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Abstract

By integrating two powerful methods of density reduction and intrinsic dimensionality es-

timation, a new data-driven method, referred to as OLPP-MLE (orthogonal locality preserving

projection-maximum likelihood estimation), is introduced for process monitoring. OLPP is

utilized for dimensionality reduction, which provides better locality preserving power than lo-

cality preserving projection. Then, the MLE is adopted to estimate intrinsic dimensionality of

OLPP. Within the proposed OLPP-MLE, two new static measures for fault detection T 2
OLPP and

SPEOLPP are defined. In order to reduce algorithm complexity and ignore data distribution, ker-

nel density estimation is employed to compute thresholds for fault diagnosis. The effectiveness

of the proposed method is demonstrated by three case studies.
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1 Introduction

In recent decades, process monitoring becomes an increasingly significant and valuable research

topic due to the high requirements of safety and reliability in industrial applications.1–3 Specularly,

data-driven process monitoring has attracted worldwide attention and has acquired remarkable ac-

complishments.4–7 The key contribution of data-driven techniques is to take advantage of sensing

variables to detect faults, which makes them applicable in realistic industrial systems.8–10In mod-

ern society, industrial systems such as power plants and high-speed rail become more complex,

and produce massive data even in just one hour. Hence, how to extract valuable information from

available data becomes the most critical issue at present.

There are various methods for data-driven process monitoring now. Classical schemes include

principal component analysis (PCA),11 partial least squares (PLS),12,13 independent component

analysis (ICA),14 canonical variate analysis,15 etc. Owing to simplicity and effectiveness in deal-

ing with large data, PCA is recognized as a popular dimensionality reduction technique for linear

systems, which has been widely applied to feature extraction as well as process monitoring ar-

eas.16,17 For instance, recursive total principle component regression was proposed for vehicular

cyber-physical systems, which is able to detect small faults and suitable for on-line implementa-

tion.18 There are also numerous fault detection methods based on PCA and PLS,13,19 which have

been integrated on the Matlab toolbox.20 However, PCA aims to discover the global geometric

topological structure of the Euclidean space, without considering the underlying local manifold

structure.

Locality preserving projection (LPP) is regarded as an effective way to replace PCA, where

local neighborhood framework of data could be optimally preserved.21,22 Based on LPP, orthog-

onal locality preserving projection (OLPP) was proposed to reconstruct data conveniently, where

mutually orthogonal basis functions are calculated. Besides, OLPP can realize the function of P-

CA when the parameter is set appropriately and eigenvectors corresponding to largest eigenvalues

are retained,23 which indicates that OLPP can not preserve global and local geometric structure

simultaneously.
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Note that OLPP shares several data representation characteristics with nonlinear techniques, for

instance, Laplacian Eigenmaps (LE),24 Isomap25 and locally linear embedding.26,27 These local

nonlinear manifold approaches are non-parametric without parametric hypothesis and are casted

into the eigen-problem instead of iteration, which makes them considerably less complicated.28,29

However, “out of sample” issue severely constraints the applications of process monitoring. OLPP

is exactly the linear extension of LE algorithm and can efficiently deal with this issue.

For the OLPP approach, the intrinsic dimensionality (ID) is the most critical parameter.30 If

the ID is too small, significant data characteristics may be “collapsed” onto the same dimension.

However, if the ID is too large, the projections become noisy and may be unstable. Therefore,

the estimation of the optimal ID is the prime task that should be considered. In this paper, as

a local estimator of ID, maximum likelihood estimation (MLE) is adopted to calculate the ID

with little artificial interference, which has the superiorities of easy-implementation, stability, high

reliability.31–33 Besides, it is also robust to noisy data and less computationally complicated on

high dimensional data.34

Since OLPP is a preferable choice for dimensionality reduction, an improved data-driven pro-

cess monitoring approach is proposed based on OLPP, referred as to OLPP-MLE, where MLE

is embedded in OLPP framework. Unfortunately, although the ID estimator is provided, OLPP

still encounters the singular issue frequently, especially for data with zero mean. Within the pro-

posed approach, the singular problem is efficiently settled with three optional solutions, which is

the meaningful improvement compared with traditional OLPP. Besides, an alternative manner is

provided to calculate eigenvector with little computational cost.

The virtues of the proposed OLPP-MLE are summarized as follows:

a) The proposed approach provides more locality preserving power and discriminating power than

most typical dimensionality reduction approaches;

b) Because OLPP and MLE are based on local geometric characteristics of data, the proposed

approach is considerably less computationally complicated in contrast with global approaches;
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c) For the potential singular problem within the standard OLPP, three alternative solutions are

summarized, which provides more choices for researchers to select;

d) MLE provides a stable estimation of the ID, which is insensitive to parameter tuning;

e) The proposed method has no requirement of data distribution, which is beneficial to expand its

applications.

The remaining parts of this paper are organized below. Section 2 summarizes the preliminary

of OLPP and MLE on intrinsic dimensionality briefly. Major procedure of OLPP-MLE approach

is summarized for data-driven process monitoring in Section 3. The solutions of singular problem,

an alternative approach to calculate eigenvectors and computational complexity analysis are also

discussed thereafter. Then, a numerical case study and the continuous stirred tank reactor (CSTR)

are adopted to illustrate the effectiveness of the proposed approach in Section 4. Section 5 utilizes

Tennessee Eastman (TE) process to verify the stability of the proposed approach and to compare

with several typical data-driven approaches. Conclusion is presented in Section 6.

2 Preliminaries

In this section, we introduce two independent important works on MLE of ID31 and the algorithm

of OLPP,22 which are both based on the local geometric properties of data. These works form the

building stones of our proposed data-driven process monitoring algorithm.

2.1 Maximum likelihood estimation on intrinsic dimensionality

The MLE of ID is derived by Levina and Bickel.31 Assume a data set {xxxi}N
i=1 ⊂ Rm, representing

an embedding of a lower-dimensional sample xxxiii = g(yyyiii), where g(.) is a continuous and smooth

mapping, and yyyi are sampled from an unknown density p on R l . For the purpose of ID estimation,

it is initially assumed that p ≈ const in a small hyper sphere Hxxx(t) around a data point xxx. The data
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points inside the hyper sphere are modelled as a Poisson process. Let the counts of the observations

with distance t from xxx be denoted as

C(t,xxx) =
N

∑
i=1

1{xxxi ∈ Hxxx(t)} (1)

where 0 ≤ t ≤ R, Hxxx(t) is a small hyper sphere around a data point {xxx} with radius t. For fixed N,

C(t,xxx) is approximated as a Poisson process, and the rate of the process λ (t) of the C(t,xxx) is given

by

λ (t) = p(xxx)V (l)l · t l−1, (2)

where V (l) = π l/2[Γ(l/2+1)]−1 denotes the volume of the unit sphere in Rl . It can be shown that

the log-likelihood of the observed C(t,xxx) can be expressed as

∫ R

0
logλ (t)dC(t)−

∫ R

0
λ (t)dt, (3)

The maximization of (3) results in a unique solution l. In practice, l can be obtained based on a

data point xxxi given k nearest neighbors, which is calculated by31

∧
l k (xxxi) =

(
1

k−1

k−1

∑
j=1

log
Fk (xxxi)

Fj (xxxi)

)−1

, (4)

where Fk (xxxi) is the smallest radius of the hypersphere with center xxxi, which must contain k neigh-

boring data points.

It is obvious that k affects the estimate severely. In general, the estimator is expected to be

small enough and contain as many points as possible. In our approach, just average over a range

of small to moderate values k = k1, . . . ,k2 to obtain the optimal estimate

l̂k =
1
N

N

∑
i=1

l̂k (xxxi), l̂ =
1

k2 − k1 +1

k2

∑
k1

l̂k. (5)

The perfect range k1, . . . ,k2 is different for every combination of l and N, but the estimation of
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dimensionality is considerably stable, which has already been demonstrated.31 Given l and N, l is

not sensitive to k1 and k2, which is discussed in Section 5.2. For simplicity and reproducibility, k1

and k2 are fixed in this paper.

2.2 Orthogonal locality preserving projection

OLPP is a common dimensionality reduction approach, and can preserve the local geometric char-

acteristics of the manifold.22 Given a data set XXX = [xxx1, ....,xxxN ] with xxxi ∈Rm, i = 1, · · · ,N. Let SSS be

a similarity matrix defined on data points, which is computed by

SSSi j = e−
∥xxxi−xxx j∥2

q , (6)

where q is predefined by users. Define DDD as a diagonal matrix with DDDii =
N
∑
j=1

SSS ji. Then, LLL = DDD−SSS

is Laplacian matrix in graph theory. The objective function of OLPP can be written as

{aaa1, ...,aaal}= min
aaa
{ f (aaa) =

aaaTXXXLLLXXXTaaa
aaaTXXXDDDXXXTaaa

} (7)

subject to aaaT
i aaa j = 0, for i ̸= j. The OLPP algorithm is presented concretely in supporting informa-

tion (SI) file. The OLPP aims at finding {yyyi}
N
i=1 ∈ Rl, l ≪ m, where yyyi can “represent” xxxi, and l is

the ID of data. OLPP is applicable especially in the particular situation, where xxx1,xxx2, · · · ,xxxN ∈ MMM

and MMM is a nonlinear manifold.

3 OLPP-MLE for fault diagnosis

In this section, two well-known statistics T 2 and SPE,35 transitionally based on PCA or other vari-

ants11,36 are served as indices to monitor the operating process, referred to as T 2
OLPP and SPEOLPP.

As aforementioned, OLPP has more locality preserving power than most typical dimensionality

reduction methods, which may lead to discriminating capability for data anomaly.

Consider that OLPP is applied based on a set of normal training samples {xxxi}N
i=1 ∈ Rm based
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on a given dimension l, which is obtained by MLE of the ID in Section 2.1. Let WWW OLPI = [aaa1, · · · ,aaal],

with WWW T
OLPIWWW OLPI = III. The resultant OLPI mapping becomes

xxx → yyy =WWW T
OLPIxxx, (8)

where yyy is an l-dimensional expression of raw xxx. Denote YYY = [yyy1, ....,yyyN ].

T 2
OLPP monitoring statistic for principal component subspace is calculated by

T 2
OLPP = yyyTΛΛΛ−1yyy, (9)

where the elements of ΛΛΛ = diag(γ1, . . . ,γl) are the eigenvalues of the covariance matrix of YYY with

descending order γ1 ≥ . . .≥ γl > 0. Then, SPEOLPP is utilized to detect the abnormal change in the

residual subspace and calculated as

SPEOLPP = ∥xxx− x̂xx∥2,

where xxx is preprocessed by data normalization and x̂xx is the reconstruction of xxx. The system model

based on OLPP is given as

xxx = x̂xx+ eee =WWW OLPIyyy+ eee

for which (8) provides the optimal solution of minimizing ∥eee∥2, then we have x̂xx =WWW OLPIWWW T
OLPIxxx.

SPEOLPP =xxxT(III −WWW OLPIWWW T
OLPI

)2xxx

=xxxT(III −WWW OLPIWWW T
OLPI

)
xxx

=∥xxx∥2 −∥yyy∥2 (10)

by making use of WWW T
OLPIWWW OLPI = III.

For OLPP-MLE, our proposed T 2
OLPP and SPEOLPP serve as significant indices to monitor the

process, and the associated thresholds provide the reference to judge whether faults occur or not.
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Because the proposed OLPP-MLE is free from data distribution, kernel density estimation (KDE)

technique is adopted to calculate thresholds, which is presented concisely below.15

Given a random variable z, p(z) is the associated probability density function, then

∧
p(z) =

1
Nκ

N

∑
n=1

ψ(
z− zn

κ
), (11)

where zn(n = 1, . . . ,N) can represent T 2
OLPP and SPEOLPP statistics aforementioned. κ is the band-

width of kernel function ψ (·), which influences the estimation of p(z) seriously. In this paper, the

optimal value κopt is calculated by the following criterion, where σ is standard deviation:15

κopt = 1.06σN−1/5. (12)

Given a confidence limit α , the thresholds Jth,T 2 and Jth,SPE are computed by

∫ Jth,T 2

−∞

∧
p(T 2

OLPP)dT 2
OLPP = α, (13)

∫ Jth,SPE

−∞

∧
p(SPEOLPP)dSPEOLPP = α (14)

3.1 Summary of the proposed approach

The main procedure of OLPP-MLE fault diagnosis algorithm can be summarized thereafter.

The off-line modeling phase is depicted as follows.

(1) Data normalization. Calculate the mean and standard deviation of the history data, which are

normalized to zero mean and scaled to unit variance.

(2) Estimate the ID of data via (4-5).

(3) Calculate the orthogonal locality preserving projections WWW OLPI according to SI file.

(4) Obtain the lower-dimensional representation y by (8).
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(5) Calculate the monitoring statistics T 2
OLPP and SPEOLPP according to (9-10).

(6) Calculate the thresholds corresponding to the statistics aforementioned by KDE technique,

described by (11-14).

The on-line monitoring phase is presented below.

(1) Collect and preprocess data. According to the mean and standard deviation in the off-line

modeling phase, preprocess the collected testing data.

(2) Calculate the lower-dimensional representation of new data via (8).

(3) Calculate two monitoring statistics T 2
OLPP and SPEOLPP of new data according to (9-10).

(4) Judge whether a fault happens based on the fault detection logic:

SPEOLPP ≤ Jth,SPE and T 2
OLPP ≤ Jth,T 2 ⇒ fault free, otherwise faulty.

Two indices are generally utilized to evaluate the algorithm accuracy, namely, fault detection

rate (FDR) and false alarm rate (FAR), which could be calculated below.

FDR =
number of samples (J > Jth|f ̸= 0)

total samples (f ̸= 0)
×100% (15)

FAR =
number of samples (J > Jth|f = 0)

total samples (f = 0)
×100% (16)

where J can be replaced by T 2
OLPP or SPEOLPP, and Jth is the associated threshold.

3.2 Remarks

• Solutions of singular matrix XXXDDDXXXT

For the crucial step of calculating OLPP, matrix (XXXDDDXXXT)−1 is considerably critical. Howev-

er, XXXDDDXXXT is singular in most cases, especially when XXX has data redundancy or is normalized

to zero mean. Thus, the inverse matrix (XXXDDDXXXT)−1 does not actually exist. In our approach,

three alternative methods are provided to cope with this issue.
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1) PCA projection

Before conventional OLPP, xxx is firstly projected into PCA subspace and then irrelevant fea-

tures are extracted. Let WWW PCA denote the transformation matrix via PCA and X̂XX denote the

reconstruction of XXX after PCA projection. As the preprocessing step of OLPP, it ensures that

matrix X̂XXDDDX̂XX
T

is nonsingular. In the following procedure, XXX is replaced by X̂XX accordingly.

At the fourth step of OLPP in SI file, the transformation matrix WWW is calculated by

WWW =WWW PCAWWW OLPI. (17)

Since vectors in WWW PCA and WWW OLPI are orthonormal, vectors in WWW are still mutually orthonor-

mal. Hence, WWW should be substituted for WWW OLPI in (8), and the rest procedure remains the

same.

2) Regularization

Regularization is a common technique to cope with singular problem. In the proposed ap-

proach, the regularization term is utilized by adding constant values to the diagonal ele-

ments of XXXDDDXXXT, as XXXDDDXXXT +β III, where β > 0 is predefined by users. It is obviously that

XXXDDDXXXT +β III is non-singular.

3) Pseudo inverse

When XXXDDDXXXT is singular, the concept of pseudo inverse is introduced, which denotes as (·)†.

Suppose rank(XXXDDDXXXT) = r, the singular value decomposition (SVD) of this matrix is

XXXDDDXXXT = PPPΣΣΣQQQT, (18)

where ΣΣΣ ∈ Rr×r, PPP,QQQ ∈ RN×r, PPPTPPP = QQQTQQQ = III. Then, pseudo inverse of matrix XXXDDDXXXT

can be computed by (
XXXDDDXXXT)†

= QQQΣΣΣ−1PPPT. (19)

Thus,
(
XXXDDDXXXT)†

is substituted for
(
XXXDDDXXXT)−1

in the following derivation process.
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• Another perspective to calculate vector aaa1

With regard to vector aaa1, it is the eigen-vector of XXXLLLXXXTaaa = λXXXDDDXXXTaaa corresponding to the

smallest eigenvalue. Three alternative solutions aforementioned are fairly effective when

XXXDDDXXXT is singular. Besides, SVD approach can also be widely employed to settle the under-

lying singular problem.37

Suppose rank(XXX) = rx, the SVD of XXX is

XXX =UUUΣΣΣxVVV T (20)

where ΣΣΣx ∈ Rrx×rx , UUU ,VVV ∈ RN×rx and UUUTUUU =VVV TVVV = III. Let bbb = ΣΣΣxUUUTaaa, then

XXXLLLXXXTaaa = λXXXDDDXXXT aaa

⇒ UUUΣΣΣxVVV TLLLVVV ΣΣΣxUUUTaaa = λUUUΣΣΣxVVV TDDDVVV ΣΣΣxUUUTaaa

⇒ UUUΣΣΣxVVV TLLLVVV bbb = λUUUΣΣΣxVVV TDDDVVV bbb

⇒ ΣΣΣ−1
x UUUTUUUΣΣΣxVVV TLLLVVV bbb = λΣΣΣ−1

x UUUTUUUΣΣΣxVVV TDDDVVV bbb

⇒ VVV TLLLVVV bbb = λVVV TDDDVVV bbb.

(21)

It is obvious that VVV TDDDVVV is nonsingular and the generalized eigen-problem in (21) can be

easily obtained. After bbb∗ is obtained, aaa∗ is computed by

aaa∗ =UUUΣΣΣ−1
x bbb∗. (22)

• Computational complexity analysis: According to the procedure of OLPP-MLE, the com-

putation mainly contains adjacency graph construction, embedding functions and the esti-

mation of ID via MLE. Since the computational complexity of k-nearest neighbor (KNN) is

O(N), thus the computational complexity of adjacency graph construction and MLE is also

O(N), which both obtain excellent relevant results based on KNN. The embedding functions

needs l times SVD on m×m matrix and 4(l −1) times matrix inversion on m×m matrix.
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4 Numerical case and CSTR case studies

4.1 Numerical example

Considering the following system 
x1 = t + ε1

x2 = cos t + ε2

x3 = t2 + t + ε3

,

where t ∈ [−1,1] and noise term εi(i = 1,2,3) follow uniform distribution with εi ∈ [−0.05,0.05].

1000 normal samples are generated to train the process monitoring model and then artificial

faults are generated with 1000 samples by the following scheme:

1) Fault 1: variable x1 is added by 0.6 from the 501th sample;

2) Fault 2: variable x2 is added by 0.8 from the 501th sample;

3) Fault 3: variable x3 is added by 1.0 from the 501th sample.

Note that T 2
OLPP and SPEOLPP are recorded briefly as T 2 and SPE in simulation figures for sim-

plicity and convenience.
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Figure 1: Monitoring charts of numerical case

Monitoring consequences are illustrated in Figure 1. The FDRs of three faults nearly approach

to 100% and the FARs are all below 5%. Specifically, with regard to Faults 1 and 2, T 2 monitoring

statistic can totally detect the fault while SPE has several missed alarm points. As illustrated

in Figure 1c, both monitoring statistics can detect Fault 3 timely and accurately. In conclusion,
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faults can be detected by the cooperation of T 2 and SPE monitoring statistics, which indicates that

OLPP-MLE is able to monitor this process.

4.2 Case study on CSTR

In this section, we employ MLE to estimate the ID, then PCA, LPP and OLPP are adopted to mon-

itor the process. Thus, PCA-MLE, LPP-MLE and OLPP-MLE are compared and the superiority

of OLPP-MLE is illustrated by CSTR.

4.2.1 CSTR introduction

The dynamic behavior of CSTR process is depicted as follows:38

dCA

dt
=

q
V

(
CA f −CA

)
− k0 exp

{
− E

RT

}
CA + v1 (23)

dT
dt

=
q
V

(
Tf −T

)
− ∆H

ρCp
k0 exp

{
− E

RT

}
CA +

UA
V ρCp

(Tc −T )+ v2 (24)

where the outlet concentration CA and the outlet temperature T are controlled by PI controllers, q

is the feed flow rate, CA f is the feed concentration, V is the volume of the vessel, Tf is the feed

temperature, v1 and v2 are independent system noises.39

In this simulation, the sampling interval is 1 second. The measured process variable [CA T Tc q]

are collected, and the measurement noise e is added. Besides, negative feedback inputs were added

to [ q Tc] with PID controllers as KKK2
(
K1 +Tds+TI

/
s
)

ε , where ε = [CA f −C∗
A,T −T ∗] is the resid-

ual vector. All system parameters and conditions are set as the same with Li et al.40

4.2.2 Monitoring results of CSTR case

In this paper, 6000 normal samples are collected to establish the monitoring model, that is, PCA-

MLE, LPP-MLE and OLPP-MLE. We collect samples of 600 minutes and the faults are designed

as follows:
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1) Fault 4: the feed temperature Tf is increased by 1% at the 101th min;

2) Fault 5: the volume of vessel V is decreased at the rate of 4
500 m3/mins.

In this simulation, the raw data is preprocessed by a low pass filter to reduce noise. Then, PCA-

MLE, LPP-MLE and OLPP-MLE are adopted to monitor the process. The intrinsic dimensionality

is 4 through MLE technique. Thus, only T 2 monitoring statistic works. As exhibited in Figures

2 and 3, it reveals that outlines of monitoring charts are similar for different approaches. The

monitoring results are summarized in Table 1. It shows that the FDRs of the proposed OLPP-MLE

approach are the highest, especially for Fault 5. Moreover, the FARs are lower than 1%.
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Figure 2: Monitoring charts of Fault 4
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Figure 3: Monitoring charts of Fault 5
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Table 1: FDRs (%) and FARs (%) of CSTR case

Fault type PCA-MLE LPP-MLE OLPP-MLE
Normal operation 0.13 0.57 0.50

Fault 4 98.98 99.70 99.80
Fault 5 78.85 82.20 83.19

5 Benchmark simulation and comparative study

In this section, Tennessee Eastman process data is employed to prove the proposed approach.

Besides, several existing data-driven approaches are utilized to compare with OLPP-MLE.

5.1 Tennessee Eastman process

TE process is a well-established simulator that is generally served as a preferred benchmark for

fault detection research.4,11,13 The flow diagram is shown in Figure 4 and more detailed informa-

tion can be found in Down et al.41

20 process faults and another valve fault were defined, namely, IDV(1)-IDV(21). IDV(0) rep-

resents normal operation condition. The types of faults include step, random variation, show drift,

sticking, constant position and unknown faults.11 Due to the frequent absence of sufficient process

knowledge, it is necessary to employ data-driven techniques for process monitoring.

In this simulation, 22 process variables and 11 manipulated variables are selected as the sam-

ples. 960 normal samples are used to establish the off-line model. Then, 960 testing samples,

including the first 160 normal samples and the following 800 faulty samples, are utilized to evalu-

ate the algorithm. Let α = 0.99 be the confidence level.

5.2 Intrinsic dimensionality

In this section, the parameter of MLE and the sampling frequency are discussed when the ID is

estimated. The influence of the range k1, . . . ,k2 is illustrated in Figure 5a, where k1 ∈ [1,30] and

k2 ∈ [k1 +1,33]. The ID remains the same, which indicates that the estimation of ID is insensitive
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Figure 4: The flow diagram of TE process

to the range of k1, k2.

Figure 5b demonstrates the influence of sampling frequency. As we have 960 normal data in

total, every j interval, samples are taken to acquire the ID. It denotes that the sampling frequency

reduces to 1/ j with j ∈ [1,12]. It can be discovered evidently that the ID keeps basically constant

in Figure 5b. In summary, the estimation of ID is stable via MLE.

0

10

20

30

k1
0

20

40

k2

13.9

14

14.1

I
D

(a) The range of k

0 200 400 600 800 1000
Number of samples

13.9

14

14.1

ID

(b) Sampling frequency

Figure 5: The stability of estimating ID
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5.3 Simulation results of OLPP-MLE

Three typical faults, i.e., step, random variation and sticking, are selected to demonstrate OLPP-

MLE algorithm. Specifically, fault IDV(1) is utilized to illustrate the step fault, fault IDV(12) is

used to account for random variation fault, and fault IDV(14) is employed to represent the sticking

fault.

In this simulation case, the ID is 14 via MLE. Regularization is selected to figure out the un-

derlying singular problem. The monitoring consequences of three typical faults are demonstrated

in Figure 6. It can be obviously obtained that three faults can be detected timely and accurately.

The FAR of OLPP-MLE is 0.63%, nearly close to 0. The FDRs of fault IDV(1), fault IDV(12) and

fault IDV(14), are 99.75%, 99.88% and 100%, respectively. More specifically, two monitoring

statistics can both detect these faults.
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Figure 6: Monitoring charts of typical TE faults

5.4 Comparative study with other techniques

In this section, PCA, dynamic PCA (DPCA),42 probabilistic PCA (PPCA),43 modified ICA (mI-

CA),14 LPP, traditional OLPP and the proposed OLPP-MLE are discussed.

TE data is employed to demonstrate the superiority of OLPP-MLE among the approaches

aforementioned. For standard LPP and OLPP, nearest neighbor dimension estimator is employed

to obtain the ID and its value is 3. For mICA, the ID is 9 based on leave-one-out cross validation.
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Table 2: FDRs(% ) and FARs(%) based on TE data

Fault PCA DPCA PPCA mICA LPP OLPP proposed
IDV(1) 99.88 99.75 99.75 98.88 99.75 99.50 99.75
IDV(2) 98.38 98.50 98.38 98.00 98.75 98.50 98.75
IDV(3) 4.50 3.25 2.13 2.25 9.25 11.75 13.75
IDV(4) 100 99.75 93.63 72.50 91.75 94.25 99.12
IDV(5) 100 99.75 25.37 99.75 99.75 100 100
IDV(6) 100 99.75 100 100 100 100 100
IDV(7) 100 99.75 100 100 96.75 100 100
IDV(8) 98.00 98.12 97.62 96.63 98.00 98.25 98.25
IDV(9) 3.50 3.88 1.87 3.25 6.50 10.00 12.50

IDV(10) 90.38 94.25 33.37 86.88 80.00 86.88 91.25
IDV(11) 80.63 93.00 62.50 56.25 67.87 72.50 87.35
IDV(12) 99.88 99.75 98.62 99.38 99.88 99.62 99.88
IDV(13) 95.25 96.00 94.25 95.13 94.63 95.75 96.13
IDV(14) 100 99.75 100 99.88 100 100 100
IDV(15) 7.00 15.75 1.75 2.38 11.75 12.25 21.13
IDV(16) 92.37 95.37 16.73 83.88 88.00 84.88 89.50
IDV(17) 97.25 97.88 88.62 89.25 90.25 89.50 93.63
IDV(18) 90.38 90.63 89.88 90.00 90.00 90.13 93.37
IDV(19) 94.63 99.62 20.13 52.25 74.75 82.37 91.00
IDV(20) 91.01 91.01 41.13 75.50 81.87 86.88 89.38
IDV(21) 57.75 52.25 40.50 53.63 45.12 48.38 58.37
IDV(0) 2.19 3.13 2.19 1.67 5.37 2.5 0.63

Eigenvalue-based estimator is adopted for PCA, and the number of principal components (PCs) is

9. Regarding DPCA, the time lag is 2 and 28 PCs are extracted via cumulative percent variance.

The FARs and FDRs of these data-driven approaches are summarized in Table 2. Among three

manifold learning approaches, the proposed OLPP-MLE provides the optimal process monitoring

performance including higher FDRs. It can be obviously discovered that the FAR of the proposed

OLPP-MLE is the lowest. OLPP-MLE algorithm dramatically outperforms others, especially for

IDV(3), IDV(9), IDV(15) and IDV(21), although all of the approaches can not detect faults accu-

rately. For other faults except IDV(19), OLPP-MLE method provides the similar or sightly better

fault detection performance in comparison with the other methods.

In conclusion, from overall perspective, OLPP-MLE has the highest detection accuracy rates

after the trade-off between FAR and FDRs.
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Table 3: A brief comparison among data-driven approaches

Method Assumption on data Computational complexity Parameter
PCA Gaussian distribution Low: 1 SVD on m×m matrix number of PCs
DPCA Same as PCA Medium: 1 SVD on hm×hm matrix number of PCs, h
PPCA Same as PCA High: key parameters determined by iterative EM number of PCs
mICA Non-Gaussian distribution High: cost of PCA + iterative optimization issue number of ICs
LPP No Low: cost of PCA + adjacency graph construction k, l
OLPP No Medium: as mentioned in Section 3.2 k, l
OLPP-MLE No Medium: as mentioned in Section 3.2 k

5.5 Discussion on data-driven approaches

This section discusses the unsupervised dimensionality reduction approaches aforementioned in

several aspects, namely, basic theory, mutual relationship, data distribution, computational com-

plexity.

PCA can extract variability information to the utmost extent, but it should follow multivariate

Gaussian distribution. DPCA has the most identical procedures with PCA and time delayed vectors

are considered within, which makes it considerably complicated and not appropriate for large-scale

systems. PPCA was proposed based on probabilistic model, where expectation maximization (EM)

is employed to estimate the principal subspace iteratively. PPCA is able to deal with missing data

but it is substantially complicated.44

mICA extracts the latent statistically independent components (ICs) from non-Gaussian distri-

bution data and can be regarded as another form of PCA.14 However, the computational complexity

of mICA is fairly high due to the iterative optimization issue.

Methods aforementioned are based on the global geometric properties of data. LPP can p-

reserve local neighborhood message optimally. However, OLPP preserves better locality perfor-

mance than LPP and enables to reconstruct data conveniently. Moreover, OLPP can be regarded

as another form of PCA through the specific setting,23 which has been illustrated in SI file. OLPP-

MLE can obtain accurate estimation of ID than traditional OLPP, thus delivering better monitoring

performance, as indicated in Table 2. OLPP-MLE is slightly more complicated than LPP and OLP-

P due to MLE. Other various virtues of the proposed method have been concluded in Section 1.

A sketchy comparison among data-driven approaches aforementioned is summarized in Ta-
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ble 3. According to Table 3, OLPP-MLE has no requirement of data distribution, and the com-

putational complexity is moderate and acceptable. Moreover, the estimation of ID is relatively

accurate and stable, thus delivering better process monitoring performance than LPP and conven-

tional OLPP. Therefore, OLPP-MLE is a preferable choice after thorough consideration.

6 Conclusion

In this paper a new process monitoring approach, i.e., OLPP-MLE, has been introduced based on

available sensing measurements. The MLE is employed to estimate the intrinsic dimensionality of

normal training data set, based on which OLPP is conducted to reduce dimensionality. Two test

statistics are defined to monitor the model subspace and the residual subspace, and the correspond-

ing thresholds are obtained by kernel density estimation. To deal with the singular problem in OLP-

P, three schemes are available to ensure the reliability of solution. Moreover, MLE provides stable

and reliable estimation of intrinsic dimensionality. Besides, the proposed OLPP-MLE algorithm

owns more discriminating capabilities for data anomaly, which may be otherwise indistinguishable

via other dimensionality reduction methods. The superiority of OLPP-MLE is demonstrated by C-

STR and Tennessee Eastman process in contrast with a wide range of data-driven fault detection

schemes.

Actually, OLPP-MLE is based on the linear extension of Laplacian Eigenmaps and easy to re-

construct data, which shares several data representation characteristics with nonlinear techniques.

In future, authors will focus on the nonlinear extension of OLPP-MLE with little artificial interfer-

ence for the purpose of data-driven process monitoring. Besides, missing data and sparse data can

also be considered.

Supporting information
Detailed theory of OLPP and the relationship between OLPP and PCA are described in Supporting

Information file.
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