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A B S T R A C T

Previously, a series of aurones bearing amine and carbamate functionalities was synthesized and evaluated for
their cholinesterase inhibitory activity and drug-like attributes. In the present study, these aurones were eval-
uated for their multi-targeting properties in two Alzheimer’s disease (AD)-related activities namely, monoamine
oxidase (MAO) and amyloid-beta (Aβ) inhibition. Evaluation of the aurones for MAO inhibitory activity dis-
closed several potent selective inhibitors of MAO-B, particularly those with 6-methoxyl group attached at ring A.
Of the different amine moieties attached as side chains, pyrrolidine-bearing aurones were prominent as re-
presented by 2-2, the most potent inhibitor. Evaluation on the Aβ aggregation inhibition identified 4-3 as the
best inhibitor with a percentage inhibition comparable to that of a known Aβ inhibitor curcumin. Examination
on the neuroprotective ability of the more drug-like aurone 4-3 in two Caenorhabditis elegans neurodegeneration
models showed 4-3 to protect the nematodes against both Aβ- and 6-hydroxydopamine-induced toxicities. These
new activities further support 4-3 as a promising lead to develop the aurones as potential multipotent agents for
neurodegenerative diseases.

1. Introduction

Alzheimer’s disease (AD) is one of the most common causes of
mental decline in the aging population. Notwithstanding efforts to
understand the AD pathogenesis, the precise etiology of AD remains
incomplete [1]. Histopathological hallmarks including low levels of
acetylcholine (ACh), amyloid-beta (Aβ) accumulation, tau protein ag-
gregation, and oxidative stress have been associated with the AD pa-
thogenesis, and several hypotheses based on these factors were pro-
posed to explain the cause of AD progression [2–5].

The cholinergic hypothesis is particularly important as it has been
the cornerstone to the discovery of the present treatments for AD [2,6].
This hypothesis postulates that the cognitive impairment and symptoms
(dementia, memory loss) experienced by AD patients is due to the ex-
tensive loss of cholinergic neurons in certain regions of the brain such
as the hypothalamus, amygdala, and neocortex. Drugs such as acet-
ylcholinesterase (AChE) inhibitors that can restore this cholinergic
deficit in the central nervous system (CNS) would therefore be able to
slow the cognitive decline associated with AD. Also of prominence is
the amyloid cascade hypothesis, which originates from the observation

of Aβ plaques in the AD brains [3]. The deposition of insoluble Aβ fi-
brils amidst the neurons and the aggregation of Aβ monomers into
protofibrils and oligomers were shown in studies in vitro and in vivo to
be toxic to the neurons [7]. Accordingly, agents that target Aβ and
inhibit its aggregation are being sought after [8]. In addition, evidence
points to the role of alterations in the monoaminergic neurotransmitter
system and the resulting oxidative stress in AD [9–11]. In a recent
study, gamma-aminobutyric acid (GABA) secretion by reactive astro-
cytes linked to MAO-B activity was found to lead to memory impair-
ment in mice and that inhibiting MAO-B restored the learning, memory,
and synaptic plasticity of the mice [12]. The development of MAO-B
inhibitors ladostigil [13] and RO4602522 [14] as potential therapeutics
for AD also lends support for MAO inhibition as a potential approach in
treating AD.

Due to the multifactorial nature of AD, attention has shifted to a
multi-targeting approach, the idea of a multi-target directed ligand
(MDTL) that engages several biological target proteins simultaneously
[15–17]. In an earlier report [18], we have synthesized a series of an-
ticholinesterase aurone derivatives that carry various basic amines
(dimethylamino-, piperidine, and pyrrolidine alkyls) and
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Table 1
Structures of compounds in Series. 1 to 6.

Compound R1

Series 1

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-8

Series 2

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

Table 1 (continued)

Compound R1

2-9

2-11

Series 3

3-1

3-2

3-3

3-7

Series 4

4-1

4-2

4-3

4-7

Series 5

5-1

5-2

5-3

5-4

5-5

(continued on next page)
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diethylcarbamate at rings A and B of the scaffold (Table 1). Several
promising AChE-inhibiting aurones (submicromolar IC50s) that bear
amine functionalities were uncovered. The aurones also exhibited high
passive permeability in the parallel artificial membrane permeability
assay for blood-brain barrier (PAMPA-BBB) (Pe>20×10−6 cm/s), a
feature favourable for CNS-active drugs. Aurone 4-3 was identified as
the optimal cholinesterase inhibitor (AChE IC50 0.43 μM; BuChE IC50

6.15 μM) with high BBB permeability in both PAMPA-BBB and a brain
endothelial cell model [19] as well as satisfactory metabolic stability
(T½ in rat liver microsomes= 44.3min). In our development of an
MDTL for AD, we chose to re-examine these aurones without further
modification of their structures in keeping their sizes small (molecular
weights< 500 Da) and within drug-like limits.

To repurpose the aurones as multi-targeting agents, herein we re-
port the evaluation of these compounds in two AD-related activities in
vitro: monoamine oxidase (MAO) inhibition and self-induced amyloid-
beta (Aβ) aggregation inhibition. The rationale of targeting these two
proteins was prompted by reports of aurones with simpler structures
exhibiting modest MAO inhibition [20,21] and their high binding af-
finity for Aβ aggregates in vitro as Aβ probes [22]. Subsequently, the
most promising aurone with a good combination of multi-targeting and

drug-like properties was selected for evaluation in two Caenorhabditis
elegans neurodegeneration models namely, Aβ-induced paralysis and 6-
hydroxydopamine (OHDA)-induced neurodegeneration to determine
whether these desirable attributes could be translated to efficacious
neuroprotection in a whole organism.

2. Materials and methods

2.1. Evaluation of inhibitory effect on monoamine oxidase enzymes

Recombinant human MAO-A and MAO-B enzymes were purchased
from BD Biosciences (San Jose, CA). Tyramine, benzylamine, clorgyline
hydrochloride, vanillic acid, 4-aminoantipyrine and horseradish per-
oxidase were obtained from Sigma-Aldrich (St Louis, MO). Donepezil
hydrochloride and pargyline hydrochloride were purchased from Santa-
Cruz Biotechnology Inc. (CA, USA). Sodium dihydrogen phosphate
anhydrous was purchased from R&M chemicals (Essex, UK), disodium
hydrogen phosphate anhydrous from Merck (Darmstadt, Germany), 96-
well microplates from Greiner Bio-one (Frickenhausen, Germany). All
other materials were purchased from Sigma-Aldrich (Dorset, UK) unless
otherwise stated. Stock solutions of test compounds were prepared
using dimethyl sulfoxide (DMSO) at a concentration of 2mg/ml. These
were diluted with the reaction medium to the final concentrations
during the assay. All compounds are initially tested at a concentration
of 50 μM and aurones that displayed percentage inhibition of more than
75% at the stated concentration were further selected to determine
their IC50 based on the corresponding enzyme.

The MAO inhibition activities were evaluated using a coupled col-
orimetric method as described previously [23]. 0.2M potassium phos-
phate buffer (pH 7.6, 140 μL) was pre-incubated with sample solution
(20 μL), and MAO-A or MAO-B enzyme (20 μL) at 37 °C for 15min. The
final concentration of the MAO-A and MAO-B enzymes in the final re-
action mixture were 0.1 mg/mL and 0.2 mg/mL respectively. Following
the incubations, the enzymatic reactions were initiated by adding 10 μL
of 15mM tyramine (for MAO-A) or benzylamine (for MAO-B); followed
by 10 μl of a chromogenic solution containing vanillic acid (4mM), 4-
aminoantipyrine (2mM), and horseradish peroxidase (60 U/mL). The
rate of absorbance change, reflecting the MAO activity was measured at
490 nm for 30min at 37 °C with a Multiskan FC Microplate Photometer
(Thermo Fisher Scientific, MA, US). Each assay was carried out with
clorgyline or pargyline as positive controls. The percentage inhibition
was calculated using the following equation:

% inhibition = (Atreated - Ablank)/(Auntreated – Ablank) × 100

where Atreated is the absorbance of the compound-treated well, Auntreated

is the well without compound, and Ablank is a well filled only with
phosphate buffer. Compounds with percent inhibition greater than 75%
were further tested at different concentrations to determine IC50 values
obtained from the inhibition versus concentration curves plotted using
GraphPad Prism 4.0 (La Jolla, CA, USA). The reactions were performed
in three independent runs and each run of a sample was performed in
triplicates.

2.2. Evaluation of inhibitory effect on self-induced Aβ1-40 aggregation

Human amyloid-beta (Aβ1-40) peptide, thioflavin T (ThT), hexa-
fluoroisopropanol (HFIP), DMSO and curcumin were obtained from
Sigma-Aldrich (St Louis, MO). Prior to the assay, the lyophilized Aβ1-40
was reconstituted in HFIP at a concentration of 1mg/mL followed by
freeze-drying under vacuum to obtain Aβ1-40 monomers. The monomers
were stored at 4 °C and used fresh for the assay. Test compounds were
dissolved in DMSO and diluted to the final assay concentration (25 μM)
with the assay medium. Thioflavin T-based fluorometric assay was
performed based on a reported method [28] with slight modifications
to investigate the self-induced Aβ1-40 aggregation inhibition of selected

Table 1 (continued)

Compound R1

5-6

5-7

Series 6

6-1

6-2

6-3

6-7

6-8

6-9

6-10

6-11
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aurones. In brief, the pre-treated Aβ1-40 monomer (25 μM, final con-
centration) was incubated with the test compounds (25 μM, final con-
centration) and ThT (10 μM) in 0.05M phosphate buffer (pH 7.4) at
37 °C for 48 h. The ThT fluorescence intensity was measured using LS-
45 luminescence spectrometers (Perkin Elmer, Inc., Waltham, MA,
USA) with excitation and emission wavelengths of 440 nm 484 nm re-
spectively over a time period of 48 h. The assay was performed in three
independent runs. Each run of a sample was performed in triplicates
and the percentage inhibition was calculated by using the following
formula:

% Inhibition = (1−Fi/Fc)× 100

in which Fi and Fc are the fluorescence intensities obtained from Aβ
aggregation in the presence and absence of inhibitors respectively after
subtracting the background reading.

2.3. Synthesis of the hydrochloride salt of aurone 4-3 (4-3 HCl)

The reagents for synthesis (synthetic grade or better) were obtained
from Sigma-Aldrich Chemical Company Inc. (Singapore) and Acros
Organics (Geel, Belgium) and used without further purification. A scale-
up synthesis of 4-3 was performed according to the procedure described
in the previous work [18]. Subsequently, to a solution of 4-3 in diethyl
ether (500mg, 1.139mmol, 100mL/mmol) was added dropwise con-
centrated hydrochloric acid (2mL). The reaction mixture was then left
stirring at room temperature until the appearance of yellow precipitates
(1 h). The precipitated hydrochloride salt was filtered, washed three
times with diethyl ether and dried to yield the hydrochloride salt form
of 4-3 (4-3 HCl) as a yellow solid, 82.16% yield; m.p. 228–230 °C; 1H
NMR (DMSO-d6, 500MHz): δ 7.74 (d, J= 8.6 Hz, H4), 7.35, (s, 2 H),
7.29 (d, J= 1.8 Hz, H7), 6.92 (dd, J= 8.6, 1.8 Hz, H5), 6.84 (s, 1 H),
4.61 (t, J= 4.9 Hz, 2 H), 3.87 (s, 6 H), 3.74 (s, 3 H), 3.49–3.53 (m, 4 H),
2.97–3.04 (m, 2 H), 1.79–1.82 (m, 4 H), 1.68–1.72 (m, 1 H), 1.34–1.43
(m, 1 H); 13C NMR (DMSO-d6, 125MHz): δ 182.1 (CO), 168.1, 165.8,
153.5, 147.1, 139.8, 127.8, 126.0, 114.9, 113.6, 112.2, 109.5, 98.7,
63.8, 60.7, 56.5, 54.8, 53.1, 22.8, 21.6; HRMS (TOF-ES) calcd for
C25H30NO6

+ ([M+H]+): 440.2073, found 440.2073; HPLC analyses:
tR= 2.67min (99.83% pure at 260 nm; 99.79% pure at 330 nm) on the
C18 analytical column; Mobile phase: solvent system A (MeOH 55%
and 0.1% HCOOH in H2O); tR= 4.78min (97.56% pure at 260 nm;
98.13% pure at 330 nm) on the C18 analytical column; Mobile phase:
solvent system B (CH3CN 30% and 0.1% HCOOH in H2O).

2.4. Caenorhabditis elegans (C. elegans) neuroprotection assay

2.4.1. Materials
Microbiology agar, sodium chloride and peptone were obtained

from Merck (Darmstadt, Germany). Calcium chloride, disodium hy-
drogen phosphate, dipotassium hydrogen phosphate, magnesium sul-
phate and potassium dihydrogen phosphate were purchased from R&M
Chemicals (Essex, UK). 6-hydroxydopamine (6-OHDA), dimethyl sulf-
oxide (DMSO), Luria Bertani (LB) broth and cholesterol were all pur-
chased from Sigma-Aldrich (St. Louis, USA), Luria Bertani (LB) agar
from Miller (Mumbai, India), and penicillin-streptomycin solution
(10,000 units/mL) from Hyclone (Thermo Scientific, Utah, USA). The
petri dishes (60mm and 35mm diameter) were obtained from Corning
(Corning Inc., New York, USA) and centrifuge tubes (15mL and 50mL)
were from Techno Plastic Products (Trasadingen, Switzerland). The 1-
inch piece of 32 gauge platinum wire was product of Bio-Rad
Laboratory (Hercules, USA).

2.4.2. C. elegans strains and maintenance
The Aβ-expressing transgenic strain GMC101 (dvIs100 [unc-54p::A-

beta-1-42::unc-54 3′-UTR+mtl-2p::GFP]. mtl-2p::GFP) and the GFP-
labelled DAergic neuron strain UA57 (baIs4 [dat-1p::GFP+dat-

1p::CAT-2]; GFP expression in CEP, ADE and PDE neurons) as well as
their food source Escherichia coli (E.coli) strain OP50 were obtained
from the Caenorhabditis Genetics Center (University of Minnesota, MN,
US). For normal maintenance purposes, the C. elegans strains were
routinely propagated at 16 °C on solid nematode growth medium
(NGM) agar in petri plates, which was pre-seeded with spots of E.coli
OP50 as food source.

2.4.3. Preparation of nematode growth medium (NGM) agar
17.0 g of microbiology grade agar, 2.5 g of peptone and 3.0 g of

sodium chloride were accurately weighed into an autoclavable bottle
and dissolved in 975mL of distilled water. The mixture was autoclaved
at 121 °C for 20min. The agar was then allowed to cool down to 55 °C in
the autoclave. Subsequently, 1 mL of 1M calcium chloride, 1 mL of
5.0 mg/ml cholesterol in ethanol, 1 mL of 1M magnesium sulphate and
25ml of 1M potassium phosphate buffer were aseptically added to the
agar mixture. The NGM agar was then poured into sterile petri plates
and allowed to dry in laminar flow hood (Isocide™, Esco, Singapore).
For the normal maintenance purposes, 60mm diameter of agar plate
was used (11ml of agar) while 35mm diameter agar plate (5.0 ml of
agar) was used as the test plates. After drying, the agar plates were left
at room temperature for 2 days in an air-tight container before seeding
with the OP50 solution.

2.4.4. Preparation of food source (OP50)
2.5 g of LB broth powder was weighed into an autoclavable bottle

and dissolved in 100mL of distilled water. The mixture was autoclaved
(Hirayama, Japan) for 20min at 121 °C. The autoclaved LB broth was
then allowed to cool to room temperature and 1mL of penicillin-
streptomycin solution was added. Subsequently, a single colony of
OP50 from a streak plate was inoculated in the sterile LB broth and left
to incubate on a shaker (Grant-Bio, England) for 2 days at room tem-
perature. After the incubation, the OP50 solution was equally separated
into four 50mL-centrifuge tube with each of the tubes containing 25mL
of the OP50 solution. The OP50 solutions were then centrifuged at 2000
× g for 40min at 4 °C and the pellets of OP50 were collected after the
supernatant was discarded. The OP50 pellets were later resuspended in
5mL of fresh LB broth and seeded onto the NGM plates (600 μl was
seeded onto the 60mm diameter plates and 100 μL for the 35mm
diameter test plates) as food source.

2.4.5. Preparation of test plates
Stock solution of 4-3 HCl was prepared using distilled water at a

concentration of 10mM. The stock solution was then added directly to
the molten NGM agar at 55 °C during the NGM agar preparation and
mixed well to obtain final concentrations of 25, 50 and 100 μM in the
NGM agar test plates. Since distilled water was used as the carrier to
dissolve the compound, a carrier control plate was not required for the
assay. Control plates (without test compound) prepared consisted only
of the NGM agar.

2.4.6. Aβ-induced paralysis assay
The Aβ-expressing transgenic C. elegans GMC101 maintained on

NGM plates (60mm diameter petri plates) at 16 °C were used in the
paralysis assay. The test plates were prepared as described in the
Section 2.4.5. The paralysis assays were performed according to the
method described by Dostal and Link [24]. In brief, egg-synchronised
population of the transgenic worms was prepared by allowing gravid
adult worms to lay eggs onto the NGM test plate (with or without test
compound) spread with OP50 for 2 h at 16 °C. The gravid adults were
then removed and plates containing the eggs were incubated at 16 °C.
At 68 h post egg-lay, the transgene expression was induced by up-
shifting the temperature from 16 to 25 °C and maintained until the end
of the paralysis assay. Paralysis was scored starting at 24 h after in-
duction and the scoring was performed at 2 h intervals. Worms were
scored as paralysed if they failed to respond to a touch-provoked
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movement with a platinum wire. The assays were performed in three
independent runs and each run of a sample was performed in triplicates
with approximately 55–75 worms per test plates.

2.4.7. 6-hydroxydopamine (6-OHDA)-induced dopaminergic
neurodegeneration assay

The neuroprotective effects of 4-3 HCl against 6-OHDA-induced
dopaminergic neuronal cell death was evaluated following the protocol
described by Maranova and Nichols [25]. The transgenic C. elegans
UA57 nematodes, with GFP expression in their dopaminergic neurons
maintained on NGM plates (60mm diameter petri plates) at 16 °C were
used in the assay. The test plates were prepared as described in the
Section 2.4.5. The egg-synchronised population of the transgenic
worms was prepared by allowing gravid adult worms to lay eggs onto
the NGM test plate (in the presence or absence of compound) spread
with OP50 for 2 h at 16 °C. The gravid adults were then removed and
plates containing the eggs were incubated for 19 h at 16 °C till they
reach the L1 stage. The synchronous L1 worms were then washed twice
with M9 buffer and resuspended in the buffer. The 6-OHDA-induced
dopaminergic neurodegeneration was initiated by exposing the syn-
chronous populations of L1 worms to 6-OHDA solution (5mM 6-OHDA
in 1% DMSO) and incubated at room temperature under dark condi-
tions for 1 h with gentle agitation every 10min. After the incubation,
the worms were washed 3 times with M9 buffer and subsequently in-
cubated in NGM test plates (in the presence or absence of compound)
pre-seeded with OP50 at 20 °C for 72 h before the evaluation of neu-
ronal death. After 72 h of incubation, the worms were washed 3 times
with M9 buffer and then mounted onto a 2% agar pad on glass slide
enclosed with a cover slip. Imaging of the worms was carried out with
an inverted fluorescence microscope (Carl Zeiss MicroImaging GmbH,
Göttingen, Germany). Fluorescent images of the head region of the
worms were taken using AxioVision software (Carl Zeiss, Göttingen,
Germany). The dopaminergic neuronal death of the worms was de-
termined by the diminished, reduced, or absence of the dopaminergic
neuron GFP fluorescence. The assays were performed in three in-
dependent runs and each run of a sample was performed in triplicates
with at least 35 worms per test plates analyzed.

2.4.8. Statistical analysis
Statistical analyses were performed using GraphPad Prism 5.0

software (La Jolla, CA, USA). The data were analyzed using one-way
ANOVA when comparing the differences between groups, except for the
comparison of survival curve data in the paralysis assay, which was
performed using the log-rank (Mantel-Cox) test of the Kaplan-Meier
survival function. Data were presented as mean ± SEM. The differ-
ences were considered statistically significant when p values were<
0.05.

3. Results and discussion

3.1. The MAO inhibitory activity of the aurones

The synthesis of the aurones (Series 1 to 6) was reported previously
[18]. The aurones were initially screened at 50 μM for the inhibition
against two human MAOs, hMAO-A and hMAO-B. Clorgyline (a selec-
tive MAO-A inhibitor) and pargyline (a selective MAO-B inhibitor) were
used as positive controls for the in vitro assay and the obtained in-
hibitory concentrations were compared with the IC50 values from the
literature [26,27]. Donepezil, a known AChE inhibitor was also in-
cluded in the evaluation to determine the multi-potency of the com-
pound and compare it with that of the aurones, some of which were
previously identified as AChE inhibitors [18]. A threshold value of 75%
inhibition was arbitrarily set for selecting compounds for further de-
termination of their IC50 (Fig. 1).

As shown in Fig. 1, most aurones exhibited selectivity towards
MAO-B inhibition over MAO-A inhibition in varying degrees. As all

aurones across the six series showed low MAO-A inhibition (< 75%),
they were deemed weak MAO-A inhibitors and their activities for this
MAO subtype was not pursued further. Irrespective of the substituents
at ring B of the scaffold, an outstanding MAO-B inhibitory activity was
observed in Series 2 (6-methoxyaurones), with 8 out of 10 compounds
inhibiting MAO-B by more than 75% (Fig. 1). Clearly, the placement of
a 6-methoxyl group at ring A of the compounds provided favourable
MAO-B inhibitory activity. However, a substitution of the bulkier car-
bamoyl group at the same position (6-carbamoyl) of ring A as seen in
Series 5 resulted in lower inhibition against MAO-B. None of the 6-
carbamoylaurones in this series showed inhibition at 75% and above
(Fig. 1) and they were excluded from further evaluation. Changing the
position of the methoxyl group at ring A (2-2) to ring B led to a slightly
lower activity as seen in Series 3 aurones (3-2). In addition, placing
three methoxyl groups at ring B as seen in Series 4 aurones (4-2) did not
affect significantly their activities when compared to Series 3 aurones
with the same amine (pyrrolidine) moiety. Another notable observation
was between Series 2 and Series 6. The main scaffold in Series 6 aurones
was structurally related to Series 2 aurones except for the presence of an
additional 2′-chloro (6-8, 6-9, 6-10, 6-11) and 3′-chloro (6-1, 6-2, 6-3,
6-7) at ring B. The presence of 2′-chloro (6-9) and 3′-chloro (6-2) atom
on the better MAO inhibitors among the 6-methoxyaurones (percentage
inhibition>75%, for example 2-2) resulted in a decline in MAO-B
inhibition. To refine the structure-activity relationship for better com-
parison between the compounds, the aurones that exhibited more than
75% inhibition against MAO-B were selected for the determination of
their IC50 values over a range of concentrations (Table 2).

A different SAR was observed for MAO-B inhibition when compared
to their AChE inhibitory activity as determined previously [18]. It is
interesting to find that aurones bearing the pyrrolidine moiety ex-
hibited prominent MAO-B inhibition across the six series (Table 2).
Aurones bearing piperidine (which were good AChEIs in the earlier
report) had low inhibition or were devoid of activities (IC50s> 50 μM).
The most active aurone identified was 2-2 (4ˈ-O-ethyl pyrrolidine at
ring B) with a submicromolar IC50 of 0.895 μM. Non-cyclic amine
bearing aurones (dimethylaminoethyl and dimethylaminopropyl) and
those with weakly basic nitrogen moieties (pyridinyl and aniline)
showed low to moderate inhibition (2.35–8.18 μM) against MAO-B. On
the other hand, derivatives without any amine or nitrogen functional-
ities (1-8, 2–8) showed moderate MAO-B inhibition indicating an in-
herent feature of the aurone scaffold itself as an MAO inhibitor. The
presence of amine moieties (of any types) in the aurone scaffold is
necessary for its cholinesterase inhibition but for the inhibition of MAO-
B, the pyrrolidine amine is particularly important.

In two recent reports on aurones showing MAO inhibitory activity
[20,21], several aurones were identified as MAO inhibitors with mod-
erate potencies. The reported aurones shared similarities with a few
compounds of the present study such as the ring B 4ˈ-aminoaurones (1-
4, 1-5, 2-4, 2-5) and 6,4ˈ-dimethoxyaurone (2–8) which also showed
moderate potencies. The simplicity of their structures and the lack of
elaborate functionalization again underscored the intrinsic property of
the scaffold to bind to MAO. However, the prominence of the pyrroli-
dine moiety (for example, 2-2) and the 6-methoxyl group (Series 2) in
most of the active aurones uncovered presently indicated that im-
provement in MAO inhibition activity may still be rendered with fur-
ther elaboration of the scaffold.

3.2. Aβ1-40 aggregation inhibitory effect of the aurones

Next, the Aβ anti-aggregation property of selected aurones was
evaluated using the Thioflavin T (ThT) spectrofluorometric assay. ThT
is a benzothiazole salt used as a dye to quantify the fibrillisation of
misfolded protein aggregates, both in vitro and in vivo. The principle of
this assay is based on the measurement of fluorescence intensity change
of ThT upon binding to the Aβ fibrils. Aβ monomers in DMSO were
dissolved in an aqueous buffer and allowed to aggregate and form
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amyloid fibrils. As Aβ fibrils were formed, the ThT added would bind to
the fibrils and the fluorescence intensity was measured over a 48 h
period.

Several aurones were selected for this evaluation on the basis of
their promising AChE [18] and MAO-B inhibitory activities. They were
2-2, 2-3, 3-3, 4-3 and 6-3. The aurone without any amine moieties (2-
8) was also included to examine the Aβ anti-aggregation properties of
the simple, unfunctionalized aurone scaffold. Curcumin, a known in-
hibitor of Aβ aggregation was used as a positive control for the assay by

comparing the percentage inhibition at 25 μM with the reported value
[28]. Donepezil, an AChEI was also included in the assay to assess
whether it has Aβ anti-aggregation property considering the structural
similarity of the drug with the aurones.

The changes in ThT fluorescence intensity (reflecting the Aβ fi-
brillisation process) of incubations of Aβ with the test compounds or
without compound (negative control) over 48 h were monitored
(Fig. 2). It was found that after 8 h, the aggregation of Aβ (negative
control) incubated at 37 °C in sodium phosphate buffer (pH 7.4)

Fig. 1. MAO-A and MAO-B inhibitory activities expressed in percentage inhibition (n= 3) for Series 1-6 aurones at 50 μM. (*) indicates compounds with % inhibition
=/>75%.
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reached a plateau which remained until the end of the monitoring
period. The fluorescence intensities for curcumin, 4-3, 6-3 and 2-8 was
observed to maintain at the range of 0.2 to 0.25 units after they reached
plateau at 8 h onwards, indicating that these compounds inhibited the
Aβ aggregation to certain extents. On the other hand, aurone 2-2, 2-3
and 3-3 were inactive in inhibiting Aβ aggregation as their fluorescence
intensity curves showed similar profiles to that of the negative control.
For better comparison of the extent of anti-aggregation displayed by the
compounds, the percentages of inhibition on Aβ aggregation at the 24 h
timepoint were determined (Table 3).

The Aβ anti-aggregation activity of the aurones ranged from 0.46 to
36.1% at 24 h (Table 3). Curcumin, a known Aβ aggregation inhibitor
[28] was found to inhibit Aβ aggregation by 30.5% at 25 μM. By ex-
amining the structures of the selected aurones and their inhibitory ac-
tivities, an important structure-activity relationship could be made. The
6-methoxyaurone 2-3 bearing a piperidine moiety was observed to be a

slightly better Aβ inhibitor (5.9%) compared to 6-methoxyaurone 2-2
(0.46%) bearing a pyrrolidine moiety which was considered inactive.
Switching the position of the methoxyl group from ring B to ring A as
seen in 2-3 versus 3-3 did not affect the inhibition activity. Interestingly,
aurone 4-3 with three methoxyl groups placed at ring B was identified
as the best Aβ aggregation inhibitor where it exhibited the highest
percentage of Aβ aggregation inhibition (36.13%) at 25 μM, slightly
better than curcumin. The placement of the three methoxyl groups
(versus on a single methoxyl as in 3-3) at ring B of the aurone frame-
work appeared favourable in inhibiting Aβ. On the other hand, the
aurone without any amine moieties (2-8) also showed a better inhibi-
tion (20.9%) against Aβ aggregation compared to the AChEI donepezil
(7.56%), indicating the inherent property of the scaffold itself to bind to
the Aβ monomer and inhibit Aβ fibrillisation.

From these two assays, a multi-targeting potential is uncovered in
two aurones with anticholinesterase activity: 2-2 with good MAO-B
inhibition activity, and 4-3 which can inhibit Aβ. However, examining
the previously reported drug-like profiles of compounds 2-2 and 4-3, 4-
3 was considered the better drug-like lead. 4-3 possessed the best
CYP450 metabolic stability in the in vitro rat liver microsomal incuba-
tion (T1/2 44min, versus 2-2 with T1/2 5min) and was highly BBB
permeable in both the PAMPA assay and a brain endothelial cell model
[19]. Therefore, it was singled out to determine whether its the multi-
targeting and drug-like attributes could lead to efficacious neuropro-
tection in the two C. elegans neurodegeneration models: Aβ-induced
paralysis and 6-OHDA-induced neurodegeneration. One of the limita-
tions of these C. elegans assays is the need to use significant amounts of
organic solvents and solubilisers such as DMSO, ethanol, methanol, or
Tween 20 to solubilise a test compound which may affect the assay
outcome as these solvents/solubilisers are known to cause toxicity and
may affect the general health of the C. elegans [29,30]. Moreover, given
the amount of the test compound to be incorporated into the assay
medium (5mL of agar), there is a certain limitation to the solubility of
4-3 in the aqueous medium used in the assays. Therefore, to avoid these
circumstances, a readily water-soluble hydrochloride salt of 4-3 (4-3
HCl) was synthesized and used for the evaluation of neuroprotection in
the C. elegans models.

Table 2
MAO-B inhibitory activities (IC50) of selected aurones.

Compound IC50 MAO-B

Mean (μM)a SEM (μM)a

Donepezil
Clorgyline

63.8
18.7

1.28
0.34

Pargyline 0.92 0.16
Series 1

6-Hydroxyaurones
1-2 5.06 1.06
1-8 1.42 0.28

Series 2
6-Methoxyaurones

2-1 2.35 1.06
2-2 0.895 0.18
2-3 13.3 1.10
2-4 7.56 1.23
2-5 5.04 1.09
2-6 3.41 1.08
2-7 5.41 1.08
2-8 8.18 1.09

Series 3
4'-Methoxyaurones

3-2 2.38 1.07

Series 4
3',4',5'-Trimethoxyaurones

4-2 4.05 1.07

Series 6
3'-Chloroaurones

6-1 1.57 0.54
6-7 1.57 0.52

2'-Chloroaurones
6-8 1.37 0.21
6-11 1.42 0.23

a determined in three independent experiments (n= 3).

Fig. 2. Aβ aggregation curves for test compounds (25 μM) over 48 h.

Table 3
Aβ anti-aggregation activity of test compounds (25 μM) at 24 h timepoint.

Compound Mean (% inhibition) SDb

Curcumin 30.51a 3.83
Donepezil 7.56a 10.11
2-8 20.92a 2.11
2-2 0.46a 4.19
2-3 5.90a 4.57
3-3 7.83a 2.15
4-3 36.13a 9.99
6-3 23.78a 0.55

a Determined at 24 h.
b Standard deviation (n= 3).
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3.3. Protective effect of 4-3 HCl against Aβ-induced paralysis in C. elegans

To determine whether 4-3 HCl specifically protects against Aβ-in-
duced toxicity, the Aβ-induced paralysis assay was performed using the
transgenic C. elegans GMC101 that exhibits paralysis upon expression of
human Aβ1-42 in its bodywall muscle cells [24]. The transgenic
GMC101 worms, after egg-synchronization, were incubated for 68 h at
16 °C on NGM plates pre-seeded with OP50. Paralysis of the worms was
then induced by the transgene expression of human Aβ1-42 in the
muscle cells of the body wall triggered by a temperature up-shift from
16 °C to 25 °C. The treatment protocol (Fig. 3A) was such: the worms
were fed with 4-3 HCl (25, 50 and 100 μM) incorporated into the NGM
agar, from the egg stage until the end of the paralysis assay. Untreated
controls containing only NGM agar were used to monitor the normal
rate of paralysis in the worm upon the temperature up-shift trigger. The
paralysis of the worms was scored starting at 24 h after temperature up-
shift. Compounds that possess neuroprotective effect against the Aβ
toxicity in the transgenic worm will be able to increase the percentage
of surviving worms and reduce the rate of Aβ-induced paralysis.

Fig. 3B shows the survival curves of the transgenic worms in the
paralysis assay for the untreated control and 4-3 HCl at 25 μM, 50 μM,
and 100 μM from the start of temperature up-shift till the end of the
assay. Treatment at different doses of 4-3 HCl (25 μM, 50 μM, 100 μM)
in the assay was observed to significantly increased the percentage of
surviving worms over time as compared to the untreated control (un-
treated vs. 100 μM, p < 0.0001; untreated vs. 50 μM, p < 0.0001;
untreated vs. 25 μM, p < 0.01), indicating that 4-3 HCl offered some
degrees of protection to the nematodes from paralysis induced by the
Aβ expression in a concentration-dependent manner. In addition, the
ability to delay the paralysis process was measured by determining the
mean duration at which 50% of the worms were paralysed (PT50)
(Table 4). Treatment with 4-3 HCl was shown to increase the PT50 of
Aβ-induced paralysis; however, it was only statistically significant at

100 μM (untreated vs 100 μM, p < 0.05).
Interest in disorders involving amyloid misfolding and aggregation

has increased over the past few years as studies have implicated these
insoluble aggregates in the pathology of several neurodegenerative
diseases including AD [31,32]. These toxic amyloid aggregates typically
disrupt the internal and external cellular mechanisms leading to neu-
ronal cell death; for this reason, efforts were made to find a reasonably
useful model to unveil the mechanism underlying the aggregate toxicity
and identify a neuroprotective strategy. In this respect, the C. elegans
model has emerged as a useful tool to study the mechanism of Aβ
toxicity. This model was able to identify compounds that demonstrated
inhibitory activity on Aβ aggregation including the Gingko biloba ex-
tract EGb 761 [33], glycitein from soybeans [34] and reserpine [35],
further supporting the model to associate Aβ inhibition to their pro-
tective activity against Aβ toxicity. In the present study, results showing
the protective effect of 4-3 HCl against the Aβ-induced paralysis in-
dicated that this compound could attenuate the toxicity of Aβ expressed
in the transgenic worm, which at least in part, may be attributed to its
Aβ-aggregation inhibitory action shown in the in vitro assay. However,
presently, the detailed mechanism was not further investigated.
Nevertheless, the protective effect exhibited by 4-3 HCl against the Aβ-
induced paralysis would serve to motivate future investigation of the
compound in a mammalian neurodegenerative model.

3.4. Protective effect conferred by 4-3 HCl on the 6-OHDA-induced
dopaminergic neurodegeneration in C. elegans

The neuroprotective effect of 4-3 HCl in C. elegans was further
evaluated in the 6-OHDA-induced neurodegeneration model using the
transgenic strain UA57 that expresses GFP in the dopaminergic
(DAergic) neurons following the method described by Maranova and
Nichols [25]. The treatment protocol was as follows: the egg-synchro-
nized population of the transgenic worm was raised in the presence of
various concentration of 4-3 HCl. When the worms reached the L1
stage, they were incubated with 6-OHDA to induce degeneration of the
DAergic neurons. Immediately after the 6-OHDA treatment, the worms
were transferred to fresh NGM plate (with or without 4-3 HCl). At 72 h
post-6-OHDA exposure, the neuronal death of the DAergic neurons was
determined by any diminishment or absence of the GFP-labelled
DAergic neurons (Fig. 4).

The selected concentrations of 4-3 HCl (25, 50 and 100 μM) used in
the assay were initially checked for any detrimental effects that these
concentrations may have on the DAergic neurons. In this preliminary
test, the transgenic worms were incubated on the NGM plate supple-
mented with 4-3 HCl at various concentrations (25, 50 and 100 μM)
without exposing the L1 stage worms to 6-OHDA (the neurotoxin).
These concentrations were found to be non-toxic to the nematodes
(Fig. 5) and were thus used for the assay.

To assay the neuroprotective efficacy of 4-3 HCl, the DAergic
neuronal viability was evaluated by observing the loss of GFP reporter
expression in the DAergic neurons of 6-OHDA-treated worms. Upon
treatment with 6-OHDA, the cephalic (CEP) and anterior deirid (ADE)
neurons of the transgenic worms exhibited a partial GFP loss or were
altogether absent. When the 6-OHDA worms were treated with 4-3 HCl,
a noteworthy protection was observed in the DAergic neurons with CEP

Fig. 3. (A) Aβ-induced paralysis assay protocol. (B) Effect of 4-3 HCl on the Aβ-
induced paralysis in GMC101 nematodes. Time refers to hours after tempera-
ture up-shift. Incorporation of 4-3 HCl into the agar media delayed the onset of
paralysis, also suppressed the Aβ-induced paralysis (untreated vs. 100 μM,
p < 0.0001; untreated vs. 50 μM, p < 0.0001; untreated vs. 25 μM, p < 0.01).
Data are expressed as percentage of non-paralysed worms from at least three
independent assays of> 100 worms in each experiment. The plot shown is
representative of three experiments. Error bars = SEM.

Table 4
Mean durations at which 50% worms were paralysed
(PT50).* indicates significant difference versus untreated
control at p value< 0.05.

Treatment PT50

Untreated Control 8.7 ± 0.6
4-3 HCl 100 μM 12.1 ± 0.6*
4-3 HCl 50 μM 9.9 ± 0.9
4-3 HCl 25 μM 10.3 ± 0.4
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and ADE neurons retaining their GFP expression. Through examination
of the GFP expression in the CEP and ADE neurons in each worm, the
percentage of worms with intact DAergic neurons (no partial or com-
plete loss) were scored for each group. At 72 h post-exposure to 5mM of
6-OHDA for 1 h at the L1 stage, worms with fully intact DAergic neu-
rons in the 6-OHDA-treated control were significantly reduced to ap-
proximately 16% (p < 0.0001) as compared to the normal control
group (without any treatment) (Fig. 6). Treatment of 4-3 HCl on the 6-
OHDA-treated worms raised the percentage of worms with intact
DAergic neurons in a dose-dependent manner. At 25 μM of 4-3 HCl, the
percentage of worms with intact DAergic neurons of the 6-OHDA
worms increased by about 1.7 fold (p < 0.05), whereas worms exposed
to 50 μM and 100 μM of 4-3 HCl significantly increased the percentage
of worm with intact DAergic neurons by 2.3 and 2.4 folds (p < 0.0001)
respectively, as compared to the 6-OHDA-treated control, indicating
that 4-3 HCl was able to alleviate the DAergic degeneration induced by
6-OHDA.

Many studies reported that neuronal death or neurodegeneration
induced by the neurotoxins such as 6-OHDA or 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) are associated with an increase in
reactive oxygen species formation and toxin-induced mitochondrial
dysfunction [36–38]. The molecular pathway through which these
neurons degenerate is particularly dependent on the condition and
neurotoxin used. In C. elegans, the administration of 6-OHDA produced
a selective degeneration of the DAergic neurons, with dopamine
transporter DAT-1 found to be mainly responsible for the uptake of 6-
OHDA into the DAergic neurons [39]. The inhibition of DAT-1 activity
was found to be able to prevent the damage to the neurons caused by 6-
OHDA in C. elegans [25,40]. Thus, the neuroprotective activity against
the 6-OHDA induced DAergic neurodegeneration displayed by 4-3 HCl
could be due to the inhibition of DAT-1 in the worm. However, further
studies on this model when evaluating potential therapeutic compounds
with various mechanisms of action besides DAT-1 inhibition [25,41]
indicated that the protective effect of these various classes of drugs,
some of them not DAT inhibitors, may not necessarily be due to DAT-1
inhibition. Other yet identified mechanisms may have contributed to
the neuroprotection shown in this 6-OHDA-induced neurodegeneration
model. Further investigation would be required to elucidate the

Fig. 4. (A) 6-OHDA-induced DAergic neurodegeneration assay protocol. Representative images of the head region with GFP expression pattern of DAergic neurons of
C. elegans strain UA57, (B) worms with fully intact DAergic neurons, and (C–D) worms with patterns of DAergic neurons lost or degenerated. CEP=Cephalic neurons
and ADE=Anterior deirid neurons. The left side shows the fluorescence images. The right side shows the differential interference contrast (DIC) images.
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mechanism(s) underpinning 4-3 HCl neuroprotective effect. Never-
theless, examination of the neuroprotective effect of 4-3 HCl in this
model has uncovered an additional neuroprotective aspect of the
compound, which may be attributed to its multi-targeting potential.

4. Conclusion

The present investigation sought to explore the multi-targeting po-
tential of amine- and carbamate-bearing aurones in two AD-related
activities: MAO and Aβ aggregation inhibition. We have shown these
two potentially neuroprotective modes of action in some of the aurones
in addition to their previously reported anticholinesterase activity.
With regards to the MAO inhibition, the aurones exhibited selective
inhibition towards MAO-B. The better MAO-B inhibitors in this study
were those with 6-methoxyl group attached at ring A. Among the dif-
ferent amine moieties attached as side chains, the most favoured was a
pyrrolidine represented by aurone 2-2. In the case of Aβ anti-ag-
gregation activity, the most potent inhibitor identified was 4-3 (3′,4′,5′-

trimethoxyaurone) with a piperidine side chain at 6-position of ring A.
4-3 was observed to inhibit Aβ aggregation to a comparable extent as
that of curcumin. In summary, a multi-targeting potential was un-
covered in two anticholinesterase aurones: 2-2 with good MAO-B in-
hibition activity, and 4-3 which could inhibit Aβ. Further evaluation of
the neuroprotective effect of the most promising aurone (4-3) with
multi-targeting and optimum drug-like properties using two C. elegans
neurodegeneration models, the Aβ-induced toxicity paralysis model
and 6−OHDA-induced DAergic neurodegeneration model provides
encouraging indications of neuroprotection in 4-3. Evaluation on the
Aβ-induced toxicity paralysis assay showed that 4-3 HCl significantly
delayed the paralysis of the transgenic worms in a dose dependent
manner. Similarly, 4-3 HCl significantly increased the percentage of
worms with intact DAergic neurons in OHDA-treated nematodes. In
conclusion, the results of this study indicated that aurone 4-3 has a
general, non-specific neuroprotective property, as evidenced by the
protection shown against two different neurotoxins (Aβ and 6-OHDA),
which may be a translation of its multi-targeting property. The overall
findings of the present study support the feasibility of the aurone
scaffold for developing novel multi-targeting ligands as neuroprotective
agents with favourable drug-like properties. Although the structural
requirements for good activity in each AD-related activity (cholines-
terase, MAO, and Aβ inhibition) were different among the aurones, at
least one compound (4-3) in the present study stood out as having the
best potential for further optimization. 4-3 represented a lead for the
further refinement of the scaffold to give rise to a multi-targeting
compound with optimal drug-like properties, worthy for the develop-
ment into a novel therapeutic for neurodegenerative diseases including
AD.
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