Reply to TR Hill and I Kyriazakis


It is advisable to refer to the publisher’s version if you intend to cite from the work.

To link to this article DOI: http://dx.doi.org/10.1093/jn/nxy010

Publisher: American Society for Nutrition

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading

Reading’s research outputs online
Reply to the Letter to the Editor for “A 25-hydroxycholecalciferol-fortified dairy drink is more effective at raising a marker of postprandial vitamin D status than cholecalciferol in men with suboptimal vitamin D status.” (Manuscript doi: 10.3945/jn.117.254789) by Jing Guo, Kim G Jackson, Che Suhaili binti Che Taha, Yue Li, David I Givens, and Julie A Lovegrove

1 From the Institute for Food, Nutrition and Health (JG, KGJ, DIG, JAL); Hugh Sinclair Unit of Human Nutrition (JG, KGJ, YL, DIG, JAL); Institute for Cardiovascular and Metabolic Research (JG, KGJ, DIG, JAL); 2 School of Psychology and Clinical Language Sciences (CSBCT), University of Reading, Reading, RG6 6AP, United Kingdom.

2 Corresponding author: Julie A. Lovegrove, Hugh Sinclair Unit of Human Nutrition, Department of Food & Nutritional Sciences, Whiteknights, PO Box 226, University of Reading, Reading, RG6 6AP, United Kingdom. E-mail: j.a.lovegrove@reading.ac.uk.

3 Author names for indexing: Guo, Jackson, Che Taha, Li, Givens and Lovegrove.

4 Word count: 352

5 Figures: 0

6 Tables: 0

7 OSM submitted: 0

8 Supported by the Barham Benevolent Foundation.

9 Abbreviations used: NA.

10 Running title: Dairy drink fortification with vitamin D isoforms

11 Author names for indexing: Guo, Jackson, Che Taha, Li, Givens, Lovegrove.

12 Author disclosures: JG, KGJ, CSCT, YL, DIG and JAL, no conflicts of interest.
We thank Drs Thomas R Hill and Ilias Kyriazakis for their comments on our paper. We agree that a clean label approach for food vitamin D enrichment is favoured by the consumer and the low levels of vitamin D₃ and 25(OH)D₃ naturally present in animal derived foods, such as eggs and milk, can be significantly increased by supplemental additions of vitamin D₃ and 25(OH)D₃ to the animals’ diets (biofortification) (1). However, although a statistically significant increase in vitamin D₃ and 25(OH)D₃ has been reported after biofortification at supplemental quantities in line with EU legislation (2), these changes are quantitatively trivial and would not contribute to increase in dietary vitamin D₃ intake and human vitamin D status as stated by Drs Hill and Kyriazakis (1). We confirmed this in a recent study (3) in which dairy cows’ diets were supplemented either with 0.075mg/kg vitamin D₃ (control), the maximum permitted dose of vitamin D₃ (0.1mg/kg) recommended by the EU (2), or with 0.03mg/kg vitamin D₃ plus 25(OH)D₃ (0.075 mg/kg) for 8 weeks feeding from calving to early lactation. The vitamin D₃ and 25(OH)D₃ concentrations in milk from both treatments were not significantly different to the control milk or to themselves (3). For a typical milk serving of 200 ml would contribute 0.02 to 0.66 µg vitamin D (3), which well below the current UK vitamin D recommended intake of 10 µg/day (4). The authors believe that without changes to the permitted dietary supplementation levels in dairy diets, milk fortification with vitamin D, may be a more feasible strategy to increase dietary vitamin D₃ intake and ultimately increase population vitamin D status, than biofortification.

Our current finding that a dairy drink fortified with 25(OH)D₃ was more effective at raising plasma 25(OH)D₃ concentrations than dairy drink fortified with vitamin D₃ in men with suboptimal vitamin D status supported previous studies (5, 6), which demonstrates the value of 25(OH)D₃ food fortification. However this would require changes in the EU legislation before the potential advantage of this form of vitamin D can be realised for food fortification in the EU.
References

1. Guo J, Lovegrove JA, Givens DI. 25(OH) D₃ enriched or fortified foods are more efficient at tackling inadequate vitamin D status than vitamin D₃. Proc Nutr Soc. 2017 [Accepted and in press].


