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Abstract 

 

Background: The pregnane X receptor (PXR) is a nuclear receptor (NR) involved in the 

detoxification of xenobiotic compounds via upregulation of cytochrome P450 enzyme 

expression. Recently, the presence of PXR was reported in the human vasculature and 

its ligands were proposed to exhibit anti-atherosclerotic effects. The retinoid X receptor 

(RXR) is another NR that regulates numerous biological functions. RXR (α and β) is 

expressed in platelets, and its ligands have been reported to inhibit platelet function 

mediated by Gq coupled ADP and TXA2 receptors.  

Aims: Platelets play a substantial role towards the initiation of atherosclerosis and 

express numerous NRs. Given the anti-atherosclerotic effects of PXR ligands, we 

explored whether PXR is present in human platelets and evaluated the role of its ligands 

in regulating platelet activation in response to different platelet agonists. Since RXR is 

known to modulate platelet function in response to ADP and U46619, and is able to 

function in other cells in collaboration with PXR, we also sought to extend studies of the 

role of RXR in the modulation of platelet activation stimulated by collagen/CRP-XL or 

thrombin. 

Results: The expression of PXR in human platelets was confirmed using western blot 

and immunoprecipitation analysis. Platelets treated with PXR ligands (SR12813 or 

rifampicin) inhibited a range of platelet activities such as aggregation, fibrinogen 

binding to integrin αIIbβ3, degranulation, intracellular calcium mobilisation, integrin 

αIIbβ3 outside-in signalling. In the absence of nuclei, the actions of PXR are non-

genomic in nature. Human and mouse PXR ligands reduced thrombus formation in vitro 

in human and mouse blood respectively. These effects of human and mouse PXR ligands 

were observed in a species-specific manner. Anti-thrombotic effects of SR12813 were 
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observed in humanised PXR knock-in mice using an in vivo mouse model of thrombosis. 

In addition to the reduced tyrosine phosphorylation of multiple GPVI signalling 

components, caused by PXR ligands, inhibition of phosphorylation of Src family kinases 

(SFKs) proximal to GPVI, CLEC-2 and integrin αIIbβ3 receptor was also observed. This 

suggests SFKs as a potential target of PXR function. Furthermore, RXR ligands (9-cis-RA 

or methoprene acid), in a non-genomic manner, down-regulated platelet activity 

stimulated by collagen/CRP-XL or thrombin. RXR was found to exist in the form of a 

heterodimer with other NRs such as PXR, liver X receptor (LXR) and peroxisome 

proliferator-activated receptor (PPARβ and PPARγ). Exposure to 9-cis-RA also caused a 

reduction in thrombus formation in vitro and in vivo, with impairment of haemostatic 

response. 

Conclusions: This study identifies the ability of PXR and RXR to regulate platelet 

activation and thrombus formation in a non-genomic manner. The potential anti-

atherosclerotic properties of PXR and RXR ligands, together with newly identified anti-

thrombotic effects may provide additional cardio-protective benefits. 
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1.1. Platelets: an overview 

Platelets (or thrombocytes) were first discovered by Giulio Bizzozero, an 

Italian professor, in 1882. He categorised these corpuscles as the third 

morphological element of blood and coined the term ‘piastrine’ for them, meaning 

small plates (Gazzaniga and Ottini, 2001). These particles later became established 

as ‘platelets’ and are now regarded as the second most abundant class of 

circulating blood cells (after red blood cells) (York, 2013). They are small, 

anucleated and discoid shaped (1-3 µm diameter) arising from cytoplasmic 

fragmentation of megakaryocytes in the bone marrow. In healthy individuals, 

approximately 1011 platelets are produced per day to maintain a normal platelet 

concentration of 1.5 – 4x108 cells/ml with an average lifespan of 8-10 days 

(Ghoshal and Bhattacharyya, 2014). The primary function of platelets is to 

maintain haemostasis, which is to initiate blood coagulation at the site of injury, 

resulting in the development of a haemostatic clot and thereby sealing the wound 

(Clemetson, 2012). Low concentration of circulating platelets, a condition referred 

to as thrombocytopenia, can lead to bleeding disorders. Under physiological 

conditions, red blood cells flow in the central core of the blood vessel and 

marginate platelets towards the vessel wall, enabling them to detect injury to the 

vessel wall (Mountrakis et al., 2013).  

Platelets maintain a quiescent profile while flowing under normal 

conditions; however, upon encountering any discontinuity in the vessel wall, they 

undergo a dynamic transformation into an activated state, leading towards the 

formation of a platelet plug to seal the wound and arrest bleeding. Although, 

platelet activation is a highly controlled and regulated process, their inappropriate 
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activation, even in the absence of vessel injury may lead to thrombus formation 

within a blood vessel (Bergmeier and Hynes, 2012). This condition, referred to as 

thrombosis can be regarded as a pathological version of haemostasis and may lead 

to life-threatening tissue ischemia, myocardial infarction or stroke through the 

occlusion of cerebral blood vessels (Clemetson, 2012; Mackman, 2008). Clinical 

conditions such as atherosclerosis that involve development of a plaque 

(consisting of fat, cholesterol, calcium) at the arterial wall can stimulate platelet 

activation. Rupturing of the fibrous cap (rich in collagen) of the plaque triggers 

activation of platelets and subsequent thrombosis (Badimon and Vilahur, 2014). 

Unwanted platelet activation is also associated with obesity, diabetes, cancer and 

hypertension that may lead to hyperactivity of platelets (Blokhin and Lentz, 2013; 

Vazzana et al., 2012; Previtali et al., 2011; Elyamany et al., 2014).  

There exists a very thin line that demarcates the frontier between 

physiological haemostasis and pathological thrombosis. Despite many 

advancements in the field, thrombosis is still one of the leading causes of death 

globally (Davì and Patrono, 2007). Since, platelets are the major contributors 

towards this disease, comprehensive understanding of the mechanisms that 

govern haemostasis and its transition to thrombosis are required. Therefore, 

paramount emphasis has been given to platelet-research with a clear intention of 

exploring them as potential therapeutic targets in the field of thrombosis and 

related cardiovascular diseases (CVDs). 
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1.2. Platelet biogenesis and clearance 

Platelets are produced from megakaryocytes in the bone marrow by a 

process called thrombopoiesis. Megakaryocytes constitute ˂0.1% of the nucleated 

cell population in the bone marrow and are produced from multipotent 

haematopoietic stem cells (HSCs) via haematopoiesis (Patel et al., 2005). Under 

the control of hematopoietic cytokine, thrombopoietin; HSCs mature and 

differentiate to form megakaryocytes, each of which can subsequently produce 

103-104 platelets (Kaushansky, 2006; Kaushansky, 2005).  

Thrombopoiesis is initiated with the binding of thrombopoietin to the c-

Mpl surface receptor on the megakaryocyte, which stimulates endomitosis (DNA 

replication without cell division), transforming megakaryocytes into giant cells 

with a large cytoplasm and polyploid nucleus (Ravid et al., 2002). This process 

considerably amplifies the levels of DNA (up to 64-fold) which is necessary to 

produce mRNA, cytoskeletal and platelet-specific proteins, to be packaged into 

platelets. (Machlus et al., 2014; Patel et al., 2005). This is then followed by the 

rearrangement of a bulk of megakaryocytic cytoplasm in the form of long 

projections or pseudopods called proplatelet shafts, while the polyploid nucleus 

remains embedded inside the megakaryocyte (Italiano and Shivdasani, 2003). 

These shafts are active structures made up of microtubule bundles with platelet 

sized swellings at their ends (Thon et al., 2012). Proplatelets are regarded as the 

assembly lines for platelet production and this process essentially takes place 

adjacent to the sinusoidal blood vessels in the bone marrow, and into which, 

proplatelets are released into the circulation (Geddis, 2010; Machlus and Italiano, 

2013). Each megakaryocyte can give rise to 10-20 proplatelets, which after their 
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release undergoes repeated branching and fission in a shear-dependent manner to 

form discoid shaped platelets (Junt et al., 2007; Richardson et al., 2005).  

Apart from the bone marrow, lungs have been a subject of interest for 

decades as a potential site of thrombopoiesis. Several studies reported the 

presence of megakaryocytes in lungs (Hansen and Pedersen, 1978; Kaufman et al., 

1965; Levine et al., 1993) and noticed that blood leaving the lungs carried fewer 

megakaryocytes (in comparison with the number that initially entered) and more 

of platelets (Kallinikos-Maniatis, 1969; Howell and Donahue, 1937). Lefrançais et 

al. (2017) recently provided further evidence that suggest lungs as a major site of 

platelet biogenesis. Through direct imaging of lung microcirculation in mice, the 

presence of both mature and immature megakaryocytes (of extrapulmonary 

origin) and release of platelets from them in extravascular spaces of the lungs was 

confirmed. It was estimated that platelet production in lungs contributes to 

around 50% of total platelet biogenesis in mouse (Lefrançais et al., 2017). 

However, the origin of platelets (bone marrow or lungs) remains a topic of 

considerable debate. 

 The pathways underlying clearance of platelets are not well understood. 

The classical mechanism suggests the role of apoptosis in platelet removal. It 

explains how dysregulation in the balance between pro-apoptotic and anti-

apoptotic members of the Bcl-2 family (involved in the intrinsic apoptotic 

pathway) can direct platelets towards apoptosis and eventual clearance from the 

physiological system (Mason et al., 2007; Grozovsky et al., 2015b). Alternatively, 

autoantibodies that target platelet integrin αIIbβ3 and/or the GPIb–V–IX complex 

can also cause platelet removal. Platelets displaying autoantibodies on their 
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surface attract macrophages, leading to removal through phagocytosis in spleen 

(Grozovsky et al., 2015c). Immune thrombocytopenia is the most common 

outcome of this mode of platelet clearance (McMillan, 2007). Recently, studies 

have reported platelet clearance based on ageing (senescence) induced signals. 

Loss of sialic acid from the platelet surface marks the senescent platelets for 

removal, which are cleared via the hepatic Ashwell-Morell receptors (Grozovsky et 

al., 2015a; Li et al., 2015).  

 

 

 

 

 

 

 

 

 

  

 

 

 



  Chapter-1 
 

   7 
 

1.3. Platelet ultrastructure 

Although platelets possess a deceptively simple appearance, they are quite 

complex structures (Figure 1.1). The lack of a nucleus is one the feature that 

distinguishes platelets from other cell types. Their remarkably small size of 2-4 μM 

provides a mean cell volume of 8-10 femtoliters, whereas, their disc shape aids 

their flow near to the endothelium in the bloodstream. Important structures of 

platelets include: 

a. Plasma Membrane 

The platelet membrane is a typical bilayer of phospholipids and relatively 

smooth in comparison with other cell types present in circulation. Scanning 

electron microscopy shows the presence of tiny folds, which are believed to 

provide additional surface area when platelets spread upon activation (White, 

2013). The plasma membrane is structurally supported by a cytoskeleton made up 

of actin, tubulin, spectrin and filamin. In a resting state, microtubules exist in the 

form of coils in the submembranous part of the plasma membrane, providing a 

discoid shape to platelets (Smyth et al., 2010). Actin filaments exist in the 

cytoplasm and maintain a dynamic equilibrium between a monomeric globular 

form (G-actin) and a polymeric filamentous form (F-actin). It is this 

polymerisation that primarily facilitates platelet shape change upon activation 

(Bearer et al., 2002). Spectrin, on the other hand, laminates the cytoplasmic face of 

the plasma membrane and is connected to actin filaments (Shin et al., 2017).   

Invaginations of the platelet plasma membrane constitute the open canicular 

system (OCS) that serves a conduit for the release of platelet secretome during 
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activation along with the movement of substances into the cells (Flaumenhaft and 

Koseoglu, 2016). The plasma membrane also features a range of surface receptors 

pivotal for platelet activation and aggregation. These include adhesion receptors, 

G-protein coupled receptors and integrins, discussed in detail in section 1.4.   

b. Dense tubular system 

The dense tubular system (DTS) is a derivative of the megakaryocyte smooth 

endoplasmic reticulum  and acts as a storehouse of calcium ions (Ca2+) and several 

enzymes that are important to control platelet activation (Gremmel et al., 2016). 

Under resting conditions, the DTS exists as thin elongated membranes, which 

transform to a round vesicular form upon platelet activation (Ebbeling et al., 

1992) along with the release of calcium. This causes a rapid rise in cytosolic 

calcium-concentration which is extremely important for platelet activation (Jardín 

et al., 2008). The DTS is also a site where enzymes cyclooxygenase-1 (COX-1) and 

thromboxane synthetase catabolise arachidonic acid towards the formation of 

thromboxane A2 (TxA2), which provides positive feedback and amplifies platelet 

activation (Rendu and Brohard-Bohn, 2001).  

c. Platelet granules 

There are three kinds of granules that have been identified in platelets; α-

granules, dense granule and lysosomes (Lam et al., 2015).  

α-granules: They are spherical or ovoid in shape (diameter of 200–400 nm) and 

with an approximate number of 50-80 per platelet they outnumber the other two 

granules (Blair and Flaumenhaft, 2009). α-granules contains the bulk of the 

platelet secretome and are regarded as the primary secretory granules in platelets. 

They store several important haemostatic factors such as von Willebrand Factor 
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(vWF), fibronectin, and fibrinogen along with several transmembrane receptors, 

for instance, GPIb-V-IX, αIIbβ3, GPVI and Platelet endothelial cell adhesion 

molecule (PECAM-1). Both haemostatic factors and transmembrane receptors 

become trafficked to the surface of platelets upon their activation (Golebiewska 

and Poole, 2015). In addition to these several angiogenic factors (eg, angiogenin, 

VEGF), anti-angiogenic factors (eg, angiostatin, PF4), growth factors (eg, PDGF, 

bFGF, SDF1α), proteases (eg, MMP2, MMP9), necrotic factors (eg, TNFα, TNFβ), 

and cytokines are also present inside α-granules (Whiteheart, 2011). 

Dense granules: These granules contain high levels of calcium, magnesium and 

phosphate ions which make them appear as dense bodies when seen with an 

electron microscope (Ruiz et al., 2004). While there are only 3-5 dense granules 

present per platelet, they store sufficient quantities of nucleotides (ATP and ADP) 

and serotonin that upon release stimulate positive feedback mechanisms in 

platelets which are important to strengthen activation responses in an autocrine 

(same platelet) or paracrine (recruiting more platelets) fashion (Flaumenhaft, 

2017; Mehta et al., 2012). Both α-granules and dense granules secrete their 

contents into the OCS and then pass into the blood.        

Lysosomes: A platelet typically contains 1–3 lysosomes that are rich in acid 

hydrolases such as cathepsins, hexosaminidase, β-galactosidase, arylsulfatase, β-

glucuronidase and acid phosphatase (Heijnen and van der Sluijs, 2015; Lam et al., 

2015). The lysosomal-associated membrane proteins (LAMP); LAMP-1, LAMP-2, 

and LAMP-3 (CD63) present on the lysosome surface are highly glycosylated and 

provide protection to the lysosomal membrane from the acidic luminal (pH <5) 

and proteolytic enzymes present within the lysosome (autodigestion) (Fukuda, 
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1991; Schwake et al., 2013). The functions of platelet lysosomes are not well 

understood. Apart from the hydrolysis of phagocytic and cytosolic components, it 

is believed that lysosomes participate in digestion and resolution of thrombi 

(Rendu and Brohard-Bohn, 2001). 

d. Mitochondria 

Platelet mitochondria, like in nucleated cells, are primarily involved in the 

production of ATP using oxidative phosphorylation to meet energy requirement of 

the quiescent cell (Zharikov and Shiva, 2013). Recent observations have suggested 

that mitochondria influence non-ATP mediated thrombotic signalling in platelets 

through the regulation of redox balance and apoptosis (Matarrese et al., 2009; 

Garcia-Souza and Oliveira, 2014).  

e. Glycosomes  

Platelet cytoplasm stores numerous glycosomes or glycogen particles that are 

important cargos of energy (White, 1999). Since platelets contain all the enzymes 

required for the conversion of glycogen to glucose (via glycolysis), they are 

regarded as important sites of energy for platelets (Rocha et al., 2014). 
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1.4. Role of platelets in haemostasis 

Haemostasis is a normal physiological response of the human body to stop 

bleeding and prevent loss of blood following an injury to a blood vessel. A series of 

coordinated cellular and biochemical events are involved in a haemostatic 

response, which ultimately results in the formation of a blood clot at the site of 

injury, thereby sealing the wound (Wang et al., 2014b). Vascular spasm or 

vasoconstriction is the first response of a blood vessel following injury. It involves 

contraction of the muscular wall that results in narrowing of the blood vessel to 

reduce the volume of blood flowing near the injured area and thus limits the blood 

loss (Velnar et al., 2009). Formation of a platelet plug at the injured site marks the 

second stage of haemostasis. The dynamics of platelet plug formation can be 

categorised into 3 phases; initiation or tethering phase, extension phase and 

stabilisation phase (Figure 1.2), which will now be discussed: 

 

a. Initiation or tethering phase (adhesion of platelets) 

Upon vascular injury, immobilised adhesive proteins such as collagen and vWF 

present in underlying subendothelial matrix becomes exposed, which triggers the 

adhesion of platelets (Nuyttens et al., 2011). Initially, the GPIbα subunit of the 

platelet glycoprotein Ib–V–IX receptor (GPIb–V–IX) forms a reversible complex 

with its ligand vWF, causing platelets to slow down and roll on the endothelium 

(Hou et al., 2015; Lopez and Dong, 1997). This binding enables a stable interaction 

of collagen with platelet receptors glycoprotein VI (GPVI) and integrin α2β1, 

resulting in the formation of a platelet monolayer at the injured site and 

transmission of activation signals across the platelets. Although, both the collagen 
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receptors are necessary for the complete activation of platelet, their role in 

adhesion of platelets is controversial. Nieswandt et al. (2001a) using β1 and GPVI 

null platelets suggested that the role of α2β1 is superfluous for platelet adhesion 

and thrombus growth on fibrillar collagen under static and flow conditions, 

whereas, these processes are eliminated in the absence of GPVI. On the other hand, 

Pugh et al. (2010) reported that α2β1 is predominantly involved with adhesion of 

platelets, while, GPVI function as the primary signalling receptor to activate 

platelets. Substrates other than collagen found in the endothelial matrix have also 

been shown to play a fundamental role in platelet adhesion. For instance; 

fibronectin binds to integrin α5β1 and αIIbβ3, laminin attaches with GPVI and 

integrin α6β1, whereas, thrombospondin-1 interacts with GPIb–V–IX complex in a 

vWF independent manner (Jurk et al., 2003; Ruggeri and Mendolicchio, 2007; 

Inoue et al., 2006).  

 

b. Extension (activation and secretion) 

Interaction with collagen results in the activation of platelets via stimulation of 

tyrosine kinase signalling downstream of the GPVI receptor, which can be 

regarded as the major collagen receptor on platelets (Clemetson et al., 1999; 

Gibbins et al., 1996; Gibbins et al., 1997). Degranulation is one the outcomes of this 

signalling event and involves the release of a myriad of pro-thrombotic agents, 

such as adenosine diphosphate (ADP) and TxA2 (produced by sequential 

oxygenation of arachidonic acid by cyclooxygenase-1 and thromboxane A2 

synthase). Thrombin precursor prothrombin is also secreted by α-granules upon 

platelet activation, which is a potent platelet agonist (Golebiewska and Poole, 

2015; Gibbins, 2004). These platelet agonists act via their specific platelet surface-
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receptors, which belong to the family of G-protein coupled receptors (GPCRs). This 

activates platelets circulating near the injury site, resulting in an amplification of 

primary signal initiated by collagen. Irrespective of the receptor through which 

these platelet agonists act, they ultimately facilitate transformation of integrin 

αIIbβ3 (GPIIb-IIIa) receptor from a low affinity to high-affinity state. In high-

affinity conformation, integrin αIIbβ3 can bind to its bivalent ligand fibrinogen (or 

other adhesive ligands such as vWF, fibronectin and thrombospondin-1) present 

in plasma. This results in the formation of crosslinked bridges between platelets 

and allows them to form aggregates, leading to the formation of a platelet plug (Ma 

et al., 2007b; Bennett, 2005). 

 

c. Perpetuation (stabilisation) 

This stage refers to the events that are involved in the consolidation of the 

platelet plug to prevent premature disaggregation of platelets. Following the 

formation of a platelet plug, contact-dependent signalling occurs in platelets that 

are attached with one another to stabilise the thrombus (Prevost et al., 2003). One 

of the classic examples of this is outside-in signalling, which is initiated by the 

attachment of fibrinogen to integrin αIIbβ3. This process is characterised by 

cytoskeletal reorganisation and clot retraction (discussed in detail in section 

1.5.5), which contributes towards the stability of haemostatic plug (Payrastre et 

al., 2000; Phillips et al., 2001). Apart from integrin αIIbβ3, contact-dependent 

signalling is also stimulated by the family of Eph receptor tyrosine kinases that are 

activated by their ligand ephrin (Vaiyapuri et al., 2015; Prevost et al., 2002). 

Recently, the presence of several forms of connexins were reported in platelets. 

They were found capable of regulating the stability of thrombus through the 
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formation of hemichannels (isolated platelets) and gap junctions (within 

thrombus) that regulate intercellular trafficking of molecules between platelets 

(Vaiyapuri et al., 2013; Angelillo-Scherrer et al., 2011; Vaiyapuri et al., 2012).  

 Simultaneously, in coordination with platelet plug formation, coagulation 

cascade also becomes activated, which involves the conversion of blood from a 

liquid state to a gel-like structure to prevent blood loss. Coagulation is a 

complicated process that involves at least 30 different kinds of proteins (known as 

coagulation factors) acting via two different pathways (extrinsic and intrinsic) in a 

sequential manner to generate activated factor X (Spronk et al., 2003; Walsh, 

2004). The production of activated factor X results in the cleavage of prothrombin 

(factor II) to thrombin (factor IIa), which acts as a catalyst for the conversion of 

soluble plasma-protein fibrinogen (factor I) into long, sticky threads of insoluble 

fibrin (factor Ia) (Chu, 2011). Fibrin, through the action of factor XIII becomes 

cross-linked and forms a mesh-like network on aggregated platelets that provide 

structural stability to the growing thrombus to form a stable clot (Monroe and 

Hoffman, 2006; Hoffman, 2003; Bagoly et al., 2012).  

 Lastly, haemostasis is marked by fibrinolysis, which is a highly regulated 

enzymatic process that prevents unnecessary accumulation of intravascular fibrin 

and enables the removal of thrombi (Chapin and Hajjar, 2015). This limits the 

growth of thrombus, which can be fatal and may lead to stroke, tissue ischaemia or 

myocardial infarction. The thrombus is lysed by the action of plasmin which is 

generated from plasminogen on the surface of fibrin clot through the action of 

tissue plasminogen activator (Chapin and Hajjar, 2015). The degradation products 
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from fibrinolysis possess anticoagulant properties and are cleared by the 

monocyte-macrophage system (Jennewein et al., 2011).  
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1.5. Platelet receptors and signalling 

Activation of platelets is a highly dynamic and rapid process. A large 

number of proteins act in a concerted manner via different pathways to regulate 

this complex process. Briefly, platelet activation is initiated by the binding of an 

agonist to its surface receptor on platelets. This provides a stimulus that begins a 

signal transduction cascade via tyrosine kinase-dependent phosphorylation of 

numerous proteins acting in a sequence, ultimately allowing platelets to stick 

together to form aggregates. Platelet receptors can be divided into three broad 

categories: a) receptors that bind to immobilised matrix proteins such as collagen 

or vWF and include GPIb-V-IX complex, integrin α2β1 and GPVI. b) G-protein 

coupled receptors that are activated by soluble mediators found within the plasma 

or secreted from platelets (thrombin, ADP, TxA2 or epinephrine). c) Receptors that 

function to stabilise a thrombus once platelets are in contact with each other, 

including integrin αIIbβ3 and Eph receptors. Signalling pathways initiated by 

these receptors will now be discussed in detail. 

 

1.5.1. Collagen mediated platelets signalling 

Collagens make up approximately 40% of the total proteins constituting 

the extracellular matrix of the blood vessel wall. They exist in the form of insoluble 

scaffolds, that is characterised by the presence of a triple helical structure 

composed of three separate polypeptide chains (α-chains) (Smethurst et al., 

2007). Collagen not only provides mechanical and structural strength to the vessel 

wall but they also act as a substrate for the adhesion of platelets and their 

subsequent activation (Farndale et al., 2004; Roberts et al., 2004). There are 25 
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different kinds of collagens that have been identified, of which, 10 exist in human 

blood vessel, but only the type I, III, V, and VI (fibrillar collagen) and type IV and 

VIII (nonfibrillar collagen) are thrombogenic in nature (Barnes and Farndale, 

1999; Kauskot and Hoylaerts, 2012).  

As discussed previously, collagen-evoked platelet activation begins with the 

interaction of the platelet GPIb–V–IX receptor complex with vWF bound to 

exposed collagen (at the site of the ruptured vessel). This slows down the 

movement of platelets and enables their stable interaction with collagen receptors 

GPVI and integrin α2β1, leading to their firm adhesion. This is followed with 

intracellular tyrosine kinase signalling, resulting in platelet calcium mobilisation, 

granule secretion, integrin αIIbβ3 activation and the formation of platelet 

aggregate (Gibbins, 2004; Li et al., 2010). 

 

1.5.1.1. GPIb-V-IX complex 

The GPIb-V-IX complex is a receptor originating in the megakaryocytes 

and found exclusively in platelets, with the exception of a weak expression in 

certain endothelial cells (Li and Emsley, 2013). It is composed of four distinct 

transmembrane proteins; GPIbα, GPIbβ, GPIX, and GPV, each of which belong to 

leucine-rich repeat superfamily. Attachment of one GPIbα subunit with two GPIbβ 

subunits via disulphide bonds forms GPIb, whereas GPIX and GPV are non-

covalently associated with GPIb (Nuyttens et al., 2011). All 4 subunits are present 

in high copy numbers, and deficiency in either one of them can affect the surface 

expression of the entire complex. For instance, defects in the expression of GPIb 

causes Bernard-Soulier syndrome (BSS), which is a hereditary bleeding disorder 
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(Lanza, 2006). While vWF is the primary ligand for GPIb-V-IX, it also binds to 

coagulation factors (thrombin, factor XI, factor XII), thrombospondin-1 and 

membrane glycoprotein (P-selectin, Mac-1).  

As described earlier, the association between GPIb-V-IX complex and the 

plasma protein vWF (attached to collagen) acts as the first mode of interaction 

between platelets and the damaged endothelial matrix. This interaction can occur 

in the venous system where low shear rates are observed (20-200 s-1), however, it 

is of much more significance in arteries, where high shear rates (300-800 s-1) exist 

(Dopheide et al., 2002; Andre et al., 2000). vWF-GPIb-V-IX interaction is 

characterised by a rapid on-and-off rate, still, it provides sufficient opportunity for 

the collagen receptors GPVI and α2β1 to elicit stable adhesion and activation of 

platelets (Pugh et al., 2010).  

Although principally associated with the adhesion of platelets, there is 

accumulating evidence that suggests the role of GPIb-V-IX in stimulating tyrosine 

kinase signalling in platelets. It is believed that the presence of the GPIb–V–IX 

complex in the lipid raft fraction of the cell membrane provides an ideal location 

for transmitting activation signals (Ozaki et al., 2013). Lipid rafts are rich in 

numerous cytoplasmic signalling proteins that include Src family kinases (SFKs), 

phosphoinositide 3-kinase (PI3K), the adapter molecule 14-3-3ζ, and the actin 

cytoskeleton-associated protein filamin, which are now known to be active 

interactive partners of GPIb-V-IX complex (Mangin et al., 2004; Wu et al., 2003; 

Andrews and Fox, 1991; Munday et al., 2000). Liu et al. (2005) reported the role of 

SFKs as important mediators of vWF-GPIb-IX-V signalling to facilitate TxA2 

production. In a similar manner, the Bruton tyrosine kinase (Btk) has also been 
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found to regulate TxA2 production through its participation in signalling initiated 

by GPIb-V-IX (Liu et al., 2006). PI3K has also been implicated in signalling via 

GPIb-V-IX, leading to calcium mobilisation (Yap et al., 2002). These findings were 

supported by Kasirer-Friede et al. (2004), where GPIb-V-IX mediated signalling 

was reported to activate integrin αIIbβ3, through the actions of SFKs and PI3K. Wu 

et al. (2001) identified the importance of FcRγ-chain in signal transduction 

downstream of GPIb-V-IX. They reported that in comparison to wild-type platelets, 

FcRγ chain-deficient platelets stimulated with vWF plus botrocetin (snake venom 

protein that enhances the affinity of vWF for the platelet GPIbα) formed smaller 

platelet aggregates suggesting the potential role of FcRγ chain in the activation of 

platelets mediated by GPIb.  

 

1.5.1.2. Integrin α2β1 

Integrin α2β1 (or GPIa/IIa) was the first collagen receptor to be 

identified in platelets (Santoro, 1986). The number of α2β1 receptors present on 

platelet surface varies between 2000-4000 (Clemetson and Clemetson, 2013). Like 

all integrin receptors, α2β1 is a heterodimeric transmembrane receptor 

containing single α2 and β1 chains being non-covalently associated with each 

other. α2 subunits possess an I-domain containing Mg2+ ions that act as a site for 

collagen binding (Saboor et al., 2013). Also, as a characteristic feature of integrins, 

α2β1 maintains a low-affinity state in resting platelets and undergoes an 

activation-dependent conformation change in the I-domain to efficiently attach to 

collagen (Cosemans et al., 2008).  Binding of α2β1 with collagen types I, III, IV, V, 
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VI through interaction with GFOGER sequence has been reported (Surin et al., 

2008).  

The manner in which integrin α2β1 functions in platelets has been a 

question of debate. According to the two-step, two-site model; platelets first attach 

to collagen via integrin α2β1 but become activated only through the signalling 

generated by a second receptor (GPVI in general) (Santoro et al., 1991). However, 

the most recent model suggests that the initial contact of platelets with collagen, 

under high shear stress, is mediated by GPVI (Nieswandt et al., 2001a). This 

connection, however, does not ensure a firm adhesion and allows platelets to 

tether. Nonetheless, the interaction of GPVI with collagen generates intracellular 

signals leading to affinity upregulation of α2β1, which increases its ability to 

adhere to collagen (Massberg et al., 2003; Nieswandt et al., 2009). The activation 

of integrin α2β1 was also observed to be mediated independently of GPVI 

signalling through a range of agonists that includes ADP, TxA2 and vWF/GPIb-

specific stimuli (Jung and Moroi, 2000; Jung and Moroi, 1998; Moroi et al., 2000; 

Cruz et al., 2005).  

The importance of integrin α2β1 in platelets has also been an area of 

conflict. There are studies that support the role of integrin α2β1 in facilitating firm 

adhesion on collagen and subsequent activation of platelets (Verkleij et al., 1998)., 

Atkinson et al. (2003) reported that α2β1 plays a vital role in enhancing the 

avidity of GPVI receptor towards collagen along with increased platelet activation 

by GPVI. In another study, integrin-deficient (α2β1−/−) mice exhibited impaired 

adhesion to collagen substrates under arterial flow conditions coupled with 

reduced thrombus formation (He et al., 2003). On the contrary, Gruner et al. 
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(2003), using intravital fluorescence microscopy showed that platelet adhesion 

and thrombus growth in α2β1 deficient mice was largely unaffected. It has also 

been shown that β1-null platelets can adhere to collagen under low as well as high 

shear stress, where the number and size of platelet aggregates were not found to 

differ significantly between normal and β1-null platelets. Furthermore, no 

adhesion was observed in the absence of GPVI receptor (Nieswandt et al., 

2001a). The basis of these discrepancies are not known. 

It is now known that the role of integrin α2β1 is not just confined to 

adhesion and extends to the stimulation of tyrosine kinase signalling that 

regulates platelet function. Upon activation by integrin-specific triple helical 

peptide sequence from collagen (GFOGER), integrin α2β1 (in the absence of the 

GPVI–FcRγ-chain complex) could stimulate tyrosine phosphorylation of many of 

the proteins that participate in the GPVI–FcRγ-chain cascade, including Src, Syk, 

SLP-76, and PLCγ2 as well as plasma membrane calcium ATPase and focal 

adhesion kinase (FAK). These signalling events were reported to control integrin 

α2β1 dependent spreading in platelets (Inoue et al., 2003). Inoue and group also 

presented evidence, which suggests the potential ability of α2β1 to generate 

activation signals that involve Rac, Cdc42, and PAK (Suzuki-Inoue et al., 2001b). In 

support of these findings, activation of PLCγ2 was also reported downstream of 

α2β1 via a Src kinase-dependent pathway and a Rac GTPase pathway (Guidetti et 

al., 2009). 
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1.5.1.3. GPVI receptor 

GPVI receptor (64 kDa) is a type I transmembrane glycoprotein of the 

immunoglobulin (Ig) superfamily and is found exclusively in platelets (around 

4000 copies per platelet) (Andrews et al., 2014; Clemetson et al., 1999). It is 

regarded as the major collagen receptor on platelets and consists of two 

extracellular Ig-like domains, an extracellular mucin-like domain, followed by a 

transmembrane domain, and a cytoplasmic tail that participates in the 

transmission of collagen-mediated signals. The transmembrane GPVI domain via 

its positively charged arginine residue forms a non-covalent (salt bridge) 

association with the aspartic acid residue of the Fc receptor γ-chain (FcRγ). The 

FcRγ chain exists in the form of a homodimer and each chain is characterised by 

copy of an immunoreceptor tyrosine-based activation motif (ITAM) containing 

two YxxL sequences separated by six to eight amino acids [YxxL-(X)6–8-YxxL) 

(Gibbins et al., 1997; Miura et al., 2002; Rabie et al., 2007). GPVI binds to Gly-Pro-

Hyp (GPO) rich sequences of collagen (Jarvis et al., 2008) and other than collagen, 

GPVI receptor can be activated by the snake toxin, convulxin and synthetic ligand; 

cross-linked collagen-related peptides (CRP-XL), which contain repeating GPO 

motifs (Yip et al., 2005).  

The proline-rich juxtamembrane tail of the GPVI associates with the active 

form of SFKs (Fyn and Lyn) via their SH3 domains, keeping them in close 

proximity of the FcRγ chain. The C-terminal Src kinase (Csk) or its family member 

CSK-homologous kinase (Chk) phosphorylate the C-terminal inhibitory tyrosine 

residues on SFKs and inhibit their activity (Okada, 2012). Whereas, the activated 

state of SFKs is maintained by the receptor-like PTP CD148, which 
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dephosphorylates their C-terminal inhibitory tyrosine residues. Binding of 

collagen to GPVI causes clustering of the receptor, resulting in the 

autophosphorylation of the SFKs activation loop tyrosine residue, leading to their 

maximal activation. SFKs, thereafter, phosphorylate the tandem tyrosine residues 

in ITAMs within FcRγ chain (Ezumi et al., 1998; Quek et al., 2000; Rabie et al., 

2007; Senis et al., 2014). This is followed by the binding of FcRγ chain with the Src 

homology 2 (SH2) domain of the spleen tyrosine kinases (Syk), which is 

subsequently autophosphorylated and also phosphorylated by SFKs. The 

phosphorylated form of Syk further regulates tyrosine phosphorylation of its 

downstream targets such as linker for activated T cells (LAT), Src homology 2 

domain-containing leukocyte phosphoprotein of 76-kDa (SLP-76), Tec family 

kinases, the Vav family of guanine nucleotide exchange factors (GEF) and grb2-

related adapter protein (Gads), resulting in the formation of a LAT-signalosome 

(Gibbins et al., 1998; Pasquet et al., 2002; Stegner and Nieswandt, 2011). The 

formation of this signalosome is critical for the recruitment of phospholipase Cγ2 

(PLCγ2) and phosphatidylinositol-3 kinase (PI3K).  

PI3K evokes the conversion of phosphatidylinositol-4,5-bisphosphate 

(PIP2) into phosphatidylinositol-3,4,5-trisphosphate (PIP3), which then enables 

PLCγ2 and Bruton's tyrosine kinase (Btk) to colocalise at the plasma membrane 

(Pasquet et al., 1999a; Pasquet et al., 1999b). Btk thereafter stimulates the 

phosphorylation and activation of PLCγ2 (Oda et al., 2000) that generates 

secondary messengers, inositol (1,4,5)-trisphosphate (IP3) and diacylglycerol 

(DAG) through the cleavage of PIP2. Binding of IP3 to its receptor on the dense 

tubular system promotes mobilisation of calcium from intracellular stores, while 
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DAG induces the activation of protein kinase C (PKC) (Li et al., 2010; Moraes et al., 

2010a; Varga‐Szabo et al., 2009). These events finally lead to alpha and dense 

granule secretion coupled with the transformation of integrin receptors (both 

α2β1 and αIIbβ3) from a low affinity to high-affinity state, crucial for platelet 

aggregation (Dunster et al., 2015; Andre, 2012; Jackson et al., 2003) (Figure 1.3). 

While GPVI plays a major role in platelet adhesion on collagen and 

subsequent activation, only a few cases of bleeding disorders in patients suffering 

from GPVI mutation, deficiency or presence of autoantibodies against GPVI have 

been reported (Hermans et al., 2009; Dumont et al., 2009; Matsumoto et al., 2007). 

This might be attributed to the compensatory effects in platelet activation by 

multiple platelet receptors (Hermans et al., 2009; Dumont et al., 2009; Matsumoto 

et al., 2007). When perfused over collagen, GPVI knock-out platelets displayed 

reduced formation of platelet aggregates. However the level of adhesion was 

found to be normal and no increase in tail bleeding time was observed (Kato et al., 

2003). Similarly, administration of an anti-GPVI antibody attenuated collagen-

induced platelet aggregation (Nieswandt et al., 2001b). These findings were 

further supported in a study where deletion of GPVI was related with reduced 

platelet aggregation and adhesion to collagen, however, no prolongation in 

bleeding time was observed (Lockyer et al., 2006). 

 

 

 

 

 

 

 

 

 



   
 

    
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The GPVI signalling pathway. The SFKs (Lyn and Fyn) are associated 

with GPVI via their SH3 domains. The Csk or its family member Chk phosphorylate 

the C-terminal inhibitory tyrosine residues on SFKs and inhibit their activity. The 

receptor-like PTP CD148 maintains SFKs in an activated state by 

dephosphorylating their C-terminal inhibitory tyrosine residues. Collagen-induced 

clustering of the GPVI receptor results in the autophosphorylation of SFKs, which 

subsequently phosphorylate tyrosine residues in the ITAM-containing FcRγ-chain. 

The phosphorylated sites of FcRγ chain provides a docking site for the SH2 

domain–containing protein-tyrosine kinase Syk, which is also phosphorylated by 

the SFKs. Syk further regulates tyrosine phosphorylation of LAT, resulting in the 

formation of the LAT-signalosome consisting of SLP-76, Tec, Vav and Gads. The 

signalosome recruits PI3K, responsible for the the conversion of PIP2 into PIP3, 

which further activated PKB and Rap1. The interaction of Btk and Tec kinases with 

PIP3 facilitates the phosphorylation and activation of PLCγ2, responsible for the 

generation of IP3 and DAG. IP3 promotes mobilisation of calcium while DAG 

activates PKC, which leads to degranulation and affinity upregulation of integrin 

αIIbβ3, resulting in platelet aggregation.  
(Abbreviations- Csk: C-terminal Src kinase, Chk: CSK-homologous kinase, SFKs: Src family kinases, 

ITAM: Immunoreceptor tyrosine-based activation motif, FcRγ: Fc receptor γ-chain, LAT: Linker for 

activated T cells, SLP-76: Src homology 2 domain-containing leukocyte phosphoprotein of 76-kDa, 

PIP2: Phosphatidylinositol-4,5-bisphosphate, PIP3: Phosphatidylinositol-3,4,5-trisphosphate, PKB: 

Protein kinase B, Btk: Bruton's tyrosine kinase, PLCγ2: Phospholipase Cγ2, DAG: Diacylglycerol, 

IP3: Inositol (1,4,5)-trisphosphate 
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1.5.1.4. C-type lectin receptor-2 (CLEC-2) 

Originally found in immune cells, CLEC-2 is a transmembrane receptor 

that has been identified in human and mouse platelets (Suzuki-Inoue et al., 2006). 

Its endogenous ligands include podoplanin, while it can also be activated potently 

by an exogenous ligand, rhodocytin, which is a protein isolated from the venom of 

Malayan pit viper (Calloselasma rhodostoma) (Suzuki-Inoue et al., 2006; Suzuki-

Inoue et al., 2007). 

CLEC-2 shares quite a remarkable structural and functional similarity with 

the GPVI receptor. The cytosolic tail of CLEC-2 is characterised by a motif, which 

resembles the ITAM of GPVI. However, unlike the classic ITAM with tandem YxxLs, 

CLEC-2 features a single YxxL (hemITAM) in its cytoplasmic domain, which 

undergoes tyrosine phosphorylation by SFKs upon activation (Ozaki et al., 2009). 

Treatment with SFKs inhibitors or presence of a mutation in the hemITAM can 

completely block signalling via CLEC-2 (Suzuki-Inoue et al., 2006). Binding of Syk 

occurs at hemITAM via its SH2 domain, resulting in its phosphorylation and 

activation. However, unlike the GPVI receptor which requires dually 

phosphorylated ITAM on FcRγ chain for the recruitment of Syk, phosphorylation 

of single YxxL is sufficient to facilitate attachment of Syk in CLEC-2 mediated 

signalling (Hughes et al., 2013; Séverin et al., 2011). This event is followed further 

by signalling downstream leading to the tyrosine phosphorylation of LAT, and 

formation of the LAT signalosome, which, similar to GPVI, is composed of an 

adapter SLP-76, Tec family tyrosine kinases, Vav GTP exchange factors and PLCγ2 

(Fuller et al., 2007; Ozaki et al., 2013). While the absence of SLP-76 can completely 

block the signalling downstream of Syk in case of GPVI receptor, weak activation 
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of platelets in SLP-76 deficient platelets, using high concentrations of rhodocytin 

has been observed (Suzuki-Inoue et al., 2006; Fuller et al., 2007). This suggests 

that signalling by CLEC-2 is only partially dependent on the recruitment of SLP-76 

and CLEC-2 might recruit alternative adapter proteins that can replace SLP-76 and 

thus facilitate signalling. 

Platelets from mice treated with a monoclonal antibody that specifically 

targets and functionally inactivate CLEC-2 showed normal adhesion to collagen 

under flow but thrombus formation in vitro and in vivo was substantially impaired, 

suggesting a fundamental role of CLEC-2 in haemostasis and thrombosis (May et 

al., 2009). CLEC-2 deficient mice are embryonically lethal. However, generation of 

an irradiated chimeric mouse lacking CLEC-2 has been reported (Suzuki-Inoue et 

al., 2010). Platelets from CLEC-2-/- mice didn’t aggregate upon stimulation by 

rhodocytin while retaining a usual aggregation profile to collagen, thrombin or 

ADP. They were also able to adhere and normally spread on collagen or fibrinogen. 

Interestingly, thrombus formation in vitro and in vivo was inhibited in CLEC-2 

chimaeras (Suzuki-Inoue et al., 2010). In contrast to these finding, in vitro 

thrombus formation in CLEC-2 chimaeras generated by Hughes et al. (2010), was 

not inhibited and no significant increase in tail bleeding time was observed. The 

reason for this discrepancy is unclear and was reasoned to be due to the difference 

of genetic background of the mice used for generating chimaeras.  
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1.5.2. G-protein coupled receptors (GPCR) mediated signalling 

After the formation of a platelet monolayer on the site of injury, the 

development of a platelet plug requires the involvement of platelets circulating 

near the injured site. This is achieved by thrombogenic mediators such as 

thrombin, ADP and TxA2 that are released by platelets once they adhere to the 

damaged extracellular matrix. All these mediators commonly activate platelets 

through autocrine and paracrine signalling via different kinds of GPCRs present on 

the platelet surface. Thus, it can be said that role of GPCRs is linked with the 

second phase of platelet aggregation, which aims to provide positive feedback to 

amplify platelet aggregation by many folds.  

GPCRs constitute the largest superfamily of proteins encoded by animal 

genomes and are activated by a diverse range of ligands. All the GPCRs share a 

common structure of seven transmembrane helices spanning the plasma 

membrane with an extracellular N-terminus and intracellular C-terminus. Three 

loops present on the N-terminus region provide the ligand binding site, while 

three loops found at the cytoplasmic front presents binding sites for intracellular 

signalling proteins (Kobilka, 2007; Rosenbaum et al., 2009). GPCRs derive their 

name from their direct association with heterotrimeric G-proteins, comprising 

three subunits, referred to as Gα, Gβ and Gγ. The α and γ subunits of G-proteins 

are connected to the plasma membrane via lipid chains. The Gα subunit is bound 

to guanine nucleotide GDP in a resting state, while upon activation of the receptor 

by its ligand, there occurs a replacement of GDP with GTP, resulting in a 

conformational change in Gα. This further leads to the dissociation of the trimeric 

complex into Gα and Gβγ (Tuteja, 2009; Oldham and Hamm, 2008). Both the 
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subunits are capable of instigating signalling pathways independently of each 

other in platelets. G-proteins are classified based on the sequence and function of 

their Gα subunits, which are categorised into four families; Gαq, Gαs, Gαi and 

Gα12/13. Gαq family regulates signalling through the activation of Phospholipase Cβ 

(PLCβ). Gαs is coupled with adenylyl cyclase and activates it, whereas, Gαi function 

by inhibiting adenylyl cyclase, thereby modulating cyclic adenosine 

monophosphate (cAMP) levels within the cell. Gα12/13 involves signalling via 

activation of RhoGTPase nucleotide exchange factors (RhoGEFs) (Siehler, 2009; 

Ellis, 2004; Harden et al., 2011; Liebmann and Bohmer, 2000). 

 

1.5.2.1. Thrombin 

Thrombin belongs to the family of serine proteases and is a highly potent 

platelet agonist. Two independent pathways contribute to its production. Firstly, 

the coagulation pathway (intrinsic and extrinsic), where multiple enzymatic 

reactions culminate in the generation of Factor Xa, which converts zymogen 

prothrombin to thrombin (Offermanns, 2006). The second route is referred to as 

contact-activation pathway that begins with the interaction of injured vessel and 

Factor XII (Vogler and Siedlecki, 2009). Upon activation of platelets, α-granules 

release prothrombin from platelet granules, which further enhances the thrombin 

levels at the site of injury. As mentioned previously, thrombin also plays an 

important role in the formation of a stable clot by facilitating the conversion of 

fibrinogen to fibrin monomers that binds the aggregated platelets together 

(Monroe et al., 2002). 
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Activation of platelets by thrombin is mediated by protease-activated 

receptors (PAR), which exist in two isoforms, PAR-1 and PAR-4, both present on 

the surface of human platelets (mouse platelets display PAR-3 and PAR-4). PAR-1 

is reported to have high affinity towards thrombin, whereas, a higher 

concentration of thrombin is required to activate signalling via PAR-4 (Angiolillo 

et al., 2010; Li et al., 2010). Both PAR-1 and PAR-4 are coupled to Gαq and Gα12/13, 

and exist in the form of heterodimers, which enhance thrombin mediated platelet 

activation. Upon exposure to thrombin, the N-terminal domain of the PAR receptor 

becomes cleaved, which reveals a new sequence at the N-terminus that acts as a 

tethered ligand and stimulates receptor signalling via Gαq and Gα12/13 (Coughlin, 

2000; Barrett et al., 2008).  

Gαq stimulated events are initiated by the activation of PLCβ, which cleaves 

PIP2 to generate secondary messengers, DAG and IP3. This triggers granule 

secretion, increase in cytosolic calcium concentration and ultimately increasing 

the affinity of αIIbβ3 towards fibrinogen (Stalker et al., 2012; Zhang et al., 2013; 

Joo, 2012). Gα13 induced pathway involves RhoGEF mediated activation of Rho 

kinase, which phosphorylates myosin light chain (MLC), resulting in degranulation 

and cytoskeleton rearrangement (shape change) of platelets (Rivera et al., 2009; 

Klages et al., 1999; Moers et al., 2003). PAR-1 has also been reported to function 

via Gi-coupled signalling, which reduces cAMP levels. The cAMP has an inhibitory 

effect on platelet function, and its suppression promotes platelet activation 

(Figure 1.4). 

Sambrano et al. (2001), reported the significance of PAR-4 in thrombin-

mediated platelet activation by generating PAR-4 knock-out mice. PAR-4-/- 
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platelets did not aggregate to thrombin and displayed markedly prolonged 

bleeding times. Similar results were seen in another independent study on PAR-4 

deficient mice (Hamilton et al., 2004). This study identifies that mouse PAR-3 is 

incapable of stimulating transmembrane signalling by itself and it only acts as a 

cofactor for thrombin cleavage and activation of mouse PAR4. 

 

 

 

 



   
 

 

 

 

 

 

 

 

Figure 1.4: G-protein–coupled receptor-mediated signalling pathways in 

platelets. Both inhibitory and activatory responses can be stimulated by GPCRs 

present on platelets. Inhibitory signalling is induced in platelets by binding of PGI2 

to IP receptors coupled with Gαs. This stimulates adenylyl cyclase to generate 

cAMP, which further activates PKA. This suppresses calcium mobilisation, Rap1b 

activation, platelet adhesion and spreading, which ultimately down-regulates 

platelet activation. Besides PGI2, NO inhibits platelet activation by binding to 

guanylyl cyclase. This causes the formation of cGMP and subsequent activation of 

PKG. Several soluble agonists are released from platelets during activation, which 

stimulates activatory signalling in platelets via GPCRs. Thromboxane A2 receptors 

(TP), thrombin receptors (PAR1/4) and ADP receptor (P2Y1) are coupled to Gαq 

that signals via PLCβ leading to the cleavage of PIP2 to generate DAG and IP3. This 

triggers granule secretion, increase in cytosolic calcium concentration and 

ultimately increase in the affinity of integrin αIIbβ3 towards fibrinogen. TP and 

PAR1/4 also signal via Gα13. This includes Rho kinase-mediated phosphorylation 

of MLC, resulting in degranulation and cytoskeleton rearrangement (shape 

change) of platelets. ADP receptors P2Y12 are coupled with Gαi, which reduces 

adenylyl cyclase evoked synthesis of cAMP. This attenuates PKA activation and 

thus promotes platelet activation. Gβ/γ subunits also participate in signalling via 

the activation of PI3K, that subsequently activates PKB and Rap1b involved in 

degranulation and integrin αIIbβ3 activation.  
(Abbreviations- PGI2: prostacyclin, cAMP: cyclic adenosine monophosphate, PKA: protein kinase A, 

NO: nitric oxide, cGMP: cyclic guanosine monophosphate, PKG: protein kinase G, MLC: myosin light 

chain, PKA: protein kinase A, PKB: protein kinase B, PIP2: phosphatidylinositol-4,5-bisphosphate, 

DAG: diacylglycerol, IP3: inositol (1,4,5)-trisphosphate, PI3K: phosphoinositide 3-kinase) 
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1.5.2.2. Adenosine diphosphate (ADP) 

Adenosine diphosphate (ADP) is another prothrombotic secondary 

mediator released from dense granules upon platelet activation. It acts in an 

autocrine and paracrine fashion to amplify the platelet activation process. 

Although ADP was one of the earliest known platelet agonists, it is only recently 

that its receptors have been defined clearly (Whiteheart, 2011; Born, 1962; 

Hollopeter et al., 2001). ADP can act through two different purinergic receptors, 

P2Y1 and P2Y12. While P2Y1 is coupled with Gαq, P2Y12 is known to act through 

Gαi (Murugappa and Kunapuli, 2006; Gachet, 2006).  

Approximately 150 P2Y1 binding sites are expressed on the platelet 

surface, which is quite low in comparison with other adhesion and GPCR receptors 

present on platelets. P2Y1 being coupled with Gαq instigates signalling through the 

activation of PLCβ as described previously for PAR receptors. This results in the 

mobilisation of calcium from internal stores, platelet shape change and a transient 

rapid, reversible aggregation evoked by ADP (Savi et al., 1998; Daniel et al., 1998; 

Hechler et al., 1998b). Two selectively potent P2Y1 antagonists, MRS2179 and 

MRS2500 have been developed, which have been helpful in identifying the 

functions of this receptor (Leon et al., 2001; Hechler et al., 2006; Cattaneo et al., 

2004). Mice lacking P2Y1 displayed reduced platelet aggregation to ADP along 

with an increase in bleeding time and resistance to thromboembolism (Fabre et 

al., 1999). In general, P2Y1 elicits a weak response to ADP in comparison to P2Y12 

(Gachet, 2006). Nonetheless, it plays a vital role in haemostasis and thrombosis.  

On the other hand, P2Y12 is coupled to Gαi, which acts by blocking the 

production of cAMP from the enzyme, adenylyl cyclase. The cAMP is responsible 
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for activating protein kinase A (PKA), which negatively regulate calcium release 

and degranulation, causing platelet inactivation (Hardy et al., 2005; Woulfe et al., 

2001). P2Y12 also signals via Gβγ subunit, which increases PI3K activity and 

subsequently regulates PIP3 production. PI3K has two important targets; Akt or 

protein kinase B (PKB), which is a serine/threonine kinase, and GTPase Rap1B 

that contribute to the activation of integrin αIIbβ3 and granule secretion (Kim et 

al., 2004; Dorsam and Kunapuli, 2004; Lova et al., 2002) (Figure 1.4). P2Y12 

knock-out mouse platelets show impaired aggregation when stimulated by ADP 

(Foster et al., 2001). Treatment with a P2Y12 antagonist has also been reported to 

associate with a reduction in the formation of emboli, without affecting the 

stability of the initial thrombus (van Gestel et al., 2003).   

Coactivation of P2Y1 and P2Y12 receptors is required to attain a normal 

sustained platelet aggregation, especially in response to stimulation by collagen. 

Selective inhibition of either of the ADP receptor by their antagonists have been 

shown to reduce platelet aggregation (Hechler et al., 1998a; Gachet, 2006). The 

importance of ADP receptors can be assessed from their potential involvement in 

the development of therapeutic targets (especially P2Y12) for the treatment of 

thrombosis. Clopidogrel, cangrelor, prasugrel and ticagrelor possess 

antithrombotic properties through irreversible inhibition of P2Y12 (Wijeyeratne 

and Heptinstall, 2011; Hollopeter et al., 2001).  
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1.5.2.3. Thromboxane A2 (TXA2) 

Thromboxane A2 (TXA2), an eicosanoid, is another secondary mediator, 

which is synthesized by platelets upon their activation. Exposure to platelet 

agonists (collagen, ADP or thrombin) results in calcium and Protein kinase C (PKC) 

mediated activation of phospholipase A2 (PLA2) (Börsch-Haubold et al., 1995). 

Activated form of PLA2 converts membrane phospholipids to arachidonic acid, 

which is then metabolised by the enzymes COX-1 and thromboxane synthase to 

generate TXA2 (Santilli et al., 2011; Paul et al., 1999). Being lipid soluble, it diffuses 

from platelets after its synthesis. 

There are two TXA2 receptors present on platelet membrane namely, TPα 

and TPβ, with TPα being the more active member. Both the receptors are coupled 

to Gαq and Gα12/13, which functions in a manner as described previously for 

thrombin and ADP receptors leading to platelet shape change, degranulation and 

upregulation of αIIbβ3 (Offermanns, 2006; Djellas et al., 1999; Huang et al., 2004) 

(Figure 1.4). TP receptor-deficient mice were found to have prolonged bleeding 

time and lack of responsiveness to U46619 (a TXA2 mimetic peptide). Collagen 

stimulated platelet aggregation was also delayed indicating the importance of TP 

receptors in platelet activation stimulated by a range of agonists (Thomas et al., 

1998).  

Aspirin inhibits platelet function by irreversibly blocking the affinity of COX 

enzyme towards its substrate arachidonic acid which inhibits the production of 

TXA2. Aspirin has been regarded as the "gold standard" antiplatelet agent for 

prevention of arterial thrombosis (Awtry and Loscalzo, 2000; Schror, 1997).  
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1.5.2.4. Adenosine triphosphate (ATP) 

Platelet dense granules also secrete ATP upon activation, which acts as 

an agonist for platelet P2X1 receptors. These receptors are essentially non-

selective cation channels responsible for the ATP-induced movement of calcium 

(Mahaut-Smith et al., 2004). These receptors are prone to desensitisation during 

the process of platelet-suspension preparation for studying platelet functions 

(Rolf et al., 2001). Treatment of platelets with selective P2X1 agonist, α,β-

methylene-ATP results in a rapid influx of calcium ions coupled with platelet 

shape change (Rolf et al., 2001). These receptors cannot stimulate aggregation 

independently, however, they have been shown to regulate platelet aggregation 

stimulated by collagen or U46619 through reversible ERK2 phosphorylation 

mediated via a Ca+2 and PKC-dependent pathway. The P2X1-PKC-ERK2 pathway 

promote dense granule release, and thus facilitate platelet aggregation on mild 

stimulation with collagen. (Oury et al., 2001; Erhardt et al., 2003; Toth-Zsamboki 

et al., 2003). In addition to this, the P2X1-stimulated role of ATP-gated calcium 

influx in early collagen instigated calcium signalling has also been demonstrated 

(Fung et al., 2005).  

Studies conducted in P2X1-/- mice reported reduced collagen-induced 

platelet aggregation and secretion in vitro. Thrombus formation on the collagen-

coated surface was also inhibited. Similar results were observed in vivo, where 

thrombus formation in small arteries characterised by high shear was attenuated, 

as was thromboembolism, while bleeding time was mildly prolonged (Hechler et 

al., 2003). 
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1.5.3. Calcium-mediated signalling 

Elevation in cytosolic calcium levels is a common feature that is shared by 

activation pathways downstream of all platelet agonists (collagen, thrombin, ADP 

or TXA2) functioning through different receptors (Varga-Szabo et al., 2009). 

Calcium signalling plays an essential role in platelet activation process and 

controls cytoskeletal rearrangement, degranulation and increase in the affinity of 

integrin αIIbβ3 (Harper and Sage, 2017; Rink and Sage, 1990). In a resting state, 

platelets maintain a cytosolic calcium concentration of around 50-100 nM, which 

during activation phase can reach in the micromolar range (Harper and Sage, 

2017). The rise in cytosolic calcium concentration is governed by two sources: (i) 

Agonist-induced release of calcium from the DTS, which is stimulated by IP3 

binding to IP3 receptors (Ca+2 permeable ion channels) on the DTS. (ii) The influx 

of extracellular calcium across the plasma membrane through calcium channels 

(CRAC, Orai1, etc.) (Bergmeier and Stefanini, 2009). 

 Depletion of calcium from DTS facilitates a rapid influx of calcium across 

the plasma membrane via stromal interaction molecule 1 (STIM1) and Orai1; a 

phenomenon referred to as store-operated calcium entry (SOCE). STIM1 is a 

calcium sensor located on the membrane of DTS in a bound state with calcium 

through its EF-hand domain (Grosse et al., 2007). IP3 operated release of calcium 

from DTS results in a dissociation of calcium-EF domain complex. This directs the 

translocation of STIM1 to the plasma membrane where it interacts with Orai1, 

allowing the entry of calcium via this channel (Zhang et al., 2005; Lang et al., 

2013). Furthermore, synthesis of DAG by thrombin stimulation activates transient 

receptor potential channel 6 (TRPC6), which is a non-selective cation channel and 
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promotes entry of calcium inside platelets in a SOCE independent manner 

(Hassock et al., 2002; Authi, 2007). Apart from these, purinergic P2X1 receptors 

are activated by ATP binding, which then participates in calcium influx by acting 

as non-selective cation channels (Oury et al., 2001). 

 

1.5.4. Inside-out signalling 

Integrin αIIbβ3 is the most abundant receptor expressed on platelet 

membrane with approximately 40,000–80,000 copies per platelet. Besides this, an 

additional pool of these receptors migrates from α-granules to surface upon 

platelet activation, which increases surface expression by approximately 25-50% 

(Quinn et al., 2003; Kauskot and Hoylaerts, 2012). Transformation of integrin 

αIIbβ3 from a low affinity to high-affinity state and its subsequent binding to 

fibrinogen is the common outcome arbitrated by all the platelet activation 

pathways (Plow et al., 2000). The underlying signalling that controls this event is 

referred to as the inside-out signalling. Defects or deficiency in expression of 

αIIbβ3 leads to Glanzmann thrombasthenia syndrome, characterised by 

significantly prolonged bleeding time (Nurden, 2006).  

Inside-out signalling requires binding of cytosolic proteins, talin and 

kindlins, to the cytoplasmic domains of αIIbβ3, which disrupts the stable bond 

(salt-bridge) between αIIb and β3 subunits, leading to the activation of the 

receptor (Moser et al., 2009). These events begin with platelet agonist-induced 

rise in cytosolic calcium concentration and production of DAG. Both of which binds 

to Ca2+ and DAG-regulated guanine nucleotide exchange factor-I (CalDAG-GEFI), 
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which converts GDP-bound inactive form of Rap1 to its GTP-bound active form 

(Stefanini et al., 2009; Joo, 2012; Crittenden et al., 2004). This complex further 

interacts with Rap1-GTP–interacting adaptor molecule (RIAM), that recruits talin 

and facilitates its binding with integrin β3 cytoplasmic tail, resulting in affinity 

upregulation of αIIbβ3 (Li et al., 2010; Han et al., 2006; Banno and Ginsberg, 

2008). However, recently it was proposed that the role of RIAM is dispensable for 

integrin αIIbβ3 activation in mouse platelets and there exists an alternative 

mechanism for the recruitment of talin-1 leading to integrin activation (Stritt et al., 

2015).  

The importance of talin in integrin αIIbβ3 was established by analysing 

platelets from conditional talin-1-deficient mice. These platelets did not induce 

αIIbβ3 activation in response to both GPVI and GPCR platelet agonists. Moreover, 

they did not adhere to any of the αIIbβ3 ligands and failed to aggregate (Petrich et 

al., 2007a; Nieswandt et al., 2007; Petrich et al., 2007b). In a similar manner, 

binding of kindlin-3 to integrin β3 cytoplasmic tail at a region distinct from that of 

talin is also crucial for integrin αIIbβ3 activation, which was confirmed using 

platelets devoid of kindlin-3 (Moser et al., 2008; Nieswandt et al., 2009). 

An alternative pathway that operates independently of CalDAG-GEFI and 

involves PKC induced activation of Rap1 and αIIbβ3 has also been proposed 

(Cifuni et al., 2008).  
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1.5.5. Outside-in signalling 

Binding of fibrinogen to activated integrin αIIbβ3 is not solely responsible 

for platelet aggregation and thrombus formation. It also results in αIIbβ3 

clustering leading to the stimulation of intracellular signalling events known as 

‘outside-in’ signalling. These signals are important for the stabilisation of 

aggregates and subsequent thrombus formation by facilitating platelet shape 

change, spreading and clot retraction (Li et al., 2010; Plow and Ma, 2007). 

Binding of ligand to integrin αIIbβ3 induces receptor oligomerisation 

which initiates outside-in signalling through the coupling of Gα13 with the 

cytoplasmic β3 domain (Ma et al., 2007b). This activates SFKs, which can generate 

outside-in signals through 2 mechanisms (Gong et al., 2010; Li et al., 2010). Firstly, 

SFKs phosphorylate Y747 and Y759 motifs in the cytoplasmic domain of β3. 

Phosphorylation of Y747 suppresses talin binding to cytoplasmic domain, 

whereas, phosphorylation of Y759 defends β3 from calpain cleavage. This initiates 

platelet spreading (Anthis et al., 2009; Xi et al., 2006). SFKs also phosphorylate 

and activate focal adhesion kinases (FAK) and FAK-binding proteins (Harburger 

and Calderwood, 2009). Secondly, c-Src binds to a specific site on the β3 domain 

and phosphorylates p190 Rho GTPase-activating protein. This phosphorylated 

Rho GTPase inactivates RhoA. This is again important for platelet spreading. After 

the development of a stable thrombus, calpain cleaves the previously formed c-

Src-β3 complex and thus relieves RhoA from its inhibitory influence. This 

activation of RhoA favours clot retraction (Arthur et al., 2000; Flevaris et al., 

2007). Binding of fibrinogen to integrin αIIbβ3 also involves SFKs dependent 

activation of Syk, which then interacts with β3 cytoplasmic subunit. This leads to 
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the assembly of a signalosome made up of LAT, Slp-76, Btk and Vav, which 

activates PLCγ2 and favours platelet activation, in a manner which is similar to 

GPVI mediated signalling (Boylan et al., 2008; Abtahian et al., 2006; Woodside et 

al., 2001).  
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1.6. Negative regulation of platelet activation 

Platelets play a crucial role in ensuring a normal haemostatic response. 

However, impairment in this process can cause inappropriate activation of 

platelets that can lead to thrombosis. Physiologically, there is a balance, which is 

maintained by ensuring a quiescent profile of platelets (in the absence of injury) 

with the aid from inhibitory agents such as prostacyclin (PGI2) and nitric oxide 

(NO) that are released from the endothelial lining of the blood vessels (Mitchell et 

al., 2008). Both these molecules can generate robust inhibitory responses and also 

act to restrain excessive activation of platelets during an injury (Raslan and 

Naseem, 2014). Apart from these, several other inhibitory receptors have been 

identified in platelets such as platelet endothelial cell adhesion molecule-1 

(PECAM-1), carcinoembryonic antigen cell adhesion molecule (CEACAM 1 and 

CEACAM 2), junctional adhesion molecule-A (JAM-A), G6b-B and nuclear 

receptors, which would now be discussed (Li et al., 2017). 

 

1.6.1. Prostacyclin (PGI2) 

Prostacyclin is an eicosanoid, which is produced in endothelial cells 

through the metabolism of arachidonic acid and then released into the circulation. 

PGI2 binds to IP receptors on platelets which are coupled to Gαs (Woulfe, 2005; 

Smolenski, 2012). This interaction stimulates adenylyl cyclase (AC) to generate 

cAMP by catalysing ATP. Phosphodiesterases (PDEs) enzymes limits the levels of 

cAMP by facilitating its hydrolysis to 5’AMP and thus regulate cyclic nucleotide 

signalling in platelets (Gresele et al., 2011). cAMP can subsequently activate 

protein kinase A (PKA), which has numerous targets. Most importantly, it 
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suppresses the IP3 receptors that are responsible for the release of calcium from 

the DTS (Quinton and Dean, 1992; Yan et al., 2009). It also inhibits platelet 

adhesion and spreading by phosphorylating GPIbβ subunit of GPIb-IX-V receptor 

and Gα13 (Bodnar et al., 2002; Manganello et al., 2003; Bye et al., 2016). PKA can 

inhibit the activation of Rap1b (important for integrin αIIbβ3 activation) by 

controlling its phosphorylation directly or in a CalDAG-GEFI-dependent manner 

(Subramanian et al., 2013; Altschuler and Lapetina, 1993) (Figure 1.4). 

Furthermore, vasodilator-stimulated phosphoprotein (VASP), a substrate for PKA 

is involved in platelet cytoskeleton remodelling through actin polymerisation. 

Phosphorylation of VASP by cAMP/PKA reduces its affinity for actin, which down-

regulates platelet shape change (Harbeck et al., 2000; Jensen et al., 2004). 

 

1.6.2. Nitric oxide (NO)    

Nitric Oxide is synthesised from an amino acid, L-arginine, through the 

action of the enzyme endothelial nitric oxide synthase (eNOS) and released into 

the circulation (Tousoulis et al., 2012).  NO, unlike other regulators lacks a well-

defined platelet receptor. Instead, being a gaseous molecule, it rapidly diffuses 

across the plasma membrane and binds to its target, soluble guanylyl cyclase 

(sGC). This results in the formation of cGMP from GTP, which subsequently 

activate protein kinase G (PKG) (Du, 2007; Low and Bruckdorfer, 2004; Siess, 

2004).  

cGMP activity can negatively regulate the activity of phosphodiesterase-3, 

which is responsible for degradation of cAMP (Gkaliagkousi et al., 2007). It can 

also downregulate the activity of PI3K, which can influence αIIbβ3 upregulation 
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(Pigazzi et al., 1999). In a manner, which is similar to PKA, PKG has the ability to 

influence platelet activation by controlling IP3 receptor-mediated release of 

calcium from intracellular stores (Schlossmann et al., 2000) (Figure 1.4). PKG also 

phosphorylates the TxA2 receptor, thereby inhibiting its function (Wang et al., 

1998). VASP phosphorylation is also influenced by cGMP/PKG activity (Low and 

Bruckdorfer, 2004).  

In general, inhibitory effects of cyclic nucleotide signalling are not 

restricted to any specific platelet activation pathway. They have the ability to 

down-regulate activation induced by all the platelet agonists functioning via 

GPCRs, GPVI, CLEC-2 or αIIbβ3. 

 

1.6.3. Platelet endothelial cell adhesion molecule (PECAM-1) 

PECAM-1 is a transmembrane glycoprotein and a member of 

Immunoglobulin (Ig) gene superfamily. PECAM-1 is estimated of having a copy 

number of 5000-8000 on the cell surface, which increases upon platelet activation 

following its release from α-granules (Jones et al., 2012). Apart from platelets, 

expression of PECAM-1 is seen in other haematopoietic cells (monocytes, 

neutrophils, T lymphocyte subsets) and endothelial cells (Woodfin et al., 2007). 

The endogenous ligand for PECAM-1 is PECAM-1 itself, which arises via 

homophilic interactions on adjacent cells, while, heterophilic interactions with 

non-PECAM-1 ligands (such as heparin-dependent proteoglycans and the integrin 

αvβ3) have been identified as well (Jackson, 2003). The principal structure of 

PECAM-1 includes two immunoreceptor tyrosine inhibitory-based motifs (ITIMs) 

in the cytoplasmic domain (L/I/V/S-x-Y-x-x-L/V). Activation of PECAM-1 induces 
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SFKs mediated phosphorylation of the 2 ITIM tyrosine residues, which recruits 

and induces binding of protein tyrosine phosphatases SHP1/SHP2 and 

SHIP1/SHIP2 that negatively regulate platelet activation mediated by collagen 

(Hua et al., 1998; Cicmil et al., 2002; Bruhns et al., 2000). Binding of these 

substrates leads to inactivation of tyrosine kinases such as Syk, LAT and PLCγ2. 

Inhibition in the activity of downstream components such as PI3K and Akt has also 

been reported, which further inhibits collagen or CRP-XL mediated platelet 

activation (Moraes et al., 2010a; Jones et al., 2001; Cicmil et al., 2002). In addition 

to inhibition of GPVI signalling, PECAM-1 activation has also been associated with 

the negative regulation of ADP and thrombin-stimulated effects (Jones et al., 

2009). Falati et al. (2006) demonstrated that thrombi formed in PECAM-1-/- mice 

were larger and formed more rapidly than in control mice. They concluded that 

PECAM-1 exhibit an inhibitory role on circulating platelets in normal mice. 

 

1.6.4. Carcinoembryonic antigen-related cell adhesion molecule 

(CEACAM) 

Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) is an 

ITIM bearing receptor expressed in platelets. CEACAM-1 can negatively regulate 

platelet-collagen interactions, thrombus growth in vitro and in vivo, and 

susceptibility to pulmonary thromboembolism (Wong et al., 2009). CEACAM-1 

deficient mice were reported to exhibit prolonged bleeding time; moderate 

integrin αIIbβ3 mediated functional defects with reduced spreading on fibrinogen 

and fibrin clot retraction (Yip et al., 2016). The presence of CEACAM-2 in platelets 

has also been reported. Platelet from CEACAM-2-/- mice exhibited increased 

aggregation upon stimulation by CRP-XL, collagen or rhodocytin. Thrombi formed 
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in CEACAM-2 deficient mice were larger and more stable than wild-type controls. 

CEACAMs can therefore be regarded as negative regulators of GPVI and CLEC-2 

induced platelet activation pathways (Alshahrani et al., 2014). 

 

1.6.5. G6b-B 

G6b-B is an isoform of G6B, which is another ITIM containing receptor 

expressed in platelets. The endogenous ligand of G6B is yet to be identified, 

although this receptor exists in a phosphorylated state in resting platelets, which 

undergoes an increase in tyrosine phosphorylation upon stimulation by collagen 

or CRP-XL (Senis et al., 2007). In a manner, which is similar to PECAM-1 and 

CEACAM, the tyrosine residues in ITIM motif of G6B binds to SHP1/SHP2 tyrosine 

phosphatases (de Vet et al., 2001; Mori et al., 2008). Newland et al. (2007) 

proposed that cross-linking of G6B with polyclonal antisera significantly inhibited 

platelet aggregation by agonists such as ADP and CRP-XL. It was later identified 

that G6b-B could interact with key signalling molecules involved in GPVI pathway 

including Csk, Src, Fyn, Syk, PLCγ2 and PI3K and thus inhibit platelet activation 

(Coxon et al., 2012). G6B-b deficient mice were macro-thrombocytopenic (low 

platelet counts with enlarged size) in nature and exhibited a bleeding diathesis, 

which suggested the crucial role of G6B-b in regulating megakaryocyte function 

and platelet production (Mazharian et al., 2012). 
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1.7. Nuclear receptors 

Nuclear receptors (NRs) represent a large superfamily of intracellular 

transcription factors present in the cytoplasm or nucleus of eukaryotic cells. The 

human genome includes 48 such NR family members that include receptors for 

steroids, thyroid hormone and vitamins (Maglich et al., 2001). They regulate and 

control vital eukaryotic biological processes (Table 1) such as cell proliferation, 

differentiation, metabolism and homeostasis (Bain et al., 2007; Kiss et al., 2013). 

Any deviation from their normal function can lead to pathological manifestations 

such as cancer, diabetes, arthritis, obesity etc. (Khan and Lingrel, 2010).   

Almost all the NRs share common structural features. They are long chain 

polypeptides, comprising three major domains: (i) variable N-terminal domain 

with a transcriptional activation function (AF-1), which interact with cofactors. (ii) 

Highly conserved DNA-binding domain (DBD) that directs the receptor to a highly 

specific DNA sequence called hormone response element (HRE) and enables its 

specific binding to the target gene. (iii) Well-conserved C-terminal ligand binding 

domain (LBD), which provides a binding site for the ligand and also mediates 

receptor dimerisation. The LBD also comprises of activation function-2 (AF-2) that 

regulate the ability of this site to activate transcription (Figure 1.5) (Huang et al., 

2010; Jin and Li, 2010).  
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Figure 1.5: Structure of the nuclear receptors. Generally, all the NRs share 

common structural features that include up to six domains (A-F): the A/B domain  

represents the N-terminal domain and is regarded as the transcriptional activation 

domain. Its sequence and length vary between different NRs. The C-domain is a 

DNA binding domain (DBD), which binds to specific sequences of DNA called 

hormone response elements. The D-domain serves as a hinge region and links the 

DBD to the E-domain, which is the ligand binding domain (LBD). This site with a 

moderately conserved sequence and structure provide a binding site to ligands 

and also contribute to interactions between NRs that form heterodimers. The F 

domain is another highly variable region in NRs 
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NRs function by modulating transcription rate and subsequent gene 

expression (Aranda and Pascual, 2001; Ribeiro et al., 1995). Based on their 

mechanism of action, NRs are broadly categorized into two classes: Type I and 

Type II.  Type I receptors are also referred to as steroid receptors and include the 

estrogen receptor, androgen receptor, progesterone receptor and glucocorticoid 

receptor. They are localised inside the cytosol in a bound state with the heat shock 

proteins (HSPs), generally HSP90. Upon ligand binding, the receptors dissociate 

from the HSPs, form a homodimer and enter the nucleus. Once inside, these 

homodimers bind to the DNA at the hormone response element (Leo and Chen, 

2000; Leo et al., 2000). This is followed by recruitment of transcriptional co-

activators such as the p160 family (Xu and Li, 2003), which can further promote or 

repress transcription (Figure 1.6).  

Type II receptors are non-steroid binding NRs consisting of the retinoid X 

receptor (RXR), thyroid hormone receptor (TR), retinoic acid receptor (RAR), 

vitamin D receptor (VDR), farnesoid X receptor (FXR), liver X receptor (LXR), 

pregnane X receptor (PXR) and peroxisome proliferator-activated receptor 

(PPAR). They are situated inside the nucleus in a bound state with several co-

repressor proteins and generally heterodimerise with the RXR. Binding of the 

ligand causes displacement of the co-repressor protein and employment of co-

activators, which further activate or repress transcription (Figure 1.7) (Aranda 

and Pascual, 2001; Bain et al., 2007; Eckey et al., 2003; Ribeiro et al., 1995). An 

additional class of NRs exists, which is referred to as the orphan receptors. It 

includes receptors for which endogenous ligand have yet not been identified. (Shi, 

2007).  
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Fig 1.6: General mechanism of action for Type I nuclear receptors in nucleated cells. 

Type I NRs are localised inside the cytosol in a bound state with the heat shock proteins 

(generally HSP90). Upon activation by ligand, they dissociate from HSP, homodimerise and 

enter the nucleus. Once inside, these homodimers bind to specific DNA sequences (hormone 

response elements). This is followed by recruitment of transcriptional co-activators, which can 

further, promote or repress transcription in a ligand-dependent manner and thus alter gene 

expression. 

 

Fig 1.7: General mechanism of action for Type II nuclear receptors in nucleated cells. 

Type II NRs are situated inside the nucleus in a bound state with several co-repressor 

proteins. They generally heterodimerise with the RXR. Binding of the ligand causes 

displacement of the co-repressor protein and employment of co-activators, which further 

activate or repress transcription and thereby influence the gene expression. 



  Chapter-1 
 

53 

 

1.7.1. Ligands of nuclear receptors 

Ligands of NRs are lipophilic in nature, which enables them to diffuse 

through the plasma membrane with ease and bind to their respective receptors 

inside the cytosol or nucleus (Table 1). These molecules, generally are derivatives 

of retinoids, fatty acids, cholesterol, lipophilic hormones and vitamins, as well as 

antibiotics, xenobiotics and synthetic drugs (Sladek, 2011). Almost all the NRs 

with identified endogenous ligands are important targets for the development of 

drugs for the treatment of a large pool of diseases including cancer, diabetes and 

atherosclerosis (Burris et al., 2013). 

 

1.7.2. Non-genomic actions of nuclear receptors 

While the role of NRs towards the regulation of transcription and control 

of gene expression (genomic) is well known, non-genomic actions of NRs that 

function independently of transcriptional regulation have been uncovered 

recently. Unlike the genomic regulation, which can occur in a timeframe of few 

minutes to hours, non-genomic events occur in the time scale that ranges from 

seconds to a few minutes, which is considered too rapid to be attributed to the 

biosynthesis of mRNA or protein and is often unaffected by inhibitors of 

transcription or translation. 

 Commonly reported non-genomic actions of NRs include activation of ion 

channels, adenylyl cyclase, kinases, phosphatases, production of secondary 

messengers and rise in intracellular calcium concentrations (Nadal et al., 2001; 

Losel and Wehling, 2003; Losel et al., 2003; Hammes and Levin, 2007). Due to the 
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underlying features that differentiate the genomic and non-genomic functions, 

non-genomic effects are more commonly observed in cell types that lack a 

functional nucleus such as erythrocytes and platelets (Losel and Wehling, 2003).  

Table 1.1. Nuclear receptors and their biological functions (Flora et al., 2018) 

Nuclear 

receptor 

Ligands Biological function 

 
GR Natural:  Glucocorticoid 

Lipolysis, 
glucose metabolism 

Synthetic: RU38486, A348441 

 
ER 

Natural:  Estrogen, including estrone 
(E1), estradiol (E2) and estriol (E3) 

Development of the female 
reproductive system and 
secondary sexual characteristics 

 
AR 

Natural: Dihydrotestosterone, 
testosterone 

Development of the male 
reproductive system and 
secondary sexual characteristics 

Synthetic: Mibolerone 

 
LXR 

Natural: Oxysterols, Cholesterol Lipid and carbohydrate 
metabolism 

Synthetic:  T0901317, GW3965 

 
FXR 

Natural: Bile acids  
Bile acid homeostasis 

Synthetic:  GW4064, Farnesol, CDCA 

 
PPARα 

Natural: Polyunsaturated Fatty Acids  
Fatty acid oxidation and 
lipid metabolism 

Synthetic: Fibrates (Gemfibrozil, 
fenofibrate, clofibrate) 

 
PPARβ 

Natural: Unsaturated/saturated fatty 
acids, eicosanoids, prostacyclin 

 
Cholesterol metabolism 

Synthetic: GW501516 

 
PPARγ 

Natural: 15-Deoxy-12,14 Prostaglandin 
J2 (15d-PGJ2) 

 
 
Lipid and glucose metabolism Synthetic: Thiazolidinedione 

(Ciglitazone, Pioglitazone, 
Rosiglitazone) 

RAR Natural: all-trans retinoic acid Cell growth, differentiation and 
organogenesis 

 
RXR 

Natural: 9-cis-retinoic acid, 
docosahexaenoic acid  

Cellular proliferation and 
differentiation, glucose, fatty 
acid and cholesterol metabolism Synthetic: Methoprene acid, Rexinoids 

(LG100268) 
 

VDR 
Natural: Calcitriol Calcium homeostasis, cell 

proliferation and differentiation Synthetic: Maxacalcitol, Calcipotriol 
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1.7.3. Nuclear receptors are acute regulators of platelet function 

Platelets have been reported to express both the classes of NRs, Type I or 

the steroid hormone receptors and Type II or the non-steroid receptors. This 

includes the androgen receptor (Khetawat et al., 2000; Campelo et al., 2012), 

estrogen receptor (Khetawat et al., 2000; Akarasereenont et al., 2006; Bar et al., 

1993; Valera et al., 2012) glucocorticoid receptor (Moraes et al., 2005; Liverani et 

al., 2012), farnesoid X receptor (Moraes et al., 2016) , liver X receptor (Spyridon et 

al., 2011), peroxisome proliferator-activated receptor (PPARs) (Akbiyik et al., 

2004; Ali et al., 2009a; Ali et al., 2006; Ali et al., 2009b; Du et al., 2014; Li et al., 

2005; Moraes et al., 2010b; Unsworth et al., 2017b), retinoic acid receptor 

(Rondina et al., 2016), retinoid X receptor (Moraes et al., 2007; Unsworth et al., 

2017c) and vitamin D receptor (Silvagno et al., 2010; Cumhur Cure et al., 2014). 

Both natural and synthetic ligands of these NRs possess the ability to modulate 

platelet function through different mechanisms.  

 

1.7.3.1. Type I nuclear receptors 

Mechanisms that govern the activities of type I NRs (GR, ER and AR) in 

platelets are not entirely clear. This might be attributed to the fact that plasma 

levels of steroid hormones targeting these NRs are under constant fluctuation 

(especially in females and under certain pathological conditions) (Frye and 

Rhodes, 2008; Richard et al., 2014; Güncü et al., 2005). Consequently, it is difficult 

to study the functions of type I NRs in platelets as frequent variations in steroid 

hormone concentrations may lead to inaccurate assessments in acute vs chronic 

study and might explain the existence of conflicting data.  
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1.7.3.1.1. Glucocorticoid receptor 

Glucocorticoid receptors (GR) are well-known regulators of 

inflammation and glucose homeostasis and can be activated by glucocorticoid and 

anti-inflammatory hormones (Bledsoe et al., 2002). Treatment of platelets with 

prednisolone (synthetic glucocorticoid derived from cortisol) has been reported to 

attenuate the level of ADP or U46619-mediated aggregation and thromboxane B2 

(TxB2) production, which was reversed following treatment with a GR antagonist 

mifepristone (Moraes et al., 2005; Liverani et al., 2012). This inhibition was found 

to be independent of the activity of cyclic nucleotides - cAMP or cGMP, key 

mediators of inhibitory platelet signalling (Liverani et al., 2012). Both adhesion 

and thrombus formation on collagen in vitro was found to be inhibited following 

prednisolone treatment, which might likely be due to reduced ADP or TxA2 

stimulated-platelet aggregation (Liverani et al., 2012). Prednisolone has also been 

shown to regulate platelet-monocyte interactions following stimulation by ADP, 

which is attributed to attenuation of platelet activity and not to inhibition of 

monocytes (Liverani et al., 2012). However, it is interesting to note that 

alternative GR ligands - dexamethasone, fludrocortisone and triamcinolone were 

not able to elicit anti-platelet effects under the experimental conditions used in 

these studies (Liverani et al., 2012; Moraes et al., 2005). This difference in 

activation is thought to be due to the formation of a heterodimeric complex 

between GR and the mineralocorticoid receptor (MR) that is susceptible to 

differential activation by specific receptor ligands. The mechanism that leads to 

diminished secondary mediator signalling by the GR ligand prednisolone requires 

further investigation, although, there is evidence to suggest that this might be 
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mediated via the down-regulation of signalling proximal to the P2Y12 receptor 

(Liverani et al., 2012).   

 

1.7.3.1.2. Estrogen receptor 

Estradiol-17β (E2) and estrogen receptors (ERs) play vital roles in 

regulating reproductive and sexual development and are also known to have an 

influence on the cardiovascular health (Murphy, 2011). Human megakaryocytes 

and platelets have been shown to express ERβ but not ERα (Khetawat et al., 2000). 

The effects of several forms of estrogen, including estrone (E1), estradiol (E2) and 

estriol (E3) on platelet function have been evaluated and the results are 

conflicting. While, acute treatment of platelets ex vivo with either E1 or E3 was 

found to increase adrenaline or ADP-mediated aggregation (Akarasereenont et al., 

2006), chronic treatment with estrogen (in patients undergoing estrogen 

replacement therapy) was found to be associated with a significant reduction in 

adrenaline-induced platelet aggregation and ATP release, in comparison to the 

control groups (Bar et al., 1993). Supporting this, chronic treatment with high 

levels of estradiol in mice exhibited substantial reduction in platelet activation 

both ex vivo and in vivo, with both, an increase in bleeding time and resistance to 

thromboembolism being observed (Valera et al., 2012). However, it is important to 

note these effects on platelet reactivity are also due to modulation of the 

expression of platelet proteins (such as β1 tubulin) during haematopoiesis that 

then alters platelet production and activation (Valera et al., 2012), rather than a 

direct consequence of non-genomic effects on platelet function. 
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1.7.3.1.3. Androgen receptor 

The expression of androgen receptor (AR) has been reported in both 

megakaryocytes and platelets but its role in the regulation of platelet function is 

not well understood (Khetawat et al., 2000). Testosterone and 

dihydrotestosterone are the physiological activators of AR. A few studies have 

identified augmented platelet aggregation response in males compared to female 

rats due to higher levels of androgenic steroids (Johnson et al., 1975), since 

platelet aggregation was found to be inhibited following castration in male rats 

and these effects were noted to be reversed following treatment with testosterone 

(Johnson et al., 1977). In another study, acute treatment of rat or human PRP with 

testosterone was noted to exhibit heightened platelet aggregation upon 

stimulation with ADP, adrenaline, collagen, arachidonic acid or calcium ionophore, 

indicating its rapid non-genomic responses (Pilo et al., 1981). Additionally, two 

independent studies also confirmed that testosterone causes a significant increase 

in TXA2 receptor density on the platelet surface, thereby, indirectly increasing 

platelet responsiveness (Ajayi et al., 1995; Matsuda et al., 1994). In contrast to 

these studies, treatment with testosterone has also been associated with inhibition 

of platelet aggregation. However, these effects were reported to be attributable to 

the effects of endothelium-derived NO synthesis and therefore they might not 

represent a direct effect of testosterone on the platelet androgen receptor and 

platelet activity (Campelo et al., 2012).  
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1.7.3.2. Type II nuclear receptors 

1.7.3.2.1. Liver X Receptor 

Liver X receptors (LXR) play a fundamental role in the regulation of 

fatty acid, cholesterol and glucose homoeostasis. Its endogenous ligands include 

oxysterols such as 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, 27-

hydroxycholesterol, while GW3965 and T0901317 are widely used synthetic 

ligands (Gabbi et al., 2014; Wójcicka et al., 2015). Ligands for LXR have been 

proposed to demonstrate anti-inflammatory and atheroprotective properties.  

The presence of LXRβ has been reported in platelets (Spyridon et al., 

2011) and their treatment with synthetic ligand GW3965 was associated with 

reduced platelet aggregation, calcium mobilisation, secretion and integrin 

activation following stimulation by collagen, CRP-XL or thrombin. Furthermore, 

GW3965-treated mice were also found to form smaller, less stable thrombi 

following laser injury of the cremaster muscle arterioles. Exposure to GW3965 

caused a negative regulation of GPVI-mediated signalling, which was identified to 

be an outcome of a direct interaction of LXR with Syk and PLCγ2. In support of 

this, another study reported the ability of endogenous LXR ligand 22(R)-OH-

cholesterol  (but not its stereoisomer 22(S)-OH-cholesterol) to inhibit collagen-

induced platelet aggregation and shape change (Schaffer et al., 2013). LXR has also 

been reported to form a heterodimer with RXR in platelets (Unsworth et al., 

2017c). 

During thrombus formation, two distinct populations of platelets appear, 

co-aggregated platelets, which support thrombus growth, and loosely attached 
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pro-coagulant platelets that expose phosphatidylserine and support coagulation. 

The procoagulant state is a feature that represents platelet hyper-reactivity and is 

usually associated with pathological conditions such as hyperlipidemia, obesity 

and high cholesterol. Treatment of platelets with LXR ligands, GW3965 and 

T0901317 and natural ligands, 27-OH-cholesterol and 24-(S)-hydroxyl-cholesterol 

have also been shown to cause platelet inhibition to several agonists through the 

conversion of platelets to procoagulant coated platelets state (Unsworth et al., 

2017d). LXR ligand stimulated coated-platelets expose phosphatidylserine at 

platelet surface and also retain high levels of fibrinogen (which is converted to 

fibrin) and other alpha granule components at the platelet membrane. Conversion 

to the state of coated-platelet is believed to support coagulation but it makes 

platelets less responsive to platelet agonists, through the closure of integrin 

αIIbβ3. Similar observations were made in platelets treated with LXR ligands. The 

mechanism underlying this effect of GW3965 seems to be an outcome of reduced 

intracellular calcium signalling, depolarisation of the mitochondrial membrane 

potential independently of cyclophilin D and via generation of reactive oxygen 

species (ROS) (Unsworth et al., 2017d). Therefore, platelet dysfunction observed 

in patients with high cholesterol, hyperlipidaemia, metabolic syndrome and 

obesity might be due to altered LXR signalling in platelets.  

 

1.7.3.2.2. Farnesoid X Receptor 

Farnesoid X receptor (FXR) functions physiologically to regulate bile 

acid and cholesterol homoeostasis. Its expression has been reported in both 

human and mouse platelets and their treatment with synthetic FXR ligand 
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GW4064 resulted in a decrease in sample turbidity (Moraes et al., 2016; Unsworth 

et al., 2017d). This was later associated with platelet swelling and conversion of 

platelets to a procoagulant coated-platelets state (Unsworth et al., 2017d). In a 

manner similar to LXR, treatment with FXR ligands results in the formation of 

coated platelets, prior to platelet agonist stimulation. This is characterised  by the 

exposure of phosphatidylserine, retention of fibrinogen, fibrin and alpha granule 

proteins on the platelet surface, cyclophilin D dependent depolarisation of the 

mitochondrial membrane, deregulation of calcium signalling, generation of ROS 

and closure of integrins at the platelet surface (Unsworth et al., 2017d). The 

closure of platelet integrins is believed to underlie the observed reduction in 

platelet aggregation to platelet agonists. In a mouse model of thrombosis, the 

initial kinetics of thrombus formation were elevated in GW4064 treated mice, but 

thrombus stability was considerably reduced in comparison to control mice 

(Moraes et al., 2016). The inhibition of platelet activity by FXR ligands were found 

to an outcome of increased intracellular levels of cGMP, leading to a down-

regulation of platelet signalling. Furthermore, treatment of FXR-deficient mice 

with FXR ligands did not alter platelet activation, which confirms their selective 

non-genomic action being arbitrated via FXR (Moraes et al., 2016). 

 

1.7.3.2.3. Peroxisome proliferator-activated receptors 

Three isoforms of peroxisome proliferator-activated receptors (PPARs) 

exist, PPARα, PPARβ and PPARγ, and are recognised for their role in cell 

development, differentiation, cholesterol and fatty acid metabolism, and glucose 
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homoeostasis. All the three isoforms of PPARs, upon binding to their ligands can 

exhibit inhibition of platelet activation in a non-genomic manner.  

 

PPARα 

PPARα ligands such as fenofibrate or statins (simvastatin) have been 

reported to attenuate ADP-stimulated platelet activation by inducing a rise in 

intracellular levels of cAMP via a PPARα-dependent mechanism. In alignment with 

this, the inhibition was found to be reversed following treatment with PPARα 

antagonist GW6471 (Ali et al., 2009a). The role of PPARα in regulating platelet 

activation was further supported using mice deficient in PPARα, which upon 

treatment with fenofibrate did not alter platelet activation and bleeding time. The 

inhibition of platelet activity following exposure to fenofibrate was associated 

with an upregulation of cAMP levels via inhibition of PKCα, a key mediator of 

platelet signalling, through interaction between PPARα and PKCα. This interaction 

was believed to prevent binding of PKCα with its substrates and thus causing an 

inhibition of platelet functions (Ali et al., 2009a). These findings identify PPARα as 

a key mediator of statin and fenofibrate-mediated anti-platelet activity.   

 

PPARβ/δ 

Synthetic ligands of PPARβ/δ such as GW0742 and L-165041 have been 

observed to attenuate platelet aggregation and calcium mobilisation in response 

to stimulation by a range of platelet agonists (Ali et al., 2006). It is known that 

PPARβ/δ can also be activated by the prostaglandin PGI2. Consequently the 

possibility of PGI2 eliciting some of its inhibitory effects on platelets through 
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PPARβ/δ (in addition to the prostaglandin IP receptor) cannot be ruled out and 

requires further investigation (Ali et al., 2006). In a manner similar to PPARα, 

incubation of platelets with PPARβ/δ ligands causes an elevation in intracellular 

cAMP levels and potential interaction of the receptor with PKCα has been 

identified as a plausible mechanism by which PPARβ/δ regulates platelet 

reactivity (Ali et al., 2009b). PPARβ/δ ligands have been identified to reduce the 

development of atherosclerosis and prevent plaque formation (Lee et al., 2003). 

The activity of platelets to promote the initiation and progression of 

atherosclerosis is well known. Therefore, these suggested antiplatelet effects of 

PPARβ/δ ligands may partly explain anti-atherosclerotic properties of its ligands.  

 

PPARγ 

Of all the isoforms of PPARs reported in platelets, PPARγ is the most 

extensively explored. This is primarily because of its direct connection with 

several cardiovascular diseases including diabetes mellitus, atherosclerosis and 

thrombosis (Beckman et al., 2002; Chinetti et al., 2000; Moraes et al., 2006). 

PPARγ is an important therapeutic target and its synthetic ligands, the 

thiazolidinediones (pioglitazone, rosiglitazone, lobeglitazone etc) are recognised 

for their cardioprotective properties and widely used for the treatment of type-2 

diabetes (Chandra et al., 2017; Yue, 2003).  

The antiplatelet activity of PPARγ ligands may provide a mechanistic basis 

that in part underlies these observations. For instance, rosiglitazone in a clinical 

study (conducted on patients suffering from coronary heart disease) was reported 

to exhibit long-term anti-platelet effects through the inhibition of P-selectin 
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exposure and granule secretion (Sidhu et al., 2004). The endogenous (15d-PGJ2) 

and synthetic (rosiglitazone and ciglitazone) ligands of PPARγ have been shown to 

down-regulate platelet function ex vivo upon stimulation by several agonists that 

target GPCR (thrombin and ADP) (Akbiyik et al., 2004), GPVI (collagen and CRP-

XL) (Moraes et al., 2010b) and integrin αIIbβ3 receptors (Unsworth et al., 2017b). 

Treatment with 15d-PGJ2 or rosiglitazone reduced granule secretion and TxB2 

synthesis in response to thrombin or ADP (Akbiyik et al., 2004). These ligands 

were also associated with inhibition of collagen/CRP-XL-induced platelet 

aggregation, granule secretion and mobilisation of intracellular calcium. Exposure 

to PPARγ ligands also caused a reduction in early GPVI signalling events such as 

decreased phosphorylation of Syk and LAT (Moraes et al., 2010b). Furthermore, a 

direct interaction of PPARγ with Syk and LAT was identified upon stimulation 

with collagen in the absence PPARγ ligands. The interaction was disrupted upon 

treatment with PPARγ ligands (Moraes et al., 2010b). These ligands also regulate 

integrin αIIbβ3 outside-in signalling through the upregulation of PKA activity. 

Incubation of platelets with PPARγ ligand inhibit β3 phosphorylation and several 

other downstream signalling molecules of the integrin αIIbβ3 signalling pathway 

including Syk, PLCγ2, PKC, FAK and PI3K (Unsworth et al., 2017b). PPARγ ligands, 

therefore, possess the ability to modulate platelet activation through the 

regulation of several different mechanisms. In another study, synthetic PPARγ 

ligand, pioglitazone was also found to delay intra-arterial thrombus formation in 

rats (Li et al., 2005).  
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1.7.3.2.4. Retinoic Acid Receptor 

Three isoforms of retinoic acid receptors (RARs) exist; RARα, RARβ and 

RARγ that play a principal role in several biological processes, including 

development, reproduction, immunity, organogenesis and homoeostasis (Duong 

and Rochette-Egly, 2011). While RARβ/γ display a tissue-specific distribution, the 

expression of RARα is ubiquitous and its presence in platelets and megakaryocytes 

has also been reported (Dolle, 2009). Endogenously, RARs are activated by 

retinoids (metabolites of vitamin A), while few synthetic ligands also exist (Duong 

and Rochette-Egly, 2011).  

RARα has been identified to directly interact with actin-related protein-

2/3 complex (Arp2/3) subunit 5 (Arp2/3s5) in platelets, which is required for the 

regulation of platelet cytoskeletal processes. Treatment of platelets with the 

endogenous RARα ligand, all-trans retinoic acid (atRA), disrupts the RARα-Arp2/3 

interactions resulting in an inhibition of cytoskeletal rearrangements and platelet 

spreading (Rondina et al., 2016). Recently, RARα was observed to regulate protein 

synthesis (including microtubule-associated protein-1 light chain 3 beta 2) in 

human platelets through its binding to a subset of mRNAs and thereby blocking 

translation (Schwertz et al., 2017). It was also identified that prolonged treatment 

of platelets with RARα ligand (for several hours) significantly altered the levels of 

protein synthesis compared to controls (Schwertz et al., 2017). 

 

1.7.3.2.5. Vitamin D receptor 

The vitamin D receptor (VDR) is another ligand-activated transcription 

factor that mediates the actions of vitamin D and its metabolites. VDR is also 
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known to form a heterodimer with the RXR and regulate calcium homoeostasis, 

cell growth and differentiation, detoxification of xenobiotics, and modulation of 

adaptive and innate immunity (Kato, 2000). Although anticoagulant effects of 

vitamin D have been reported and VDR signalling has been characterised in 

monocytes and vascular cells, the role of the VDR in platelet function remains 

unknown. Both human platelets and megakaryocytes have been found to express 

the VDR. Biochemical fractionation studies along with immuno-electron 

microscopy analysis identified VDR to be localised in the soluble and 

mitochondrial compartment of human platelets and mature megakaryocytes (in 

addition to its normal localisation in the nucleus) (Silvagno et al., 2010). Although 

little is known about the role for vitamin D and the VDR in platelet function, a 

patient study identified a strong association between low vitamin D plasma levels 

and a high mean platelet volume (MPV), a marker of platelet hyperactivity 

(Cumhur Cure et al., 2014). 

 

1.7.3.2.6. Retinoid X Receptor 

The retinoid X receptor (RXR) due to their ability to form heterodimers 

with almost a quarter of the known human NRs (PPAR’s, LXR, FXR, PXR etc.) is 

considered as one of the most important receptors in the NR superfamily (Evans 

and Mangelsdorf, 2014). The presence of RXR homodimers has also been reported 

(Sato et al., 2010). The fundamental role of RXR is to regulate several vital 

biological processes such as cell proliferation, differentiation, apoptosis, 

haematopoiesis, metabolism (glucose, fatty acid and cholesterol) and pattern 

formation during embryogenesis (Ahuja et al., 2003). Moraes et al. (2007) 
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reported the expression of RXRα and RXRβ (but not RXRγ) in human platelets and 

megakaryocytes. Treatment of platelets with the endogenous ligand of RXR, 9-cis-

retinoic acid or the synthetic ligand, methoprene acid, was found to inhibit platelet 

functions stimulated by ADP, U46619 (Moraes et al., 2007) or thrombin 

(Unsworth et al., 2017c) that initiate signalling via Gq coupled GPCRs. Down-

regulation of GPCR mediated platelet activation by RXR has been associated with 

its direct interaction with Gαq in a ligand-dependent manner that inhibits Gq 

induced Rac activation and intracellular Ca2+ mobilisation (Moraes et al., 2007).  

 

1.7.3.2.7. Pregnane X receptor 

The Pregnane X receptor is a member of NR superfamily, which is 

predominantly expressed in liver and intestines. It is well characterised for its role 

as a sensor of xenobiotic and toxic endogenous compounds. Upon encountering 

such compounds, PXR up-regulates the expression of proteins such as cytochrome 

P450 3A (CYP3A) that are involved in metabolism, detoxification and subsequent 

elimination of these compounds from the body (Iyer et al., 2006; Ma et al., 2008). 

PXR is also involved in regulation of steroid hormone and bile salt metabolism 

(Krasowski et al., 2005).  

Despite being a member of NR superfamily, several features of PXR have 

been identified that are different from other NRs. Firstly, in contrast to other NRs, 

PXR display the broadest range of specificity towards ligands owing to its large 

and flexible ligand-binding pocket. PXR ligands are therefore structurally diverse 

and encompass prescription drugs (such as rifampicin), herbal medicines (such as 

hyperforin or St. John’s wart), dietary supplements, environmental pollutants, and 
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endobiotics (bile acids) (Honkakoski et al., 2003; Ma et al., 2008) (Fig 2). Secondly, 

unlike classic steroid hormone receptors, high-affinity (sub-nanomolar) ligands 

for PXR have not been discovered. The lowest EC50 values of steroids that activate 

PXR are low-micromolar, generally two to three orders of magnitude higher than 

concentrations found circulating in plasma (Iyer et al., 2006; Moore et al., 2002; 

Staudinger et al., 2011). Thirdly, there exists a high level of sequence and 

functional divergence of PXR among different species. The ligand binding domain 

of human and mouse PXR share a sequence similarity of only 77%, while, 76% 

exist between human and rat PXR (Carnahan and Redinbo, 2005; Jones et al., 

2000). This represents the lowest sequence similarity by any NR in the 

superfamily, as other NRs have comparable identities between species. This 

variation in LBD sequences between species has resulted in cross-species 

differences in the ligands that activate PXR. For example, human PXR can be 

activated by ligands such as rifampicin, SR12813 and hyperforin, while, they have 

little or no effect on mouse PXR. In a similar manner, PXR ligand pregnenolone 

16α-carbonitrile (PCN) is highly specific to rodents only (Iyer et al., 2006; 

Krasowski et al., 2005; Timsit and Negishi, 2007). The species-specific activation 

of PXR by its ligands pose a major challenge to conduct studies for the 

development and evaluation of candidate drugs targeting human PXR. This has 

also led to the development and characterisation of the humanised PXR mice in 

which the mouse PXR was genetically replaced by its human counterpart (Scheer 

et al., 2008; Scheer et al., 2010; Ma et al., 2007a; Xie et al., 2000). As can be 

anticipated, humanised PXR mice were responsive to human-specific PXR ligand 

rifampicin, while lacked a response to mouse-specific inducer PCN. 
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Conflicting results exist with respect to the protective role of PXR towards 

cardiovascular diseases, especially, atherosclerosis. It is well known that the low-

density lipoprotein cholesterol (LDL) and very low-density lipoprotein cholesterol 

(VLDL) promote the progression of atherosclerosis, whilst, high-density 

lipoprotein cholesterol (HDL) attenuates it (Natarajan et al., 2010; Barter, 2005). 

Numerous studies have suggested the ability of PXR to evoke synthesis of HDL-

cholesterol. Bachmann et al. (2004), reported PXR ligand-mediated increase in 

plasma HDL-cholesterol in wild-type mice, but not in PXR-knockout mice 

(Bachmann et al., 2004). PXR could also induce HDL production and its major 

constituent apolipoprotein (Apo)A1 in C57BL/6 and ApoE*3-Leiden (human 

lipoprotein metabolism model) mice (de Haan et al., 2009). PXR expression in 

mice was also found to antagonize the cholic acid-mediated downregulation of 

plasma HDL-cholesterol (Li et al., 2007). Additionally, PXR has also been shown to 

promote cholesterol efflux and HDL synthesis by up-regulating the level of 

cytochrome CYP27A1 (Li et al., 2007). Cholic acid-mediated down-regulation of 

plasma HDL cholesterol and ApoA-1 levels were reported to be abolished in 

humanised PXR transgenic mice (Masson et al., 2005). In contrast to these 

findings, Sui et al. (2011) reported that the deficiency of PXR attenuates 

atherosclerosis development by reducing lipid uptake in macrophages. Activation 

of PXR was associated with a high increase in atherosclerotic lesions in 

ApoE−/− mice. Although in the same study, PXR-/- mice displayed higher VLDL 

levels in comparison with wild-type indicating the potential involvement of PXR in 

maintaining low levels of VLDL endogenously (Zhou et al., 2009a).. Anti-diabetic 

properties of PXR have also been observed in fasting mice where its activation has 

been shown to decrease serum glucose levels. It also suppresses the expression of 
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genes involved in gluconeogenesis, by interacting with glucagon responsive 

transcription factors or by competing for their coactivators (Gao and Xie, 2010). 

 Recently, the presence of PXR was reported in the vasculature (human, rat 

and mouse blood vessels, and human and rat aortic endothelial and smooth 

muscle cells), where it regulated the expression of drug metabolizing enzymes CYP 

3A, 2B and 2C (Swales et al., 2012). This suggests the ability of vasculature to 

detoxify circulating toxins and avert vascular damage. PXR was also observed to 

strengthen anti-oxidative defence by inducing glutathione-s-transferase and 

glutathione peroxidase enzymes, thereby, providing a protective role against 

oxidative stress that might develop in the vascular system (Swales et al., 2012). 

Thus, based on these findings, PXR might have the ability to exhibit 

cardioprotective effects. 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter-1 
 

71 

 

Table 1.2. A summary of nuclear receptors identified in platelets 

and their molecular mechanism of action (Flora et al., 2018) 

 

Nuclear 
Receptor 

          Ligands Effect on 
Platelet 

Function 

Mechanisms of Action 

GR  
(Moraes et 
al., 2005; 

Liverani et 
al., 2012) 

 Prednisolone Negative regulation 
of platelet secondary 
mediator stimulated 
effects (ADP and 
TXA2) (in vitro) 

 
Mechanism unknown 

ER 
(Bar et al., 

1993; Valera 
et al., 2012) 

 Estrogen - estrone 
(E1), estradiol (E2) 
and estriol (E3) 

Reduction in platelet 
responsiveness, 
however, conflicting 
results exist (in vitro, 
ex vivo and in vivo) 

 
 
Mechanism is unknown 

AR  
(Johnson et 

al., 1975; 
Johnson et 

al., 1977; Pilo 
et al., 1981) 

 Testosterone 
 Dihydrotestosterone 

Potentiation of 
platelet aggregation  
(in vitro and ex vivo) 

 
 
Mechanism is unknown 

 
 
 

LXR 
(Spyridon et 

al., 2011) 

 GW3965 
 T0901317 
 24(S)-OH-

cholesterol 
 27-OH-cholesterol 

Inhibition of platelet 
function and 
thrombosis (in vitro 
and in vivo) 
 
Conversion of 
platelets to the 
procoagulant state  
(in vitro) 

 Reduced phosphorylation of 
early GPVI signalling 
components – Syk, LAT and 
PLCγ2 
Increase LXR-Syk and LXR-
PLCγ2 interaction 

 Formation of coated platelets, 
including PS exposure, 
mitochondrial membrane 
depolarisation 

 
 
 

FXR 
(Moraes et 
al., 2016) 

 

 GW4064  
 Chenodeoxycholic 

acid 
 6α-ethyl-

chenodeoxycholic 
acid 

Inhibition of platelet 
function, thrombosis 
and haemostasis  
(in vitro and in vivo) 
 
Conversion of 
platelets to the 
procoagulant state  
(in vitro) 

 Cyclophilin D dependent 
formation of coated platelets 
and closure of surface 
integrins.  

 Associated with PS exposure 
and mitochondrial membrane 
depolarisation 

 Augmented cGMP levels 
which promote PKG activity 
and phosphorylation of VASP 
S239 

PPARα  
(Ali et al., 

2009a) 

 Fenofibrate 
 Statins 

Inhibition of platelet 
function (in vitro) 

 Increase in cAMP levels 
 PPARα-PKCα interaction and 

attenuation of PKCα 
PPARβ/δ 

(Ali et al., 
2009b) 

 GW0742 
 L-165041 

Inhibition of platelet 
function (in vitro) 

 Increase in cAMP levels 
 PPARα-PKCα interaction and 

attenuation of PKCα 
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Table 1.2 (Continued) 

 

Nuclear 

Receptor 

          Ligands Effect on Platelet 

Function 

Mechanisms of Action 

 

 

 

PPARγ 
(Moraes et 

al., 2010b; 

Unsworth et 

al., 2017b) 

 15d-PGJ2 

 Thiazolidinediones 

(Rosiglitazone, 

Ciglitazone, 

Pioglitazone) 

Inhibition of platelet 

function, thrombosis and 

haemostasis (in vitro and 

in vivo) 

 Inhibition in 

phosphorylation of Syk 

and LAT to reduce GPVI 

signalling 

 Reduced PPARγ-Syk and 

PPARγ-LAT interaction 

upon PPARγ ligand 

treatment 

 Negative regulation of 

integrin αIIbβ3 outside-

in via upregulation of 

PKA activity and 

inhibition β3 

phosphorylation 

 

RAR 
(Rondina et 

al., 2016) 

 all-trans retinoic acid Inhibition of cytoskeletal 

rearrangements and 

platelet spreading 

(in vitro) 

Disruption of RARα-Arp2/3 

interactions. 

 

 

RXR 
(Moraes et 

al., 2007; 

Unsworth et 

al., 2017c) 

 9-cis-retinoic acid 

 Methoprene acid 

 Docosahexaenoic 

acid 

Inhibition of platelet 

function, thrombosis and 

haemostasis  

(in vitro an in vivo) 

 RXR-Gq interaction and 

negative regulation of 

Rac activation to inhibit 

GPCR mediated platelet 

activation 

 Upregulation of PKA 

activity and 

phosphorylation of VASP 

S157 in cAMP and NFκβ 

dependent manner 

 

VDR 
(Cumhur 

Cure et al., 

2014) 

 Vitamin D and its 

metabolites 

Low vitamin D plasma 

levels cause high mean 

platelet volume, a marker 

of platelet hyperactivity 

(in vivo) 

 

Mechanism is unknown 
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1.8. Hypothesis 

The nuclear receptors, PXR and RXR exhibit non-genomic effects to regulate 

platelet functions and signal transduction stimulated by a range of agonists and 

thus modulate thrombus formation. 

 

1.9. Aims of the study 

The past few decades have seen a steady rise in the number of patients 

suffering from cardiovascular diseases (CVDs), making CVDs a major health risk 

globally (Grundy et al., 2004; Luepker, 2011). Platelets are regarded as important 

targets for the treatment of CVDs. Therefore, some of the current treatment 

strategies include use of drugs/therapies that inhibit platelet functions by 

targeting different platelet activation mechanisms (Capodanno et al., 2013; 

Metharom et al., 2015; Thachil, 2016). These treatment regimens have been 

successful in reducing the overall mortality or morbidity, but still exhibit 

numerous side effects such as bleeding and drug resistance that limits their use 

(Nathan et al., 2017). Therefore, there is a need to devise newer strategies that are 

safe yet potent in treating or preventing CVDs with minimal side effects.  

As discussed earlier, the presence of several kinds of NRs have been 

reported in platelets with their ligands being able to down-regulate platelet 

functions. The pregnane X receptor has been recently discovered in the 

cardiovascular system (blood vessels, aortic endothelial and smooth muscle cells) 

(Swales et al., 2012). It has also been reported to display anti-atherosclerotic 

potential in murine models of atherosclerosis (Li et al., 2007; Bachmann et al., 
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2004; de Haan et al., 2009). Anti-atherosclerotic properties are common features 

shared by most of the NRs identified in platelets such as RXR, LXR, FXR and PPARs 

(Lalloyer et al., 2006; Duval et al., 2002; Hageman et al., 2010; Calkin and 

Tontonoz, 2010). Moreover, in nucleated cells, PXR acts as an active dimer partner 

of RXR, whose expression in platelets has already been reported (Moraes et al., 

2007). Based on these considerations, the presence of PXR in platelets and 

implications of its ligands in regulating platelet functions and signalling were 

explored. 

In addition to this, RXR is another NR identified in platelets and its ligands 

have been found to exhibit anti-thrombotic effects. The inhibitory effects of RXR 

ligands on platelets were reported to be due to the down-regulation of platelet 

activation stimulated by secondary mediators, ADP and TXA2 (Moraes et al., 2007). 

However, their role on collagen and thrombin-mediated platelet activation were 

unclear. This is important because collagen is the principal agonist responsible for 

initiating platelet activation upon vascular injury. Whereas, thrombin is a highly 

potent platelet agonist, generated via the coagulation cascade and is also secreted 

from platelets. Therefore, further research is required to better understand the 

effects of RXR ligands on collagen and thrombin-stimulated platelet activation. 

 

Key objectives 

1. To explore the presence of PXR and localisation of PXR and RXR in human and 

mouse platelets.  

2. To examine if RXR forms a heterodimer with other NRs (PPARs, LXR, PXR etc.). 

3. To evaluate the ability of PXR and RXR ligands to regulate platelet function.  
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4. To explore the effects of RXR and PXR ligands on thrombosis and haemostasis. 

5. To study the effects of PXR and RXR ligands on platelet signalling to better 

understand underlying mechanisms of action. 
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2.1. Materials 

2.1.1. Platelet agonists 

Horm-Chemie collagen (collagen fibres from equine tendons) was from 

Nycomed (Munich, Germany). Thrombin from bovine plasma was from Sigma 

(Poole, UK) and cross-linked collagen-related peptide (CRP-XL) was provided by 

Professor Richard Farndale (University of Cambridge, UK). U46619, a 

thromboxane A2 analog, was from Tocris Biosciences (Bristol, UK). Adenosine 

diphosphate (ADP) was from Sigma (Poole, UK). 

 

2.1.2. Nuclear receptor ligands 

PXR ligands rifampicin and 5-Pregnen-3β-ol-20-one-16α-carbonitrile 

(PCN) were purchased from Sigma Aldrich (Poole, UK), while, SR12813 was from 

Abcam (Cambridge, UK). RXR ligands 9-cis-retinoic acid and methoprene acid 

were purchased from Sigma Aldrich (Poole, UK) respectively. 

 

2.1.3. Antibodies 

Information regarding the primary and secondary antibodies used for this 

study is listed in Table 2.1 and Table 2.2, respectively, along with their 

applications and concentrations used. 

 

2.1.4. Animals 

C57BL/6 mice were from Envigo (Huntingdon, UK) and humanised PXR 

mice were purchased from Taconic Biosciences (Lille Skensved, Denmark). 
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Table 2.1. List of primary antibodies used for this study 

Antibody Host Application Dilution Source and  

catalog no. 

 

Polyclonal  

anti-PXR 

Rabbit Western blotting 

 

1:1000 SantaCruz (Calne, UK) 

sc-25381 

 

Polyclonal  

anti-PXR 

Rabbit Immunofluorescence 

 

1:100 Abcam (Cambridge, UK) 

ab85451 

 

Monoclonal  

anti-PXR 

Mouse Immunoprecipitation 

 

1: 200 

 

Abcam 

ab41930 

 

Monoclonal  

anti-RXR α/β/γ 

Mouse Western blotting 

Immunoprecipitation 

Immunofluorescence 

1:1000 

1:200 

1:100 

SantaCruz 

sc-46659 

Polyclonal  

anti-LXR 

Rabbit Western blotting 

 

1:1000 Abcam 

ab28479 

 

Polyclonal  

anti-PPARα 

Rabbit Western blotting 

 

1:1000 SantaCruz 

sc-9000 

 

Polyclonal  

anti-PPARγ 

Goat Western blotting 

 

1:1000 SantaCruz 

sc-1984 

 

Monoclonal  

anti-GPIb  

Mouse Immunofluorescence 

 

1:100 ThermoFisher  

(Loughborough; UK) 

 PM6/248 

 

Polyclonal  

anti-GPIb 

Goat Immunofluorescence 

 

1:100 SantaCruz 

sc-6602 

 

Monoclonal anti-

Integrin alpha2 

chain (GPIa) 

Rat Flow cytometry 

 

1:50 EMFRET Analytics 

(Würzburg, Germany) 

M070-1 

Monoclonal anti-

GPVI 

Rat Flow cytometry 

 

1:50 Emfret Analytics 

M011-1 

Monoclonal anti- 

Integrin αIIbβ3 

Rat Flow cytometry 

 

1:50 Emfret Analytics 

M025-2 

Monoclonal anti- 

GPIba 

Rat Flow cytometry 

 

1:50 Emfret Analytics 

M040-2 
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Table 2.1 primary antibodies (continued) 

Antibody Host Application Dilution Source and  

catalogue no. 

 

FITC 

conjugated 

polyclonal anti-

human 

fibrinogen  

 

Rabbit 

 

Flow cytometry 

 

 

1:50 

 

Dako (Glostrup, Denmark) 

F0111 

 

PE/Cy5 anti-

human CD62P 

monoclonal 

antibody  

Mouse Flow cytometry 

 

1:50 BD Biosciences  

(New Jersey, USA)  

#551142 

 

Phospho-VASP 

(Ser157) 

Rabbit Western blotting 1:1000 Cell Signalling Technology  

(Hitchin, UK) 

#3111 

 

Phospho-VASP 

(Ser239) 

Rabbit Western blotting 1:1000 Cell Signalling Technology 

#3114 

 

Anti-phospho-

tyrosine 4G10 

Mouse Western blotting 1:1000 Merck Millipore 

(Watford, UK) 

#05-321 

 

Anti-phospho-

tyrosine PKC 

Rabbit Western blotting 1:1000 Cell Signalling Technology 

#2261 

 

Phospho-Src  

(Y418) 

Rabbit Western blotting 1:1000 ThermoFisher 

#44-660G 

 

Phospho-Lyn  

(Y396) 

Rabbit Western blotting 1:1000 Abcam 

ab226778 

 

Phospho-Syk  

(Y525/526) 

Rabbit Western blotting 1:1000 Abcam 

ab58575 

 

Phospho-LAT  

(Y200) 

Rabbit Western blotting 1:1000 Abcam 

ab68139 

 

Phospho PLCγ2 

(Y1217) 

Rabbit Western blotting 1:1000 Cell Signalling Technology 

#3871 
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Table 2.1 primary antibodies (continued) 

Antibody Host Application Dilution Source and  

catalogue no. 

Phospho-MLC  

(Ser19) 

Rabbit Western blotting 1:1000 Cell Signalling 

Technology #3671 

 

Monoclonal  

anti-14-3-3 ζ  

Mouse Western blotting 1:1000 SantaCruz 

sc-293415 

 

Polyclonal 

anti-actin 
Goat Western blotting 1:1000 SantaCruz 

sc-1615 

Monoclonal  

anti-GAPDH 
Mouse Western blotting 1:1000 Abcam 

ab8245 

DyLight 649 

anti-GPIbα 
Rat in vivo thrombosis 

assay 
0.2 µg/gm 

weight of 

mice 

EMFRET Analytics  

M040-3 

 

Table 2.2. List of secondary antibodies used for this study 

Antibody Host Application Dilution Source and  

catalogue no. 

 

AlexaFluor 488 

anti-mouse IgG 

Donkey Immunofluorescence 

Western blotting 

1:500 

1:1000 

Life Technologies 

(Paisley, UK) 

A-21202 

AlexaFluor 488 

anti-goat IgG 

Donkey Immunofluorescence 

Western blotting 

1:500 

1:1000 

Life Technologies 

A-11055 

AlexaFluor 568 

anti-rabbit IgG 

Donkey Immunofluorescence 

 

1:500 

 

Life Technologies 

A10042 

AlexaFluor 647 

anti-mouse IgG 

Donkey Immunofluorescence 

Western blotting 

1:500 

1:1000 

Life Technologies 

A-31571 

AlexaFluor 647 

anti-rabbit IgG 

Donkey Immunofluorescence 

Western blotting 

1:500 

1:1000 

Life Technologies  

A-31573 

 

Cy5 anti-rabbit 

IgG 

Goat Western blotting 1:1000 Life Technologies 

A-10523 

VeriBlot for IP 

Detection 

Proprietary 

(Abcam) 

Western blotting 1:1000 Abcam 

ab131366 
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2.1.5. Other Reagents 

Chronolume kit was from Chronolog (PA, USA). Clear and black 96-well 

flat bottom plates were from Greiner Bio-One (Frickenhausen, Germany). The 

poly-L-lysine coated-12mm coverslips were obtained from VWR and ProLong Gold 

Antifade Mountant was from Life Tech (Carlsbad, CA, USA). Glass microscope 

slides were from Thermo-Fisher Scientific (Loughborough; UK). Fibrinogen from 

human plasma was from Sigma (Poole, UK). Paraformaldehyde (16%, methanol-

free) was from Agar Scientific (Essex, UK). Alexa Fluor 488 phalloidin was from 

Thermo-Fisher Scientific (Loughborough; UK). GPRP (Gly-Pro-Arg-Pro) was from 

Sigma (Poole, UK). Protease-free bovine serum albumin (BSA) was from First Link 

(Wolverhampton, UK). Phosphate-Buffered Saline (PBS) tablets were from Sigma 

(Poole, UK). Thromboxane B2 competitive ELISA Kit was purchased from Cayman 

chemical (Cambridge, U.K.). Protein A/G Magnetic Beads for immunoprecipitation 

assays was from Thermo-Fisher Scientific (Loughborough; UK). Protease 

inhibitors (leupeptin, aprotinin, phenylmethylsulfonyl fluoride, sodium 

orthovanadate and pepstatin-A) were from Sigma (Poole, UK). Cangrelor and 

indomethacin were from Sigma (Poole, UK). MRS2179 was purchased from Abcam 

(Cambridge, UK). 10% and 4-20% gradient Mini-PROTEAN® TGX™ precast 

polyacrylamide gels [10 well (50 µl) and 15 wells (15 µl)], polyvinylidene 

difluoride (PVDF) membranes and dual-stained molecular weight markers were 

obtained from Bio-rad (Hemel Hempstead, UK). Whatman 3MM chromatography 

paper was from Thermo Fisher Scientific (Waltham, MA, USA). 

Dimethylsulphoxide (DMSO) was from Sigma (Poole, UK). Fura-2-AM and Tris 

were from Thermo-Fisher Scientific (Waltham, MA, USA). Digitonin and EGTA 
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were from Sigma (Poole, UK). 98% DioC6(3) iodide (3,3’Dihexyloxacarbocyanine 

iodide) was from Sigma (Poole, UK). Vena8 Fluoro+ biochips were from Cellix Ltd 

microfluidic solutions (Dublin, Ireland). 

 

2.2. Methods 

2.2.1. Human platelet preparation 

Human blood was taken from consenting, drug-free volunteers on the day 

of the experiment according to the methodology approved by the University of 

Reading Research Ethics Committee. Blood was taken using 3.8% (w/v) sodium 

citrate and Acid Citrate Dextrose (ACD; 110 mmol/L glucose, 80 mmol/L citric 

acid, 120 mmol/L sodium citrate) as an anticoagulant. Whole blood was 

centrifuged at 102g for 20 minutes at 20°C to yield platelet-rich plasma (PRP). 

Where washed platelets were required, they were isolated from the PRP by 

further centrifugation at 1413g for 10 minutes at 20oC in the presence of 0.1 

μg/ml prostacyclin to prevent activation. The supernatant was discarded in 

Klorsept disinfectant (Medentech, Wexford, Ireland) and the platelet pellet was 

resuspended in 25ml of modified Tyrodes-HEPES buffer (134 mmol/L NaCl, 0.34 

mmol/L Na2HPO4, 2.9 mmol/L KCl, 12 mmol/L NaHCO3, 20 mmol/L HEPES, 5 

mmol/L glucose, 1 mmol/L MgCl2, pH 7.3) and 3 ml of ACD in the presence of 0.1 

μg/ml prostacyclin. Platelets were centrifuged at 1413g for 10 minutes at 20oC 

and resuspended to a density of 4x108 cells/ml in modified Tyrodes-HEPES buffer 

using a platelet count obtained with a Z Series Coulter Counter (Beckman Coulter, 

CA, USA). Washed platelets were rested for at least 30 minutes at 30oC prior to the 

experiment to allow responses to recover. 
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ADP-sensitive washed platelets were prepared by collecting blood into 

3.8% (w/v) sodium citrate and centrifugation at 102g for 20 minutes at 20oC to 

yield PRP (without the addition of ACD). Platelets were isolated from the PRP by 

further centrifugation at 350g for 20 minutes. The slower speed of centrifugation 

minimises the chance of ADP release from platelets during preparation that can 

lead to receptor desensitisation, caused by higher centrifugation speeds. The 

supernatant was discarded, and the platelet pellet was re-suspended to a density 

of 4x108 cells/ml in modified Tyrodes-HEPES buffer. 

 

2.2.2. Mouse platelet preparation 

The PRP was obtained by centrifuging blood (supplemented with 1ml 

HEPES-buffered Tyrode’s solution) at 203g for 8 minutes. Where washed platelets 

were required, they were isolated from the PRP by further centrifugation at 1028g 

for 6 minutes in the presence of PGI2 (12.5ng/ml). The resulting platelet pellet was 

re-suspended in modified HEPES-buffered Tyrode’s solution at a concentration of 

4x108 cells/ml and was left to rest at 30oC for 30 minutes. 

 

2.2.3. Immunofluorescence microscopy 

Human blood was collected in vacutainers containing sodium citrate and 

mouse blood was collected in 3.8% (w/v) sodium citrate (1:10) as described 

previously. Phosphate buffer saline (containing, 10 mM phosphate buffer, 2.7 mM 

potassium chloride and 137 mM sodium chloride, pH 7.4) was prepared by 

dissolving one PBS tablet in 200 mL of deionized water. Mouse blood was diluted 
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again 1:1 with PBS:citrate to prevent the formation of clots. Both human and 

mouse blood was centrifuged at 100g for 20 minutes to collect PRP. Resting or 

activated platelets (stimulated with 5 µM U46619; in the presence of 4 µM 

integrillin) in PRP were fixed with an equal volume of 8% paraformaldehyde-PBS 

(PFA-PBS) to make a final concentration of 4% (v/v) and incubated for 15 min. 

Thereafter, platelets were centrifuged at 950g for 10 minutes. The supernatant 

was removed, and platelet pellet was resuspended in 2 ml of PBS-ACD (pH 6.1) for 

washing. Platelets were centrifuged for 10 minutes at 950g and resuspended in 1 

ml of PBS-ACD to concentrate platelets. Platelets were centrifuged again at the 

same speed for 10 minutes and then resuspended in 500µl of 1% (w/v) BSA-PBS, 

to concentrate platelets even more. Poly-L-lysine coated-12mm coverslips (VWR 

micro cover glass No.1.5) were put in 6x6 culture plate and 90μl of platelets were 

added on each coverslip. Culture plates were placed at 37oC for 90 minutes. After 

2-3 washes with PBS, samples were blocked with 0.2% (v/v) Triton-X-100, 2% 

(v/v) serum from same species as secondary antibody and 1% (w/v) protease-

free BSA for 1h. Thereafter, primary antibodies diluted (1:100) in 0.2% (v/v) 

Triton-X-100, 2% (v/v) serum from the same species as secondary antibody and 

1% (w/v) protease-free BSA were added and left overnight. The following day, 

samples were washed with PBS (2-3 times) and secondary antibodies (1:200) 

were added for 1 hour at room temperature. The unbound antibodies were 

washed off with PBS (2-3 times) and samples were fixed using 4% (v/v) PFA-PBS 

for 5 minutes. The coverslips were washed again with PBS (2-3 times). Coverslips 

were placed on glass slides after adding ProLong Gold Antifade mounting media 

(Life technologies). The slides were kept at room temperature until mounting 
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media dried and then kept in the fridge until they were imaged using a Nikon A1-R 

confocal microscope (100x oil immersion). 

 

2.2.4. Platelet aggregometry 

Light transmission aggregometry (LTA) was performed in an optical 

platelet aggregometer (Chrono-Log, PA, USA, and Helena Biosciences Europe, 

Gateshead, UK), as originally described by Born (1962). 222.5 μl of washed 

platelets (4x108 cells/ml) were stimulated in the presence of 25 μl agonist 

(collagen, CRP-XL, thrombin, U46619 or ADP) with continuous stirring (1200 rpm 

at 37oC) for 5 minutes and aggregation was measured as an increase in light 

transmittance. The effects of NR ligands on platelet aggregation were measured by 

incubating washed platelets with 2.5 μl of NR ligand dissolved in DMSO (final 

DMSO concentration in sample of 0.1% v/v) or vehicle control (containing, DMSO 

0.1% v/v) for 10 or 20 minutes prior to the addition of agonist. The aggregation 

was recorded for 5 minutes. 

 

2.2.5. Flow cytometry 

Fibrinogen binding and P-Selectin exposure were measured using FITC-

conjugated polyclonal rabbit anti-human fibrinogen antibody and PE/Cy5 mouse 

anti-human CD62P antibody, respectively, in a 96-well flat bottom plate. PRP was 

treated with NR ligands or vehicle control for 10 minutes (containing, DMSO 0.1% 

v/v). 1 μl each of anti-fibrinogen and anti-CD62P antibody was added per 50 μl 

sample prior to stimulation with agonists (CRP-XL or thrombin) for 20 minutes 

with occasional gentle mixing. GPRP (25 μg/ml) was added in samples stimulated 
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with thrombin to prevent fibrin polymerization. Reactions were stopped by 

adding 0.2% (w/v) formyl saline. 

 The levels of integrin α2β1, αIIbβ3, GPVI and GPIb were evaluated using 

flow cytometry in resting and activated (CRP-XL stimulated) mouse platelets (in 

PRP) in a similar manner by incubating platelets with monoclonal anti-mouse 

integrin α2β1 (FITC-conjugated), integrin αIIbβ3 (FITC-conjugated), GPVI (Cy5- 

conjugated) and GPIb (Cy5-conjugated) antibodies respectively.  

To measure PXR within platelets, resting and activated (with 1 µg/ml CRP-

XL in the presence of integrilin) human washed platelets (200 µl) at 4x108 

cells/mL were fixed by adding an equal volume 2% (w/v) formyl saline and 

permeabilised using 400 µl of BD Phosflow Perm Buffer III (BD Bioscience, Oxford, 

UK) for 1 h in ice. Platelets were then incubated with rabbit anti-PXR primary 

antibody (SantaCruz; sc-25381) for an hour. Following washing at 550g for 20 

min, platelets were resuspended in HEPES buffer saline. Thereafter, platelets were 

incubated with an appropriate secondary Cy5-conjugated antibody (Invitrogen, 

Paisley UK) for an hour. Negative controls were set using an appropriate isotype 

control.  

Analyses were performed by flow cytometry using a BD Accuri C6 flow 

cytometer (BD Biosciences, Oxford, UK), and data were collected from 10,000 

events [gated on platelets using FSC (forward scatter, limited between 1520-

16000000) and SSC (side scatter, limited between 152-1600000)] and analysed 

using inbuilt BD Accuri C6 plus software, version 1.0.264.21. 
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2.2.6. Dense granule secretion 

Secretion of ATP from dense Granule upon agonist stimulation was 

measured in washed platelets (4x108 cells/ml) using a Lumi-aggregometer (model 

700, Chronolo-Log, PA, USA) (Feinman et al., 1977). 225 µl of washed platelets 

were added to a glass cuvette and incubated with the Chronolume reagent for 2 

minutes, while stirring using the aggregometer. 2 nM ATP was added to this 

stirred suspension of platelets to set the ATP response baseline. The luminescence 

increase was observed using the AggroLink 8 software (Chrono-Log, PA, USA), 

with the luminescent gain adjusted until the ATP response was within the 

manufacturer-instructed range of 20-60%. These settings were saved and used for 

the rest of the experiment. Thereafter, 197.5 µl of washed platelets were incubated 

with 2.5 µl of NR ligands or vehicle control (containing, DMSO 0.1% v/v) at 37°C 

for 20 minutes under non-stirring conditions. 2 minutes prior the end of 

incubation period, 25 µl of Chronolume reagent was added and stirred using the 

aggregometer. Washed platelets were then stimulated by the addition of 25 µl of 

agonist (collagen or thrombin) and the baseline was set. ATP release from dense 

granule was recorded for 5 minutes following the addition of agonist using the 

AggroLink 8 software, which calculates ATP secretion levels from the 2nM ATP 

standard. 

 

2.2.7. Thromboxane B2 ELISA assay 

TxB2 assays were performed using a TXB2 immunoassay kit obtained 

from Cayman Chemical (Cambridge, UK) and following the manufacturer’s 

protocols. Briefly, 222.5 µl of human washed platelets (4x108 cell/ml) were 



  Chapter-2 
 

 

88 

 

added to a glass cuvette and incubated with 2.5 µl of NR ligand or vehicle control 

(containing, DMSO 0.1% v/v) for 20 minutes before their activation with 25 µl 

of agonist (CRP-XL or thrombin) for 5 minutes. The reaction was discontinued 

by the addition of STOP solution [containing, EGTA (1 mM) and indomethacin 20 

µM)] and immediately centrifuged (12,000 rpm, 2 min, RT) to isolate washed 

platelet supernatants, which were frozen immediately at -80°C. Samples were 

later thawed and diluted 1:40 in ELISA buffer [containing, phosphate (100 mM), 

BSA (0.1% w/v), NaCl (400 mM), EDTA (1 mM), sodium azide (0.01% w/v)] and 

50 µl added to wells of a polyclonal goat anti-mouse IgG-coated plate. 50 µl of TxB2 

standards were aliquoted to determine the relationship between absorbance and 

TxB2 concentration. 50 µl of TxB2-acetylcholinesterase tracer and 50 µl of anti-

TxB2 mouse monoclonal antibody were added to each well and incubated for 2 

hours at room temperature. Wells were washed four times with wash buffer and 

incubated with 200 µl of Ellman’s Reagent under dark conditions. Absorbance at 

405 nm was measured periodically using a Novostar plate reader. Absorbance 

values for TxB2 standards were used to make a standard curve and test sample 

values were converted to TxB2 concentrations using the inverse function. 

 

2.2.8. Measurement of intracellular calcium mobilisation 

The mobilisation of intracellular calcium from intracellular stores was 

evaluated using a dual excitation fluorescent dye Fura-2 AM, which binds free 

intracellular calcium. PRP was incubated with Fura-2AM (2 M) for 1 hour at 30oC 

and was followed by centrifugation at 350g for 20 minutes. The platelet pellet was 

resuspended in modified Tyrodes-HEPES buffer (4x108 cells/ml). Thereafter, 
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Fura-2 AM loaded washed platelets were incubated with NR ligands or vehicle 

control (containing, DMSO 0.1% v/v) for 10 minutes at 37oC prior to addition of 

platelet agonists (CRP-XL or thrombin). Fluorescence measurements (excitation 

340 and 380 nm, emission 510 nm) were recorded for 5 minutes (1 measurement 

every 1.5s) using a NOVOstar plate reader. Dual excitation (at 340 and 380 nm) 

allows quantification of [Ca2+]i; peak excitation of unbound Fura-2AM occurs at 

approximately 380 nm, whereas calcium-bound Fura-2 peak excitation is at ~340 

nm (Bootman et al., 2013). [Ca2+]i was estimated by using the ratio of the 340 nm 

and 380 nm excited signals. Calibration was performed by treating an untreated 

sample with digitonin (50 M) to lyse the platelets, which releases the Fura-2AM 

into the Tyrodes buffer, containing CaCl2 (2 mM), allowing measurement of the 

maximum fluorescence ratio. To calculate the minimum fluorescence ratio, Ca2+ 

ions were chelated by addition of 10 mM ethylene glycol-bis(-aminoethyl ester)-

N,N,N’,N’-tetraacetic acid (EGTA) and 10 mM TRIS base (added to ensure an 

alkaline pH for optimal Ca2+ buffering by EGTA). Auto-fluorescence was measured 

using unloaded platelets. Using these calibration values (maximum, minimum and 

autofluorescence), experimental [Ca2+]i concentrations were calculated using the 

following equation: 

[𝐶𝑎2+]𝑖 =  𝐾𝑑  ×  
𝑆𝑓

𝑆𝑏
 ×  

𝑅 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 − 𝑅
 

 

Where Kd is the dissociation constant of Fura-2AM (~224 nM). Sf and Sb are the 

values of the fluorescence at 380nm excitation (corrected to background auto-

fluorescence), with zero or saturating [Ca]2+ respectively. R is the 340/380nm 

fluorescence ratio, corrected for background fluorescence. Rmin and Rmax are the 
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ratio limits at zero or saturating [Ca]2+, respectively, adjusted using a viscosity 

constant of 0.85. This corrects for the effects of the cellular environment on the 

fluorescence of Fura-2. 

 

2.2.9. Platelet adhesion and spreading 

Glass coverslips were placed in 6 well plates and coated with collagen or 

fibrinogen (100 g/ml each) (in modified PBS) for 1 hour. 1% (w/v) BSA was then 

added onto coverslips and incubated for 1 hour to prevent platelets binding to the 

glass. The coverslips were washed 3 times with PBS. Washed platelets at a density 

of 2x107 cells/ml were treated with NR ligand or vehicle control (containing, 

DMSO 0.1% v/v) for 20 minutes, and then added onto coverslips and incubated for 

45 minutes at 37oC. The supernatant was then removed from the coverslips, which 

were again washed 3 times with PBS. Platelets were then fixed with 0.2% (w/v) 

PFA for 10 minutes, the supernatant removed, and coverslips washed 3 times with 

PBS. Platelets were then permeabilised with 0.2% (v/v) Triton-X-100 for 5 

minutes, and then the supernatant was removed and coverslips washed 3 times 

again with PBS. Alexa-Fluor 488 phalloidin was then added onto the coverslips for 

1 hour, incubated in the dark, to label platelet F (filamentous) actin. The 

supernatant was removed, and coverslips washed 3 times with PBS. Coverslips 

were then mounted onto slides with the addition of Prolong Gold Antifade 

mounting media to preserve fluorescence. Samples were imaged, using a 100X oil 

immersion lens on a Nikon A1-R confocal microscope (Nikon, Tokyo, Japan). 

Fluorescence was excited at 488 nm with an argon laser and emitted at 500-520 

nm, with images captured in one focal plane. Platelet adhesion data were obtained 
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by counting the number of platelets on 5 images of each coverslip that were 

captured randomly. Platelets were scored as adhered (not spread), spreading 

(defined as extending filopodia) or spread fully (lamellipodia formed), and the 

relative frequency of each population was determined using ImageJ software. 

 

2.2.10. Clot retraction 

To measure thrombin-stimulated fibrin clot retraction, PRP was 

obtained as described earlier. 198 µl of PRP was incubated with 2 µl of NR ligands 

or vehicle control (containing, DMSO 0.1% v/v) for 20 minutes. 785 µl of modified 

Tyrodes-HEPES buffer was added to test tubes, along with 5 l of red blood cells, 

to allow visualization of the clot. This was followed by the addition of 200 l PRP 

treated with NR ligand or vehicle control. Clot formation was initiated by adding 

10 l of thrombin (final concentration 1 U/ml) to the test tubes. A glass pipette 

was added to the centre of each test tube, around which the clot would form, and 

samples were placed in an incubator chamber at 37oC. Photographs were taken 

every 10 minutes and the assay was terminated after 60 minutes at which time the 

clot in the vehicle-treated samples were seen to have retracted completely. Clot 

weight was measured as a marker for clot retraction. Clots were removed from the 

glass pipettes and transferred into the pre-weighed microfuge tubes. Clot mass 

was determined by subtracting the weight of pre-weighed microfuge tubes from 

the weight of microfuge tubes containing clot.  
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2.2.11. SDS-PAGE and western blotting 

Human or mouse washed platelets were prepared at a density of 8x108 

cells/ml as described earlier and lysed by adding 6X Laemmli sample reducing 

buffer [4% (w/v) SDS, 20% (v/v) glycerol, 0.5M Tris, 0.001% (w/v) Brilliant Blue 

R and 10% (v/v) 2-mercaptoethanol]. Samples were heated to 95oC for 5 minutes 

before storing at -20oC until use.  

To study cell signalling, human washed platelets were prepared at a 

density of 4x108 cells/ml under non-aggregation conditions [indomethacin (20 

µM), cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM). These platelets 

were treated with NR ligands or vehicle control (containing DMSO, 0.1% v/v) for 

20 minutes and then stimulated with agonists (CRP-XL, thrombin or U46619) in 

the aggregometer. Unstimulated or stimulated samples were lysed with 6X 

Laemmli sample reducing buffer and heated to 95oC for 5 minutes before storing 

at -20oC until use. 

Proteins were separated by SDS-PAGE as described previously by 

Laemmli (1970), using 10% or 4-20% Mini-PROTEAN TGX precast protein gels. 

Samples were heated to 95oC for 5 minutes again prior to loading into gels, which 

were submerged in 1X Tris/Glycine/SDS buffer (25 mM Tris, 192 mM glycine, 

0.1% SDS, pH 8.3) within a Mini-PROTEAN tetra vertical electrophoresis cell (Bio-

Rad, CA, USA). Electrophoresis was run for 45 minutes or 1 hour at a constant 

voltage of 150V. 

The separated proteins on gels were transferred to a polyvinylidene 

difluoride (PVDF) membrane using semi-dry western blotting (Trans-Blot SD 
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Semi-Dry Transfer Cell; BioRad, CA, USA). A single piece of PVDF membrane 

soaked in methanol was placed below the resolving gel in the transfer cell. This 

arrangement of gel and PVDF membrane was sandwiched between 4 sheets of 

3MM filter paper soaked in cathode buffer (25 mM Tris-base, 40 mM 6-amino-N-

hexanoic acid; pH 9.4) placed at the top and 4 sheets of 3MM filter paper soaked in 

anode buffer (300 mM Tris-base, 20% (v/v) methanol; pH 10.4) placed at the 

bottom. A constant voltage of 15V was applied to this setup for 2 hours to facilitate 

efficient transfer of proteins from gel to membrane. 

PVDF membranes were then transferred into a 5% (w/v) solution of 

bovine serum albumin (BSA) dissolved in Tris-buffered saline with Tween 20 

(TBS-T) (20 mM Tris, 140 mM NaCl, 0.1% Tween, pH 7.6) to block the membrane 

for 1 hour at room temperature. Primary antibodies (concentrations for 

antibodies used are described in Table 2.1) were added into a 2% (w/v) solution 

of BSA (dissolved in TBS-T) and membranes were incubated with these solutions 

overnight at 4oC on a rotator. Primary antibody solutions were removed from the 

PVDF membranes the next day and membranes were washed three times for 10 

minutes each with TBS-T. Secondary antibodies (concentrations for antibodies 

used are described in Table 2.2) were added to a 2% (w/v) BSA (dissolved in TBS-

T) solution, which was then added to PVDF membranes and incubated in the dark 

at room temperature for 1 hour. PVDF membranes were washed three times again 

for 5 minutes each with TBS-T. PVDF membranes were scanned using a Typhoon 

FLA 9500 (Amersham Biosciences, Buckinghamshire, UK), and quantification of 

the fluorescence intensity of individual bands was determined using Image Quant 

software version 8.1 (GE healthcare). 
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2.2.12. Immunoprecipitation 

Immunoprecipitation was used to isolate proteins of interest from 

platelet lysates. Washed human platelets were prepared (8x108 cells/ml) as 

described previously. Cells were lysed on ice using an equal volume of 2X NP40 

buffer (300 mM NaCl, 20 mM Tris, 10 mM EDTA, 2% v/v NP40; pH=7.3) 

containing protease inhibitors [Leupeptin (10 µg/ml), aprotinin (10 µg/ml), 

phenylmethylsulphonyl fluoride (1 mM) sodium orthovanadate (1mM) and 

pepstatin-A (25 µg/ml)]. The lysed platelets in NP40 buffer (1X) were incubated 

with an appropriate primary antibody (concentrations for antibodies used are 

described in Table 2.1) and Protein A/G magnetic beads (20 μl per 500 µl of 

lysate) at 4°C overnight. The following day, the beads were collected in Eppendorf 

tube using a magnetic stand and washed twice with NP40 buffer (1X) containing 

protease inhibitors and once with TBST. Thereafter, 100 μl of 2X Laemmli sample 

reducing buffer was added to the beads. The samples were then heated to 95°C for 

5 minutes and kept at -20°C for use in Western blotting 

 

2.2.13. In vitro thrombus formation under flow 

Human or mouse whole blood was incubated at 30oC with 5 M of the 

lipophilic dye DiOC6 for 1 hour. Vena8 BioChip microfluidic channels were coated 

with type I collagen (100 g/ml) for one hour and excess collagen was washed 

with modified Tyrodes-HEPES buffer. Whole blood was incubated with NR ligands 

or vehicle control (containing, DMSO 0.1% v/v DMSO) for 10 minutes (RXR 

ligands) or 20 minutes (PXR ligands) prior to perfusion through the collagen-

coated microfluidic channels at an arteriolar shear stress of 20 Dyne/cm2 (shear 
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rate: 500 s-1). Fluorescence was excited at 488 nm with an argon laser and 

emission detected at 500-520 nm. The thrombus formation on the microfluidic 

chip was observed using a Nikon A1-R confocal microscope with a 20X objective 

and images (focused on a single section) were captured every 1 second for 600 

seconds. Mean thrombus fluorescence intensity was calculated using NIS Elements 

software (Nikon, Tokyo, Japan). 

 

2.2.14. Genotyping of the hPXR mice 

To evaluate the presence of the hPXR gene, genotyping of each mouse 

was performed as per the manufacturer’s protocol (Taconic Biosciences) prior to 

their use in experiments. Ear-clip tissue samples from humanised PXR mice were 

collected and used for DNA extraction for genotyping. 300 μl of the extraction 

mixture containing 1 mM EDTA (protects DNA from intracellular DNAase) and 1 

mM NaOH (breaks open the cell membrane) was added to tissue samples and 

heated to 95oC for 10 minutes. For Polymerase Chain Reaction (PCR), the 

mastermix (Table 2.3) containing appropriate primers (Table 2.4) was added to 5 

μl of DNA sample irrespective of the concentration of the genomic DNA extracted 

from the samples. The DNA in the master mix was amplified using optimised 

conditions for PCR (Table 2.5). The amplified DNA was visualised (using Sybr safe 

DNA gel stain) following separation on 1.5% (w/v) agarose gel in TAE (Tris-base 

96.8 g, acetic acid 22.84 mL, EDTA 40 mL (stock 0.5 M) in 1L) for 30 minutes at 

150V. The gels were visualised using Typhoon FLA 9500 and analysed using the 

Image Quant software. 
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Table 2.3. Contents of the Mastermix 

Reaction Mix Volume 

(each reaction) 

2X Reddy Mix contains: 

 

0.625 units                  ThermoPrime Taq DNA Polymerase 

75 mM                          Tris-HCl (pH 8.8 at 25°C) 

20 mM                          (NH4)2SO4 

1.5 mM                         MgCl2 

0.01% (v/v)                Tween 20 

0.2 mM                         each of dATP, dCTP, dGTP and dTTP 

 

 

 

12.5 μl 

10 µM Primer (forward/reverse) 0.5 μl 

DNA samples 5 μl 

UltraPure DEPC treated H2O 7 μl 

TOTAL 25 μl 

 

 

Table 2.4. Primers used for genotyping 

Mouse type Primers used PCR product 

size (bp) 

 

hPXR 

Forward primer 

5’-GGA CTT GCC CAT CGA GGA C- 3’ 

 

Reverse Primer 

5- ACA GGA TGG AGG GGC AGC- 3’ 

 

364 

 

C57/BL6 

Forward primer 

5’-GCT TCT CAT TTC TCC CTC CTG-3’ 

 

Reverse Primer 

5’-TGA TCC TTT CCT GGG CAG C- 3’ 

 

 

733 
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Table 2.5. Specification of PCR thermal cycling 

Step Temp (oC) Time (min) No. of cycles 

Hot Start 95 15:00 1 

Denature 94 0:45  

35 Anneal 60 1:00 

Extension 72 1:00 

Final Extension 72 5:00 1 

 

2.2.15. In vivo thrombus formation 

Thrombus formation in vivo was studied as described by Falati et al. 

(2002). On the day of the experiment, mice were anaesthetised by intraperitoneal 

injection of ketamine (125 mg/kg), xylazine (12.5 mg/kg) and atropine (0.25 

mg/kg). Anaesthesia was maintained with 5 mg/kg pentobarbital as and when 

required. The cremaster muscle was exteriorized and the connective tissue 

removed, after which an incision was made, allowing the cremaster muscle to be 

affixed over a glass slide as a single sheet; the muscle preparation was hydrated 

throughout with buffer (135mM NaCl, 4.7mM KCl, 2.7mM CaCl2, 18mM NaHCO3, 

pH 7.4). NR ligands, vehicle control (containing, DMSO 0.1% v/v) and DyLight 649 

anti-GPIb antibody (0.2 g/g mouse weight; for platelet labelling) was infused 

into the mouse circulation through carotid artery cannula prior to the injury 

(performed using a Micropoint Ablation Laser Unit; Andor Technology PLC, 

Belfast, Northern Ireland). Thrombus formation was visualised after 10 minutes 

(RXR ligands) or 20 minutes (PXR ligands) of the infusion of NR ligands or vehicle 

control using an Olympus BX61W1 microscope (Olympus Corporation, Tokyo, 

Japan). The images were captured both prior to and after the injury, using a 
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Hamamatsu digital camera C9300 (Hamamatsu Photonics UK Ltd, Hertfordshire 

UK) charge-coupled device (CCD) camera in 640 x 480 format. Images were 

analysed using Slidebook 6 software (Intelligent Imaging Innovations, CO, USA). 

Following the procedure, mice were sacrificed in accordance with Home office 

licences and approval from the University of Reading local ethics review panel and 

Animal welfare and Ethics Research Board. Procedures on these mice require 

micro-surgery expertise and were therefore performed in collaboration with Dr P. 

Sasikumar. 

 

2.2.16. Tail bleeding assay 

On the day of the experiment, C57/BL6 or hPXR mice were anesthetised 

by intraperitoneal injection of ketamine (125 mg/kg) and xylazine (12.5 mg/kg) 

and NR ligands or vehicle control (containing, DMSO 0.1% v/v) was injected via 

the femoral vein. 10 minutes (RXR ligands) or 20 minutes (PXR ligands) later, 0.5 

mm of the tail tip was removed with a scalpel and the tail was immediately placed 

into tubes containing saline, in a manner that prevented the cut end of the tail 

from contacting the side of the tube. The time of bleeding was recorded until the 

blood flow had ceased. Following the procedure, or after 20 minutes, mice were 

sacrificed in accordance with Home office licences and approval from the 

University of Reading local ethics review panel and Animal welfare and Ethics 

Research Board. This assay was performed in collaboration with Ms T. Sage or Dr 

L. Holbrook. 
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2.2.17. Statistical Analyses 

Statistical significance was assessed using one-way ANOVA (with post-

hoc Dunnett’s multiple comparison test) where more than two groups were 

studied. For 2-grouped comparisons, student t-test was performed. Two-way 

ANOVA (with Sidak's multiple comparisons test) was used to analyse in vitro 

thrombus formation assay. The nonparametric Mann-Whitney U test was used to 

analyse non-normally distributed data (tail bleeding and in vivo thrombosis 

assay). All the data are presented as mean ± SEM and P≤0.05 were considered to 

be statistically significant. Statistical analysis was performed using Prism software 

(GraphPad, San Diego, CA, version 7.00). 
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3.1. Introduction 

 
The pregnane X receptor (PXR; NR1I2) is a member of nuclear receptor (NR) 

superfamily, predominantly expressed in liver and intestines, primary organs 

responsible for metabolism and elimination of xenobiotics (pharmaceuticals, 

environmental, dietary, and occupational chemicals) and toxic endogenous 

compounds (such as bilirubin and bile salts) in mammalian species (Ma et al., 

2008). Upon encountering such compounds, PXR becomes activated and regulates 

the activity of phase I and phase II drug/xenobiotic metabolising enzymes and 

transporters involved in detoxification process (Kliewer, 2003).  

NRs, in general, are known to be highly selective to their ligand. PXR, 

however, is an exception to this rule and displays a high level of promiscuity with 

respect to the choice of ligand. This is because of the presence of a large and 

flexible ligand-binding pocket (size ˃1300 Å3), which can accommodate a diverse 

spectrum of lipophilic substances that includes prescription drugs, dietary 

supplements, environmental pollutants, endogenous hormones, and bile acids 

(Timsit and Negishi, 2007). The level of promiscuity is reflected in the receptor 

affinity. Consequently, the concentration of ligands needed to activate PXR is 

generally two or three orders of magnitude higher than concentrations found 

circulating in plasma (Iyer et al., 2006). The requirement of higher concentrations 

is an adaptive response, for instance, lithocholic acid is a hepatotoxic secondary 

bile acid, which at lower concentrations does not activate PXR and helps to 

solubilise fats for absorption (Ajouz et al., 2014). However, at higher 

concentrations of around 100 μM, PXR activation by lithocholic acid upregulates 
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CYP3A enzymes that stimulate its detoxification and elimination, and hence 

prevent its hepatotoxic effects (Iyer et al., 2006; Staudinger et al., 2001).  

A critical step that regulates the activity of PXR in nucleated cells is its 

interaction with the retinoid X receptor (RXR) to form a heterodimer, the absence 

of which affects its binding to DNA, which ultimately modulates the rate of 

transcription of target genes (Ihunnah et al., 2011). PXR shares structural features 

that are typical to all NRs, consisting of an N-terminal domain containing a highly 

conserved DNA binding domain, a hinge domain followed with a C-terminal ligand 

binding domain (LBD) (Orans et al., 2005).  

Increasing evidence suggests that PXR, beyond drug metabolism, can also 

regulate several physiological (glucose, lipid and bile acid metabolism) and 

pathophysiological processes such as metabolic disorders (type 2 diabetes and 

obesity) and cardiovascular diseases (atherosclerosis) (di Masi et al., 2009; Gao 

and Xie, 2010; Wallace and Redinbo, 2013). PXR ligands have been proposed to 

promote cholesterol efflux and HDL production, both of which are credited with 

anti-atherosclerotic effects (de Haan et al., 2009; Li et al., 2007; Zhou et al., 2009a; 

Masson et al., 2005). Moreover, recently, the presence of PXR was reported in the 

human vasculature (Swales et al., 2012). Given the central role of platelets 

towards the initiation of cardiovascular disorders such as atherosclerosis and 

presence of several NRs in platelets (and its binding partner RXR) (Moraes et al., 

2007), we explored whether PXR is present in human platelets and evaluated the 

potential role of its ligands in regulating platelet function.  
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3.2. PXR is expressed in human and mouse platelets 

 
In humans, PXR is encoded by the NR1I2 (Nuclear receptor subfamily 1, 

group I, member 2) gene. PXR exist in two spliced isoforms – PXR.1 and PXR.2. Of 

these, PXR.1 comprises 434 amino acid residues and is widely distributed and 

characterised for its functions. The PXR.2 isoform has 37 fewer amino acid 

residues in its ligand-binding domain (LBD), which reduces its ligand-binding 

ability. The physiological role of PXR.2 is not yet fully understood (Lamba et al., 

2004; Lin et al., 2009). Similarly, two isoforms of PXR have been identified in 

mouse. PXR.1 is composed of 431 amino acid residues and the truncated PXR.2 

LBD (in this case, 41 amino acid residues shorter) makes it less responsive 

towards its ligands (Kliewer et al., 1998; Laudet and Gronemeyer, 2002).   

To study the functions of PXR ligands in platelets, we firstly investigated the 

expression of PXR in both human and mouse platelets. An immunoblot analysis 

using a rabbit polyclonal antibody (SantaCruz; sc-25381) raised against PXR 

amino acids 101-260 of human origin confirmed the presence of PXR in human 

and mouse platelets. HEK-293 cells transfected with human PXR (PXR-293) 

(SantaCruz; sc-158906) were used as a positive control. As shown in figure 3.1, a 

protein band of approximately 45 kDa was observed in PXR-293 cell lysates. 

Bands of similar size (next to the positive control) detected in human (figure 3.1a) 

and mouse platelet lysates (figure 3.1b), suggested the expression of PXR in 

human and mouse platelets. However, the signal of PXR observed was quite weak, 

therefore, the presence of PXR in human platelets was further validated by 

immunoprecipitation (IP) assay, where PXR was immunoprecipitated using a 

mouse monoclonal anti-PXR antibody (Abcam; ab41930), targeting amino acids 1-



  Chapter-3 
 

104 

 

40 and blotted with a rabbit polyclonal antibody (SantaCruz; sc-25381) targeting 

amino acids 101-260 of PXR. The antibody used for IP was used as a negative 

control (Figure 3.1c). In the IP sample of human platelets, a band of approximately 

70 kDa was obtained as against 45 kDa seen in the immunoblot analysis. This may 

perhaps be due to the possibility of PXR existing in a bound form with other 

proteins, which upon treatment with a mild NP40 buffer used during the IP assay 

cause PXR to be pulled out in a complex form. No band was observed in the 

negative control, which excludes IgG contamination. 
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Figure 3.1: PXR is present in human and mouse platelets. (a) The presence of PXR 

was examined by immunoblot analysis of human whole platelet lysates (WPL) using a 

rabbit polyclonal anti-PXR antibody (targeting amino acids 101-260). Human PXR 

transfected 293 lysate was used as a positive control. (b) The presence of PXR was 

also explored in mouse platelet lysates using the same antibody and human PXR 

transfected 293 lysate was used a positive control. (c) Additionally, PXR was 

immunoprecipitated (IP) from human platelets (IP: PXR) using a mouse monoclonal 

antibody (targeting amino acids 1-40) and blotted with a rabbit polyclonal antibody 

(targeting amino acids 101-260). The antibody used for IP was used as a negative 

control (Ab: PXR). Data are representative of 3 separate experiments using different 

donors/mice. 
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3.3. The localisation of PXR in human and mouse platelets 

Following the discovery of the presence of PXR in human and mouse 

platelets, its sub-cellular localisation was investigated in resting and activated 

human platelets using immunofluorescence microscopy. There is a substantial 

difference in the morphology and activity of resting and activated platelets, which 

may influence the distribution of PXR. Therefore, studying the localisation of PXR 

under both these conditions would be important in understanding its cellular 

functions.  

Resting and activated (with 5 μΜ U46619 in the presence of integrilin) 

platelets (in PRP) were fixed with 4% (w/v) paraformaldehyde and permeabilised 

using 0.1% (v/v) Triton X-100. U46619 was used as an agonist because it 

stimulates gentle activation of platelets with minimal shape change, which is 

helpful in studying the distribution of NRs. Samples were then incubated with a 

rabbit polyclonal anti-PXR antibody (Abcam, ab85451) to identify the distribution 

of PXR, while; platelets were stained using a mouse monoclonal anti-GPIb 

antibody (ThermoFisher; PM6/248), which marks the surface of platelets. The 

secondary antibodies conjugated with Alexa Fluor 647 and Alexa Fluor 488 were 

used for visualisation of PXR and GPIb respectively. Human platelets without any 

primary antibody treatment were used as a negative control. The samples were 

visualised using a Nikon A1-R confocal microscope (100X oil immersion lens).  

Under resting conditions, PXR (red) was found to be uniformly distributed 

inside the cytosol of platelets (green colour marks the surface of platelets) in a 

punctate arrangement (Figure 3.2a). Upon activation of platelets, PXR appeared to 
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relocate towards the plasma membrane along with a reduction in staining (Figure 

3.2b). These observations are in alignment with recent findings on FXR, which 

displayed a punctate arrangement inside the resting platelet cytosol, while a 

translocation towards the plasma membrane was observed with reduced staining 

in activated platelets (Moraes et al., 2016).  

The apparent reduction in staining was attributed to the possibility that PXR 

is released from platelets upon their activation. Indeed, the release of NRs such as 

RXR and PPARγ in the form of microparticles from activated platelets (stimulated 

by thrombin, collagen or ADP) has been reported (Ray et al., 2008). These findings 

were further validated by flow cytometry analysis. Resting and activated 

permeabilised platelets were incubated with a PXR antibody (Abcam; ab85451) or 

the equivalent rabbit IgG control and the median fluorescence was examined. It 

was observed that the level of fluorescence associated with PXR in activated 

platelets (0.1 U/ml thrombin) was lower (a shift in fluorescence profile towards 

left) when compared with resting platelets (Figure 3.2d). This suggests a reduction 

in the number of PXR molecules present inside the platelets post activation by 

thrombin, consistent with its release.  

Immunofluorescence studies performed on resting and permeabilised mouse 

platelets incubated with rabbit polyclonal anti-PXR (SantaCruz; sc-25381) and 

goat polyclonal anti-GPIb (Santa Cruz; sc-6602) antibodies displayed a similar 

kind of punctate arrangement of PXR inside the platelet cytosol (Figure 3.2c). 



   
 

 
 

 

 

 

 

 

 

Figure 3.2: Trafficking of PXR in human platelets. The localisation of PXR in human 

resting, activated (with 5 μΜ U46619 in the presence of integrilin) and resting mouse 

platelets (resting) was investigated using immunofluorescence microscopy. Platelets 

were fixed with 4% (w/v) paraformaldehyde and permeabilised using 0.1% (v/v) 

Triton-X-100. PXR (in red) and membrane GPIb receptors (in green) were stained 

using anti-PXR and anti-GPIb antibodies. Secondary antibodies conjugated to Alexa-

647 and Alexa-488 were used to visualize PXR and GPIb, respectively. Platelets 

without primary antibody treatment were used as negative controls. The samples 

were visualised using a Nikon A1-R confocal microscope (100X oil immersion lens). 

Figures represent the distribution of PXR in (a) resting and (b) activated human 

platelets. (c) The localisation of PXR in resting mouse platelets. (d) The fluorescence 

level of PXR was measured in permeabilised resting and activated (with 0.1 U/ml 

thrombin) human platelets using flow cytometry. Data are representative of ˃3 

separate experiments. 
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3.4. PXR and RXR form a heterodimer in platelets 

The formation of heterodimers between the RXR and numerous other non-

steroid NRs (such as PPARs, FXR, PXR, LXR etc.) has been shown to occur in a 

range of cell types (Evans and Mangelsdorf, 2014). Binding of the NRs with RXR, 

forming a heterodimeric complex is pivotal for the attachment of NRs to their 

respective specialised sites on DNA, dedicated towards the initiation of 

transcription and genomic regulation (Rastinejad et al., 2013). While the presence 

of such heterodimers in nucleated cells is well studied for their functions, little is 

known about their existence in the anucleated cell such as platelets. One previous 

study by Ray et al. (2008) reported the existence of RXR-PPARγ complex in resting 

and activated human platelets. Based on this, we investigated, whether 

interactions exist between RXR and PXR in human platelets.  

Coimmunoprecipitation (Co-IP) studies were performed, where an anti-RXR 

mouse monoclonal antibody (SantaCruz; sc46659) was used to isolate RXR from 

resting and activated human platelets. This was followed by a western blot 

analysis using an anti-PXR rabbit polyclonal antibody (SantaCruz; sc-25381) to 

determine whether PXR and RXR interact with each other. An equivalent amount 

of anti-RXR antibody was used a negative control. A secondary antibody (Abcam; 

ab131366) that does not identify denatured IgG was used for targeting the 

primary antibodies to avoid the detection of any IgGs that may have been present 

in the samples. The PXR was found to coimmunoprecipitate with RXR from both 

resting and activated platelets (Figure 3.3). No significant difference in the level of 

PXR associated with RXR in resting and activated platelets was observed.  
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Figure 3.3: PXR is associated with RXR in resting and activated human platelets. 

Presence of RXR-PXR heterodimers was investigated in human platelets using a Co-IP 

assay. Human washed platelets (8x108 cells/ml) were lysed in NP40 buffer before 

immunoprecipitation of RXR using a mouse monoclonal anti-RXR antibody overnight at 

4°C in the presence of protein A/G magnetic beads. Isolated proteins were subjected to 

SDS–PAGE and then western blotted onto a PVDF membrane. Immunoblot analysis was 

followed with the addition of a rabbit polyclonal anti-PXR antibody and its detection 

using a secondary antibody that does not recognize denatured IgG. Presence of RXR was 

also confirmed in the same samples. An equivalent amount of anti-RXR antibody was 

used as a negative control to exclude IgG contamination (Neg). Data are representatives 

of 3 separate experiments using platelets from different donors. 
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To further verify these findings, immunofluorescence microscopy was 

performed on resting and activated permeabilised human platelets to determine 

whether both proteins co-localise in platelets. The resting and activated (with 5 

μΜ U46619 in the presence of integrilin) platelets (in PRP) were fixed with 4% 

(w/v) paraformaldehyde and permeabilised using 0.1% (v/v) Triton X-100. 

Samples were then incubated with a mouse monoclonal anti-RXR antibody (Santa 

Cruz; sc46659) and rabbit polyclonal anti-PXR antibody (Abcam; ab85451) to 

identify the distribution of RXR and PXR respectively, while, platelets were stained 

using a goat polyclonal anti-GPIb antibody (Santa Cruz; sc-6602), which marks the 

surface of platelets. The secondary antibodies conjugated with Alexa Fluor 647, 

Alexa Fluor 568 and Alexa Fluor 488 were used for visualisation of RXR, PXR and 

GPIb respectively. The samples were visualised using a Nikon A1-R confocal 

microscope (100X oil immersion lens).  

Consistent with our previous findings, in resting platelets, both RXR and PXR 

were observed to be distributed uniformly in the cytosol in a characteristic 

punctate arrangement (Figure 3.4a), whereas, they appeared to migrate towards 

the plasma membrane upon activation with a reduction in staining (Figure 3.4b). A 

high degree of colocalisation between RXR (stained in red) and PXR (stained in 

blue) was seen in both resting and activated platelets (stained green for GPIb), 

which is indicated by pink colour in the merged image.  
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Figure 3.4: PXR and RXR are colocalised within human platelets. The potential colocalisation of PXR and RXR in resting and activated 
(with 5 μM U46619 in the presence of integrilin) human platelets was investigated using immunofluorescence microscopy. Platelets were 
fixed with 4% (w/v) paraformaldehyde and permeabilised using 0.1% (v/v) Triton-X-100. RXR (in red), PXR (in blue) and membrane GPIb 
receptors (in green) were stained using anti-RXR, anti-PXR and anti-GPIb antibodies respectively. Secondary antibodies conjugated to Alexa-
647, Alexa-568 and Alexa-488 were used to visualize RXR, PXR and GPIb, respectively. The samples were visualised using a Nikon A1-R 
confocal microscope (100X oil immersion lens). Figures represent the distribution of RXR and PXR in (a) resting and (b) activated platelets. 
Data are representative of ˃3 separate experiments. 
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The results of colocalisation were analysed using scatter plots, which 

graphically represent the fluorescence intensity of one colour plotted against the 

fluorescence intensity of the second colour associated with each pixel. In case of a 

proportional colocalisation, the points of the scatterplot cluster around a straight 

line (45 degrees to either axis) and the slope represent the ratio of two 

fluorescence intensities. Whereas, lack of colocalisation results in a distribution of 

points into two separate, unrelated groups on either side of the straight line (Dunn 

et al., 2011). A high level of colocalisation was observed between RXR and PXR in 

both resting and activated platelets, with a distribution of fluorescence intensity 

points clustering proportionally around a straight line as represented in the 

scatter plot (prepared using NIS element software, Nikon) (Figure 3.5a). 

The Pearson correlation coefficient (PCC) is another parameter, which is 

used to quantify the degree of colocalisation between different fluorophores. The 

PCC ranges between -1 to +1. A value of 0 represents a lack association between 

the two fluorescence signals, a value greater than 0 indicates a positive association 

(proportional increase between the two fluorescence intensities), and a value less 

than 0 indicates a negative association (an increase in the value of one variable is 

followed by a decrease in the value of other) (Adler and Parmryd, 2010). Average 

values of the PCC were found to be 0.94 and 0.92 between RXR and PXR in resting 

and activated platelets respectively, representing a high degree of colocalisation 

(Figure 3.5b). Moreover, there appeared to be a significant difference in the PCC 

values corresponding to RXR-GPIb and PXR-GPIb colocalisation in resting and 

activated platelets. Activated platelets displayed a higher value of PCC (0.76±0.02 

for RXR-GPIb and 0.71±0.02 for PXR-GPIb) in contrast to resting (0.57±0.03 for 
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RXR-GPIb and 0.56±0.03 for PXR-GPIb), consistent with the migration of NRs 

towards the plasma membrane upon platelet activation.  

These findings reinforce the conclusion that PXR becomes translocated in 

activated platelets and moves from a uniform punctate distribution in the cytosol, 

towards the plasma membrane.  
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Figure 3.5: PXR and RXR are colocalised within human platelets. (a) The extent of 

colocalisation represented using scatter plots between the fluorescence intensity points 

of RXR and PXR in resting and activated platelets. (b) The Pearson correlation 

coefficient (PCC) representing the degree of colocalisation between RXR-PXR, RXR-GPIb 

and PXR-GPIb in resting and activated (5 μM U46619) platelets. PCC was quantified for 

>10 platelets using different fields. Data represent mean ± SEM, **P ≤ 0.01 and ***P ≤ 

0.001 was calculated by Student T-test. 
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3.5. PXR ligands inhibit platelet aggregation 

Having established the presence and location of PXR in platelets, we sought 

to determine whether this receptor is fundamental in the cells and thereby 

modulate their function. Upon vascular injury, collagen in the subendothelial 

matrix gets exposed and initiates platelet aggregation process. The potential 

effects of PXR ligands, rifampicin and SR12813 on platelet aggregation in response 

to collagen were therefore evaluated.  

Both the PXR ligands used, rifampicin and SR12813 are structurally distinct 

with rifampicin having a larger structure and high molecular weight (822.94 

g/mol) in comparison to SR12813 (504.53 g/mol). Rifampicin is regarded as a 

classical activator of PXR, whereas, SR12813 is a bisphosphonate ester used to 

experimentally lower serum cholesterol levels (Goodwin et al., 2002). Both the 

ligands are strong activators of PXR and share comparable levels of potency with 

SR12813 being slightly more potent than rifampicin (EC50 of rifampicin - 0.7 μM 

and SR12813 - 0.2 μM) determined through cell-based reporter assays (Jones et 

al., 2000; Moore and Kliewer, 2000). It is important to note here that these EC50 

values were determined based on the genomic regulation of PXR by these ligands. 

Figure 3.6 shows the structure of commonly used PXR ligands. 

To maintain the consistency of results amongst donors, the concentration of 

collagen used to stimulate platelets was optimized for each donor to attain 50% of 

the maximum level of aggregation (EC50) in 5 minutes (actual concentrations 

ranged between 0.5-0.8 µg/ml). Human washed platelets (4x108 cells/ml) were 

incubated with a range of concentrations of SR12813 (10, 20, 50 and 100 µM) or 
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vehicle (containing DMSO, 0.1% v/v) for 10 minutes prior to stimulation with 

collagen.   
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Figure 3.6: Structure of PXR ligands. (a) Rifampicin is an antibiotic, which is 

used for the treatment of tuberculosis and is regarded as the classical activator of 

human PXR. (b) SR12813 is an experimentally used cholesterol-lowering drug and 

a potent activator of human PXR. (c) Pregnenolone 16α-carbonitrile is a strong 

activator of mouse PXR. 
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Aggregation responses were recorded using an optical aggregometer with 

constant stirring (1200 rpm) for 5 minutes at 37oC. Approximately, 27% and 39% 

reduction in aggregation was observed with 50 and 100 µM of SR12813 

respectively in comparison to vehicle-control (containing DMSO, 0.1% v/v) 

(Figure 3.7 ai, aii). An increase in the incubation period of SR12813 from 10 to 20 

minutes enhanced the degree of inhibition to 41% and 62% with 50 and 100 µM 

respectively (Figure 3.7 bi, bii). Aggregation responses recorded for 5 minutes 

demonstrated this effect to represent inhibition rather than a delay in aggregation. 

Furthermore, aggregation responses in the presence of 50 and 100 μM SR12813 

(20 mins incubation) were found to be reversible, probably due to a lack of 

secretion caused by these ligands.  

To ascertain that the effects displayed by SR12813 are mediated through 

PXR, the second and structurally unrelated ligand, rifampicin was tested. Human 

platelets incubated for 10 minutes with rifampicin (10, 20, 50 and 100 µM) or 

vehicle (containing, DMSO, 0.1% v/v) inhibited collagen-mediated platelet 

aggregation by 20% and 25% at 50 µM and 100 µM, respectively (Figure 3.7 ci, 

cii). In support of previous observations, a higher incubation period of 20 minutes 

with rifampicin resulted in a stronger inhibition of 43% and 67% at 50 µM and 

100 µM respectively (Figure 3.7 di, dii). Therefore, the extent of inhibition by both 

PXR ligands was extremely similar with each ligand exhibiting reversible 

aggregation. It can be speculated that such robust effects of PXR ligands noticed 

with prolonged incubation periods reflect their rate of transit across the plasma 

membrane.  
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Figure 3.7: PXR ligands inhibit collagen-mediated platelet aggregation. Washed 

human platelets (4×108 cells/mL) were incubated with SR12813, rifampicin or vehicle 

(containing DMSO, 0.1% v/v) prior to their stimulation with collagen (EC50 ranged 

between 0.5 - 0.8 µg/ml). Aggregation was measured as a change in light transmission 

and monitored for 300 seconds at 37oC under constant stirring (1200 rpm). 

Representative aggregation traces of platelets treated with (ai, bi) SR12813 or (ci, di) 

rifampicin for 10 and 20 minutes and stimulated with collagen are shown. Quantified 

data displays the percentage of aggregation for (aii, bii) SR12813 or (cii, dii) rifampicin 

treated samples (vehicle-treated samples represent 100% aggregation) at the end of 5 

minutes. Data represent mean ± SEM (n≥3), *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001 was 

calculated by one-way ANOVA. 
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Platelets release numerous pro-thrombotic substances upon activation by 

collagen in vivo (such as thrombin, ADP and TxA2). Apart from their release from 

activated platelets, thrombin is also generated locally at the site of injury via the 

coagulation cascades. All these agonists potentiate the aggregation response and 

platelet plug formation by activating more platelets circulating in the vicinity. 

These agonists signal via GPCRs present on the platelet surface. Therefore, we 

investigated the effects of PXR ligands on these GPCR agonists in order to 

determine whether the actions of PXR are restricted to GPVI receptor-stimulated 

signalling or represent a general mechanism of platelet inhibition. 

The effects of PXR ligands on aggregation stimulated by thrombin were 

evaluated. Similar to collagen, the concentration of thrombin was optimized for 

each donor to produce 50% aggregation (EC50) as maximum aggregation response 

in 5 minutes (actual concentration ranged between 0.03 – 0.04 U/ml). 10 minutes 

of treatment with 50 and 100 µM of SR12813 inhibited thrombin-evoked platelet 

aggregation by 17% and 26% respectively in 5 minutes, in comparison to vehicle-

control (containing DMSO, 0.1% v/v) (Figure 3.8 ai, aii). Whereas, a reduction of 

27% and 38% was achieved by 50 and 100 µM of rifampicin respectively in 5 

minutes (Figure 3.8 bi, bii). Increase in incubation period had no further effect on 

the degree of platelet aggregation. Also, a slight increase in the thrombin 

concentration above the EC50 (for instance, 0.05 U/ml), almost completely 

overcame the inhibitory effects of PXR ligands. So, the inhibitory effects of PXR 

ligands were visible only at lower concentrations of thrombin.  
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Also, both SR12813 and rifampicin exhibited a stronger inhibition for up to 

3 minutes from the beginning of aggregation, in contrast to 5 minutes. At 3-

minutes post stimulation by thrombin, SR12813 was noted to diminish 

aggregation by 36% and 48% (Figure 3.8 aiii), while; rifampicin exhibited 

inhibition of 38% and 45% at 50 and 100 µM respectively, in comparison to 

vehicle-control (Figure 3.8 biii). This stronger inhibition exhibited by SR12813 

and rifampicin for up to 3 minutes of thrombin stimulation might be due to the 

effects of PXR ligands in reducing the release of pro-thrombotic secondary 

mediators (such as ADP and TxA2). 
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Figure 3.8: PXR ligands inhibit thrombin-mediated platelet aggregation. Washed human 

platelets (4×108 cells/mL) were incubated with SR12813, rifampicin or vehicle (containing, 

DMSO 0.1% v/v) prior to their stimulation with thrombin (EC50 ranged between 0.03–0.04 

U/ml). Aggregation was measured as a change in light transmission and monitored for 300 

seconds at 37oC under constant stirring (1200 rpm). Representative aggregation traces of 

platelets treated with (ai) SR12813 or (bi) rifampicin and stimulated with thrombin are shown. 

Quantified data displays the percentage of aggregation attained by (aii, aiii) SR12813 or (bii, 

biii) rifampicin treated samples in 5 mins and 3 mins (vehicle-treated samples represent 100% 

aggregation). Data represent mean ± SEM (n≥3), *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001 was 

calculated by one-way ANOVA. 
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Besides thrombin, the effects of PXR ligands on aggregation instigated by 

other GPCR agonists, ADP and TxA2 were also studied. Both ADP and TxA2 are 

considered as weaker agonists in comparison to collagen and thrombin. However, 

they play a vital role in amplifying the aggregation responses. Defects in their 

release can significantly reduce the aggregation response of platelets in vivo. Since, 

TxA2 has a short half-life, the TP receptor agonist, U46619 was used instead to 

evaluate the effects of PXR ligands on stimulation through this pathway. Both 

SR12813 (Figure 3.9 ai, aii) and rifampicin (Figure 3.9 bi, bii) were able to 

attenuate U46619- (0.2 μM, EC50 determined for each donor) mediated platelet 

aggregation by approximately 35% and 55% at 50 μM and 100 μM respectively, in 

comparison to vehicle-treated control (containing DMSO, 0.1% v/v). Additionally, 

treatment with SR12813 (Figure 3.9 ci, cii) or rifampicin (Figure 3.9 di, dii) 

negatively regulated platelet aggregation stimulated by ADP (5-10 μM, EC50 range 

determined for each donor) by approximately 50% and 65% at 50 and 100 μM 

respectively, in comparison to vehicle-control. An increase in the incubation 

period of PXR ligands (20 minutes) did not cause additional inhibition of ADP or 

U46619-mediated platelet aggregation. Similar to collagen and thrombin, the 

effects of PXR ligands were visible only at EC50 concentrations, while little or no 

effects were observed at concentrations higher than EC50. 

Based on these findings, we conclude that stimulation by PXR ligands 

negatively regulates platelet aggregation evoked by a range of agonists that 

function through different receptors. Since an increased incubation period (20 

minutes) of PXR ligands resulted in additional inhibitory effects on collagen-

stimulated platelet aggregation only, it might be plausible that their effects on 
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platelet activation are mediated more prominently downstream of the GPVI 

receptor.  
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Figure 3.9: PXR ligands inhibit U46619 and ADP mediated platelet aggregation. 

Washed human platelets (4×108 cells/mL) were incubated with SR12813, rifampicin or 

vehicle (containing DMSO, 0.1% v/v) prior to their stimulation with U46619 (EC50 0.2 

µM) or ADP (EC50 ranged between 5-10 µM). Aggregation was measured as a change in 

light transmission and monitored for 300 seconds at 37oC under constant stirring (1200 

rpm). Representative aggregation traces of platelets treated with SR12813 or rifampicin 

and stimulated with (ai, bi) U46619 or (ci, di) ADP are shown. Quantified data displays 

the percentage of aggregation attained by SR12813 or rifampicin treated samples upon 

stimulation with (aii, bii) U46619 or (cii, dii) ADP in 5 mins (vehicle-treated samples 

represent 100% aggregation). Data represent mean ± SEM (n≥3), *P ≤ 0.05, **P ≤ 0.01, 

***P ≤ 0.001 and ****P ≤ 0.0001 was calculated by one-way ANOVA. 
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3.6. PXR ligands negatively regulate integrin αIIbβ3 activation 

Integrin αIIbβ3 is the primary receptor that allows platelets to aggregate to 

form a platelet plug. In resting platelets, integrin αIIbβ3 maintains a low-affinity 

state with a lower copy-number on the platelet surface. The transition of integrin 

αIIbβ3 from a low-affinity to a high-affinity state is the final outcome of platelet 

activation and a common feature, which is shared by all the platelet agonists to a 

greater or lesser degree, irrespective of their mechanism of action. This event, as 

described previously in chapter-1 (section 1.5.4) is mediated by inside-out 

signalling. Activated platelets display greater numbers of high-affinity integrin 

αIIbβ3 molecules on their surface, which bind to extracellular soluble ligands 

present in plasma, such as fibrinogen or von Willebrand factor. This facilitates 

platelet-platelet interactions through the formation of bridges between adjacent 

platelets, allowing them to aggregate together and form a platelet plug. Defects in 

the expression or activation of integrin αIIbβ3 have been characterised by 

significantly prolonged bleeding time, a clinical condition termed as Glanzmann 

thrombasthenia (Nurden, 2006). Over the past few years, several integrin αIIbβ3 

antagonists such as abciximab, eptifibatide, and tirofiban have been developed and 

used clinically for the treatment and prevention of thrombosis (Bledzka et al., 

2013).  

Given the inhibitory effects of PXR ligands on platelet aggregation, their 

effects on primary events contributing to the formation of platelet aggregates, i.e. 

integrin αIIbβ3 activation were examined. The extent of fibrinogen binding to 

integrin IIb3 on activated platelets was measured using flow cytometry, which 
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provides an indirect estimation of the extent of integrin αIIbβ3 molecules present 

in an activated state of the platelet surface.  

To investigate the effects of PXR ligands on the extent of fibrinogen binding 

to integrin αIIbβ3, human PRP was incubated with PXR ligands (10, 20, 50 and 

100 μM) or vehicle-control (containing, DMSO 0.1% v/v) for 10 minutes prior to 

addition of FITC-conjugated anti-human fibrinogen antibody. PRP was stimulated 

with the GPVI-specific agonist cross-linked collagen-related peptide (CRP-XL; 0.25 

μg/ml) for 20 minutes at room temperature, with occasional gentle mixing. CRP-

XL is a GPVI selective agonist, made of a triple helical peptide containing ten GPO 

repeats, a prominent repeated sequence present in collagens (Smethurst et al., 

2007). The GPO strands are crosslinked to provide stability to the structure. 

Collagen cannot be used for this assay because of its fibrillar structure that 

obstructs the flow of platelets through the cytometer. Samples were then fixed 

with 0.2% (v/v) formyl saline and fluorescence was measured using a flow 

cytometer for 10,000 events gated onto the platelet population. Similar to 

aggregation, the concentration of CRP-XL used to stimulate platelets was 

determined based on EC50 responses (50% of maximal fibrinogen binding). This 

would enable comparison between different assays (Figure 3.10 ai).  

Treatment of PRP with CRP-XL (0.25 μg/ml) caused a dramatic rise in the 

level of fibrinogen binding to integrin αIIbβ3, which was attenuated by treatment 

with SR12813 or rifampicin. A significant reduction of 52% was achieved by 100 

μM of SR12813 in comparison to vehicle-control (containing, DMSO 0.1% v/v) 

(Figure 3.10 aii). Similarly, rifampicin treatment was also associated with 

inhibition of 30% and 55% at 50 and 100 μM respectively (Figure 3.10 aiii).   
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The effects of PXR ligands on fibrinogen binding evoked by thrombin (0.05 

U/ml) were also examined. The concentration of thrombin used was determined 

using EC50 response (Figure 3.10 bi). Fibrinogen binding to integrin αIIbβ3 was 

observed to be attenuated by 40% in samples treated with 100 μM of SR12813 in 

comparison to vehicle-treated control (Figure 3.10 bii). Rifampicin also down-

regulated fibrinogen binding in a concentration-dependent manner with 25% and 

50% reduction caused by 50 and 100 μM of rifampicin respectively (Figure 3.10 

biii).  

Taken together, these data indicate that PXR ligands prevent integrin αIIbβ3 

from attaining a high-affinity state towards fibrinogen following CRP-XL or 

thrombin-mediated platelet stimulation. Similar to aggregation responses, mostly 

the higher concentrations of PXR ligands (50 and 100 μM) were found to be 

effective in reducing the level of fibrinogen binding. As explained earlier, the 

degree of platelet aggregation is dependent on the extent of fibrinogen binding to 

integrin αIIbβ3. Therefore, these data can explain the reductions observed with 

platelet aggregation after treatment with PXR ligands, which might be due to 

diminished fibrinogen binding to integrin αIIbβ3.  
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Figure 3.10: PXR ligands attenuate fibrinogen binding to integrin αIIbβ3. Human PRP was incubated with SR12813 or rifampicin 

(10, 20, 50 and 100 μM) or vehicle (containing, DMSO 0.1% v/v) for 10 minutes. EC50 values for (ai) CRP-XL and (bi) thrombin-

mediated fibrinogen binding were determined by treating PRP with a range of concentrations for 20 minutes in the presence of FITC-

labelled rabbit anti-fibrinogen antibody. Post-stimulation, samples were fixed with 0.2% (v/v) formyl saline and analysed by flow 

cytometry. The effects of PXR ligands on samples stimulated with (aii, aiii) CRP-XL (0.25 μg/mL) or (bii, biii) thrombin (0.05 U/ml) are 

shown. Data represent percentage fibrinogen binding compared with vehicle-treated control, which is defined as 100% fibrinogen 

binding. The response of unstimulated samples treated with FITC-conjugated anti-human fibrinogen antibody is also shown (Neg). Data 

represent mean ± SEM (n≥3), *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001 was calculated by one-way ANOVA.
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3.7. PXR ligands attenuate α-granule secretion 

α-granules contain a diverse range of proteins that are released once 

platelets become activated. Besides amplifying the activation process, the contents 

of the α-granules directly contribute towards platelet adhesion, aggregation and 

subsequent thrombus formation. The α-granule secretome includes membrane 

proteins (integrin αIIbβ3, PECAM-1 and GPVI), soluble proteins (fibrinogen, 

fibronectin and vWF), chemokines such as platelet factor 4 (PF4), coagulation 

factors and growth factors including platelet-derived growth factor (PDGF) and 

transforming growth factor β (TGF-β).  

 P-selectin (CD62P), which is present in α-granule membranes is a 

transmembrane protein that is translocated to the surface as secretion occurs. It 

facilitates platelet-leukocyte interactions, which contribute towards thrombus 

development and is also associated with inflammatory responses (Franks et al., 

2010). Exposure of P-selectin on the platelet surface is regarded as a classical 

marker to study defects in α-granule secretion and it is also an indirect measure of 

platelet activation (Nagy et al., 2013). Given the down-regulation of platelet 

aggregation and fibrinogen binding, we evaluated whether PXR ligands also 

modulate earlier stages of platelet activation such as secretion from α-granules 

(Blair and Flaumenhaft, 2009; Whiteheart, 2011). 

 Human PRP was incubated with PXR ligands (10, 20, 50 and 100 μM) or 

vehicle-control (containing, DMSO 0.1% v/v) for 10 minutes. Following this, the 

anti-CD62P Cy5/PE conjugated antibody was added and the samples were 

stimulated with CRP-XL (0.25 μg/mL) or thrombin (0.05 U/ml) for 20 minutes, 
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with occasional gentle mixing. To maintain consistency between results same 

concentrations (as used for the determination of fibrinogen binding) of CRP-XL 

and thrombin were used for stimulating platelets to measure P-selectin exposure. 

Reactions were terminated by fixing samples with 0.2% (v/v) formyl saline and 

fluorescence was recorded by a flow cytometer for 10,000 events gated onto the 

platelet population. 

 Stimulation with CRP-XL caused an extensive increase in P-selectin 

exposure on the platelet surface, which was reduced by 40% upon treatment with 

100 μM of SR12813 in comparison to vehicle-treated control (containing, DMSO 

0.1% v/v) (Figure 3.11 ai). Rifampicin at 100 μM, also caused a reduction by 27% 

in comparison to vehicle-control (Figure 3.11 aii). The inhibitions observed were 

slightly less pronounced in comparison with the reductions noted with CRP-XL 

mediated fibrinogen binding. Although both these parameters can regulate each 

other, they are two independent parameters of platelet activation. It is therefore 

possible that the effects of PXR ligands are dedicated towards a lesser extent in 

modulating α-granule secretion in comparison to fibrinogen binding to integrin 

αIIbβ3.  

 In addition to the inhibition of P-selectin exposure observed with CRP-XL 

stimulation, both PXR ligands down-regulated thrombin-mediated P-selectin 

exposure. Treatment of PRP with 100 μM of SR12813 attenuated thrombin-

mediated P-selectin exposure by approximately 30% (Figure 3.11 bi). A similar 

inhibitory profile was replicated by rifampicin treatment with 100 μM of 

rifampicin reducing P-selectin exposure by approximately 50% in comparison to 

vehicle-control (Figure 3.11 bii).  
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Figure 3.11: PXR ligands down-regulate P-selectin exposure. Human PRP was 

incubated with SR12813 or rifampicin (10, 20, 50 and 100 μM) or vehicle 

(containing, DMSO 0.1% v/v) for 10 minutes. This was followed by the addition of 

anti-CD62 Cy5/PE conjugated antibody and stimulation of samples with (ai, aii) CRP-

XL (0.25 μg/mL) or (bi, bii) thrombin (0.05 U/ml) for 20 minutes with occasional 

gentle mixing. Post-stimulation, samples were fixed with 0.2% (v/v) formyl saline 

and analysed by flow cytometry. Data represent percentage P-selectin exposure 

compared with vehicle-treated control, which is defined as 100% P-selectin 

exposure. The response of unstimulated samples treated with anti-CD62P Cy5/PE 

conjugated antibody is also shown (Neg). Data represent mean ± SEM (n≥3), *P ≤ 

0.05 and **P ≤ 0.01 was calculated by one-way ANOVA. 
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3.8. Secretion from dense-granules is inhibited by PXR ligands 

Human platelets contain 3-8 dense granules per platelet, which are rich in 

pro-thrombotic and inflammatory components such as serotonin, histamine, 

polyphosphates, calcium, ADP and ATP. The release of these constituents from 

dense granules (primarily ADP) recruits more platelets to the site of injury and 

thus provides positive feedback by amplifying initial platelet activation signals. 

Hence, dense granule secretion plays a pivotal role in the growth of the thrombus 

(McNicol and Israels, 1999; Youssefian et al., 1997) and defects in their biogenesis 

or secretion have been associated with bleeding disorders (Ambrosio et al., 2012). 

Platelet aggregation, therefore, depends at least partly on the release of contents 

from dense granules. Given the negative regulation of platelet aggregation and α-

granule secretion by PXR ligands, the effects of PXR ligands on dense granules 

were investigated by studying the release of ATP using lumi-aggregometry 

(Paniccia et al., 2015).  

The bioluminescence assay used to monitor ATP release from dense granules 

utilise a reaction in which the enzyme luciferase converts luciferin into 

oxyluciferin in the presence of magnesium, using ATP as a source of energy 

(released from dense granules upon stimulation with an agonist). This interaction 

produces light, which is proportional to ATP concentration and is quantified using 

a lumiaggregometer (Paniccia et al., 2015; Feinman et al., 1977). 

Washed human platelets (4x108 cells/ml) in the presence of chronolume 

reagent (containing firefly luciferase and D-luciferin) were incubated with PXR 

ligands SR12813 or rifampicin (20, 50 and 100 µM) or vehicle (containing, DMSO 

0.1% v/v) for 20 minutes prior to stimulation with collagen (1 µg/ml). A higher 
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concentration of collagen was used to ensure maximum release of ATP from the 

dense granules. Consequently, the incubation time with PXR ligands was 

prolonged because of high concentration of the agonist used. ATP release from 

dense granules was monitored for 5 minutes. SR12813 inhibited collagen-

stimulated ATP release from dense granules in a concentration-dependent manner 

with 48% reduction observed at 100 µM, in comparison to vehicle-control (Figure 

3.12 ai, aii). A comparable level of inhibition was exhibited by platelets incubated 

with 50 µM and 100 µM of rifampicin, resulting in a 35% and 55% reduction 

respectively (Figure 3.12 bi, bii).  

As described previously, thrombin-stimulated platelet aggregation in the 

presence of PXR ligands were inhibited to a stronger extent for up to 3 minutes 

from the initiation of aggregation. This was attributed to a reduction in secretion 

of pro-thrombotic secondary mediators (such as ADP and TxA2) from platelets. To 

examine this, we looked at the effects of PXR ligands on thrombin-induced (0.05 

U/ml) dense granule secretion over a period of 5 minutes. Similar to collagen-

stimulation, a higher concentration of thrombin was used to ensure maximum 

release of ATP from the dense granules and therefore, the incubation time with 

PXR ligands was prolonged to 20 minutes. SR12813 caused a concentration-

dependent inhibition of ATP release with a significant reduction of approximately 

20% and 40% being achieved at 50 µM and 100 µM respectively, in comparison to 

vehicle-control (containing, DMSO, 0.1% v/v) (Figure 3.12 ci, cii). Rifampicin 

treatment also reduced ATP secretion by 50% at the highest concentration of 100 

µM (Figure 3.12 di, dii). Therefore, the attenuation in the thrombin-stimulated 

dense granule secretion (rich in ADP) by PXR ligands may be one of the underlying 
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reasons that can explain stronger inhibition exhibited by PXR ligands during the 

initial stage (3 minutes) of thrombin-evoked platelet aggregation and reduced 

platelet activation overall. 

The inhibitory effects of PXR ligands were also noted to be slightly more 

potent on ATP release in contrast to P-selectin exposure. This might be attributed 

to the fact that there are only 3-4 dense granules per platelet in comparison to 60-

80 alpha granules, which might account for higher amounts of secretion detected 

from alpha granules. Additionally, secretion from α-granules has been suggested 

to be more sensitive to agonist stimulation than dense granules (Mirlashari et al., 

1996).  
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Figure 3.12: PXR ligands reduce ATP secretion from dense granules. Washed 

platelets (4x108 cells/mL) were incubated with SR12813 or rifampicin (20, 50 or 100µM) 

or vehicle (containing, DMSO 0.1% v/v) for 20 minutes prior to stimulation with collagen 

(1 µg/ml) or thrombin (0.05 U/ml). Luciferase reagent was added 2 minutes before the 

addition of agonist. Changes in ATP release were monitored using an optical lumi-

aggregometer for 5 minutes. (ai, bi) Representative traces display a collagen-mediated 

increase in luminescence upon ATP secretion and its inhibition by SR12813 or rifampicin. 

(aii, bii) Quantified data of collagen-mediated ATP secretion. (ci, di) Representative 

traces of thrombin-mediated ATP release for samples incubated with SR12813 or 

rifampicin. (cii, dii) Quantified data of thrombin-evoked ATP secretion. Vehicle-treated 

samples represent 100% ATP secretion. Data represent mean ± SEM (n≥3), *P ≤ 0.05, **P 

≤ 0.01 and ***P ≤ 0.001 was calculated by one-way ANOVA. 
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3.9. PXR ligands attenuate TxB2 production 

Thromboxane A2 (TxA2) is pro-thrombotic lipid mediator that is synthesised 

and released by activated platelets. As explained in chapter 1, TxA2 is the primary 

product of COX-1-dependent metabolism of arachidonic acid and exerts its actions 

via G protein-coupled thromboxane prostanoid receptors (TP receptors). This 

provides positive feedback regulation by amplifying platelet aggregation through 

recruitment of more platelets at the site of injury. Its actions physiologically are 

therefore exerted mostly in an autocrine or paracrine fashion (Fontana et al., 

2014). Consequently, the TxA2 pathway is one of the major therapeutic targets for 

the treatment and prevention of thrombosis. Aspirin is an irreversible blocker of 

COX-1, which is one of the widely used antiplatelet drug (Warner et al., 2011).  

Having established the role of PXR ligands in negative regulation of platelet 

aggregation and secretion from both alpha and dense granules, their effects on 

TxA2 production were studied. TxA2 is marked by a short half-life (approximately 

30 secs) and undergoes non-enzymatic hydrolysis to its inactive form of TxB2. 

Therefore, the levels of TxB2 were examined, which gives an indirect estimation of 

the concentrations of TxA2 (Seidel et al., 2011). Washed platelets treated with 

SR12813 or rifampicin (50 and 100 μM) or vehicle (containing DMSO, 0.1% v/v) 

for 20 minutes were stimulated with collagen (1 μg/ml) or thrombin (0.05 U/ml) 

in an aggregometer for 5 minutes. Higher concentration of platelet agonists was 

used to ensure maximum synthesis and release of TxB2 from activated platelets. 

Consequently, incubation time with PXR ligands was prolonged because of high 

concentration of the agonists used. Samples without stimulation with agonists 

were used as a negative control. The samples (treated and untreated with PXR 
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ligands) after stimulation with collagen or thrombin in an aggregometer were 

centrifuged at 12,000 rpm for 2 min to collect the supernatant for analysis. The 

levels of TxB2 in plasma samples were evaluated using competitive ELISA assay. A 

series of standards were run to enable a standard curve to be drawn based on 

which the concentration of samples were established. 

No detectable levels of TxB2 were observed in unstimulated samples. Upon 

stimulation by collagen (1 μg/ml), a sharp rise in TxB2 levels was observed, which 

was reduced upon treatment with both SR12813 or rifampicin. Incubation with 

100 μM of SR12813 (Figure 3.13 ai) or rifampicin (Figure 3.13 aii) displayed 

inhibition of 35% and 20% respectively in comparison to vehicle-control 

(containing DMSO, 0.1% v/v).  

Thrombin-mediated increase in TxB2 levels was also diminished by SR12813 

(Figure 3.13 bi) or rifampicin (Figure 3.13 bii) treatment with both 50 and 100 μM 

representing approximately 55% reduction in contrast to vehicle-control. 

Interestingly, the concentration of 50 μM and 100 μM of both the PXR ligands were 

equally potent in reducing thrombin-mediated TxB2 synthesis. This suggests the 

stronger efficacy of PXR ligands in mitigating TxB2 synthesis stimulated by 

thrombin in comparison to collagen. Moreover, this further adds to the 

observation that the effects of PXR ligands towards thrombin-mediated platelet 

aggregation might be predominantly due to a reduction in the release of pro-

thrombotic mediators.  

Thus, it can be concluded that PXR ligands, in general, possess the ability to 

negatively regulate the release of autocrine and paracrine factors from platelets, 

contributing to reduced platelet aggregation and potentially thrombus formation.  
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Figure 3.13: PXR ligands inhibit TxB2 production. Washed human platelets (4x108 

cells/ml) were pre-incubated with SR12813 or rifampicin or vehicle (containing, 0.1% 

v/v DMSO) for 20 min and stimulated by collagen (1 μg/ml) or thrombin (0.05 U/ml) in 

an aggregometer for 5 minutes at 37°C. The reactions were terminated by the addition of 

a STOP solution (containing, 1 mM EGTA and 20 μM indomethacin) and centrifuged 

(12,000 rpm, 2 min, RT) to isolate supernatants, which were immediately frozen at -80°C. 

The amount of TxB2, a stable metabolite of TxA2, was determined using a TxB2 ELISA kit 

according to the manufacturer’s protocol. The levels of TxB2 obtained (pg/ml) after 

incubation of platelets with SR12813 or rifampicin and stimulation with (ai, aii) collagen 

or (bi, bii) thrombin are shown. Data represent mean ± SEM (n=4), *P ≤ 0.05, **P ≤ 0.01 

and ***P ≤ 0.001 was calculated by one-way ANOVA. 
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3.10. Reduction in collagen-stimulated aggregation by PXR 

ligands is not solely dependent on attenuation of ADP and 

TxA2 stimulated effects. 

 
Sustained platelet activation downstream of collagen or thrombin is 

partially dependent on the release of pro-thrombotic secondary agonists such as 

ADP and TXA2 (Nieswandt and Watson, 2003). Previously it was observed (section 

3.5) that PXR ligands inhibit platelet aggregation stimulated by ADP and U46619 

(TxA2 mimetic peptide). Based on these observations, we examined whether the 

inhibitory effects of PXR ligands on collagen or thrombin-stimulated platelet 

aggregation are solely due to their ability to inhibit the actions of TxA2 and ADP 

secreted after stimulation, or whether they act through inhibition of other aspects 

of platelet function.  

To study this, collagen-mediated platelet aggregation assay was performed 

on washed platelets (4x108 cells/ml) treated with COX-1 inhibitor - indomethacin 

(I) and ADP receptor antagonists – cangrelor (C) and MRS2179 (M) for 5 minutes 

to block secondary mediator effects. To ensure that secondary mediator signalling 

has been abolished completely, saturating concentrations of indomethacin (20 

µM) (Figure 3.14a), cangrelor (1 µM) and MRS2179 (100 µM) (Figure 3.14b) were 

determined first. Given the potent inhibitory effects of these inhibitors, a higher 

concentration of collagen (10 µg/ml) was used to ensure 50% aggregation was 

still achieved in 5 minutes, following inhibition of secondary mediator signalling.  

Addition of saturating concentrations of indomethacin (I) or ADP receptor 

antagonists (C+M) reduced collagen-mediated platelet aggregation by 

approximately 40%. Addition of these inhibitors together (C+M+I) resulted in an 
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inhibition of 65%. Incubation of platelets with SR12813 (100 µM) for 20 minutes 

(incubation time was increased because of the high concentration of the collagen 

used) along with indomethacin (I+SR) or ADP receptor antagonists (C+M+SR) or 

all of them together (C+M+I+SR) caused an additional reduction of approximately 

20% (Figure 3.14c, d). The ability of SR12813 to further augment the existing 

reduction caused by indomethacin (I) or ADP receptor antagonists (C+M) or both 

(C+M+I) suggest that the inhibitory effects of the SR12813 on collagen-mediated 

platelet aggregation cannot be solely explained by its inhibitory effects on 

secondary mediators. 
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Figure 3.14: Effects of SR12813 on collagen-mediated platelet aggregation 

are not solely dependent on the inhibition of secretion. Washed platelets 

(4x108 cells/ml) pre-treated with increasing concentrations of (a) indomethacin 

(5, 10 and 20 μM) or (b) ADP receptor antagonists - cangrelor (0.5, 1 and 2 μM) 

and MRS2179 (50, 100 and 200 μM) were stimulated with collagen (10 μg/ml) 

and aggregations were recorded for 5 minutes to identify their saturating 

concentrations (c) Representative aggregation trace shows the levels of collagen-

stimulated platelet aggregations measured for 5 minutes in the presence or 

absence of SR12813 (100 μM) in addition to indomethacin (20 μM) or cangrelor (1 

μM) and MRS2179 (M; 100 μM) or all together. (d) Quantified data for collagen-

stimulated platelet aggregation in the presence or absence of SR12813, along with 

indomethacin (I+SR) or cangrelor and MRS2179 (C+M+SR) or all of them together 

(C+M+I+SR). ‘O’ signifies the sample stimulated with collagen in the absence of 

SR12813 and secondary mediator signalling blockers. Data represent mean ± SEM 

(n≥3), *P ≤ 0.05 and **P ≤ 0.01 was calculated by student’s t-test.  
Abbreviations: I – Indomethacin, C – Cangrelor, M – MRS2179 and SR – SR12813 
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Similarly, secondary mediator effects in case of thrombin-stimulated platelet 

aggregation were blocked by treating washed platelets with indomethacin, 

cangrelor and MRS2179. Saturating concentrations of indomethacin (30 µM) 

(Figure 3.15a), cangrelor (1 µM) and MRS2179 (100 µM) (Figure 3.15b) were 

identified and the concentration of thrombin (0.1 U/ml) was increased to ensure 

50% aggregation was still achieved in 5 minutes in the presence of all these 

inhibitors. 

Treatment with indomethacin (I) and ADP receptor antagonists (C+M) 

caused aggregation to reduce by 15% and 32% respectively. Whereas, an 

inhibition of 53% was achieved when these inhibitors were added together 

(I+C+M). Interestingly, unlike collagen-mediated platelet aggregation, no further 

inhibition was caused by the incubation with SR12813 (100 µM) for 20 minutes in 

the presence of indomethacin or ADP receptor antagonists or both 

(I+C+M+SR12813) (Figure 3.15 c, d). These findings indicate that the inhibition of 

thrombin-stimulated platelet aggregation is exclusively due to the down-

regulation of the TxA2 and ADP mediated effects. These observations also fall in 

alignment with the initial strong inhibitions (up to 3 minutes) observed with 

thrombin-mediated platelet aggregation (section 3.5) in the presence of PXR 

ligands, which can be attributed to the previously observed attenuation of 

secretion (primarily ADP and TxA2) from platelets (section 3.7, 3.8 and 3.9).  
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Figure 3.15: Effects of SR12813 on thrombin-evoked platelet aggregation are 

mediated through the inhibition of secretion. Washed platelets (4x108 cells/ml) pre-

treated with increasing concentrations of (a) indomethacin (10, 20, 30 and 40 μM) or 

(b) ADP receptor antagonists - cangrelor (0.5, 1 and 2 μM) and MRS2179 (50, 100 and 

200 μM) were stimulated with thrombin (0.1 U/ml) and aggregations were recorded for 

5 minutes to identify their saturating concentrations (c) Representative aggregation 

trace shows the levels of thrombin-stimulated platelet aggregation measured for 5 

minutes in the presence or absence of SR12813 (100 μM) in addition to indomethacin 

(30 μM) or cangrelor (1 μM) and MRS2179 (100 μM) or all together. (d) Quantified data 

for thrombin-stimulated platelet aggregation in the presence or absence of SR12813, 

along with indomethacin (I+SR) or cangrelor and MRS2179 (C+M+SR) or all of these 

together (C+M+I+SR). ‘O’ signifies the sample stimulated with thrombin in the absence 

of SR12813 and secondary mediator signalling blockers. Data represent mean ± SEM 

(n≥3) calculated by student’s t-test.  
Abbreviations: I – Indomethacin, C – Cangrelor, M – MRS2179 and SR – SR12813 

 
 
 
 
 
 
 



  Chapter-3 
 

146 
 

3.11. Calcium-mobilisation stimulated by CRP-XL or thrombin is 

inhibited by PXR ligands 

 Elevation of intracellular calcium levels is a common feature that is shared 

by activation pathways downstream of all platelet agonists that signal through 

different platelet membrane receptors (Varga-Szabo et al., 2009). Calcium 

contributes towards the process of platelet activation by regulating several vital 

steps such as cytoskeletal rearrangement, degranulation (leading to release of 

secondary mediators, ADP and TXA2) and increase in the affinity of integrin αIIbβ3 

(via inside-out signalling) (Rink and Sage, 1990). As discussed in detail in chapter 

1, a rise in cytosolic calcium concentration is controlled in 2 ways: (a) agonist-

induced activation of platelets commonly facilitates the stimulation of PLCβ (for 

GPCR receptors) or PLCγ2 (for GPVI receptors), which cleaves 

phosphatidylinositol 4,5-bisphosphate (PIP2) to generate inositol 1,4,5-

trisphosphate (IP3). Binding of IP3 to IP3 receptors (IP3R) on the dense tubular 

system (DTS) induces the release of calcium into the cytosol. (b) Following the 

depletion of calcium from DTS, a rapid influx of calcium occurs across the plasma 

membrane arbitrated by the STIM1 sensor and Orai1 channel. This process is 

known as store-operated calcium entry (SOCE) (Vazzana et al., 2012; Bergmeier 

and Stefanini, 2009). Considering the central role calcium plays to regulate all the 

previously discussed stages of platelet activation, it is important to understand the 

effects of PXR ligands on calcium mobilisation. 

 Calcium levels were estimated by using a ratiometric membrane permeable 

dye, Fura-2AM, which binds to free intracellular calcium. PRP was incubated with 

Fura2-AM and washed platelets (4x108 cells/ml) were prepared, which were then 
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incubated with PXR ligands (50 or 100 μM) or vehicle-control (containing, DMSO 

0.1% v/v) for 10 minutes in a 96 well plate at 37oC prior to activation with either 

CRP-XL (0.25 µg/ml) or thrombin (0.05 U/ml). Fluorescence measurements were 

made using a plate reader for 5 minutes after the addition of the agonist, and 

[Ca2+]i was estimated using the equation described in Chapter 2 (Section 2.2.8). 

 Treatment of Fura-2AM loaded platelets with CRP-XL (0.25 μg/ml) resulted 

in a rise in intracellular calcium concentration. As a characteristic feature with 

GPVI agonist, the rise in cytosolic calcium, post-stimulation was relatively gradual, 

which reached a peak concentration of approximately 420 nM in 3 minutes 

(Figure 3.16 ai). A concentration-dependent reduction in calcium mobilisation 

(peak levels) was observed in samples treated with SR12813 in comparison to 

vehicle-control (containing, DMSO 0.1% v/v). While the initial kinetics of calcium 

release associated with SR12813 treated samples were similar to vehicle treated 

sample, their peak cytosolic concentrations were significantly lower, as measured 

over a duration of 5 minutes. This observation signifies a true inhibition rather 

than delay in calcium mobilisation. SR12813 at 100 μM exhibited a reduction of 

approximately 40% in peak cytosolic calcium levels in contrast to vehicle-control 

(Figure 3.16 aii). In agreement with these findings, rifampicin also diminished 

CRP-XL induced peak calcium levels by 45% at 50 μM (Figure 3.16 bii). Due to the 

bright red colour of rifampicin, an interference with the emission values was 

observed at higher concentration. This limited its usage to lower concentrations of 

20 and 50 μM only. 

 Stimulation with thrombin (0.05 U/ml) resulted in a rapid release of 

calcium which reached a peak of approximately 500 nM almost instantly after the 
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addition of thrombin, which is a characteristic of stimulation of platelets with 

GPCR agonists (Figure 3.17 ai). Peak calcium concentrations in the presence of 

SR12813 were found to be reduced in comparison to vehicle-treated controls. At 

50 μM, a reduction of 35% was observed which increased to 55% upon incubation 

with 100 μM (Figure 3.17 aii). Supporting these findings, rifampicin treatment also 

displayed a significant degree of inhibition, with 50 μM preventing a rise in 

intracellular calcium levels by approximately 60% (Figure 3.17 bii). 

 The extent of inhibition caused in calcium mobilisation was found to be of 

approximately similar level as detected with fibrinogen binding, P-selectin 

exposure, dense granule secretion, TxB2 production and aggregation. These 

observations provide an important reflection of the central role calcium release 

play in controlling inside-out signalling and degranulation. Also, these findings 

demonstrate the interdependence of several activation events on one another and 

how regulation of one can affect the other. As discussed earlier, calcium 

mobilisation is an essential contributor towards the signalling cascade instigated 

by all the platelet agonists. Therefore, its regulation also provides evidence that 

signalling events, at least upstream of calcium mobilisation might be influenced 

following treatment of platelets with PXR ligands.  
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Figure 3.16: PXR ligands inhibit CRP-XL-stimulated intracellular calcium 

elevation. Fura-2AM loaded platelets (4x108 cells/ml) were incubated with (ai, 

aii) SR12813 (50 and 100 µM) or (bi, bii) rifampicin (20 and 50 100 µM) or 

vehicle (containing, DMSO 0.1% v/v) for 10 min at 37oC prior to the addition of 

CRP-XL (0.25 µg/ml). Fluorescence measurements were made with excitation at 

340 and 380nm and emission at 510nm using a NOVOstar plate reader. Ca2+ was 

estimated from the ratio of the 340 and 380 nm excitation signals. (ai, bi) Traces 

of calcium mobilisation over a period of 5 minutes following CRP-XL-stimulation 

are shown. (aii, bii) Cumulative data (peak calcium levels) of calcium mobilisation 

in the presence or absence of PXR ligands after stimulation with CRP-XL. Peak 

calcium levels achieved in the presence of vehicle-control defines 100%. Data 

represent mean ± SEM (n≥3), **P ≤ 0.01 was calculated by one-way ANOVA. 
 Abbreviations: SR – SR12813 and Rif - Rifampicin 
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Figure 3.17: PXR ligands down-regulate thrombin-stimulated intracellular 

calcium elevation. Fura-2AM loaded platelets (4x108 cells/ml) were incubated 

with (ai, aii) SR12813 (50 and 100 µM) or (bi, bii) rifampicin (20 and 50 µM) or 

vehicle (containing, DMSO 0.1% v/v) for 10 min at 37oC prior to the addition of 

thrombin (0.05 U/ml). Fluorescence measurements were made with excitation at 

340 and 380nm and emission at 510nm using a NOVOstar plate reader. Ca2+ was 

estimated from the ratio of the 340 and 380 nm excitation signals. (ai, bi) Traces 

of calcium mobilisation over a period of 5 minutes following thrombin stimulation 

are shown. (aii, bii) Cumulative data (peak calcium levels) of calcium mobilisation 

in the presence or absence of PXR ligands after stimulation with thrombin. Peak 

calcium levels achieved in the presence of vehicle-control defines 100%. Data 

represent mean ± SEM (n≥3), *P ≤ 0.05 and **P ≤ 0.01 was calculated by one-way 

ANOVA. 
Abbreviations: SR – SR12813 and Rif - Rifampicin 
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3.12. PXR ligands inhibit platelet adhesion and spreading on 

fibrinogen 

Integrin αIIbβ3 can transmit signals in a bi-directional manner across the 

plasma membrane. Agonist stimulation initiate ‘inside-out signalling’ in platelets 

that eventually includes the binding of talin and kindlin to the cytoplasmic 

domains of integrin β subunits, favouring affinity up-regulation of integrin αIIbβ3 

and its subsequent binding to fibrinogen (Moser et al., 2008; Tadokoro et al., 

2003). Additionally, binding of fibrinogen to integrin αIIbβ3 and consequent 

receptor clustering generates another signalling event referred to as ‘outside-in 

signalling’, which is propagated via the cytoplasmic domain of the integrins. These 

signals enable platelet spreading and clot retraction, required for a stable 

thrombus formation. 

 Platelet spreading involves an outward movement of the plasma 

membrane and the underlying cytoskeleton in the form of protrusions such as 

filopodia and lamellipodia. This process greatly increases the surface area of 

platelets, which enhance platelet interaction and thus provides stability to the 

thrombus (Shen et al., 2012). Both heteromeric G-proteins (Gα13) and monomeric 

G-proteins (Rho family) regulate platelet spreading in the following manner; (1) 

Upon ligand binding, integrin αIIbβ3 undergoes a conformational change, allowing 

Gα13 to bind directly with integrin β3 subunit and activate Src family kinases, 

which propagates the outside-in signal further, resulting in platelet spreading (Li 

et al., 2010; Gong et al., 2010). (2) Rho-family G-proteins such as cdc42 are 

responsible for filopodia formation, Rac regulates lamellipodia formation and Rho 

forms stress fibres that contract and limit spreading (Shen et al., 2012; Ridley and 
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Hall, 1992). Both these signalling events also cause actin polymerisation, required 

for the formation of filopodia and lamellipodia, essential for platelet spreading 

(Bearer et al., 2002).  

  To study the effects of PXR ligands on integrin αIIbβ3 outside-in signalling, 

their ability to regulate platelet spreading on immobilised fibrinogen was 

evaluated. In contrast to soluble fibrinogen, which only binds to high-affinity 

integrin αIIbβ3, immobilised fibrinogen has receptor-induced binding site (RIBS) 

epitopes that allow binding to low-affinity integrin αIIbβ3. This results in a 

conformational change in the cytoplasmic domain of αIIbβ3 that accompanies 

integrin clustering, resulting in outside-in signalling (Ugarova et al., 1993; Peter, 

2005). 

 Glass coverslips were coated with fibrinogen (each 100 μg/ml) for 1 hour 

and incubated with BSA for 30 minutes to prevent platelet-glass attachment. 

Washed platelets (2x107 cells/ml) were incubated with PXR ligands (50 and 100 

μM) or vehicle-control (containing, DMSO 0.1% v/v) for 20 minutes and added 

onto the coated coverslips at 37oC. After 45 minutes of stimulation with 

fibrinogen, the supernatant was removed, and coverslips were washed with PBS. 

Samples were fixed with 0.2% (w/v) paraformaldehyde, washed with PBS, and 

adhered platelets were permeabilised with 0.2% (v/v) Triton X-100. After a 

further wash step, Alexa-Fluor 488 phalloidin that targets actin was added. 

Coverslips were mounted onto slides using Prolong Gold Antifade mounting 

media. The visualisation was performed using a confocal microscope (100X oil 

immersion lens). Five images were captured of each sample (taken in random 

locations on the slide), and from these images platelets were scored into three 
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categories: adhered (but not spread), filopodia formation (in the process of 

spreading) or lamellipodia formation (fully spread), with the percentage of each 

population under different experimental treatments calculated. 

Figure 3.18a and 3.19a shows representative images of platelet adhesion/ 

spreading on fibrinogen in the presence or absence of SR12813 or rifampicin 

respectively. Incubation with SR12813 (Figure 3.18b) or rifampicin (Figure 3.19b) 

inhibited adhesion of platelets to fibrinogen-coated coverslips at both the 

concentrations tested (50 and 100 μM). Approximately 60% inhibition was 

demonstrated by both PXR ligands in comparison to vehicle-control (containing, 

DMSO 0.1% v/v). This signifies the ability of PXR ligands to negatively regulate 

integrin αIIbβ3 outside-in signalling. This further adds to the evidence of reduced 

fibrinogen binding (and aggregation) observed previously in samples treated with 

PXR ligands and stimulated with CRP-XL or thrombin.  

As displayed in figure 3.18a and 3.19a, platelets that were treated with 

SR12813 or rifampicin respectively, and were found adhered to fibrinogen, 

demonstrated incapacity to spread fully in comparison to vehicle-control 

(containing, DMSO 0.1% v/v). Vehicle-treated samples displayed a large 

population of fully spread platelets, displaying lamellipodia. On the contrary, a 

significant number of platelets were found suspended in early stages of spreading, 

i.e. adhered or filopodial, with an equivalent decrease in lamellipodial extensions 

in samples treated with SR12813 or rifampicin. In vehicle-treated samples, 

approximately 76% of the platelets were fully spread, while treatment with 

SR12813 reduced it to 45% and 30% at 50 μM and 100 μM respectively (figure 

3.18c). Similarly, 35% and 45% of platelets were observed as having filopodial 
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extensions at 50 μM and 100 μM of SR12813 respectively, in contrast to 18% in 

vehicle-control. Lastly, in SR12813 treated samples, a significant rise by 20% (at 

50 μM) and 25% (at 100 μM) was noticed in the population of adhered platelets 

(but not spread) to fibrinogen, when compared with vehicle-control, which was 

just 3% (figure 3.18c). In alignment with these observations, a reduction in 

spreading was also displayed by platelets treated with rifampicin (figure 3.19c). 
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Figure 3.18: SR12813 prevent adhesion and spreading of platelets on fibrinogen. 

Human washed platelets (2x107 cells/ml) were treated with SR12813 (50 and 100 µM) 

or vehicle-control (containing, DMSO 0.1% v/v) for 20 min and then added onto 

fibrinogen (100 µg/ml) coated coverslips for 45 mins at 37oC. Samples were fixed with 

0.2% (w/v) paraformaldehyde and permeabilised with 0.2% (v/v) Triton X-100. Alexa-

Fluor 488 phalloidin was then added for 1 hour and coverslips were mounted onto 

slides using Prolong Gold Antifade mounting media. The visualisation was performed 

using a Nikon A1-R confocal microscope with a 100X oil immersion lens. Five images 

were captured of each sample at random locations on the slide. (a) Representative 

image of platelet adhesion and spreading on fibrinogen is shown. (b) An average 

number of platelets adhered in each sample are shown. (c) Spreading platelets were 

divided into 3 classes: (adhered but not spread; filopodia: platelets in the process of 

spreading and lamellipodia: fully spread). Results expressed (as relative frequency) as 

the percentage of the total number of platelets adhered. Data represent mean ± SEM 

(n=3), *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001 was calculated by one-way ANOVA. 
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Figure 3.19: Rifampicin treatment inhibits platelet adhesion and spreading on 

fibrinogen. Human washed platelets (2x107 cells/ml) were treated with rifampicin 

(50 and 100 µM) or vehicle-control (containing, DMSO 0.1% v/v) for 20 min and then 

added onto fibrinogen (100 µg/ml) coated coverslips for 45 mins at 37oC. Samples 

were fixed with 0.2% (w/v) paraformaldehyde and permeabilised with 0.2% (v/v) 

Triton X-100. Alexa-Fluor 488 phalloidin was then added for 1 hour and coverslips 

were mounted onto slides using Prolong Gold Antifade mounting media. The 

visualisation was performed using a Nikon A1-R confocal microscope with a 100X oil 

immersion lens. Five images were captured of each sample at random locations on the 

slide. (a) Representative image of platelet adhesion and spreading on fibrinogen is 

shown. (b) An average number of platelets adhered in each sample are shown. (c) 

Spreading platelets were divided into 3 classes: (adhered but not spread; filopodia: 

platelets in the process of spreading and lamellipodia: fully spread). Results expressed 

(as relative frequency) as the percentage of the total number of platelets adhered. Data 

represent mean ± SEM (n=3), *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 was calculated by 

one-way ANOVA. 
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3.13. PXR ligands reduce platelet adhesion and spreading on 

collagen 

Spreading of platelets on collagen involves contribution by adhesion 

receptor α2β1 and collagen receptor GPVI. Inoue et al. (2003) demonstrated 

α2β1-mediated spreading on collagen through a Src kinase-dependent pathway, 

which involves Syk, SLP-76, PLCγ2 and Ca2+ release. A direct role of GPVI and its 

signalling components (Syk, SLP-76, PLCγ2 and PI3K) on platelet spreading on 

CRP-XL has also been identified (Falet et al., 2000).  

As can be seen in figure 3.20a and figure 3.21a, treatment with both PXR 

ligands significantly reduced platelet-adhesion to collagen-coated coverslips (100 

μg/ml) in a concentration-dependent manner. An inhibition of 55% was observed 

with 50 μM of SR12813, while 100 μM caused inhibition of 62%, in comparison to 

vehicle-control (containing, DMSO 0.1% v/v) (Figure 3.20b). Similarly, rifampicin 

treatment also resulted in an equivalent level of inhibition (Figure 3.21b).  

Platelet spreading on collagen was also substantially down-regulated in 

samples incubated with SR12813 (Figure 3.20a) or rifampicin (Figure 3.21a). A 

considerable difference in the appearance of platelets spreading on fibrinogen and 

collagen was noticed. While platelets spread on fibrinogen displayed well-defined 

lamellipodia with actin skeleton protruding outwards, giving them a ring-like 

structure. In the case of collagen, the actin cytoskeleton appeared to be more 

localised towards the platelet interior with thin projections of lamellipodia 

extending outwards, lacking a definite shape. The extent of spreading on collagen 

was inhibited strongly by PXR ligands in comparison to fibrinogen. For instance, 

the proportion of platelets becoming adhered but not spread were approximately 
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four times (52%) higher in 100 μM SR12813 treated samples, in comparison to 

vehicle-control (13%) (Figure 3.20c). Moreover, the proportion of platelets that 

were found fully spread in SR12813 treated groups were approximately 60% (at 

50 μM) and 70% (at 100 μM) lower, in comparison to vehicle-control (Figure 

3.20c). Spreading on collagen in rifampicin-treated samples were also attenuated 

to a similar extent (Figure 3.21c).  

These findings clearly demonstrate that PXR ligands can down-regulate 

attachment of platelets with collagen. Since both integrin α2β1 and GPVI receptors 

are involved in the adhesion of platelets to collagen, these reductions might be an 

outcome of the effects of PXR ligands on either of the receptors or both and 

require further investigation. Moreover, this lack of adhesion and spreading on 

collagen is likely to have an impact on the initial build-up and stability of 

thrombus in vivo. 
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Figure 3.20: Negative-regulation of platelet adhesion and spreading on collagen 

following SR12813 treatment. Human washed platelets (2x107 cells/ml) were 

treated with SR12813 (50 and 100 µM) or vehicle-control (containing, DMSO 0.1% 

v/v) for 20 min and then added onto collagen (100 µg/ml) coated coverslips for 45 

mins at 37oC. Samples were fixed with 0.2% (w/v) paraformaldehyde and 

permeabilised with 0.2% (v/v) Triton-X-100. Alexa-Fluor 488 phalloidin was then 

added for 1 hour and coverslips were mounted onto slides using Prolong Gold Antifade 

mounting media. The visualisation was performed using a Nikon A1-R confocal 

microscope with a 100X oil immersion lens. Five images were captured of each sample 

at random locations on the slide. (a) Representative image of platelet adhesion and 

spreading on collagen is shown. (b) An average number of platelets adhered in each 

sample are shown. (c) Spreading platelets were divided into 3 classes: (adhered but 

not spread; filopodia: platelets in the process of spreading and lamellipodia: fully 

spread). Results expressed (as relative frequency) as the percentage of the total 

number of platelets adhered. Data represent mean±SEM (n=3), *P ≤ 0.05 and **P ≤ 

0.01 was calculated by one-way ANOVA. 
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Figure 3.21: Platelet adhesion and spreading on collagen is attenuated following 

rifampicin treatment. Human washed platelets (2x107 cells/ml) were treated with 

rifampicin (50 and 100 µM) or vehicle-control (containing, DMSO 0.1%) for 20 min and 

then added onto collagen (100 µg/ml) coated coverslips for 45 mins at 37oC. Samples 

were fixed with 0.2% (w/v) paraformaldehyde and permeabilised with 0.2% (v/v) 

Triton-X-100. Alexa-Fluor 488 phalloidin was then added for 1 hour and coverslips 

were mounted onto slides using Prolong Gold Antifade mounting media. The 

visualisation was performed using a Nikon A1-R confocal microscope with a 100X oil 

immersion lens. Five images were captured of each sample at random locations on the 

slide. (a) Representative image of platelet adhesion and spreading on collagen is 

shown. (b) An average number of platelets adhered in each sample are shown. (c) 

Spreading platelets were divided into 3 classes: (adhered but not spread; filopodia: 

platelets in the process of spreading and lamellipodia: fully spread). Results expressed 

(as relative frequency) as the percentage of the total number of platelets adhered. Data 

represent mean ± SEM (n=3), **P ≤ 0.01 and ***P ≤ 0.001 was calculated by one-way 

ANOVA. 
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3.14. PXR ligands negatively regulate clot retraction 

Clot retraction is a phenomenon that occurs within minutes or hours after a 

clot has been formed. It mainly involves pulling off the injured edges of the vessel 

close together with the expulsion of serum. This reduces the size of the injured 

area and stabilises the clot for better healing of the wound. Clot retraction is 

mediated by the release of several coagulation factors from platelets trapped in 

the fibrin clot. However, it depends primarily on the engagement of integrin 

αIIbβ3 present on the platelet surface and is regulated by the integrin-mediated 

outside-in signalling (Osdoit and Rosa, 2001). The physiological relevance of clot 

retraction lies in the clearance of the obstructed vessel for renewal of the blood 

flow. The evidence of direct involvement of integrin αIIbβ3 towards the regulation 

of clot retraction can be observed in patients suffering from Glanzmann 

thrombasthenia, which is due to the defects in αIIbβ3. Characterised by excessive 

bleeding, this disorder displays inability of platelets to aggregate and retract a 

fibrin clot (Nurden, 1999). Following the development of a clot, its retraction 

begins with platelets exerting a contractile force on their actin-myosin 

cytoskeleton, which are coupled to the cytoplasmic domain of integrin αIIbβ3. The 

external domain of these receptors, in turn, exist in a close association with fibrin 

network of the clot, which starts shrinking amidst the influence of contractile 

forces generated by the actin-myosin cytoskeleton of platelets (Li et al., 2010; 

Shattil et al., 1998; Shattil and Newman, 2004). A lack of clot retraction results in 

the formation of a layer of loosely packed platelets, which display less resistance 

against the mechanical forces of blood flow, resulting in reduced stability of the 

thrombus (Bye et al., 2017; Wohner, 2008). 
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Given the negative regulation of platelet spreading, studying clot retraction 

in the presence of PXR ligands would provide additional insights regarding their 

effects on outside-in signalling. Moreover, such effects would be investigated in a 

microenvironment that comprises of most of the components that participate in 

coagulation and haemostasis; thus, it would also help understanding the efficacy of 

PXR ligands in a slightly more physiological system.       

Human PRP (supplemented with RBCs to visualise clot retraction) was 

incubated with PXR ligands (20, 50 and 100 μM) or vehicle-control (containing, 

DMSO 0.1% v/v) for 20 minutes. The reaction was initiated by adding thrombin (1 

U/ml final concentration) and terminated after 60 minutes, at which the clot in the 

vehicle-treated sample was seen to have retracted completely. Following this, the 

clots were weighed to compare the extent of clot retraction. There exists an 

inverse relationship between clot weight and clot retraction with increased mass 

of clot corresponding to reduced contraction and extrusion of serum.  

SR12813 treatment inhibited clot retraction at all the concentrations tested, 

however, the maximum retraction was noted at 100 μM (Figure 3.22 ai). Vehicle-

treated samples displayed a mean clot weight of 73 mg, whereas in SR12813 (100 

μM) treated samples this was 147mg, exhibiting a 101% increase in mean clot 

weight. Lower concentrations of 20 μM and 50 μM also resulted in a trend towards 

higher clot weights, in comparison to the vehicle but did not achieve significance 

(Figure 3.22 aii). Comparable to SR12813, rifampicin treatment also resulted in 

reduced clot retraction (Figure 3.22 bi). 100 μM of rifampicin exhibited a mean 

clot weight of 142.5 mg in comparison to vehicle-control (77.5 mg), demonstrating 

an increment of 84% (Figure 3.22 bii). 
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Figure 3.22: PXR ligands negatively regulate clot retraction. Human PRP was 

incubated with SR12813 or rifampicin (20, 50 and 100 μM) or vehicle-control 

(containing, DMSO 0.1% v/v) for 20 minutes. Thereafter, PRP was transferred into 

test tubes containing Tyrodes (supplemented with RBCs) to study and visualise 

the rate of clot retraction. The reaction was initiated by adding thrombin (1 U/ml 

final concentration) and a glass pipette was placed immediately into the centre of 

each test tube, around which the clot would form. Samples were placed in an 

incubator at 37°C. Clots were photographed every 15 minutes, and the assay was 

terminated after 60 minutes. (ai, bi) Representative images of clot retraction after 

the end of the assay in the presence of SR12813 or rifampicin. (aii, bii) 

Cumulative data represent clot weight (in mg) of samples treated with SR12813 or 

rifampicin and compared with vehicle-control. Data represent mean ± SEM (n=4), 

*P ≤ 0.05 was calculated by one-way ANOVA. 
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3.15. Chapter discussion 

Besides thrombosis, platelets are important contributors towards the 

progression of atherosclerosis. Platelets via α2β1 and GPVI receptors (and vWF-

GPIb interaction) become immobilised (and activates) on the collagen-cap 

exposed on the atherosclerotic endothelium. The cell adhesion molecules 

expressed on platelets favour recruitment of leukocytes (mostly monocytes), 

which promote inflammation (the primary cause of atherosclerosis) (Massberg et 

al., 2002). Immobilised platelets also interact with leukocytes via their surface P-

selectin resulting in the formation of platelet-leukocyte aggregates that are pro-

inflammatory in nature. Furthermore, activated platelets secrete chemokines that 

attract more inflammatory cells (macrophages, dendritic cells and lymphocytes) at 

the site of atherosclerotic lesion, promoting atherosclerosis (Galkina and Ley, 

2009).  

Dysregulation in the activity of PXR has been associated with the 

development of atherosclerosis while administration of PXR ligands have been 

proposed to upregulate the synthesis of HDL and its major constituent 

apolipoprotein A-I (ApoA-I), which promotes cholesterol efflux and reduce 

atherosclerosis (Bachmann et al., 2004; de Haan et al., 2009; Li et al., 2007; 

Masson et al., 2005). The presence of PXR, recently reported in the human 

vasculature, where it provides protection against oxidative stress represents a 

direct link between PXR and the cardiovascular system (Swales et al., 2012). Based 

on this and the presence of several other NRs in platelets, we investigated the 

presence and potential impact of PXR ligands on platelet functions. The major 

findings of this chapter include: 
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I. Trafficking of PXR following activation of platelets 

Having established the expression of PXR in human and mouse platelets, 

immunofluorescence studies displayed a punctate arrangement of PXR in the 

cytosol of resting and permeabilised human platelets. Upon stimulation by U46619, 

they appeared to translocate towards the surface followed by their release. While 

super-resolution microscopy studies will be required to explore these findings 

completely, following two speculations can be made based on these observations: 

(i) A bulk of platelet secretions arise from granules and released via the OCS. Given 

the secretion of PXR from activated platelets, it might be possible that the location 

of PXR is associated with any of these organelles. It has been previously reported 

that RXR and PPARγ are secreted from activated platelets in the form of 

microparticles (derived from the plasma membrane) (Ray et al., 2008). This finding 

is interesting and relevant in the context of PXR as the shedding of PXR in the form 

of microparticles could be one of the possibilities. (ii) Signalling molecules such as 

Gαq, Syk, Btk and PLCγ2 become translocated on the plasma membrane alongside 

several platelet receptors (GPIb-V-IX, GPVI, αIIbβ3 etc.) upon platelet activation to 

initiate signalling (Pula et al., 2005; Sarkar, 1998; Berger et al., 1996; Bobe et al., 

2001). Interaction of NRs such as RXR, LXR and PPARγ with these signalling 

molecules has been reported previously (Moraes et al., 2010b; Moraes et al., 2007; 

Spyridon et al., 2011). Based on these observations, it can therefore be anticipated 

that NRs (seemingly PXR as well) migrate towards the membrane in an association 

with these proteins, which is also consistent with their potential involvement in 

signalling that will be discussed in chapter 4. 
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II. The potential role of PXR-RXR heterodimers in platelets 

Based on the coimmunoprecipitation and immunofluorescence studies, the 

existence of PXR-RXR heterodimers in platelets was established. Previously, PPARγ 

has also been identified to exist in a bound state with RXR (Ray et al., 2008). While 

the binding of RXR to other NRs is vital for transcription under genomic regulation, 

the role of such heterodimers in the absence of DNA is unclear. Platelets are known 

to possess mRNA (derived from megakaryocytes), which can undergo translation 

(Zimmerman and Weyrich, 2008; Rowley et al., 2012). Recently Schwertz et al. 

(2017) proposed that RARα can bind to a subset of mRNA in human platelets and 

regulate protein synthesis by blocking translation. It is, therefore, possible that 

other NRs including PXR (in a bound or unbound state with RXR) can interact with 

mRNA in platelets and regulate translation as mediated by some of the NRs 

genomically (Xu and Koenig, 2004; Ottaviani et al., 2014). It would also be 

interesting to consider if NR carrying microparticles possess the ability to become 

internalised by other cell types after their release from platelets and whether they 

can instigate genomic (or non-genomic) regulation in these cells. Since releasates 

from platelets affect a multitude of cells (Lam et al., 2015), there could be numerous 

cell types that can act as potential recipients of the released PXR and RXR (or 

heterodimers). Ray et al. (2008) have reported that PPARγ bearing microparticles 

after release from activated platelets were internalised by a monocytic cell line 

THP-1, where they regulated cell function.  
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III. PXR ligands negatively regulate a range of platelet functions 

Treatment with PXR ligands was observed to demonstrate inhibitory effects on 

several aspects of platelet activation. Since, the isolation of platelets from blood for 

an in vitro laboratory analysis greatly diminishes their activity over time, 

investigating chronic effects of a compound, which require prolonged incubation 

periods, becomes a limitation. Therefore, we explored the acute effects of PXR 

ligands, which require shorter incubation periods with higher concentrations of 

ligands (ranged between 10-100 μM in this study). A lack of high-affinity PXR ligands 

has been reported, resulting in an in vitro usage of PXR ligands at higher 

concentrations, generally two to three orders of magnitude higher than 

concentrations found circulating in plasma (Iyer et al., 2006; Navaratnarajah et al., 

2012), which was an additional reason for choosing higher concentrations of PXR 

ligands for this study.  

Both SR12813 and rifampicin were observed to inhibit platelet aggregation, 

fibrinogen binding to integrin αIIbβ3, degranulation and TxB2 synthesis instigated by 

GPVI and GPCR agonists with significant reductions obtained mostly at 50 and 100 

μM. A trend of inhibition (non-significant) was also exhibited at lower concentrations 

(10-20 μM) of PXR ligands. This is relevant considering the fact that the 

administration of rifampicin (600 mg) to patients for the treatment tuberculosis can 

achieve peak plasma levels up to 20 μM (Seth et al., 1993; van Ingen et al., 2011; 

Ruslami et al., 2007; Acocella, 1978). Therefore, it is probable that chronic exposure 

of PXR ligands at such concentrations might substantially inhibit platelet activation. 

It is also worth noting that a few case studies have reported thrombocytopenia as a 

rare side-effect in patients taking high-dose of rifampicin (Dixit et al., 2012; Zargar et 
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al., 1990; Verma et al., 2010; Hadfield, 1980; Ferguson, 1971). This is due to impaired 

platelet production or through the generation of anti-rifampicin antibodies that fix 

complement on the platelets, causing platelet destruction.  

Besides the attenuation of platelet functions, a negative-regulation in CRP-XL or 

thrombin-stimulated calcium mobilisation was also exhibited by PXR ligands. 

Formerly, the ligands of RXR, LXR, FXR and PPARs have been reported to inhibit 

calcium mobilisation in platelets, which along with the present findings suggest a 

potentially fundamental role of NR ligands in regulating calcium homeostasis 

(Moraes et al., 2010b; Moraes et al., 2007; Moraes et al., 2016; Spyridon et al., 2011; 

Unsworth et al., 2017c; Ali et al., 2006; Ali et al., 2009a). Besides this, these results 

also add more evidence to the previously reported non-genomic modulation of 

calcium signalling by NR ligands in a range of cell types, which is one of the most 

consistent features of known non-genomic effects of NRs (Ordonez-Moran and 

Munoz, 2009). Since calcium plays a central role in platelet signalling, an alteration of 

platelet signalling by PXR ligands is seemingly plausible, with isoforms of 

phospholipase C (PLCγ2 and PLCβ) and protein kinase C, operative in GPVI and GPCR 

signalling being the prospective regulatory targets due to their close interaction with 

calcium mobilisation. 

 

IV. Regulation of outside-in signalling by PXR ligands  

Platelets treated with PXR ligands displayed a weaker fibrin clot retraction 

along with an attenuation of platelet spreading on fibrinogen-coated coverslips, 

indicative of reduced outside-in signalling. Lack of adhesion on fibrinogen specifies 

that only a small population of integrin αIIbβ3 exhibited an open confirmation 
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following treatment with PXR ligands. This could partly explain the observations on 

reduced spreading and clot retraction, since binding of fibrinogen to integrin αIIbβ3 

is a prerequisite for the initiation of outside-in signalling, which is mediated by Gα13 

and Rho GTPase (Arthur et al., 2000; Flevaris et al., 2007). These PXR ligands induced 

defects in outside-in signalling along with the inability of integrin αIIbβ3 to bind with 

fibrinogen following CRP-XL or thrombin stimulation (mediated by inside-out 

signalling) demonstrate the capability of PXR ligands to modulate bidirectional 

signalling of integrin αIIbβ3.  

Similar to these observations, adhesion and spreading of platelets on 

collagen was found to be attenuated following treatment with PXR ligands. The 

inhibitory effects of PXR ligands on collagen-mediated spreading were stronger in 

contrast to fibrinogen. This can be explained based on similarities in the proteins 

participating in integrin α2β1 outside-in and GPVI-mediated signalling (Src family 

kinases, syk and PLCγ2). Inhibition of any (or all) of these signalling proteins would 

potentially affect signalling downstream of these two prominent receptors 

responsible for platelet adhesion/spreading on collagen and thereby causing 

profound inhibitions (Inoue et al., 2003). In addition to this, the dimeric form of GPVI 

is known to have approximately 100‐fold higher affinity for collagen (Jung et al., 

2009; Jung et al., 2012). It is therefore possible that PXR ligands may prevent 

dimerisation of GPVI, which reduces its adhesion to collagen. Recently, Poulter et al. 

(2017) reported a mechanism where clustering of GPVI receptors enhanced its 

avidity for collagens. The clustering was also proposed to enhance the proximity of 

GPVI‐associated signalling molecules, which could assist in initiating and amplifying 

GPVI-mediated signalling (Poulter et al., 2017). Having mentioned this, it would be 
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interesting to explore whether PXR ligands regulate GPVI dimerisation and 

subsequent clustering to influence adhesion and spreading on collagen.  

The findings presented in this chapter demonstrate that PXR ligands can 

negatively regulate numerous vital aspects of platelet activation, including adhesion 

to collagen, calcium mobilisation, degranulation, fibrinogen binding to integrin 

αIIbβ3, and integrin outside-in signalling. Based on these observations, it can be 

speculated that such inhibitory effects of PXR ligands are likely to have an impact on 

the development and stability of the thrombus under in vitro arterial flow conditions 

or in vivo. This could potentially regulate haemostasis as well. In addition to this, it 

would also be interesting to explore whether the inhibitory effects of PXR ligands are 

an outcome of their influence on the molecular mechanisms that control platelet 

activation via different signalling pathways.  
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4.1. Introduction 

The PXR is the only NR in the superfamily which displays a significant 

sequence divergence amongst species. On an average, less than 80% sequence-

identity exists between numerous mammalian PXR isoforms (Jones et al., 2000). 

For example, human and rodent ligand binding domain (LBD) sequence display 

only 74% similarity in their amino acid residues (Figure 4.1), which reduces 

further down to 50% between human and chicken or fish (Zhang et al., 2008). In 

contrast to PXR, the corresponding sequence identities between other members of 

the NR superfamily is 15-20% higher. Furthermore, even the PXR DNA binding 

domain, which is more conserved across species than the LBD, displays more 

cross-species diversity than other NRs (Ekins et al., 2008). Apart from dietary 

dissimilarities, differences in the composition of bile acids are proposed to be the 

most important physiological reasons driving the evolution of unexpectedly large 

sequence variation in the ligand binding pocket amongst different species (Ekins 

and Schuetz, 2002; Krasowski et al., 2005). 

This sequence-variation in the LBD has consequently resulted in species-

specific activation of PXR by species-specific ligands. For instance, the antibiotic 

rifampicin and SR12813 (candidate cholesterol-lowering drug) are potent 

activators of human PXR, while, they do not influence the activity of mouse PXR 

(Jones et al., 2000). Similarly, pregnenolone-16α-carbonitrile (PCN) is specific to 

mouse PXR and does not affect human PXR (Watkins et al., 2001; Iyer et al., 2006). 

Since, rodents are widely used as model-species to evaluate the efficacy and 

toxicity-profile of any candidate human drug, species-specific nature of PXR 

ligands severely limits the evaluation of human PXR ligands in mouse models. This 
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flagged the way for the development of ‘humanised’ PXR mice (hPXR) in which the 

endogenous gene is replaced with human PXR gene. Xie et al. (2000) generated a 

conditional or whole body humanised PXR mice on the mouse PXR-null 

background via homologous recombination, where the mouse PXR was removed, 

and a human PXR cDNA was introduced into the mouse liver through a liver-

specific transgene (Xie et al., 2000). Besides this a few other groups have also 

developed whole body hPXR expressing mice through different approaches such 

as insertion of the complete human PXR coding sequence contained within a 

bacterial artificial chromosome (Ma et al., 2007a) or insertion of the human PXR 

coding region into wild-type mice by using the flipase recombinase system (Scheer 

et al., 2008; Scheer et al., 2010). The response profile of PXR in these mice was 

found to be positive towards rifampicin while no response towards mouse PXR 

ligands was observed (Ma et al., 2007a; Xie et al., 2000).  

Given the inhibitory effects of human PXR ligands observed over a range of 

platelet functions in the previous chapter, the aims of this chapter were: 

1. To explore whether human and mouse PXR ligands display species-specific 

effects on platelets as reported in other cell types. 

2. To investigate the effects of human and mouse PXR ligands on thrombus 

formation in vitro in whole-blood at an arterial flow rate.  

3. To evaluate the influence of human PXR ligand SR12813 on thrombosis and 

haemostasis in transgenic humanised PXR mice (Taconic Biosciences).  

4. To study the effects of human PXR ligands on platelet signalling 
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Figure 4.1: Comparison of amino acid sequence similarity between human and 

mouse PXR genes. The percentage amino acid sequence identity between the DNA 

binding domain (DBD) and ligand binding domain (LBD) of human PXR (hPXR) and 

mouse PXR (mPXR) is indicated. (Adapted from Xie et al. 2002) 
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4.2. Human and mouse PXR ligands exhibit species-specific effects on 

platelet function 

As mentioned earlier, due to dissimilarity in the sequence of the LBD, there exist a 

high degree of inter-species differences in ligands that activate PXR (Zhang et al., 2008). 

This feature of PXR was investigated using both human and mouse platelets. The effects 

of human (SR12813 or rifampicin) or mouse PXR ligands (PCN) on CRP-XL stimulated 

fibrinogen binding were investigated to study species-specific effects of PXR ligands.  

Human or mouse PRP was incubated with human PXR ligands - SR12813 or 

rifampicin (50 and 100 μM) or mouse PXR ligand - PCN (50 and 100 μM) or vehicle-

control (containing, DMSO 0.1% v/v for SR12813 or rifampicin and 0.5% v/v for PCN 

treated samples). After an incubation period of 10 minutes with PXR ligands FITC-

conjugated anti-human fibrinogen antibody was added. PRP was stimulated with the 

GPVI-specific agonist, CRP-XL (0.25 µg/ml for human PRP and 0.5 µg/ml for mouse 

PRP) for 20 minutes at room temperature, with occasional gentle mixing. Samples were 

then fixed with 0.2% (w/v) formyl saline, and fluorescence was measured for 10,000 

events by flow cytometry.  

It was not possible to directly compare the responses of human and mouse 

platelets as their activation profile is quite different towards the similar concentrations 

of platelet agonists. For instance, a concentration of 0.25 µg/ml of CRP-XL was sufficient 

to activate human platelet samples and study the effects of human PXR ligands, 

whereas, this produced a much more modest effect on mouse platelets. For this reason, 

the CRP-XL concentration was enhanced to 0.5 µg/ml in experiments using mouse PRP.  
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In comparison to vehicle-control (containing, DMSO 0.1% v/v), 100 µM of 

SR12813 reduced CRP-XL-stimulated (0.25 µg/ml) fibrinogen binding in human 

platelets by 50% (Figure 4.2 ai). However, SR12813 did not cause any change in mouse 

platelet responses stimulated with CRP-XL (0.5 µg/ml) (Figure 4.2 aii). Furthermore, 

incubation of human PRP with rifampicin resulted in an inhibition of fibrinogen binding 

by 55% (Figure 4.2 bi), whereas, a modest reduction of 15% was exhibited with mouse 

platelets (Figure 4.2 bii). Similarly, mouse PXR ligand, PCN (100 µM), inhibited CRP-XL 

evoked fibrinogen binding in mouse platelets by 25% in comparison to vehicle-control 

(containing, DMSO 0.5% v/v) (Figure 4.2 cii), whereas, no effect was observed on 

human platelets (Figure 4.2 ci). Consistent with the species-specific activation of PXR by 

its ligands reported in other cell types, these results demonstrate the ability of human 

and mouse PXR ligands to selectively target PXR in platelets in a species-specific 

manner (Ostberg et al., 2002; Wang et al., 2012).  
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Figure 4.2: Human and mouse PXR ligands inhibit fibrinogen binding in a species-
specific manner. Human and mouse PRP was incubated with (ai, aii) SR12813 or (bi, 
bii) rifampicin (50 and 100 μM) or (ci, cii) PCN (50 and 100 μM) or vehicle (containing, 
DMSO 0.1% v/v for human PXR ligands or 0.5% v/v for PCN) for 10 minutes. This was 
followed with the addition of FITC-labelled rabbit anti-fibrinogen antibody and 
stimulation of samples with CRP-XL (0.25 μg/mL for human PRP and 0.5 μg/mL for 
mouse PRP) for 20 minutes with occasional gentle mixing. Post-stimulation, samples 
were fixed with 0.2% (v/v) formyl saline and analysed by flow cytometry. Data 
represent percentage fibrinogen binding compared to vehicle-treated control, which is 
defined as 100% fibrinogen binding. Data represent mean ± SEM (n≥3), *P ≤ 0.05, **P ≤ 
0.01 and ***P ≤ 0.001 was calculated by by one-way ANOVA. 𝛿P ≤ 0.05 was calculated by 
by student t-test. 
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4.3. Human and mouse PXR ligands inhibit thrombus formation in 

vitro in a species-specific manner 

Having observed the ability of PXR ligands to inhibit platelet activation induced by 

GPVI agonists, collagen and CRP-XL (discussed in chapter-3), their effects on thrombus 

formation on collagen in vitro under arterial flow condition was examined. Conventional 

in vitro assays such as aggregation are performed on isolated platelets that are stirred in 

the presence of an agonist and does not consider numerous factors that can influence 

thrombus development. For instance, at the site of injury in vivo, platelets become 

exposed to collagens, only to form a monolayer over it. After that, it is the mainly the 

role of prothrombotic molecules that are secreted from platelets (and thrombin which 

is a product of coagulation cascades) to recruit more platelets and amplify thrombus 

formation. Moreover, platelets circulate physiologically under the constant presence of 

other blood cells, plasma proteins and varying shear rates (largely depends on the part 

of circulation), which regulate their function and modulate the stability of the thrombus. 

Additionally, some of the ligands/drugs have a tendency to bind with plasma proteins 

(such as albumin, immunoglobulins, lipoproteins and glycoproteins), which can 

considerably affect availability towards the target cell and thereby reducing their 

efficacy (Trainor, 2007). We therefore sought to explore the effects of PXR ligands on 

thrombus formation in whole blood using flow assay, which would help in elucidating a 

bit more accurate effects of PXR ligands on platelets.   

Vena8 Biochips were coated with type-I collagen (100 μg/ml) to perform the 

assay and citrated human blood was incubated with lipophilic dye DiOC6 (5 μM) for an 

hour at 30oC. Excess collagen was washed away with modified Tyrodes-HEPES buffer. 

Whole blood was incubated with the human PXR ligands, rifampicin or SR12813 (100 
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μM) or vehicle-control (containing, DMSO 0.1% v/v) for 20 minutes at 30oC before 

perfusion through the collagen-coated microfluidic channels under arterial flow 

conditions (shear stress: 20 dyne/cm2 or shear rate: 500 s-1). Fluorescence was excited 

at 488nm with an argon laser and emission was detected at 500-520nm. The thrombus 

formation was observed using a Nikon A1-R confocal microscope with a 20X objective 

and images were captured (focused on a single section) every 1 second for 600 seconds. 

Mean thrombus fluorescence intensity was calculated using NIS elements software 

(Nikon) and normalised to the level of fluorescence at the end of the assay in the 

vehicle-treated sample. 

Representative images from the end of the assay display vehicle-treated 

(containing, DMSO 0.1% v/v) samples forming big, bright and stable thrombi in 10 

minutes (figure 4.3ai). Treatment with human PXR ligand SR12813 significantly 

reduced the development of thrombus where thrombi appeared to be smaller and 

unstable, causing them to break under the influence of flow. Consequently, as shown in 

figure 4.3aii, a consistent significant reduction in thrombus formation right from the 

early stages of the assay was observed. Overall, SR12813 reduced the formation of 

thrombus by 60% at the 10-minute endpoint (Figure 4.3 aii). A similar inhibitory profile 

exhibited in rifampicin-treated samples (figure 4.3bi), caused 65% inhibition in 

thrombus growth in comparison to vehicle-control (Figure 4.3 bii). These observations 

demonstrate the potential of PXR ligands to down-regulate platelet activation even in 

the presence of plasma proteins and other blood cells.  

Reduction in thrombus formation from the beginning of the assay (Figure 4.3 aii, 

bii) suggests that human PXR ligands may affect the ability of platelets to adhere to 

collagen, which subsequently hinders the initiation of thrombus development. A level of 
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significance with reduced thrombus formation was detected as early as the third minute 

and the first minute for the SR12813 and rifampicin treated samples respectively 

(Figure 4.3 aii, bii). To test this hypothesis, a similar flow assay was performed in the 

presence of integrillin (4 μM, an integrin αIIbβ3 antagonist) to block platelet-platelet 

interactions. A lack of interaction between platelets would prevent thrombus formation, 

allowing the effects of PXR ligands to be studied on platelet adhesion specifically. As 

shown in figure 4.3ci, in vehicle treated sample (containing, DMSO 0.1% v/v), the 

presence of integrillin substantially reduced the formation of thrombus, with platelets 

only adhering to collagen. Further treatment of blood (in addition to integrillin) with 

SR12813 (100μM) reduced platelet adhesion to collagen by 30%, in comparison to 

vehicle-control. This finding is in accordance with the previous observation that PXR 

ligands reduce adhesion of platelets to collagen-coated coverslips, as discussed in 

chapter-3 (section 3.13). Based on these results, the overall inhibition of thrombus 

growth in the presence of PXR ligands can be explained partly due to the inability of 

platelets to adhere to collagen. Since both GPIb and GPVI receptors control the adhesion 

of platelets to collagen (Nieswandt and Watson, 2003), the observed decrease in 

adhesion might be a consequence of reduced attachment of GPIb or GPVI (or both) to 

collagen. Moreover, the involvement of PXR ligands to regulate integrin α2β1-

dependent attachment to collagen cannot be ruled out (Surin et al., 2008).   
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Figure 4.3: Human PXR ligands attenuate thrombus formation in vitro. Citrated human 

blood, incubated with DiOC6 (5 μM) for an hour at 30oC was perfused through collagen-

coated (100 μg/ml) Vena8 microfluidic chips under arterial flow condition (shear stress: 20 

dyne/cm2 or shear rate: 500 s-1) after treatment with vehicle (containing, DMSO 0.1% v/v) 

or PXR ligands (100μM) for 20 minutes. Representative images of thrombus formation (10-

minute endpoint) in samples treated with vehicle or (ai) SR12813 or (bi) rifampicin are 

shown. (ci) Level of platelet adhesion to collagen was also measured using blood treated 

with integrillin (4 μM) and incubated with vehicle or SR12813 for 20 minutes. Fluorescence 

was excited at 488nm with an argon laser and emission was detected at 500-520nm. The 

thrombus formation was observed using a Nikon A1-R confocal microscope (20X objective), 

and images were captured every 1 second for 600 seconds (focused on a single section). 

Quantified data represent mean thrombus fluorescence intensity for (aii) SR12813, (bii) 

rifampicin and (cii) SR12813 (+integrillin) treated samples calculated using NIS elements 

software (Nikon) and normalised to the level of fluorescence at the end of the assay in the 

vehicle-treated sample. Data represent mean ± SEM (n=3), *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 

and ****P ≤ 0.0001 was calculated by two-way ANOVA. 
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As discussed in section 4.2, PCN exerted a modest reduction (25%) in CRP-XL 

stimulated fibrinogen binding in mouse platelets. It is observed that such subtle effects 

on platelet functions might become much more pronounced and evident when 

investigated using an in vitro flow assay on whole blood. Based on this understanding 

and to further study whether PCN retains its inhibitory effects in mouse blood, its ability 

to regulate thrombus formation in vitro was investigated. Additionally, this assay would 

also be helpful in exploring the species-specific effects of the PXR ligands with an 

improved and different perspective. The conditions of the assay were similar for both 

human and mouse blood (in contrast to the fibrinogen binding assay) as the same 

concentration of collagen (100 μg/ml) is used to coat the channels of the microfluidic 

chip. Since only a limited amount of blood was obtained after bleeding the mice, the 

time of the assay was reduced from 10 minutes to 8 minutes.  

In comparison to vehicle-treated control (containing, DMSO 0.5% v/v), 

treatment of mouse blood with PCN (100 μM) for 20 minutes significantly inhibited 

thrombus formation, as shown in figure 4.4ai. A 50% reduction in the level of thrombus 

formation was achieved in 8 minutes (Figure 4.4aii). This extent of reduction was found 

to be double that of the level with CRP-XL-mediated fibrinogen binding in PCN treated 

mouse PRP samples, discussed in section 4.2. The profile of thrombus formation in PCN 

treated mouse blood samples also followed a similar pattern as observed with human 

blood treated with human PXR ligands. In comparison to the vehicle control, the 

thrombi formed in PCN treated mouse blood samples displayed instability causing them 

to break apart from the thrombus, under the influence of flow. Although, the early 

kinetics of thrombus formation were identical to the vehicle-treated control for up to 

first 2 minutes (Figure 4.4aii). This variation in the initial kinetics between human and 
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mouse platelets is unclear. A possible reason might be related to the variation in the 

sequence and structure between human and mouse PXR ligand binding domain, which 

can affect the manner and extent to which their corresponding ligands bind and thus 

affect their potency. 

In contrast to the effects of mouse PXR ligand studied on mouse blood, treatment 

of human blood with PCN (100 μM) exhibited no significant difference in thrombus 

formation in comparison to vehicle-control (containing, DMSO 0.5% v/v) as shown in 

figure 4.4bi. Both vehicle and PCN treated samples exhibited the same level of thrombus 

growth during 8 minutes with a subtle inhibition of only 10% achieved at the end point 

of the assay (Figure 4.4bii). To further investigate the species-specific nature of the PXR 

ligands, the effect of human PXR ligand SR12813 was evaluated on mouse blood. It was 

previously shown in figure 4.3ai that human blood post-treatment with SR12813 (100 

μM) exhibited a substantial reduction in the thrombus growth. However, the initial and 

late kinetics of thrombus growth in mouse blood treated with SR12813 were similar to 

the vehicle-treated control (containing, DMSO 0.1% v/v) as shown in figure 4.4ci with 

no significant change in the thrombus formation at the endpoint of the assay (figure 

4.4cii).     

These findings clearly demonstrate that both human and mouse PXR ligands can 

down-regulate thrombus formation in vitro in human and mouse blood respectively. 

The inability of human and mouse PXR ligands to affect thrombus formation in mouse 

and human blood samples, respectively, demonstrate the species-specific action of these 

ligands. 
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Figure 4.4: Mouse and human PXR ligands inhibit thrombus formation in vitro in a 
species-specific manner. Citrated mouse and human blood incubated with DiOC6 (5 μM) for 
an hour at 30oC were perfused through collagen-coated (100 μg/ml) Vena8 microfluidic chips 
under arterial flow conditions (shear stress: 20 dyne/cm2 or shear rate: 500 s-1) after treatment 
with vehicle or PXR ligands for 20 minutes. Representative images display thrombus formation 
(8-minute endpoint) in (ai) mouse blood sample treated with vehicle (containing, DMSO 0.5% 
v/v) or mouse PXR ligand PCN (100 μM), (bi) human blood sample treated with vehicle (0.5% 
v/v DMSO) or PCN (100 μM) and (ci) mouse blood sample treated with vehicle (containing, 
DMSO 0.1% v/v) or human PXR ligand SR12813 (100 μM). Fluorescence was excited at 488nm 
with an argon laser and emission was detected at 500-520nm. The thrombus formation was 
observed using a Nikon A1-R confocal microscope (20X objective), and images were captured 
every 1 second for 480 seconds (focused on a single section). Quantified data represents mean 
thrombus fluorescence intensity for (aii) PCN (mouse blood sample), (bii) PCN (human blood 
sample) and (cii) SR12813 (mouse blood sample) treated samples calculated using NIS 
elements software (Nikon) and normalised to the level of fluorescence at the end of the assay in 
the vehicle-treated sample. Data represent mean ± SEM (n=4), *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 
0.001 and ****P ≤ 0.0001 was calculated by two-way ANOVA. 
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4.4. Characterisation of the humanised PXR mice for in vivo 

experiments 

As discussed previously, owing to a variation in the LBD sequence of PXR amongst 

different species, humanised models of mice (hPXR) expressing human PXR gene were 

developed (Scheer et al., 2008; Ma et al., 2007a; Xie et al., 2000). Considering the 

species-specific effects of human and mouse PXR ligands observed in human and mouse 

platelets, we used a hPXR transgenic mouse (purchased from Taconic Biosciences and 

bred at the bioresource unit of the University of Reading, 2017-18) to investigate the 

effects of human PXR ligand SR12813 in vivo. The mice were developed through a 

knock-in of a human PXR cDNA/genomic construct (fusion of exons 2 through 4, exons 4 

and 8, and exons 8 and 9) onto the ATG sequence of murine PXR in C57BL/6NTac-

derived embryonic stem cells (Scheer et al., 2010; Scheer et al., 2008).  

Each hPXR mouse was genotyped to evaluate the presence of hPXR gene as per the 

manufacturer’s protocol prior to their use in experiments. The protocol followed is 

described in detail in chapter 2 (section 2.2.14). An example of genotype data is shown 

in figure 4.5a, demonstrating PCR analysis of genomic DNA isolated from four different 

ear-clip samples of hPXR mice and wild-type C57BL/6 mouse. The band was found at 

the expected size of 364bp for the hPXR and 733bp for WT mouse. 

Prior to the investigation, the expression levels of platelet receptors: integrin α2β1 

(figure 4.5b), integrin αIIbβ3 (figure 4.5c), GPIb (figure 4.5d) and GPVI (figure 4.5e) 

on hPXR and its background C57BL/6 wild-type mice were evaluated and were found to 

be similar in resting and activated platelets. 
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Figure 4.5: Insertion of human PXR gene does not affect platelet receptor levels in hPXR 

mice. (a) A representative image of genotyping performed on ear tissue samples. Lane 1-4 

represents a band size of 364bp for human PXR insert in hPXR mouse; Lane 5 shows negative 

control and Lane 6 shows a band of 733bp of WT PXR in C57BL/6 mouse. The expression levels 

of (b) α2β1, (c) αIIbβ3, (d) GPIb, and (e) GPVI were analysed on resting and activated (CRP-XL 

1μg/ml) platelets from hPXR and C57BL/6 wild-type mice by flow cytometry. Data represent 

median fluorescence intensity as mean ± SEM (n=4). Student t-test was used to evaluate 

statistical significance. 
Abbreviations: hPXR- humanised PXR, KI- Knock-in, WT- Wild type, Neg- Negative control 
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4.5. The human PXR ligand SR12813 inhibits thrombosis and 

haemostasis in humanised PXR mice 

Having established that PXR ligands negatively regulate thrombus formation in 

vitro. We further sought to examine their potential implications on thrombosis and 

haemostasis in vivo in hPXR mice. In comparison to the in vitro thrombus formation 

assay, this assay offers the benefit of being more physiological in nature as it considers 

the influence of factors such as endothelial cells, blood flow, blood pressure and 

metabolism on the growth of the thrombus and efficacy of the ligand being tested. 

The potential effects of the human PXR ligand SR12813 on thrombosis was 

evaluated using an in vivo thrombosis assay performed on hPXR mice as described by 

Falati et al. (2002). This assay measures the ability of fluorescently labelled platelets to 

form thrombi following a laser-induced injury to an arteriole of the cremaster muscle. 

Briefly, to perform the assay, mice were anesthetised, and the cremaster muscle of the 

testicle exteriorised. Connective tissue was removed, an incision was made, and the 

muscle was affixed over a glass slide as a single sheet, hydrated throughout with buffer. 

Platelets were labelled with DyLight 649 anti-GPIbα antibody, after which the cremaster 

arteriole wall was injured using a Micropoint ablation laser unit. Thrombus formation 

was then observed for 5 minutes, with images captured both prior to and after injury 

using a digital camera; multiple thrombi were formed in vehicle and SR12813 treated 

mice (20 minutes). Data analysis was performed by analysing images using Slidebook 

software (version 6). Median fluorescence of all thrombi was integrated and displayed 

as a line graph. Procedures on these mice require micro-surgery expertise and were 

therefore performed in collaboration with Dr P. Sasikumar. 
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As shown in figure 4.6 ai, large and stable thrombi were formed in vehicle-treated 

mice (containing, DMSO 0.1% v/v), whereas, treatment with SR12813 (100 μM) was 

associated with reduced size and stability of thrombi, which was characterised by 

continuous thrombus embolisation and reformation. However, the initiation of 

thrombus formation in both SR12813 and vehicle-treated mice was very similar for the 

first 30 seconds after the induction of injury, but thrombi receded much more rapidly in 

SR12813 treated mice, as displayed in the image (figure 4.6 ai) and line graph (figure 

4.6 aii), which represents integrated median fluorescence intensity of all the thrombi.  

Any discontinuity in the endothelial layer stimulates endothelial cells to express 

and release a variety of molecules that increase platelet adhesion to the site of injury. 

For instance, Weibel-Palade bodies stored inside the endothelial cells contain vWF, P-

selectin, angiopoietin-2, tissue plasminogen activator, and endothelin-1, which are all 

active participants of platelet adhesion (Yau et al., 2015). Their release following laser-

induced vascular injury might be one of the reasons for the initial rapid kinetics of 

thrombus formation in both SR12813 and vehicle-treated mice. Also, it was observed in 

mice treated with SR12813 that the surface of the thrombi in contact with the 

endothelial layer was much smaller at all time points after the first 30 seconds. This can 

explain the quick initial elimination of the thrombi, which might be due to an unstable 

adhesion of platelets on collagen. Similar observations were made in thrombus 

formation assays in vitro in the presence of human PXR ligands (figure 4.3). The average 

size of the thrombus was evaluated by calculating the area under the median 

fluorescence intensity curve of each thrombi and was found to be reduced substantially 

by approximately 80% in mice treated with SR12813 in comparison to vehicle-control 

(figure 4.6 aiii). Furthermore, maximum or peak fluorescence intensity was also noted 
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to decrease by approximately 45% in SR12813 treated mice against mice treated with 

vehicle (figure 4.6 aiv). The extent of inhibition was of a comparable magnitude as that 

observed in vitro in the presence of PXR ligands. These observations are indicative of a 

reduction in the number of platelets accumulating to form thrombi after treatment with 

SR12813 and consequent inhibition in thrombus growth.  

The effect of SR12813 on haemostasis was measured using a tail-bleeding assay 

on hPXR mice. SR12813 (0.8 μl per gram weight of the mice) or vehicle-control was 

injected into the femoral vein of mice based on its weight and blood volume. The 

volume of SR12813 (10 mM stock) or DMSO (10% v/v stock) injected was expected to 

give a concentration of 100 µM and 0.1% v/v respectively in the blood assuming 2 ml of 

blood is present in 25 gms of mouse. 20 minutes post injection of vehicle-control or 

SR12813, the tip of the tail was removed using a sharp razor blade and placed in sterile 

saline (37°C) and time to cessation of bleeding (secs) was measured. This assay was 

performed in collaboration with Dr L. Holbrook. 

 Vehicle-treated mice bled for approximately 275 seconds, whereas mean time to 

cessation of bleeding was prolonged to approximately 500 seconds in mice treated with 

SR12813 (figure 4.6b). A consistent and substantial effect of the PXR ligand was 

observed across all the SR12813 treated mice with each mouse exhibiting a longer 

bleeding time than the vehicle-treated mice. The shortest time to cessation of bleeding 

in SR12813 treated mice was 486 seconds, which was still 121 seconds higher than the 

vehicle-treated mouse that exhibited the longest time to cessation (365 seconds). Thus, 

it was concluded that human PXR ligand SR12813 impairs haemostasis in vivo.
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Figure 4.6: SR12813 inhibit thrombus formation and increase bleeding time in hPXR mice. In vivo thrombosis was assayed in hPXR mice 

through intravital microscopy using the laser-induced injury model. Vehicle-control (DMSO 10% v/v for 0.1% v/v final concentration) or SR12813 

(10 mM for 100 μM final concentration) was administered intravenously to mice and incubated for 20 minutes. Platelets were fluorescently 

labelled with DyLight 649 conjugated anti-GPIbα antibody. Following laser-induced injury, thrombus formation was monitored by intravital 

microscopy. (ai) Representative images of thrombi obtained at different time intervals are shown. Arrow indicates the direction of blood flow. 

Data represent (aii) median fluorescence intensity measured for 8 to 10 thrombi from 3 mice each of control and treated groups, (aiii) thrombus-

size was determined by calculating the area under the median fluorescence intensity curve of each thrombi (aiv) mean of maximum fluorescence 

intensity of the thrombus. (b) Tail bleeding was performed on hPXR mice pre-treated with vehicle DMSO (DMSO 10% v/v for 0.1% v/v final 

concentration) or SR12813 (10 mM for 100 μM final concentration) for 20 min (n=7) to determine the time to cessation of bleeding after tail-tip 

excision. Results are mean ± SEM. *P ≤ 0.05, **P ≤ 0.01, and ***P ≤ 0.001 was calculated by the nonparametric Mann–Whitney U test. 



  Chapter-4 

191 
 

4.6. Human PXR ligands does not affect inhibitory signalling in 

platelets 

The work presented so far demonstrate the potential ability of PXR ligands 

to down-regulate a range of platelet functions, thrombus formation (both in vitro 

and in vivo) and haemostasis. In addition to these findings, calcium mobilisation, 

which is directly regulated by all the activatory signalling pathways operative in 

platelets, was also reduced upon treatment with PXR ligands (Chapter-3, section 

3.11). Therefore, we extended our investigation and examined whether these 

implications of PXR ligands on platelets are due to their ability to modulate 

different platelet activation signalling pathways. The examination of this 

hypothesis is both relevant and important since various signalling mechanisms in 

platelets have been reported to be altered by ligands that target different NRs, 

discussed in detail in chapter-1.  

Physiologically, platelets maintain a quiescent state by the action of 

inhibitory molecules such as prostacyclin (PGI2) and nitric oxide (NO), released 

from the endothelial lining of the blood vessels, which prevent their untimely 

activation. PGI2 binds to IP receptor on platelets and stimulate adenylyl cyclase to 

synthesise cAMP, which further activates protein kinase A (PKA) (Yan et al., 2009). 

Similarly, NO induce guanyl cyclase to synthesise cGMP, which activates protein 

kinase G (PKG) (Du, 2007). Both PKA and PKG subsequently inhibit platelet 

activation through several mechanisms, most important being the suppression of 

IP3 receptors to prevent the release of calcium (Noe et al., 2010; Walter and 

Gambaryan, 2009). 
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Several NRs such as PPARα, PPARβ, PPARγ, FXR and RXR have been 

identified to exhibit their inhibitory effects through the upregulation of PKA and 

PKG activity, in cAMP or cGMP dependent or independent manners (Ali et al., 

2009a; Unsworth et al., 2017d; Ali et al., 2009b; Moraes et al., 2016; Unsworth et 

al., 2017c). Consequently, studying the effects of PXR ligands on inhibitory 

mechanisms in platelets was considered a good starting point for investigating 

their influence on platelet signalling.  

The effects of human PXR ligands - SR12813 and rifampicin on the extent of 

VASP (Vasodilator-stimulated phosphoprotein) S157 and S239 phosphorylation 

(PKA and PKG selective phosphorylation sites respectively) were evaluated in 

resting human platelets. The samples treated with positive controls, PGI2 (1 

µg/ml) and PAPANOATE (100 µM; a pure NO donor) exhibited increased 

phosphorylation levels of VASP S157 (figure 4.7ai, aii) and S239 (figure 4.7bi, bii) 

respectively. However, treatment with vehicle (containing, DMSO 0.1% v/v), 

SR12813 (figure 4.7ai, bi) or rifampicin (figure 4.7aii, bii) for 20 minutes was not 

associated with increased phosphorylation of VASP S157 and S239.  

These observations suggest that inhibitory actions of PXR ligands on platelet 

activation are not mediated through the upregulation of PKA/PKG activity or 

inhibitory cyclic nucleotide signalling, and additional signalling mechanisms acting 

through the GPCRs or GPVI receptors require exploration to determine the 

mechanisms of action of PXR ligands in platelets.   
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Figure 4.7: Human PXR ligands does not regulate PKA or PKG activity in 

resting platelets. Resting human washed platelets (4x108 cells/ml) were treated 

with vehicle (containing, DMSO 0.1% v/v) or SR12813 or rifampicin (50 and 100 

μM) for 20 min, and samples were immunoblotted to detect VASP S157 and S239 

phosphorylation, a marker of PKA and PKG activity respectively. PGI2 (1 µg/ml) 

and PAPANOATE (100 µM), which upregulates the activity of PKA and PKG 

respectively through the activation of adenylyl cyclase and guanyl cyclase 

respectively, were included as positive controls. Blotting samples were lysed in 

Laemmli sample buffer before separation by SDS–PAGE and transferred onto 

polyvinylidene difluoride (PVDF) membranes. 14-3-3-ζ was used as a loading 

control. Representative blots from 3 different experiments show the effects of (ai, 

bi) SR12183 or (aii, bii) rifampicin on the phosphorylation levels of VASP S157 

and VASP S239. 
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4.7. PXR ligands does not modulate GPCR-mediated signalling 

events 

Since PXR ligands were found not to modulate cyclic nucleotide-mediated 

signalling in platelets, their effects on platelets may be due to the regulation of 

GPCR or GPVI-mediated activation pathways in platelets. The effects of PXR 

ligands on platelet signalling evoked by thrombin or U46619 (a TxA2 mimetic 

peptide) were therefore examined. Both thrombin and TxA2 receptors in platelets 

are coupled to Gαq, which upon agonist stimulation, initiates the phosphorylation 

of PLCβ leading to the cleavage of phosphatidylinositol-4,5-bisphosphate (PIP2) to 

form diacylglycerol (DAG) and inositol trisphosphate (IP3). This facilitates 

degranulation, calcium mobilisation and affinity upregulation of αIIbβ3 (Stalker et 

al., 2012; Zhang et al., 2013; Joo, 2012).  

Washed platelets (4x108 cells/ml) were prepared under non-aggregation 

conditions in the presence of indomethacin (20 µM), cangrelor (1 µM), MRS2179 

(100 µM) and EGTA (1 mM) to block signalling stimulated via ADP receptors, TxA2 

production and aggregation respectively. The concentration of thrombin (0.1 

U/ml) and U46619 (1 µM) was increased to enable detection of tyrosine 

phosphorylation by western blotting. Since the concentrations of agonists were 

increased, the incubation period of platelets with PXR ligands was extended to 20 

minutes. The initial examination of the effects of PXR ligands on thrombin and 

U46619 mediated phosphorylation (90 seconds) of signalling components was 

performed by evaluating total tyrosine phosphorylation levels.  

As shown in Figure 4.8, in comparison to the untreated sample, pre-

treatment of platelets with SR12813 or rifampicin (0, 50 and 100 µM) for 20 
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minutes did not alter thrombin (0.1 U/ml) (figure 4.8 ai, aii) or U46619 (1 µM) 

(figure 4.8 bi, bii) instigated total tyrosine phosphorylation levels.  

The secondary messengers IP3 and DAG synthesised in the Gαq mediated 

activation pathway facilitate a simultaneous mobilisation of calcium and activation 

of protein kinase C (PKC) respectively. Given the reduction of thrombin-evoked 

calcium mobilisation (Chapter-3, section 3.11) by PXR ligands, their effects on the 

extent of serine/threonine PKC substrate phosphorylation were evaluated. 

Incubation with SR12813 or rifampicin did not result in inhibition of thrombin 

(figure 4.9 ai, aii) or U46619 (figure 4.9 bi, bii) stimulated phosphorylation of PKC, 

in comparison to the untreated sample.  

No effects of PXR ligands on GPCR induced signalling might be because of the 

reason that the effects of PXR ligands on platelet functions were observed only at 

low GPCR agonist concentrations. For instance, aggregation stimulated by 

thrombin or U46619 was found to be reduced only at a concentration range 

between 0.03-0.04 U/ml and 0.2 μM respectively (Chapter-3, section 3.5). Even a 

modest rise in the agonist concentration was found to overcome the effects of PXR 

ligands. Due to the challenges of detecting phosphorylation levels at such low 

agonist concentrations using western blotting, the effects of PXR ligands were 

studied only at high agonist concentrations, which may explain this observed lack 

of effect of PXR ligands on GPCR signalling.    
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Figure 4.8: Human PXR ligands does not modify thrombin or U46619-

mediated total tyrosine phosphorylation. Human washed platelets (4x108 

cells/ml) under non-aggregation conditions [in the presence of indomethacin (20 

µM), cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM)] were treated with 

SR12813 or rifampicin (0, 50 and 100 μM) for 20 min and samples were tested for 

total tyrosine phosphorylation after a 90 seconds stimulation with (ai, aii) 

thrombin (0.1 U/ml) or (bi, bii) U46619 (1 μM). Blotting samples were lysed in 

Laemmli sample buffer before separation by SDS–PAGE and transferred onto 

PVDF membranes. Actin or 14-3-3-ζ was used as a loading control. Representative 

blots from 3 different experiments are shown. 
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Figure 4.9: Human PXR ligands does not inhibit thrombin or U46619-

mediated PKC substrate phosphorylation. Human washed platelets (4x108 

cells/ml) under non-aggregation conditions [in the presence of indomethacin (20 

µM), cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM)] were treated with 

SR12813 or rifampicin (0, 50 and 100 μM) for 20 min and samples were tested for 

PKC substrate phosphorylation after a 90 seconds stimulation with (ai, aii) 

thrombin (0.1 U/ml) or (bi, bii) U46619 (1 μM). Blotting samples were lysed in 

Laemmli sample buffer before separation by SDS–PAGE and transferred onto 

PVDF membranes. Actin or 14-3-3-ζ was used as a loading control. Representative 

blots from 3 different experiments are shown. 

 

 
 
 



  Chapter-4 

198 
 

 

4.8. PXR ligands negatively regulate GPVI-mediated signalling in 

platelets 

In chapter-3 it was observed that PXR ligands significantly down-regulated 

platelet aggregation stimulated by collagen. Unlike thrombin stimulation, the 

effects of PXR ligands at higher incubation period (20 minutes) were noted to be 

substantially robust. Besides this, PXR ligands were also associated with inhibition 

of CRP-XL stimulated degranulation and calcium mobilisation. These findings 

suggest that the inhibitory effects of PXR ligands are more likely to be an outcome 

of the regulation of signalling downstream of GPVI. Therefore, the effects of PXR 

ligands on the tyrosine phosphorylation of key signalling components involved in 

GPVI signalling pathway were studied.    

The signalling proximal to GPVI receptor is mainly characterised by tyrosine 

phosphorylation cascades. Broadly, collagen-induced GPVI clustering induces 

auto-phosphorylation of Src family kinases (SFKs), which phosphorylate the 

ITAM-containing FcRγ-chain and subsequently, spleen tyrosine kinase (Syk) 

undergoes recruitment and auto-phosphorylation. The phosphorylation of linker 

for activation of T cells (LAT) by Syk results in the formation of LAT-signalosome, 

which is responsible for the recruitment of phosphoinositide 3-kinase (PI3K) and 

conversion of PIP2 into PIP3. This is followed by the phosphorylation and 

activation of phospholipase Cγ2 (PLCγ2), responsible for cleavage of  PIP2, 

resulting in the generation of IP3 and DAG, which promotes calcium mobilisation 

and activation of PKC respectively. This leads to degranulation and affinity 

upregulation of integrin αIIbβ3, resulting in platelet aggregation (Stalker et al., 

2012; Li et al., 2010; Bye et al., 2016).  
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To investigate the effects of PXR ligands on GPVI signalling, washed platelets 

(4x108 cell/ml) under non-aggregation conditions [indomethacin (20 µM), 

cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM)] were treated with 

SR12813 or rifampicin (0, 50 and 100 µM) or vehicle control (containing, DMSO 

0.1% v/v) for 20 minutes prior to their stimulation with CRP-XL (1 µg/ml) for 90 

seconds. A high concentration of CRP-XL was selected to enable observation of 

tyrosine phosphorylation of GPVI signalling components under non-aggregation 

conditions by western blotting (Unsworth et al., 2017c) and therefore the 

incubation time of PXR ligands was subsequently increased.  

The role of PXR ligands in regulating GPVI signalling was investigated by 

firstly examining their effects on the total tyrosine phosphorylation. Pre-treatment 

with SR12813 (0, 50 and 100 µM) caused a significant inhibition of the CRP-XL 

stimulated total tyrosine phosphorylation levels, in comparison to untreated 

(vehicle-control, containing DMSO 0.1% v/v) sample. 50 µM of SR12813 exhibited 

a reduction of 32%, while approximately 45% inhibition was attained using 100 

µM (figure 4.10 ai, aii). Similarly, treatment with 50 µM of rifampicin attenuated 

total tyrosine phosphorylation by 25%, whereas, an inhibition of 30% was 

observed with 100 µM in comparison to vehicle-control (figure 4.10 bi, bii). 
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Figure 4.10: PXR ligands inhibit CRP-XL-stimulated total tyrosine 

phosphorylation. Platelets (4x108 cells/ml) were pre-treated with vehicle (containing, 

DMSO 0.1% v/v), SR12813 or rifampicin (0, 50 and 100 µM) for 20 minutes and 

stimulated with CRP-XL (1 μg/ml) for 90 seconds in the presence of indomethacin (20 

µM), cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM). Samples were lysed in 

Laemmli sample buffer, separated by SDS PAGE and transferred to PVDF membranes. 

Total tyrosine phosphorylation levels were detected with 4G10 anti-phosphotyrosine 

antibody. Representative blots for (ai) SR12813 and (bi) rifampicin are shown. Levels 

of total tyrosine phosphorylation for (aii) SR12813 and (bii) rifampicin were 

quantified (for the bands present in the box) and expressed as a percentage of 

untreated (vehicle) controls. 14-3-3-ζ was used as a loading control. Results are mean ± 

SEM (n≥3), *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001 was calculated by one-way ANOVA. 



  Chapter-4 

201 
 

 Since PXR ligands inhibited CRP-XL-mediated total tyrosine phosphorylation; 

their effects were further examined on the early GPVI signalling events that are 

primarily controlled by Syk, LAT and PLCγ2 tyrosine phosphorylation. Consistent with 

their inhibitory effects on the total tyrosine phosphorylation, SR12813 and rifampicin 

attenuated phosphorylation of Syk at its auto-phosphorylation site pY525/526 (Sada et 

al., 2001). Pre-treatment with 50 µM and 100 µM of SR12813 (20 minutes) reduced the 

CRP-XL stimulated tyrosine phosphorylation of Syk by 27% and 40% respectively in 

comparison to vehicle-control (figure 4.11 ai, aii). Whereas, rifampicin treatment 

displayed inhibition of 35% and 40% at 50 µM and 100 µM respectively in comparison 

to untreated sample (figure 4.11 bi, bii).  

 The phosphorylated form of Syk proceeds to phosphorylate the transmembrane 

protein LAT, which establishes a signalosome complex that coordinates downstream 

signalling (Gibbins et al., 1998). The tyrosine phosphorylation of LAT at pY200 (which 

is the equivalent of Y171 and phosphorylated by SFKs and Syk) (Jiang and Cheng, 

2007; Paz et al., 2001) was down-regulated by SR12813, with an inhibition of 35% and 

50% demonstrated at 50 µM and 100 µM respectively in comparison to untreated 

(vehicle-control) sample (figure 4.11 ci, cii). Likewise, 50 µM and 100 µM of rifampicin 

treatment also reduced CRP-XL-mediated LAT phosphorylation by approximately 40% 

and 45% respectively (figure 4.11 di, dii). 

 The LAT signalosome facilitates the recruitment and phosphorylation of PLC2. 

It signifies an important event in GPVI signalling considering its role in the generation 

of second messengers, IP3 and DAG, that directly regulate crucial platelet activation 

events such as calcium mobilisation and degranulation (Watson et al., 2005). PXR 

ligands reduced the extent of PLC2 phosphorylation at pY1217, which is a Bruton's 
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tyrosine kinase (Btk) phosphorylation site (Watanabe et al., 2001; Wu et al., 2017). 

SR12813 inhibited PLC2 phosphorylation by approximately 23% at 50 μM and by 

32% at 100 μM in comparison with the untreated (vehicle-control) sample (figure 4.12 

ai, aii). Whereas, rifampicin caused a reduction by 25% and 30% at 50 μM and 100 μM 

respectively (figure 4.12 bi, bii).  
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Figure 4.11: PXR ligands down-regulate CRP-XL-stimulated Syk and LAT tyrosine 

phosphorylation. Platelets (4x108 cells/ml) were pre-treated with vehicle (containing, 

DMSO 0.1% v/v), SR12813 or rifampicin (0, 50 and 100 µM) for 20 minutes and 

stimulated with CRP-XL (1 μg/ml) for 90 seconds in the presence of indomethacin (20 

µM), cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM). Samples were lysed in 

Laemmli sample buffer, separated by SDS PAGE and transferred to PVDF membranes. 

The phosphorylation levels were detected with site-specific phospho-antibodies for 

Syk (Y525/526) and LAT (Y200). Representative blots for the phosphorylation levels 

of (ai, bi) Syk and (ci, di) LAT after treatment with SR12813 and rifampicin are shown. 

The phosphorylation levels of (aii, bii) syk and (cii, dii) LAT after treatment with 

SR12813 and rifampicin were quantified and expressed as a percentage of untreated 

(vehicle) controls. Actin was used as a loading control. Results are mean ± SEM (n≥3), 

**P ≤ 0.01, ***P ≤ 0.001 and ****P ≤ 0.0001 was calculated by one-way ANOVA. 
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Figure 4.12: PXR ligands inhibit CRP-XL-mediated PLCγ2 tyrosine 

phosphorylation. Platelets (4x108 cells/ml) were pre-treated with vehicle (containing, 

DMSO 0.1% v/v), SR12813 or rifampicin (0, 50 and 100 µM) for 20 minutes and 

stimulated with CRP-XL (1 μg/ml) for 90 seconds in the presence of indomethacin (20 

µM), cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM). Samples were lysed in 

Laemmli sample buffer, separated by SDS PAGE and transferred to PVDF membranes. 

The phosphorylation levels were detected with site-specific phospho-antibody for 

PLCγ2 (Y1217). Representative blots for the phosphorylation levels of PLCγ2 after 

treatment with (ai) SR12813 and (bi) rifampicin are shown. The phosphorylation 

levels of PLCγ2 after treatment with (aii) SR12813 and (bii) rifampicin were 

quantified and expressed as a percentage of untreated (vehicle) controls. Actin was 

used as a loading control. Results are mean ± SEM (n≥3), **P ≤ 0.01 was calculated by 

one-way ANOVA. 
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Besides the negative regulation of PLCγ2, inhibition of CRP-XL-evoked 

calcium mobilisation (chapter-3, section 11) provides some evidence that the 

effects of PXR ligands might not be restricted to the modulation of just the early 

GPVI signalling and might follow further downstream. The IP3 stimulated calcium 

mobilisation, and DAG-mediated activation of serine/threonine PKC family 

(Yacoub et al., 2006) are events that follow the phosphorylation of PLCγ2. 

Therefore, we investigated the influence of PXR ligands on PKC activity using an 

antibody raised against the phosphorylated PKC substrate recognition sequence. 

SR12813 exhibited inhibition of PKC substrate phosphorylation by 40% and 50% 

at 50 μM and 100 μM, respectively, in comparison with the untreated (vehicle-

control) sample (figure 4.13 ai, aii). A reduction of 50% and 60% was observed 

with 50 μM and 100 μM rifampicin, respectively (figure 4.13 bi, bii). 

The functions of myosin light chain (MLC) are modulated in a calcium and 

PKC substrate-dependent manner. Its phosphorylation on serine 19 (S19) is a 

critical step enabling interaction of myosin with actin filaments that control shape 

change and secretion (Unsworth et al., 2017d; Bye et al., 2016). The 

phosphorylation level of MLC at S19 (catalysed by Ca+2/calmodulin dependent 

MLC kinase) (Getz et al., 2010) was therefore investigated. An incubation with 

SR12813 was associated with inhibition of 40% and 60% at 50 μM and 100 μM 

respectively in comparison with the untreated (vehicle control) sample (figure 

4.14 ai, aii). A similar degree of reduction was also exhibited following rifampicin 

treatment (figure 4.14 bi, bii). Altogether, these findings suggest a potential role of 

PXR ligands in regulating both early and late phases of signalling proximal to the 

GPVI receptor.  
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Figure 4.13: PXR ligands attenuate CRP-XL-stimulated PKC substrate 

phosphorylation. Platelets (4x108 cells/ml) were pre-treated with vehicle (containing, 

DMSO 0.1% v/v), SR12813 or rifampicin (0, 50 and 100 µM) for 20 minutes and 

stimulated with CRP-XL (1 μg/ml) for 90 seconds in the presence of indomethacin (20 

µM), cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM). Samples were lysed in 

Laemmli sample buffer, separated by SDS PAGE and transferred to PVDF membranes. 

The phosphorylation levels were detected with an antibody raised against the 

phosphorylated PKC substrate recognition sequence. Representative blots for (ai) 

SR12813 and (bi) rifampicin are shown. Levels of PKC substrate phosphorylation for 

(aii) SR12813 and (bii) rifampicin were quantified (for the bands present in the box) 

and expressed as a percentage of untreated (vehicle) controls. 14-3-3-ζ was used as a 

loading control. Results are mean ± SEM (n≥3), *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001 

was calculated by one-way ANOVA. 
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Figure 4.14: PXR ligands negatively-regulate MLC phosphorylation. Platelets 

(4x108 cells/ml) were pre-treated with vehicle (containing, DMSO 0.1% v/v), 

SR12813 or rifampicin (0, 50 and 100 µM) for 20 minutes and stimulated with 

CRP-XL (1 μg/ml) for 90 seconds in the presence of indomethacin (20 µM), 

cangrelor (1 µM), MRS2179 (100 µM) and EGTA (1 mM). Samples were lysed in 

Laemmli sample buffer, separated by SDS PAGE and transferred to PVDF 

membranes. The phosphorylation levels were detected with site-specific phospho-

antibody for MLC (S19). Representative blots for the phosphorylation levels of 

MLC after treatment with (ai) SR12813 and (bi) rifampicin are shown. The 

phosphorylation of MLC after treatment with (aii) SR12813 and (bii) rifampicin 

were quantified and expressed as a percentage of untreated (vehicle) controls. 

Actin was used as a loading control. Results are mean ± SEM (n≥3), *P ≤ 0.05, **P ≤ 

0.01 and ***P ≤ 0.001 was calculated by one-way ANOVA. 
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4.9. Inhibition of Src family kinases as a general mechanism by 

which the PXR ligands function 

Given the broad range of regulation instigated by PXR ligands on numerous 

signalling components functioning in the early and late stages of the GPVI 

pathway. It can be recognised that the modulations observed are largely an 

outcome of a cascade effect, where modulation in the phosphorylation of one 

component is likely to influence the downstream regulation of its interacting 

partner. Therefore, identification of specific target elements of PXR ligands that 

may contribute towards the initiation of these effects would be helpful in 

understanding the mechanisms governed by PXR ligands in platelets. 

Consequently, we studied the events participating in the onset of GPVI signalling, 

upstream of Syk tyrosine phosphorylation. 

 

4.9.1. PXR ligands negatively regulate CRP-XL stimulated phosphorylation of 

SFKs 

The collagen-mediated clustering of GPVI receptor induces trans-auto-

phosphorylation of the Src family kinases (SFKs) such as Src, Lyn and Fyn, 

associated with a proline-rich juxtamembrane region of the GPVI receptor (Senis 

et al., 2014). This is followed by SFKs dependent phosphorylation of tandem 

tyrosine residues in the ITAM containing FcRγ-chain, which further recruits and 

phosphorylate tyrosine kinase Syk (Ellison et al., 2010). Given the inhibition 

observed in the tyrosine phosphorylation level of Syk and downstream 

components, the effects of PXR ligands on CRP-XL stimulated regulation of SFKs 

were examined. 
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Pre-treatment with SR12813 for 20 minutes caused a significant reduction in 

the CRP-XL-stimulated (90 seconds) tyrosine phosphorylation of Src at pY418, 

which is its auto-phosphorylation site (Bye et al., 2017). Incubation with 50 µM of 

SR12813 attenuated phosphorylation by 30%, whereas 100 µM exhibited 

inhibition of 45% (figure 4.15 ai, aii). Consistent with this, 50 µM and 100 µM of 

rifampicin were associated with inhibition of Src phosphorylation by 35% and 

45% respectively (figure 4.15 bi, bii). To ascertain whether the effects of PXR 

ligands are restricted only to Src or they extend to other members of the SFKs, the 

effects of PXR ligands were evaluated on Lyn phosphorylation. Similar to Src, 

incubation with SR12813 inhibited phosphorylation level of Lyn at its auto-

phosphorylation site pY396 (Futami et al., 2011) by approximately 30% at both 

the concentrations tested (figure 4.15 ci, cii). Similarly, rifampicin treatment 

down-regulated Lyn phosphorylation by 25% and 37% at 50 μM and 100 μM 

respectively (figure 4.15 di, dii). These findings provide evidence that the 

inhibitory effects of PXR ligands are mediated during the beginning of the GPVI 

signalling, which are communicated downstream of the SFKs causing an overall 

inhibition of the GPVI signalling pathway. To assess whether the regulation of 

SFKs marks a general mechanism through which PXR ligands arbitrate their 

inhibitory actions, signalling pathways initiated by other platelet receptors (such 

as CLEC-2 and integrin αIIbβ3) were evaluated. These receptors are reported to 

work independently of GPVI but are characterised by the activity of SFKs as a 

common feature.  
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Figure 4.15: PXR ligands attenuate CRP-XL stimulated tyrosine 

phosphorylation of SFKs. Platelets (4x108 cells/ml) were pre-treated with 

vehicle (containing, DMSO 0.1% v/v), SR12813 or rifampicin (0, 50 and 100 µM) 

for 20 minutes and stimulated with CRP-XL (1 μg/ml) for 90 seconds in the 

presence of indomethacin (20 µM), cangrelor (1 µM), MRS2179 (100 µM) and 

EGTA (1 mM). Samples were lysed in Laemmli sample buffer, separated by SDS 

PAGE and transferred to PVDF membranes. The phosphorylation levels were 

detected with site-specific phospho-antibodies for Src (Y418) and Lyn (Y396). 

Representative blots for the phosphorylation levels of (ai, bi) Src and (ci, di) Lyn 

after treatment with SR12813 and rifampicin are shown. The phosphorylation 

levels of (aii, bii) Src and (cii, dii) Lyn after treatment with SR12813 and 

rifampicin were quantified and expressed as a percentage of untreated (vehicle) 

controls. Actin was used as a loading control. Results are mean ± SEM (n≥3), *P ≤ 

0.05, **P ≤ 0.01 and ***P ≤ 0.001 was calculated by one-way ANOVA. 
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4.9.2. PXR ligands inhibit SFKs phosphorylation downstream of the CLEC-2 

receptor 

C-type lectin-like type II (CLEC-2) is another platelet receptor that signals 

via Src- and PLCγ2-dependent tyrosine kinases pathway. Its endogenous agonist 

includes podoplanin, while isolated from the venom of Calloselasma rhodostoma, 

rhodocytin is also able to activate CLEC-2. The CLEC-2 receptor is characterised by 

a single YxxL motif in the cytosolic tail of its ITAM (HemITAM), in contrast to the 

tandem ITAM (YxxL)6-12(YxxL) sequence in FcRγ chain of the GPVI receptor 

(Gibbins et al., 1996; Watson et al., 2010). To explore whether PXR ligands 

regulate SFKs in CLEC-2 signalling, we firstly investigated their broad effects on 

rhodocytin-evoked platelet aggregation.  

Platelets were pre-treated with PXR ligands for 20 minutes prior to 

stimulation with rhodocytin (100 nM). As a characteristic feature of the CLEC-2 

receptor-mediated aggregation, a lag time of approximately 60 to 90 seconds was 

observed in the initiation of aggregation with rhodocytin (figure 4.16 ai, bi) 

(Suzuki-Inoue et al., 2001a; Shin and Morita, 1998). The extent of inhibition 

observed with SR12813 was observed to be stronger at the 2-minute interval from 

the initiation of aggregation in comparison to 5 minutes interval. SR12813 

inhibited aggregation by 40% and 70% at 50 μM and 100 μM respectively at 2 

minutes after the initiation of aggregation in comparison to vehicle-treated control 

(containing, DMSO 0.1% v/v) (figure 4.16 aii). The level of inhibition was reduced 

to 30% at 100 μM after 5 minutes (figure 4.16 aiii). Similar observations were 

made following rifampicin treatment. (figure 4.16 bii, biii).  
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Figure 4.16: PXR ligands inhibit rhodocytin-mediated platelet aggregation. Washed 

human platelets (4×108 cells/mL) were incubated with SR12813, rifampicin (50 and 100 

µM) or vehicle (containing, DMSO 0.1% v/v) for 20 minutes prior to stimulation with 

rhodocytin (100 nM) and aggregation was measured for 300 seconds. Representative 

aggregation traces of platelets treated with (ai) SR12813 or (bi) rifampicin are shown. 

Quantified data displays the percentage of aggregation attained by (aii, aiii) SR12813 or 

(bii, biii) rifampicin treated samples in 2 mins and 5 mins respectively (vehicle-treated 

samples represents 100% aggregation). Results are mean ± SEM (n≥3), *P ≤ 0.05, **P ≤ 0.01 

and ****P ≤ 0.0001 was calculated by one-way ANOVA. 
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Following these observations, we examined the role of PXR ligands in 

modulating the phosphorylation levels of SFKs downstream of the CLEC-2 

receptor. Washed platelet (4x108 cells/ml) under non-aggregation conditions (as 

described previously) were treated with PXR ligands for 20 minutes prior to their 

stimulation with rhodocytin (100 nM). Stimulation time with rhodocytin was 

enhanced to 120 seconds to detect phosphorylation, considering the long lag 

phase associated with the initiation of platelet activation by rhodocytin. Treatment 

with SR12813 diminished the extent of rhodocytin-stimulated Src tyrosine 

phosphorylation at pY418 by 35% and 45% at 50 μM and 100 μM respectively in 

comparison to the untreated (vehicle-control) samples (figure 4.17 ai, aii). 

Likewise, incubation with rifampicin also attenuated the level of Src 

phosphorylation by approximately 42% and 35% at 50 μM and 100 μM 

respectively (figure 4.17 bi, bii).  

In addition to the inhibition of SFKs by PXR ligands in CRP-XL-mediated 

platelet signalling, these additional findings suggest the role of PXR ligands in 

regulating SFKs in CLEC-2 signalling as well. This provides further evidence that 

potentially suggests that SFKs are the general target of PXR ligands through which 

they elicit their inhibitory effects.  
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Figure 4.17: PXR ligands negatively-regulate rhodocytin-mediated SFKs 

phosphorylation. Platelets (4x108 cells/ml) pre-treated with vehicle (containing, 

DMSO 0.1% v/v), SR12813 or rifampicin (0, 50 and 100 µM) for 20 minutes were 

stimulated with rhodocytin (100 nM) for 120 seconds under non-aggregation 

conditions [indomethacin (20 µM), cangrelor (1 µM), MRS2179 (100 µM) and 

EGTA (1 mM)]. Samples were lysed in Laemmli sample buffer, separated by SDS 

PAGE and transferred to PVDF membranes. The phosphorylation levels were 

detected with Src (Y418) site-specific phospho-antibody. Representative blots 

show the phosphorylation of Src after treatment with (ai) SR12813 and (bi) 

rifampicin. The phosphorylation levels of Src after treatment with (aii) SR12813 

and (bii) rifampicin were quantified and expressed as a percentage of untreated 

(vehicle) controls. GAPDH was used as a loading control Results are mean ± SEM 

(n≥3), *P ≤ 0.05 and **P ≤ 0.01 was calculated by one-way ANOVA. 
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4.9.3. SR12813 attenuate phosphorylation of SFKs downstream of integrin 

αIIbβ3 

SFKs play a vital role to initiate and propagate signals from integrin αIIbβ3 

and exist in an association with the β3 domain. In resting platelets, SFKs are 

maintained in an inactive state by Csk, which form a complex with Src and β3.  

Following fibrinogen binding stimulated clustering of integrin αIIbβ3, Src 

undergoes auto-phosphorylation at pY418, which subsequently phosphorylates 

the β3 subunit. The phosphorylated form of β3 provides a docking site for adaptor 

proteins, cytoskeleton proteins (MLC and actinin), tyrosine kinases (Syk and FAK), 

lipid kinases (PI3K) and guanine nucleotide exchange factors. Each of these 

molecules ultimately participates in the initiation of outside-in signalling that 

facilitates spreading, secretion, stable adhesion and clot retraction (Li et al., 2010; 

Senis et al., 2014; Shattil et al., 1998).  

Previously it was shown that the events emanating from outside-in 

signalling such as spreading (chapter-3, section 3.12) and clot retraction (chapter-

3, section 3.14) were attenuated following treatment with PXR ligands. To 

investigate whether PXR ligands regulate integrin signal and evaluate additional 

evidence that can further confirm the effects of PXR ligands are mediated through 

their action on SFKs, the phosphorylation levels of Src were evaluated in platelets 

stimulated with fibrinogen, in the presence or absence of PXR ligands. Washed 

platelets (4x108 cells/ml), pre-treated with PXR ligands (50 and 100 μM) or 

vehicle-control (containing, DMSO 0.1% v/v), were exposed to fibrinogen-coated 

wells (100 μg/ml) of a tissue culture plate and allowed to adhere at 37°C. Samples 

were lysed in Laemmli sample buffer after 30 minutes and adhered cells were 

scraped off using a glass rod. Treatment with SR12813 inhibited tyrosine 
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phosphorylation of Src at pY418 by approximately 30% and 40% at 50 μM and 

100 μM, respectively, in comparison to vehicle-control (figure 4.18 ai, aii). 

Interestingly, no alteration in Src phosphorylation was observed in rifampicin-

treated samples (figure 4.18 b). This might be attributed to the challenges of 

studying signalling stimulated by fibrinogen under static conditions. Stimulation 

time with fibrinogen plays a crucial role in detecting the phosphorylation levels. 

For instance, it was observed that at stimulation periods for up to 20 minutes, 

extremely low or no phosphorylation of Src was observed. Whereas, at increased 

stimulation periods of 45 or 60 minutes, no effects of PXR ligands were observed. 

Sufficient levels of phosphorylation were, however, observed only at 30 minutes of 

stimulation with fibrinogen to study the effects of PXR ligands. Therefore, this 

assay requires a fine balance with the stimulation time of fibrinogen, as shorter 

periods would not provide sufficient extent of phosphorylation to study, while 

longer stimulation periods might overcome the effects of PXR ligands. 
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Figure 4.18: SR12813 negatively-regulate fibrinogen-stimulated tyrosine 

phosphorylation of Src. Washed platelets (4x108 cells/ml), pre-treated with PXR 

ligands (0, 50 and 100 μM) or vehicle-control (containing, DMSO 0.1% v/v) were 

exposed to fibrinogen-coated wells (100 μg/ml) of a tissue culture plate and 

allowed to adhere at 37°C. Samples were lysed in Laemmli sample buffer after 30 

minutes and adhered cells were scraped off using a glass rod. The lysed samples in 

Laemmli sample buffer were separated by SDS PAGE and transferred to PVDF 

membranes. The phosphorylation levels were detected with Src (Y418) site-

specific phospho-antibody. Representative blots for the phosphorylation levels of 

Src after treatment with (ai) SR12813 and (b) rifampicin are shown. The 

phosphorylation of Src after treatment with (aii) SR12813 was quantified and 

expressed as a percentage of untreated (vehicle) controls. 14-3-3-ζ was used as a 

loading control. Results are mean ± SEM (n=4), ***P ≤ 0.001 and ****P ≤ 0.0001 

was calculated by one-way ANOVA. 
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4.10. Chapter discussion 

In the previous chapter, PXR ligands were proposed to exhibit anti-platelet 

effects in humans. Although the findings that were presented were mostly based 

on the effects of PXR ligands on washed platelets or platelet rich plasma, they 

provided an important basis for the evaluation of their effects on thrombosis and 

haemostasis in blood under in vitro and in vivo conditions. Besides this, PXR 

displays unusually low sequence conservation in the LBD across species, causing 

its ligands to exhibit species-specific activation of PXR in several cell types under 

genomic regulation. This feature was scrutinised with an aim to assess the 

existence of such species-specific effects of PXR ligands in human and mouse 

platelets. Additionally, the plausible influence of PXR ligands on the regulation of 

molecular mechanisms that govern platelet activation were explored in this 

chapter. The important outcomes of this chapter will now be discussed:     

 

I. Structural basis of PXR promiscuity and its species-specific nature 

PXR has evolved with numerous exclusive structural features that enable 

it to function as a sensor for the detection of structurally distinct compounds 

(Timsit and Negishi, 2007). Although such diverse interactions clearly define 

promiscuity, PXR also exhibits specificity. It has been reported that PXR 

activators differ from non-activators in only a few atoms, suggesting that PXR 

binds to a diverse but precise array of compounds, a feature that is implied as 

“directed promiscuity” (Ngan et al., 2009; Watkins et al., 2001). This 

promiscuous yet selective recognition of ligands by PXR can be best recognised 

by studying significant differences in pharmacological activation of PXR across 
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species. While human PXR is activated by rifampicin and SR12813, mouse PXR is 

not. Likewise, mouse PXR is activated by the synthetic steroid pregnenolone-

16α-carbonitrile, whereas the human receptor is not. 

Similar to the species-specific activation of PXR reported in other cell 

types, the effects of PXR ligands in human and mouse platelets were also 

observed in a species-specific manner. While human blood treated with SR12813 

exhibited a significant inhibition in thrombus formation in vitro, no effect was 

observed on mouse platelets. Supporting this, mouse PXR ligands inhibited 

thrombus formation in mouse blood by 50%, whereas no influence was 

demonstrated in human blood. These findings are important as they not only 

identify the species-specific response of PXR ligands in human and mouse 

platelets but also indirectly demonstrate that the effects of PXR ligands in 

platelets are mediated through PXR.   

The promiscuity and species-specific nature of PXR can be explained by 

studying the nature of amino acid residues that comprise the ligand binding site 

of PXR. Out of 28 amino acid residues that constitute the LBD of human PXR, 20 

are hydrophobic in nature while rest are polar or charged (4 each) (Ngan et al., 

2009). The structure of LBD reflects the characteristic features of most of the 

known PXR ligands that are generally hydrophobic and possess a small number 

of polar groups capable of forming a hydrogen bond (Watkins et al., 2002). This 

not only favours the binding of PXR to a wide range of compounds but also 

permit a ligand to dock inside the LBD in multiple orientations, a feature which is 

highly unique to PXR, in contrast to other NRs that display high ligand specificity. 

For instance, SR12813 has been reported to bind LBD of human PXR in three 
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distinct orientations with the interaction of Phe288 being the only common 

feature of all the three ligand conformations (Watkins et al., 2001). It was also 

observed that alteration in a few polar amino acid residues lining the LBD of PXR 

could markedly alter its response profile towards its ligands. For example, 

Watkins et al. (2001) reported that the mutation of four mouse PXR amino acid 

residues in the LBD to corresponding human PXR amino acids (Arg203→Leu, 

Pro205→Ser, Gln404→His and Gln407→Arg) substantially affected its activation by 

PCN, while making it more responsive to SR12813 (Watkins et al., 2001). This 

explains the reason underlying the species-specific pharmacological activation of 

PXR. Furthermore, the existence of a flexible loop in the LBD of human PXR is an 

additional factor that contributes towards the promiscuity of PXR. The loop 

constituted from amino acids 309-321 is linked to the binding cavity by a non-

solvent accessible pore, which can open or close to offer structural flexibility for 

the binding of both large (such as rifampicin) and small PXR ligands (Ngan et al., 

2009; Watkins et al., 2001). 

 

II. Inhibition of thrombus formation and haemostasis by PXR ligands 

The inhibition of numerous features associated with platelet activation, by 

PXR ligands, signifies their plausible role in modulating thrombus formation and 

haemostasis. As described previously, in vitro thrombus formation (on collagen) in 

the presence of human PXR ligands was not only identified to be reduced, it was 

also noted that this inhibition was partly due to (i) instability of the growing 

thrombus and (ii) defects in the adhesion of platelets to collagen. The PXR ligands, 

as discussed in chapter-3 (section 3.6 and 3.12) demonstrated their potential to 
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down-regulate binding of integrin αIIbβ3 receptors to fibrinogen. Therefore, it 

was not surprising to observe attenuated platelet-platelet interaction in samples 

treated with PXR ligands, resulting in constant breakage of the thrombus, which 

significantly reduced its growth, in comparison to vehicle-treated controls. Indeed, 

the potential lack of attachment of platelet GPVI or GPIb receptors (or both) to 

collagen, as witnessed in samples treated with integrillin and PXR ligands, could 

be one the primary reasons for the diminished growth during initial and late 

stages of thrombus formation. Since von Willebrand factor (vWF) play a crucial 

role in the attachment of platelet GPIb receptor with collagen, it would be 

interesting to study whether PXR ligands can also directly regulate these 

interactions and thus cause inhibition of thrombus formation. Since PXR ligands 

can modulate integrin signalling in platelets, the potential involvement of integrin 

α2β1 towards the observed reduction in platelet adhesion in the presence of PXR 

ligands is also worth exploring.   

Given the species-specific inhibition of human and mouse platelet 

activation displayed by PXR ligands, we employed a hPXR mouse model (Taconic 

Biosciences) to investigate the effects of human PXR ligand – SR12813 on 

thrombosis and haemostasis. Treatment with SR12813 reduced substantially 

arterial thrombosis induced by laser-injury. The tail-bleeding time of hPXR mice, 

post-treatment with SR12813 was also identified to be significantly augmented, 

which is indicative of a dysregulated haemostatic response. These observations 

clearly demonstrate the role of PXR ligands as important regulators of platelet 

activation in response to vascular injury. The apparent role of PXR ligands in 

modulating the progression of atherosclerosis (de Haan et al., 2009; Li et al., 2007; 



  Chapter-4 

222 
 

Zhou et al., 2009a; Masson et al., 2005) make these finding even more relevant. 

The rupture of atherosclerotic plaques in arterial circulation causes collagen to get 

exposed, leading to adhesion of platelets, their consequent activation and 

thrombus formation (Adiguzel et al., 2009). The PXR ligands can potentially avert 

the adhesion and activation of platelets on collagen exposed at the extracellular 

matrix of the ruptured atherosclerotic plaque and might play a therapeutic role to 

prevent thrombus formation that can possibly occlude the artery, triggering a 

heart attack or stroke. 

 

III. Modulation of GPVI signalling by PXR ligands 

  Given the potent inhibitory effects of PXR ligands on a variety of platelet 

functions, thrombosis and haemostasis, their role to regulate underlying platelet 

signalling pathways were studied. While PXR ligands did not alter cyclic nucleotide 

or GPCR (thrombin or U46619) evoked platelet signalling, they demonstrated 

profound effects exclusively on the signalling downstream of the GPVI receptor. 

These observations were found to be interesting contemplating the fact that 

majority of the NRs with known mechanisms of action in platelets (such as FXR, 

RXR, PPARα, PPARβ and PPARγ) have been found to regulate one or more signalling 

pathways with modulation of inhibitory platelet signalling being the most common 

feature (Ali et al., 2009a; Unsworth et al., 2017d; Ali et al., 2009b; Moraes et al., 

2016; Unsworth et al., 2017c).  

  PXR ligands were found to inhibit CRP-XL stimulated total-tyrosine 

phosphorylation and calcium mobilisation from intracellular stores. Since both of 

these processes are vital for ensuring a sustained activation of platelets, their 
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inhibition by PXR ligands provided valuable insights that enabled the study of their 

effects on specific molecules functioning in the GPVI signalling pathway.  

  Treatment with PXR ligands inhibited tyrosine phosphorylation of SFKs 

(Src and Lyn), suggesting their influence on the earliest stages of the GPVI pathway. 

These findings are novel in a sense that none of the NRs that have been reported can 

regulate signalling at such early stages of the GPVI signalling cascade. NRs such as 

LXR and PPARγ have been proposed to regulate collagen-mediated signalling in 

platelets by modulating phosphorylation of Syk and LAT, which function of 

downstream of SFKs (Moraes et al., 2010b; Spyridon et al., 2011). Indeed, exposure 

to PXR ligands was observed to attenuate the tyrosine phosphorylation of both 

molecules substantially. However, this can be well anticipated considering the 

kinase activity of Src family that regulates phosphorylation of Syk, which in turn 

controls the phosphorylation profile of LAT. The tyrosine phosphorylation of LAT is 

followed by phosphorylation of tyrosine residues in PLCγ2, which was also found to 

be reduced following treatment with PXR ligands.  

  The SFKs play a fundamental role to regulate platelet activation because of 

their participation in activatory platelet signalling generated from a range of platelet 

surface receptors that include GPVI, vWF/GPIb-IX-V receptor complex, integrin 

αIIbβ3, integrin α2β1, FcRγIIA and CLEC-2 receptor (Senis et al., 2014). Based on 

this, we further evaluated whether the regulation of SFKs is a general mechanism by 

which PXR ligands elicit their functions in platelets. Binding of fibrinogen to integrin 

αIIbβ3 stimulates outside-in signalling, which aims to stabilise the thrombus and is 

characterised by tyrosine phosphorylation of SFKs (also Syk and PLCγ2) (Durrant et 

al., 2017). Treatment with SR12813 caused negative-regulation in the 
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phosphorylation of Src at Y418, indicating its influence on the activity of SFKs. 

Besides this, the participation of SFKs also induces inside-out signalling downstream 

of the vWF/GPIb-IX-V complex, causing activation of integrin αIIbβ3. This further 

ensures firm adhesion of platelets to the sites of vascular injury and development of 

a stable thrombus (Ozaki et al., 2005; Senis et al., 2014). In support of this, the 

stability of the growing thrombus, both in vitro and in vivo, was found to be 

considerably reduced, which might be an outcome of reduced activity of SFKs 

downstream of GPVI, GPIb-IX-V and integrin αIIbβ3. Furthermore, inhibition in the 

phosphorylation of Src was also observed downstream of the podoplanin or 

rhodocytin receptor CLEC-2, which provides additional evidence that PXR ligands 

broadly affect the activity of SFKs in multiple signalling pathways and thus elicit 

their effects. Besides an alteration in the early events of the GPVI stimulated 

signalling, PXR ligands were also able to markedly reduce phosphorylation levels of 

PKC and MLC, demonstrating their ability to alter both early and late events 

associated with GPVI receptor signalling.  

Throughout the evaluation of the GPVI-mediated signalling, it was noticed 

that the effects of both 50 and 100 μM of PXR ligands were quite similar. There can 

be two reasons for this: (1) Use of non-aggregation conditions block ADP and TxA2 

stimulated effects, which might substantially increase the efficacy of the PXR 

ligands at a lower concentration as well. (2) An incubation time of 20 minutes with 

PXR ligands (50 and 100 μM) was used for studying GPVI signalling, which has 

been previously identified to demonstrate stronger inhibitory responses in 

reducing collagen-mediated aggregation (chapter-3, section 3.5) potentially due to 

their differential ability to cross the plasma membrane.  
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Previously, the inhibition of GPVI signalling by LXR was proposed to be 

mediated through a direct interaction between LXR-Syk and LXR-PLCγ2. Also, 

PPARγ-Syk and PPARγ-LAT interactions were also reported as a potential 

mechanism of action by which PPARγ down-regulate GPVI signalling. Based on 

these findings, the plausible interactions between PXR and GPVI signalling 

molecules such as Src, Syk, LAT and PLCγ2 were evaluated. However, no such 

interactions were observed. Therefore, how PXR facilitates inhibition of numerous 

components of the GPVI signalling pathway is still unclear.  

Future work should involve the identification of potential interacting 

partners of PXR in the GPVI signalling pathway in the presence and absence of PXR 

ligands using mass spectrometry. This would enable us to elucidate better and 

understand the underlying mechanism by which PXR regulates GPVI signalling.  
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5.1. Introduction 

The retinoid X receptors belong to the NR superfamily and are widely 

distributed in skin, lungs, brain, kidney, liver, eyes, pituitary and adrenal gland  

(Mangelsdorf et al., 1990; Mangelsdorf et al., 1992; Chambon, 1996). Three 

isoforms of RXR (α, β and γ) are expressed by NR2B1, NR2B2 and NR2B3 genes, 

respectively, that are activated by retinoids and vitamin A derivatives (Dawson 

and Xia, 2012). RXRs control and regulate the functions of a quarter of the known 

human NRs (including PXR) by interacting and forming a heterodimer, which 

suggests their importance in human physiology (Evans and Mangelsdorf, 2014). 

RXR can also form homodimers to facilitate their own action (Sato et al., 2010). 

Thus, RXR either alone or in the form of heterodimers can regulate transcription 

of specific genes that control a diverse range of biological processes such as 

cellular proliferation, differentiation, lipid metabolism, bone development, 

haematopoiesis and embryogenesis (Mangelsdorf and Evans, 1995; Nagy et al., 

1998). Like other NRs, RXR consists of up to 5 domains: (i) the N-terminal domain 

represents the transcriptional activation domain and varies in sequence and 

length; (ii) the DNA-binding domain (DBD) containing a zinc finger promote 

interaction of DNA with hormone response element; (iii) the hinge region links 

DBD to (iv) the ligand-binding domain, which facilitates attachement of the ligand; 

(v) the C terminal domain is another highly variable region that has not yet been 

functionally characterised in RXRs (Lv et al., 2013). 

Endogenous ligands of RXR include 9-cis-retinoic acid (9-cis-RA) and 

docosahexaenoic acid while several synthetic ligands such as methoprene acid, 

Bexarotene and LG100268 exist (Dawson and Xia, 2012). RXR ligands have been 
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reported to exert cardioprotective effects by reducing atherosclerosis in 

apolipoprotein E knockout mice (Claudel et al., 2001). Additionally, anti-diabetic 

effects of RXR ligands were also proposed in type-2 diabetes mellitus mouse 

models (Leibowitz et al., 2006).  

Human platelets (and megakaryocytes) were reported to express RXRα and 

RXRβ and treatment with 9-cis-RA or methoprene acid inhibited U46619 or ADP-

mediated platelet aggregation (Moraes et al., 2007). This negative regulation was 

observed to be an outcome of an interaction between RXR and Gq in the presence 

of 9-cis-RA, which resulted in reduced activation of Rac protein and release of 

calcium from intracellular stores (Moraes et al., 2007). The effects of RXR ligands 

towards low concentrations of GPVI receptor agonist (CRP-XL and collagen) and 

thrombin were, however, unclear. Our lab has previously identified the ability of 

NRs such as LXR and PPARγ (and through this study PXR) to modulate collagen 

mediated signalling in platelets (Moraes et al., 2010b; Spyridon et al., 2011). Given 

the recent findings which suggests RXR as an active dimer partner of PXR, LXR and 

PPARγ in platelets (Unsworth et al., 2017c), the effects of RXR ligands on collagen 

mediated platelet activation were revisited.  

In the present study, we aimed to evaluate the effects of RXR ligands on 

platelet activation stimulated by GPVI receptor agonists (collagen and CRP-XL) 

and thrombin. Their implications on haemostasis and thrombus formation both in 

vitro and in vivo were also explored.  
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5.2. Expression and localisation of RXR in platelets 

An immunoblot analysis using mouse monoclonal anti-RXR antibody 

(SantaCruz; sc-46659) raised against amino acid residues 198-462 of human 

origin and capable of identifying all the three isoforms of RXR confirmed the 

expression of RXR in megakaryocyte cell line Meg-01, human and mouse platelets 

(figure 5.1a). These findings are in alignment with the previous study that 

reported the presence of RXRα and RXRβ (but not RXRγ) in Meg01, human and 

mouse platelets (Moraes et al., 2007).  

In chapter-3 (section 3.4), the interaction between RXR and PXR was 

identified using coimmunoprecipitation (Co-IP) assay and immunofluorescence 

microscopy. However, RXR in addition to PXR also interacts with numerous other 

NRs that are also expressed in platelets. Therefore, we extended our investigation 

to evaluate the potential existence of additional RXR heterodimers in platelets. Co-

IP assays were performed, where RXR was isolated from resting human platelets 

using an anti-RXR mouse monoclonal antibody (SantaCruz; sc46659). Following 

this, western blot analysis was performed using an anti-LXR (Abcam; ab28479) or 

anti-PPARα (SantaCruz; sc-9000) rabbit polyclonal antibody or anti-PPARγ 

(SantaCruz; sc-1984) goat polyclonal antibody. An equivalent amount of anti-RXR 

antibody was used a negative control. The primary antibodies were recognised 

using a secondary antibody (Abcam; ab131366) that prevent identification of the 

heavy chain of denatured IgGs. LXR, PPARα and PPARγ were found to co-

immunoprecipitate with RXR, which indicates the ability of RXR to interact with 

different NRs that exist in platelets (Figure 5.1 b).  
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Figure 5.1: RXR is expressed in human and mouse platelets and forms heterodimer 

with different NRs in human platelets. (a) The expression of RXR was evaluated by 

western blot analysis of human and mouse whole platelet lysates and Meg01 cells using a 

mouse monoclonal anti-RXRα/β/γ antibody (targeting amino acids 198-462). Actin was 

used as a loading control. (b) Presence of RXR-LXR, RXR-PPARα and RXR-PPARγ 

heterodimers was investigated in human platelets using a Co-IP assay. Human washed 

platelets (8x108 cells/ml) were lysed in NP40 buffer before immunoprecipitation of RXR 

using a mouse monoclonal anti-RXR antibody overnight at 4°C in the presence of protein 

A/G magnetic beads. Isolated proteins were subjected to SDS–PAGE and western blotted 

onto a PVDF membrane. Immunoblot analysis was followed by the addition of rabbit 

polyclonal anti-LXR or anti-PPARα antibody or anti-PPARγ goat polyclonal antibody. 

Detection of primary antibody was done using a secondary antibody that does not 

recognise denatured IgG. Presence of RXR was also confirmed in the same samples. An 

equivalent amount of anti-RXR antibody was used as a negative control to exclude IgG 

contamination (-ve). Data are representatives of 3 separate experiments using platelets 

from different donors.  
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Since the distribution of FXR (Moraes et al., 2016) and PXR (chapter-3, 

section 3.3) was found altered in activated platelets in comparison to resting 

platelets, the subcellular localisation of RXR (which is their interacting partner) in 

resting and activated platelets was also explored using immunofluorescence 

microscopy. Unstimulated and stimulated (with 5 μΜ U46619 in the presence of 

integrilin) platelets (in PRP) were fixed with 4% paraformaldehyde and 

permeabilised using 0.1% Triton X-100. U46619 was used as an agonist because it 

stimulates a gentle activation of platelets with minimal shape change, which is 

helpful in studying the distribution of NRs. Samples were then incubated with a 

mouse monoclonal anti-RXR antibody (SantaCruz; sc-46659) to identify the 

distribution of RXR, while; platelets were stained using a goat polyclonal anti-GPIb 

antibody (SantaCruz; sc-6602), which marks the surface of platelets. The 

secondary antibodies conjugated with Alexa Fluor 647 and Alexa Fluor 488 (Life 

Technologies) were used for visualisation of RXR and GPIb respectively. Human 

platelets without any primary antibody treatment were used as a negative control. 

The samples were visualised using a Nikon A1-R confocal microscope (100X oil 

immersion lens).  

The distribution of RXR (stained in red) in resting platelets appeared to be 

uniform in a punctate arrangement inside the cytosol of platelets (platelet surface 

is marked in green and represent surface GPIb receptors) (figure 5.2 a). 

Stimulation with U46619 appeared to redistribute RXR closer towards the plasma 

membrane (figure 5.2 b). Additionally, activated platelets exhibited fewer but 

larger spots of RXR in comparison to the uniformly distributed small spots of RXR 

in resting platelet cytosol. Although unclear, it gives an impression of RXR 
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becoming clustered close to the surface of platelets upon activation. The findings 

of RXR redistribution in activated platelets are quite similar to the observations 

made with PXR in chapter-3 (section 3.3) and reported in case of FXR (Moraes et 

al., 2016). Together, based on this evidence, translocation of NRs towards the 

plasma membrane can be proposed as a general feature shared by multiple NRs in 

platelets. Although, as mentioned earlier, super-resolution microscopy would be 

required to dissect this observation further and study the subcellular localisation 

of NRs more accurately.  

A similar kind of punctate arrangement of RXR was also observed inside the 

cytosol of resting and permeabilised mouse platelets incubated with mouse 

monoclonal anti-RXR (SantaCruz; sc-46659) and goat polyclonal anti-GPIb (Santa 

Cruz; sc-6602) antibodies (Figure 5.2c). 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: The subcellular localisation of RXR in platelets. The distribution of 

RXR in human resting, activated (with 5 μΜ U46619 in the presence of integrilin) 

and resting mouse platelets was investigated using immunofluorescence 

microscopy. Platelets were fixed with 4% (w/v) paraformaldehyde and 

permeabilised using 0.1% (v/v) Triton-X-100. RXR (in red) and membrane GPIb 

receptors (in green) were stained using anti-RXR and anti-GPIb antibodies. 

Secondary antibodies conjugated to Alexa-647 and Alexa-488 were used to 

visualise RXR and GPIb, respectively. Platelets without primary antibody 

treatment were used as negative controls. Figures represent the distribution of 

RXR in (a) resting and (b) activated human platelets. (c) The localisation of RXR in 

resting mouse platelets. Data are representative of ˃3 separate experiments. 
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5.3. RXR ligands inhibit platelet aggregation stimulated by a 

range of agonists 

It has been previously reported that treatment of platelets with endogenous 

(9-cis-RA) or exogenous (methoprene acid) RXR ligands inhibit platelet 

aggregation. However, these inhibitory effects were predominantly noted for 

aggregation stimulated by GPCR agonists, ADP or U46619 (Moraes et al., 2007). 

The effects of RXR ligands on collagen stimulation were unclear, whereas, their 

influence on thrombin stimulation was not evaluated. Findings from our lab have 

demonstrated that NRs such as PPARγ, LXR, FXR and PXR, apart from down-

regulating the effects of ADP or TxA2, also substantially inhibit platelet activation 

stimulated by GPVI agonists (collagen or CRP-XL) and thrombin (Moraes et al., 

2010b; Moraes et al., 2016; Spyridon et al., 2011). Based on this and recent 

observations, suggesting the ability of RXR to form heterodimers with several NRs 

in platelets (LXR, PXR, PPARα and PPARγ) enabled us to revisit and evaluate the 

effects of RXR ligands on collagen or thrombin stimulation.  

Washed human platelets (4x108 cells/ml) were incubated with 9-cis-RA (10 

or 20 μM) or vehicle-control (containing DMSO, 0.1% v/v) for 10 minutes prior to 

their stimulation with collagen (1 µg/ml). Aggregation responses were recorded 

using an optical aggregometer with constant stirring (1200 rpm) for 5 minutes at 

37oC. Approximately 55% and 65% inhibition were observed with 10 or 20 μM 9-

cis-RA, respectively, in comparison to vehicle-control (figure 5.3 ai, aii). Incubation 

with methoprene acid, which is structurally unrelated to 9-cis-RA also caused 

inhibition of collagen-stimulated platelet aggregation by 30% and 65% at 10 or 20 

μM respectively (figure 5.3 bi, bii). Additionally, 10 and 20 μM of 9-cis-RA 
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attenuated aggregation mediated by CRP-XL (0.25 µg/ml) by nearly 40% and 60% 

respectively in comparison to vehicle-control (figure 5.3 ci, cii). 
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Figure 5.3: RXR ligands inhibit collagen or CRP-XL stimulated platelet 

aggregation. Washed human platelets (4×108 cells/mL) were incubated with 9-

cis-RA, methoprene acid or vehicle (containing, DMSO 0.1% v/v) prior to their 

stimulation with (a,b) collagen (1 µg/ml) or (c) CRP-XL (0.25 µg/ml). Aggregation 

was measured as a change in light transmission and monitored for 300 seconds at 

37oC under constant stirring (1200 rpm). Representative aggregation traces of 

platelets treated with (ai, ci) 9-cis-RA or (bi) methoprene acid for 10 minutes and 

stimulated with collagen or CRP-XL are shown. Quantified data displays the 

percentage of aggregation for (aii, cii) 9-cis-RA or (bii) methoprene acid treated 

samples (vehicle-treated samples represent 100% aggregation) at the end of 5 

minutes. Data represent mean ± SEM (n≥3), *P ≤ 0.05 and ****P ≤ 0.0001 was 

calculated by one-way ANOVA. 
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 Similarly, incubation of washed platelets for 10 minutes with 9-cis-RA 

resulted in an inhibition of thrombin (0.05 U/ml) stimulated platelet aggregation. 

Approximately, 20% and 30% reduction was achieved by 10 and 20 μM 9-cis-RA 

in comparison to vehicle-control (containing, DMSO 0.1% v/v) (figure 5.4 ai, aii). 

Whereas, methoprene acid (20 μM) inhibited thrombin-mediated platelet 

aggregation by 25% (figure 5.4 bi, bii). These data, along with previously reported 

findings (Moraes et al., 2007), suggest that the inhibitory effects of RXR ligands are 

broader than previously anticipated. In addition to the inhibition of ADP and 

U46619 responses, RXR ligands can also modulate platelet activation evoked by 

collagen, CRP-XL or thrombin. 

 To further determine whether RXR ligands indeed affect collagen-evoked 

platelet activation or the inhibition is solely due to the attenuation of ADP and 

TxA2-mediated effects that are released from platelets upon collagen-stimulation, 

aggregation was studied in the presence of saturated concentrations of 

indomethacin (blocks synthesis of TxA2), cangrelor and MRS2179 (ADP receptor 

antagonists) to block secondary mediator effects. Given the inhibition of 

secondary mediator signalling, a higher concentration of collagen (10 µg/ml) was 

used to ensure 50% aggregation was still achieved in 5 minutes. As shown in 

figure 5.4 ci, treatment with indomethacin (I; 20 µM) or cangrelor (C; 1 µM) and 

MRS2179 (M; 100 µM) inhibited collagen-stimulated platelet aggregation by 

approximately 30% and 35% respectively. Collectively (C+M+I), they exhibited 

inhibition of 55%. Additional inhibition (≃15%) caused by 9-cis-RA (20 μM) to the 

primary reductions achieved by indomethacin, cangrelor and MRS2179 
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(C+M+I+9-cis-RA) post-stimulation by collagen suggested that that 9-cis-RA was 

able to inhibit collagen-evoked signalling directly (figure 5.4 ci, cii). 
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Figure 5.4: RXR ligands attenuate thrombin-mediated platelet aggregation and their effects on collagen-mediated platelet aggregation 
are not solely dependent on the inhibition of ADP and TxA2-mediated effects. Washed human platelets (4×108 cells/mL) were incubated 
with 9-cis-RA, methoprene acid or vehicle (containing, DMSO 0.1% v/v) before stimulation with thrombin (0.05 U/ml). Aggregation was measured 
as a change in light transmission and monitored for 300 seconds at 37oC under constant stirring (1200 rpm). Representative aggregation traces of 
platelets treated with (ai) 9-cis-RA or (bi) methoprene acid and stimulated with thrombin are shown. Quantified data displays the percentage of 
aggregation attained by (aii) 9-cis-RA or (bii) methoprene acid treated samples in 300 seconds upon stimulation with thrombin (vehicle-treated 
samples represent 100% aggregation). (ci) Representative aggregation trace display collagen-stimulated (10 μg/ml) platelet aggregation in 
presence or absence of 9-cis-RA (20 μM) in addition to indomethacin (20 μM), cangrelor (1 μM) and MRS2179 (100 μM). (cii) Quantified data 
displays the extent of collagen-stimulated platelet aggregation in the presence of 9-cis-RA, along with indomethacin or cangrelor and MRS2179 
(C+M+I+9-cis-RA). ‘O’ signifies the sample stimulated with collagen in the absence of 9-cis-RA and secondary mediator signalling blockers. Data 
represent mean ± SEM (n≥3), *P ≤ 0.05 and **P ≤ 0.01 was calculated by one-way ANOVA. §§P ≤ 0.01 was calculated by student t-test.  
Abbreviations: I – Indomethacin, C – Cangrelor, M – MRS2179 and 9-cis-RA – 9-cis-retinoic acid 
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5.4. RXR ligands reduce integrin αIIbβ3 activation and α-granule 

secretion 

Given the inhibition of platelet aggregation by RXR ligands, their effects on 

the activation of integrin αIIbβ3, which regulates its binding to fibrinogen (causing 

platelets to aggregate) were investigated using flow cytometry. The effects of RXR 

ligands on secretion from α-granules, essential for the amplification of platelet 

aggregation and thrombus formation were also evaluated.  

Human PRP was treated with 9-cis-RA or methoprene acid (10 and 20 μM) 

or vehicle-control (containing, DMSO 0.1% v/v) for 10 minutes prior to the 

addition of FITC-conjugated anti-human fibrinogen antibody or anti-CD62P 

Cy5/PE conjugated antibody. PRP was stimulated with CRP-XL (0.25 μg/ml) or 

thrombin (0.05 U/ml) for 20 minutes at room temperature, with occasional gentle 

mixing. Samples were then fixed with 0.2% (v/v) formyl saline and fluorescence 

was measured using a flow cytometer. Data were collected for 10,000 events gated 

on the platelet population.  

  Consistent with inhibition of platelet aggregation, treatment with 9-cis-RA 

reduced CRP-XL-stimulated fibrinogen binding by approximately 40% and 50% at 

10 and 20 μM respectively (figure 5.5 ai). Whereas, 20 μM methoprene acid caused 

inhibition of 40% in comparison to vehicle control (containing, DMSO 0.1% v/v) 

(figure 5.5 aii). Similarly, both 9-cis-RA (figure 5.5 bi) and methoprene acid (figure 

5.5 bii) attenuated thrombin-mediated fibrinogen binding by approximately 30% 

at 20 μM in comparison to vehicle control. The level of inhibition obtained with 

CRP-XL or thrombin were of similar magnitude as observed with the inhibition of 

collagen/CRP-XL or thrombin-mediated platelet aggregation by RXR ligands.  
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Figure 5.5: RXR ligands down-regulate fibrinogen binding to integrin αIIbβ3. 

Human PRP was incubated with 9-cis-RA or methoprene acid (10 and 20 μM) or 

vehicle (containing, DMSO 0.1% v/v) for 10 minutes. This was followed by the 

addition of FITC-labelled rabbit anti-fibrinogen antibody. Post-stimulation by CRP-

XL or thrombin, samples were fixed with 0.2% formyl saline (v/v) and analysed by 

flow cytometry. The effects of RXR ligands on samples stimulated with (ai, aii) 

CRP-XL (0.25 μg/mL) or (bi, bii) thrombin (0.05 U/ml) are shown. Data represent 

percentage fibrinogen binding compared with vehicle-treated control, which is 

defined as 100% fibrinogen binding. Data represent mean ± SEM (n=4), *P ≤ 0.05, 

**P ≤ 0.01 and ***P ≤ 0.001 was calculated by one-way ANOVA. 
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 To estimate the effect of RXR ligands on α-granules secretion, CRP-XL or 

thrombin-stimulated P-selectin exposure on the platelet surface, in the presence 

or absence of RXR ligands was studied using flow cytometry. CRP-XL stimulated P-

selectin exposure was observed to be significantly decreased by approximately 

40% in the sample treated with 20 μM of 9-cis-RA, in comparison to vehicle-

treated control (containing, DMSO 0.1% v/v) (figure 5.6 ai). Incubation with 

methoprene acid also caused inhibition of 20% and 30% at 10 and 20 μM 

respectively (figure 5.6 aii). Likewise, P-selectin exposure stimulated by thrombin 

was also negatively-regulated by 30% and 35% by 10 and 20 μM of 9-cis-RA 

(figure 5.6 bi) and approximately similar degree of inhibition was exhibited by 

samples treated with methoprene acid (figure 5.6 bii).  

 Together these findings propose a potential role of RXR ligands in altering 

both integrin αIIbβ3 activation along with a reduction in the extent of secretion 

from α-granules. Down-regulation of both of these vital aspects of platelet 

activation would be anticipated to impact the development and stability of 

thrombus formation in vitro along with its their influence on thrombosis and 

haemostasis. 



  Chapter-5 
 

243 
 

 
Figure 5.6: RXR ligands attenuate α-granule secretion. Human PRP was 

incubated with 9-cis-RA or methoprene acid (10 and 20 μM) or vehicle 

(containing, DMSO 0.1% v/v) for 10 minutes. This was followed by the addition of 

anti-CD62 Cy5/PE conjugated antibody. Post-stimulation with CRP-XL or 

thrombin, samples were fixed with 0.2% formyl saline (v/v) and analysed by flow 

cytometry. The effects of RXR ligands on samples stimulated with (ai, aii) CRP-XL 

(0.25 μg/mL) or (bi, bii) thrombin (0.05 U/ml) are shown. Data represent 

percentage P-selectin exposure in comparison to vehicle-treated control, which is 

defined as 100% P-selectin exposure. Data represent mean ± SEM (n=4), *P ≤ 0.05, 

**P ≤ 0.01 and ***P ≤ 0.001 was calculated by one-way ANOVA. 
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5.5. RXR ligands inhibit elevation of intracellular calcium levels 

Both CRP-XL and thrombin stimulation can induce an elevation of 

intracellular calcium concentrations through distinct pathways. As explained in 

chapter-3 (section 3.11), calcium mobilisation is one of the most fundamental 

events that determine platelet activation by regulating several vital steps of this 

dynamic process such as the reorganisation of the actin cytoskeleton necessary for 

shape change, degranulation and affinity upregulation of integrin αIIbβ3. 

Therefore, studying calcium mobilisation would be crucial for understanding 

whether RXR ligands possess the ability to modulate calcium signalling and thus 

facilitate negative regulation of platelet aggregation, degranulation and integrin 

αIIbβ3.  

 The extent of calcium mobilisation was determined using a ratiometric 

membrane permeable fluorescent dye, Fura-2AM, which binds to free intracellular 

calcium. PRP was incubated with Fura2-AM and washed platelets (4x108 cells/ml) 

were prepared, which were then incubated with RXR ligands (10 or 20 μM) or 

vehicle-control (containing, DMSO 0.1% v/v) for 10 minutes in a 96 well plate at 

37oC prior to activation with either CRP-XL (0.25 µg/ml) or thrombin (0.05 U/ml). 

Fluorescence measurements were made using a plate reader for 5 minutes after 

the addition of the agonist, and calcium mobilisation was estimated using the 

equation described in Chapter 2 (section 2.2.8). 

As shown in figure 5.7, stimulation of vehicle-treated (containing, DMSO 

0.1% v/v) samples with CRP-XL caused a steady rise in calcium levels, achieving 

peak concentration in approximately 3-4 minutes. This CRP-XL-mediated rise in 
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intracellular calcium levels was noted to decrease significantly in samples treated 

with RXR ligands in a concentration-dependent manner. Approximately, 40% 

inhibition in peak calcium concentration was caused by 20 μM 9-cis-RA (figure 5.7 

ai, aii), whereas, methoprene acid resulted in a reduction of 23% and 40% at 10 

and 20 μM respectively in comparison to vehicle-control (figure 5.7 bi, bii).  

Treatment with RXR ligands also caused a significant decrement in 

thrombin-stimulated elevation of intracellular calcium concentration. As shown in 

figure 5.8ai, stimulation with thrombin caused a marked increase in calcium 

mobilisation in the vehicle-treated sample, which was observed to reduce by 

approximately 40% and 60% (peak calcium level) in samples treated with 10 and 

20 μM 9-cis-RA respectively (figure 5.8 aii). Similarly, 50% reduction in calcium 

mobilisation was exhibited by 20 μM of methoprene acid (figure 5.8 bi, bii). 
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Figure 5.7: RXR ligands inhibit CRP-XL-stimulated calcium mobilisation. 

Fura-2AM loaded platelets (4x108 cells/ml) were incubated with (ai, aii) 9-cis-RA 

or (bi, bii) methoprene acid (MA; 10 and 20 µM) or vehicle (containing, DMSO 

0.1% v/v) for 10 min at 37oC prior to the addition of CRP-XL (0.25 µg/ml). 

Fluorescence measurements were made with excitation at 340 nm and 380 nm 

and emission at 510 nm using a NOVOstar plate reader. Ca2+ was estimated from 

the ratio of the 340 nm and 380 nm excitation signals. (ai, bi) Traces of calcium 

mobilisation over a period of 5 minutes following CRP-XL-stimulation are shown. 

(aii, bii) Cumulative data (peak calcium levels) of calcium mobilisation in the 

presence or absence of RXR ligands after stimulation with CRP-XL. Peak calcium 

levels achieved in the presence of vehicle-control defines 100%. Data represent 

mean ± SEM (n≥3), *P ≤ 0.05, and **P ≤ 0.01 was calculated by one-way ANOVA. 
 Abbreviations: 9-cis-RA – 9-cis-retinoic acid and MA – Methoprene acid 
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Figure 5.8: Thrombin-stimulated elevation of intracellular calcium level is 

negatively-regulated by RXR ligands. Fura-2AM loaded platelets (4x108 cells/ml) 

were incubated with (ai, aii) 9-cis-RA or (bi, bii) methoprene acid (MA; 10 and 20 

µM) or vehicle (containing, DMSO 0.1% v/v) for 10 min at 37oC prior to the addition 

of thrombin (0.05 U/ml). Fluorescence measurements were made with excitation at 

340 nm and 380 nm and emission at 510 nm using a NOVOstar plate reader. Ca2+ 

was estimated from the ratio of the 340 nm and 380 nm excitation signals. (ai, bi) 

Traces of calcium mobilisation over a period of 5 minutes following thrombin-

stimulation are shown. (aii, bii) Cumulative data (peak calcium levels) of calcium 

mobilisation in the presence or absence of RXR ligands after stimulation with 

thrombin. Peak calcium levels achieved in the presence of vehicle-control defines 

100%. Data represent mean ± SEM (n≥3), *P ≤ 0.05,  **P ≤ 0.01 and ***P ≤ 0.001 was 

calculated by one-way ANOVA. 
 Abbreviations: 9-cis-RA – 9-cis-retinoic acid and MA – Methoprene acid 
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5.6. 9-cis-RA inhibit thrombus formation but not adhesion to 

collagen under flow 

Since numerous aspects of platelet activation were observed to be down-

regulated following treatment with 9-cis-RA, its influence on thrombus formation 

under flow on collagen was investigated. Testing the effects of 9-cis-RA using this 

assay enabled examination of the effects of RXR ligands in the presence of plasma 

proteins, blood cells and arterial shear rate. Moreover, this provided insight on the 

role of 9-cis-RA in regulating thrombus formation, prior to assessing its effects in 

vivo. 

To perform the assay, citrated human blood (collected in vacutainers) was 

incubated with the lipophilic dye DiOC6 (5 μM) for an hour at 30oC and Vena8 

Biochips were coated with type-I collagen (100 μg/ml). Excess collagen in the 

channel of the microfluidic chip was washed with modified Tyrodes-HEPES buffer. 

Whole blood was incubated with 9-cis-RA (20 μM) or vehicle-control (containing, 

DMSO 0.1% v/v) for 10 minutes at 30oC before perfusion through the collagen-

coated microfluidic channels under arterial flow condition (shear stress: 20 

dyne/cm2 or shear rate: 500 s-1). Fluorescence was excited at 488 nm with an 

argon laser and emission was detected at 500-520 nm. Thrombus formation was 

observed using a Nikon A1-R confocal microscope with a 20X objective and images 

were captured (focused on a single section) every 1 second for 600 seconds. 

Median thrombus fluorescence intensity was calculated using NIS elements 

software (Nikon) and normalised to the level of fluorescence at the end of the 

assay in the vehicle-treated sample. 
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As shown in figure 5.9ai, large and stable thrombi were formed in the 

vehicle-treated whole blood sample following perfusion through the collagen-

coated microfluidic channel. Treatment with 9-cis-RA prevented platelets from 

forming large and stable thrombi and resulted in an approximate reduction of 

35% in comparison to vehicle-treated control (figure 5.9aii). This observation was 

consistent with the previously observed inhibition of platelet aggregation by 9-cis-

RA following stimulation with collagen.  

To investigate whether this reduction in thrombus formation by 9-cis-RA is 

due to the inability of platelets to adhere to collagen, the flow assay was 

performed by treating platelets with integrillin (4 μM; an integrin αIIbβ3 

antagonist), which prevent platelet-platelet interactions. No significant difference 

in adhesion of platelets to collagen was observed in blood samples treated with 9-

cis-RA (20 μM) or vehicle-control (both in the presence of integrillin) (figure 5.9b). 

This suggests that 9-cis-RA indeed affects thrombus stability and its growth but it 

does not modulate adhesion of platelets to collagen. These experiments were 

performed in collaboration with Dr A. Unsworth.    
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Figure 5.9: 9-cis-RA negatively-regulates thrombus formation but not adhesion to 

collagen in vitro. Citrated human blood, incubated with DiOC6 (5 μM) for an hour at 

30oC was perfused through collagen-coated (100 μg/ml) Vena8 microfluidic Chips under 

arterial flow conditions (20 dyne/cm2), after treatment with vehicle (containing, DMSO 

0.1% v/v) or 9-cis-RA (20 μM) for 10 minutes. (ai) Representative image of thrombus 

formation (endpoint) in samples treated with vehicle or 9-cis-RA is shown. Fluorescence 

was excited at 488 nm with an argon laser and emission was detected at 500-520 nm. 

The thrombus formation was observed using a Nikon A1-R confocal microscope (20X 

objective), and images were captured (focused on a single section) every 1 second for 

600 seconds. (aii) Quantified data represent median fluorescence intensity for vehicle 

and 9-cis-RA treated samples; and (b) vehicle and 9-cis-RA treated samples in the 

presence of integrillin (4 μM), calculated using NIS elements software (Nikon) and 

normalised to the level of fluorescence of the vehicle-treated sample. Data represent 

mean ± SEM (n≥3), *P ≤ 0.05 and **P ≤ 0.01 was calculated by two-way ANOVA.  
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5.7. RXR ligands inhibit thrombosis and haemostasis 

Having observed a significant reduction of thrombus formation in vitro by 9-

cis-RA, its acute effects were investigated in vivo to determine its influence on 

thrombosis and haemostasis.  

The thrombosis assay was performed using a laser-induced injury model of 

mouse (C57BL/6) and visualised using intravital microscopy, as described by 

Falati et al. (2002). The details of the procedures followed are described in 

chapter-2 (section 2.2.15). As shown in figure 5.10ai, the initial kinetics of 

thrombus formation were similar in both vehicle (treated with DMSO, 0.1% v/v) 

and 9-cis-RA (final concentration 20 μM) treated mice. However, the size of 

thrombi in mice treated with 9-cis-RA were observed to be smaller (figure 5.10aii). 

As shown previously, RXR ligands did not affect adhesion of platelets to collagen; 

this observation can account for the similarity noted in the initial kinetics of 

thrombus formation between 9-cis-RA and vehicle-treated mice. 9-cis-RA reduced 

the overall size of the thrombus by approximately 35%, which is similar to the 

reduction observed in thrombus formation in vitro (figure 5.10aiii). These 

experiments were performed in collaboration with Dr P. Sasikumar. 

The impact of RXR ligands-dependent platelet inhibition on haemostasis was 

observed using a tail-bleeding assay on C57BL/6 mice. 9-cis-RA or vehicle-control 

was injected into the femoral vein of mice based on body weight and blood 

volume. The volume of 9-cis-RA (10 mM stock) or DMSO (10% v/v stock) injected 

was expected to give a concentration of 20 µM and 0.1% v/v respectively in the 

blood assuming 2 ml of blood is present in 25 gms of mouse. The tip of the tail was 
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removed using a sharp razor blade and placed in sterile saline (37°C) after 10 

minutes post injection of vehicle-control or 9-cis-RA. The time to cessation of 

bleeding (secs) was measured thereafter. The mean time to cessation of bleeding 

after removal of the tail-tip was significantly prolonged in mice treated with 9-cis-

RA in comparison to vehicle control. Vehicle-treated mice were observed to bleed 

for approximately 120 secs, while treatment with 9-cis-RA increased the cessation 

time of bleeding to approximately 500 seconds, which represents an impaired 

haemostatic response (figure 5.10b). These experiments were performed in 

collaboration with Ms T. Sage.   



 
 

 2
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Figure 5.10: 9-cis-RA inhibit thrombus formation and increase bleeding time in mice. In vivo thrombosis assay was performed on C57BL/6 
mice through intravital microscopy using the laser-induced injury model. Vehicle-control (DMSO 10% v/v for 0.1% v/v final concentration) or 9-cis-
RA (20mM for 20 μM final concentration) was administered intravenously 10 minutes prior to the initial injury. Platelets were fluorescently labelled 
with DyLight 649–conjugated anti-GPIbα antibody. The injury was induced by laser to assess platelet accumulation and thrombus formation. (ai) 
Representative images of thrombi obtained at different time intervals are shown. Data represent (aii) median fluorescence intensity measured for 8 
to 10 thrombi from 4 mice each of control and 9-cis-RA treated groups. (aiii) Thrombus-size was determined by calculating the area under the 
median fluorescence intensity curve of each thrombi (AUC). (b) Tail bleeding was determined as time to cessation of bleeding in mice pre-treated 
with vehicle or 9-cis-RA (estimated concentration; 20 μM) for 10 minutes (n=10 for vehicle and 9 for 9-cis-RA–treated samples). Results are mean ± 
SEM for n≥3. Results are mean ± SEM. ***P ≤ 0.001 was calculated by the nonparametric Mann–Whitney test. 
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5.8. Chapter discussion 

RXR is one of the most widely expressed NR in human cells and tissues, 

where it forms heterodimer with several NRs such as LXR, FXR, RXR and PPARs, 

and elicit genomic responses to regulate a range of biological processes such as 

glucose, lipids, cholesterol and bile acid metabolism (Evans and Mangelsdorf, 

2014). Consequently, its dysregulation is associated with metabolic and 

cardiovascular disorders that include type-2 diabetes mellitus, obesity, 

hyperlipidaemia and atherosclerosis (Meissburger and Wolfrum, 2008). Recently, 

the presence of RXR was reported in human and mouse platelets and its ligands 

were observed to cause anti-platelet effects (in response to ADP or U46619) in a 

non-genomic manner (Moraes et al., 2007). Additionally, RXR ligands have also 

been proposed to reduce the development of atherosclerosis in apolipoprotein E 

knockout mice (Claudel et al., 2001), a pathological condition where platelets are 

known to be major contributors. Based on this, we further examined the role of 

RXR ligands in human platelets with emphasis on their ability to regulate collagen-

stimulated platelet activation. 9-cis-RA is commercially used (marketed as 

Alitretinoin) for the treatment of Kaposi sarcoma and eczema and decreased blood 

clotting is currently listed as one of its side effects (Ghasri and Scheinfeld, 2010; 

Walmsley et al., 1999). Therefore, we also investigated the effects of 9-cis-RA on 

thrombus formation (in vitro and in vivo) and haemostasis. Major findings of this 

chapter include: 
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I. The physiological role of RXR ligands in platelets 

Inhibitory effects of RXR ligands were observed on several aspects of platelet 

activation evoked by collagen, CRP-XL or thrombin. For instance, treatment of 

platelets with 9-cis-RA or methoprene acid significantly inhibited CRP-XL, collagen 

or thrombin-mediated platelet aggregation. Although, the extent of inhibition was 

of a lower magnitude, in comparison with ADP or U46619 instigated aggregation. 

This might be an outcome of apparently stronger platelet-activation potency of 

CRP-XL, collagen and thrombin, in comparison to ADP and U46619. The amplitude 

of collagen, CRP-XL or thrombin-stimulated integrin αIIbβ3 activation, α-granule 

secretion and mobilisation of intracellular calcium were also found to be reduced 

significantly after treatment with RXR ligands.  

Under physiological conditions, the plasma concentration of endogenous 

ligand of RXR (9-cis-RA) is close to picomolar range because of its rapid 

metabolism in intestines and liver (Vogel et al., 1999; Wolf, 2006). Moreover, it is 

not stored in the liver or any other organ, therefore, it does not accumulate over 

time (Bidlack, 1994). However, treatment with alitretinoin (commercially 

available 9-cis-RA), prescribed at a maximum dose of 40 mg/day may lead to 

higher 9-cis-RA plasma concentrations (English, 2009; Walmsley et al., 1999). 

Thus, it is plausible that 9-cis-RA at clinical and therapeutic doses may facilitate 

non-genomic effects on platelets. Moreover, the possibility of the occurrence of 

non-genomic effects at the site of 9-cis-RA biosynthesis (where concentration 

would be higher than rest of the recipient tissues) cannot be ruled out.  

Inhibition of platelet activity by 9-cis-RA also correlated with inhibition of 

thrombus formation in vitro and in vivo, suggesting that the previously described 
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cardioprotective effects of RXR agonists in reducing atherosclerosis could also 

potentially be attributed to their negative regulation of platelet function (Claudel 

et al., 2001). Moreover, increased bleeding time in mice treated with 9-cis-RA is 

consistent with the observation of reduced blood clotting in patients administered 

with  alitretinoin (Ghasri and Scheinfeld, 2010; Walmsley et al., 1999). 

 

II. RXR ligands upregulate PKA activity to inhibit platelet activation 

(Unsworth, Flora et al., 2017) 

Upregulation in the levels of cAMP or activation of PKA in platelets has 

been associated with ligands of PPARα, PPARβ or PPARγ that are common binding 

partners for RXR (Ali et al., 2009a; Ali et al., 2006; Unsworth et al., 2017d). 

Likewise, RXR ligands were also found to cause upregulation of PKA activity, as 

treatment of platelets with RXR ligands resulted in an increase in VASP 

phosphorylation at S157 (the PKA phosphorylation site) in both resting and 

agonist-stimulated platelets. This increase was reversed after treatment with the 

PKA inhibitors H89 and Rp-8-CPT-cAMPs or adenylyl cyclase inhibitor SQ22358 

but not after treatment with an IP receptor antagonist (Ro1138452). This suggests 

that RXR agonists activate PKA through a mechanism that is dependent on cAMP, 

although no major alterations in cAMP levels were observed after treatment with 

the different RXR ligands. It is possible that treatment with RXR agonists does 

cause small increases in platelet cAMP levels that are not detected given current 

limitations in sensitivity of the assays used. It has been shown that even minor 

increases in cAMP levels can cause significant activation of cellular PKA and large 

increases in VASP S157 phosphorylation (Eigenthaler et al., 1992). As such, a role 
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for RXR ligands in the upregulation of adenylyl cyclase activity cannot be ruled 

out. 

The effects of RXR ligands reported on PKA activation demonstrate a novel 

mechanism that may act as a potential target for antiplatelet therapy (Unsworth, 

Flora et al., 2017). Therefore, it can be suggested that RXR ligands could offer extra 

protective effects in vivo if developed as drug targets, although these effects would 

need to be carefully balanced to ensure there is no increased risk of bleeding. 
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6.1. Platelets as model systems for studying non-genomic actions 

of nuclear receptors 

Auto-regulation of platelet activation arbitrated by negative feedback 

mechanisms in platelets is vital to prevent uncontrolled and rampant thrombus 

formation, following vascular injury. Dysregulation of these mechanisms can lead 

to occlusion of the artery, leading to life-threatening conditions such as heart 

attack or stroke (Bye et al., 2016). Besides the well characterised inhibitory 

mechanisms instigated by PGI2 and NO in platelets, several other receptors that 

contribute to negative regulation have been reported in recent years. These 

include immunoreceptor tyrosine‐based inhibition motif (ITIM) containing 

receptors (such as PECAM‐1, CEACAM‐1, CEACAM‐2, G6b‐B), Wnt–β‐catenin, 

semaphorin 3A and intracellular nuclear receptors (Unsworth et al., 2017a). Of 

these, our lab has extensively investigated and reported the role of PECAM‐1 

(Moraes et al., 2010a; Moraes et al., 2013) and several NRs in platelets such as 

RXR, LXR, FXR, PPARγ and through this study PXR (Moraes et al., 2016; Unsworth 

et al., 2017c; Moraes et al., 2010b; Moraes et al., 2007; Spyridon et al., 2011).  

As explained in chapter-1, NRs have been well characterised for their 

genomic roles (regulation of transcription and gene expression), while little is 

known about their non-genomic functions that are mediated independently of 

transcriptional regulation. Non-genomic effects have mostly been investigated in 

cell types that lack a functional nucleus such as erythrocytes and platelets (Losel 

and Wehling, 2003), though, these effects have also been reported in nucleated 

cells (Simoncini et al., 2004). The non-genomic functions of NRs vary and whilst it 

is thought these functions are initiated by physical interactions of NRs with 
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cofactors and binding partners that initiate rapid signalling events (Hammes and 

Levin, 2007; Losel et al., 2003; Nadal et al., 2001), the exact mechanisms are not 

well understood. One possible explanation is that the different cellular localisation 

of NRs influences the availability of cofactors and substrates, which leads to 

varying degree of binding-partner interactions. For instance, localisation of NRs 

towards the cytosol, plasma membrane or other intracellular organelles such as 

mitochondria increases the likelihood of initiation of non-genomic effects, whilst, 

genomic functions are more restricted with NRs localised in the nucleus 

(Boonyaratanakornkit and Edwards, 2007; Ordonez-Moran and Munoz, 2009; 

McKenna and O'Malley, 2002; Nathan et al., 2017). The formation of different 

multi-protein signalling complexes along with different localisation and 

distribution of proteins across multiple cell types could offer a high degree of cell 

and tissue-selective action but these are currently poorly defined (McKenna and 

O'Malley, 2002; Nathan et al., 2017).   

Although devoid of a nucleus, platelets still contain different forms of RNA 

(mRNA, rRNA, tRNA and miRNA) and components of the transcription and 

translation machinery that are derived from megakaryocytes during 

thrombopoiesis (Schubert et al., 2014). There is a growing consensus that these 

RNAs are not subjected to a random transfer by megakaryocytes but are 

specifically sorted and are competent for translation within platelets (Rowley et 

al., 2012; Cecchetti et al., 2011). Moreover, there is evidence to suggest that 

platelet-derived microparticles may deliver platelet mRNAs into other nucleated 

cells, such as monocytes and endothelial cells, where they then undergo 

translation (Risitano et al., 2012). Intracellular NRs recently identified in platelets 
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is another addition to various components of transcription machinery existing 

inside platelets. Due to their anucleate nature and mechanistically well-

characterised and rapid responses, such as aggregation and adhesion, platelets 

provide an excellent model system to study the acute non-genomic effects of the 

NRs (Bishop-Bailey, 2010; Jones et al., 2012). 

This study identifies the presence of an additional nuclear receptor, PXR, in 

platelets and the ability of its ligands to regulate platelet activation by modulating 

GPVI signalling. Furthermore, this investigation also characterises previously 

unknown abilities of RXR ligands to regulate platelet function stimulated by 

collagen, CRP-XL or thrombin along with their mode of action (Unsworth, Flora et 

al., 2017a).  

 

6.2. Role of PXR as a modulator of platelet activation 

The effects of PXR on vascular biology through its cardio-protective effects 

have been uncovered in the last few years. Conventionally acting as a metabolic 

sensor, PXR is highly expressed in liver and intestines. Recently its expression was 

also reported in the human vasculature, where it was suggested to regulate 

vascular function, inflammation, and cholesterol and lipid homeostasis (Swales et 

al., 2012). These findings are relevant considering the involvement of cholesterol, 

lipids and inflammation towards the development of atherosclerosis in the arterial 

wall. Additionally, PXR has also been associated with anti-atherosclerotic effects 

(mainly by promoting cholesterol efflux and HDL synthesis) in several studies 

performed on murine models of atherosclerosis (de Haan et al., 2009; Li et al., 

2007; Zhou et al., 2009a; Masson et al., 2005). Considering the role of platelets in 
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the progression of atherosclerosis and the presence of several NRs in platelets, the 

presence of PXR in platelets was evaluated. The expression of PXR was observed 

in both human and mouse platelets. Immunofluorescence studies suggested the 

distribution of PXR in a punctate arrangement inside the resting platelet cytosol, 

which appeared to redistribute towards the plasma membrane upon platelet 

activation. The potential significance of such rearrangement of PXR is still 

speculative and may be associated with the regulation of platelet signalling 

through the potential interaction (still unknown) of PXR with signalling molecules. 

For instance, several signalling molecules such as Syk, Gαq, Btk and PLCγ2, upon 

platelet activation migrate close to their respective receptors on the plasma 

membrane to initiate signalling (Pula et al., 2005; Sarkar, 1998) and are also 

known to interact with RXR (with Gαq), LXR and PPARγ (with Syk, LAT, PLCγ2) 

(Moraes et al., 2010b; Moraes et al., 2007; Spyridon et al., 2011). Nonetheless, 

translocation of NRs in activated platelets appears to be a common feature shared 

by different NRs in platelets including PXR, RXR and FXR.  

Ligation of PXR with SR12813 or rifampicin resulted in down-regulation of a 

range of platelet functions such as aggregation, affinity upregulation of integrin 

αIIbβ3, TxB2 production and degranulation stimulated by both GPVI agonists 

(CRP-XL or collagen) and GPCR agonist (thrombin). We also observed that 

treatment of human blood with PXR ligands caused a substantial reduction in the 

development of thrombus in vitro. The lack of platelet adhesion to collagen in 

samples treated with PXR ligands in both arterial flow and static conditions was 

attributed to be partly responsible for this reduction. Given these observations, 

the reported anti-atherogenic effects of PXR ligands might be platelet-orchestrated 
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that may be mediated at least in following three ways: (i) Inflammatory events 

during the initial stages of atherosclerosis lead to the activation of endothelial cells 

(Liao, 2013). Platelets via P-selectin, integrin αIIbβ3 and GPIb receptors are prone 

to interact with these activated cells and become stimulated to secrete 

proinflammatory chemokines and cytokines that accelerate the inflammatory 

process and plaque development (Lievens and von Hundelshausen, 2011). PXR 

ligands mediated inhibition of P-selectin exposure on the platelet surface and 

reduced affinity-upregulation of integrin αIIbβ3 may prevent platelet-endothelial 

cells and platelet-monocyte interaction (via reduced platelet P-selectin mediated 

monocytic PSGL-1 ligation) (Seizer et al., 2008) and thus reduce the progression of 

atherosclerosis. (ii) Moreover, reduced secretion from activated platelets 

following treatment with PXR ligands can potentially avert the release of 

proinflammatory chemokines and cytokines that can further reduce inflammation 

at the atherosclerotic site, thereby slowing the development of atherosclerosis 

(Nording et al., 2015). (iii) Lastly, the fibrous cap of atherosclerotic plaque exposes 

collagen fibres, allowing platelets to adhere, get activated and promote thrombus 

formation (Nadkarni et al., 2009). The lack of platelet adhesion to collagen 

following treatment with PXR ligands may attenuate this interaction, which may 

prevent the formation of a blood clot at the site of atherosclerotic plaque. 

Due to differences in the sequence of the LBD of mouse and human PXR, 

ligands that bind to PXR are prone to function in a species-specific manner, as 

reported in several nucleated cells (Iyer et al., 2006). Similar observations were 

made in platelets, where human PXR ligands (SR12813 or rifampicin) inhibited 

thrombus formation in human blood while no effect was observed in mouse blood. 
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Similarly, mouse PXR ligand (PCN) attenuated thrombus formation in mouse 

blood, while no effect was observed in human blood. These findings also indirectly 

confirm that the effects of PXR ligands are likely to be mediated through PXR in 

human and mouse platelets. Due to the species-specific profile of PXR ligands, the 

effects of human PXR ligands were evaluated in vivo using ‘humanised’ PXR mice 

(hPXR) (Taconic Biosciences), in which the endogenous mouse PXR gene has been 

replaced with human PXR gene (Scheer et al., 2008; Scheer et al., 2010). Similar to 

inhibition of in vitro thrombus formation, SR12813 significantly down-regulated 

laser-induced arteriolar thrombosis. A smaller thrombus, with initial kinetics 

similar to the vehicle-treated sample was still able to form upon treatment with 

SR12813. The initial rapid kinetics of thrombus formation in SR12813 treated 

mice might be due to (i) an initial burst of numerous platelet adhesive stimulants 

(such as vWF, P-selectin, angiopoietin-2, tissue plasminogen activator, and 

endothelin-1) from the injured endothelial cells and (ii) rapid stimulation of 

platelets through their GPCRs by locally synthesised thrombin (via coagulation 

pathway) at the injured site and secretion of TxA2, ADP and thrombin from 

activated platelets. Additionally, a substantial increase in tail bleeding time was 

observed in the hPXR mice treated with SR12813, indicative of impaired 

haemostasis.  

PXR ligands were noted to substantially inhibit activation of the GPVI-

mediated signalling pathway, while there was no modulation of inhibitory 

signalling arbitrated by cyclic nucleotides or via PKA and PKG. An attenuation of 

both early and late phases of GPVI signalling pathway was observed. As described 

in chapter 1 (section 1.5.1), GPVI receptor clustering after its binding to 
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collagen/CRP-XL initiate signalling pathway that begins with the 

autophosphorylation of the SFKs, which subsequently phosphorylate the ITAM-

containing FcRγ-chain that provide a binding site to Syk to become auto-

phosphorylated. This is followed by Syk-mediated phosphorylation of LAT, 

resulting in the formation of the LAT-signalosome and consequent 

phosphorylation and activation of PLCγ2. Calcium mobilisation and PKC activation 

follow next, which stimulate degranulation and activation of integrin αIIbβ3, 

resulting in platelet aggregation (Li et al., 2010; Watson et al., 2005). Inhibition of 

GPVI signalling was observed from the beginning of the pathway with reduced 

phosphorylation levels of SFKs, which was followed with down-regulation of Syk, 

LAT and PLCγ2 phosphorylation. These findings add PXR to the list of NRs such as 

LXR and PPARγ that can regulate GPVI mediated signalling in platelets (Moraes et 

al., 2010b; Spyridon et al., 2011). The ability of PXR ligands to inhibit SFKs is a 

novel observation, which has not been previously reported for other NRs 

expressed in platelets. Besides the regulation of GPVI signalling, SFKs also function 

to initiate signalling via rhodocytin or podoplanin receptor CLEC-2 that share 

considerable structural similarity with GPVI (Watson et al., 2010). PXR ligands 

were also able to inhibit phosphorylation of Src, downstream of CLEC-2, which 

indicates SFKs as the general target of PXR ligands. Furthermore, reduction in the 

phosphorylation of Src proximal to integrin αIIbβ3 receptors was also noted, 

which provide additional evidence that PXR ligands indeed mediate their action by 

regulating SFKs. Since SFKs play a crucial role in the regulation of outside-in 

signalling via integrin αIIbβ3; its inhibition by PXR ligands was also reflected by 

diminished levels of platelet spreading on fibrinogen and reduced fibrin clot 

retraction. Besides this, PXR ligands also inhibited calcium mobilisation, PKC and 
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MLC phosphorylation, which demonstrate their ability to modulate late events of 

GPVI signalling cascade (Figure 6.1). While the underlying mechanism that 

contributes towards the inhibition of GPVI signalling components is still unknown. 

One possibility is through the direct interaction of PXR with one or more of GPVI-

stimulated signalling molecules, as reported in case of LXR and PPARγ, which 

interact with Syk/PLCγ2 and Syk/LAT respectively (Moraes et al., 2010b; 

Spyridon et al., 2011). Treatment with LXR ligand GW3965 substantially increased 

the LXR-Syk and LXR-PLCγ2 interactions, which was associated with the 

attenuation of platelet function (Spyridon et al., 2011). Similarly, PPARγ in its 

unliganded state interacts with Syk and LAT and plausibly facilitate the 

phosphorylation and activation of proteins downstream within the GPVI pathway. 

However, upon ligation of PPARγ, these interactions were identified to be reduced 

and may account for the inhibition of GPVI signalling and subsequent platelet 

activation (Moraes et al., 2010b). However, immunoprecipitation of PXR did not 

reveal interactions with Src, Syk, LAT or PLCγ2. There are challenges associated 

with co-immunoprecipitation assays, which mainly depend on the quality, 

specificity and efficiency of antibodies targeting a specific protein to study 

protein-protein interactions (Bordeaux et al., 2010). Therefore the interaction of 

PXR with these and other components of GPVI signalling cannot be ruled out yet 

and would require further examination by other techniques such as mass 

spectrometry. Moreover, PXR ligands were observed to inhibit calcium 

mobilisation stimulated by low concentrations of thrombin, suggesting regulation 

of underlying signalling. Therefore, the influence of PXR ligands on GPCR 

signalling at such concentrations cannot be excluded. 
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Collectively, these findings suggest that PXR ligands, besides their potential 

anti-atherosclerotic properties, may produce additional cardioprotective effects 

through anti-thrombotic effects. However, development of PXR ligands into 

potential therapeutic agents requires two important considerations: Firstly, the 

anti-thrombotic effects of these ligands require careful balancing with the 

associated risk of bleeding. Secondly, drug-drug interactions (DDIs) associated 

with the activation of PXR should be considered. PXR facilitates the induction of 

key enzymes such as CYP2B6, CYP3A4, and UGT1A1 that are chiefly involved in 

the metabolism of approximately 80% of clinically used drugs (Zhou et al., 2009b). 

Metabolism typically inactivate drugs, though, some drugs when metabolised 

demonstrate higher pharmacological activity than the parent compound 

(prodrug). It has been reported that several drugs that are PXR activators when 

co-administered at therapeutic doses with other drugs (such as anti-HIV protease 

inhibitors, oral contraceptive, thiazolidinediones and benzodiazepines) are 

predicted to cause DDIs (Sinz, 2013; Wang et al., 2014a; Chai et al., 2013). The 

most common DDIs arise when one drug either enhances or reduces the effective 

concentration of another. This can have adverse effects because PXR activation by 

their ligands can reduce the metabolism of the other compound, causing it to 

accumulate at toxic levels. Whereas, increased metabolism can decrease the 

therapeutic concentration of the other drug or increase the accumulation of toxic 

metabolites (Moore and Kliewer, 2000). For instance, co-administration of 

rifampicin with rosiglitazone (PPARγ activator) was reported to decrease the 

therapeutic concentration of rosiglitazone significantly, making it no longer 

efficacious (Park et al., 2004). Recently, PXR induction in a cultured rat aorta 

system was found to up-regulate the transcription of CYPs involved  in the 
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metabolism of clopidogrel (irreversible inhibitor of platelet ADP receptor, P2Y12), 

leading to the metabolic conversion of its prodrug form to its bioactive metabolite 

that inhibited platelet aggregation (Swales et al., 2012). Therefore, enhanced 

metabolism of clopidogrel through PXR activation can lead to bleeding disorders 

(Sibbing et al., 2010). Therefore, DDIs mediated by PXR activation are an 

important consideration that needs to be taken into account, should PXR ligands 

be developed into potential anti-thrombotic agents.  
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Figure 6.1: Schematic representation of the effects of PXR ligands on platelet 
signalling. Treatment of platelets with PXR ligands inhibit both early and late stages 
of GPVI signalling pathway. Exposure of platelets to PXR ligands reduced 
phosphorylation of Syk (at Y525/526), LAT (at Y200) and PLCγ2 (at Y1217). PXR 
ligands also decreased CRP-XL-mediated rise in intracellular calcium levels, which 
was followed by a decrease in the phosphorylation of PKC and MLC (S19). Treatment 
with PXR ligands also inhibited phosphorylation of SFKs downstream of GPVI (Src at 
Y418 and Lyn at Y396), CLEC-2 (Src at Y418) and integrin αIIbβ3 (Src at Y418) 
receptors, which indicates SFKs to be general targets of PXR ligands. The inhibition of 
the activity of these signalling proteins was associated with reduced affinity 
upregulation of integrin αIIbβ3, aggregation, degranulation and platelet spreading. 
The underlying mechanisms through which PXR mediate inhibition of these signalling 
components are not yet clear.  
(Abbreviations- SFK: Src family kinases, Syk: Spleen tyrosine kinases, LAT: Linker for activated T cells, 
PLCγ2: Phospholipase Cγ2, PKC: protein kinase C, MLC: Myosin light chain, Ca2+: Calcium, CLEC-2: C-
type lectin-like receptor 2, GPVI: Glycoprotein VI) 
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6.3. Non-genomic regulation of platelet activation by RXR ligands 

RXR in its genomic role is known to form a heterodimer with numerous non-

steroid NRs such as LXR, FXR, PPARs and PXR. The interaction of these non-

steroid NRs with RXR is vital to facilitate their binding to DNA and subsequent 

transcription of their target genes (Evans and Mangelsdorf, 2014). Additionally, 

heterodimers can also regulate a wide range of signalling pathways associated 

with RXR and its binding partner by their ability to initiate signalling in response 

to stimulation by ligands of both, RXR or the other binding partner forming the 

dimer (Li et al., 2004). As a consequence of these interactions, RXR is associated 

with the regulation of a range of physiological processes including the regulation 

of glucose, triglyceride, cholesterol, and bile acid homeostasis. RXR ligands have 

been proposed to exhibit athero-protective effects in mouse models of 

atherosclerosis (Claudel et al., 2001).  

Moraes et al. (2007) reported the expression of RXR in platelets and 

treatment with 9-cis-RA resulted in an interaction between RXR and Gq, causing a 

reduction in U46619 or ADP-mediated platelet aggregation. In the present study, a 

novel mechanism was proposed, where RXR ligands elicit anti-platelet effects 

through the activation of PKA via cAMP and NFκβ upregulation (Figure 6.2) 

(Unsworth, Flora et al., 2017). Treatment of platelets with RXR agonists, 9-cis-RA 

or methoprene acid, inhibited a range platelet activation processes such as 

integrin αIIbβ3 activation, platelet aggregation, degranulation, calcium 

mobilisation that were stimulated by both GPVI receptor agonists (collagen and 

CRP-XL) or GPCR receptor agonist (thrombin). This was found to be associated 

with a substantial reduction in thrombus development in vitro and in vivo 
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(Unsworth, Flora et al., 2017). Therefore, considering the role of platelets towards 

the initiation of atherosclerosis, the previously described anti-atherosclerotic 

effects of RXR ligands might be partly due to their antiplatelet effects. Additionally, 

9-cis-RA treatment also prolonged the tail-bleeding time in mice, which is 

consistent with the observations of reduced blood clotting in patients taking 

Alitretinoin (9-cis-RA) for the treatment of Kaposi sarcoma and eczema (Ghasri 

and Scheinfeld, 2010; Walmsley et al., 1999).  

In the present study, RXR was also found to form heterodimers in platelets 

with LXR, PPARα, PPARγ and PXR. While unexplored, it can be speculated that 

these interactions may lead to potential cross-talk between the non-genomic 

mechanisms of action of these NRs in platelets, leading to the transformation of a 

simple linear signalling pathway to a complex network. Treatment with multiple 

NR ligands may indulge in the stimulation of different signalling pathways in 

platelets (Boonyaratanakornkit and Edwards, 2007), facilitating platelet inhibition 

in an additive, cooperative or synergistic manner (Rőszer et al., 2013). For 

instance, patients co-administered with rifampicin (PXR activator) and alitretinoin 

(RXR activator) may cause a stronger inhibition of platelet activation by 

simultaneous downregulation of GPVI signalling and upregulation in PKA activity 

respectively. Similarly, treatment with RXR and FXR ligands may exhibit stronger 

effects via co-activation of PKA and PKG respectively. Therefore, combinatorial 

stimulation of NRs might modulate each other’s inhibitory mechanisms and 

generate responses that are more pronounced than individual responses. 

Although these results look promising with respect to the antiplatelet 

actions of RXR ligands, potential bleeding risk and the specificity of RXR ligands 
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towards RXR in platelets are important considerations that need further 

evaluation before developing RXR ligands into potential anti-thrombotic agents. 

Experiments employing mice that lack a functional RXR gene is the ideal way to 

confirm this. RXR-deficient mice, however, are not viable, which makes their usage 

complicated. For instance, systemic loss of the RXRα (expressed in platelets) gene 

is embryonically lethal due to defective cardiac ventricles and ocular 

abnormalities (Pinaire and Reifel-Miller, 2007). Approximately 50% of RXRβ 

(expressed in platelets) null mutant mice die before or at birth (Meissburger and 

Wolfrum, 2008).  

Treatment with RXR ligands in the presence of their antagonists such as 

HX531 and PA452 (Kanayasu-Toyoda et al., 2005; Takahashi et al., 2002) could be 

an alternative strategy to evaluate the specificity of RXR ligands in platelets. Most 

of the NR antagonists (including RXR), however, are defined based on their ability 

to regulate genomic functions of the NRs by preventing their binding to the DNA, 

which antagonises transcription processes. However, platelets lack genomic DNA 

and exhibit minimal protein translation, therefore, in the absence of nuclei, the 

actions of NRs in platelets are chiefly non-genomic in nature. Consequently, non-

genomic effects may not respond to antagonists in the same way as genomic 

effects. Moreover, the mechanisms of action of antagonists in a non-genomic 

context are unclear. This limits the use of NR antagonists in studies targeting non-

genomic effects of NR ligands. For instance, in the present study, it was reported 

that HX531, which is an RXR antagonist (genomically), functions as an RXR agonist 

in platelets. Treatment with HX531 inhibited platelet aggregation stimulated by 

collagen, thrombin or U46619 in a manner similar to 9-cis-RA and methoprene 
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acid (Unsworth, Flora et al., 2017). HX531 shares the same ligand binding site on 

RXR as 9-cis-RA and methoprene acid, and under genomic regulation, HX531 

induces a conformational change in the receptor and blocks its DNA-binding 

ability (Unsworth et al., 2017c). However, HX531-induced conformational change 

of RXR, preventing its DNA binding should not affect its non-genomic effects, in the 

absence of DNA. Therefore, the antiplatelet effects of HX531 may be due to other 

conformational changes that occur after ligand interaction (similar to RXR 

ligands). 
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Figure 6.2: Schematic representation of the effects of RXR ligands on platelet 

signalling. RXR ligands, 9-cis-RA or methoprene acid inhibit platelet activation 

stimulated by a range of platelet agonists that include GPCR agonists (ADP, 

U46619 or thrombin) and GPVI agonists (collagen or CRP-XL). Interaction of RXR 

with Gq and subsequent negative regulation of Rac activation is one of the 

probable explanations for the reduction in GPCR mediated platelet activation. 

These ligands have also been shown to upregulate PKA activity in a cAMP and 

NFκβ dependent manner providing a more generalised mechanism of inhibition. 

Despite the inhibition of collagen/CRP-XL mediated platelet activation by RXR 

ligands, there was no effect on GPVI mediated signalling (Figure courtesy of Dr A. 

Unsworth) 
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6.4. Could NRs offer anti-platelet therapeutic targets? 

Platelets are known to contribute directly towards the development of 

cardiovascular diseases (CVDs) such as thrombosis and atherosclerosis (Lin et al., 

2009), whereas, they exhibit hyperactivity in cases of hyperlipidaemia (Wang and 

Tall, 2016), diabetes mellitus (Schneider, 2009) or hypertension (El Haouari and 

Rosado, 2009). This makes platelets therapeutic targets for the treatment of CVDs, 

particularly atherothrombosis (Badimon et al., 2012). Significant advances have 

been made towards the development of effective anti-thrombotic therapeutics, 

however, they are still known to pose bleeding risks and their efficacy becomes 

substantially reduced in patients suffering from pathological conditions such as 

hypertension and diabetes (Nathan et al., 2017). Therefore, development of 

effective therapeutics that ensure a balance between the prevention and 

treatment of thrombosis and related complications is needed.  

Non-genomic effects of NR ligands (both natural and synthetic) have been 

reported to modulate platelet function through different mechanisms, several of 

which appear to be shared by different NR family members. NRs are known to act 

as therapeutic targets of approximately 13% of FDA approved drugs for the 

treatment of several pathological conditions including the CVDs (Table 6.1) 

(Overington et al., 2006). Therefore, drugs targeting NRs are likely to have effects 

on platelet activity as well and should not be ignored. However, development of 

NRs as anti-platelet therapeutic targets requires a few important considerations. 

Firstly, studies so far have only considered the acute effects of NR ligands on 

platelet functions. Therefore, it would be important to evaluate the consequences 

of chronic exposure of NR ligands on platelet activity, prior to the development of 
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these ligands as potential anti-platelet agents. Secondly, the possibility of genomic 

effects occurring in platelets cannot be denied completely, given the existence of 

mRNA in platelets and their limited ability to perform translation (Zimmerman 

and Weyrich, 2008; Rowley et al., 2012). The ability of NRs to interact with mRNA 

and regulate the genomic activity of a cell has been reported (Ottaviani et al., 

2014; Xu and Koenig, 2004). Therefore, it is important to distinguish genomic and 

non-genomic effects in platelets. There are few features that can make this 

distinction: (i) The difference in time frames to mediate genomic effects (hours) 

and non-genomic effects (minutes) is the first parameter that can differentiate 

between these two regulatory mechanisms (Harvey et al., 2001). (ii) Non-genomic 

effects, unlike genomic regulation, are non-responsive to the inhibitors of 

transcription or translation (Losel and Wehling, 2003). Therefore, future studies 

evaluating the role of NRs in platelets should consider including these inhibitors 

that may help to differentiate between genomic and truly non-genomic actions of 

these receptors. Schwertz et al. (2017) recently described such a mechanism 

demonstrating RAR-dependent translational control in human platelets, which 

resulted in the synthesis of several transcripts (Schwertz et al., 2017). Whether 

other NRs (such as RXR, PXR, FXR, LXR or PPARs), identified in platelets, can also 

replicate such a mechanism is still unknown. Finally, it is important to note that 

the existence of a substantial level of structural similarity between different NRs 

makes them potentially promiscuous (Ng et al., 2014; Kwon et al., 2014; Noy, 

2007; Sepe et al., 2016; Krasowski et al., 2011). Numerous studies examining the 

genomic functions have reported this feature of NRs, for example; 15d-PGJ2 is an 

endogenous PPARγ ligand, which can also act as an FXR antagonist (Xu et al., 

2013), whereas, phytanic acid can activate both PPARα and RXR (Hellgren, 2010). 
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Hyperforin is a PXR agonist but functions as an FXR antagonist (Jonker et al., 

2012). Similarly, LG100754 is a highly specific RXR:PPARγ agonist while it acts as 

an antagonist of RXR homodimers (Cesario et al., 2001). This makes the selective 

targeting of the NRs challenging and as such identification of ligands that function 

in a receptor- and gene-specific manner is important.  

 

Table 6.1. Commercially available nuclear receptor drugs (Flora et al., 

2018) 

Nuclear 
Receptor 

Disease Drug generic name 
(Marketed Drug) 

 
 

GR 

Metabolic and 

immunological 

disorders 

Dexamethasone (Dexasone), 

Prednisolone (Orapred)  
(Sundahl et al., 2015; Kadmiel and Cidlowski, 2013) 

 

ER 

Breast cancer,  

obesity 

Tamoxifen (Nolvadex), 

Raloxifene (Evista) 
(Muchmore, 2000; Y Maximov et al., 2013) 

PPARα Dyslipidemia, 

atherosclerosis 

Fenofibrate (Tricor) 
(Filippatos and Milionis, 2008) 

 

PPARγ 

Diabetes,  

obesity 

Pioglitazone (Actos), 

Rosiglitazone (Avandia) 
(Kersten et al., 2000; Ahmadian et al., 2013) 

RAR Leukaemia, acne 13-cis-retinoic acid (Isotretinoin) 
(Layton, 2009) 

 

RXR 

Leukaemia, Kaposi 

sarcoma, 

eczema 

9-cis-retinoic acid (Alitretinoin), 

Bexarotene (Targretin) 

(Ghasri and Scheinfeld, 2010; Njar, 2008; Walmsley et 

al., 1999) 

 

VDR 

Osteoporosis,  

calcium homeostasis 

Calcitriol (Calcijex), 

Paricalcitol (Zemplar) 
(Wu‐Wong, 2009; Makishima and Yamada, 2005) 
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6.5. Future Work 

The work presented here provides substantial insights into the role of PXR 

and RXR in platelets and begins to address underlying mechanisms of action. 

However, several questions need to be investigated in platelets prior to the 

development of RXR and PXR ligands as potential anti-thrombotic agents: 

 

1. Specificity of PXR and RXR ligands 

Given the promiscuous nature of NR ligands, evaluating their specificity is of 

vital importance. This is because of the cross-reactivity of ligands between 

different members of the NR family may lead to undesired side-effects. 

Development of NR knockout (KO) mice is challenging due to their involvement in 

the regulation of a range of genes, some of which controls embryogenesis, cellular 

differentiation and metabolism, the deletion of which can be embryonically lethal 

(Gray et al., 2005; Sucov et al., 1994). Based on these reasons, mice lacking RXR 

gene are not viable (Meissburger and Wolfrum, 2008; Pinaire and Reifel-Miller, 

2007) and thus the development of platelet-specific conditional compound KOs 

devoid of both RXRα and RXRβ isoforms (expressed in platelets) would be ideal to 

test the specificity of RXR ligands towards RXR. In the absence of nucleus in 

platelets, a genomic deletion of RXR in platelets must be accompanied by its 

deletion in the parent cell, megakaryocyte. This might add another challenge as 

the expression of NRs might have crucial roles to perform in megakaryocytes. For 

instance, PPARγ in megakaryocytes is associated with platelet production (Sahler 

et al., 2012). Our lab recently identified an impaired platelet-production in 

megakaryocyte/platelet-specific conditional PPARγ KO mice (unpublished 
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finding). Given the ability of RXR to interact with PPARγ, deletion of RXRα/β 

isoforms may also alter platelet production and need to be investigated.  

The species-specific effects of PXR ligands indirectly explain their 

specificity in platelets. However, the specificity of PXR ligands, in addition to this 

can also be tested using PXR KO mice that are commercially available (Taconic 

Biosciences). Evaluating this was beyond the scope of this study due to financial 

licencing and time constraints.  

 

2. Chronic effects of PXR and RXR ligands 

The studies reported so far have addressed the acute effects of NR ligands. 

However, physiologically NRs are exposed to drug/ligands targeting NRs for 

longer durations. Consequently, it is important to understand the influence of 

chronic exposure of NR ligands on platelets. For example, under chronic 

treatment, metabolism may alter the effective therapeutic concentrations of PXR 

and RXR ligands, which may affect their efficacy on platelets. Under chronic 

exposure, the effective therapeutic concentration of NR ligands might be different 

than evaluated under acute exposure. For instance, in this study 10 or 20 µM of 

PXR ligands were found to be largely ineffective in regulating platelet activation. 

However, prolonged exposure to these concentrations in vivo may exhibit better 

efficacy in comparison to their acute exposure. Apart from this, studying chronic 

exposure would also enable us to determine potential side-effects of NR ligands on 

other cell types apart from platelets. Additionally, a chronic study in vivo would 

also take into account the effects of NR ligands (at pharmacologically relevant 
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concentrations) on megakaryocytes and how they regulate platelet production in 

the presence of NR ligands.   

 

3. Distribution of PXR and RXR in platelets 

A redistribution and release of RXR (Ray et al., 2008; Unsworth et al., 2017c) 

and PXR from platelets have been proposed following their activation. It is 

speculated that such a rearrangement of NRs might be due to their role in the 

regulation of platelet signalling (discussed in section 6.2) and their release might 

lead to their delivery in other cell types, plausibly in the form of microparticles 

(Ray et al., 2008). In order to understand the relevance of this observation, it 

would be helpful to devise the exact location of NRs in both resting and activated 

platelets using electron microscopy with immunogold labelling or super-

resolution microscopy such as Stochastic Optical Reconstruction Microscopy 

(STORM).  

Immunogold labelling is a useful technique that can probe into the 

ultrastructure of a cell and can prove to be effective in the identification of the 

precise location of RXR and PXR in platelets (Murtey, 2016). Conventional 

fluorescence microscopy due to a relatively low spatial resolution limits the 

visualisation of small cells such as platelets (2-4 µm) (Huang et al., 2009). STORM 

super-resolution microscopy breaks this resolution limit and allows the 

visualisation of cellular structures, individual proteins and entire organelles at a 

nanometer scale (Rust et al., 2006), which would again be beneficial to study the 

distribution of NRs in platelets.  
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4. Consequences of potential cross-talk between NRs 

Given the prospects of the formation of RXR heterodimers in platelets, there is 

a possibility of potential cross-talk between the mechanisms of actions of NRs in 

platelets. Combinatorial studies of NR ligands in platelets targeting different NRs 

might be helpful in dissecting such effects and determining how exposure to 

different NR ligands can influence multiple signalling pathways in platelets and 

consequently regulate their activation. Testing several combinations of low 

medium and high concentrations of different NR ligands through high-throughput 

96-well platelet-based aggregations or flow cytometry analysis (fibrinogen 

binding or P-selectin exposure) may enable the identification of their plausible 

additive, cooperative and synergistic effects in modulating platelet activation. Such 

an investigation would also determine the likely effects of NR drugs/ligands in 

patients taking multiple drugs targeting different NRs.  

 

5. Additional mechanistic insights  

PXR ligands have been shown to inhibit the phosphorylation of several 

components of the GPVI-mediated signalling in platelets. However, the 

mechanisms that mediate this inhibition are not entirely clear, although they are 

likely to act at the level of SFKs. Given the previous studies that indicate a direct 

interaction of NRs with GPVI signalling molecules to facilitate platelet inhibition 

(Moraes et al., 2010b; Spyridon et al., 2011), a similar investigation on PXR using 

mass spectrometry could be utilised to gain additional insights into the 

mechanisms of action of PXR ligands.  
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The conventional co-immunoprecipitation assays are effective to 

investigate protein-protein interaction, but they may fail to detect low-affinity and 

instantaneous protein-protein interactions, which is highly plausible in the case of 

platelet-signalling, which is characterised by rapid and dramatic responses upon 

agonist-stimulation. Moreover, this assay requires the use of antibodies with high 

specificity and avidity along with the prior prediction of the target interactive 

protein (Miernyk and Thelen, 2008; Free et al., 2009). Considering this, analysis of 

protein-protein interactions using mass spectrometry may be possible, because by 

targeting a known member of the complex, the entire protein complex can be 

isolated and then subjected to the identification of protein composition with high 

sensitivity, in comparison to co-immunoprecipitation (Figeys et al., 2001; Han et 

al., 2008).      

 

6.6. Major outcomes of the study 

This study identifies the presence of a novel nuclear receptor, PXR, in 

platelets and the ability of its ligands to negatively regulate platelet functions and 

thrombus formation in a non-genomic manner. These ligands were also found to 

exhibit their effects in a species-specific manner in human and mouse platelets, a 

feature observed in other cell types. Regulation in the phosphorylation levels of 

SFKs, downstream of GPVI, CLEC-2 and integrin αIIbβ3 receptor was identified as 

a general mechanism by which PXR ligands inhibit platelet activation, with GPVI 

signalling being the major pathway affected. The potential mode of action 

contributing towards the inhibition of signalling is unclear. However, it is plausible 
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that PXR interacts directly with GPVI signalling molecules such as SFKs and thus 

facilitate their inhibition.  

This study also identifies that RXR ligands besides their previously reported 

ability to inhibit platelet activation stimulated by U46619 and ADP, also attenuate 

collagen/CRP-XL and thrombin-mediated platelet activation. Thrombus formation 

in vivo was inhibited by RXR ligands and RXR was also found to form heterodimers 

with PXR, LXR, PPARα and PPARγ. RXR ligand-mediated inhibition of platelet 

activation was found to be an outcome of the upregulation of PKA activity in a 

cAMP- and NFκB-dependent manner (Unsworth, Flora et al., 2017).  

In conclusion, the work presented here identifies the ability of PXR and RXR 

ligands to regulate platelet function and provides novel mechanistic insights that 

facilitate these effects. Previously proposed anti-atherosclerotic effects of PXR and 

RXR ligands along with their newly discovered anti-thrombotic effects suggest 

that PXR and RXR may represent potential candidates for the development of 

cardioprotective drugs. 
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