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Abstract 

Metrics are an objective, quantitative assessment of forecast (or model) agreement with 

observations. They are essential for assessing forecast accuracy and reliability, and consequently act 

as a diagnostic for forecast development. Partly as a result of limited spatial sampling of 

observations, much of space-weather forecasting is focused on the time domain, rather than 

inherent spatial variability. Thus metrics are primarily “point-by-point” approaches, in which 

observed conditions at time t are compared directly (and only) with the forecast conditions at time t. 

Such metrics are undoubtedly useful. But in lacking an explicit consideration of timing uncertainties, 

they have limitations as diagnostic tools and can, under certain conditions, be misleading. Using a 

near-Earth solar wind speed forecast as an illustrative example, this study briefly reviews the most 

commonly-used point-by-point metrics and advocates for complementary “time window” 

approaches. In particular, a scale-selective approach, originally developed in numerical weather 

prediction for validation of spatially patchy rainfall forecasts, is adapted to the time domain for 

space-weather purposes. This simple approach readily determines the time scales over which a 

forecast is and isn’t valuable, allowing the results of point-by-point metrics to be put in greater 

context. 

 

Point 1: Forecast timing errors can complicate the interpretation of point-by-point metrics 

Point 2: Ideally, all forecasts would include an estimate of forecast uncertainty 

Point 3: A scale-selective analysis can determine the time scales over which a forecast is valuable  
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1. Introduction 
When determining how well a space-weather forecast1 performs, human assessment can rapidly 

scrutinise a large number of facets: simply looking over the observations and forecast gives an 

immediate “feel” for what features are reproduced and missed, how the general structure differs, 

over what temporal/spatial scales the forecast is applicable, whether the forecast exhibits any 

obvious bias, performs better within certain parameter regimes, etc. But this is inherently subjective, 

qualitative, lacking in repeatability and simply infeasible for large volumes of data. Metrics are an 

automated, objective quantification of forecast performance relative to observations. As such, 

metrics are vitally important not just for validation2 of space-weather forecasts [e.g., Spence et al., 

2004], but also as a diagnostic tool to inform future forecast development. Different metrics quantify 

different, specific qualities of a forecast. Thus while there are no right or wrong metrics per se, it is 

nevertheless essential to select a metric which actually measures the features of interest (this, as 

will be seen in the subsequent examples, is not always as straightforward as it seems). Changes to a 

forecast scheme made on the basis of a poorly chosen metric can potentially reduce its usefulness 

for an end-user (though of course the chosen metric will measure an improvement).  

The space-weather community is in the process of adopting both more sophisticated forecast 

approaches and metrics with enhanced diagnostic capability [e.g. Jian et al., 2016; Murray et al., 

2017; Murray, 2018]. Many of these approaches have been adapted from numerical weather 

prediction (NWP) [Siscoe, 2007]. In NWP, there is extensive coverage by the observation network, 

allowing both spatial and temporal agreement to be explicitly treated. Extremely sparse 

observational sampling of the Sun-Earth system, however, means space-weather forecast validation 

is often primarily concerned with the time domain (though errors in the time domain may well result 

from spatial variations). For example, while forecasts of the solar wind (such as the example of near-

Earth solar wind shown in Section 2.1) cover the largest spatial domain within the Sun-Earth system, 

they are typically validated solely against single-point in situ observations made in near-Earth space 

[e.g. Owens et al., 2008; MacNeice, 2009; MacNeice et al., 2018]. Consequently, validation is 

primarily focussed on a point-by-point analysis: The observed conditions at time t are compared 

directly (and only) with the forecast conditions at time t. As is illustrated in Sections 2.2 and 2.3, such 

approaches inflict a “double penalty” for timing offsets in forecast events, due to both missing the 

event and generating a false alarm. On the one hand, this is a legitimate assessment of the forecast. 

On the other hand, it does not always provide a useful diagnostic of the forecast, and many 

operators will tolerate relatively small errors in event timing if the general outlook is correct. One 

solution is for forecasts to include a measure of their own uncertainty, as illustrated in Section 2.5. 

However, this is not always practical. Thus in addition to point-by-point metrics, it may be 

advantageous to also employ “time window” metrics. One useful approach, outlined in Section 3.1, 

is to specify criteria for discrete features within forecast and observation time series and to compare 

feature correspondence, including the timing. However, such feature specification requires a priori 

                                                           
1Throughout this study, metrics are discussed with regards to “forecasting”, though the same issues 
and principles apply for general model diagnostics. Consequently, anywhere the term “forecast” 
appears, the term “model” could be directly substituted. 
2As in the majority of the space-weather literature, the term “validation” is here used to refer to the 
process of comparing forecasts and observations to establish accuracy and truth of the forecast. This 
is often referred to as “verification” in meteorology. 
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knowledge of the properties of interest, as well as repeatable signatures in said features, both from 

event to event and across forecast and observation data. Thus in Section 3.2 a more feature-agnostic 

approach is proposed, based upon NWP validation of rain forecasts. It compares forecasts and 

observations at a range of different spatial scales and is here adapted to the time domain as a space-

weather forecast metric. It is shown that this analysis provides a useful assessment of the time 

scales over which a forecast is and isn’t valuable. 

2. Point-by-Point Metrics 

2.1 Example Forecast 

 

In order to illustrate the strengths and limitations of different metrics, an example forecast is 

considered. The black line in Figure 1a shows hourly near-Earth solar wind speed (V) for Carrington 

rotation (CR) 2049, spanning mid-October to mid-November 2006. Data are from the Omni dataset 

of near-Earth spacecraft measurements [King and Papitashvili, 2005]. CR 2049 was chosen as there 

are three distinct high-speed enhancements (HSEs) on 20 October, 28 October and 9 November.  

An illustrative forecast was produced using the “Magnetohydrodynamics Around a Sphere” [MAS; 

Linker et al., 1999; Riley et al., 2012]  global coronal model. The inner boundary conditions are set by 

the observed photospheric magnetic field for CR 2049. Model output is available from 

http://www.predsci.com/mhdweb/. Typically, the MAS solution would be propagated to near-Earth 

space with a numerical magnetohydrodynamic solar wind model and the forecast V extracted from 

the model grid point closest to Earth. Here, however, for the purposes of demonstration, the 

solution was perturbed to (retrospectively) produce a closer match to the observations. Specifically, 

the model solar wind at 30 solar radii was sampled 5-degrees above the sub-Earth point, as this was 

found to improve the representation of the HSE on 28 October. The solar wind speed was then 

propagated from 30 solar radii to Earth using a simple “upwind” technique [Owens and Riley, 2017] 

to produce the time series shown in red in Figure 1a.  

2.2 Error Functions 

Forecasts are commonly assessed using simple error functions (otherwise called cost or loss 

functions). The results for CR2049 are summarised in Table 1.  For solar wind speed, the mean-

square error (MSE) is given by: 

𝑀𝑆𝐸 =  
1

𝑇
∑[𝑉𝐹(𝑡) − 𝑉(𝑡)]2  

𝑇

𝑡=1

    

where VF(t) and V(t) are the forecast and observed solar wind speeds at time t, respectively, and T is 

the total number of time points considered. Smaller MSE values indicate better agreement, with 

zero being a perfect forecast. For the forecast shown in Figure 1a, the MSE is 1.30x104 km2 s-2. This is 

usually converted to root-mean-square (RMS) error: 

𝑅𝑀𝑆 = √
1

𝑇
∑[𝑉𝐹(𝑡) − 𝑉(𝑡)]2 

𝑇

𝑡=1
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RMS has the advantage of being a linear measure of the magnitude of the errors with the same units 

as the parameter of interest. The RMS error for the forecast is 114 km s-1.  

In isolation, these values say relatively little about the quality of the forecast. Metrics are most 

useful as a comparative tool. Thus it is instructive to also consider a second solar wind speed 

prediction. The blue line shows the average V for CR 2049, 432 km s-1. For validation purposes, this 

climatological mean would be a poor choice of comparison prediction, as it has zero variability. In 

practice, it would be preferable to use another simple forecast, such as 27-day recurrence [Owens et 

al., 2013]. But for the purposes of illustrating certain issues, the climatological mean is useful here. 

The MSE between the observed V for CR 2049 and the climatological mean is 0.98x104 km2 s-2, while 

the RMS 98.9 km s-1, both smaller than the forecast values. 

An alternative measure of a similar property is the mean absolute error (MAE):  

𝑀𝐴𝐸 =
1

𝑇
∑ |𝑉𝐹(𝑡) − 𝑉(𝑡)| 

𝑇

𝑡=1

  

For the V, MAE is essentially the same as for the forecast (84.6km s-1) and the climatological mean 

(85.0 km s-1).  

In order to further put error functions in perspective, the “skill” of a forecast is calculated as: 

𝑆𝑘𝑖𝑙𝑙 =  1 −  
𝑀𝑆𝐸

𝑀𝑆𝐸𝑅𝐸𝐹
    

where 𝑀𝑆𝐸𝑅𝐸𝐹 is the MSE of a reference “baseline” model, such as the climatological mean. Skill is 

negative when the forecast is worse than the baseline, 0 when they are equal, and 1 for a perfect 

forecast. (Sometimes skill is further multiplied by 100 to express it as a percentage of a perfect 

forecast.) By comparing directly with a baseline model, skill potentially allows disambiguation 

between bad forecasts and periods/situations which are inherently difficult to forecast. For the 

forecast shown in Figure 1a, using the climatological mean as the reference, the forecast skill is -

0.32. Thus the forecast is deemed to be “worse” than assuming the solar wind is always a constant 

432 km s-1. 

Thus the general conclusion from these error functions for this example period is that the 

climatological mean is at least as “good” as the forecast for CR 2049. This is, of course, an entirely 

correct and fair assessment. But it is obvious that it does not tell the whole story; the climatological 

mean lacks sharpness and discrimination, in that it does not reconstruct any of the features of the 

solar wind structure. It would be useless as a predictive tool for almost all applications and thus 

could be said to lack value.  In contrast, the forecast appears to work quite well for this interval: By 

eye, it can be seen that the forecast produces three HSEs, as observed, and they are of comparable 

magnitudes and durations to the observations. By inspection of the time series, it can be seen that 

the error functions for the forecast are relatively high due to the approximately 1 to 2 days errors in 

the timings of the HSEs, which result in the “double penalty” of first over-predicting V,  closely 

followed by under-predicting V. But, depending on the application, the forecast may well still be 

regarded as valuable in that it enables users to make decisions which lead to beneficial outcomes 

[Murphy, 1993].  
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In this particular example, other forms of point-by-point comparisons are able to discriminate 

between the predictive value of the forecast and climatological mean (see Section 3.3 for an 

example where this is not the case). While not strictly an error function, Pearson (or linear) 

correlation, rL, is often used in a similar manner to RMS and MAE to quantify forecast and 

observation agreement, where: 

𝑟𝐿 =  
∑ [𝑉𝐹(𝑡) − 𝑉𝐹

̅̅ ̅] [𝑉(𝑡) − 𝑉̅]  𝑇
𝑡=1

√∑ [𝑉𝐹(𝑡) − 𝑉𝐹
̅̅ ̅]2  𝑇

𝑡=1 √∑  [𝑉(𝑡) − 𝑉̅]2  𝑇
𝑡=1

 

It is weakly positive for the forecast (rL  = 0.28). Spearman correlation, rS, replaces the observed and 

forecast values at time t with their ranks within their respective distributions. As a result, rS is less 

susceptible to outliers then rL. It is effectively zero (rS = 0.06) for the forecast. The zero variance of 

the climatological mean results in both rL = 0 and rS = 0. Figure 2 summarises these results in the 

form of a Taylor diagram [Taylor, 2001; Riley et al., 2013a]. It displays the RMS (centred by the mean 

values to remove forecast bias) and linear correlation between forecast and observation, along with 

the standard deviation of the time series under consideration. In short, the closer the forecast (red 

point) to the observation (black circle), the better. Thus while the Taylor diagram does not strictly 

conclude that the forecast is superior to the climatological mean (blue point), the issues with the 

latter as predictive tool are immediately obvious. For a more realistic “baseline” forecast, this may 

not always be the case. 

In addition to potentially misleading forecast assessment, error functions can also have unintended 

consequences for model development. Riley et al. [2013a] note that changes to their coronal model 

which wipe out all solar wind speed variability (and thus value of the resulting forecast) are not 

reflected in RMS, which is essentially unchanged.  Similarly, any forecast scheme trained to minimise 

RMS or MAE may tend preferentially towards a conservative, climatological-mean-like prediction, 

rather than a valuable forecast.  

2.3 Binary Metrics 

As error functions quantify the magnitude of forecast deviation from observations at every time 

step, they can have limitations as diagnostic tools. Firstly, by considering every time step equally, 

rather than focussing on specific times or parameter ranges of interest, these metrics can be skewed 

towards measuring properties that are inconsequential to an operator. E.g., whether the forecast 

correctly reproduces the details of the slow-speed wind may be unimportant, but is given equal 

weighting to the times of high speeds, which are important. Secondly, large outliers can have a 

relatively strong influence on error functions and especially on linear correlation. In some 

circumstances, this will be appropriate, as the magnitude of the extremes is of interest. In other 

circumstances, this may be less critical, as what matters is whether or not a given threshold is 

exceeded, not by how much. To address these issues, an alternative approach is to consider each 

time step as a binary “yes/no” state and compare observations and forecasts on this basis. For 

probabilistic forecasts, discussed further in Section 2.5, this also involves setting a probability 

threshold, in addition to an event-definition threshold.  

The black dashed line in Figure 1a shows a threshold of V > 500 km s-1 used to define hourly “events” 

in the forecast and observed time series. Figure 1b displays the timing of the subsequent forecast 

and observed events, sorting them into one of four categories; true positives (TP, or “hits”; hours for 
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which both observed and forecast events are present), false positives (FP or “false alarms”; hours for 

which an event is forecast but not observed), false negatives (FN, or “misses”; hours for which an 

event is observed but not forecast) and true negatives (TN; hours for which both observation and 

forecast have no event). The occurrence of these classifications is summarised in a contingency table 

[e.g., Finley, 1884; Murphy, 1996], shown as Table 2 for the forecast and Table 3 for the 

climatological mean. The forecast produces approximately the correct number of events (PF = 177 

versus P = 192 observed) and non-events (NF = 478, versus N = 463 observed), meaning it has little 

bias, whereas the climatological mean produces zero events and over-estimates the non-events (NF 

= 655). The “double penalty” effect on the forecast is apparent: Because of the timing offset in the 

HSEs, the forecast produces both FN and FP, whereas the null prediction of the climatological mean 

only produces FN. For the forecast, the total number of false predictions, FP + FN, is 233, while for 

the climatological mean it is only 192. 

From the contingency tables alone, it is not immediately clear whether the forecast is “better” than 

the climatological mean. It will depend on how FP and FN are weighed relative both to each other 

and to TP (and to a lesser extent, TN). There are a variety of ways to combine these four numbers, to 

emphasise different forecast aspects. The full range of combinations is not discussed here (see 

Thornes and Stephenson [2001] and Reiss et al. [2016], as well as the World Meteorological 

Organisation guide: http://www.cawcr.gov.au/projects/verification/). Two of the most useful 

combinations are the true positive rate (TPR = TP/P) and the false positive rate (FPR = FP/N), as 

together they provide a reasonable overview of a forecast. A perfect forecast would have TPR = 1 

and FPR = 0. For the forecast of CR 2049, TPR =  0.35 and FPR = 0.24.  

For events defined by V > 500 km s-1, the climatological mean results in no true or false positives and 

so TPR = 0 and FPR = 0. If events were defined using a V threshold lower than the climatological 

mean (e.g. V > 400 km s-1), it would produce a prediction of events at all times, giving TPR = 1 and 

FPR = 1. Thus for any event threshold, the climatological mean over the period under consideration 

gives TPR = FPR. When a forecast results in TPR > FPR, it is superior to the climatological mean in 

being able to predict the occurrence of events and non-events.  

2.4 Forecast Summaries 

Binary metrics depend on the choice of both event and probability thresholds, and thus ways to 

summarise parameter space are necessary. The (often complex) relation between FPR and TPR for a 

range of event thresholds is captured by the receiver operator characteristic [ROC; Peterson et al., 

1954; Mason, 1982] curve in Figure 1c. This technique is commonly used for validation of 

probabilistic forecasts at a range of probability thresholds (see Section 2.5), including solar flare 

forecasts [Murray et al., 2017; McCloskey et al., 2018]. However, it can also be used to summarise 

the deterministic V forecast. In this example , all event thresholds result in TPR > FPR  (i.e., are above 

the y=x line in Figure 1c) except V > 600 km s-1, where the double penalty is strongest. The ROC can 

be further distilled down to the area under the curve, integrated along the horizontal axis [AUC; 

Mason and Graham, 2002]. AUC represents a forecast’s ability to correctly anticipate events and 

non-events (1 being a perfect forecast, 0.5 being equal to the climatological mean).  For the V 

forecast, the AUC is 0.68.  

An alternative summary can be provided by the Cost-Loss analysis [Murphy, 1977; Richardson, 2000], 

which determines the benefit an operator would gain from acting on a forecast. The real strength of 
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Cost-Loss analysis is in the evaluation of probabilistic forecasts (see Section 2.5), as it explicitly 

accounts for the fact that different operational uses will act on the same forecast in a different 

manner. E.g., if a forecast gives a low probability of a space-weather event, an operator may still 

choose to take mitigating action if the cost of doing so (e.g. from lost revenue), C, is small relative to 

L, the cost of being caught unprepared by a damaging event. In such situations, forecasts which 

minimise missed events, even if this means increased false alarms, are more desirable. Conversely, if 

C is a significant fraction of L, an operator is unlikely to act on the basis of a low forecast probability. 

In such circumstances, forecasts which minimise false alarms are more desirable. This analysis has 

recently been applied to validation of probabilistic solar wind forecasts [Owens et al., 2014; Owens 

et al., 2017]. 

Figure 1d shows how the potential economic benefit of acting on the determinsitic forecast of V for 

a range of C/L values and for events defined by a range of V thresholds. Potential economic benefit is 

measured relative to the climatological probability of an event, so that values below 0% indicate the 

forecast is less useful than climatology and 100% indicates a perfect (deterministic) forecast. As 

shown by the ROC curve, most benefit is gained at intermediate solar wind speeds (400 to 500 km s-

1) and for low C/L scenarios. When false alarms become costly, the forecast ceases to add value, as 

the double penalty effect comes into play. Despite the insight gained from binary metrics such as 

ROC and Cost/Loss analysis, they nevertheless operate on a strictly point-by-point comparison basis 

and do not account for timing errors/uncertainty. As illustrated in Section 3.3, the resulting double 

penalty issue is even stronger for BZ forecasts, which are critical for space weather [Dungey, 1961], 

as large-scale BZ variations tend to be bipolar in nature. 

2.5 Validating Probablistic Forecasts  

 

Ideally, a forecast would include an assessment of forecast uncertainty. Figure 3a shows an example 

of a probabilistic forecast of solar wind speed for CR2049. It was generated using a perturbed initial 

condition ensemble [Owens and Riley, 2017]. The RMS and MAE of the forecast ensemble median 

are comparable to the deterministic V forecast shown in Figure 1a. But what is of most interest here 

is the uncertainty estimate. Figure 3b shows the probability of V > 500 km s-1 as a function of time. 

For the observations, this is either 0 or 1; for the climatological mean, it is always 0; for the forecast 

ensemble the probability is the fraction of ensemble members for which V > 500 km s-1 at each time 

step [e.g., Slingo and Palmer, 2011 and references therein]. For the 21 October HSE, the onset timing 

uncertainty is reasonable, but the forecast is too confident of no event after 22 October. For the 29 

October HSE, the forecast clearly underestimates the uncertainty in the HSE arrival time and 

duration, as the probability peaks more than a day early and remains high (≈ 0.75) for around a day 

too long. For the 10 November HSE, there is a 3-day spread in the HSE arrival time in the 

probabilistic forecast, with the peak probability on the 11 November, approximately the time of the 

observed peak. 

In order to produce the ROC curve (Figure 3c), a probability threshold is required to define events at 

each V threshold. In general for CR 2049, higher probability thresholds produce better forecasts as 

given by AUC (though it is not a simple linear relation). On this basis alone, it may be tempting to 

conclude that the probabilistic forecast is most beneficial in operational situations where few false 

alarms are present (i.e., high C/L ratios). However, that is not generally the case (as shown in Figure 
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3c and discussed below). What the ROC is actually revealing is simply that higher probability 

thresholds reduce the total number of forecast events and, in the presence of timing errors, 

minimise the double penalties described in the previous section. Thus again, even with probabilistic 

forecasts, point-by-point metrics can favour overly conservative forecasts. 

From Figure 3b, it can be seen that for V > 500 km s-1, there are no periods where the forecast 

probability of an event exceeds around 0.75. This means that operational settings in which forecast 

certainty is critical (i.e., where false alarms are costly), the forecast will not be useful. This 

demonstrated in the cost-loss analysis in Figure 3d, where for V > 500 km s-1, there is no economic 

benefit to acting on the forecast when C/L > 0.5. At lower speed thresholds, e.g., 400 km s-1, there 

are times when the forecast correctly predicts 0 probability of an event (6 to 8 November) and 1 

probability of an event (22 October). This results in a valuable forecast for higher C/L values, unlike 

the similar deterministic forecast. 

Clearly, forecasts should intrinsically account for uncertainty, including the timing of features. 

However, forecasts often do a poor job in this respect (as shown in the example above), and 

uncertainty can be costly to estimate. E.g., estimating the timing uncertainty in a CME forecast 

through a numerical model ensemble [Riley et al., 2013a; Riley et al., 2013b; Mays et al., 2015] will 

require a minimum of an order-of-magnitude more computing resources. Additionally, an operator 

may tolerate a greater timing error than the estimated forecast timing uncertainty. Thus it is also 

desirable to use metrics which explicitly allow for timing uncertainty. 

3 Time-Window Metrics 

3.1 Feature-Based Metrics 

One approach to dealing with timing uncertainty is to define discrete features (also known as objects 

or events) on the basis of extended spatial information or time history (rather just using a simple 

threshold on a point-by point basis, as in the case of binary metrics), and compare their properties, 

including timing [e.g., Ebert and Gallus Jr, 2009]. For example, Owens et al. [2005] defined a HSE as a 

net 100 km s-1 increase in V over a 2 day interval in 8-hour smoothed data (computed as the mean in 

a rolling 8-hour window). The smoothing allows the analysis to be readily applied to both 

observations and numerical solar wind model output. The HSE lasts as long as these criteria are met, 

with the characteristic time of the HSE being the time of maximum V gradient. Reiss et al. [2016] and 

MacNeice [2009] used similar definitions. Figure 4 shows the analysis applied to the CR2049 

observations and forecast. In practice, when applying the analysis to years of data, observed and 

forecast HSEs are paired up algorithmically. In this instance, there are 3 observed and forecast HSEs, 

with forecast/observed pairs overlapping in time, so the pairing is trivial. Results are summarised in 

Table 4. 

 

During this short interval of comparison, the forecast produces approximately the correct magnitude 

of HSE (in 8-hour smoothed data), but the timing of HSEs is systematically biased early. Clearly, this 

approach provides quantitative diagnostic information about why the RMS and MAE are high for this 

forecast relative to the climatological mean.  The limitation in this kind of analysis is that features of 

interest have to be rigorously defined a priori. For solar wind speed, this is reasonable, but for BZ, it 
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may be more difficult, particularly regarding time scale and magnitude, as further discussed in 

Section 3.3. 

An alternate approach to timing uncertainties is to consider the peak value within a fixed time 

window (e.g., maximum V in a 24-hour window of 1-hour data). This can provide useful information 

if, again, tailored to the specific needs of the operational setting. But there are a number of 

considerations with applying this approach more generally. Firstly, different time windows will, of 

course, be more or less appropriate for different forecast applications. Secondly, for a fixed time 

window, the same peak value can result from a single data spike, multiple peaks, or the whole 

window being elevated. Thirdly, changing the time resolution of the data can affect the peak values 

in different ways: The peak value of the single data spike will be dramatically reduced, whereas 

broader peaks will be less affected. A method to effectively summarise this parameter space for a 

binary forecast is described in the next section. 

3.2 Scale-Selective Metrics 

In validation of forecasts from numerical weather prediction (NWP), double penalties are also a 

ubiquitous issue, resulting from both spatial and temporal offsets between forecast and observation. 

A particularly apposite example is convective rain, which is inherently patchy on the spatial scales 

measureable by radar and forecastable by NWP. This can lead to misdiagnosis of forecasts if 

performed on a point-by-point basis at the grid-cell level. Hypothetical rain observations and 

forecast for a 10x10 grid are shown in Figure 5. The forecast has little bias over the whole domain 

(forecast and observation predict 18% and 19% of grid points, respectively, will contain rain) and 

captures much of the large-scale structure, with a front of rain in the bottom-right corner of the 

domain. There is, however, little correspondence at the individual grid-point level. Making a simple 

point-by-point comparison of the forecast and observations reveals FPR > TPR, meaning it performs 

worse than climatology. In fact, even a completely null prediction, where rain is never predicted 

anywhere, is found to be superior in this instance. 

 

Roberts and Lean [2008] and Roberts [2008] suggest a scale-selective approach to address this issue. 

This considers how well the forecast captures the observed rain on increasing larger spatial scales, or 

“neighbourhood sizes”, n [Theis et al., 2005]. In the example shown in Figure 5, the available 

neighbourhood sizes would be n=1 (where each neighbourhood is one grid point, resulting in the 

original distribution of observed and forecast rain), to n=2 (where each neighbourhood contains 2x2 

grid points), n=5 (25 grid points) and n=10 (100 grid points, the entire domain).  At each n, the 

fraction, f, of grid points within each neighbourhood which contains rain is computed. For n=1, each 

f will be either exactly 0 or exactly 1. For higher values of n, f will take a value between 0 and 1. For 

the example shown, at n=10 the observed f = 0.19, while the forecast fF = 0.18. For each n, the 

fraction MSE, fMSE, can be computed: 

𝑓𝑀𝑆𝐸(𝑛) =
1

𝑁𝑥 𝑁𝑦 
 ∑ ∑[𝑓(𝑥, 𝑦) − 𝑓𝐹(𝑥, 𝑦)]2

𝑁𝑦 

𝑦=1

𝑁𝑥 

𝑥=1

 

where x and y are the neighbourhood number in the x- and y-directions and NX and NY are the total 

number of neighbourhoods in the x- and y-directions, respectively. Thus for the example shown, NX = 



 

 
© 2018 American Geophysical Union. All rights reserved. 

NY = 10/n. The fraction skill score (FSS) is computed by comparing the forecast fMSE with the fMSE 

of a reference (or baseline) forecast, in this case the null rain forecast: 

𝐹𝑆𝑆(𝑛) =  1 −  
𝑓𝑀𝑆𝐸(𝑛)

𝑀𝑆𝐸𝑅𝐸𝐹(𝑛)
    

Figure 5d shows how the FSS varies with neighbourhood size, n. As discussed above, at n=1 FSS is 

negative as the total number of false grid points (i.e., FN + FP) is higher for the forecast than for the 

null prediction. But as neighbourhood size increases, FSS becomes increasingly positive, as the 

forecast captures the large-scale spatial structure of the observed rainfall. At n=10, FSS approaches 1 

as the forecast bias is very low, whereas the null prediction bias is high. The overall conclusion is that 

if an operator is interested in spatial scales greater than those represented by single grid points, the 

forecast is valuable (relative to a null forecast). 

This same scale-selective approach can be adapted to the time domain for space-weather purposes. 

For the V time series, the fMSE for neighbourhood size n becomes: 

𝑓𝑀𝑆𝐸(𝑛) =
𝑛

𝑇
 ∑[𝑓(𝑡) − 𝑓𝐹(𝑡)]2

𝑇/𝑛

𝑡=1

 

where f(t) and fF(t) are the fraction of observed and forecast hours in time bin t for which V > 500 km 

s-1. The top panel of Figure 6 shows the observed and forecast f as a function of time for the CR 2049 

solar wind speed, with events (red) and non-events (blue) defined using V > 500 km s-1. At this 1-

hour neighbourhood size, this is equivalent to the original point-by-point analysis (i.e., the same as 

Figure 1b) and f is either exactly 0 or 1. The fMSE of the forecast is 0.370, whereas for the 

climatological mean, fMSE= 0.3048. Thus for n = 1, FSS = -0.21.  

The second panel of Figure 6 shows a neighbourhood size of 45 hours. There are still 

neighbourhoods with f = 0 and f = 1, but there are now also intermediate values. By eye, the 

agreement is still far from perfect, but the “smearing” of events in time means that there are fewer 

intervals which are so starkly wrong, i.e., where |f - fF| = 1. The fMSE of both the forecast and 

climatological mean have dropped (to 0.184 and 0.230, respectively) and the FSS is now weakly 

positive (0.2). The third and fourth panels show a neighbour sizes of 105 and 210 hours, respectively. 

The agreement between forecast and observation has been greatly enhanced, though at these long 

temporal scales, a lot of information has also been lost.  

 

Figure 7a shows how the FSS varies with n and V thresholds. In order to avoid aliasing between 

features in the V time series and the neighbourhood boundaries, the boundaries are slid across the 

time series to consider all possible neighbourhood combinations for a given value of n. The mean FSS 

for a given n is shown. For the CR2049, the V forecast is generally most valuable for lower V 

thresholds. However, at the very lowest threshold, V > 350 km s-1, the forecast has little value as it 

fails to capture the lowest observed solar wind speeds during this interval. Across V thresholds, 

forecast skill increases very gradually from n = 1 hour to n =20-30 hours, before rising more sharply. 

For V > 500 km s-1, the forecast becomes more valuable than the climatological mean at 

neighbourhood sizes of around 20 hours or longer. This time scale is roughly comparable the average 



 

 
© 2018 American Geophysical Union. All rights reserved. 

timing error for HSEs (see Table 4) and indicates where the false alarm and missed events begin to 

cancel out, removing the double penalty effect. The fact that most V thresholds converge to FSS ≈ 1 

at the maximum neighbourhood size (n = 630 hours) shows there is little bias in the occurrence of 

such events. For V > 600  km s-1, FSS converges to values less than 1, highlighting an occurrence bias 

in the forecast for such an event definition (with the forecast slightly over-predicting occurrence of V 

> 600 km s-1).  

The same basic approach can also be applied to a probabilistic forecast. However, in the fMSE 

calculation the forecast fraction of hours above the threshold V, fF, is replaced by pF, the average 

probability of V above the threshold in a given neighbourhood. Thus the uncertainty information is 

preserved, without the need to investigate different probability thresholds. Figure 7b shows how the 

FSS varies with neighbourhood size and V threshold for the probablistic forecast of CR 2049. The 

general trends are similar to the deterministic forecast. But it’s clear that the probablistic forecast 

provides significantly higher FSS at lower n, particularly for V thresholds below 500 km s-1. This is 

because it intrinsically involves an (imperfect) estimate of timing error and thus some reduction of 

the double penalty. The rapid rise in FSS with n is consequently less apparent. As the probabilistic 

forecast includes an increased occurrence of low speed solar wind compared to the deterministic 

forecast, albeit at low probability, the probabilitstic forecast at V > 350 km s-1 is now valuable 

relative to the climatological mean. At the very highest event thresholds, V > 550 km s-1 and V > 600 

km s-1, there are insufficient events of high probability in this short interval, resulting in low FSS and 

a high bias for V > 600 km s-1 occurrence. Thus a great deal of diagnostic information can be obtained 

from the simple FSS analysis, which is complementary to point-by-point approaches. 

3.3 BZ Forecasts 

 

Thus far, these issues have been illustrated exclusively with an example of a solar wind speed 

forecast. V is one of the more accurately forecast solar wind parameters [e.g., Owens et al., 2008; 

MacNeice, 2009] and is always positive in value. Perhaps the solar wind parameter of greatest 

importance for space weather is the out-of-ecliptic component of the heliospheric magnetic field 

(HMF), BZ, which is fundamentally less predictable than V [Lockwood et al., 2016], both due to its 

stochastic nature and the difficulty in making remote observations of this parameter [DeForest et al., 

2017]. Validation of BZ forecasts is complicated by the bipolar variations associated with geoeffective 

coronal mass ejections, which will be particularly susceptible to double penalties. This is illustrated in 

Figure 8, where a hypothetical forecast of BZ for the Bastille Day interplanetary coronal mass ejection 

(ICME), in July 2000, has been produced by smoothing and shifting the observed time series by 18 

hours, representative of current ICME forecast timing errors [Tucker-Hood et al., 2015; Riley et al., 

2018]. By accurately reproducing the magnitude and direction of the magnetic field within the ICME 

and sheath region, such a forecast is a far more accurate than any current capability [e.g., Savani et 

al., 2015]. Yet all the point-by-point metrics, whether they be error functions (even rL = -0.1) or 

binary metrics, show the forecast to be significantly worse than assuming BZ is approximately zero at 

all times. (The total area under the ROC curve is slightly larger than 0.5 but the sampling of BZ space 

is uneven. For negative BZ thresholds, the conditions of interest for space weather, the forecast lies 

below the y=x line and hence is deemed worse than the climatological mean.)  
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A features-based metric, equivalent to the high-speed enhancements, would clearly work well in this 

instance. But the difficultly is in rigorously defining a useable definition: Timescales which would pick 

out a feature in the body of this ICME may exclude negative BZ intervals in other ICMEs or in the 

ICME sheath, which involve higher-frequency variations. The more feature-agnostic approach of the 

scale-selective fraction skill score is preferable. Figure 9 shows the fraction skill score of the BZ 

forecast over a range of time scales (or neighbourhood sizes) and for a range of BZ thresholds. For 

neighbourhoods smaller than 10 hours, the forecast is “worse” than assuming BZ ≈ 0 at all times, as 

the point-by-point analyses concluded. But as the time scale is increased to around 10-30 hours, the 

forecast is shown to be skilful relative to the climatological mean, as one would likely conclude by 

eye. 

4 Summary 

This study briefly reviewed some of the commonly used metrics for space-weather forecast and 

model validation. Simple error functions, like root-mean-square (RMS) and mean-absolute error 

(MAE), are the mainstay of forecast validation. They compare forecasts and observations on a strictly 

point-by-point basis. They are undoubtedly a valuable tool for forecast comparison. But there are 

limitations in their use as forecast diagnostics and they can, in some circumstances, give misleading 

results about the value or usefulness of a forecast. In particular, by treating each time point entirely 

independently, timing uncertainties are not explicitly accounted for. Thus when timing errors are 

present in the forecasts, they can be hit with “double penalties”, for both missing the observed 

event and issuing a false alarm. While there is nothing inherently wrong with this form of 

assessment, it can systematically favour overly conservative forecasts, which may not be beneficial.  

Binary metrics, in which a forecast is converted to series of “yes/no” predictions, reduce the 

emphasis on event magnitude and hence somewhat reduce the effect of double penalties for timing 

errors. These kinds of approaches are summarised by the receiver operator characteristic (ROC) and 

the Cost-Loss analysis. These can provide useful insight into the operational circumstances in which a 

particular forecast is most useful (e.g., in settings where false alarms are not a major issue).  

A neat, simple, solution to the double penalty problem is for all forecasts to include an accurate 

assessment of uncertainty. As shown here, even relatively coarse estimates of uncertainty can add 

value to existing forecasts. But there are a number of reasons why this is not always practical. 

Instead, this study has advocated a more pragmatic solution of “time window” metrics alongside the 

more traditional point-by-point approaches. Defining discrete, extended features in the observed 

and forecast time series allows direct comparison of their timing and magnitude. This is a powerful 

analytical tool, but requires a rigorous a prior definition of an event, which is robust to event-to-

event variability, and between observations and forecast. An alternative is to use a scale-selective 

approach, wherein agreement between forecast and observation is considered at a range of time 

scales. As the time scales become increasingly coarse, false alarms and missed events increasingly 

cancel out, reducing the double penalty effect. This allows an assessment of the time scales at which 

the forecast provides an acceptable level of accuracy.  

Part of the job of a metric is to summarise a complex parameter space: Different parameter and 

forecast probability thresholds, different spatial and temporal scales and different operational 

sensitivities. The examples shown here consider only the simplest case of solar wind time series. 

Validation in other domains of the space-weather system also has to deal with intrinsically higher 

dimensionality. For example, in radiation belt forecasting, in addition to temporal variations, there is 



 

 
© 2018 American Geophysical Union. All rights reserved. 

a great deal of spatially variability in all three directions (radially from the Earth, and in geomagnetic 

latitude and magnetic local time), as well as in particle energy space [e.g., Shprits et al., 2015]. Often 

this dimensionality is reduced by averaging over particle drift and bounce motions, but the situation 

nevertheless remains more complex than a single time series. But the same fundamental issues are 

still present, just in a more multifarious way. 

Finally, it is worth reiterating that these more sophisticated methods of forecast and model 

validation are intended to compliment, not replace, existing metrics. Error functions should 

undoubtedly continue to be a standard space-weather metric. In additional to continuing the legacy, 

they are simple to implement and interpret, as well as enabling easy inter-comparison of different 

forecasts and models. But a more diagnostic picture of why a forecast is accurate or fails is 

invaluable too. 
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Table 1: Point-by-point metrics for the solar wind speed forecasts shown in Figure 1. (a) Mean-square error, (b) root-
mean-square error, (c) mean absolute error, (d) Pearson (linear) correlation coefficient, (e) Spearman (rank-order) 
correlation coefficient, (f) receiver operator characteristic area under curve. 

 

 MSEa 

[km2 s-2] 

RMSb 

[km s-1] 

MAEc  

[km s-1] 

rL 
d rS 

e ROC area under 

curve (AUC)f 

Forecast 1.30x104 114.0 84.6 0.28 0.06 0.68 

Climatological 

mean 

0.98x104 98.9 85.0 0.00 0.00 0.50 

 

 

 

 

 

Table 2: A contingency table for the forecast of solar wind speed events in CR 2049 defined by a threshold of V > 500 km 
s

-1
. TP, FP, TN and FN are the numbers of true positive, false positive, true negative and false negative intervals, 

respectively. P and PF are the number of observed and forecast events, while N and NF are the number of observed and 
forecast non-events. 

 

  Event in forecast?  (i.e., VF > 500 km s-1) 

  Yes No Total 

Observed event? 

(i.e., V > 500 km s-1) 

Yes TP = 68 FN = 124 P = 192 

No FP = 109 TN = 354 N = 463 

Total PF = 177 NF = 478 655 

 

  



 

 
© 2018 American Geophysical Union. All rights reserved. 

Table 3: The same as Table 2, but for the climatological mean of solar wind speed for CR 2049. 

 

  Event in climatological mean?  (i.e., VF > 500 km s-1) 

  Yes No Total 

Observed event? 

(i.e., V > 500 km s-1) 

Yes TP = 0 FN = 192 P = 192 

No FP = 0 TN = 463 N = 463 

Total PF = 0 NF = 655 655 

 

 

 

 

 

Table 4: Results of the high-speed enhancement analysis applied to the observed and forecast solar wind speed for CR 
2049, mid-Oct to mid-Nov 2006. In both case, 3 HSEs were identified. Δ indicates the (observed – forecast) value. 

 

 

HSE Observed  Forecast ΔT 

[days] 

| ΔT| 

[days] 

VMAX obs 

[km s-1] 

VMAX for 

[km s-1]  

ΔVMAX 

[km s-1] 

|ΔVMAX|  

[km s-1] 

1 2006-10-20 

T21:00 

2006-10-19 

T02:00 

1.79 1.79 630 547 82.9 82.9 

2 2006-10-28 

T16:00 

2006-10-26 

T12:00 

2.17 2.17 580 612 -32.1 32.1 

3 2006-11-09 

T23:00 

2006-11-09 

T6:00 

0.71 0.71 633 638 -5.1 5.1 

Mean - - 1.56 1.56 614 599 15.2 40.1 
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Figure 1: An example of a deterministic solar wind speed forecast and associated “point-by-point” metrics. (a) Time 
series of hourly means of near-Earth solar wind speed, V, for CR 2049, spanning mid-Oct to mid-Nov 2006, as observed 
(black) and forecast (red). The climatological mean for this interval (blue) is also shown. (b) Solar wind speed events 
defined using a threshold of V > 500 km s

-1
. (c) The receiver operator characteristic (ROC), which plots the true positive 

rate against the false positive rate for a range of solar wind speed event definitions. (d) The potential economic value of 
the forecast at various V thresholds and cost/loss ratios. See text for more detail. 
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Figure 2: A Taylor diagram of the solar wind speed time series shown in Figure 1. The radial distance from the origin 
shows the standard deviation of the time series, while the azimuthal angle about the origin shows the linear correlation 
coefficient (note non-linear scale) with the observed time series. Green dashed circles show contours of constant RMS 
error (with forecast and observation mean subtracted). The black, red and blue points show the observed, forecast and 
climatological V, repsectively. 
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Figure 3: An example of a probabilistic solar wind speed forecast and associated point-by-point metrics. Panel (a) shows 
the time series of hourly means of near-Earth solar wind speed for CR2049, mid-Oct to mid-Nov 2006, as observed 
(black) and forecast by the ensemble median (red), with pink-shaded areas showing 68, 90, 95 and 99.8 percentiles of 
the forecast ensemble. The climatological mean for this interval (blue) is also shown.  A threshold of V > 500 km s

-1
 is to 

define events in the time series (black dashed line), which are represented in panel (b) as a probability of occurrence. 
Panel (c) shows the receiver operator characteristic (ROC) for three different probability thresholds. Panel (d) shows the 
cost-loss curves for the forecast at various action thresholds of V. 
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Figure 4: High-speed enhancement (HSE) analysis applied to the solar wind speed observed (black) and forecast (red) for 
CR2049, mid-Oct to mid-Nov 2006. All data has been 8-hour smoothed. Black- and red-shaded intervals show times 
when observed and forecast V meet the criteria for a HSE, respectively. The dashed vertical lines show the times of 
maximum V gradient. 
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Figure 5: Spatial distributions of hypothetical (a) observed and (b) forecast rain. Red is a positive observation/forecast at 
a given position, blue is negative. A null forecast (c) predicts no rain anywhere. Panel (d) shows the fraction skill score 
for different spatial scales (or neighbourhood sizes). 
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Figure 6: Scale-selective metrics applies the observed and forecast solar wind speed for CR2049, mid-Oct to mid-Nov 
2006. The colour scale shows the fraction of individual hours within a neighbourhood which exceed a speed threshold of 
500 km s

-1
, from 0 (blue) to 1 (red). The top panel shows a neighbour size of 1 hour and thus is simply the threshold 

applied to the original observations and forecast (i.e., the same as Figure 1b).  The second, third and fourth panels show 
neighbour sizes of 45, 105 and 210 hours. 
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Figure 7: Fraction skill score for the forecast solar wind speed for mid-Oct to mid-Nov 2006 for a range of speed 
thresholds and neighbour sizes. The climatological mean is used as the baseline forecast. (a) The deterministic forecast 
of V, (b) the probabilistic forecast of V. 
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Figure 8: Point-by-point metrics for a hypothetical forecast of the out-of-ecliptic HMF component, BZ. (a) Time series of 
observed BZ (black) for 15 days around the “Bastille Day” CME of July 2000. A hypothetical forecast (black) has been 
produced by smoothing and shifting the observations by 18 hours. The blue line shows the mean BZ for this period (b) 
The ROC for the forecast and climatological mean. (c) Cost-loss analysis for different BZ thresholds. 
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Figure 9: Fraction skill score for the BZ forecast for 15 days around the “Bastille Day” CME of July 2000, for a range of BZ 
thresholds and neighbour sizes. The climatological mean is used as the baseline forecast. 

 


