2004, 1998). A single DNA barcode for land 

plants has not been identified (Hollingsworth et al., 2011), although several 

propositions have been made (e.g. CBOL Plant Working Group et al., 2009; Chase et 

al., 2007; Kress et al., 2005). Following Hollingsworth et al. (2011), most studies use a 

combination of the plastid regions matK, rbcL, the intergenic spacer trnH-psbA and the 

nuclear ITS2. Advances in sequencing technology have encouraged the barcoding 

community to augment the standard barcoding approach (Coissac et al., 2016; Kane et 

al., 2012; Vaughn et al., 2014). In the era of next-generation sequencing, some 

researchers have argued for the use of whole plastid genomes as barcodes (Coissac et 

al., 2016; Kane et al., 2012; Vaughn et al., 2014). 

Methodological approaches for specimen identification using DNA barcodes 

commonly rely on either distance-based measures or phylogenetic methods (Austerlitz 

et al., 2009). The former are based on the assumption that intra- and interspecific 

variation does not overlap (e.g. Hebert et al., 2004), also referred to as the barcoding 

gap (Meyer and Paulay, 2005). Accurate specimen identification using distance-based 

approaches such as BLAST are highly dependent on a well-curated database where 

ideally all members of a group are represented by several individuals (Meyer and 

Paulay, 2005). Drawbacks of using distance-based approaches are that there is no 

objective distance threshold criterion and that the nearest neighbour is not always the 

closest relative (Moritz and Cicero, 2004). Specimen identification using phylogenetic 

methods is based on membership of a query sequence to a specific clade (Casiraghi et 



Chapter 3 New approaches for DNA barcoding herbal medicines: a case study of genus Berberis  

48 

al., 2010). One difficulty associated with using tree-based barcoding methods is that 

phylogenies inferred from the barcode sequence might not be resolved sufficiently for 

an individual to be allocated to a clade  and that clades may exhibit poor support, 

questioning the robustness of any phylogenetic hypothesis (Moritz and Cicero, 2004). 

The use of concatenated DNA sequences for species tree inference has been shown to 

produce more robust phylogenetic hypotheses (Rokas et al., 2003). However, 

phylogenetic methods to DNA barcoding are not suitable when the underlying system is 

not based on strictly hierarchical ancestor-descendant relations structures, such as in 

nested structures (Goldstein and DeSalle, 2005). A general criticism to both, distance-

based and phylogenetic methods, is that these methods are not compatible with 

taxonomic decision circles where several lines of diagnostic evidence is needed for 

describing a taxon, which is circumvented by using diagnostic molecules in DNA 

barcodes (DeSalle et al., 2005). 

Whether specimens of different species can be discriminated between depends 

on the choice of the DNA barcode and the relatedness of species under study. Although 

relatively high success for the identification of genera has been reported when using 

common barcodes in plants, limited sequence variation is often the cause of the failure 

to distinguish between closely related species (Braukmann et al., 2017; Parmentier et 

al., 2013; Seberg and Petersen, 2009). One incentive for employing genomic 

approaches to barcoding is that broader genome coverage increases the variation in the 

barcoding data set (Coissac et al., 2016). However, closely related species may not 

exhibit a DNA barcoding gap even when the most variable regions are employed. In the 

case of incipient speciation where lineage sorting is incomplete, species are likely to be 

paraphyletic (Fazekas et al., 2009; Rieseberg and Brouillet, 1994). Furthermore, 

cytoplasmic genomes can have different evolutionary histories compared to nuclear 
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genomes through processes such as chloroplast capture (Rieseberg and Soltis, 1991), 

and specimens may group geographically rather than taxonomically (Acosta and 

Premoli, 2010). The biology and evolutionary history of several plant groups may 

therefore limit the success of DNA barcoding (Percy et al., 2014). 

Genus Berberis is a case where DNA barcoding with few regions has limited 

success (Roy et al., 2010). Similarly, a phylogeny of Berberis based on ndhF and ITS 

loci failed to resolve species boundaries (Adhikari et al., 2015). However, Berberis 

aristata is a medicinal plant that has been in traditional use in India for centuries and is 

nowadays traded throughout the world (Srirama et al., 2017). Local market studies 

suggest that several species are traded under the same vernacular name (see Chapter 4, 

Srivastava and Rawat, 2013), including B. aristata and B. asiatica. B. aristata is 

described in several pharmacopoeias (Ayurvedic Pharmacopoeia of India, 2001; British 

Pharmacopoeia, 2016) and although chemical and anatomical tests are published, there 

is incentive for producing a DNA barcoding method for identification.  

The aim of this study is to investigate whole plastid sequences of genus Berberis 

as a resource for barcode design, and to examine the evolutionary relationships of the 

species that might contribute to understanding the difficulties of using barcoding as a 

means for specimen identification. We present a method for producing short, 

informative plastid barcode regions based on diagnostic nucleotides. These barcodes, 

which are informative of clade membership in a phylogenetic context, are tested on 

commercial samples, and their utility for regulatory purposes outlined. 
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3.2 Material and methods 

3.2.1 Sampling 

This study includes 85 specimens from 57 species (Appendix Table AT-1). The 

dataset includes sequences from two putatively new species (named in this study as 

B_newsppA & B_newsppB) and one unidentified species (B_spp). The samples are 

partly the same as used in Chapter 2. The numbering of samples is congruent between 

the chapters. 

3.2.2 Sequencing 

The methods for library preparation and sequencing are described in Chapter 

2.2.2. The specific sequencing platforms used are documented in the Appendix Table 

AT-2. 

3.2.3 Plastid genome reconstructions 

The reference genome for B. aristata7 was reconstructed using a hybrid strategy 

of read mapping and de novo assembly. All reads were mapped to the reference plastid 

genome of the closely related Berberis bealei (Ma et al., 2013 GenBank reference 

KF176554), using the Geneious medium-low sensitivity ‘Map to Reference’ function 

with five iterations. The resulting contig was then checked manually for low coverage 

and low pairwise identity regions. One read from each of these regions was extracted 

and all reads were then mapped against these individual reads using the same settings as 

above. The iterations lead to an extension of the read to a contig (typically up to 2,500 

bp). The consensus sequences were then mapped to the reference obtained from the first 

read mapping. This method allowed large indels in the B. aristata reference that were 

not detected by the read mapping algorithm to be identified. The built-in de novo 
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algorithm in Geneious 7.1.7 was used for the de novo assembly of the plastid genome. 

We performed the assembly only with reads that matched to the reference sequence of 

B. bealei. The ten largest contigs, ranging in length from 1,132 bp to 29,132 bp, were 

then mapped to the B. aristata reference and checked for ambiguities. All reads were 

then mapped again to the new consensus sequence. 

The reconstruction of the plastid sequences using the newly generated B. 

aristata7 reference is described in section 2.2.3.6. The plastids were aligned using the 

MAFFT aligner (Katoh and Standley, 2013) with default options. The alignment of 

repetitive regions such as poly A sequences was not straight-forward, therefore two 

alignment files were created: the first alignment was used for phylogenetic inference, 

and blocks where no unambiguous alignment could be constructed were removed. 

Furthermore, the inverted repeats were removed, since SNP calling on these repeats 

was difficult to address (see section 2.2.3.6 for further explanations). The second 

alignment was used for the barcoding analysis. Regions were masked (coded as “N”) 

where no unambiguous alignment was possible 

3.2.4 Annotation of plastid sequence 

The online platforms DOGMA (Wyman et al., 2004) and CpGAVAS (Liu et al., 

2012) were used for the annotation of the genome of B. aristata7. The full genome 

sequences were imported into Apollo (Lee et al., 2009). The annotation of B. aristata 

was compared with the previously published annotation of Berberis bealei (Ma et al., 

2013). Start and stop codons were checked manually. The annotation was visualized 

using OGdraw. 
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3.2.5 Universal barcode reconstruction 

3.2.5.1 Extraction of plastid barcode sequences 

The sequences of matK, rbcL and trnH-psbA of B. aristata were extracted from 

the annotated reference B. aristata0299. The sequences were then aligned to the plastid 

genomes using BLAT (Kent, 2002). The output was parsed to produce a BED file, 

which denotes the start and end position of an alignment. The respective sequence was 

then extracted with the ‘getfasta’ option in BEDTools (Quinlan and Hall, 2010). 

3.2.5.2 Reconstruction of ITS2 

A two-step pipeline was devised to reconstruct the ITS2 from shotgun 

sequencing data. Firstly, reads that map to the reference were filtered and then a de 

novo assembly was performed using these reads. Filtering prior to de novo assembly 

reduces computation time substantially. The reference sequence of ITS2 (Berberis 

repens, BOLD accession: HIMS1138-12) was indexed with BWA (Li and Durbin, 

2009) using the command ‘bwa index’. Trimmed and filtered reads were mapped to the 

reference with ‘bwa mem’. Mapped reads were then separated from unmapped reads 

with SAMtools (Li et al., 2009) ‘samtools view –b –F 4’, resulting in a BAM file with 

only mapped reads. The mapped reads were then extracted to fastq format using Picard 

tools (http://broadinstitute.github.io/picard, last accessed 30/06/17) with the command 

‘SamToFastq’. The reads were then used for de novo assembly using SPAdes v3.7.0 

(Bankevich et al., 2012) and the longest contig extracted. 

3.2.6 Barcoding analysis and phylogenies 

The phylogeny for the whole plastid genome was inferred using the same 

parameters described in 2.2.3.7. Phylogeny reconstruction was performed on the online 

portal CIPRES (Miller et al., 2010). 

http://broadinstitute.github.io/picard
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The barcoding analysis aimed to find set of informative nucleotides that are 

unique to clades of interest. A barcoding method based on diagnostic characters was 

preferred over distance or purely phylogenetic approaches, because of its ease of 

application for regulatory purposes and to provide an alternative approach in an 

evolutionary complex group. Potential novel Berberis-specific barcodes were explored 

by extracting SNP positions of the multiple sequence alignment of whole plastid 

genomes with the program SNP-sites (Page et al., 2016). The SNPs were summarized 

in 500 bp windows and their distribution plotted with Circos (Krzywinski et al., 2009). 

Potential barcodes were selected spanning regions where a 500 bp window had a 

sequence variability of   > 5%, and a maximum amount of missing/masked data < 3%. 

The 500 bp regions were then compared to the annotated plastid genome and the 

barcodes were constructed to correspond with genomic regions, such as intergenic 

spacers that are flanked by conservative regions suitable for primer design. 

The commonly-used barcodes ITS2, rbcL, matK and trnH-psbA and the 

Berberis specific barcodes derived from the whole plastid alignment were evaluated. 

The individual barcode regions were aligned using MAFFT v7.215 (Katoh and 

Standley, 2013) with default options and were then manually trimmed. A first step was 

to infer a maximum likelihood tree of the barcode with RAxML v.8.2.9 (Stamatakis, 

2014) with 1,000 rapid bootstrap replicates (‘-f a’) under the GTRCAT model. 

Haplotype networks were constructed with the function ‘haploNet’ in the R package 

pegas (Paradis, 2010). The potential barcodes were sorted according to the percent 

variable sites, percent parsimony informative sites, recovery of B. aristata and B. 

asiatica groups and the recovery of groups present in the whole plastid phylogeny. The 

selected barcodes were concatenated and a maximum likelihood phylogeny was built 

with the same parameters as described above. The best fitting substitution model was 
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inferred with jModelTest 2 (Darriba et al., 2012) by calculating the likelihood scores 

and by evaluating the models with the Akaike information criterion. Phylogenies of the 

selected barcodes were inferred under the GTRCAT model, but were also inferred 

under the Jukes-Cantor and the Hasegawa–Kishino–Yano models in RAxML v. 8.2.9 

(Stamatakis, 2014). Furthermore, the barcodes were examined by inferring a phylogeny 

under the maximum parsimony criterion using the R package phangorn (Schliep, 2011). 

The implemented algorithm finds the tree with the lowest parsimony score using 

nearest-neighbor interchanges and subtree pruning and regrafting. The topology of the 

whole plastid genome phylogeny was used to determine meaningful groups of species 

according to evolutionary relationships of their plastid genomes. Barcodes were then 

constructed for identifying these evolutionary entities, rather than individual species. 

The alignment of each selected barcode was then reduced to SNP sites only and 

synapomorphic polymorphisms were identified for each group in order to delimit a 

minimal barcode. 

3.2.7 Test dataset 

The first data set for testing the barcode consisted of three commercial samples, 

putatively derived from B. aristata (Table 3-1). The sequences for the market samples 

were produced in the target enrichment experiment (Chapter 4). Although the samples 

were enriched for nuclear loci before sequencing, a certain amount of off-target reads 

were sequenced as well (Weitemier et al., 2014). The second data set consisted of in 

silico mixtures of samples from species B. aristata and B. asiatica. The mixtures were 

produced using shotgun sequencing data from unambiguously identified Berberis leaf 

samples (see 2.2.2.2). The quality filtered reads were mapped to the reference plastid 

genome (B. aristata7) and the mapped reads were extracted with SAMtools and 
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bedtools vcf2fastq. The resulting fastq files were then subsampled randomly and 

combined (Table 3-1). 

The reads of these five test samples were mapped to the consensus sequence of 

the barcodes with BWA (Li and Durbin, 2009) and sorted with ‘samtools sort’ in 

SAMtools (Li et al., 2009). The base call(s) and base frequencies of the respective 

barcode positions were extracted from the BAM files using the program bam-readcount 

(https://github.com/genome/bam-readcount; last accessed 02/06/17). 

 

Table 3-1 In silico mixtures of B. aristata and B. asiatica samples. 

 

3.3 Results 

3.3.1 Whole plastid phylogeny 

The annotated plastid sequence of B_aristata7 is shown in Appendix Figure AF-

2. As described in Chapter 2.2.3, the plastid and nuclear phylogenies differ, and neither 

the evergreen nor deciduous groups are monophyletic in the plastid phylogeny. The 

whole plastid phylogeny is shown in Figure 3-1. The groups 1 + 2 (Figure 3-1, circled 

numbers) consist mainly of deciduous species. Sister to these groups are B. petiolaris, 

B. jamesiana and the North American species B. fendlerii. The deciduous species in the 

aristata clade (4) and the asiatica clade are nested within evergreen species (groups 5 + 

6). The plastid phylogeny reveals that within the aristata clade, B. aristata is not 

monophyletic since B. jaeschkeana, B. karnaliensis and B. mucrifolia are nested within 

 Number of Reads (forward and reverse) aristata:asiatica 

(Ratio) Sample B. aristata7 B. asiatica5 B. aristata8 

Mixture1 90K 60K 30K 2:1 

Mixture2 470K 72K - 5.5:1 

https://github.com/genome/bam-readcount
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the polyphyletic species. The South American species (8) and Mahonia species (9) form 

monophyletic groups with high support. 

 

Figure 3-1 ML phylogeny based on whole plastid sequences. Note that B. aristata, in 

the aristata clade, is a polyphyletic species, but the B. asiatica in the asiatica groups 

are monophyletic. Numbers above branches are bootstrap values between 51 and 99. 

Branches with support < 50 were collapsed to polytomies, bootstrap values of 100 are 

not shown. 
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3.3.2 Identifying informative barcodes 

The density of SNPs in 500 bp windows along the whole plastid alignment is 

shown in Figure 3-2. The bins contained between 0 and 124 variable sites per 500 bp. 

The inspection of bins with > 25 SNPs (5%) resulted in 21 potential barcode regions. 

Several of the highly variable bins fell into regions where the alignment was partly 

masked, leaving 13 bins for further inspection. Two neighbouring bins were combined 

into a single potential barcode of 1,000 bp, and a set of four bins combined into a 2000 

base pair barcode. The barcode of 2,000 bp (SSC_noncoding2) was further examined 

by partitioning the alignment into 50 bp windows and reducing the barcode size 

(SSC_noncoding2, Figure 3-3). The trnH-psbA intergenic spacer was identified among 

one of the seven highly variable regions, and together with the matK, rbcL and ITS2 

barcodes, eleven barcode candidates were investigated (Table 3-2). 

 

Table 3-2 Barcode selection resulting from investigating variability patterns across 

whole plastid alignment. ITS2, matK and rbcL were not identified as highly variable but 

included in the study. Var = Variable sites; PIS = parsimony informative sites; “aristata 

recovered” and “asiatica recovered” indicates whether the clades were recovered in the 

respective phylogeny. 

Barcode Length 

(bp) 

Var % Var PIS % PSI aristata 

recovered 

asiatica 

recovered 

ITS2 (nuclear) 560 45 8.04 24 4.29 no Yes 

matK 1530 39 2.55 18 1.18 yes Yes 

ndhF (partial) 802 40 4.99 23 2.87 no Yes 

ndhI-ndhG 501 48 9.58 18 3.59 no Yes 

rbcL 1452 32 2.20 21 1.45 no Yes 

rbcL-atpB 770 32 4.16 19 2.47 no Yes 

rbcL-psaI 626 59 9.42 28 4.47 no Yes 

rpl32-ndhF 1119 80 7.15 40 3.57 partly Yes 

SSC_noncoding1 741 52 7.02 29 3.91 partly No 

SSC_noncoding2 790 46 5.82 27 3.42 yes Yes 

trnH-psbA 580 43 7.41 24 4.14 no Yes 
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Figure 3-2 SNP density along the plastid genome (red histograms). The outer circle 

describes the boundaries of the large single copy (LSC), the inverted repeats (IRa and 

IRb) and the small single copy (SSC). Regions that are coloured green in the inner 

circle are coding regions, blue are RNA genes (rRNA and tRNA genes) and white is 

noncoding sequence. Red colour below the outer circle shows regions that have been 

masked and are thus coded as “N”. 

 

 
Figure 3-3 Subselection of barcode regions with the SSC_noncoding2 region. The 

newly determined barcode is marked in red. 
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None of the individual barcodes retrieved phylogenies with the same topology 

as the whole plastid phylogeny. Although the matK phylogeny is not well resolved 

overall, species from the aristata and asiatica groups were recovered. B. asiatica is 

monophyletic in the noncoding SSC_noncoding2 phylogeny, but species from the 

aristata clade are separated into two groups. The same results were retrieved when 

assuming less complex models of evolution (AF-3). The haplotype networks of these 

two barcodes show that both groups have distinct haplotypes. The percent variable sites 

varied between 2.2 in rbcL and 9.85 in the intergenic spacer ndhI-ndhG (Table 3-2) and 

the latter was chosen along with matK and SSC_noncoding2 as barcodes for further 

analysis (Figure 3-4). 

These three barcodes yielded 133 variable positions in total. Nine positions, 

including seven containing one SNP variant that was clade-specific, were sufficient to 

identify seven of the nine groups. Groups 3 and 8 share a barcode, in other words their 

barcodes are identical. The phylogeny of the concatenated barcodes matK, 

SSC_noncoding2 and trnI-trnG barcodes is shown in Figure 3-5. The topology of the 

tree differs substantially from the total-evidence tree inferred from whole plastid 

sequences. However, four of the major clades are identified in both trees. The model 

test results for molecular evolution of the respective barcodes is given in Table …. In 

order to investigate the influence of the model selection, we have inferred phylogenies 

with simpler models than the GTRCAT. The clades of interest were also recovered 

when applying these models of molecular evolution (Appendix Figure 2), suggesting 

minor influences on the phylogenetic analyses. 
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Table 3-3 Results from the model test for molecular evolution. The GTR model was 

only favoured for the barcode ndhI-ndhG. GTM = General Time Reversible Model; 

TVM = Transversion Model; TIM = Transition Model; TPM = 3-parameter Model. 

Barcode Model Partitio
n 

-lnL AIC deltaAIC 

ndhI-ndhG GTR 12345 1012.45 2376.899 0 

TVM 12314 1014.13 2378.263 1.364 

TIM2 10232 1015.328 2378.657 1.7582 

SSC_noncoding
2 

TVM 12314 3486.321 7322.642 0 

 GTR 12345 3486.284 7324.567 1.9251 

 TPM1uf 12210 3491.467 7328.935 6.2929 

matK TPM1uf 12210 2415.091 5176.183 0  
TIM1 12230 2414.665 5177.331 1.1481  
TVM 12314 2415.027 5180.054 3.8709 
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Figure 3-4 Maximum likelihood phylogenies and haplotype networks of individual 

barcodes. The Roman numerals indicate different haplotypes and the size of the circles 

corresponds to the number of samples sharing this haplotype. A: SSC_noncoding2, B: 

matK, C: ndhI-trnG. 
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Figure 3-5 Maximum likelihood tree from the concatenated barcodes matK, 

SSC_noncoding2 and ndhI-ndhG. Nodes with bootstrap support <50 were collapsed to 

polytomies. Bootstrap values beween 50 – 99 are shown above branches. No number 

indicates a bootstrap value of 100. Numbered circles indicate groups that were 

recovered in the whole plastid phylogeny (see. Fig 3-1). 
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3.3.3 Testing barcodes  

The minimal barcode consists of nine positions and includes barcodes unique to 

seven groups. No private SNPs were identified for groups 3, 6 and 8. No individual 

barcode for groups 6 and 8 could be constructed (Table 3-3). The barcodes were 

evaluated with the test data set (Table 3-3). The commercial samples Market1, Market2 

shared the unique barcode of Mahonia samples. The sample Market11 shared the 

barcode with B. asiatica samples. The artificial mixtures were identified as comprising 

B. asiatica and B. aristata. 

 

Table 3-4 Top: Matrix of informative barcode positions. The positions are relative to 

the consensus of the multiple sequence alignments of each barcode. “SA clade” stands 

for South American clade. Bottom: Results of the test samples. Market1, Market2 and 

Market11 are commercial samples and Mixture1 and Mixture2 are in silico mixtures. 

Numbers below multiple base calls represent the ratio of nucleotides in the mapping. 

 

matK ndhI-ndhG 
SSC_ 

noncoding2 

Position 

(bp) 

755 857 976 1428 151 182 326 47 700 

clade. 1 A G G G C A C A G 

clade. 2 A G G A C A C A A 

clade. 3 A G G G A A C A A 

aristata – 

clade (4) 
C A G G C A C A A 

asiatica – 

clade (5) 
A G G G C C C A A 

clade. 6 A G G G C A C A A 

clade. 7 A G A G C A C A A 

SA clade 

(8) 
A G G G A A C A A 

Mahonia – 

clade (9) 
A G G G A A A C A 

 Test Samples 

Market1 A G G G A A N C A 

Market2 A G G G A A N C A 

Market11 A G G G C C C A A 

Mixture1 A C A G 
G G C 

A C 
C A A 

1:2 1:2.4 1:1.6 

Mixture2 A C A G 
G G C 

A C 
C A A 

1:7.3 1:9.3 1:6.9 
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3.4 Discussion 

DNA barcoding for quality assurance and pharmacovigilance has great potential 

and is likely to be implemented as a routine diagnostic method. In this study, we present 

an approach for barcoding an evolutionary complex group of species with limited 

availability of samples and successfully tested these barcodes on commercial samples. 

With the emergence of new sequencing technologies, whole plastid sequencing 

has been proposed as an extension of the current barcoding concept (Coissac et al., 

2016). It has been shown that whole plastid sequences increase phylogenetic resolution 

(Parks et al., 2009) and simultaneously increase the effectiveness of discriminating 

between species. In this study, we show how whole plastid next-generation sequencing 

can be used to investigate sequence variability patterns for the construction of 

informative DNA barcodes. We confirm the difficulty of barcoding Berberis species as 

suggested by Roy et al. (2010), even when whole plastid sequences are used for 

comparison. Although the sampling was limited, with only a few of the species 

represented with multiple samples, the low resolution of the plastid phylogeny at 

shallow phylogenetic levels and the presence of polyphyletic species (e.g. B. aristata) 

indicates evolutionary rather than methodological reasons for the failure of barcoding 

this genus to species level (Mutanen et al., 2016). DNA barcoding is challenging in 

groups where frequent hybridization occurs in conjunction with plastid capture or 

where lineage sorting has not yet been completed (Fazekas et al., 2009). Hybridisation 

in genus Berberis (Adhikari et al., 2012) could account for low barcoding success to 

species level. Evidence for chloroplast capture in Berberis is reported in Chapter 2 

(Figure 2-8). Whole clade shifts from ancient hybridization events may influence 

sampling strategy since the species of interest have different sister clades in the nuclear 

phylogeny. Although some recent chloroplast capture events could be identified, this 
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process seems to have low influence on barcoding success of Berberis. A dramatic case 

of recent chloroplast capture and failure of barcoding is reported in genus Salix 

(Salicaceae) where haplotypes are shared even between subgenera and where dominant 

haplotypes are identified (Percy et al., 2014). Low resolution among closely related 

species, as reported in the whole plastid phylogeny, points towards lack of ancestral 

polymorphism or incomplete lineage sorting (Naciri and Linder, 2015). Finding suitable 

species-level barcodes for genera with low resolution, such as Berberis, may be 

possible by incorporating multispecies coalescent approaches (Degnan and Rosenberg, 

2009). However, in the case of Berberis, where a target species is polyphyletic, a 

typological rather than an evolutionary approach is needed. 

The case of barcoding medicinal Berberis species provides an example of how 

barcoding for regulatory purposes in an evolutionary complex group can be 

approached. Phylogenies can be essential for formulating adequate barcoding 

hypotheses; the whole plastid phylogeny reveals that at least three species are nested in 

the clade with the main species in focus. The polyphyly of B. aristata indicates that 

universal barcodes are unlikely to delineate these species. Furthermore, several clades 

show low resolution at terminal branches (e.g. Clade 1 + Clade 2, Figure 3-1). We have 

therefore adapted our classification scheme and defined meaningful operational 

phylogenetic units (OPUs) that do not correspond to existing species limits, numbered 

here in the phylogeny (Figure 3-1). The barcodes presented in this study derive from an 

integrative approach based on the interpretation of a whole plastid phylogeny, coupled 

with the detection of diagnostic nucleotides in relatively short barcodes for well-

supported groups. 

Distance-based and phylogenetic methods rely on a reference database, ideally 

containing all species of the group of interest with several individuals per species 
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(Meyer and Paulay, 2005; Raja et al., 2017). The dataset used in this study is therefore 

neither suitable for distance-based methods nor for pure phylogenetic barcoding 

methods, since only a fraction of the species was available, many only represented with 

one member (Figure 3-1). The barcode presented in this study is based on diagnostic 

nucleotides for monophyletic groups of species, referred to here as OPUs. Similar to 

morphological classification of species, diagnostic methods provide a set of unique 

characters to assign specimens to species or species groups (Little and Stevenson, 

2007). The method has been implemented in various analysis tools (Sarkar et al., 2008; 

Weitschek et al., 2013), mainly for specimen identification. Some of the algorithms use 

logic mining techniques (Bertolazzi et al., 2009). Logic mining for DNA barcoding 

refers to a two-step process, where the barcode is first reduced to a set of very 

informative nucleotides and second a logic mining method is applied, where a set of 

formulas for separating the species are defined. More recent approaches, such as BLOG 

2.0 (Weitschek et al., 2013), provide a diagnostic, character-based approach for species 

identification that are based on supervised machine learning. Character-based 

approaches circumvents analytical issues such as the nearest-neighbour problem in 

distance-based methods (DeSalle et al., 2005). The in silico mixtures presented in this 

study derive from samples that were used for producing the DNA barcode and are 

therefore not true test samples. However, the analysis shows the simplicity of analyzing 

mixed samples based on diagnostic nucleotides when shotgun sequencing data is 

available. 

We believe that this approach is the way forward for regulatory purposes since 

the barcodes we present are intuitively understandable. DNA barcoding is beyond doubt 

a powerful method for specimen identification, but its implementation as a routine 

process for quality assurance (Sgamma et al., 2017) and pharmacovigilance (de Boer et 
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al., 2015) should consider the ease of application. Neither phylogenetic nor distance 

methods are appropriate, since they depend on large databases, sophisticated tools and 

lack objective criteria. For this reason, the British Pharmacopoeia (BP) approach is to 

present a sequence which samples must match for authentication. Pharmacopoeias 

ensure the safe use of pharmaceuticals by defining certain quality standards and DNA 

barcodes have recently been published in the BP for the first time (British 

Pharmacopoeia Commission, 2017). The question “does this sample belong to species 

XY?” is addressed by comparison to the pharmacopoeial sequence, since methods 

based on diagnostic nucleotides provide an easy and straight-forward way to answer the 

question. Identifying such sequences for inclusion in a pharmacopeia is the challenge 

addressed by this study. The whole plastid approach described here could become a 

model that can be applied to species that are difficult to resolve. Success depends on 

devising a sampling strategy that includes species that are closely related to the target 

species. Furthermore, the inclusion of distantly related, congeneric species increases the 

confidence in detected synapomorphic nucleotide polymorphisms. 
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Chapter 4 Perspectives on global trade and on the regulation 

of medicinal plants revealed by DNA barcoding 

4.1 Introduction 

Herbal medicines are a significant part of many traditional medicinal systems 

and are often partly integrated into mainstream healthcare systems. There is a 

significant market for so-called complementary medicine (CM) – healthcare practices 

not originating from a country’s own tradition or from conventional medicine and not 

fully integrated in the country’s medicinal system (WHO 2014). For example, in 

Britain, over a quarter of the population uses CM at least once a year (Thomas et al., 

2001). The use of the term CM as a category of medicinal healthcare practices reflects 

the integration and commercialization of traditional medicinal systems on a global 

scale, and indicate an increasing popularity of healthcare systems like Traditional 

Chinese Medicine (TCM) or Ayurveda (Saks, 2008). The assimilation of healthcare 

practices including the use of herbal medicines is a dynamic process of interchange 

between local and global pharmacopoeias (Leonti and Casu, 2013). The globalization of 

herbal medicines creates a tension between the needs of regulatory agencies and 

pharmaceutical companies, and the systems from which the medicines are drawn. 

Complex trade networks form the link between the origins of the plant medicines and 

their users. 

Herbal monographs describe medicinal species, providing tools for their 

identification and quality assurance. Pharmacopoeias are produced by public health 

authorities, such as the British Pharmacopoeia Commission, whose interest is to protect 

public health by assuring the correct composition and preparation of drugs (Marini-

Bettolo, 1975). When pharmacopoeias incorporate herbal medicines, standards for raw 
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materials or a list of potential adulterants are documented in monographs and are 

essential in the process of quality and safety control undertaken by manufacturers and 

producers. The preparation of monographs requires accurate specimen selection so that 

methods for determining species according to the reference material are valid. This 

specimen selection process consists at first of an accurate translation from traditional 

knowledge to scientific terminology, for example, matching vernacular names to 

Linnaean taxonomy. Within the very first publications of state-produced 

pharmacopoeias, medicinal plants were described following Linnaean binomial 

nomenclature. For example, in the first publication of the British Pharmacopoeia (BP) 

in 1884, the pharmaceutical drug Cocculus Indicus was described as the fruit of 

Anamirta cocculus, an Indian plant from the family Menispermaceae. This example 

illustrates that regulation often acts at the level of the species, and that herbal medicines 

are defined according to Linnaean binomial nomenclature. Since the initial publication 

of the BP, several analytical tests for medicinal plants have been established. DNA 

barcoding methods are the most recent of these, and were first incorporated in the 2017 

publication. 

Local medicinal plant collectors are often at the starting point of medicinal plant 

trade (Olsen and Larsen, 2003), so plants may be expected to enter global trade under 

local, vernacular names. Although folk nomenclature is similar to the Linnaean 

nomenclature in that it adheres to a hierarchical classification system (Berlin et al., 

1973), it is well reported that taxa in folk nomenclature do not necessarily match taxa 

recognized in the Linnaean system. In the Ayurvedic Pharmacopoeia for example, an 

estimate of 20,000 Sanskrit names are attributed to approximately 1,750 biological 

species and, similarly, many scientific taxa share the same vernacular name 

(Payyappallimana, 2008). This discrepancy may pose substantial problems for 
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establishing appropriate reference standards for pharmacopoeias. Global trade chains of 

medicinal plants are usually a convoluted network of actors and economic agents, 

involving thousands of harvesters, traders and manufacturers (Olsen and Bhattarai, 

2005). Despite reports that the international trade of herbal medicines increased 

substantially in the two countries with the largest herbal medicine export volume, India 

(Scindia, 2010) and China (Liu et al., 2009), relatively little is known about the 

complexities of international trade chains. Particularly, the attached implications for 

regulatory bodies, for the pharmaceutical industry and for public health are unknown.  

DNA barcoding offers the possibility to identify trade samples at different points in a 

supply chain, allowing for an investigation into whether species composition reflects 

the ethnotaxonomy of local markets.  

In this study, we analyse globally- and locally-traded samples that are putatively 

of two species: Berberis aristata DC. and Phyllanthus amarus Schumach. & Thonn. 

Both are used in the Ayurvedic system of medicine (Ayurvedic Pharmacopoeia of 

India, 2001; Patel et al., 2011). In that system, B. aristata is referred to as Daruharidra 

(दारुहरिद्र),  among other names (Ayurvedic Pharmacopoeia of India, 2001) and P. amarus 

as Bhoomyaamalakee (भमू्यामलकी; Patel et al., 2011). However, both species have 

numerous vernacular names on the Indian subcontinent 

(http://www.medicinalplants.in/; last accessed 15/08/2017), and the names may be 

applied to these and to other closely related species. The samples were analysed using 

two different next-generation sequencing approaches to DNA barcoding methods, a 

target enrichment approach with phylogenetic inference for B. aristata samples, and a 

DNA metabarcoding approach (Taberlet and Coissac, 2012; Yu et al., 2012) to identify 

the entity of species in potentially mixed samples for P. amarus. The aim was to 

identify species in global trade, and interpret findings in terms of the nature of species 

http://www.medicinalplants.in/
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adulteration and substitution, of local versus global markets and of the translation of 

vernacular names to Linnaean taxonomy. 

4.2 Material and methods 

4.2.1 Sampling 

For the analysis of Berberis, 16 samples were purchased, two of which were from local 

markets in Kathmandu, specifically herbal shops used by locals. Six samples from India 

were purchased via the Internet and ten samples were bought in the UK (see Table 4-1 

for further details). The material purchased in the UK were business to business 

samples, destined for the UK market place. 

Table 4-1 Berberis trade samples. 

Sample Form Company Place of Purchase 

Market 1 Stem/Bark/Root UK_1 UK 

Market 2 Stem/Bark/Root UK_1 UK 

Market 3 Stem/Bark/Root UK_2 UK 

Market 4 Stem/Bark/Root UK_2 UK 

Market 5 Stem/Bark/Root UK_2 UK 

Market 6 Stem/Bark/Root UK_2 UK 

Market 7 Stem/Bark/Root UK_2 UK 

Market 8 Powder UK_3 UK 

Market 9 Stem/Bark/Root KTM_1 Nepal, Kathmandu 

Market 10 Stem/Bark/Root KTM_2 Nepal, Kathmandu 

Market 11 Powder India_1 India, Rajasthan 

(Internet) 

Market 12 Powder India_2 India, Mumbai 

(Internet) 

Market 13 Powder India_2 India, Mumbai 

(Internet) 

Market 14 Powder India_3 India, Uttarakand 

(Internet) 

Market 15 Powder India_4 India, Surat 

(Internet) 

Market 16 Stem/Bark/Root India_5 India, unknown 

(Internet) 
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For the investigation of Phyllantus, ten globally-traded products from four companies 

in the UK were sampled. From each, three representative sub-samples were taken 

(Table 4-2). 

Table 4-2 Phyllanthus trade samples 

Sample Form Company Place of Purchase 

Product 1 Twigs UK_4 UK 

Product 2 Whole plant UK_5 UK 

Product 3 Whole plant UK_6 UK 

Product 4 Whole plant UK_6 UK 

Product 5 Whole plant UK_7 UK 

Product 6 Whole plant UK_7 UK 

Product 7 Whole plant UK_7 UK 

Product 8 Whole plant UK_8 UK 

Product 9 Whole plant UK_8 UK 

Product 10 Whole plant UK_8 UK 

 

4.2.2 Berberis phylogeny 

The traditional barcode regions ndhF or ITS have limited discriminatory power in 

genus Berberis (Adhikari et al., 2015). Previous analysis revealed that the targeting of 

396 nuclear DNA regions resulted in a well-resolved phylogeny of the genus Berberis 

(Chapter 2). This method was therefore used in the analysis of these 16 market samples. 

The DNA marker development, library preparation, sequencing and marker assembly 

are described in Chapter 2. Altogether, 43 accessions of Berberis and 16 market 

samples were included in the analysis. Berberis samples were mainly from simple-

leaved Himalayan species of the group Septentrionales. Furthermore, three exemplars 

of the compound-leaved Mahonia were included. Revised generic limits now recognize 

Mahonia as Berberis (Mabberley, 2008; Marroquin and Laferriere, 1997), but we refer 
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to Mahonia here, following accepted names in the Plant List (www.theplantlist.org; last 

accessed 15/08/2017). The naming of Berberis samples used in the phylogeny are the 

same as in Chapter 2 (for specimen information, see Appendix table AT-1). The 

phylogeny was reconstructed with the concatenated DNA marker alignments and 

maximum likelihood tree estimation was performed using 100 rapid bootstrap replicates 

and under the GTRGAMMA substation model in RAxML 8.2.9 (Stamatakis, 2014). 

4.2.3 Phyllanthus: DNA metabarcoding 

The dataset was generated as described in Sgamma et al. (2017). Modification to the 

data analysis is made here, and the data are analysed and interpreted for the first time in 

the context of local versus global markets and of the translation of vernacular names. In 

short, each of the ten products (P1 – P10) was sampled multiple times, resulting in 43 

samples. DNA from each subsample was extracted and the regions trnH-psbA, ITS2, 

trnL-F and rbcL were amplified and sequenced on an Illumina MiSeq sequencer. The 

bioinformatics pipeline applied was as described in Sgamma et al. (2017) except that, in 

order to aid interpretation, numbers of reads matching a taxonomic category were 

summed across subsamples. The resulting species abundance table is graphically 

displayed as a heatmap (Figure 4-2). 

4.3 Results 

Overall, the phylogenetic placement of traded Berberis samples suggests that market 

samples are either placed in the clade with B. asiatica or in the clade with B. aristata 

and B. karnaliensis specimens. Based on this result, we identify the two clades as the 

“asiatica” and “aristata” clades (Figure 4-1). However, two market samples are 

apparently Mahonia spp.  

 

http://www.theplantlist.org/


Chapter 4 Perspectives on global trade and on the regulation of medicinal plants revealed by DNA barcoding 

74 

 

Figure 4-1 Phylogeny of 43 Berberis species and 16 market samples. The labels of 

market samples are coloured in red. Only bootstrap values < 100 are shown (numbers 

above branches). Coloured dots represent where the samples have been bought. In the 

case of UK samples, the provenance of the raw material is unknown and were 

purchased in the UK. 

 
Identifications of samples sold as Phyllanthus amarus are shown in Figure 4-2. 

Four of the products consisted only of species of Phyllanthus, while the other six 

included species from other plant families, and even organisms from other major groups 

such as fungi and bacteria. Three species of Phyllanthus were identified in these 

samples, P. amarus, P. debilis and P. maderaspatensis. Product P1 consists mostly of 
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P. maderaspatensis and P2 and P7 are products showing admixture with either P. 

maderaspatensis or P. debilis. Products P4 – P6 could be considered as homogenous P. 

amarus samples since there are reads which match to this species but not to others. 

Matches to genus Phyllanthus are indicative of sequences that do not discriminate 

between the species of Phyllanthus in the database. 

Although P3 shows a response to Cyperae, this may be explained by a 

potentially unintentional contamination in the product. The only product where no reads 

from the genus Phyllanthus were identified is P8, suggesting a bad quality sample. 

Overall, reads that indicate contamination or substitution were from Acanthaceae and 

Amaranthaceae, Amaranthus, Corchorus (Malvaceae), Sida spinosa (Malvaceae), 

Indigofera suffruticosa (Leguminosae), Malvaceae, and Dactyloctenium aegypticum 

(Poaceae). 

 

Figure 4-2 Heatmap of species identified. The relative abundance of reads per product 

mapping to species are represented with the intensity of colour.  
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4.4 Discussion 

4.4.1 Species composition of globally traded products 

The analysis of traded material exposes that products marketed as Phyllanthus 

and Berberis contain several congeneric species. The DNA metabarcoding analysis 

reveals that several products contained more than one species of Phyllanthus, which 

suggests species admixture either at the harvesting and/or bulking stage. The analysis 

also shows that the overall quality between products varies dramatically from 

homogenous P. amarus products (P4 – P7) to a product without any evidence for 

Phyllanthus species (P 10). The phylogenetic approach for analyzing traded Berberis 

species shows that mainly B. asiatica is in trade. The two local samples were either B. 

aristata or B. asiatica, which indicates that both samples are sold and used in a local 

context. While most of the samples are either B. asiatica or B. aristata, we found 

Mahonia in the samples from one one company (UK_1).  

In the wider context of medicinal plant use and trade, the use of congenerics is 

well-described. Generic complexes, the inclusion of several botanical species under one 

vernacular name (Berlin et al., 1973), are a global phenomenon. Linares and Bye (1987) 

documented a series of generic complexes in markets from Mexico and the adjacent 

United States and identified a so-called label species in each complex. The label species 

is the most prevalent species in trade and could therefore be used for labelling or 

naming the species complex. The characteristics of the label species is that this species 

is of high value and is traded well beyond its natural occurrence and is substituted 

occasionally by local plants which themselves are not traded in quantity beyond the 

limits of their distribution. While the complexes reported by Linares and Bye (1987) 

often included species from several genera and even families, there are well-known 
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examples of generic complexes among closely related species, for example members of 

the genus Salvia subgenus Calosphace (Jenks and Kim, 2013). By applying the concept 

of a label species as either the most widely distributed or most commonly identified 

species (Ouarghidi et al., 2012), P. amarus appears to be the label species of 

Phyllanthus and B. asiatica of Berberis.  

4.4.2 Global trade mirrors local markets 

For both medicinal complexes studied in this paper, the results of local market 

surveys are available in the literature for comparison. In only two out of ten medicinal 

plant markets that sold Daruharidra, the species identified was B. aristata, which is, 

according to official pharmacopeias, the correct species. On the other hand, most other 

markets sold mainly B. asiatica (Srivastava and Rawat, 2013). Furthermore, 

ethnobotanical field studies and market inventories list either B. aristata (Acharya and 

Rokaya, 2005; Subedi and Panderey, 2011; Tiwari et al., 2004), B. asiatica (Joshi and 

Joshi, 2000; Kunwar et al., 2013; Uprety et al., 2010) or both (Humagain and Shrestha, 

2009). In a study where Phyllanthus market samples were studied, 19 out of 25 samples 

contained almost purely P. amarus and, in the remaining six samples, five other 

Phyllanthus species were determined, including P. maderaspatensis and P. debilis. 

These species were also identified in our study in globally traded samples. The high 

congruence of species found in local and global trade exemplifies that the latter is 

highly dependent on local structures. This finding has major implications for regulation 

and for the development of medicinal plant markets. Furthermore, it has been observed 

in local trade networks in different parts of the world (Mander, 1998; Olsen and 

Bhattarai, 2005) that potentially thousands of local harvesters and traders form part of 

the value chain of medicinal plants. Regulation may affect the livelihood strategies of 
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these economic agents in local trade systems by restricting and devaluing potentially 

equivalent species. 

4.4.3 Generic complexes and concepts of substitution  

Species adulteration and substitution in herbal medicines is a widely 

documented phenomenon (Srirama et al., 2017), and a series of severe cases of 

poisoning through deliberate or unintentional adulteration and substitution have been 

reported, such as that of infants following consumption of adulterated star anise tea 

(Ize-Ludlow, 2004). Adulteration of herbal medicines describes accidental or 

intentional variation in identity, strength or purity of herbal remedies. Substitution is a 

special case of adulteration where substances are replaced by another, potentially less 

expensive substance (Foster, 2011). 

In practice, the terms ‘substitution’ and ‘adulteration’ in herbal medicines seem 

to embrace two concepts. On the one hand, the terms are used to describe products of 

reduced quality that potentially threaten the health of consumers for various reasons, 

such as the mislabelling of ingredients, the existence of unlabelled filler species, 

contamination with other plant species or the addition of pharmaceuticals or chemicals. 

(Coghlan et al., 2015, 2012; Newmaster et al., 2013; Posadzki et al., 2013). On the 

other hand, the terms are commonly applied in scientific literature when traded 

medicinal plants are not congruent with published species in pharmacopoeias (e.g. 

Srirama et al., 2017). In that sense, our analysis of Berberis samples confirms the 

previously reported species substitution for B. aristata with B. asiatica. (Srirama et al., 

2017; Srivastava and Rawat, 2013). However, we propose an alternative interpretation 

of our results: traditional herbal medicinal systems such as Ayurveda undergo a process 

of modernization through standardization (Banerjee, 2008), which is a central principle 
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within modern pharmaceutics. This process is also referred to as the 

pharmaceuticalization of Ayurveda  (Banerjee, 2008). An example of this process is the 

translation of traditional preparation techniques to mass production processes 

accompanied by standardized quality controls. This stands in contrast to traditional use, 

where, even in written medicinal systems like Ayurveda, norms of preparation of herbal 

medicines are more varied (Banerjee, 2008). We argue that the mechanisms of 

translating vernacular names to scientific taxa in official pharmacopoeias, such as the 

Ayurvedic Pharmacopoeia or the British Pharmacopoeia, can be understood as an 

attempt to modernize and standardize traditional knowledge. The central question is 

whether Daruharidra is directly translatable to only B. aristata or whether it is a 

generic complex, consisting of several species of Himalayan members of genus 

Berberis. 

The evidence presented in this paper, in conjunction with local market studies 

and ethnobotanical field studies, favours the view that species from the aristata and 

asiatica clade are equivalent in local use and in international trade. Consequently, we 

conclude that species from both clades should be recognized as members of the generic 

complex Daruharidra. Whether Mahonia forms part of the Daruharidra generic 

complex is unclear. Although no Mahonia species are recognized in the Ayurvedic 

Pharmacopoeia of India (Welfare Ministry of Health and Family, 2010), there are 

reports of local uses of M. nepaulensis in Nepal (Shrestha and Dhillion, 2003; Uprety et 

al., 2012), where ophthalmological use is congruent with the therapeutic application of 

Berberis species. However, other therapeutic applications differ. Nepal is a major 

exporter of medicinal plants to the Ayurvedic industry in India (Olsen, 1998) and 

Berberis is traded from Nepal to India. In Nepali language, the vernacular name for 

Mahonia is Jamanemandro (जमानेमान्द्द्रो) and most Berberis species share the common 
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name Chutro (चतु्रो). Given the evidence that local uses for Mahonia differ in some 

aspects from the use of Berberis, in morphological distinctiveness and in different 

vernacular names, we favour the view that Mahonia is a substitute for B. aristata and B. 

asiatica. Substitution can be legitimate practice in cases where the substituent has 

similar traditional uses. For example,  Heterotheca inuloides is reported to be an 

appropriate substitute for Arnica montanta (Gafner and Applequist, 2016). DNA 

barcoding and other species identification techniques in conjunction with 

ethnobotanical field and market studies provide a starting point for pharmacognostic 

research. In the case of Mahonia spp., further research is needed to determine 

differences in phytochemistry and clinical efficacy. 

The identification of the substitution or the adulteration of globally-traded 

herbal medicines that are used in a transcultural context is dependent on 

interdisciplinary research. Local and global market studies, ethnobotanical field studies 

and interpretation of traditional knowledge, together with accurate species 

identification, are fundamental for an adequate regulatory framework. 
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Chapter 5 Impact of targeting paralogues on phylogenomic 

inference 

5.1 Introduction 

A basic requirement for phylogenetic inference is the use of orthologous DNA 

sequences. In the era of next-generation sequencing (NGS), where hundreds or 

thousands of genomic loci are compared, a major concern is that misleading 

phylogenetic signals are introduced by unidentified paralogues (Philippe et al., 2011). 

In the absence of assembled whole genome sequences for non-model organisms, and 

given the relatively high financial and labour investments needed for producing those 

for large-scale organismic studies, researchers use different techniques to target 

phylogenetically informative genetic loci for phylogenomic inference (Cronn et al., 

2012). One widely used method in phylogenomics is target enrichment via 

hybridization capture (e.g. Mandel et al., 2014; Schmickl et al., 2015; Stephens et al., 

2015; Weitemier et al., 2014). Hybridisation probes (hereafter referred to as probes) are 

usually RNA oligonucleotides that bind to complementary DNA sequences of interest. 

Probes are designed by mapping sequence data from one or more transcriptomes of a 

target species or a close relative to scaffolds from a draft genome assembly (Schmickl 

et al., 2015; Weitemier et al., 2014). Another approach is to compare transcriptome data 

from a target species to published orthologues sequence databases  (e.g. Wanke et al., 

2016, Mandel et al., 2014), such as the Putative Orthologous Groups Data Base 

(http://cas-pogs.uoregon.edu/; last accessed 15/08/2017). 

Whatever means are employed to design probes for hybridization capture, it is 

not possible to completely avoid targeting multi-copy regions if complete, assembled 

genomes are unavailable. For example, when a transcriptome is mapped to a draft 

http://cas-pogs.uoregon.edu/


Chapter 5 Impact of targeting paralogues on phylogenomic inference 

82 

genome, putative single copy regions are filtered by selecting sequences which map 

only once to the target. However, since only parts of the genome are known, any 

putative single copy region may in fact be represented by several copies in the genome. 

Furthermore, because a small number of species are used for marker development and 

capture is extended to a large number of species, gene duplication events may have 

occurred outside of the set of species used for probe development. In these scenarios, 

capture of paralogues can occur because the hybridization probes allow for some degree 

of mismatch. In that case, the resulting DNA reads will therefore stem from several 

copies within a genome. The presence of reads derived from multi-copy regions might 

falsely attribute variation between paralogues to within-region (or allelic) 

polymorphism when the DNA sequences are assembled. Read assembly errors in the 

presence of unidentified paralogy are therefore perceived as a potential source of error 

(e.g. Faircloth, 2015; Johnson et al., 2016; Nicholls et al., 2015; Prum et al., 2015). 

Given the challenges of excluding the capture of paralogous loci a priori, 

researchers have put substantial effort into devising analyses to eliminate read assembly 

errors due to paralogy. Several methods have been proposed for minimizing the effect 

of paralogous read mapping to the reference. For example, in analysis pipelines where 

de novo assembly of reads from a targeted locus is performed, paralogy is assumed 

when more than one assembled contig matches equally well to the reference (e.g. 

Faircloth, 2015; Heyduk et al., 2016). In pipelines where only read mapping has been 

performed, increased read mapping stringency has been proposed as a way to reduce 

mapping of relatively distant paralogues to the reference. Furthermore, the analysis of 

levels of variation within locus alignments across all samples, or the investigation of 

levels of coverage have been proposed (Nicholls et al., 2015). 
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We use a simulated in silico target enrichment study of genus Arabidopsis and 

investigate the effect of having reference sequences that derive from single-copy genes 

and paralogous gene clusters. We selected 500 nuclear loci that are known to be single-

copy orthologues (hereafter referred to as orthologous markers) and 666 loci from 

paralogous gene families (referred to as paralogous markers) and used them as 

reference loci (referred to as markers). In particular, the following hypotheses are 

tested: 

1. A method used to filter loci which are putatively contaminated with paralogous 

copies relies on sequencing coverage. The assumption is that, if several 

paralogous copies of the targeted sequence are present in the genome, the 

average sequencing coverage should be higher in comparison to true 

orthologous loci (Nicholls et al., 2015). We test this hypothesis by comparing 

coverage patterns between orthologues and paralogues. 

2. The second method is based on the prediction that, if reads derive from several 

paralogous copies, a higher density of SNPs will be observed in these loci  

(Zhou and Holliday, 2012). These different SNP densities should lead to 

increased summed branch lengths in gene trees. We evaluate this assumption by 

calculating the summed branch length of the single gene trees. 

3. The method described in Chapter 2 is based on the assumptions that, if reads 

derive from several paralogous copies, the sequence divergence of the two 

alleles per enriched marker is higher than if the reads derive from only a single-

copy gene. Similarly, in the case that these alleles are true allelic variants, their 

phylogenetic distance within all allelic variants from a given marker should be 

smaller than if the putative allelic variants represent paralogous copies. We 

apply the method developed for filtering markers applied to the Berberis dataset 
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(Chapter 2) to the Arabidopsis dataset. We evaluate whether the mean sequence 

similarity and the mean phylogenetic distance between pairs of alleles can be 

used to distinguish orthologous and paralogous loci in Arabidopsis. 

4. Phylogenies derived from markers with paralogous copies in the genome should 

be incongruent with phylogenies derived from orthologous markers. We infer 

maximum likelihood phylogenies of concatenated orthologous and paralogous 

markers and compare their topologies. The estimated tree from orthologous 

markers is considered the true tree. 

5.2. Materials and methods 

5.2.1 Sampling 

Shotgun sequencing data from members of genus Arabidopsis were downloaded 

from The Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra; last 

accessed 07/08/2017). In total, shotgun sequencing data from 18 samples were included 

in this study, of which six belong to A. thaliana (Table 5-1). Only diploid species were 

included. 

5.2.3 Marker assembly and allele reconstruction 

Raw reads were quality trimmed using Trimmomatic v. 0.33 (Bolger et al., 

2014) and reads shorter than 80 bp were discarded. The filtered reads were then mapped 

to the reference markers with Bowtie2 with default options (Langmead and Salzberg, 

2012). The resulting BAM files were sorted and phased with SAMtools (Li et al., 

2009). Phasing allows the reconstruction of two alleles based on read alignments in the 

BAM files (He et al., 2010). The phased BAM files were then used as an input to call 

variants with bcftools and transform each sequence alignment to fastq files with 

https://www.ncbi.nlm.nih.gov/sra
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‘vcfutils vcf2fastq’ (Danecek et al., 2011). Fastq sequences were converted to fasta 

format with seqkt (https://github.com/lh3/seqtk; last accessed 07/08/2017). The 

consensus sequences of each allele pair were reconstructed using EMBOSS (Rice et al., 

2000). Thus, our resulting dataset comprised two alleles (allele 1 and allele 2) and a 

consensus sequence of each allele pair for 1,166 markers from 18 samples. 

 

Table 5-1 Arabidopsis samples used in this study. The number of reads comprises 

forward and reverse reads. 

Sample Species subsp. 
Sequence Read 

Archive (SRA) 

Number of 

reads 

A_aren Arabidopsis  

 

arenosa 
 

SRR4128971 367,133,398 

SRR4128972 259,277,800 

SRR4128973 291,971,246 

SRR4128974 284,998,284 

A_cebe Arabidopsis  cebennensis   SRR2040777 52,939,764 

A_croa_1 Arabidopsis  croatica   SRR2040778 40,637,296 

A_croa_2 Arabidopsis  croatica   SRR2040779 48,297,660 

A_hall Arabidopsis halleri halleri ERR1760144 221,844,272 

ERR1760145 316,000,000 

ERR1760146 310,713,334 

ERR1760147 326,626,720 

A_lyra Arabidopsis  lyrata   SRR5003828 429,883,364 

A_negl_ro Arabidopsis  neglecta robusta SRR2040831 104,821,966 

A_neg_1 Arabidopsis  neglecta   SRR3111444 61,238,438 

A_neg_2 Arabidopsis  neglecta   SRR3111445 33,800,834 

A_neg_3 Arabidopsis  neglecta   SRR3111446 65,145,234 

A_petr Arabidopsis  petrogena   SRR2040833 86,147,774 

A_thal_1 Arabidopsis  thaliana   SRR2626429 320,224,586 

A_thal_2 Arabidopsis  thaliana   SRR3166543 324,725,120 

A_thal_3 Arabidopsis  thaliana   SRR4136216 404,278,916 

A_thal_4 Arabidopsis  thaliana   SRR4136238 385,596,896 

A_thal_5 Arabidopsis  thaliana   SRR4136242 425,561,556 

A_thal_6 Arabidopsis  thaliana   SRR4146470 446,791,922 

A_unez Arabidopsis  unezawana   SRR2040810 48,670,190 

 

https://github.com/lh3/seqtk
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The average coverage for each marker per sample was calculated with 

SAMtools using the ‘samtools depth’ command. Since the coverage within samples 

fluctuated substantially, the largest outliers (n=66) were removed for scaling reasons 

before producing the boxplots. 

The assumption of the phasing algorithm implemented in SAMtools is that the 

input data stems from diploid organisms, since the algorithm tries to find only two 

copies. The sequence similarity between each pair of sister alleles was calculated with a 

custom python script and averaged for each marker. The sequence similarity score 

between two alleles was calculated as  

Score = m/(t-g-N); 

where m is the number of nucleotide matches (without gaps); t is the length of the 

alignment; g is the number of gaps; and N is the number of columns where data was 

missing in at least one sequence. Since missing data and gaps are often prevalent in 

target enrichment data sets, a mismatch penalty would be inappropriate for assessing 

the sequence similarity. The resulting data set contained the marker ID, average 

sequence similarity and the standard deviation of the sequence similarity. The mean 

phylogenetic distance was calculated as described in section 2.2.3.4. 

5.2.5 Tree reconstruction 

Three different datasets were built: first, the orthologous marker dataset, where 

alignments were of orthologous markers; second, the paralogous marker dataset, where 

only alignments from paralogous markers were included and finally, the combined 

dataset, consisting of all markers. The following analysis was repeated with each 

dataset. First, maximum likelihood trees from the individual gene alignments were 

estimated using RAxML v. 8.2.9 (Stamatakis, 2014) with 100 rapid bootstrap 
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replicates. The summed branch lengths for each single gene tree were calculated using a 

custom bash script. The resulting trees served as the input trees for inferring the 

majority consensus extended trees where gene support frequencies (GSF) are 

calculated. Alignments of all markers of a given dataset were concatenated using 

phyutility v.2.2.6 (Smith and Dunn, 2008). The concatenated datasets were used to 

estimate the maximum likelihood tree in RAxML v. 8.2.9 (Stamatakis, 2014) with 100 

rapid bootstrap replicates with partitions for each marker. The resulting phylogenies 

were inspected by eye for topological differences. 

5.3 Results 

The average coverage between orthologues and paralogues is shown in Figure 

5-1. There is no apparent difference in coverage between orthologues and paralogues. 

However, in some cases, the paralogues have lower coverage. Similarly, no differences 

between the summed branch lengths for gene trees derived from orthologues or 

paralogues were apparent (Figure 5-2), suggesting that similar levels of variation are 

present in both datasets. The data generated in applying the pipeline devised for the 

Berberis dataset and described in Chapter 2 are shown in Figure 5-3. Figure 5-3A 

shows that orthologues and paralogues cannot be distinguished in terms of the sequence 

divergence between putative alleles as calculated using a pairwise similarity approach. 

Neither can they be distinguished using phylogenetic distances between putative allelic 

pairs derived from phasing (Figure 5-3B). 

The maximum likelihood trees resulting from analyses of concatenated datasets 

are shown in Figure 5-4. Comparison of topologies suggests that they are congruent 

whether alignments derived from orthologous markers, from markers known to include 
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paralogous copies, or from both combined. However, gene support frequencies within 

Arabidopsis thaliana were lower in the phylogeny inferred from paralogous markers. 

 
Figure 5-1 The boxplots describe the average coverage of orthologous (left) and 

paralogous markers (right) per sample. For reasons of scaling the individual plots, the 

highest 66 data points per sample were removed prior to producing the boxplots (final 

data set: n = 1,100 markers per sample). 

 
 

Figure 5-2 Density plot of sums of branch length.  
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Figure 5-3 A: Mean and standard deviation of sequence similarity of each marker, 

calculated from the pairwise distances between pairs of alleles. B: Mean and standard 

deviation of phylogenetic distance of pairwise alleles of each marker. Density plots on 

top and right of the scatter plots describe the distribution of points along the respective 

axis. 
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Figure 5-4 Phylogenetic trees of concatenated orthologous, paralogous and the combined marker dataset. Top row: Maximum likelihood tree 

with 100 bootstrap replicates. Numbers below branches are shown when the bootstrap support is lower than 100. Bottom row: Majority rule 

extended consensus tree. Branch lengths are ignored. Numbers above branches are gene support frequencies (GSF) in percent. 
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5.4 Discussion 

In this study, we analysed the effect of assembling genes for phylogenomic 

inference from reference sequences that are either known to be single-copy genes or 

belong to known paralogous clusters. Furthermore, we tested whether some of the 

methods used for identifying assemblies that are contaminated with reads from 

paralogous genes are reproducible in Arabidopsis.  

The paralogy problem has concerned phylogeneticists since the advent of 

molecular systematics (Doyle, 1992). When phylogenetic reconstruction depended on 

the generation of data from one or few loci, mistaken orthology could result in the 

reconstruction of topologies fundamentally incongruent with the true species 

phylogeny. In this context, mistaken orthology was the result of direct comparison of an 

orthologous sequence with a paralogous one. The resulting topologies might be 

identified as problematic if, for example, one gene tree conflicted with high node 

support with another. Spurious long branches might also highlight the inclusion of 

paralogous sequences (Struck, 2014). In the context of phylogenomics, the effect of 

paralogues on tree inference has been demonstrated in several cases (Struck, 2013), and 

Philippe et al. (2011) list the incorrect identification of orthologues as a source of non-

phylogenetic signal. The starting points of these studies are fully reconstructed gene 

sequences, where the sequences are each found in the organism, but the relationship 

between the sequences is not necessarily one of orthology. In this study, the focus is on 

the implications for phylogenetic reconstruction of the failure during assembly to 

discriminate paralogues. The assembly of genes from sequencing reads is a crucial step 

and the effect of contamination on these assemblies with reads from untargeted loci is 
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perceived as significant (e.g. Nicholls et al., 2015; Prum et al., 2015; Chapter 2), since 

it may lead to false positive base calls. 

Here, we use four measures (coverage, summed branch length of gene trees, 

allelic distances and phylogenetic infernece) to determine the effect of inclusion of 

known paralogues in terms of sequences assembled. None of the four measures identify 

any effect of inclusion of known paralogues in a phylogenomic dataset. 

Coverage patterns often fluctuate considerably from the theoretical expectations and are 

influenced by the DNA sequence and other biases introduced in the lab work (Sims et 

al., 2014). Nevertheless, the average coverage of a targeted gene with cognate 

paralogues should, in theory, be higher because the mapped reads derive from two 

different regions. The coverage patterns reported here exhibited no difference between 

the orthology and paralogy datasets. This could be explained by the reads from only one 

paralogous copy mapping to the reference, suggesting that sequence divergence within 

paralogue clusters is sufficiently high for copies to be discriminated between by the 

read mapping algorithm. Notably, the sequence data we explored are shotgun sequence 

datasets, not captured regions. An empirical study to investigate the different coverage 

for known paralogues versus known orthologues, perhaps using Arabidopsis, might 

resolve the coverage question. 

We have shown that the distribution of the sums of branch lengths of gene trees 

derived from the orthology and paralogy datasets are similar (Figure 5-2). A target 

enrichment study on Populus trichocarpa, where there is good evidence for an ancient-

duplication event (Tuskan and Torr, 2007), separated the genes into two groups, as we 

do here. The first group consisted of genes with retained paralogues and the second 

group genes without paralogues. The analysis of SNP density revealed that the number 

of putative SNPs was not significantly higher in the paralogues group (Zhou and 
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Holliday, 2012). These data from Populus trichocarpa suggest that, where orthologues 

and paralogues are retained in the genome, contaminant reads do not map to the initial 

reference. In our study, paralogous sequences are from recent duplications, and in this 

case, though paralogous copies map to the reference, read assembly errors do not 

influence outcomes. Whether there is a hierarchical level at which duplications map to 

the reference but do influence outcomes may become apparent as more systems are 

investigated.  

Applying the pipeline described in Chapter 2 to the Arabidopsis dataset showed 

that the orthologues and paralogues were not distinguishable using allelic comparisons. 

The hypothesis that phylogenetic distance and sequence similarity between alleles are 

different in the orthology and paralogy datasets could not be confirmed. In the case of 

the orthology data set, phasing must reconstruct alleles since there are no paralogues for 

these regions. The alleles that were recovered in the paralogy dataset may be true allelic 

variants, rather than copies derived from different genomic regions, since they have the 

same characteristics as the alleles of orthologues. The phylogenies from all three data 

sets were almost identical (Figure 5-4). However, longer terminal branch lengths in 

some samples in the ML tree derived from paralogues may indicate a higher level of 

variability in the paralogy dataset. The results from the majority rule consensus tree 

which shows how many gene trees support each split in the phylogeny indicates that the 

all three datasets support the same topology, but that the gene support frequency (GSF) 

is higher in the ortholog dataset compared to the paralog dataset. However, the MRC 

trees that were built from individual genes confirm findings that gene trees often favour 

alternative topologies to the respective total-evidence tree (Salichos and Rokas, 2013). 

Only the Arabidopsis thaliana clade exhibits a GSF that is higher than 50%. In 

conclusion, the ML and the MRC approaches suggest that the difference between the 
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datasets is minimal which indicates that the effect of contamination is minimal, if 

present (Figure 5-4).  

From the evidence generated by this study, we conclude that read mapping from 

cognate paralogues in Arabidopsis has little to no effect on phylogenomic inference. 

That at least SNP density is unaffected by the inclusion of paralogues in Populus 

trichocarpa is an indication that similar results can be expected in other species. 

However, the Populus trichocarpa dataset includes only this species, and the 

Arabidopsis dataset contains only congeneric species; it may be inappropriate to 

extrapolate our findings to analyses when different genera or families are compared. It 

is also possible that the results will be different if the mapping stringency is reduced. 

Read mapping algorithms perform alignments of reads to the reference where 

mismatch-penalties are applied (e.g. Bowtie 2; Langmead and Salzberg, 2012). 

Lowering those penalties may result in the mapping of more divergent sequences. 

Our results suggest that efforts to devise analyses to eliminate read assembly 

errors due to paralogy may not contribute to improved phylogenetic inference. In the 

context of phylogenomic read assemby, paralogy may not present significant 

challenges. The focus on excluding paralogy when assembling sequences may be 

misplaced, since targeting sequences from previously unidentified paralogous clusters 

through hybridization capture is not comparable to including entire paralogous 

sequences in an alignment when reconstructing species trees. There is still a need to be 

alert to the possibility of hidden paralogy when different copies are present or lost in 

different species since, in this case, orthologues would be compared with paralogues. 

Paralogy of this kind is best identified using the gene tree approaches that are already 

well-established. 
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Chapter 6 General discussion 

6.1 Summary of findings 

This thesis investigates genomic approaches to evolution and to DNA 

barcoding. In Chapter 2, I show that target enrichment of hundreds of nuclear loci is a 

significant improvement to Sanger sequencing-based approaches for phylogenetic 

inference. The data enabled me to ask specific evolutionary questions and I found that 

genus Berberis exhibits strong phylogeographic patterns. The phylogenetic trees shed 

light on the impact of the different uplift histories of the Himalayas and the Hengduan 

Mountains. Recent research suggests that in situ speciation in the Hengduan Mountains 

is an important factor shaping the floral composition of this mountain system (Xing and 

Ree, 2017). The study of Berberis confirms the importance of in situ speciation in the 

Hengduan Mountains. Furthermore, the analyses reveal that the Qinghai-Tibetan 

Plateau is likely to act as a high-elevation bridge between the Himalayas and the 

Hengduan Mountains. In summary, this chapter provides an example of how the floras 

of these mountain systems are related. 

Chapters 3 and 4 are dedicated to the authentication of herbal medicines using 

DNA barcoding and phylogenetics. In Chapter 3, I show how next-generation 

sequencing of plastid genomes can be employed for designing informative barcodes, 

even in groups where the taxonomy is still under development and where recent 

evolutionary processes result in low genetic variation between species. The use of 

operational phylogenetic units for barcoding of herbal medicines provides a conceptual 

approach that may be employed in other DNA barcoding studies. DNA barcoding is 

becoming a routine tool for the authentication of herbal medicines and I provide DNA 
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barcodes based on diagnostic characters to facilitate application for regulatory purposes. 

In Chapter 4, I show that genomic tools are powerful for identifying specimens of 

traded herbal medicinal products. The metagenomics approach applied to the 

Phyllanthus dataset has been proven to be effective for analyzing mixed samples 

(Coghlan et al., 2015, 2012; Raclariu et al., 2017; Sgamma et al., 2017). In line with 

previous work, I confirm the potential of this approach for routine quality control of 

herbals. The phylogenetic approach applied to traded Berberis samples provides 

valuable knowledge about global trade. The analysis of traded samples reveals that 

global trade chains for natural commodities are complex and are highly dependent on 

local, potentially ancient economic structures. These findings highlight that results 

obtained from DNA barcoding allow questions beyond species identification to be 

asked, and are emerging as a valuable tool for market investigations. 

Chapter 5 describes investigations that were conceptualized after having devised 

a pipeline for filtering potentially contaminated read alignments in the Berberis dataset. 

Several different approaches have been taken to address this possible problem (e.g. 

Nicholls et al., 2015). However, none of these pipelines have actually been tested on 

data where information about single-copy genes and paralogous clusters were available. 

I have shown that contamination of reads from unidentified paralogous copies is 

minimal. This finding is likely to be applicable to groups other than genus Arabidopsis. 

Future target-enrichment studies may use this study as reference to decipher the 

potential impact of reads from different paralogous loci on DNA assembly. 

6.2 The future of phylogenomics 

The transition from using few genes to genome-scale data in phylogenetics 

allows for new approaches for studying the evolution of non-model organisms. The 
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study presented in Chapter 2 shows that phylogenomics approaches outperform 

phylogenetic inference when only a few genes are used, as shown in Adhikari et al. 

(2015). At the beginning of the phylogenomics era, the increased amount of data, in 

conjunction with certain analytical methods (e.g. concatenation of genes), painted the 

picture of fully resolved phylogenies (e.g. Regier et al., 2008; Smith et al., 2011; Zhou 

et al., 2012). However, several studies showed discordance between gene trees and 

species trees (e.g. Kubatko and Degnan, 2007; Salichos and Rokas, 2013), highlighting 

that different parts of the genome have different evolutionary histories. The 

introduction of the multispecies coalescent method (Degnan and Rosenberg, 2009) is a 

significant improvement for phylogenomic inference using genome-scale data, since 

likelihood-based reconstruction of species phylogenies with concatenated data can be 

statistically inconsistent (Kubatko and Degnan, 2007; Roch and Steel, 2015). Species 

tree estimation is difficult in presence of gene tree conflict. This discordance may be the 

result of ILS which is most probable in closely related taxa or when ancient rapid 

radiations occurred (Degnan and Rosenberg, 2009). ILS is mathematically modelled by 

the MSC and takes into account gene tree discordance by treating each gene as an 

independent trial of the coalescence process in a phylogeny. In contrast, concatenated 

datasets consider the same history for all genes and do therefore not allow for 

genealogical independence of different genes (Edwards, 2009). The emergence of the 

MSC exemplifies that efforts in developing phylogenetic theory are necessary for 

improving species tree estimation. 

The enriched genomic sequences used in this study were treated as 

“anonymous”, meaning that the physiological function that those regions are 

responsible for remained unknown. However, they were specifically designed for genus 

Berberis. Several tools and databases exist to assign functions to a sequence of coding 
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DNA (e.g. BLAST2GO; Conesa et al., 2005). Applying these tools may lead to new 

ways of studying evolution by specifically targeting genes that are likely beneficial for 

adaptation or de novo evolution of genes (Pease et al., 2016). In the case of Berberis, it 

would be interesting to study how the Berberine biosynthetic pathway is conserved 

among different species or what genetic factors determine specific traits, such as either 

being evergreen or deciduous. Combining functional properties of genes with 

evolutionary theory could identify evolutionary mechanisms in unprecedented detail. 

If the aim is to study deep phylogenetic relationships, rather than the mode of 

species evolution at shallow phylogenetic levels, it is crucial to target genes that are 

ubiquitous across a wide range of species. In a recent study, a set of DNA hybridization 

probes targeting ~500 loci was developed, designed using genomic resources from 43 

angiosperm species (Buddenhagen et al., 2016). The study shows the applicability of 

this bait set for resolving deep, intermediate and shallow angiosperm relationships. 

Such resources may be used for improving the resolution of deep angiosperm 

phylogenetic relationships. Furthermore, in-solution hybridization techniques are 

particularly useful when DNA quality is impaired (e.g. Stenzel et al., 2009), as is the 

case in herbarium specimens (Särkinen et al., 2012). Hybridisation probes as presented 

by Buddenhagen et al. (2016) may improve sequencing of such specimens. 

In terms of data processing of NGS reads to phylogenies, I have presented a 

pipeline for read assembly in Chapter 2. This pipeline included a step for filtering loci 

that are likely to be contaminated with reads from unidentified paralogous clusters. 

However, in Chapter 5, I show that loci from paralogous clusters perform almost 

equally well as single-copy genes for phylogenomic inference, making the loci filtering 

step redundant. The process from raw next-generation reads to phylogenies is still under 

development and researchers have not yet agreed on common practice. However, such 
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pipelines are emerging (Faircloth, 2015; Johnson et al., 2016) and, in the future, NGS 

data processing for phylogenomic inference will be a routine task. 

6.3 The future of medicinal plant barcoding 

It is important to remember that companies manufacturing herbal medicinal 

products need to follow guidelines published in pharmacopoeias. Three different 

approaches to DNA identification of specimens are presented in this thesis. The first 

approach is presented in Chapter 3 and is based on diagnostic characters in a DNA 

sequence. As stated in the discussion of that chapter, I am convinced that the approach 

used has the advantage of being easily implemented in a regulatory context. 

The second approach presented is based on phylogenetic placement using 

hundreds of nuclear DNA sequences. Phylogenetic methods for DNA identification 

have the disadvantage of being computationally intensive and requiring knowledge 

about phylogenetics (Casiraghi et al., 2010). Furthermore, the study design presented in 

this thesis is highly specific to Berberis and the applicability of the hybridization 

capture probes to distantly related species is unlikely to produce consistent results. A 

bait set that targets nuclear genes across all angiosperms has recently been developed 

(Buddenhagen et al., 2016) and may be used as a standardized process for specimen 

identification. Using hundreds of nuclear genes could certainly increase the resolution 

of the DNA barcodes and circumvents known issues of using plastid DNA. However, 

an important factor determining the applicability of DNA barcoding as a routine 

diagnostic tool is the presence of a database for those respective loci, which would need 

to be produced for each group of species under study. Furthermore, data processing and 

specimen identification are labour-intensive and demand specialized skills. 

Nevertheless, hybridization capture has significant advantages when using degraded 
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DNA, as exemplified by its application in retrieval and sequencing of ancient DNA 

(e.g. Kistler et al., 2014; Stenzel et al., 2009). 

The third approach is based on DNA metabarcoding (Taberlet and Coissac, 

2012; Yu et al., 2012) of herbal mixtures. DNA metabarcoding is based on amplifying 

common DNA barcodes through PCR and sequencing the PCR products using next-

generation sequencing technologies. Through parallel sequencing, the diversity of the 

PCR fragments is retained, which contrasts Sanger sequencing where only one 

sequence per PCR product is produced. Through BLAST search (Altschul et al., 1990) 

against a database, the fragments are then assigned to a specific taxonomic rank (Huson 

et al., 2007). This approach has huge potential for the herbal medicines industry since it 

not only authenticates the presence of a species, but also identifies contaminations with 

other species (Coghlan et al., 2015, 2012; Raclariu et al., 2017). Furthermore, it may be 

used for relative quantification of different ingredients. Nevertheless, significant 

advances in benchmarking this approach are needed. Standard DNA barcodes that are 

currently in use are either located in the plastid genome or in the rDNA, both existing in 

multiple copies within a cell. If relative quantification is the goal of this approach, 

assessing the variation of genome copy numbers, the impact of PCR success and 

sources of errors introduced through PCR or sequencing need to be benchmarked. This 

issue has been recognized by the DNA metagenomics community which mainly 

analyses microbial communities and was recently addressed in an excellent study by 

Amore et al. (2016). The authors produced artificial microbial mock communities that 

were sequenced using different library preparation settings (e.g. number of PCR cycles) 

and sequencers. In the context of DNA metabarcoding of herbal medicines, analysing 

artificial mixtures will increase confidence in the method by defining thresholds for 

species identification. 
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I have described advantages and disadvantages of distance-based, phylogenetic 

and diagnostic character-based identification methods in Chapter 3. According to a 

study with simulated DNA barcodes of closely related species, diagnostic methods 

consistently outperform other methods (van Velzen et al., 2012). Several tools are 

available for identification of diagnostic nucleotides in a given set of barcodes (e.g. 

Sarkar et al., 2008; Weitschek et al., 2013). These methods use hierarchical 

classification systems and can be seen as a classification chart with “if-then rules” 

(Weitschek et al., 2013). The proposition made to use whole plastid sequences as DNA 

barcodes (Coissac et al., 2016; Kane et al., 2012) may require the use of sophisticated 

algorithms for classification. Essentially, all barcoding methods share the same 

supervised learning paradigm, where a set of sequences with known class are used as 

the training set and a set of unknown sequences are attributed to these known classes 

(Fiscon et al., 2016). The increasing amount of sequence data available demands highly 

effective classification systems. Supervised classification using machine learning 

algorithms such as Naïve Bayes seem promising (Weitschek et al., 2014).  

6.4 Research questions emerging from this study 

The sequence data used in the studies presented in this PhD are only partly 

explored and I believe that sequencing data may be used to target other research 

questions. Shotgun sequencing was applied to numerous samples in this study. 

Although the number of sequencing reads is not enough for whole genome assembly, 

the data may be used, for example, to investigate differences in biosynthetic pathways 

between species. Berberis species produce benzylisoquinoline alkaloids, such as 

Berberine, mainly as a response to pathogenic attack (Dittrich and Kutchan, 1991). 

Little is known as to which extent such important pathways are conserved among 
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species. Exploring the sequencing data by mapping reads to specifically selected genes 

may give additional insights into the evolution of the species or, alternatively, into the 

evolution of important biosynthetic pathways. 

The phylogeographic study of Berberis in the Himalayas and Hengduan 

Mountains should ideally be complemented with a calibrated tree. Wang et al. (2012) 

identified a two-phase growth of the Hengduan Mountains: the first occurring between 

30-25 Myr ago and the second between 10-15 Myr ago. According to Xing and Ree 

(2017), high rates of in situ diversification coincide with the second period of fast 

orogeny. A dated phylogeny could be used to test the hypothesis of whether the 

diversification of deciduous Berberis species in the Hengduan Mountains is related to 

the second pulse of rapid exhumation in the Hengduan Mountains. Furthermore, it 

would be interesting to calculate diversification rates in the two mountain systems. 

Berberis s.s. is diverse in South America and in the Sino-Himalayan region. 

This distribution pattern provides an excellent opportunity for studying the rate of 

evolution through time and across two unconnected regions, and would further give 

insights into the role of orogeny for species diversification. As identified by Adhikari et 

al., (2015), there is still no clear evidence of how the distribution pattern of simple-

leaved Berberis emerged. The competing hypotheses are either long-distance dispersal 

or Cretaceous vicariance between Africa and South America (Kim et al., 2004). Testing 

of these hypotheses would require sampling African taxa (Adhikari et al., 2015). A 

collaborative study with dense sampling of taxa in South America, Africa and Eurasia 

using the laboratory methods presented in this study would give interesting and 

unprecedented insights into the mode and tempo of species diversification of an 

antitropically distributed genus. 
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Appendices 

Appendix figures 

 
Appendix Figure AF-1 Consensus network from a sample of 984 trees from the 

Bayesian analysis. The network is a 3D representation drawn in 2D. No conflicting 

splits were detected. 
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Appendix Figure AF-2 Gene map of the plastid genome of Berberis aristata. Genes on 

the outside of the circle are transcribed clockwise and genes on the inside anti-

clockwise. The dark grey histograms in the inner circle show the GC content. 
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Appendix Figure AF-3 Phylogenies of the selected barcodes ndhI-ndhG, matK and 

SSC_noncoding2 under different models of evolution. The aristata and asiatica clades 

were both recovered, leading to the same conclusion as under the GTRCAT model. 
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Appendix tables 

Appendix Table AT-1 Table with specimen information. 

 
 

  

Sample Species Locality Lat. Long Collector(s) Coll. Date Voucher Comments

B_angulosa1 B. angulosa  Wall. ex Hook.f. & Thomson Nepal, Illam District 27.11 87.99 Adhikari, B. et al. 14-Jun-07 LKSRB71

B_angulosa2 B. angulosa  Wall. ex Hook.f. & Thomson Nepal, Rasuwa District 28.21 85.57 Adhikari, B. 03-Aug-07 BL244

B_angulosa3 B. angulosa  Wall. ex Hook.f. & Thomson Bhutan, Haa 27.27 89.17 Di McNab 01-Jul-05 AS97
Cultivated (J. 

Harber Coll.)

B_angulosa4 B. angulosa  Wall. ex Hook.f. & Thomson Nepal, Bimtang 28.64 84.47 N/A 13-Aug-08 20815195

B_aristata1 B. aristata  DC. Nepal, Makwanpur District 27.59 85.77 Adhikari, B. et al. 01-Sep-14 Col_35.5

B_aristata10 Berberis aristata  DC.
Nepal, Dhankuta District 27.04918 87.35425 Adhikari, B. et al. 01-Aug-14

WP21.1

B_aristata11 Berberis aristata  DC.
Nepal, Gandaki District 28.39255 83.77315

Adhikari, B.
5 October 2006

EA109

B_aristata2 B. aristata  DC. Nepal, Doti District 29.29 81.01 N/A 29-Jun-09 Bhatjang20915004

B_aristata3 B. aristata  DC. Nepal, Dhankuta District 27.05 87.35 Adhikari, B. et al. 01-Sep-14 WP21.5

B_aristata4 B. aristata  DC. N/A N/A N/A N/A N/A 1260210

B_aristata5 B. aristata  DC. Nepal, Hile 27.04 87.32 Adhikari, B. et al. 01-Sep-14 WP18.3

B_aristata6 Berberis aristata  DC.
Nepal, Koshii District 27.04918 87.35425 Adhikari, B. et al. 01-Aug-14

WP32.5

B_aristata7 Berberis aristata  DC.
Nepal, Koshii District 27.04048 87.31713 Adhikari, B. et al. 01-Aug-14

WP18.2

B_aristata8 Berberis aristata  DC.
Nepal, Dhawalagiri District 28.66222 83.59472 Adhikari, B. 17 August 2007

EA243

B_aristata9 Berberis aristata  DC.
Nepal, Dhawalagiri District 28.66028 83.59389

Adhikari, B.
17 August 2007

EA249

B_asiatica1 B. asiatica  Roxb. ex DC. Nepal, Mustang District 28.59 83.65 Adhikari, B. 17-Aug-07 EA254

B_asiatica2 B. asiatica  Roxb. ex DC. Nepal, Makwanpur District 27.58 85.16 Adhikari, B. et al. 25-Aug-17 Coll_7.1

B_asiatica3 B. asiatica  Roxb. ex DC. Nepal, Doti District 29.32 81.02 N/A 30-Jun-09 20915008

B_asiatica4 B. asiatica  Roxb. ex DC. India, no further details N/A N/A C. Chadwell N/A AS82
Cultivated (J. 

Harber Coll.)

B_asiatica5 Berberis asiatica  Roxb. ex DC.
Nepal, Narayani Zone 27.6541 85.09973 Adhikari, B. et al. 01-Aug-14

Coll_38.1

B_asiatica6 Berberis asiatica  Roxb. ex DC.
Nepal, Bagmati Zone 27.77278 85.43166 Adhikari, B. et al. 02-Sep-14

SB1

B_calliantha B. calliantha  Mulligan China, Tibet 28.91 89.61
F. Kingdon-Ward, Ex 

Hillier
21-Nov-24 AS38

Cultivated (J. 

Harber Coll.)

B_chilensis B. chilensis  Gillet Región VII N/A N/A Gardner et al. 22-Jan-90 19900509 Cultivated (RBGE)

B_chrysosphaera B. chrysosphaera  Mulligan China, Tibet 28.65 97.46
F. Kingdon-Ward, Ex 

Hillier
10-Dec-33 AS39

Cultivated (J. 

Harber Coll.)

B_con_extensiflora1
B. concinna  var. extensiflora  Ahrendt Nepal, Manang District 28.61 84.47 N/A 14-Aug-08 20812277

B_con_extensiflora2
B. concinna  var. extensiflora  Ahrendt Nepal, Myagdi District 28.4 83.69 N/A 04-Oct-06 EA104

B_con_extensiflora3
B. concinna  var. extensiflora  Ahrendt Nepal N/A N/A C. Chadwell N/A AS74

Cultivated (J. 

Harber Coll.)

B_concinna B. concinna  Hook.f. Nepal, Rasuwa District 28.1 85.38 Adhikari, B. 21-May-08 GB10

B_concinna2 Berberis concinna  Hook.f.
India, Sikkim 27.83472 88.69944

T D. Atkinson
05-Jul-05

AS102

B_concolor B. concolor W. W. Smith China, Yunnan 28.47 98.91 D. E. Boufford et al. 20-Aug-13 43135

B_congestiflora B. congestiflora  Gay Chile, Región IX N/A N/A Gardner et al. 19-Feb-88 1988.0916 Cultivated (RBGE)

B_cooperi B. cooperi Ahrendt Bhutan, Timphu 27.47 89.64 J. F. Harber s.n. 01-Aug-97 AS9
Cultivated (J. 

Harber Coll.)

B_crassilamba B. crassilamba   C. Y. Wu ex S. Y. Bao China, Yunnan 27.61 99.89 D. E. Boufford et al. 04-Sep-13 43437

B_darwinii B. darwinii Hook. Argentina : Prov. Río Negro N/A N/A Unknown N/A 1987.2408 Cultivated (RBGE)

B_derogensis B. derogensis   T. S. Ying China, Sichuan 29.09 99.38 D. E. Boufford et al. 22-Aug-13 43164

B_dictyophylla1 B. dictyophylla  Franch. China, Yunnan 27.89 99.68 B & S Wynn-Jones 17-Sep-00 AS93
Cultivated (J. 

Harber Coll.)

B_dictyophylla2 B. dictyophylla  Franch. China, Yunnan 25.94 100.4 Z. W. Liu s.n. N/A AS100
Cultivated (J. 

Harber Coll.)

B_empetrifolia B. empetrifolia Lam. Argentina, Tierra del Fuego N/A N/A N/A N/A 1976.1088A Cultivated (RBGE)

B_everestiana1 B. everestiana var. ventosa  Ahrendt Nepal, Solu Khumbu District 27.86 86.64 N/A 23-Sep-05 DNEP3BY156

B_everestiana2 B. koehneana  C. K. Schneid. Nepal, Mustang District 28.82 83.86 Adhikari, B. 16-Aug-07 EA217

B_fendleri B. fendleri A.Gray N/A N/A N/A N/A N/A N/A_2 Cultivated (RBGE)

B_glaucocarpa B. glaucocarpa  Stapf Nepal, Doti District 29.35 81.06 N/A 01-Jul-09 20918011

B_graminea B. graminea  Ahrendt China, Sichuan 28.12 101.18 D. E. Boufford et al. 06-Sep-13 43466

B_griffithiana1 B. griffithiana  C.K.Schneid. India, Arunchal Pradesh 27.58 91.88 SF 06008 24-Nov-06 AS55
Cultivated (J. 

Harber Coll.)

B_griffithiana2 B. griffithiana  C.K.Schneid. India, Arunchal Pradesh 27.33 92.31 A Clark 5260 01-Oct-04 AS54
Cultivated (J. 

Harber Coll.)

B_grodtmanniana B. grodtmanniana   C. K. Schneider China, Sichuan 27.69 101.22 D. E. Boufford et al. 06-Sep-13 43471

B_gyalaica1 Berberis gyalaica  Ahrendt ex F.Br.
China, Tibet 29.65056 94.36

W. Bentall 
27-Jun-05

WB

B_gyalaica2 Berberis gyalaica Ahrendt ex F.Br.
China, Tibet 28.97444 93.69472

W. Bentall 
NA

AS6

Cultivated (J. 

Harber Coll.)
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Table Appendix AT 1 (continued) 

 
  

Sample Species Locality Lat. Long Collector(s) Coll. Date Voucher Comments

B_hamiltoniana Berberis hamiltoniana  Ahrendt
Nepal, Bajhang District 29.61553 81.00556

Adhikari, B.
NA

20915095

B_hamiltoniana1 B. hamiltoniana  Ahrendt Nepal, Humla District 29.98 81.81 N/A 21-Jun-08 JRSB162

B_hamiltoniana2 B. hamiltoniana  Ahrendt Nepal, Bajhang District 29.62 81.01 N/A 13-Jul-09 20915095

B_hookeri1 B. hookeri  Lem. Nepal, Panchthar District 27.11 87.94 Adhikari, B. et al. 08-Jun-07 LKSRB12

B_hookeri2 B. hookeri  Lem. Nepal, Khumbu District 27.76 86.71 N/A 29-Sep-05 DNEP3BY213

B_hookeri3 B. hookeri  Lem. Bhutan 27.42 90.21 J. F. Harber 01-Aug-97 AS29
Cultivated (J. 

Harber Coll.)

B_hookeri4 B. hookeri  Lem. Bhutan N/A N/A Ruth Liddington 20-Jun-05 AS63 Cultivated (RBGE)

B_hookeri5 Berberis wallichiana  DC.
Nepal, Panchthar District 27.10263 87.96897 Adhikari, B. et al. 8 June 2007

LKSRB28

B_hookeri6 Berberis hookeri  Lem.
Nepal, Myagdi District 28.4014 83.70257

Adhikari, B.
4 October 2006

EA106

B_hookeri7 Berberis hookeri  Lem.
Nepal, Myagdi District 28.40443 83.69923

Adhikari, B.
13 July 2009

Bajhang0920915095

B_insignis Berberis insignis  Hook.f. & Thomson
Nepal, Illam District 27.06317 88.01702 Adhikari, B. et al. 16 June 2007

LKSRB144

B_jaeschkeana1 B. jaeschkeana  var. usteriana  C.K.Schneid. Nepal, Jumla District 29.32 82.18 N/A 03-Jun-08 JRSA12

B_jaeschkeana2 Berberis jaeschkeana  var. usteriana  C.K.Schneid.
Nepal, Mustang District 28.71222 83.55889

Adhikari, B.
17 August 2007

EA238

B_jamesiana2 B. jamesiana  Forrest & W. W. Smith China, Yunnan 26.11 100.17 D. E. Boufford et al. 14-Sep-13 43530

B_karnalensis B. karnaliensis Bh.Adhikari Nepal, Jumla District 29.3 82.18 N/A 03-Jun-08 JRSA5

B_koehneana B. koehneana C. K. Schneid. Nepal, Mustang District 28.68 83.6 N/A 30-Sep-06 EA56

B_kumaonensis B. kumaonensis C. K. Schneid. Nepal, Doti District 29.38 81.12 N/A 02-Jul-09 20915029

B_leptopoda B. leptopoda  Ahrendt India, Arunchal Pradesh 28.57 95.06 K.  Rushforth AS103
Cultivated (J. 

Harber Coll.)

B_levis B. levis   Franch. China, Yunnan 25.96 100.39 D. E. Boufford et al. 15-Sep-13 43557

B_mekongensis B. mekongensis  W. W. Smith China, Yunnan 28.33 99.12 D. E. Boufford et al. 19-Aug-13 43131

B_micropetala B. micropetala  C.K.Schneid. India, Manipur 24.67 93.92 N. Macer 04-Jul-05 AS104
Cultivated (J. 

Harber Coll.)

B_microphylla1 B. microphylla  G.Forst. N/A N/A N/A N/A N/A 1961.063803 Cultivated (RBGE)

B_microphylla2 B. microphylla  G.Forst. Chile, Región XI (Aisén) N/A N/A Beavis, Derek S. 21-Mar-92 1992.2583 Cultivated (RBGE)

B_montana B. montana Gay Chile : Región X N/A N/A Gardner et al. 15-Jun-05 1993.2827B Cultivated (RBGE)

B_mucrifolia Berberis  mucrifolia  Ahrendt
Nepal, Mustang District 28.71194 83.55889

Adhikari, B.
Nov 2009

B_negeriana B. negeriana  Tischler Chile, Región VIII N/A N/A Hechenleitner Vega 11-Mar-04 200404971 Cultivated (RBGE)

B_nervosa B. nervosa  Pursh Canada, British Columbia N/A N/A Halliwell, Brian 23-Aug-78 1978.2559 Cultivated (RBGE)

B_nevinii B. nevinii   A. Gray. N/A N/A N/A Unknown Unknown HC1066
Cultivated (Rancho 

Santa Ana Botanical 

B_newsppA Berberis  new_speciesA 
China Yunnan 27.53 99.64 D. E. Boufford et al. 31-Aug-13 43334

B_newsppB Berberis  new_speciesB
China Yunnan 28.57 99.83 D. E. Boufford et al. 31-Aug-13 43304

B_orthobotrys1 B. orthobotrys  var. rubicunda  Ahrendt Nepal, Rasuwa District 28.21 85.53 Adhikari, B. 03-Aug-07 BL239

B_orthobotrys2 B. orthobotrys  var. rubicunda  Ahrendt Nepal, Khumbu District 27.79 86.71 N/A 12-Sep-05 DNEP3BY22

B_pendryi B. pendryi  Bh.Adhikari Nepal, Mustang District 28.82 83.87 Adhikari, B. 16-Aug-07 EA25

B_pendryi2 Berberis pendryi  Bh.Adhikari
Nepal, Mustang District 28.81694 83.87

Adhikari, B.
16 August 2007

EA29

B_petiolaris1 B. petiolaris Wall. ex G. Don Nepal, Mugu District 29.65 82.11 N/A 12-Jun-08 JRSA122

B_petiolaris2 B. petiolaris Wall. ex G. Don Nepal, Mugu District 29.65 82.11 N/A 12-Jun-08 JRSA122 Technical Replicate

B_phanera B. phanera   C.K. Schneider China, Sichuan 28.12 101.18 D. E. Boufford et al. 06-Sep-13 43465

B_polyodonta B. polyodonta Fedde China Yunnan N/A N/A Lijiang et al. 12-Jun-05 1991.1138 Cultivated (RBGE)

B_praecipua B. praecipua  C.K.Schneid. Bhutan 27.32 89.55 Ruth Liddington 20-Jun-05 AS64
Cultivated (J. 

Harber Coll.)

B_pruinosa B. pruinosa  Franch. China, Yunnan 27.46 99.9 D. E. Boufford et al. 04-Sep-13 43442

B_pruinosa2 Berberis pruinosa  Franch.
China, Yunnan 26.11111 99.95083

A. Clark 
NA

AS106

Cultivated (J. 

Harber Coll.)

B_pseudotibetica B. pseudotibetica  C. Y. Wu China, Yunnan 28.29 99.16 D. E. Boufford et al. 19-Aug-13 43134

B_qiaojianensis B. qiaojianensis   S. Y. Bao China, Yunnan 26.19 103.27 D. E. Boufford et al. 19-Sep-13 43528

B_rotundifolia B.  rotundifolia  Poepp. & Endl. Chile N/A N/A Hechenleitner Vega 26-Jun-05 20080789 C Cultivated (RBGE)

B_spp1 Berberis spp.
Nepal, Panchthar District 27.10389 87.9475 Adhikari, B. et al. 8 June 2007

LKRSB17

B_temolaica
Berberis telomaica Ahrendt China, Tibet 29.2169 94.21528

A. Clark 
NA

AS67

Cultivated (J. 

Harber Coll.)
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Sample Species Locality Lat. Long Collector(s) Coll. Date Voucher Comments

B_thomsoniana Berberis thomsoniana  C.K.Schneid.
Nepal, Myagdi District 28.40217 83.70247

Adhikari, B.
3 October 2006

EA101

B_thomsoniana1 B. thomsoniana  C.K.Schneid. Nepal, Panchthar District 27.1 87.95 Adhikari, B. et al. 08-Jun-07 LKSRB17

B_thomsoniana2 B. thomsoniana  C.K.Schneid. Nepal, Jumla District 29.37 82.15 N/A 05-Jun-08 JRSA49

B_thomsoniana3 B. thomsoniana  C.K.Schneid. Nepal, Rasuwa District 28.1 85.36 Adhikari, B. 21-May-08 GB14

B_thomsoniana4 B. thomsoniana  C.K.Schneid. Nepal, Myagdi District 28.4 83.7 N/A 03-Oct-06 EA101

B_tibaoshanensis B. tibaoshanensis S. Y. Bao China, Yunnan 27.61 99.89 D. E. Boufford et al. 04-Sep-13 43436

B_tsarica B. tsarica  Ahrendt Nepal, Solu Khumbu District 27.94 86.61 N/A 20-Sep-05 DNEP3BY132

B_tsarica1 Berberis tsarica  Ahrendt
Nepal,  Khumbu District 27.94111 86.61 Adhikari, B. et al. 20 September 2005

DNEP3BY132

B_wallichiana1 B. wallichiana  DC. Nepal, Panchthar District 27.1 87.97 Adhikari, B. et al. 08-Jun-07 LKSRB28

B_wallichiana2 B. wallichiana  DC. Nepal, Rasuwa District 28.17 85.36 Adhikari, B. 02-Aug-07 BL220

B_wallichiana3 B. wallichiana  DC. Nepal N/A N/A Chadwell C. N/A JH2
Cultivated (J. 

Harber Coll.)

B_wardii
Berberis wardii  C.K.Schneid India, Assam 26.00472 94.99806

F. Kingdon-Ward
NA

AS66

Cultivated (J. 

Harber Coll.)

B_wilsoniae1 B. wilsoniae  Hemsley China, Yunnan 27.61 99.72 D. E. Boufford et al. 31-Aug-13 43337

B_wilsoniae2 B. wilsoniae  Hemsley China, Yunnan 24.96 102.66 Z. W Liu N/A AS99
Cultivated (J. 

Harber Coll.)

B_wilsoniae3 B. wilsoniae  Hemsley China, Yunnan 29.99 101.95 X. H. Li 05-Jul-05 AS98
Cultivated (J. 

Harber Coll.)

B_wilsoniae4 B. wilsoniae  Hemsley China, Yunnan 27.34 103.72 A. Clark 17-Jun-05 AS12
Cultivated (J. 

Harber Coll.)
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Appendix Table AT-2 Sequencing information. The seqeuencing strategy describes 

whether the sample was target enriched (TE), shotgun sequenced (SG) or borth (TE + 

SG). Numbers in the row “Capture” indicates which samples were pooled in the 

hybridization capture. Furthermore, the average coverage and standard deviation 

(Stdev) are displayed. 

 

Average Stdev Average Stdev

B_angulosa1 NextSeq TE+SG yes 6 371.8 380.8 353.7 155.7

B_angulosa2 NextSeq TE+SG yes 5 447.0 436.0 373.3 130.4

B_angulosa3 NextSeq TE+SG yes 4 198.5 411.7 144.4 39.4

B_angulosa4 MiSeq TE no 2 584.5 530.5 - -

B_aristata1 NextSeq TE no 8 47.3 59.8 - -

B_aristata2 NextSeq TE no 8 86.2 110.1 - -

B_aristata3 NextSeq TE yes 4 215.6 278.5 209.1 94.0

B_aristata4 NextSeq TE yes 5 61.5 79.2 20.6 22.1

B_aristata5 NextSeq TE no 8 42.9 61.5 - -

B_asiatica1 MiSeq TE no 1 348.3 418.5 - -

B_asiatica2 NextSeq TE yes 4 389.3 389.0 135.3 110.2

B_asiatica3 NextSeq TE no 4 296.8 291.2 - -

B_asiatica4 NextSeq TE+SG yes 4 267.3 468.3 360.3 86.1

B_calliantha NextSeq TE+SG yes 4 452.2 589.8 83.7 35.3

B_chilensis NextSeq TE+SG no 6 61.2 125.8 - -

B_chrysosphaera NextSeq TE+SG yes 4 437.5 521.4 46.5 21.4

B_con_extensiflora1 NextSeq TE+SG yes 5 236.0 250.7 68.7 49.2

B_con_extensiflora2 NextSeq TE+SG yes 7 122.2 144.5 - -

B_concinna NextSeq TE no 4 311.1 311.1 - -

B_con_extensiflora3 NextSeq TE+SG yes 4 243.7 483.6 235.5 52.1

B_concolor MiSeq TE+SG yes 3 148.3 398.4 - -

B_congestiflora NextSeq TE+SG no 6 276.3 483.8 - -

B_cooperi NextSeq TE+SG yes 5 98.2 190.2 172.9 40.9

B_crassilamba NextSeq TE+SG yes 5 555.4 655.8 188.5 64.0

B_darwinii NextSeq TE+SG no 6 78.9 163.0 24.9 22.3

B_derogensis NextSeq TE+SG yes 7 146.3 472.2 36.7 34.1

B_dictyophylla1 NextSeq TE+SG yes 4 370.3 496.1 98.4 30.7

B_dictyophylla2 NextSeq TE yes 4 198.8 370.1 133.8 27.4

B_empetrifolia NextSeq TE+SG no 6 20.1 50.2 - -

B_everestiana1 NextSeq TE+SG yes 8 67.9 153.1 99.7 64.8

B_everestiana2 NextSeq TE+SG yes 4 371.9 355.1 60.1 21.8

B_fendleri NextSeq TE+SG yes 6 212.0 393.8 43.7 31.0

B_glaucocarpa NextSeq TE+SG yes 7 111.8 157.6 164.8 63.9

B_graminea NextSeq TE+SG yes 8 258.9 306.6 133.5 70.7

B_griffithiana1 NextSeq TE+SG yes 4 424.8 618.9 69.3 31.5

B_griffithiana2 NextSeq TE yes 5 278.4 420.2 57.7 28.7

B_grodtmanniana MiSeq TE+SG yes 3 194.8 682.6 112.3 66.1

B_hamiltoniana MiSeq TE yes 2 121.0 7.9 25.4 16.9

B_hookeri1 NextSeq TE no 4 195.5 342.5 - -

B_hookeri2 NextSeq TE yes 5 354.5 402.2 16.2 14.4

B_hookeri3 NextSeq TE no 4 340.2 492.4 - -

B_hookeri4 NextSeq TE no 5 318.9 460.3 - -

B_hookeri5 NextSeq TE+SG no 5 399.4 421.4 42.5 25.1

B_jaeschkeana1 MiSeq TE+SG yes 3 134.0 250.6 72.2 26.5

Coverage Nuclear Coverage Plastid

Sample Sequencer

Sequcning 

strategy

Plastid 

Phylo Capture
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Appendix Table AT-2 (continued) 

 

 
 
 

Average Stdev Average Stdev

B_jamesiana2 MiSeq TE+SG yes 3 123.1 279.8 97.2 67.3

B_karnalensis NextSeq TE+SG yes 8 93.9 131.0 16.3 17.3

B_koehneana NextSeq TE+SG yes 5 513.0 506.3 32.0 24.9

B_kumaonensis NextSeq TE+SG yes 7 46.7 93.0 53.2 27.8

B_leptopoda NextSeq TE+SG yes 4 457.1 600.2 112.9 48.3

B_levis NextSeq TE+SG yes 5 343.1 377.9 27.2 13.8

B_mekongensis NextSeq TE+SG yes 7 127.2 166.3 106.9 47.1

B_micropetala NextSeq TE+SG yes 5 264.6 378.8 55.9 27.5

B_microphylla1 NextSeq TE+SG no 6 286.7 476.3 - -

B_microphylla2 NextSeq TE+SG no 6 19.3 67.0 - -

B_montana NextSeq TE+SG no 6 168.5 376.6 196.3 88.6

B_newsppA MiSeq TE+SG yes 3 137.2 206.7 415.5 165.6

B_newsppB NextSeq TE+SG yes 4 415.8 451.5 149.0 72.0

B_negeriana NextSeq TE+SG no 6 255.4 411.8 142.9 74.2

B_nervosa NextSeq TE+SG no 6 355.5 501.3 87.5 54.6

B_nevinii NextSeq TE+SG no 7 241.4 423.1 - -

B_orthobotrys1 NextSeq TE yes 5 305.3 268.8 186.3 55.8

B_orthobotrys2 NextSeq TE+SG yes 8 35.2 47.3 16.9 10.7

B_pendryi NextSeq TE+SG no 8 44.5 58.7 - -

B_petiolaris1 NextSeq TE+SG yes 4 170.4 237.5 24.3 14.0

B_petiolaris2 NextSeq TE yes 8 340.7 431.4 80.1 31.7

B_phanera NextSeq TE+SG yes 7 197.5 273.3 310.1 113.8

B_polyodonta NextSeq TE+SG no 6 463.1 695.0 664.4 239.9

B_praecipua NextSeq TE+SG yes 5 327.7 555.5 249.1 83.8

B_pruinosa NextSeq TE+SG yes 4 266.8 351.2 16.1 16.1

B_pseudotibetica NextSeq TE+SG yes 7 101.8 121.6 43.2 32.6

B_qiaojianensis NextSeq TE+SG yes 7 113.8 170.7 361.7 124.4

B_rotundifolia NextSeq TE+SG no 6 90.7 292.6 - -

B_spp3 NextSeq TE+SG no 6 145.5 234.9 - -

B_spp1 NextSeq TE+SG yes 6 121.3 177.7 36.3 33.6

B_spp2 NextSeq TE+SG no 4 23.5 40.2 - -

B_thomsoniana NextSeq TE+SG yes 5 346.4 316.7 50.3 23.3

B_tibaoshanensis NextSeq TE+SG yes 7 112.7 160.0 368.1 121.8

B_tsarica1 NextSeq TE+SG yes 5 161.3 234.3 91.8 34.0

B_tsarica2 MiSeq TE+SG no 3 55.0 124.4 - -

B_wallichiana1 NextSeq TE+SG yes 7 149.8 325.6 177.9 82.3

B_wallichiana2 NextSeq TE yes 5 371.2 610.7 140.2 71.7

B_wilsoniae1 MiSeq TE+SG yes 3 139.5 172.7 131.8 62.7

B_wilsoniae2 NextSeq TE yes 5 327.9 365.6 90.8 38.9

B_wilsoniae3 NextSeq TE+SG yes 5 268.0 360.1 46.1 27.3

B_wilsoniae4 NextSeq TE no 5 369.1 537.7 - -

Sample Sequencer

Sequcning 

strategy

Plastid 

Phylo Capture

Coverage Nuclear Coverage Plastid


