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The gut microbiota and cardiovascular health
benefits: A focus on wholegrain oats

A. Kristek, M. Y. Sch€ar, G. Soycan, S. Alsharif, G. G. C. Kuhnle, G. Walton and J. P. E. Spencer
Department of Food and Nutritional Sciences, University of Reading, Reading, UK

Abstract Existing scientific data suggest that a high intake of wholegrain foods contributes

to improved gut health and a reduced risk of cardiovascular disease. Wholegrain

oats are rich in dietary fibre and an important source of many bioactive

components, including minerals, vitamins and phenolic compounds. The oat

b-glucans have been reported to lower low-density lipoprotein cholesterol

through their ability to increase the viscosity of intestinal chime, change the gut

microbiota composition and increase the production of short-chain fatty acids,

which may contribute to the inhibition of hepatic cholesterol synthesis. Oats are

also a rich source of phenolic acids, which are predominantly bound to cell wall

polysaccharides through ester bonds. This bound state within oats means that

phenolic acid bioavailability will largely be determined by interactions with the

colonic microbiota in the large intestine. However, results from in vitro, animal

and human studies have been inconsistent in relation to the impact of oats on the

gut microbiota, possibly due to differences in experimental techniques and

because compounds in oats, other than b-glucans, have not been considered. This

review focuses on the interaction of oat b-glucans and phenolic acids with gut

microbiota, and the subsequent link to cardiovascular health.

Keywords: cardiovascular disease, gut health, gut microbiota, oat, phenolic acids,

b-glucans

Introduction

A high intake of wholegrains is related to improved gut

health (Cooper et al. 2015) and reduced risk of cardio-

vascular disease (CVD) (Thies et al. 2014b; Aune et al.
2016). The health benefits of wholegrains might be due

to effects on inflammation (Nilsson et al. 2008a; Singh
et al. 2013), fasting blood glucose (Pick et al. 1996;
Jensen et al. 2006) and markers of lipid metabolism

(Pins et al. 2002; Behall et al. 2004; Jonnalagadda et al.
2011; Johansson-Persson et al. 2014; Tang et al. 2015;

Aune et al. 2016). A recent meta-analysis of observa-

tional studies indicates that diets rich in wholegrains
are associated with a 21% reduction [relative risk

(RR) = 0.79 (95% CI: 0.74, 0.85)] in CVD risk

(Ye et al. 2012). However, the median daily whole-
grain intake in the UK, estimated from secondary

analysis of data from the National Diet and Nutrition
Survey Rolling Programme 2008/2009–2010/2011, is

20 g/day for adults and 13 g/day for children, which

is higher than in 2000/2001 but remains low and well
below the US wholegrain recommendation of 48 g/day

(no UK wholegrain dietary reference value exist)

(Mann et al. 2015).
It has been suggested that the cardiovascular protec-

tive effects of wholegrain oats are mainly due to their
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dietary fibre content, in particular, soluble oat b-glu-
cans, with established blood cholesterol- and glucose-
lowering properties (Tappy et al. 1996; Tosh 2013;

Whitehead et al. 2014; Tosh & Chu 2015). However,

oats are also a rich dietary source of phenolic acids and
avenanthramides (a class unique to oats) and several

randomised, controlled, crossover studies have sug-

gested that a range of phenolic compounds may be
responsible for some of oat’s health effects (Lamport

et al. 2017; Lockyer et al. 2017; Mills et al. 2017).

However, the phenolic acids in oats are linked to cell
wall polysaccharides by ester linkages and this means

their absorption will be limited until they reach the

large intestine where they may undergo extensive bio-
conversion by colonic microbiota to yield various bioac-

tive metabolites that express local intestinal effects in

the gut, and also systemic effects following absorption
(Vitaglione et al. 2008; Williamson & Clifford 2017).

Previous data have suggested that, in addition to fibre

and non-digestible carbohydrates, phenolics may bene-
ficially modulate the gut microbiota composition and

activity (Connolly et al. 2012b, 2016), which may play

role in the prevention of chronic diseases (He & Shi
2017). For example, the secreting metabolites, such as

secondary bile acids (BAs), short-chain fatty acids
(SCFAs) and trimethylamine-N-oxide (TMAO), act as

hormone-like factors and are sensed by dedicated recep-

tor systems in the human host to play a role in the
pathogenesis of CVD (Brown & Hazen 2015). In this

review, we provide a concise introduction into human

gut health and the contribution that the microbiota play
in influencing markers of CVD pathophysiology, before

outlining the cardiovascular benefits of oat intake and

how these are mediated, in part, by the gut microbiome.

Gut health and the host gut microbiota

The human gastrointestinal tract is a diverse and

dynamic microbial ecosystem, comprising approxi-

mately 1014 bacterial cells and up to 1000 different
species (Thursby & Juge 2017). Firmicutes and Bac-

teroidetes are the two dominant phyla, representing

more than 90% of all the phylotypes, followed by lower
relative abundances of Actinobacteria, Proteobacteria,

Fusobacteria and Verrucomicrobia (Robles Alonso &

Guarner 2013; Power et al. 2014; Zhang et al. 2015).
Commonly considered as the most beneficial bacterial

genera are bifidobacteria, lactobacilli and butyrate pro-

ducers, such as Eubacterium rectale, Roseburia species
(Robles Alonso & Guarner 2013). An appropriate bal-

ance between harmful and health-promoting gut micro-
biota can support human health by: (1) maintaining

host immune homeostasis; (2) increasing the efficiency

of energy production in the gut through fermentation of
non-digestible dietary compounds; (3) synthesising vita-

mins, such as B12 and K; (4) controlling intestinal

epithelial cell proliferation (Clarke et al. 2014);
(5) stimulating immunological defence; (6) creating a

protective barrier; and (7) inhibiting the growth of

potential pathogens (Gibson & Roberfroid 1995; Gib-
son 1998; Gong & Yang 2012; Ahmed Nasef et al.
2014; D’Argenio & Salvatore 2015; Okumura &

Takeda 2017).
Conversely, an unfavourable gut microbiota compo-

sition and function (i.e. dysbiosis) can trigger the

development of diseases through intestinal-derived
endogenous endotoxins, such as lipopolysaccharides,

indoxyl sulphate and L-carnitine (Prakash et al. 2011).
These metabolites may potentiate the development of
acute diseases, such as diarrhoea and chronic diseases,

including obesity, metabolic diseases, cancer and CVD

(Tang & Hazen 2014; Tuohy et al. 2014; Dao et al.
2015). There has been a long understanding of the

interaction between environmental factors and gut

microbiota, including that of pH, peristalsis, redox
potential and nutrient availability (Nicholson et al.
2012). Dietary changes are thought to be responsible
for around 57% of the variation in the gut microbiota,

compared with only 12% for genetics (Brown et al.
2012). For example, a study showed that the microbiota
of mice fed a low-fat, polysaccharide-rich diet markedly

increased in populations of Firmicutes, and decreased in

levels of Clostridium, Eubacterium, Enterococcus and
Bacteroides spp when the mice were switched to a high-

sugar/high-fat diet (Turnbaugh et al. 2009; Nguyen

et al. 2015). On the other hand, a high-fibre diet can
limit the growth of potentially pathogenic E. coli.
(Zimmer et al. 2012), which has been observed in

humans within 24 hours following a change from a
high-fat/low-fibre diet to one which is low-fat/high-fibre

(Wu et al. 2011).

The role of the gut microbiota in the
pathophysiology of cardiovascular disease

Prebiotic effects

Shifts in the gut microbiota composition have been

associated with a wide variety of diseases, including

CVD (Garcia-Mantrana et al. 2018). The promotion of
the growth of specific beneficial gut microbiota is

believed to have preventative effects on CVD due to

the influence of these bacteria on human physiology/
metabolism, including the ability to reduce total serum
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cholesterol, low-density lipoprotein (LDL) cholesterol

and inflammation (Sun & Buys 2015; Ejtahed et al.
2011). Dietary substrates which induce changes in the

growth of favourable bacteria are referred to as ‘prebi-

otics’, which pass largely unmetabolised in the upper
gastrointestinal tract and are selectively utilised by host

microorganisms conferring a health benefit (Gibson

et al. 2017). Established prebiotics are carbohydrate-
based but other substances, such as polyphenols

(Tzounis et al. 2011; Queipo-Ortu~no et al. 2012) and
polyunsaturated fatty acids (Kankaanpaa et al. 2001;
Peluso et al. 2014), might also fit the updated definition

as they can affect the gut microbiome, although more

studies are needed to show subsequent health effects.
Prebiotics may reduce risk factors of CVD through the

stimulation of growth of Bifidobacterium and Lacto-
bacillus, and the subsequent production of SCFAs
(LeBlanc et al. 2017), or possibly through the reduction

in plasma cholesterol (Hooper et al. 2002) and/or fast-
ing plasma glucose and insulin (Ooi & Liong 2010;
Saini et al. 2010; Ruan et al. 2015). Furthermore, con-

sumption of prebiotics has been linked to improved

intestinal function, such as reduced gastrointestinal
inflammation (Laparra & Sanz 2010; Vieira et al.
2013) and mineral absorption, and modulation
of energy metabolism, satiety and immune function

(Gibson & Roberfroid 1995; Gibson 1998; Pereira &

Gibson 2002; Nicholson et al. 2012).

Structural effects

The large gut’s enormous surface area helps to absorb

nutrients, water and electrolytes from food but at the

same time, it needs to provide a tight barrier against
harmful substances and pathogens. One way in which

the gut microbiota may confer health effects is via

their potential to maintain large gut integrity (Konig
et al. 2016). Gut hyperpermeability (leaky gut) results

from structural changes induced by Gram-negative

bacteria, which allows bacterial cell wall products,
such as lipopolysaccharide and peptidoglycans, to

enter into the bloodstream and activate macrophages.

Also, gut microbiota-derived lipopolysaccharide can
induce foam cell formation, and this can reduce

reverse cholesterol transport and increase insulin resis-

tance, hyperlipidaemia, vascular inflammation (Aki
et al. 2008) and thus increase CVD risk.

Bile acid synthesis/clearance/metabolism

BAs have indirect (through cholesterol metabolic path-
ways) and direct effects (through interaction with

myocytes) on blood cholesterol levels, atherosclerotic

plaque formation and myocardial function and thus are
hypothesised to reduce CVD risk (Khurana et al.
2011). Figure 1 illustrates the pathways of BA synthesis

and cholesterol biotransformation in the liver (Ridlon
et al. 2006). Primary BAs are further metabolised via

conjugation to glycine or taurine in the liver, synthe-

sised to bile salts and transported to the gallbladder.
Following a meal and the release of cholecystokinin

from the duodenum, the gallbladder contracts resulting

in bile salts flowing into the duodenum, which in turn
promotes the absorption of dietary lipids (Wahlstrom

et al. 2016). The bacteria in the lower intestine are cap-

able of converting primary BAs, by deconjugation and
hydroxyl group oxidation at C-3, C-7, and C-12, and

7a/b-dehydroxylation, to secondary BAs, which pre-

dominate in human faeces (Sagar et al. 2015; Wahl-
strom et al. 2016). Even though some are lost in faeces,

most BAs are absorbed in the ileum and return to the

liver where they are deconjugated and released into the
small intestine (Ridlon et al. 2006). The genera of the

gut microbiota involved in BA metabolism are Bac-
teroides, Bifidobacterium, Clostridium, Lactobacillus
and Eubacterium (G�erard 2014). BA metabolites result-

ing from microbial transformation may act as signalling
molecules and regulate cardiovascular function through

the TGR5 (G-coupled protein receptor) and FXR (far-

nesoid x receptor), thus potentially inhibiting inflamma-
tion and maintaining epithelial cell integrity (Miyazaki-

Anzai et al. 2014), and modifying vascular tone (Nie

et al. 2015; Wahlstrom et al. 2016). Furthermore, Bac-
teroides fragilis, B. vulgatus, Clostridium perfringens,
Listeria monocytogenes and several species of Lacto-
bacillus and Bifidobacterium interfere with cholesterol
absorption from the gut by deconjugating bile salts, via

bile salt hydrolases (Jones et al. 2008), which means

cholesterol is less easily absorbed and more likely to be
excreted in faeces, resulting in lowered blood choles-

terol (Hofmann 1999; Ridlon et al. 2006; Nicholson

et al. 2012; Tuohy et al. 2014).

Short-chain fatty acids

SCFAs are the major end product of both carbohy-

drate and amino acid bacterial fermentation in the

human large intestine (Morrison & Preston 2016).
The main SCFAs are acetate, propionate and butyrate;

less common are formate, valerate, caproate and

branched-chain fatty acids (Macfarlane & Macfarlane
2003; Nicholson et al. 2012). Butyrate can be metabo-

lised by colonocytes or absorbed and metabolised
further in the liver, where they are metabolised
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(R�ıos-Covi�an et al. 2016). SCFAs can act as an energy

source for gut epithelial cells, improve intestinal

defence against pathogens, modulate inflammation
and possibly influence satiety (Russell et al. 2013).

Butyrate may play a key role in regulating gene

expression, inflammation and maintaining homeostasis
of colonic mucosa through stimulating the production

and release of the gut hormone glucagon-like peptide-

2 (GLP-2) in enteroendocrine L cells (Tappenden et al.
2003; Hamer et al. 2008; Louis & Flint 2009). In

addition, SCFAs decrease systemic levels of blood

lipids by inhibiting hepatic cholesterol synthesis and/or
redistributing cholesterol from plasma to the liver

(Pereira & Gibson 2002). SCFAs are also thought to
bind to specific G protein-coupled receptors, leading

to the favourable regulation of lipid and glucose meta-

bolism in the context of CVD (den Besten et al. 2013;
Canfora et al. 2015; Kasubuchi et al. 2015). Another
gut microbiota metabolism-dependent effect is the

microbial conversion of choline and L-carnitine to
trimethylamine (TMA) to TMAO. TMAO is thought

to increase atherosclerotic CVD by altering cholesterol

transport, potentially increasing macrophage activa-
tion (Randrianarisoa et al. 2016).

Oat components

Oats (Avena sativa) are unique among cereals due to
their multifunctional characteristics and nutritional

profile (Table 1). They supply protein, carbohydrate

(primarily starch), crude fat, dietary fibre, unique
antioxidants and vitamins and minerals (Welch 1994;

Sadiq Butt et al. 2008; Menon et al. 2016). Oats have

been grown for thousands of years, mainly as an ani-
mal feed crop, but during the 19th century, oats

gained recognition as a ‘healthy’ food (Menon et al.
2016). Numerous reviews suggest that diets rich in
oats may reduce inflammatory bowel disease and coe-

liac disease (Haboubi et al. 2006; Thies et al. 2014),
attenuate CVD progression (Ruxton & Derbyshire
2008; Thies et al. 2014), and regulate glucose control

in type 2 diabetes (Connolly et al. 2012b; Hou et al.
2015).

The nutrient profile and quality of oats depend on

several factors, such as growth environment, genotype

and the interaction between environment and geno-
type (Peterson et al. 2005). The main constituent

(60%) of oat grains is starch (rapidly digestible,

slowly digestible and resistant), located in the
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Figure 1 Bile acid biosynthesis. Primary bile acid synthesis in the liver: cholesterol is synthesised to cholic acid (CA) and chenodeoxycholic acid (CDCA) by

the cholesterol 7 alpha-hydroxylase (CYP7A1) enzyme. In the intestinum, the bacterial 7 alpha-dehydroxylase converts the CA and CDCA to deoxycholic acid

(CDA) and lithocholic acid (LCA), respectively. The bile acid receptors FXR farnesoid x receptor (FXR) and G protein-coupled bile acid receptor (TGR5) regu-

late bile acid synthesis, glucose homeostasis and lipid metabolism. [Colour figure can be viewed at wileyonlinelibrary.com]
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endosperm. Resistant starch is recognised as a fer-

mentable fibre source for gut microbiota, which results

in the production of SCFAs in the colon (Ovando-
Mart�ınez et al. 2013; Gangopadhyay et al. 2015;

Rasane et al. 2015). Moreover, oats are a source of

high-quality protein, lipids (especially unsaturated
fatty acid such as oleic, linoleic and palmitic acid),

traces of minerals (mainly calcium and iron), B and E

vitamins and phenolic compounds (Gangopadhyay
et al. 2015; Rasane et al. 2015; Menon et al. 2016).

Oat phytochemicals

Dietary phenolics, such as hydroxycinnamic, hydroxy-

benzoic acids and avenanthramides, are natural phe-
nolic components in oats (Shewry et al. 2008). They

are found in three different forms within the oat food

matrix: as soluble free acids; as soluble conjugates
esterified to low molecular weight components such as

sugars; and as insoluble bound acids esterified to high

molecular weight components, including lignin, cell
wall polysaccharides such as arabinoxylan (Stevenson

et al. 2012) and storage proteins in the aleurone layer

and the pericarp (Shewry et al. 2008). The main
hydroxycinnamic acids present in oats include ferulic

acid, caffeic, p-coumaric (Fig. 2), o-coumaric and sina-

pic acids. Hydroxybenzoic acid derivatives are proto-
catechuic, syringic, vanillic, p-hydroxybenzoic and

gallic acids (Kern et al. 2003; El-Seedi et al. 2012;

Kumar & Pruthi 2014; Yang et al. 2014).
Hydroxycinnamic acids all have a C6C3 carbon

skeleton with a double bond in the side chain that

may have a cis or trans configuration. By far the most
abundant hydroxycinnamic in oats is the trans-ferulic

acid, with contents ranging from 95 to 386 lg/g
(Shewry et al. 2008). Analytical data indicate that, on
average, 19% of these phenolic acids (range: 50–110
lg/g) are present in the soluble state, 34% as conju-

gates (range: 111–314 lg/g) and 47% bound (range:
131–640 lg/g) (Shewry et al. 2008). Another phenolic

group specific to oats are the avenanthramides (AVA)

(Fig. 3), consisting of an amide conjugate of anthrani-
lic acid and hydroxycinnamic acids. The three major

subgroups are avenanthramide-A (AVA-A), avenan-

thramide-B (AVA-B) and avenanthramide-C (AVA-C),
which occur in the bran or outer layers of the kernel

(Manach et al. 2004). Total contents of avenan-
thramides in oats range from 42 to 91 lg/g (Emmons

& Peterson 1999; Liu et al. 2004; Manach et al.
2004; Chen et al. 2007).

Fibre

Wholegrain oats are typically 10%–12% fibre, of

which roughly 40% is soluble and 60% insoluble (cel-

lulose) (Menon et al. 2016). Mixed-linkage (1-3)(1-4)-
b-D-glucans (b-glucans) (82% water-soluble fraction)

together with arabinoxylans are important sources of

soluble as well as insoluble dietary fibre (Shewry et al.
2008; El Khoury et al. 2012). The soluble b-glucans
located throughout the subaleurone cell walls are one

of the most commonly studied components of oats
(Kim et al. 2006; Cloetens et al. 2012; Rebello et al.
2014; Zhang et al. 2016). A 100 g of oats contains

3–6 g b-glucans (Shewry et al. 2008).

Bioavailability of phytochemicals and physiological
effects of b-glucans

It has been estimated that only 5%–10% of dietary
polyphenols are absorbed in the small intestine, with

the remaining fraction reaching the large intestine

where they are metabolised by the gut microbial com-
munity (Manach et al. 2005; Cardona et al. 2013).

Table 1 Nutritional composition of raw oat bran. Data from the

US Department of Agriculture National Nutrient Database (USDA

2015)

Nutrient Value per 100 g

Energy (kcal) 246

Protein (g) 17.30

Total fat (g) 7.03

Fatty acids, total saturated (g) 1.6

Fatty acids, total monounsaturated (g) 2.38

Fatty acids, total polyunsaturated (g) 2.77

Total carbohydrate (g) 66.22

Sugar (g) 1.45

b-glucans (g)* 4.5–5.6

Arabinoxylans (g)* 3.83–13.20

Non-starch polysaccharide (g) 7.1

Calcium (mg) 58

Iron (mg) 5.41

Potassium (mg) 566

Sodium (mg)* 4

Magnesium (mg) 235

Zinc (mg) 3.11

Thiamine (mg) 1.17

Riboflavin (mg) 0.22

Niacin (mg) 0.93

Vitamin B (mg) 0.16

Folate (lg) 52

Vitamin E (mg) 1.01

Vitamin K (lg) 3.2

Total phenolic (mg)* 35.1–87.4

*Data from Shewry et al. (2008).
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The absorption and metabolism of ferulic acid can be

affected by the form of food matrix ingested (Kern
et al. 2003; Rein et al. 2013). Counterintuitively,

fibre-bound ferulic acid in wheat bran has been

observed to be more bioavailable than free ferulic acid
(Rondini et al. 2004). The differences observed in

their absorption may relate to the rapid cleavage of

the fibre–phenolic ester bond by the intestinal micro-
biota, which generates a higher amount of free pheno-

lic acids in the large gut, increases their time in the

plasma and decreases the level of urinary excretion
(Chesson et al. 1999; Rondini et al. 2004). Our group

reported intake of 60 g oat bran (2.5 mg avenan-

thramides, 28.6 mg phenolic acids) resulted in elevated
urinary excretion of 30 phenolic acids metabolites,

amounting to total recovery of 22.9% � 5.0%,
mainly between 0–2 and 4–8 hours (Schar et al.
2017). The predominant metabolites included vanillic

acid, 4- and 3-hydroxyhippuric acids and sulphate
conjugates of benzoic and ferulic acid (accounting for

two-thirds of total phenolic excretion). The results

suggest that bound phenolic acids present in oats are
rapidly released by the microbiota. Similarly, another

human study (Zhang et al. 2017) showed peak plasma

concentrations of avenanthramides between 2 and 3
hours after high (229.6 mg/kg) AVA intake and 1 and

2 hours for low AVA intake (32.7 mg kg). AVA-B

demonstrated a longer half-life and a slower elimina-
tion rate than AVA-A and AVA-C. The bioactive

properties of polyphenols are greatly dependent on

their bioavailability (Chen et al. 2004; Kroon et al.
2004; Manach et al. 2004; Chen et al. 2007). These

polyphenols have been observed to inhibit vascular

smooth muscle cell proliferation and enhance nitric
oxide production (Nie et al. 2006).

The physiological activity of b-glucans is in part

related to their effects on bile reabsorption and
through their ability to increase intestinal chyme vis-

cosity, effects that are dependent on both the concen-
tration and molecular weight of the b-glucans
consumed (Shewry et al. 2008; Menon et al. 2016).

The molecular weight of b-glucans varies between 100
000 and 1 200 000 g/mol, and those of a small molec-

ular size (370 000 g/mol) have been reported to be less

effective at reducing cholesterol levels (Kim et al.
2006) compared with those of high molecular weight

Figure 2 Chemical structure of the main hydroxycinnamates in oats.

Figure 3 Chemical structure of the avenanthramide in oats. Avenanthramide-A (AVA), avenanthramide-B (AVB) and avenanthramide-C (AVC).
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(Braaten et al. 1994). The solubility of b-glucans is

another important factor influencing their physiologi-
cal activity (El Khoury et al. 2012). Their ability to

form highly viscous small intestinal chyme likely con-

tributes to the health benefits of b-glucans, as it has
been reported that there is an inverse linear relation-

ship between measures of postprandial blood glucose

and insulin responses (to an oral glucose load) and the
viscosity of the chyme (Wood et al. 2000; Chen &

Raymond 2008; Wolever et al. 2018).

Cardiovascular benefits of the oat intake

Atherosclerosis is one of the main underlying patho-

physiological processes in CVD development (Stamler

et al. 1986; Shepherd et al. 1995), with several differ-
ent actions, such as oxidation of LDL cholesterol,

adhesion of monocytes across the endothelial surface,

development of monocytes to macrophages and the
formation foam cells (Andersson & Hellstrand 2012).

The potential modulation of atherogenic pathways

following oat intake has been suggested and may
involve anti-inflammatory activity, the maintenance

of endothelial function and the reduction in plasma

cholesterol (Fig. 4) (Ryan et al. 2007, 2011;

Jonnalagadda et al. 2011; Thies et al. 2014; White-

head et al. 2014; Shen et al. 2016). Additionally, oat
fibre and phenolics are capable of interacting directly

with the gut microbiota, leading to a shift in their pro-

file and composition, secondary changes in cholesterol
and bile metabolism, and the production of key

metabolites such as SCFAs and phenolic acids metabo-

lites (Fig. 4).

Effects of oat intake on microbiome composition –
in vitro and animal data

Several in vitro fermentation (Table 2) and animal
studies (Table 3) suggest that increased oat intake

leads to gut microbiota alterations. In vitro fermenta-

tion of oat grains has been shown to increase Bifi-
dobacterium and Lactobacillus populations (Connolly

et al. 2010) and Bacteroides and Prevotella groups

(Chappell et al. 2015), whilst decreasing clostridia
levels (Kedia et al. 2009). However, although oat-

derived b-glucans extracts increased Lactobacillus–
Enterococcus after 5 hours and Bacteroides after 24
hours in one in vitro study, they were found to not

influence bifidobacterial growth (Hughes et al. 2008).
In another in vitro study, it has been reported that the
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Lipid accumulation 

Oat intake
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Deconjugating bile salt 
Lipid absorption
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Adipogenesis
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Figure 4 Potential mechanisms in the digestion system of the cardiovascular benefits of oats. Oats may interact directly with the gut microbiota leading to a

shift in their profile and composition, changes in cholesterol and bile metabolism, and the production of key metabolites such as short-chain fatty acids.

Abbreviations: SCFAs (short-chain fatty acids), GPR41 and GPR43 (G protein-coupled receptor), PYY (peptide YY), GLP1 (glucagon-like peptide 1) and

CYP7A1 (cholesterol 7 alpha-hydroxylase). [Colour figure can be viewed at wileyonlinelibrary.com]
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b-glucans are fermented by Bacteroides spp but not by

Lactobacillus and Bifidobacterium (Crittenden et al.
2002). The fermentation of oats in anaerobic, pH-con-

trolled, faecal batch cultures has been shown to

increase SCFA production, with significant increases in
acetate, propionate and butyrate levels (Hughes et al.
2008; Kedia et al. 2009; Kim & White 2009; Con-
nolly et al. 2010, 2012b).

Consumption of oats by rodents has been reported

to result in many specific changes in their micro-
biota, such as increases in the growth of Prevotel-
laceae, Lactobacillaceae and Alcaligenaceae families

175.5% (P = 0.03), 184.5% (P = 0.01) and 150.0%
(P = 0.004). However, these results are not consistent

with the findings from other animal studies that indi-

cate oat bran intake increases only Bifidobacterium
and Lactobacillus growth (Drzikova et al. 2005;

Berger et al. 2014). The range of oat products used

in these studies, including oat flour and bran
(Drzikova et al. 2005), or insoluble fibre and soluble

fibre combinations (Zhou et al. 2015), might explain

the reported variability in microbiota growth in
rodents. Hence, further well-designed in vitro and

human studies are required to examine which oat
components may result in beneficial changes to the

microbiota.

Overall, these studies indicate inconsistent findings
regarding the influence of oats on the growth of the

microbiota and their diversity, which might be partly

explained by the various different study and experi-
mental designs. It is also important to note that these

studies considered only the influence of the b-glucans
fraction within oats and not other oat bioactives, such
as polyphenols, which have also been observed to

Table 2 The impact of oats on the gut microbiota and short-chain fatty acid (SCFA) production based on data from in vitro studies at

24 hours

Reference Intervention Effects on bacterial composition Effects on SCFA production

Hughes et al. (2008) Oat-derived b-glucans
Low molecular

weight (LMW) 150 kDa

High molecular

weight (HMW) 230kDa

Atopobium ↑ - LMW and HMV

Bacteroides – Prevotella ↑ - LMV

Lactobacillus/Enterococcus ↓ - LMV and HMV

Clostridium histolyticum ↑ - LMV and HMV

Acetate ↑ -

LMV, HMV

Propionate ↑ -

LMV, HMV

Kedia et al. (2009) Oat bran fraction (OB)

Whole oat flour (WOF)

Bifidobacterium ↑ - OB and WFO

Lactobacillus/Enterococcus ↑ - OB

Clostridium ↓ - 24 hours, OB

Clostridium ↑ - 24 hours, WOF

Acetate, butyrate, propionate ↑ -

OB, WOF

Kim and White (2009) Oat-derived b-glucans
Low b-glucans
(LB) – 5.31% b-glucans

High b-glucans
(HB) – 7.70% b-glucans

No data Acetate, butyrate, propionate ↑ -

LB, HB

No significant

differences between LB vs. HB

Connolly et al. (2010) Oat grain flakes

0.53–0.63 mm (size 23)

0.85–1.0 mm (size 25–26)

Bifidobacterium genus ↑ - size 25–26

Eubacterium ↑ - sizes 23 and 25–26

Acetate ↑ -

size 23

Acetate, propionate, butyrate ↑ -

size 25–26

Connolly et al. (2012b) Wholegrain oat-based cereals

• Jumbo porridge oat (JPO)

• 100% wholegrain

aggregate (WGA)

• Granola (G)

• 70% wholegrain loops (WGL)

• Instant porridge (IP)

JPO, IP, G, WGA Bifidobacterium ↑
JPO, G – Atopobium ↑
G, WGA, IP, WGL

- Bacteroides, Prevotella ↑
G, WGA, WGL - Lactobacillus/Enterococcus ↑
P, WGA – Clostridium ↓

Acetate, propionate ↑ -

JPO, IP, WGA, WGL, IP

Butyrate ↑ -

IP, WGA

Connolly et al. (2012a) Toasted (T), partially toasted (PT) and

raw (R) wholegrain wheat flakes

Bifidobacterium genus ↑ -

T, PT and R

C. hystolyticum subgroup, Lactobacillus ↑ - R

Acetate, propionate ↑ - T, PT R

Chappell et al. (2015) Belinda oats Bacteroides ↑
Firmicutes ↓

Acetate, propionate, butyrate ↑

© 2018 The Authors. Nutrition Bulletin published by John Wiley & Sons Ltd on behalf of British Nutrition Foundation Nutrition Bulletin, 43, 358–373

A focus on wholegrain oats 365



interact with the gut microbiota (van Duynhoven et al.
2011; Cardona et al. 2013; Kay 2015).

Effects of oat intake on microbiome composition –
human trials

Whilst in vitro (Kedia et al. 2009; Connolly et al.
2010, 2012a) and animal studies (Immerstrand et al.
2010; Berger et al. 2014) indicate that oat intake

increases the production of SCFAs, these effects are
difficult to quantify in humans as SFCAs are rapidly

absorbed or utilised in the large intestine. For exam-

ple, butyrate is almost entirely used by the colonocytes
as their preferred energy substrate (Cummings et al.
1987), propionate is primarily absorbed and removed

by the liver (Hong et al. 2005), whilst acetate passes
into the peripheral circulation (Roediger 1980). The

use of in vitro tools can help to investigate whether

various substrates lead to increased SCFA generation,
as faecal SCFA measurements are an uncertain esti-

mate of colonic SCFA production (Valeur et al. 2016).
Findings from human trials on the effects of oats on

the microbiota vary, possibly due to differences in

study design (i.e. intervention dose, study duration,
study population, the method of microbial enumera-

tion) and because these studies assessed the effects of

fibre but not the polyphenols in oats (Table 4). Two
randomised controlled trials provide evidence that

wholegrain wheat may exert effects on gut microbiota

(Costabile et al. 2008; Vitaglione et al. 2015). A daily
intake of 48 g of wholegrain wheat significantly

increased the growth of Bifidobacterium (0.8 log10
cells per g faeces) and Lactobacillus (0.6 log10 cells
per g faeces) and increased plasma ferulic acid levels

(Costabile et al. 2008). In contrast, intake of 70 g per
day of wholegrain wheat was found not to increase

levels of Bifidobacterium, although faecal ferulic acid

levels were found to be associated with an increase in
Bacteroides, Firmicutes and a reduction in Clostridium
(Vitaglione et al. 2015). To date, no human trials have

studied the direct effects of extracted or purified oat
phenolic acids on the growth of the microbiota, or

whether they contribute to the prebiotic effects of

wholegrain intake, although data do exist on the
impact of flavanols, which have been found to

promote the growth of specific beneficial bacteria

(Tzounis et al. 2011). These data suggest that phenolic
acids present in wholegrain cereals may potentiate gut

microbiota diversity; however, further research is

required to distinguish between the effects of fibre and
polyphenols on gut health.

Impact of oat intake on cholesterol metabolism and
bile acid synthesis

Oat b-glucans have been suggested to lower choles-
terol by causing an increased viscosity of the intestinal

chime (Ryan et al. 2007). The gel formed is thought
to act as a physical barrier to lipid (triglycerides)

absorption in the small intestine, in particular that of

cholesterol reabsorption (Bae et al. 2010; Andersson
& Hellstrand 2012; Bao et al. 2014). b-glucans have

also been shown to bind to luminal BAs, which

increases the excretion of bile in the faeces and trig-
gers an increase in hepatic conversion of cholesterol

into BAs, thereby decreasing blood cholesterol levels

(Lia et al. 1995; Bae et al. 2010; Grundy et al. 2017).
It has been reported that the intake of 75 g of

Table 3 Animal studies examining the effects of oat intake on growth of gut microbiota and short-chain fatty acid (SCFA) production

Reference Intervention (duration)
Oat effects on bacterial composition

and/or SCFA production compared to control Animals

Drzikova et al. (2005) Oat flour (F); oat bran (B); oat flour (F)

(autoclaved)

(6 weeks)

Bifidobacterium genus ↑ - F, B

Bacteroides ↑ - F

Rats

Immerstrand et al. (2010) Oat bran (OB; b-glucans – 1800 kDa or 2348 kDa)

Processed oat bran (POB; b-glucans – 1311 kDa,

241 kDa, 56 kDa, 21 kDa, 10 kDa)

(4 weeks)

Acetate, propionate, butyrate ↑ -

OB, POB

Mice

Berger et al. (2014) High fat diet – barley husks, rye bran,

fibre residue from oat milk

(4 weeks)

Lactobacillus ↑
propionate, butyrate ↑

Mice

Zhou et al. (2015) Wholegrain oat flour (WGO),

Low bran oat flour (LBO)

(8 weeks)

Prevotellaceae, Lactobacillaceae, and

Alcaligenaceae families relative

abundance – ↑ - WBO

Clostridiaceae, Lachnospiraceae families – ↑ - LBO

Mice

© 2018 The Authors. Nutrition Bulletin published by John Wiley & Sons Ltd on behalf of British Nutrition Foundation Nutrition Bulletin, 43, 358–373

366 A. Kristek et al.



extruded oat bran (11 g b-glucans) resulted in a near
doubling of serum 7 alpha-hydroxy-4-cholesten-3-one

concentration within 8 hours, which lead to increased

BA synthesis (Andersson et al. 2002). BA excretion is
well known to stimulate cholesterol uptake from the

circulation, resulting in a decreased serum cholesterol
concentration (Grundy et al. 2017).

Oat intake and short-chain fatty acid production

SCFA production is highly dependent on the donor

and availability of substrates (Cook & Sellin 1998).
The ability of oats (and isolated b-glucans) to increase

SCFA production is well established (Connolly et al.
2010, 2012a; Berger et al. 2014). After 12 hours of
in vitro fermentation, oat bran (containing 22% oat

b-glucan) induced significantly higher concentrations
of propionate compared to other prebiotic dietary

fibres, such as inulin and xylooligosaccharide (Carlson

et al. 2017). The production of SCFAs in the large
intestine following oat consumption has been reported

and postulated to contribute to reductions in serum
lipids and other CVD risk markers (Andersson &

Hellstrand 2012). As such, SCFAs may act as media-

tors of the beneficial effects of wholegrain oat intake
of human CVD. These effects might be dependent on

SCFAs’ ability to: (1) affect liver and muscle cellular

metabolism via their potential to increase insulin sensi-
tivity and decrease lipid accumulation in liver (Oda

et al. 1994; Ulmius et al. 2011; Zhang et al. 2012;

Chang et al. 2013; McNabney & Henagan 2017);
(2) suppress cholesterol synthesis, increase fatty acid

Table 4 The relationship between oats, the growth of gut microbiota and short-chain fatty acid (SCFA) production based on data from

human intervention trials

Reference Intervention (duration)
Oat effects on bacterial composition and/or

SCFA production compared to control

Bridges et al. (1992) 20 (38–73 years) hypercholesterolaemic men

Oat bran – 34 g/day total fibre and 13.4 g/day soluble fibre

Control – 14 g/day total fibre and 3 g/day soluble fibre

(3 weeks)

SCFA in peripheral serum

Serum acetic acid ↑

M�artensson

et al. (2005)
56 adults

(20–70 years, 24 men/32 women)

with moderately increased plasma cholesterol levels

Fermented oat-based products (FO) (3–3.5 g/day – b-glucans)
Fermented ropy, oat products (FRO)

Fermented dairy-based product (control)

(Control – 3 weeks, treatment – 5 weeks)

Total bacteria count ↑
Bifidobacterium ↑ - FO, FRO

Nilsson et al. (2008b) 25 healthy adults

(20–47 years, 10 men/15 women)

40 g b-glucans enriched oat bran

(40 g oat bran, 20 g dietary fibre, 10 g

glucan in four slices of bread)

Control – baseline samples, week 0

(12 weeks)

SCFAs in faeces

Acetic, propionic, butyric, isobutyric, isovaleric - ↑

Valeur et al. (2016) 10 healthy adults

(22–49 years, 2 men/8 women)

60 g oatmeal porridge

(8.5 g fibre, 4.7 g glucans)

Control – baseline samples, day 1

(1 week)

Intestinal gas production SCFAs and no changes – faeces

b-galactosidase and urease - ↓
Rectal level of PGE2 – no significant difference

Connolly et al. (2016) 32 mild or hypercholesterolaemia adults

(23–64 years, 12 men/20 women)

Wholegrain oat granola (WGO) - 45 g

granola breakfast cereals

(6.3 g fibre, 2.9 g glucans)

Non-wholegrain (NWG) – 45 g

non-wholegrain breakfast cereals (control)

(3 g fibre, no glucans)

(6 weeks)

SCFAs no significance differences

Total bacteria count ↑
Bifidobacterium ↑
Lactobacilli ↑
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oxidation and decrease de novo fatty acid synthesis in

the liver (Andersson et al. 2002, 2017; Cloetens et al.
2012; Han et al. 2015); (3) increase adipogenesis and

decrease lipolysis (Gao et al. 2015; Heimann et al.
2016); (4) modulate satiety through their potential to
bind to G protein-coupled receptors (GPR41, GPR43),

leading to the increased production of the gut hor-

mones glucagon-like peptide-1 and peptide YY
(Hooda et al. 2010; Koh et al. 2016; Rebello et al.
2016) and regulate satiety centrally (Bridges et al.
1992; Canfora et al. 2015; Canfora & Blaak 2017);
and 5) improve colon and liver glucose homeostasis

via their induction of intestinal gluconeogenesis (den

Besten et al. 2013; Bourassa et al. 2016; Cheng et al.
2017; Jayachandran et al. 2018) (Fig. 4). In addition,

butyric acid has been reported to increase phenolic

acid absorption in the colon (Ziegler et al. 2016),
which subsequently may induce endothelium-depen-

dent vasodilation (Suzuki et al. 2002, 2007; Choi

et al. 2012). Recent studies have also indicated that
the ratio of acetate and propionate may be important

for defining the precise effects of SCFAs on various

physiological systems. For example, a high serum acet-
ate:propionate ratio has been associated with reduc-

tions in total serum cholesterol in men (Weitkunat
et al. 2017; Boets et al. 2017; Wolever et al. 1996).

Conclusions

Evidence suggests that wholegrain oats may reduce

CVD risk due to their influence on lipid metabolism
and plasma cholesterol levels. Oat b-glucans are likely

to be partly responsible for any effects as they can

change the gut microbiota composition, increase
cholesterol excretion in the gut and increase the levels

of SCFAs, which may inhibit hepatic cholesterol syn-

thesis and affect glucose homeostasis in adipose tissues
and muscle cells. However, inconsistent findings from

in vitro, animal and human studies have been reported

regarding the influence of oat intake on these out-
comes, possibly due to differences in experimental

techniques and the focus on b-glucan rather than other

compounds present in oats, such as phenolic acids and
avenanthramides, which may also contribute to benefi-

cial changes in the gut microbiota and lipid/cholesterol

metabolism. Clinical, observational and experimental
studies to date have not explored the extent to which

cardiovascular benefits are dependent on oat fibre or

phenolic acid levels. Hence, further randomised, con-
trolled trials are required to examine the relative

effects of oat phenolics on microbial pathways and
cardiovascular risk markers.
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