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ABSTRACT 

A histidine based amphiphile containing a C14 fatty acyl chain, N-histidyl N-myristry ethyl 

amine (AM1, 14.7mM) forms hydrogels in the presence of Fe3+ (within the range 1.47 to 

4.41mM) and Hg2+ (within the range 3.67 to 11.02 mM ) ions in aqueous dispersions at pH 6.6 

(27C). The imidazole ring of the histidine residue plays a vital role to interact with these metal-

ions. The thermal and mechanical stability of these metallo-hydrogels can be tuned by changing 

the proportion of amphiphile to metal ion ratio (1:0.1 to 1:0.3 for Fe3+ containing gel and 1:0.25 

to 1:0.75 for Hg2+ containing gel). The metallo-hydrogels were characterized by different 

spectroscopic and microscopic techniques, low- and wide-angle powder X-ray diffraction and 

small-angle X-ray scattering studies. FT-IR and NMR spectroscopic studies indicate the 
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participation of the imidazole ring in metal-ion binding. Low- and wide-angle powder X-ray 

diffraction and small-angle X-ray scattering data are in favour of a layered structure of the 

supramolecular assembly of the AM1 in presence of metal-ions. Both, the amphiphiles and the 

metal ion induced hydrogels reveal catalytic activity of p- nitrophenyl esters hydrolysis for the 

acetyl, n-butyl and n-octyl esters. Ferric ion containing metallo-hydrogel exhibits higher catalytic 

activity than the corresponding AM1 aggregate in the absence of metal-ions. 

INTRODUCTION 

The assembly of small molecules to form functional aggregates has drawn considerable attention 

for more than a decade1-8. This is not only due to the interesting nano-structures that are formed 

from the assembly of small molecules but also due to the fact that these supramolecular entities 

form functional hydrogels under suitable conditions. Gels are endowed with a variety of 

activities9 including use as vehicles for drug delivery10-14, removal of pollutants and toxic metal 

ions from waste water15-18, tissue engineering19-21, making functional nano-hybrid systems22-

24and biocatalysts25-27. There are many examples of functional hydrogel based on amino acids, 

peptides, carbohydrates and other biomolecules28-31. Small molecules form gels by simple non-

covalent cross linking and during the course of assembly many factors control such cross linking 

process.32 Metal ions are good candidates for promoting such cross linking. Steed and co-

workers prepared Ag+ containing hydrogel with nanofibrous structure for the synthesis of silver 

nano-particles33. There are several examples of metal assisted low molecular weight hydrogels. 

Amino acids and peptides are good candidates for chelating metal ions using various functional 

groups present in their side chains.However, examples of amino acid or short peptide based 

metallo-hydrogels are relatively scarce34, 35. Liu and coworkers have reported a Cu2+-selective 

histidine containing bola-amphiphilicmetallo-hydrogel that shows good tolerance towards 



concentrated acid environment and it exhibits very good selectivity towards Cu2+ ions36. 

Banerjee and co-workers have reported tyrosine containing metallohydrogel with multiple 

stimuli responsiveness37. The nature of self-assembly and functionality of peptides can be 

regulated by ligating with suitable metal ions38. It has been found that self-assembled synthetic 

peptides are good candidates for catalyzing various organic transformations39,40.It is known that 

the activity of enzyme enormously increases in the presence of a metal ion as a co-factor. 

Esterase belongs to a useful category of enzymes that plays an important role to break down the 

drugs into corresponding smaller fragments inside the body41. To mimic the function of an 

enzyme activity by using a small molecule remains a great challenge to the chemist as Nature has 

optimized enzymes over aeonsof evolutionary time. Several research groups have reported metal 

nanoparticles42-45, dendrimers46,47, micelles48,49and others with an ability to catalyse ester 

hydrolysis. However, the efficiencies of these materials are not very high due to the absence of 

enzyme-like specific active site for catalysis. Escuder and co-workers have reported an imidazole 

appended short peptide based hydrogel that shows an enzyme-like activity (esterase 

activity)50.Stupp and co-workers have reported a histidine-containing peptide amphiphilic 

hydrogel as a catalyst and they showed that hydrolytic reactions can take place on the surface of 

nanofibers due to the higher number of active sites51. Some research groups have studied the 

esterase activity by using histidine and arginine based co-assembled peptide as a catalyst52,53. 

There are a few reportson the histidine containing short peptide based hydrogelatorswith esterase 

activity54-58. Korendovychand coworkers have reported a Zn2+ ion stabilized amyloid fibril with 

esterase acivity, whose catalytic activity drops several times in absence of the metal 

ion59.Therefore, it is of great interest to make amino acid/peptide based molecules with a ligating 

group that can bind with a suitable metal ion like Fe3+, Hg2+, Cu2+, Zn2+  and any of these metal 



complexes can eventually self-associate by using various non-covalent interactions to form either 

gels or soluble aggregates. It is a challenging task to construct metallogel based soft, functional 

materials with appropriate functionality and a suitable metal ion that can show catalytic activity. 

In the course of our continued interest to study of self-assembling behavior of peptide/amino acid 

based amphiphilic molecule, N-histidyl N-myristry ethyl amine (AM1)(Figure 1a)has been 

designed and synthesized60 in such a way that it contains a histidine residue (imidazole ring) to 

bind transition metal ions, an amide group for intermolecular hydrogen bonding interaction and a 

fatty acyl chain to promote hydrophobic interaction. This amino acid based amphiphileAM1 

binds with Fe3+ and Hg2+ ions separately and under suitable condition it forms a hydrogel at pH 

6.6 (27C). However, the amino acid based molecule alone fails to form a gel under similar and 

other tested conditions. To the best of our knowledge there is no report of metallo-hydrogel that 

act as a catalyst for ester hydrolysis. We are curious to investigate whether this histidine-based 

metal complex can able to act as a biocatalyst or not. Interestingly, the ferric ion based hydrogel 

shows an esterase-like activity towards a series of p-nitrophenyl esters. 

 

EXPERIMENTAL SECTION 

L-Histidine, Myristicacid were purchased from Sigma Aldrich. Ethylene diamine, HOBt (1-

hydroxybenzotriazole), DCC (N, N'-Dicyclohexylcarbodiimide), p-nitrophenyl acetate (PNPA), 

p-nitrophenyl butyrate (PNPB), p-nitrophenyloctanoate (PNPO) were purchased from SRL, 

India.Instrumentation details and spectroscopic analysis are given in the Supporting Information. 

 



RESULTS AND DISCUSSION 

Gelation Study:  

The histidine based amphiphileN-histidyl N-myristry ethyl amine(AM1) has been synthesized60, 

purified, characterized (Supporting Information) and it has been tested for gelation in aqueous 

medium (pH 6.6 at27C). For the gelation study, 6 mg of AM1 was taken in a glass vial and 

dissolved in 1 ml milli-Q water bycarefully heating on a hot plate. A transparent clear solution 

was observed upon heating, as the system attained room temperature a white colored suspension 

was formed,this result indicates thatAM1 has no gelation ability in water alone. From the 

structure of the AM1(Figure 1a) it can be seen that a deprotected amine group of N-terminus and 

imidazole group of histidine residue are present at the polar head group of the amphiphile. 

Among all the amino acids, it is well known that histidine has the strongest affinity towards 

coordination with various metal ions which may eventually affect the nature of self-assembly 

and the gelation tendency of a molecule. In this context, metal ions like Mn2+, Fe2+, Fe3+, Co2+, 

Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+added to the warm solution of the amphiphile to see whether 

they can form metallogels. Interestingly, it was found that the addition of a measured amount of 

Fe3+ ions into the warm solution of the amphiphileAM1 resulted in the formation of a brown 

solution indicating the formation of metal complex. Binding with Hg2+ ions, however, led to 

formation of awhite suspension. A self-supporting hydrogel was obtained after cooling down the 

hot solutions of these metal complex to room temperature (27C) slowly. At a fixed gelator 

concentration (14.74mM) the molar ion ratio of Fe3+/Hg2+ ion was changed separately to findout 

the exact AM1 to metal ion ratio to form a stable gel. It was found that AM1 to metal ion ratio 

was 1:0.1 to 1:0.3 for Fe3+ containing gel and 1:0.25 to 1:0.75 for Hg2+ containing gel to form. 



The gel melting temperature (Tgel) and minimum gelation concentration (MGC) of these 

metallo-hydrogels were measured fordifferent proportions of amphiphileAM1 to metal ion 

(Table S1). 

 

 

 

 

 

 

 

Figure 1: (a) Chemical structure of amphiphileAM1; (b) FeCl3 and HgCl2 induced hydrogel of 

compound AM1. 

Morphological Study: 

Field-emission scanning electron microscopy (FE-SEM) experiments were carried out to image 

the structure of the self-assembled aggregates and metallo-hydrogels are formed by 

amphiphileAM1. From the SEM images (Figure 2a and 2b) it was found that the soluble 

aggregates ofAM1 in water shows self-assembled helical fiber with approximately 50-80 nm 

thickness. These helical fibers form locally branched (diverging from a common point) 

aggregated structures upon assembly (Figure 2a and 2b) with a lesser degree of entanglement. 

This may be a reason behind the lack of gelation ability of the corresponding compound. 
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Interestingly, Hg2+ and Fe3+mediated gels show highly entangled nanostructures that are 

moreinterdigitated with each other throughout the space and drastically different from the 

corresponding aggregates (Figure 2c, 2d). The thickness of gel nanofibers obtained from Hg2+ 

containing gel varies from 30-50 nm and the thickness of nanofibers in the Fe3+ ion containing 

gel is in the range of 30-50 nm. Both of these fibers are non-helical long straight fibers. 

Therefore, the metal ions have a key role in morphological feature of AM1aggregates and 

addition of these metal ions reorganizes the aggregates, by breaking its initial helical packing to 

form highly interdigitated an entangled network structure to form gel. 

 

 

 

 

 

 

 

 

Figure 2: FE-SEM images of (a) Helical fibers form locally branched (diverging from a common 

point) of aggragated AM1; (b) Enlarged image of  helical fibers of aggragated AM1(yellow 

arrow indicates the pitch of helical fiber ; (c) and (d) Hg2+, Fe3+triggered gel respectively. 

Fourier Transform Infrared (FT-IR) Analysis: 



FT-IR studies of the dried aggregates and gels reveal the difference in packing pattern of the 

molecules in the corresponding states. It can be seen from the Figures (S4 and S5) that the 

aggregate has different FT-IR peaks with respect to the corresponding gels. The FT-IR peaks for 

the aggregated AM1, at ῡ values 1548, 1644 and 3316 cm-1 range can be assigned to amide N-H 

bending modes, stretching of amide C=O and stretching of H-bonded amide N-H modes 

respectively. Interestingly, upon gelation of AM1 in presence of Hg2+ and Fe3+, new peaks 

appeared in the spectra at 1660 cm-1. The peak at 1660 cm-1 is due to weakly H-bonded amide 

C=O. With an increase in the proportion of metal ions the new peak (1660 cm-1) is found to be 

more prominent in the FT-IR spectra. This indicates the formation of a metal complex in the gel. 

Powder X-ray Diffraction (PXRD) Studies: 

To probe the molecular packing arrangement within the self-organized system, small and wide-

angle powder X-ray diffraction studies (PXRD) of the dried samples were carried out (for the 

aggregate suspension and two gels). The small angle intensity profile of aggregated compound 

AM1 shows a peak at d=45.72Å (2θ=1.88) which is greater than the calculated molecular length 

24.6Å(obtained from ChemBioDraw 3D software) but less than the doubleof this length (49.2 Å) 

(Figure 3a). This indicates slight intercalated nature of compound AM1 in the aggregated state. 

The peaks corresponding to d = 8.41 Å (2θ = 10.23), d = 4.35 Å (2θ = 19.82) can be assigned 

to the inter-sheet and inter-strand distance of a β-sheet-like structure of the aggregated molecule 

AM161 (Figure 3b). The intense peak corresponding to d = 3.99 Å (2θ = 21.64) can be assigned 

to highly organized π-π stacking of aromatic imidazole moieties. Interestingly, upon metal ion 

induced gelation, a change in PXRD pattern was observed for the xerogels. The Fe3+ containing 

xerogel shows a peak at d = 25.28 Å (2θ = 3.40) in the small-angle PXRD region almost equal 
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to the calculated molecular length (Figure 3c). In the wide-angle region, peaks were found at d= 

7.18 Å (2θ = 11.99), d = 4.15 Å (2θ = 20.78) can be assigned to the inter-sheet and inter-strand 

distance of a β-sheet-like structure and d = 3.75 (2θ = 23.07), that can be assigned to  π-π 

stacking distances between aromatic imidazole moeities (Figure 3d). From the above 

observations we conclude that upon the addition of metal ions a change in molecular 

arrangement happens in the aggregates and this ultimately leads to gelation. However, no PXRD 

pattern was obtained from the Hg2+ containing gel. 

 

 

 

 

 

 

 

 

 

 



Figure 3: (a) Low (b) Wide-angle X-ray diffraction pattern of xerogel obtained from aggregated 

AM1. (c) Low-angle (d) Wide-angle X-ray diffraction pattern of xerogel obtained from Fe3+ ion 

induced hydrogel. 

 

Small-angle X-ray scattering (SAXS) Study: 

To evaluate single molecular length as well as packing pattern of the gel state of Hg2+ induced 

self-assembled system, small angle X-ray scattering (SAXS) was carried out. The peaks at 

d=44.4 Å and 22.4Å (Figure S6) can be assigned to a layered structure of interdigitated 

molecules of compound AM1 in presence of Hg2+. Based on SAXS and PXRD studies a 

probable model of molecular packing pattern of the gel phase has been constructed in Figure S7. 

Determination of binding mode of the amphiphilic molecule AM1 with metal ions: 

To interpret the binding mode of AM1 with Hg2+ and Fe3+separately, 1H NMR spectroscopic 

experiments were carried out for solutions/suspensions and xerogels of metal ion induced AM1 

in DMSO-d6 solvent. The chemical shifts (δ) of proton attached to C2 and C4 in imidazole ring 

of AM1 are observed at 7.50 ppm and 6.79 ppm. We expected that the chemical shift (δ) of these 

two protons of imidazole ring will be shifted to a downfield position upon metal coordination. 

From the NMR spectrum it was seen that the chemical shift (δ) of C2 and C4 protons were 

shifted to7.82, 7.04 ppm and 8.02 and 7.21ppm for Hg2+-containing gel and Fe3+-containing gels 

respectively (Figure S8). So, it can be concluded that the sp2 nitrogen of imidazole ring directly 

coordinates to the metal ion. Another coordinating group, NH2 is also present in the 

amphiphileAM1. The binding of free NH2 of AM1 with metal ions was determined from the FT-

IR spectroscopy in dimethylsufoxide solution (DMSO) (Figure S9). In DMSO the AM1 as well 



as two metal complexes of AM1 were clearly soluble and this indicates a monomeric nature of 

the AM1 and its metal complexes. So, stretching frequencies arise from the self-assembled 

system (hydrogen bonded N-H stretching, N-H bending) of AM1, will be absent in this case. The 

peak appears in the spectra of AM1 at 3315 cm-1 is only for N-H stretching of free NH2 of AM1. 

But for two metallo-hydrogels the peak at 3315 cm-1 was diminished completely (Figure S9). So, 

we can conclude that free NH2 group of AM1 is directly involved for the coordination to the 

metal. 

Rheological Studies: 

To investigate the mechanical strength as well as viscoelastic behavior of the metallo-hydrogels, 

rheological measurements were performed at a given concentration (19.65mM).  The frequency 

sweep experiment was carried out as a function of angular frequency and it was found that the 

storage modulus (G') is always greater than the loss modulus (G"), consistent with gel formation. 

The storage modulus (G') and loss modulus (G") are both largely independent of frequency, 

indicating the formation of a stable gel (Figure 4). 

 

 

 

 

 



Figure 4:  Frequency sweep analysis of (a) Fe3+ ion induced hydrogel obtained from AM1 at the 

AM1: Fe3+ (1:0.25) and (b) Hg2+ ion induced hydrogel obtained from AM1 at the AM1: Hg2+ 

(1:0.5) at a constant strain of 1%. 

Circular Dichroism (CD) study: 

Circular dichroism is an important tool to measure chirality of peptide/amino acid based 

supramolecular polymers. CD spectra of aggregated AM1, Fe-AM1 and Hg-AM1 (Figure S10) 

at a fixed concentration of 50 µM reveal supramolecular chirality of the corresponding 

aggregated states.AM1 in aggregated solution phase shows a strong negative peak at around 208 

nm and a positive peak at 234 nm, indicating the presence of supramolecular chirality in the 

aggregated state. Interestingly, upon gelation in presence of Fe3+ and Hg2+ we get almost 

featureless CD spectra and it is devoid of any kind of positive or negative Cotton effect. This 

data is also in agreement with our previous observation in FE-SEM images in which AM1 was 

found to form chiral helical fibres whereas,Fe-AM1 and Hg-AM1 form straight fibres with no 

helical pitch. 

Studies on esterase activity: 

The histidine containing amphiphile (AM1) self-assembles to produce a metal induced hydrogel. 

Interestingly, the amphiphilic compound AM1 and ferric ion containing gel of AM1 show 

esterase-like activity and this was checked by taking a series of p-nitrophenyl esters as a model 

substrate. The catalyst was used in dried form and it was prepared by freeze drying the 

aggregated solution and Fe3+ containing gel (in a molar ratio of 1: 0.25) of AM1. The catalytic 

activity was not studied for the Hg2+ ion induced hydrogel due to the toxic and hazardous nature 

of particular this ion. The progress of the reaction was monitored quantitatively by UV-vis 



spectroscopy as the hydrolysis of p-nitrophenyl esters (n=0 for p-nitrophenyl acetate, n=2 for p-

nitrophenylbutyrate,n=6 for p-nitrophynyloctanoate, figure 5) leads to the formation of a yellow 

colored chromogenic compound p-nitrophenol (Figure 5),with astrong absorption maxima at 400 

nm. The stock solution of p-nitrophenyl esters was prepared by dissolving it in minimum amount 

of acetonitrile. Then an appropriate amount of p-nitrophenyl esters(n=0 for p-nitrophenyl acetate, 

n=2 for butyrate and n=6 for octanoate) solution was added to the catalytic solution so that final 

concentration of p-nitrophenyl esters was within the range 0.5 mM to 4 mM. The reaction 

mixture was stirred and at a fixed time interval the absorbance value of product formation (p-

nitrophenol) was recorded. The molar extinction coefficient (ε) of p-nitrophenol was 14011 M-

1L-1, and it was determined by plotting the absorbance versus concentration of p-nitrophenol 

(Figure S11). All the hydrolysis experiments were carried out under the same condition in 

aqueous phosphate buffer solution (50mM) at physiological pH 7.46 (27C) and in the presence 

of excess water. Therefore, it can be considered that the hydrolysis reaction was always first 

order with respect to the substrate62. The 0.1 mMcatalytic solution of aggregated AM1 and Fe3+ 

ion containing gel were prepared in 20 ml phosphate buffer solution (50 mM) of pH 7.46 at 

27C. These two catalytic solutions were heated on a hotplate to dissolve completely and 2ml of 

solution was taken in the reaction vial. 

 

 

 

 



Figure 5: Hydrolysis reaction of p-nitrophenyl esters (n=0 for p-nitrophenylacetate[PNPA], n=2 

for butyrate[PNPB] and n=6 for octanoate [PNPO])catalyzed by aggregated AM1/ Fe3+ ion 

induced hydrogel of AM1. 

It was found that the absorbance value of the hydrolyzed product, p-nitrophenol for the ferric ion 

based catalyst was sharply increased with a steeper slope as a function of time compared to that 

of the aggregated AM1 (Figure 6). Therefore it can be concluded that the rate of reaction of 

ferric ion based catalyst is higher than that of aggregated AM1alone. There was no significant 

change of the product formation in presence of only FeCl3 solution. Therefore, FeCl3 on its own 

does not stimulate the hydrolysis reaction.  

 

 

 

 

 

Figure 6:Plot of Absorbance versus time for hydrolysis reaction of 1 mM(a) p-nitrophenyl 

acetate(PNPA) and (b) p-nitrophenyl butyrate (PNPB) and p-nitrophenyloctanoate (PNPO) in 

presence of 0.1 mM catalyst. 

The initial hydrolytic reaction rate of p-nitrophenyl esters was calculated by varying the substrate 

concentration keeping the concentration of the catalyst fixed. The Michaelis-Menten kinetic 

parameters of ester hydrolysis ware calculated from double-reciprocal plots of initial reaction 

rate versus different concentrations of substrate (Figure 7 and Figure 8). The hydrolytic rate 



constant (Kcat), catalytic efficiency (Kcat / KM) for Fe3+ ion based catalyst and aggregated AM1 

were found to be 2.82×10-2s-1, 0.63 M-1s-1and 1.27×10-3 s-1, 0.89 M-1s-1 respectively for the 

hydrolysis of p-nitrophenyl acetate (PNPA) (Table 1). The enhancement of rate constant was 22 

times higher for the ferric ion based catalyst with respect to the aggregated AM1. It can be said 

that the imidazole moiety is not solely responsible for this kind of rate enhancement, however, 

the combination of ferric ion with the imidazole moiety in self-assembled system plays a vital 

role in catalysis. 

 

 

 

 

 

 

Figure 7:Lineweaver-Burk plot for hydrolysis of p-nitrophenyl acetate (PNPA) catalyzed by (a) 

ferric ion based hydrogeland (b) aggragatedAM1. 

 

The kinetic parameters for other two substrates p-nitrophenyl butyrate and p-

nitrophenyloctanoate are listed in Table 1. All values of kinetic parameters of these two 

substrates were found to be lower compared to p-nitrophenyl acetate.The possible reason for that 

is the aggragetion behavior of these two substrates in the phosphate buffer due to the presence of 



long acyl chains. As a result, fewer reacting substrate molecules may come into contact with the 

reactive center of self-assembled metal catalyst leading to lower reaction rate compared to the p-

nitrophenyl acetate. 

We also carried out the hydrolysis experiment of p-nitrophenyl acetate by using aggregates 

formed by other metal ions such as Cu2+ and Zn2+to examine the exact role of metal mediated 

self-assembly as a catalyst for ester hydrolysis (Figure S12). These metal ions are unable to 

induce gelation of aggregated AM1.The kinetic parameters for the hydrolysis of p-nitrophenyl 

acetate catalyzed by Cu2+ or Zn2+containing AM1 aggregates are listed in the table S2. These 

data clearly indicates that the rate of hydrolysisof Cu2+ or Zn2+ containingAM1aggregatesare 

slightly higher than the aggregated AM1alone but much less than that of ferric ion induced 

hydrogel of AM1.Therefore it can be stated that the kinetics of hydrolysis for Cu2+/Zn2+ ion 

containing aggregated AM1 is much slower than that of ferric ion containing complex. The exact 

reason for this type of ion specificity during catalysis is yet to be explored properly. The metal 

ion Cu2+/Zn2+/Fe3+ generally stabilized the transition state of substrate during the process of 

hydrolysis and that can be reason for higher rate of hydrolysis observed for Cu2+/Zn2+ containing 

AM1 aggregates than amphiphileAM1 itself.We performed another hydrolysis experiment of p-

nitrophenyl acetate by using ferric ion based histidine complex (Fe-Histidine) (Figure S13). 

Histidine forms a water soluble complex with Fe3+ ions. The obtained kinetic parameter is listed 

in thetable S2. It was observed that the rate of reaction of ferric ion based histidine complex was 

very much lower than aggregated AM1 as well as Cu2+/Zn2+/Fe3+ ion induced AM1. So, we can 

conclude that peptide based self-assemblyplays an important role to catalyze the ester group 

rather than a non self-assembled material. 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Lineweaver-Burk plot for hydrolysis of p-nitrophenyl butyrate (PNPB) catalyzed by 

(a) ferric ion based hydrogel, (b) aggragatedAM1 and hydrolysis of p-nitrophenyloctanoate 

(PNPO) catalyzed by  (c) ferric ion based hydrogel, (d) aggragatedAM1 

 

 

 



Table 1: Obtained kinetic parameters for the hydrolysis of p-nitrophenyl acetate (PNPA) ,p-

nitrophenyl butyrate (PNPB) and  p- nitrophenyloctanoate (PNPO) in presence of aggregated 

AM1 and Fe-AM1 as catalysts. 

 
Kcat 

(s-1) 

KM 

(mM) 

Kcat/KM 

(M-1s-1) 

Aggregated AM1 

(p-nitrophenyl 

acetate)(PNPA) 

(1.27±0.09)×10-3 1.43±0.21 0.89±0.06 

Fe-AM1 

(p-nitrophenyl 

acetate)(PNPA) 

 

(2.82±0.13)×10-2 45.12±1.26 0.63±0.03 

Aggregated AM1 

(p-nitrophenyl 

butyrate)(PNPB) 

(0.71±0.05)×10-3 0.75±0.06 0.95±0.22 

Fe-AM1 

(p-nitrophenyl 

butyrate)(PNPB) 

(0.30±0.11)×10-2 4.07±0.33 0.75±0.09 

Aggregated AM1 

(p-

nitrophenyloctanoate)(PNPO) 

(0.82±0.12)×10-3 0.77±0.08 0.94±0.17 

Fe-AM1 

(p-

nitrophenyloctanoate)(PNPO) 

(0.24±0.15)×10-2 3.32±0.24 0.73±0.11 

 

 

 



Conclusion 

We investigated metal-ion triggered hydrogelation of a S-histidine based amphiphile exhibiting 

esterase-like activity as observed for a series of p-nitrophenyl esters (nc=0,2,6). To the best of 

our knowledge this is the first report on histidine containing metallogels coupled to a synthetic 

amphiphile. Furthermore, the metal-ion induced self-assembly significantly influences the 

esterase activities. These parallels in-vitro studies on metal-containing enzymes in which the 

metal-ion acts as a cofactor for achieving full enzyme activity. 
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