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Abstract
In Britain, residential properties are predominantly heated using gas central heating systems. Ensuring
a reliable supply of gas is therefore vital in protecting vulnerable sections of society from the adverse
effects of coldweather. Ahead of thewinter, the grid operatormakes a prediction of gas demand to
better anticipate possible conditions. Seasonal weather forecasts are not currently used to inform this
demand prediction. Herewe assess whether seasonal weather forecasts can skilfully predict the
weather-driven component of bothwintermean gas demand and the number of extreme gas demand
days over thewinter period.Wefind that both themean and the number of extreme days are predicted
with some skill from earlyNovember using seasonal forecasts of the large-scale atmospheric
circulation (r>0.5). Although temperature ismost strongly correlatedwith gas demand, themore
skilful prediction of the atmospheric circulationmeans it is a better predictor of demand. If seasonal
weather forecasts are incorporated into pre-winter gas demand planning, they could help improve the
security of gas supplies and reduce the impacts associatedwith extreme demand events.

1. Introduction

Gas demand in Britain is dominated by demand for
residential and commercial heating [1]. Consequently
gas demand is highly anti-correlated with temperature
(Pearson correlation, r=−0.90) [2], with demand
increasing as temperatures fall. Ensuring a reliable
supply of gas is therefore critical to protect more
vulnerable sectors of society from cold-related ill-
nesses. The energy supply system is under most
pressure during winter, when cold snaps drive peak
demand [2, 3], competition for gas supplies and high
energy prices, as for example occurred in early March
2018 [4]. To ensure security of supply the energy
system operator assesses the energy situation ahead of
the winter. They predict total winter demand, possible
extreme gas demand conditions, necessary storage
requirements and likely available supplies [1]. Current
predictions of winter demand do not consider any
seasonal weather forecast information. Instead, aver-
age winter conditions are assumed and then risks

associated with historical weather related peak
demand events [1] are assessed. Seasonal forecast
information, if skilful, offers the potential to improve
the estimates of winter gas demand and improve
security of supply.

Seasonal forecasting of winter climate in north-
western Europe and the Atlantic has improved over
the last decade [5, 6]. The North Atlantic oscillation
(NAO) is the dominant mode of winter variability in
this region and its phase dictates the general character-
istics of the winter period, including average temper-
ature, wind speed and storminess over much of the
European continent [7]. Skilful forecasts of the winter
NAO are now possible [5, 8, 9] and this has been
shown to be useful for predicting impacts on society,
such as sea ice cover [10], transport delays [11] and
river flows [12].

The use of seasonal forecast information by the
energy industry is in its infancy with only a few studies
demonstrating their potential benefits [13–17], and to
date none have addressed gas demand forecasting.
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Clark et al [14] have shown that skilful forecasts of win-
ter mean wind power density and electricity demand in
the UK are possible using forecasts of wind speed and
the NAO respectively. This result combined with the
fact that gas demand is more strongly anti-correlated
with temperature than electricity demand [2, 18] sug-
gests that seasonalweather forecastsmay also allow skil-
ful gas demand forecasts. In addition, the energy
industry’s desire for tailored seasonal forecast informa-
tion is high, as demonstrated by the positive feedback
following a recent Met Office winter trial, where seaso-
nalweather forecast briefingswere provided.

The aim of this paper is to assess the skill in fore-
casting the weather-driven component of both winter
mean gas demand and the number of high gas demand
days over winter, using seasonal forecasts of climate.
Winter is defined as the months of December, January
and February and the skill of the 3 monthly average
forecast from early November is assessed, giving a lead
time of one to threemonths.

2.Data andmethodology

2.1. Gas demand data
A dataset of the daily total gas demand of Great Britain
(GB) covering the period April 1996–March 2018, in
giga (109) Watt hours (GWh), was provided by
National Grid. The gas demand value represents the
total demand from residential and large industrial
premises (non daily-metered and daily-metered
demand respectively) and includes shrinkage (gas leaks
and theft). It does not include gas consumers directly
connected to the national transmission network, such
as gas-fired power stations and large industrial units
[19]. The variation in daily demand over the 22 year
period is shown in black in the upper panel of figure 1,
where a clear annual cycle is evident, with higher
demand during the colder winter months and lower
demand during thewarmer summermonths.

The variation in winter mean demand is shown in
figure 2 (dotted black line) and highlights a general

Figure 1.Upper: daily GB gas demand timeseries (black) and harmonicfit (red), April 1996–March 2018. Lower: daily GB gas demand
timeseries where low-frequency variability has been removed.
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reduction over the 22 year period. The demand varia-
bility is only weakly anti-correlated with winter mean
temperature variability (r=−0.39), much lower than
might be anticipated given the known drivers of gas
demand. Thornton et al [2] demonstrated that low-
frequency variability in both electricity and gas
demand over a similar period was not driven by temp-
erature, but was rather thought to relate to socio-eco-
nomic changes over the period. Possible reasons for
the reduction in gas demand over the period include
more efficient gas boilers, better home insulation with
more double glazing, increasing gas prices and a con-
tinued shift away fromheavy industry [20].

To accurately assess the weather-driven comp-
onent of gas demand and its predictability, much of
the demand variability that is not driven by the
weather needs firstly to be removed. Thornton et al [2]
developed a methodology to remove demand varia-
bility on timescales greater than 5 years (referred to as
low-frequency variability), whilst retaining demand
variability on a daily, seasonal and inter-annual time-
scale. This approach is used here and the first step
involves identifying the slowly evolving background
demand. This is achieved by fitting a smoothly evol-
ving second order Fourier expansion to the daily
demand data and is shown in red in figure 1. A gradual
reduction in both the annual mean gas demand and
magnitude of the annual gas demand cycle is seen over
the data period. This background demand is then
removed from the daily demand timeseries and
replaced with a climatological-mean annual demand
cycle. The resultant demand timeseries, where low-
frequency variability has been removed, is used in the
subsequent analysis and is shown in black in the lower
panel of figure 1. The highest daily demand over the
data period can be seen to shift from the winter of
2003–2018 (compare upper and lower panels). Full

details of the methodology to remove low-frequency
demand variability are given in Thornton et al [2].

Following the removal of low-frequency demand
variability, the strength of the correlation between
winter mean temperature and demand increases from
−0.39 to −0.87, better reflecting the known relation-
ship [2] (see figure 2). The low-frequency variability in
observed winter temperature over the 22 year period is
small. Consequently, when the 5 year running mean
temperature trend is removed, its correlation with
demand barely changes (r=−0.85).

The predictability of two characteristics of the
winter gas demand are investigated, the winter mean
gas demand and the number of high demand days per
winter.

2.2. Seasonal forecast data
The Met Office’s global environment model (Had-
GEM3-GC2 [21]) consists of global models of the
atmosphere, the land surface [22], the ocean [23] and
sea-ice [24]. Both the operational seasonal forecast
system, GloSea5 [25], and the decadal prediction
system, DePreSys3 [9], are built around this same
model. The atmosphere component has a resolution
of 0.83° longitude and 0.55° latitude (about 60 km at
mid-latitudes), with 85 vertical levels and an upper
boundary at 85km. The ocean model’s resolution is
0.25° in both latitude and longitude, with 75 vertical
levels.

In GloSea5 a set of retrospective forecasts, called a
‘hindcast’ set, is available for winters 1993–2016. Ten
ensemble hindcast members are available from each
calendar week. The three nearest weeks of hindcasts
centred around the desired start time are collected
together. For example, for a winter forecast of
Dec–Jan–Feb with a one month lead time, we use the
hindcast start dates of 25 October, 1 November and 9

Figure 2.Thewintermean ofGB gas demand (‘D’, black dotted), demand timeseries where low-frequency variability has been
removed (‘Dd’, solid black) andUKmean temperature (‘T’, red). Pearson correlation coefficients (r) are also given highlighting the
much closer relationship between demand and temperature once low-frequency demand variability has been removed. Thewinter
year is labelled according to the January and February of thewinter.
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November, giving a total of 30 ensemble members per
winter. The DePreSys3 hindcast set is available for
winters 1981–2018 and includes 40 ensemble mem-
bers initialised on the 1 November. In both systems,
ensemble member differences are created using a sto-
chastic physics scheme [25].

Although small differences in initialisation exist
between the GloSea5 and DePreSys3 hindcast sets, the
two ensembles are considered to be directly compar-
able [5, 9], giving a combined ensemble set of 70mem-
bers for winters 1997–2016. This large size is beneficial
as the prediction skill of a system typically improves
with ensemble size, because the noise between ensem-
ble members is reduced, leaving a clearer ensemble
mean forecast signal [5, 26–28].

2.3. Climate predictors
Various climate indices are considered as possible
predictors of winter gas demand based on atmospheric
temperature or the large-scale pressure field. These
climate indices are calculated for both observations
and forecasts. As a proxy for observations, the gridded
6 hourly instantaneous data sets of the ‘Interim’

version of the ECMWF Reanalysis (ERAI [29]) are
used. The data has a resolution of 0.75° longitude by
0.75° latitude and is available over the gas demand data
period. Three variables are used, 2 m temperature,
mean sea level pressure (MSLP) and the geopotential
height of the 500 hPa pressure level (Z500). The
6 hourly data is firstly averaged to a daily mean value
and then the following indices are calculated:

• Winter mean UK temperature: temperature is
averaged over the region of 10°W–5°E and from
50°–60°N to give aUKmean temperature.

• Winter mean NAO: the MSLP is averaged over the
regions of Iceland (63°–70°N, 25°–16°W) and the
Azores (36°–40°N, 28°–20°W) [9]. For each region
the winter pressure anomaly from the long term
climatology is established and then the difference in
these anomalies (Azores—Iceland) is determined.
The same diagnostic of the geopotential height field
on the 500 hPa pressure level is used to give a mid-
troposphereNAO index (NAOZ500).

• Winter mean UK North–South pressure difference
(ΔP): Thornton et al [3] found that the winter
variation in GB daily electricity demand was
strongly influenced by the regional pressure field to
the north and south of theUK.An indexwas defined
as the difference in pressure between a northern box
(27°W–21°E, 57°–70°N) and a southern box (same
longitudes, 38°–51°N), for regions see figure 4 in
Thornton et al [3]. This is effectively a measure of
the average westerly winds over the UK. This more
UK centred pressure difference index is used here
and a mid-tropospheric version is again calculated

using the difference in the geopotential height field
of the 500 hPa pressure level (ΔZ).

• Number of high demand weather type days per
winter (NWT): Thornton et al [3] found that four
large-scale high pressure weather patterns drive low
temperatures and high electricity demand in the UK
(see their figure 5). The weather types were identi-
fied by applying K-means clustering to the daily
MSLP fields of the wider region. Here we explore
whether predictions of the number of such days per
winter is a good predictor of winter gas demand. A
day is defined as a high demand weather type day if
it is sufficiently similar to one of the previously
identified cluster centroids. Days are included if, the
sum of the absolute pressure difference across the
region is smaller, and the pattern correlation is
higher, than the most dissimilar day within that
cluster to the cluster centroid.

The same climate indices are also calculated using
the forecast data. An index is calculated for each
ensemble member individually and then these are
averaged to give an ensemble mean index. Due to the
significant signal to noise issue when predicting the
climate in the mid-latitudes [5, 26, 28], the ensemble
mean climate index is used as the climate predictor,
rather than the individual ensemble member values.
From here onwards, ‘climate index’ refers to the com-
bined ensemblemean of the climate index.

2.4.Methods for assessing forecast skill
For a climate index to be a skilful predictor of gas
demand, it must have both a strong observed relation-
ship with gas demand and be well predicted by the
climate forecast system itself. Both are assessed using
correlation coefficients: the Pearson correlation (rP)
when the variables are continuous (e.g. winter mean
gas demand, temperature) and the Spearman rank
correlation (rS) if either of the variables is discrete (e.g.
the number of high demand days per winter).

Skill in predicting gas demand is established by
assessing the relationship strength between the fore-
cast climate index and the observed gas demand vari-
able, following the approach of Bett et al [16]. The
ability of the climate index to predict above median,
above upper tercile or the correct tercile of winter
demand is assessed using theHeidke skill score (HSS).

To assess probabilistic forecast skill, a linear
regression model is made between observed winter
mean demand and the forecast climate index. The skill
of probabilistic forecasts for the demand categories
above can then be assessed, using the Brier and rank
probability skill scores (BSS and RPSS respectively),
employing leave-one-out cross validation. A pre-
liminary assessment of the reliability of the probabil-
istic forecasts is also given. For a comprehensive
description of the different statistical measures see
Wilks [30].
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3. Results

3.1. Using temperature as a predictor ofwinter
mean gas demand
Figure 3 summarises the prediction skill of winter
mean gas demand using temperature as the predictor.
As discussed previously, observed winter mean temp-
erature is strongly anti-correlated with GB winter
mean gas demand (rP=−0.87, see figure 3(a), this is a
repeat of figure 2, and is included to allow comparison
with the predictions). The skill in forecasting winter
mean temperature across North-western Europe and

the Atlantic is shown in figure 4. Temperatures are
skilfully forecast overmany areas of the North Atlantic
and over Scandinavia. In contrast there is little skill
over continental Europe. Much of the skill over the
ocean is however related to the low-frequency warm-
ing trend, such that when the 5 year running-mean
winter-mean temperature trend is removed the pre-
diction skill is negligible over most of the North
Atlantic (not shown). There is significant skill in
predicting the average temperature over the UK
region, but the correlation magnitude is still relatively
small (rP=0.38, see table 1 and figure 3(b)). A similar

Figure 3.Using temperature to predict wintermean gas demand. (a)Timeseries of the wintermeanGB gas demand andwintermean
temperature. (b)Timeseries of wintermean temperature andwintermean hindcast temperature. (c)Regression relationship between
hindcast temperature and observed demand (blue), the prediction interval (central 95%-light grey, central 75%-dark grey), and the
observed terciles of gas demand are shown (red dashed lines). (d)Timeseries of wintermean gas demand (black) and central regression
prediction (blue) and prediction interval (grey). The Pearson correlation coefficients (rP) are given for (a)–(c). Note, the temperature
axes are inverted in (a) and (b) to allow easier comparisonwith gas demand.
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skill level is found when a 5 year running-mean
temperature trend is removed.

A forecast of UK average wintermean temperature
is not found to be a good predictor of winter mean gas
demand. Although the Pearson correlation coefficient
between the hindcast temperature and observed
demand has the correct sign (negative), its lowmagni-
tude ( =∣ ∣r 0.24P ) means it is not statistically sig-
nificant at the 5% level. A large spread in the
relationship can be seen in figure 3(c), leading to little
variation in the probabilistic prediction of winter
mean demand from year to year (figure 3(d)).
Although the deterministicHSSs are positive for above
median and above upper tercile demand, the equiva-
lent probabilistic skill scores are worse or similar to
those of a climatological forecast (e.g. RPSSter=0.03,
see table 2). In summary, although temperature varia-
bility drives a significant proportion of demand varia-
bility, forecast temperature is not a good predictor of
winter mean gas demand due to the limited skill in
predictingUK temperatures.

3.2. Using the atmospheric circulation as a predictor
ofwintermean gas demand
All circulation-based indices (NAO, NAOZ500, ΔP,
ΔZ andNWT) have a strong observed relationshipwith
winter mean gas demand (rP of ∼0.6–0.7, see table 1,
column 1). However none of the circulation indices
have as strong a relationship with demand as winter
meanUK temperature.

The skill in predicting the winter MSLP across
North-western Europe and the wider North Atlantic is
shown in the left panel of figure 5. Skill is found at both
high (60°–70°N) and low (30°–40°N) latitudes. In
contrast, over the mid-latitudes (40°–60°N) including
over the UK there is not significant prediction skill. A
similar picture is seen for the Z500 field (figure 5,
right). Nevertheless, skilful predictions of the winter
mean circulation indices are possible (rP∼0.6, see
table 1, column 2), as the indices measure the differ-
ence in pressure between the skilfully predicted low
and high latitude regions. This skill is important
because it is the gradient in pressure which drives sur-
face weather conditions. The total number of high
demand weather type days per winter is also skilfully
predicted at the 5% level (rP=0.56). This weather
type skill effectively demonstrates skill in predicting
the frequency of days where high pressure influences
the UK in winter and is consistent with previous stu-
dies [8].

Winter mean gas demand is skilfully predicted
when using any of the circulation indices as the pre-
dictor, with correlations between hindcast index and
observed demand ranging from approximately
0.4–0.6 (see table 1, column 3). Predictions of winter
mean demand greater than themedian or upper tercile
are skilful, showing improvements over using a ran-
dom or climatological forecast (scores often exceeding
0.25, see table 2). For below lower tercile demand all
predictors give positive HSSs (∼0.3–0.6), however
only NAOZ500, ΔP and ΔZ give skilful probabilistic

Figure 4.Map of thewintermean temperature forecast skill: the Pearson correlation coefficient between hindcast and observed
temperature. Statistically significant skill at the 5% level is shown by stippling using a 1-sided Fisher Z test.

Table 1.Column 1: Pearson correlation coefficient (rP) between
wintermean gas demand (Dobs) and observedwintermean climate
index (Cobs). Column 2: the hindcast skill in predicting the climate
index (correlation of observed and hindcast climate index). Column
3: the hindcast skill in predictingwintermean gas demand
(magnitude of correlation betweenDobs andChc). All data considers
winters 1997–2016. Bold values indicate the correlation is
significant at the 5% level using a 1-sided Fisher Z test.

Climate Index

Obs

relationship

Climate

index Gas demand

(C) rP (Dobs,Cobs)
skill, rP

(Cobs,Chc)
skill, ∣ ∣rP

(Dobs,Chc)

Temperature −0.87 0.38 0.24

NAO −0.62 0.63 0.40

NAOZ500 −0.66 0.63 0.55

ΔP 0.70 0.60 0.49

ΔZ 0.71 0.58 0.57

NWT 0.66 0.56 0.57
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forecasts (BSSs of 0.05–0.12). This suggests a possible
asymmetry, with better forecast skill for higher
demand winters than lower demand winters, which
could be beneficial given their larger impact.

Figure 6 demonstrates the skill in predicting win-
ter mean gas demand using ΔZ as the climate pre-
dictor. The strong observed relationship between ΔZ
and demand is shown infigure 6(a), and the prediction
skill ofΔZ is shown in figure 6(b). A significant linear
relationship exists between observed demand and
hindcast ΔZ (r=0.57, see figure 6(c)), leading to a
variation in the forecast of gas demand from year to
year (figure 6(d)). The probability of above median
demand, above upper tercile demand, and the
correct tercile category is skilfully forecast and better
than using a climatological forecast (BSSmed=0.28,
BSSupper=0.30, RPSSter=0.32). Use of the linear
regression model between hindcast climate index and
observed demand, means forecasts are automatically
bias adjusted and probabilities are reliable, for exam-
ple see figure 7. Due to the small number of winters
available, the reliability is only assessed across 4 prob-
ability bins. An operational forecast could therefore
present the risk of an event using 4 categories, e.g. the
probability (P) of above tercile demand is ‘low’
(P<0.25), ‘below median’ (0.25�P<0.5), ‘above
median’ (0.50�P<0.75) or ‘high’ (P�0.75),
rather than giving actual probabilities.

To explore howmany ensemble members are nee-
ded to ensure a skilful forecast of gas demand, figure 8
shows how the prediction skill varies with ensemble
size. Increasing the ensemble size from 1–30 leads to a
rapid increase in prediction skill (the correlation
increases from∼0.1–0.5). Increasing the ensemble size
even more leads to further improvements in the pre-
diction skill, but at a much slower rate. Nevertheless,
higher skill would likely be possible with more
members.

In summary, skilful prediction of winter mean gas
demand is possible using a forecast of the winter mean
atmospheric circulation. The improvement over using
a temperature forecast occurs because of the better

prediction skill of the circulation indices. The circula-
tion indices are calculated over a much larger area
compared to the temperature index, which may
explain their better skill.

3.3. Predicting the number of high gas demand days
over thewinter period
A day is classed as a high demand day if its demand is
equal to or greater than the 95th percentile of daily
winter demand calculated over all winters. Between
1997–2016 the observed number of high gas demand
days per winter (‘NG’) varies between 0–15 (see black
line, figure 9(a)). As these events stress the energy
supply system an obvious question is whether their
likelihood is predictable ahead of the winter. There is a
strong correlation between winter mean gas demand
andNG (rS=0.70). Consequently, if mean demand is
skilfully predicted, NG may also be predictable to
some extent.

Although observed wintermean temperature has a
reasonable relationship with NG (rS=−0.55), temp-
erature is not a useful predictor of NG (rS=−0.11
between NG and hindcast winter mean temperature,
see table 3, column 2). All circulation indices do how-
ever give skilful predictions of NG, with Spearman
rank correlationmagnitudes of approximately 0.4–0.6
(same table).

A demonstration of the prediction skill of NG,
using winter mean ΔZ as the predictor, is shown in
figure 9. Given NG is discrete and limited to positive
numbers, linear regression is not suitable for model-
ling its relationship withΔZ. Due to the small sample
size there is also considerable uncertainty in the form
of the relationship between observedΔZ and the NG.
Consequently we do not try to model the relationship,
rather we assess the prediction skill using a determinis-
tic approach. Figure 9(b) shows the relationship
between hindcast ΔZ and observed NG. As the pre-
dicted atmospheric flow over the UK becomes less
westerly (i.e.ΔZ becomes less negative), NG increases.
The contingency table for above median counts show
that the hit rate is far higher than the false alarm rate

Table 2.A summary of verification skill scores for predictingwintermean gas demandwhen using
the different climate predictors. TheHeidke skill score (HSS), the Brier skill score (BSS) and the
ranked probability skill score (RPSS), for abovemedian demand (med), above upper tercile
demand (upper) and considering all terciles (ter). Scores greater than zero indicate the forecast is
better than random chance (in the case of theHSS) and better than a climatological forecast for the
BSS andRPSS, followingWilks [30]. Bold (Italics) signifies the score is significant at the 5% (10%)
level. Significance is assessed using a 1000member bootstrap, where the skill score is calculated
between the observed demand timeseries and a randomly sampled (without replacement) hindcast
timeseries. A value is significant if it is greater or equal to the 95th (90th) percentile of the bootstrap
distribution.

Climate index HSSmed BSSmed HSSupper BSSupper HSSter RPSSter

Temperature 0.40 0.09 0.12 −0.13 0.25 0.03

NAO 0.40 0.18 0.56 0.12 0.32 0.18

NAOZ500 0.40 0.26 0.78 0.41 0.40 0.33

ΔP 0.60 0.19 0.56 0.18 0.32 0.26

ΔZ 0.40 0.28 0.56 0.30 0.47 0.32

NWT 0.60 0.33 0.78 0.30 0.62 0.34
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Figure 5.Map of thewintermean forecast skill forMSLP (left) and 500 hPa geopotential height (right): the Pearson correlation
coefficient between the hindcast and observed fields from1994–2016. Statistically significant skill at the 5% level is shown by stippling
using a 1-sided Fisher Z test.

Figure 6.Using thewintermeanZ500North–South height difference (ΔZ) to predict wintermean gas demand. (a)Timeseries of the
wintermeanGB gas demand andΔZ. (b)Timeseries of observed and hindcastΔZ. (c)Regression relationship between hindcastΔZ
and observed demand (blue) and the prediction interval (grey). (d)Timeseries of wintermean gas demand (black) and central
regression prediction (blue) and prediction interval (grey). See figure 3 for details.
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(see table 4), leading to a HSS of 0.6 (statistically sig-
nificant at the 5% level using a 1000member bootstrap
as per table 2). For above upper tercile counts, the HSS
is positive (HSS=0.34) but it is not statistically sig-
nificant at either the 5% or 10% levels. Very similar
results are found for the other atmospheric circulation
predictors, whilst a temperature based prediction is no
better thanwhen using a random forecast (HSS�0).

In summary, given a forecast of the atmospheric
circulation, we can give a skilful forecast of abovemed-
ian counts of the number of high gas demand days per
winter. A longer timeseries is needed to assess the pre-
dictability of winters with a higher number of high
demand days.

4. Conclusions

The predictability of the weather-driven component
of Britain’s winter gas demand is assessed from early
November using a range of climate predictors. Two
components of gas demand are considered: winter
mean gas demand and the number of high demand
days over the winter period. The forecast skill is
analysed from 1997–2016 using a large ensemble of
retrospective climate forecasts from the Met Office’s
seasonal and decadal prediction systems. The climate
predictors analysed are winter means of temperature,
the NAO and a UK centred North–South pressure
difference (at the surface and in themid-troposphere).

Figure 7.Reliability diagrams for probabilistic forecasts of wintermean gas demand usingΔZ as the climate predictor, for above
median (left) and above upper tercile (right) demand. A perfectly reliable forecast would lie along the 1:1 line (black). The sample
climatological probability is also given (red dotted). The lower bar charts show the distribution of forecast probabilitiesmade during
the hindcast period, ideally these would be flat, with each probability binwell sampled.

Figure 8.The impact of ensemble size on hindcast skill, when predictingwintermean gas demand usingwintermeanΔZ. The skill is
measured using the Pearson correlation coefficient. 1000 samples of the correlation have been generated by randomly sampling the
ΔZ ensemblemembers eachwinter, to give alternative hindcast ensemblemean timeseries. Themean correlation of the bootstrap
samples is shown. For a sample size of 20, statistical significance at the 5% level using a 1-sided Fisher Z test, is achievedwith a
correlation of at least 0.379.
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An additional predictor, based on the frequency of
high demand weather types over the winter period, is
also analysed. Forecast skill is assessed using a range of
deterministic and probabilistic skill measures with a
focus on the risk of higher demand winters. The main
conclusions are:

• All circulation-based indices give skilful forecasts of
winter mean gas demand. This is because such

indices are both strongly correlated with gas
demand and are skilfully predicted ahead of the
winter period.

• A method for giving operational gas demand
forecasts is demonstrated, based on a regression
relationship between the climate predictor and
observed gas demand. Skilful and reliable probabil-
istic forecasts of the risk of above median, above
upper tercile and the correct tercile of winter mean
demand are possible.

• A large ensemble of hindcast members is needed to
give a skilful prediction of winter mean gas demand,
reflecting the known signal to noise problem of
seasonal forecasting in theAtlantic sector.

• Although winter mean temperature is the climate
index most highly correlated with winter mean gas
demand, due to the lower seasonal prediction skill
of temperature, it does not give skilful predictions of
wintermean demand.

• A skilful forecast of above median counts of the
number of high gas demand days per winter is
possible using a forecast of the winter mean atmo-
spheric circulation.

The skilful prediction of winter gas demand
demonstrated here, offers the potential for improved
planning and resilience of Britain’s energy system. For
example, a more accurate forecast of winter demand
could reduce the risk of gas supply shortages and rela-
ted energy price spikes. It would be of interest to assess
the skill of winter demand forecasts with a longer lead
time, for example from early September or October,
and when averaged over a shorter period, such as indi-
vidual months, as both would clearly be useful. The
use of atmospheric circulation to predict energy
demand could also give skilful forecasts in other
regions, provided demand is driven by the weather
and skilful circulation forecasts are available. Seasonal

Figure 9.Using atmospheric circulation to predict the number of high gas demand days per winter (NG). (a)Observed timeseries of
NG andwintermeanΔZ. (b)The relationship between hindcastΔZ and observedNG. Themedian count and hindcastΔZ are
indicatedwith a dotted red line. The Spearman rank correlation coefficients are also given (rS).

Table 3.Column 1: Spearman rank correlation coefficient
(rS) between observedNG (NGobs) and observedwinter
mean climate index (Cobs). Column 2: hindcast skill in
predictingNG (correlationmagnitude betweenNGobs and
Chc). All data considers winters 1997–2016. Bold values
indicate the correlation is significant at the 5% level using a
1-sided Fisher Z test.

Climate Index Obs relationship NG skill

(C) rS (NGobs,Cobs) ∣ ∣rS (NGobs,Chc)

Temperature −0.55 0.11

NAO −0.49 0.42

NAOZ500 −0.47 0.63

ΔP 0.54 0.54

ΔZ 0.53 0.64

NWT 0.55 0.57

Table 4.Contingency table for abovemedian count of the
number of high demand days per winter, usingΔZ as the
predictor.

Abovemedian Observed

Count Yes No

Predicted

Yes 8 2

Hits False alarms

No 2 8

Misses Correct rejections

Hit rate: 80%

False alarm rate: 20%
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weather forecasts offer the first outlook for the coming
winter, but should be used in conjunction with other
nearer term forecasts, such as monthly outlooks
through to day ahead forecasts, to maximise the pre-
paredness of the energy industry for extreme demand
events.
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