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Abstract 

Objective  

We have shown that aggregated low density lipoproteins (LDL) is internalised by 

macrophages and oxidised in lysosomes by redox-active iron. We have now investigated 

if the lysosomal oxidation of LDL impairs lysosomal function and if a lysosomotropic 

antioxidant can prevent these alterations. 

Approach and Results 

LDL aggregated by sphingomyelinase (SMase-LDL) caused increased lysosomal lipid 

peroxidation in human monocyte-derived macrophages or THP-1 macrophage-like cells, 

as shown by a fluorescent probe, Foam-LPO. The pH of the lysosomes was increased 

considerably by lysosomal LDL oxidation as shown by Lysosensor Yellow/Blue and 

LysoTracker  Red. SMase-LDL induced senescence-like properties in the cells as shown 

by β-galactosidase staining and levels of p53 and p21. Inflammation plays a key role in 

atherosclerosis. SMase-LDL treatment increased the LPS-induced secretion of TNF-α, IL-

6 and MCP-1. The lysosomotropic antioxidant, cysteamine inhibited all of the above 

changes. 

Conclusions 

Targeting lysosomes with antioxidants, such as cysteamine, to prevent the intralysosomal 

oxidation of LDL might be a novel therapy for atherosclerosis. 

 

Keywords: LDL, macrophages, lysosomes, lipid peroxidation, antioxidants, 

atherosclerosis   
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Introduction 

The presence of lipid-laden macrophage foam cells is a characteristic feature of 

atherosclerosis (1). The foam cells derive the majority of their lipid from uptake of modified 

lipoprotein, such as aggregated or oxidised low density lipoproteins (LDL) (2). Under 

normal conditions, receptor-mediated uptake of lipoproteins trafficks the particles to 

lysosomes, where at an acidic pH, the lysosomal enzymes break down the protein and 

lipid components of LDL to products that can transverse the lysosomal membrane (3). 

Modified LDL is recognised and taken up by receptors on macrophages, however, due to 

a lack of feedback regulation for such uptake, this leads to accumulation of cholesterol in 

these cells (4). 

Studies which examine foam cell formation by the incubation of macrophages with 

modified monomeric LDL (e.g. oxidised LDL) do not fully reflect the in vivo environment, 

as the majority of the LDL in atherosclerotic plaques is found in an aggregated state and 

bound to subendothelial matrix (5, 6).  

There are many mechanisms that might explain how LDL is oxidised in the arterial wall 

(7). Many of these are inhibited strongly by serum or interstitial fluid (8-10), but some, for 

instance oxidation by myeloperoxidase (11), are relatively resistant to inhibition. 

Furthermore, the conventional oxidised LDL hypothesis does not explain why the large 

clinical trials showed no protection by antioxidants, mainly α-tocopherol, against 

cardiovascular disease (12).  

LDL might be nonoxidatively modified and aggregated by enzymes, such as 

sphingomyelinase, lipoprotein lipase, proteases, or secretory phospholipase A2 enzymes, 

in the extracellular space of atherosclerotic lesions (13), rapidly phagocytosed by 

macrophages and delivered to lysosomes, where we hypothesised it might then be 

oxidised (14). In support of this view, we showed that 7 days after taking up LDL 

aggregated by vortexing, macrophages generated ceroid in their lysosomes. Ceroid 
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(lipofuscin) is a polymerised product of lipid oxidation found within foam cells in 

atherosclerotic lesions (15). The oxidation of LDL in lysosomes is catalysed by iron. The 

LDL was shown to be oxidised in lysosomes (14), rather than in culture medium, because 

the medium consisted of Dulbecco’s modified Eagle’s medium, which does not support 

LDL oxidation by cells (8), and contained serum (20% v/v), which strongly inhibits LDL 

oxidation. Also, ‘pulse-chase’ experiments showed that there was an increase in lipid 

peroxidation in the cells in the complete absence of extracellular lipoproteins (14).  

Sphingomyelinase is found in atherosclerotic lesions and has been proposed to be one of 

the key enzymes causing aggregation of LDL in the extracellular space of the lesions (16). 

Aggregation of LDL by sphingomyelinase has been reported to cause a 10 fold increase in 

cholesteryl ester accumulation in macrophages compared to native LDL (17). We have 

shown that human LDL when aggregated with sphingomyelinase is rapidly taken up by 

human macrophages and oxidised inside lysosomes (18). LDL oxidation by iron at 

lysosomal pH is not inhibited effectively by α-tocopherol (19). Cysteamine is a drug which 

accumulates many fold in lysosomes, due to increased protonation of its amine group at 

acidic pH (20). We have shown that cysteamine is able to greatly inhibit LDL oxidation by 

ferrous iron under lysosomal conditions (21) and copper ions (results not shown).  

de Duve’s group showed that cholesterol accumulates in lysosomes in atherosclerotic 

lesions (22). Hoff’s group later showed that oxidised LDL inactivates the lysosomal 

protease cathepsin B at low pH (23), probably because aldehydes on oxidised LDL 

covalently bind to cysteine and histidine residues on cathepsin B (24, 25). This might help 

to explain why oxidised LDL is not degraded efficiently by lysosomes. In addition, 

lysosomal cholesterol and cholesteryl esters derived from oxidised LDL are resistant to 

removal from lysosomes (26). Oxidised cholesteryl ester aldehydes can react with lysine 

residues of proteins and might be involved in ceroid formation (27). Lysosomal 

dysfunction might play an important role in foam cell formation and plaque development 

(28). Cholesterol accumulation in lysosomes inhibits the vacuolar-ATPase proton pump 
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and increases the pH of lysosomes beyond the pH range of lysosomal acid lipase (29). 

Oxidised LDL and cholesterol crystals are able to cause profound lysosomal dysfunction 

in mouse macrophages through disruptions in the pH, proteolytic capacity and membrane 

integrity of these organelles (30).  

Atherosclerosis is also seen to be associated with biological ageing, as atherosclerotic 

plaques show evidence of cellular senescence characterized by reduced cell proliferation, 

apoptosis, elevated DNA damage, epigenetic modifications and telomere dysfunction (31). 

Not only is cellular senescence associated with atherosclerosis, there is growing evidence 

that cellular senescence may promote atherosclerosis (32-34). It is believed that oxidative 

stress-induced damage to cellular components, probably due to the combination of 

increased reactive oxygen species (ROS) and impaired antioxidant defence, is a major 

contributor to the ageing process (35). Although it is well established that oxidised 

lipoproteins and their products are able to induce ROS-dependent senescence in cells 

(36-38), it is not known if the lysosomal oxidation of LDL can induce senescence in human 

cells. 

Inflammation participates in atherosclerosis during initiation and throughout all stages of 

plaque development (39). Expression and secretion of inflammatory cytokines, like TNF-α, 

IL-1β, IL-6 and MCP-1, by the cells in the arterial intima is another characteristic feature of 

atherosclerosis. Many studies have shown that oxidised LDL can activate macrophages, 

including inflammatory reactions (40), but the possible role of lysosomal oxidation of LDL 

is unknown. 

We report here that lysosomal oxidation of aggregated LDL affects the pH of lysosomes in 

human macrophages by altering the lysosomal pH and induces cellular senescence and 

secretion of inflammatory cytokines. These effects were reversed by the lysosomotropic 

antioxidant cysteamine, which we have shown inhibits the oxidation of LDL at lysosomal 

pH and in lysosomes of cultured macrophages (21).  
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Materials and Methods 

Materials and methods 

Chemicals and reagents used in this study were purchased from Sigma-Aldrich, Dorset, 

UK, or Fisher Scientific Ltd, Loughborough, UK, unless otherwise stated. Solutions were 

prepared using ultrapure water generated from a Barnstead Nanopure system. Organic 

solvents were HPLC or molecular biology grades.  

LDL isolation 

Blood was taken from healthy volunteers after overnight fasting using EDTA (final 

concentration 3 mmol/l) as the anticoagulant. LDL (1.019 to 1.063 g/ml) was isolated from 

the plasma by sequential density ultracentrifugation at 4 °C, as described previously (41). 

LDL was stored in the dark at 4 °C and used within 1 month.  

Cell culture 

Human macrophages or THP-1 cells were cultured under humidified 95% air/5% CO2 at 

37 °C in Gibco RPMI 1640 containing L-glutamine (0.3 g/l), penicillin (50 IU/ml), 

streptomycin (50 µg/ml), amphotericin B (0.95 µg/ml) and human or fetal bovine serum 

(10%, v/v), respectively, unless otherwise stated. THP-1 cells were purchased from the 

European Collection of Cell Cultures (Salisbury, UK). THP-1 cells were incubated in 

RPMI-1640 (2 ml per well) containing 10% (v/v) FCS with PMA (25 ng/ml) in 12-well tissue 

culture plates at 1 x 106 cells per well for 72 h to differentiate into macrophages. The 

macrophages were then washed and rested for a further 24 h before treatment with LDL. 

Human monocyte-derived macrophages (HMDM) were prepared from blood donated by 

healthy adults using Lymphoprep™ density gradient solution (Axis-Shield, Oslo, Norway) 

as previously described (42).  Briefly, after separation from blood cells, monocytes were 

incubated in RPMI medium containing 0.05% (v/v) human serum in nonadherent 6-well 

tissue culture plates for 40 h, then transferred to ordinary 6-well tissue culture plates with 

RPMI with 10% (v/v) human serum for 10 to 14 days. 
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Aggregation of LDL with sphingomyelinase  

Native LDL was diluted to 2 mg protein/ml with a buffer containing NaCl (150 mmol/l), 

MgCl2 (10 mmol/l) and HEPES (5 mmol/l), pH 7.4 and incubated with sphingomyelinase 

from Bacillus cereus (Sigma, catalogue number S9396-25UN) at 10 mU/ml (43), until the 

attenuance (absorbance plus light scattering) at 680 nm increased from about 0.0017 to 

0.027. The sphingomyelinase aggregated-LDL (SMase-LDL) was then dialysed against 

phosphate buffer (NaCl 140 mM, Na2HPO4 8.1 mM, NaH2PO4 1.9 mM and EDTA 100 

µM), pH 7.4, pre-treated with washed Chelex-100 to remove contaminating transition 

metals) (44), and sterilised with a 0.45 µm Minisart filter before use. Aggregation was 

confirmed by dynamic light scattering in UV grade cuvettes with a Zetasizer Nano Series 

particle sizer (Malvern Instruments, Worcestershire, UK). 

Lysosomal lipid peroxidation  

The process of lipid peroxidation in the lysosomes of macrophages was studied by 

employing a fluorescent probe called Foam-LPO, recently synthesised by Zhang et al. 

(45) and kindly provided by Professor Y. Xiao of Dalian University of Technology, PRC. 

Foam-LPO is a BODIPY derivative containing a conjugated diene group within its 

fluorophore structure, which behaves as a lipid peroxidation signalling unit, and a weakly 

alkaline tertiary amino group which enables the probe to be protonated and hence trapped 

and accumulated in the lysosomes. The conjugated diene group degrades in response to 

lipid peroxidation causing a fluorescent spectral shift from 586 nm to 512 nm, which can 

be measured by flow cytometry. THP-1 macrophages or HMDM (1 x 106 cells per well in 

12-well tissue culture plates) were incubated with pre-warmed culture medium (2 ml per 

well) either alone or containing native LDL (200 µg protein/ml) or SMase-LDL (200 µg 

protein/ml) in the presence or absence of cysteamine for 24 h at 37 °C. The adherent 

macrophages were washed three times with pre-warmed PBS and then scraped into 

culture medium using a plastic cell scraper and treated with Foam-LPO (2 µM) in RPMI-

1640 for 15 min and finally analysed using a BD Biosciences C6 flow cytometer. The data 
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were analysed using FlowJo software by determining the mean fluorescence intensity for 

each condition using untreated cells as a control. The fluorescence intensity ratio of the 

green channel to red channel (ratiometry) was taken as a measure of lysosomal lipid 

peroxidation.  

Reactive oxygen species (ROS) detection 

We also looked at the effect of SMase-LDL and cysteamine on the overall oxidative status 

of the macrophages by measuring reactive oxygen species (ROS) using the superoxide 

indicator dihydroethidium (DHE) (46). THP-1 or HMDM (1 x 106 cells per well in 12-well 

tissue culture plates) were incubated with pre-warmed culture media (2 ml per well) either 

alone or containing native LDL (200 µg protein/ml) or SMase-LDL (200 µg protein/ml) in 

the presence or absence of cysteamine for 24 h at 37 °C. The macrophages were there 

scraped off the plates, washed by centrifugation (5 min, 500 g) and treated with DHE (10 

µM) for 30 min. The cells were then washed three times with FACS buffer and analysed 

using a BD Biosciences C6 flow cytometer and analysed using FlowJo software by 

determining the mean fluorescence intensity for each condition using untreated cells as a 

control. 

Assessment of lysosomal function   

The lysosomal function of cells was measured using a lysosomotropic tracking dye called 

LysoTracker® Red DND-99 (Life Technologies), which accumulates in lysosomes due to 

proton trapping (47). THP-1 macrophages or HMDM (1 x 106 cells per well in 12-well 

tissue culture plates) were incubated with pre-warmed culture medium (2 ml per well) 

either alone or containing native LDL (100 µg protein/ml) or SMase-LDL (100 µg 

protein/ml) in the presence or absence of freshly-dissolved cysteamine for 72 h at 37 °C, 

with a change of medium every 24 h. After 72 h, the macrophages were washed three 

times with pre-warmed PBS to remove any residual LDL or cysteamine. The adherent 

macrophages were scraped into culture medium using a plastic cell scraper, collected into 

15 ml sterile polypropylene tubes and centrifuged at 500 x g for 5 min at room 



9 
 

temperature to remove cell debris. The cells were resuspended into 200 µl RPMI-1640 

medium (containing 10% (v/v) FCS) each and transferred into a clear 96-well round 

bottom microplate (Greiner CellStar®) and treated with LysoTracker Red (500 nM) in 

RPMI-1640 for 30 min at 37 °C. Cells were washed twice with HBSS, resuspended in 

FACS buffer and analysed using a BD Biosciences C6 flow cytometer. The data analysis 

was done using FlowJo software by determining mean fluorescence intensity for each 

histogram using untreated cells as a control. 

Measurement of lysosomal pH in macrophages 

Measurement of lysosomal pH in THP-1 cells was performed using a ratiometric 

lysosomal pH indicator dye called LysoSensor® Yellow/Blue DND-160 (Invitrogen) (48). 

THP-1 macrophages or HMDM (1 x105 cells per well in 96-well black microplate) were 

incubated with either no LDL or native LDL (100 µg protein/ml) or SMase-LDL (100 µg 

protein/ml) every 24 h for 72 h in the presence or absence of cysteamine. After 72 h, the 

medium containing LDL and cysteamine was washed off with PBS and the macrophages 

were then incubated with 5 µM Lysosensor Yellow/Blue for 30 min at 37 °C under 5% 

CO2. A separate set of THP-1 macrophages or HMDM were used to generate the pH 

calibration curve by a modification of the protocol established by Diwu et al (49). THP-1 

macrophages or HMDM (1 x105 cells per well for 72 h in 96-well black microplate) were 

incubated in 2-(N-morpholino)ethanesulfonic acid (MES) buffer (5 mM NaCl, 115 mM KCl, 

1.3 mM MgSO4, 25 mM MES), with the pH adjusted to a range from 4 - 6.0. Ten min prior 

to the LysoSensor addition, the H+/Na+ ionophore, monensin, and the H+/K+ ionophore, 

nigericin, were added to a final concentration of 10 μM each. This allowed lysosomal pH 

to equilibrate with the MES buffer and facilitated the creation of a standard curve 

correlating pH with the fluorescence emission spectra. Both the plates were read in a 

FLUOstar Optima fluorometer (BMG Labtech), with excitation at 355 nm. The ratio of 

emission 440 nm/535 nm was then calculated for each sample and the pH values were 

determined from the standard plot generated. 
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Cellular senescence  

Detection of senescent cells was done by using the senescence associated β-

galactosidase staining procedure described by Dimri et al (50) and p53/p21 expression 

(51, 52). THP-1 macrophages or HMDM (4,000 per well) were plated in 12-well tissue 

culture plates (Corning). The adherent macrophages were washed three times with pre-

warmed PBS and rested for 24 h. The cells were then incubated in fresh culture medium 

containing either no LDL, native LDL (100 µg protein/ml) or SMase-LDL (100 µg 

protein/ml) every 24 h for 72 h in the presence or absence of freshly-dissolved 

cysteamine. After 72 h, the medium was removed and cells were washed twice in PBS (2 

ml) at room temperature. The cells were then either stained for β-galactosidase activity or 

for the expression of p53 and p21. For β-galactosidase staining cells were fixed for 3 min 

with 500 µl paraformaldehyde (4% w/v) per well at room temperature. The fixative was 

removed and the cells were washed with PBS. Cells were then exposed to 5-bromo-4-

chloro-3-indolyl-D-galactopyranoside (X-gal, pH 6) (50) staining solution (600 µl per well) 

and samples were incubated at 37 °C without CO2 for 18 h. The staining solution was then 

removed and the plates were washed once with deionised water at room temperature and 

then twice with methanol. The plates were allowed to air dry after the last methanol 

passage and the blue stained, senescent, cells were visualised using a Nikon inverted 

phase contrast light microscope, with images taken at 10 magnification. Quantification of 

the blue stained cells was done manually (i.e. a cell was either blue or not) from 5 distinct 

fields of view from each well. For p53 and p21 expression, cells were scrapped from the 

plates and stained with p53 monoclonal antibody (1:100, BP53-12, ThermoFisher), FITC 

and p21 monoclonal antibody (1:200, R.229.6, ThermoFisher) followed by F(ab')2-goat 

anti-rabbit IgG (H+L) secondary antibody, PE-Cyanine5.5 (L43018, ThermoFisher) and 

analysed by flow cytometry.  
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Cytokine secretion 

We looked at the effect of lysosomal oxidation of LDL on secretion of the pro-inflammatory 

cytokines, TNF-α, MCP-1, IL-1β and IL-8 using commercially available ELISA kits. TNF-α 

levels were analysed using the human TNF-α ELISA Ready-SET-Go!® reagent kit 

(eBioscience Cheshire, UK), while MCP-1, IL-1β and IL-8 were measured using ELISA 

MAX™ Deluxe (Biolegend). THP-1 macrophages or HMDM were incubated in fresh 

culture medium alone or with native LDL or SMase-LDL (both at 50 µg protein/ml) for 

either 12 h or 24 h. To study the effect of cysteamine, macrophages were pre-treated with 

different concentrations of freshly-dissolved cysteamine for 24 h prior to LDL addition. 

After incubation with LDL, the medium was removed and the wells were washed three 

times with warm PBS. The washed cells were then treated with fresh culture medium 

containing ultrapure LPS derived from Escherichia coli (10 ng/ml) (Sigma) for 4 h to trigger 

cytokine production (53). The medium from each well was collected and assayed 

immediately using the manufacturer’s instructions. 

Measurement of conjugated dienes 

SMase-LDL (50 µg LDL protein/ml) was oxidised with freshly dissolved FeSO4 (5 µmol/L) 

at 37 °C in a NaCl/sodium acetate buffer (NaCl 150 mmol/l, sodium acetate 10 mmol/L; 

pH 4.5) in capped quartz cuvettes  and conjugated dienes were monitored in the presence 

or absence of cysteamine (25 µm) using a method based on that of Esterbauer et al. (54)  

The change in attenuance at 234 nm was measured at 37 °C against reference cuvettes 

containing all the components except LDL.  Measurements were taken at one minute 

intervals in a Lambda-2 6-cell or a Lambda Bio 40 8-cell spectrophotometer with UV 

Winlab software. 

Loss of LDL-tryptophan fluorescence measurement 

ApoB-100 contains 37 tryptophan residues that give LDL a strong fluorescence at 331 nm 

(Ex 282 nm). On oxidation, the LDL-tryptophan fluorescence decreases continuously 
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indicating the LDL is being oxidised (55). The decrease in tryptophan fluorescence was 

measured on a Cary Eclipse fluorescence spectrophotometer using the time-drive method 

at an emission wavelength of 331 nm, with excitation set at 282 nm.(55) The emission and 

excitation slits were set at 10 nm to obtain optimal fluorescence output. LDL (50 µg LDL 

protein/ml) was oxidised by freshly dissolved FeSO4 (5 µmol/L) at 37 °C in the 

NaCl/sodium acetate buffer, pH 4.5 in capped quartz cuvettes with or without cysteamine 

and the tryptophan fluorescence was measured every 10 min. 

Statistical analysis 

Unless stated otherwise, all results are expressed as means ± the standard error of the 

mean (S.E.M) of pooled data from 3 to 5 experiments as specified in the figure legends. 

Comparison of two means was done using a 2-tailed unpaired Student’s t test. For 

comparing more than two means one-way ANOVA was used followed by Tukey’s post 

hoc analysis to measure the level of statistical significance between groups. The level of 

significance of difference is indicated in the graphs as follows: * p ≤ 0.05, ** p ≤ 0.01, and 

*** p ≤ 0.001. ANOVA and post hoc analyses were carried out with GraphPad Prism 4 

software (La Jolla, CA). A p value of <0.05 was taken to be a statistically significant 

difference.  
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Results 

Macrophages treated with SMase-LDL show increased lysosomal lipid peroxidation 

which is inhibited by cysteamine 

Non-enzymatic oxidation of LDL is considered to be a free radical-driven lipid peroxidation 

chain reaction (56) and therefore lipid peroxidation might be one of the major pathological 

mechanisms involved in atherosclerosis. Lysosomal lipid peroxidation was quantified in 

macrophages using the novel probe Foam-LPO (45). THP-1 macrophage-like cells or 

HMDM were treated with SMase-LDL showed decreased fluorescence intensity in the red 

channel during flow cytometry compared to control macrophages (Figure 1A), showing 

lipid peroxidation was taking place in the lysosomes. Cysteamine (10 µM or 25 µM) 

significantly decreased (but not complete decrease) the red cannel fluorescence with 

SMase-LDL (Figure 1B). The process of lipid peroxidation was quantified by ratiometric 

analysis of the fluorescence intensities of the green and red channels (Figure 1C) (45). 

The macrophages which were treated with SMase-LDL showed a significant increase in 

the lipid peroxidation levels compared to control macrophages. The lysosomotropic 

antioxidant, cysteamine (10 µM or 25 µM), reduced lipid peroxidation in the SMase-LDL 

treated macrophages in a concentration-dependent manner. Cysteamine on its own had 

no significant effect on lipid peroxidation.  
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Macrophages treated with SMase-LDL show increased ROS production which is 

inhibited by cysteamine 

We looked at the overall oxidative status of the HMDM by using dihydroethidium (DHE), 

which detects superoxide and hydrogen peroxide. The macrophages which were treated 

with SMase-LDL showed increased ROS production compared to the control (Figure 1E) 

and native LDL treated macrophages (Figure 1F). Cysteamine prevented the increase in 

ROS production in the macrophages which were treated with SMase-LDL (Figure 1G) 

back to control levels in a concentration-dependent manner (Figure 1H). Cysteamine on 

its own showed no marked effect on the total oxidative status of the macrophages (Figure 

1H). 

Lysosomal oxidation of SMase-LDL increases the lysosomal pH in macrophages 

Having shown that SMase-LDL increased lysosomal lipid peroxidation, we investigated 

the accumulation of lysosomotropic dye LysoTracker Red in macrophages. Native LDL-

treated THP-1 cells showed a non-significant 6 ± 4 % decrease in LysoTracker Red signal 

after 72 h compared to the control cells, whereas macrophages treated with SMase-LDL 

showed a significant decrease of 26 ± 2% (p<0.001) in the signal compared to the control 

cells (Figure 2 A,B &C). In HMDM, native LDL caused a significant 21 ± 4% (p<0.01) 

decrease in LysoTracker Red signal compared to untreated cells whereas in the cells 

treated with SMase-LDL there was a 32 ± 2% (p<0.001) loss in signal compared to the 

control cells (Figure 2D). The loss in signal due to SMase-LDL was largely reversed by 25 

µM cysteamine in both the cell types (Figure 2 C & D). Furthermore, cysteamine on its 

own did not have any significant effect on LysoTracker Red accumulation (Figure S1). We 

next investigated if the decreased uptake of LysoTracker Red was due to a change in the 

pH of the lysosomes.   

Native LDL did not significantly increase the acidic pH of the lysosomes (Figure 3A & D). 

Treatment of THP-1 cells and HMDM with SMase-LDL for 72 h significantly increased the 
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lysosomal pH to 6.2 ± 0.2 in THP-1 macrophages and to 6.3 ± 0.6 in HMDM. Cysteamine 

treatment (10 µM or 25 µM) prevented the SMase-LDL induced increase in lysosomal pH 

in both types of cells (Figure 3 A & D). To determine if the effect of cysteamine on 

lysosomal pH was due to inhibition of lysosomal oxidation of LDL or due to a direct effect 

on lysosomal pH, the effect of cysteamine was assessed in untreated or native LDL-

treated THP-1 macrophages. Treatment with 10 µM or 25 µM cysteamine had no 

significant effect on the lysosomal pH in either case (Figure 3B and C). Also, cysteamine 

(10 µM or 25 µM) did not have any significant effect on HMDM on its own (Figure 3E). 

Lysosomal oxidation of SMase-LDL induces senescence in macrophages 

As cell senescence might be important in atherosclerosis (33), we investigated the effect 

of lysosomal LDL oxidation on the lysosomal senescence-associated β-galactosidase 

assay and the expression p21 and p53 proteins. Incubation of THP-1 cells or HMDM with 

native LDL and especially SMase-LDL increased the senescence-associated β-

galactosidase activity in their lysosomes (Figure 4 A-F and S2). Cysteamine (10 µM) 

treatment reduced its activity substantially. We then looked at the expression of two other 

senescent markers p53 and p21 in HMDM and found that treatment with SMase-LDL 

significantly increased these markers compared to untreated control cells, while treatment 

with cysteamine significantly reduced the SMase-LDL induced expression of both of these 

markers (Figure 4 G-J). Cysteamine on its own had no effect on p53 or p21 expression.  

Lysosomal oxidation of SMase-LDL leads to increased secretion of pro-

inflammatory cytokines  

Inflammation, in addition to cell senescence, is important in atherosclerosis (39). We 

therefore investigated if the lysosomal oxidation of LDL might cause an increase in 

secretion of inflammatory cytokines. THP-1 macrophages showed a significant increase in 

LPS stimulated TNF-α secretion after both 12 and 24 h incubation with native LDL and 

more so with SMase-LDL (Figure 5A). Secretion of TNF-α tended to increase, but not 

significantly, from 12 h to 24 h with native and SMase-LDL treatment, but decreased in the 
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control cells which received no LPS. In HMDM, there was a large increase in TNF-α 

secretion when treated with SMase-LDL for 24 h, whereas native LDL had no significant 

effect (Figure 5B). Prior treatment with cysteamine for 24 h reduced the secretion of TNF-

α by the macrophages incubated with SMase-LDL in a concentration dependent way, 

suggesting that the increased secretion seen with SMase-LDL was due to the lysosomal 

oxidation of LDL. Furthermore, cysteamine on its own did not have any effect on LPS- 

induced TNF-α secretion in HMDM. Similar effects of SMase-LDL and cysteamine were 

seen for IL-6, IL-1β and MCP-1 secretion (Figure 5 C-G).   

Cysteamine inhibits LDL oxidation by iron at lysosomal pH 

We have previously shown that catalytically active iron within the lysosomes causes LDL 

oxidation. Cysteamine (25 µM) completely inhibited the initial oxidation of SMase-LDL by 

ferroud iorn in vitro in a spectrophotometer and caused a significant increase in the lag 

phase at pH 4.5 (Figure 6A). The time taken for SMase-LDL to reach an attenuance of 0.1 

during oxidation catalysed by iron was 76 ± 3 min when no cysteamine was added, 

compared with 352 ± 5 min in the presence of cysteamine (p<0.001, n=3), which is a 5 ± 

0.2 fold inhibition of LDL oxidation (Figure 6B). Incubation of SMase-LDL with ferrous 

sulphate leads to continuous loss of tryptophan fluorescence, with a sharp loss initially 

(Figure 6C). Cysteamine (25 µM) significantly prevented the loss of LDL-tryptophan 

fluorescence for 500 ± 50 min. The LDL fluorescence decreased by 34 ± 3% after 150 min 

of LDL oxidation with ferrous iron, whereas in the presence of cysteamine the 

fluorescence decreased by only 2 ± 0.9% (p<0.001, n =5) (Figure 6D). 
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Discussion 

The lysosomal cholesteryl esterase and proteases that degrade LDL are normally active at 

about pH 4.5 (57, 58). A change in lysosomal pH can cause lysosomal dysfunction (59). 

Lysosomes generate and maintain their pH gradients by using the activity of a proton-

pumping V-type ATPase, which uses the metabolic energy of ATP to pump protons into the 

lysosome lumen (60). The lysosome receives extracellular cargo (via endocytosis) and 

cytoplasmic material (via autophagy) for degradation (61). Failure of the lysosome to 

process its contents efficiently leads to an accumulation of undigested material inside the 

lumen and can cause lysosomal dysfunction (62).  

The accumulation of lysosomal free cholesterol has been shown to directly cause an 

increase in lysosomal membrane cholesterol content (29). The data presented here have 

shown that treatment of human macrophages with SMase-LDL for 3 days decreased 

LysoTracker Red accumulation (Figure 2). The lysosomotropic antioxidant, cysteamine, 

attenuated this loss. The decrease in Lysotracker Red accumulation was probably due to an 

increase in lysosomal pH. SMase-LDL treatment for 72 h increased the lysosomal pH of the 

THP-1 macrophages considerably from 4.9 to 6.2 (which represents a decrease in hydrogen 

ion concentration of 20 times), compared to the pH of untreated cells and from 3.2 to 6.3 in 

HMDM, a decrease in hydrogen ion concentration of 1,250 times (Figure 3D). The increase 

in pH would be expected to decrease substantially the degradation of endocytosed LDL (57, 

58) and lead to more lipid accumulation in lysosomes and thus more lipid-laden foam cells. 

Cysteamine prevented the SMase-LDL induced increase in lysosomal pH, but had no great 

effect on the lysosomal pH of macrophages in the absence of LDL or in the presence of 

native LDL. Importantly, this suggests that the increase in lysosomal pH in the presence of 

SMase-LDL was due to the lysosomal oxidation of this LDL, possibly due to lipid 

peroxidation products such as 7-ketocholesterol, 4-hydroxynonenal or malondialdehyde 
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which have previously been shown to inhibit the activity of the lysosomal V-ATPase causing 

lysosomal dysfunction (29, 63, 64).  

We found that both THP-1 and HMDM macrophages that were treated with SMase-LDL had 

increased lipid peroxidation levels in their lysosomes and co-treatment with cysteamine 

reduced the lysosomal lipid peroxidation in a concentration dependent manner (Figure 1A-

D). Furthermore, we found that SMase-LDL treated HMDM had higher ROS levels compared 

to control and native LDL treated macrophages and cysteamine considerably reduced the 

ROS levels. We have recently proposed that hydroperoxyl radicals (protonated superoxide 

radicals, HO2
●) are the main species in the lysosomes of macrophages that can oxidise LDL 

(65) and these might possibly be responsible for the increased ROS in the presence of 

SMase-LDL.  

There is strong evidence suggesting that decreased lysosomal proteolytic activity and 

increased lysosomal pH occurs as a consequence of aging in long-lived post mitotic cells 

(66-68). In fact, increasing lysosomal function is being considered as a plausible avenue for 

anti-ageing interventions so as to increase the longevity of cells (69). It has been proposed 

that oxidative stress-induced damage to cellular components, probably due to the 

combination of higher levels of reactive oxygen species (ROS) and impaired antioxidant 

defence, is the main contributor to the ageing process (35). The accumulation of oxidation 

products of cholesterol (oxysterols) has been seen to induce senescence in human cells, 

through the generation of reactive oxygen species (69, 70). Native LDL and especially 

SMase-LDL treatment for 3 days induced senescence in human macrophages (Figure 4) 

and treatment with cysteamine significantly decreased the senescence induced by SMase-

LDL, suggesting that the senescence was due to lysosomal oxidation of SMase-LDL (and 

native LDL). The significance of this is uncertain, however, as macrophages in vivo (unlike 

the tumour cell line THP-1 macrophages) are not considered to be long lived cells.   
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Inflammation plays a key role in the initiation, progression and rupture of atherosclerotic 

lesions (71). Both minimally oxidised LDL and more highly oxidised LDL cause the secretion 

of proinflammatory cytokines by macrophages (72, 73) by activating toll-like receptor-4 (TLR-

4). Some studies have shown, however, that oxidised LDL inhibits the production of 

inflammatory cytokines by macrophages in response to inflammatory stimuli, such as 

lipopolysaccharide (LPS) (74). The effect of vortexed and acetylated LDL on the expression 

of the proinflammatory cytokine, TNF-α, is controversial with some reports showing a 

decrease in its levels (75, 76) and others showing an increase (77). LPS is considered a 

classical ligand of TLR4 receptors (78). We sought to determine whether lysosomal 

oxidation of SMase-LDL by human macrophages, could alter the secretion of 

proinflammatory cytokines (TNF-α, IL-1β, IL-6 and MCP1). Both native LDL and to a greater 

extent SMase-LDL increased the LPS-induced secretion of all the cytokines (Figure 5). The 

potentiation of LPS-induced TNF-α secretion by native LDL is in agreement with the 

previous studies by Netea et al (79). Pre-incubation with cysteamine decreased the 

secretion of these proinflammatory cytokines by macrophages incubated with SMase-LDL, 

suggesting that some of the secretion was due to the lysosomal oxidation of LDL. The 

reduction by cysteamine was sometimes only partial probably because LPS was directly 

stimulating cytokine secretion. The increased secretion of proinflammatory cytokines by 

native and SMase-LDL might possibly be due to the oxidative stress caused by the 

lysosomal oxidation of LDL (80), but the exact mechanism needs detailed investigation. 

In conclusion, we have shown that the lysosomal oxidation of LDL alters the function of 

macrophages in potentially atherogenic ways, namely an increase in lysosomal pH, cell 

senescence and proinflammatory cytokine secretion. These effects can be inhibited by the 

lysosomotropic antioxidant, cysteamine, suggesting a novel therapeutic approach to treat 

atherosclerosis. 
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Figure 1 Lipid peroxidation and ROS in human macrophages  
THP1 macrophages or HMDM were treated with no LDL, native LDL or SMase-LDL (both at 
200 µg protein/ml LDL protein) in the presence or absence of 5 µM, 10 µM or 25 µM 
cysteamine for 24 h. The cells were then incubated with either 2 µM Foam-LPO for 15 min or 
10 µM DHE for 30 min, harvested and assayed by flow cytometry. (A) Mean fluorescence 
intensity of (MFI) of Foam-LPO in red channel of healthy THP-1 macrophages, native-LDL 
treated and SMase-LDL treated THP-1 macrophage. (B) MFI of Foam-LPO in red channel of 
SMase-LDL treated THP-1 macrophages in presence of absence of cysteamine 10 µM and 
25 µM. (C) & (D) Show lipid peroxidation calculated from the ratio between the mean 
fluorescence intensity of the green channel (FL1) and red (FL3) channel in THP-1 
macrophages and HMDM, respectively. (E) and (F) show overall ROS production in HMDM 
control, native and SMase-LDL treated cells. (G) shows the effect of cysteamine (25 µM) on 
SMase-LDL ROS production. (H) Analysis of MFI of ROS generation  
 (*** p<0.001, (** p<0.01 compared to untreated cells, ### p<0.001, ## p<0.01, # p<0.05, 
ANOVA followed by Tukey’s test, n=3-6 independent experiments).  
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Figure 2 Effect of SMase-LDL and cysteamine on LysoTracker Red accumulation by 
macrophages 

THP-1 macrophages or HMDM (1 x 10
6
) were cultured in 12 well tissue culture plates in 

RPMI medium (containing 10%  v/v FCS) alone or containing native LDL or SMase-LDL with 
or without cysteamine (10 µM or 25 µM) for 72 h. All LDL concentrations were 100 µg 
protein/ml. After 72 h, cells were treated with 500 nM LysoTracker Red for 30 min and then 
assayed by flow cytometry. Mean fluorescence intensity peak of LysoTracker Red in the red 
channel was then measured. (A) Mean fluorescence intensity (MFI) in red channel of healthy 
THP-1 macrophages, native-LDL treated and SMase-LDL treated macrophage. (B) MFI in 
red channel of SMase-LDL treated THP-1 macrophages in presence of absence of 
cysteamine 10 µM and 25 µM. (C) data expressed as percentage loss of mean fluorescence 
intensity of LysoTracker Red in the red channel compared to untreated control macrophages 
in THP-1 macrophages. (D) Data expressed as percentage loss of mean fluorescence 
intensity of LysoTracker Red in the red channel compared to untreated macrophages in 

HMDM.  (** p<0.01, *** p<0.001 compared with untreated cells, 
##

 p<0.01, 
### 

p<0.001 
compared with SMase-LDL treated cells, ANOVA followed by Tukey’s test, n = 4 
independent experiments). 
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 Figure 3 Effect of lysosomal oxidation of SMase-LDL on the pH of lysosomes in THP-1 

macrophages.  
 THP-1 macrophages (A) or HMDM (D) were cultured in a black 96-well microplate at 1 

x 105 per well in RPMI medium (containing 10% v/v FCS) with no LDL, native LDL  or 
SMase-LDL (both at 100 µg protein/ml) with or without cysteamine (Cyst) (10 µM or 25 
µM) for 72 h. The cells were then treated with 5 µM Lysosensor Yellow/Blue for 30 min 
at 37°C. The samples were then read in a FLUOstar Optima fluorometer, with 
excitation at 355 nm. The ratio of emission at 440 nm and 535 nm was then calculated 
for each sample and the pH values determined from a standard plot. (B) & (E) show 
effect of cysteamine on control THP-1 and HMDM respectively, (C) shows effect of 
cysteamine on native LDL treated THP-1 cells (* p<0.05, ** p<0.01 and *** p<0.001 
compared to SMase-LDL treated macrophages, ANOVA followed by Tukey’s test of at 
least 4 independent experiments). 
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 Figure 4 Effect of lysosomal oxidation of LDL on senescence in human 

macrophages 
 HMDM macrophages were cultured in 12 well tissue culture plates at 3000 cells per 

well in RPMI medium (containing 10% v/v lipoprotein-deficient serum) containing either 
no LDL (A), native LDL (B), SMase-LDL alone (C) or SMase-LDL (all at 100 µg 
protein/ml) with 10 µM cysteamine (D) for 72 h. The cells were then stained to identify 
any senescent cells by a lysosomal β-galactosidase activity assay and p53 and p21 
expression. (E) and (F) show the percentage of senescent cells in HMDM 
macrophages and THP-1 cells, which had been treated in the same way, respectively. 
The images shown are representative of three independent experiments.  

 (G) and (H) show the mean fluorescence intensity (MFI) for p53 and p21 expression in 
HMDM. (I) and (J) shows a comparison of p53 and p21 MFI under various treatment 
conditions. (* p<0.05, ** p<0.01 and *** p<0.001 compared to the control cells, # 
p<0.05, ## p<0.01 and ###p<0.001 for the indicated comparison, ANOVA followed by 
Tukey’s test of at least 3 independent experiments). 
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 Figure 5 Effect of SMase-LDL on cytokine expression in macrophages 
 THP-1 macrophages or HMDM were incubated in fresh RPMI-1640 medium 

(containing 10% v/v FBS), alone or with native LDL or SMase-LDL (both at 50 µg 
protein/ml) for either 12 h or 24 h and the medium assayed for various pro-
inflammatory cytokines. Some of wells were pre-incubated with cysteamine (10 µM or 
25 µM) for 24 h prior to SMase-LDL treatment. After SMase-LDL treatment, the cells 
were washed with PBS and then stimulated with LPS (10 ng/ml) for 4 h at 37 °C and 
the medium was collected and assayed for cytokine levels. 

 (* p<0.05, **p<0. 01, and *** p<0.001 compared to the control cells; # p<0.05, ## p<0.01 
and ###p<0.001 for the indicated comparison. The data shown are from at least 3 
independent experiments and analysed by one-way ANOVA followed by Tukey’s post-
test.  
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Figure 6 Effect of cysteamine on LDL oxidation catalysed by iron at pH 4.5 

SMase-LDL (50 µg protein/ml) in NaCl/sodium acetate buffer (pH 4.5) was incubated with 5 

µM FeSO4 in the presence or absence of cysteamine (25 µM) at 37°C in capped quartz 

cuvettes. Oxidation was monitored by measuring the change in attenuance at 234 nm (A) or 

loss of LDL-tryptophan fluorescence against appropriate reference cuvettes (C). This is a 

representative example of three independent experiments. (B) Time taken to reach an 

attenuance of 0.1 during the oxidation with iron. (D) shows decrease in LDL-tryptophan 

fluorescence after 150 min of oxidation (*** indicates p<0.001, t-test, n = 3 independent 

experiments.  
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 Supplemental Figure S1 Effect of cysteamine on lysosomal function  

 

 HMDM (1 x 106) were cultured in 12 well tissue culture plates in RPMI medium (containing 

10% v/v FCS) with cysteamine (10 µM or 25 µM) for 72 h. The cells were then washed and treated 

with 500 nM Lysotracker Red for 30 min and then assayed by flow cytometry. Mean fluorescence 

intensity peak of Lysotracker Red in the red channel was then measured. Mean of 3 independent 

experiments. 
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  Supplemental Figure S2 Effect of lysosomal oxidation of LDL on senescence in THP-1 macrophages 

THP-1 cells were cultured in 12 well tissue culture plates at 3000 cells per well in RPMI medium 

(containing 10% v/v lipoprotein-deficient serum) containing either no LDL (A), native LDL (B), SMase-

LDL alone (C) or SMase-LDL (all at 100 µg protein/ml) with 10 µM cysteamine (D) for 72 h. The cells 

were then stained to identify any senescent cells by a lysosomal β-galactosidase activity assay. The 

images shown are representative of three independent experiments. 
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