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Abstract—Rule-based classifiers are considered more expres-
sive, human readable and less prone to over-fitting compared
with decision trees, especially when there is noise in the data. Fur-
thermore, rule-based classifiers do not suffer from the replicated
subtree problem as classifiers induced by top down induction
of decision trees (also known as ‘Divide and Conquer’). This
research explores some recent developments of a family of rule-
based classifiers, the Prism family and more particular G-Prism-
FB and G-Prism-DB algorithms, in terms of local discretisation
methods used to induce rule terms for continuous data. The paper
then proposes a new algorithm of the Prism family based on a
combination of Gauss Probability Density Distribution (GPDD),
InterQuartile Range (IQR) and data transformation methods.
This new rule-based algorithm, termed G-Rules-IQR, is evaluated
empirically and outperforms other members of the Prism family
in execution time, accuracy and tentative accuracy.

Index Terms—Modular Classification Rule Induction, Dynamic
Rule Term Boundaries, Interquartile Range Rule Term Bound-
aries

I. INTRODUCTION

Decision tree based classifiers are popular for their accuracy
and their simplicity to be converted into a set of rules by
transforming each leaf of the tree into a rule. However, when
dealing with large datasets, decision trees tend to become very
large, complex, and difficult to understand. Consequently, the
rules constructed through ‘Divide and Conquer’ strategy and
extracted from the resulting decision tree inherit the tree’s
complexity and thus may have unnecessary repeated tests
which can lead to redundant rulesets [1], [2]. In this context,
research has been carried out aiming to overcome or reduce
these problems and to produce a simple reliable ruleset using
pruning methods. Among others, C4.5rules [3], [4] and CART
[2] are examples of such algorithms. Nevertheless, [5]–[7]
argue that there is no single study which adequately achieves
this goal. Cendrowska [6] recognised the disadvantages of gen-
erating a ruleset in the form of a decision tree and criticises this
method as a main source of over-fitting due to the replicated
sub-tree problem that occurs when rules with no common
attributes are forced to fit in a tree structure. Therefore, she
developed Prism as an alternative expressive rule induction
algorithm that follows a different rule induction approach
called ‘Separate and Conquer’. This approach can extract if-
then rulesets directly from training data. Several experiments

conducted in [8] indicate that Prism is an ideal representative
for ‘Separate and Conquer’ algorithms, it cannot only perform
at the same level of accuracy as tree based methods but also in
most cases outperforms them in terms of classification accu-
racy and computational efficiency, especially if there is noise
in the data. RIPPER [9] and CN2 [10] are also examples ‘Sep-
arate and Conquer’ classifiers. However, Prism was the first
algorithm that used top-down search without being controlled
by a particular randomly selected pair of positive and negative
instances which makes the algorithm more stable [11]. Despite
that, as it can be seen in Algorithm 1, Cendrowska’s original
Prism is unable to handle continuous attributes and hence it
requires converting them into categorical attributes prior to
training stage. For the purpose of improving the computational
efficiency of Prism, modified and also parallel versions of
Prism have been developed in recent studies [7], [8], [12]
motivating the use of Prism in this research. Previous work
[13], [14] proposed new rule term structures for continuous
attributes based on Gaussian Probability Density Distribution
(GPDD); termed G-Prism-FB and G-Prism-DB. Section II
provides further details of these continuous rule term induction
approaches and their limitations. This paper proposes a new
approach for inducing rule terms from continuous attributes
for Prism based on quartiles and Interquartile Range termed
G-Rules-IQR. This new version has an improved accuracy
and lower computational costs compared with previous Prism
versions. Also, we incorporated a method in G-Rules-IQR to
resolve the normally distributed data assumption drawbacks
that G-Prism-FB and G-Prism-DB suffer from.

This paper is organised as follows, Section II discusses
related work on the Prism family of algorithms and Section III
introduces and explains the in this paper proposed G-Rules-
IQR algorithm. Section IV provides an exhaustive empirical
evaluation of the new algorithms compared with competing
members of the Prism family of algorithms. This is followed
by concluding remarks in Section V.

II. RELATED WORK: THE PRISM FAMILY OF ALGORITHMS
FOR INDUCING MODULAR CLASSIFICATION RULES

As shown in Algorithm 1, Prism uses a conditional probabil-
ity theory to induce a rule term that covers the selected class C



in the training dataset D. All the examples that do not belong
to C are discarded. Prism continues to build the rule R and at
each step, tries to generate the perfect rule i.e. rules that cover
training instances with a 100% accuracy of the current subset
of the training data. The algorithm always resets training data
to its original state before repeating the process and inducing
more rules for the next target class. Prism involves five nested
loops and hence building rulesets from high dimensional and
large sample sizes is computationally expensive.

Algorithm 1: Cendrowska’s original Prism Algorithm [5]

1 foreach class C do
2 Reset input Dataset D to its initial state ;
3 while D does not contain only instances of class C

do
4 Create a rule R with an empty left hand side

(LHS) that predicts class C ;
5 repeat
6 foreach attribute α not mentioned in R do
7 foreach each value x do
8 Consider adding the condition α = x

to the LHS of R ;
9 Select α and x to maximise the

accuracy formula ;
10 (break ties by choosing the condition

with the largest probability p )
11 end
12 end
13 Add α = x to R
14 until R is perfect or there are no more attributes

to use;
15 Remove the instances covered by R form D
16 end
17 end

The original development of the Prism algorithm triggered
several studies aiming to improve its performance, which
are termed collectively the Prism family of algorithms. The
first variation of Prism was described in [15] in order to
overcome the limitation of original Prism which can only train
from categorical attributes. This extended version of Prism is
illustrated in Algorithm 2. It uses a local binary discretisation
method called cut-points calculations (also referred to as
binary splitting) to deal with a continuous attribute α by
discretising continuous attribute values v through rule terms
of the form (α ≤ v) and (α > v). This local discretisation is
computationally very expensive and hence causes long training
times. Variations of Prism have been developed to speed up the
algorithm. As such PrismTCS [12] does not reset the dataset to
its original size for each class label by removing the outer loop
of the algorithm and introducing an order in which rules are
induced. Another member in the Prism family called PMCRI
[7] is a parallel and thus more scalable version of PrismTCS.

Algorithm 2: Prism Rule Induction Algorithm using Local
Discretisation

1 for i = 1→ C do
2 D ← Training Dataset ;
3 while D does not contain only instances of class ωi

do
4 forall attributes αj ∈ D do
5 if attribute αj is categorical then
6 foreach x value of αj do
7 Calculate the conditional probability,

P(ωi|αj = x) ;
8 end
9 else if attribute αj is continuous then

10 sort D according to x values;
11 foreach x value of αj do
12 calculate P(ωi|αj ≤ x) and

P(ωi|αj > x);
13 end
14 end
15 end
16 Select the (αj = x), (αj > x), or (αj ≤ x) with

the maximum conditional probability as a rule
term ;

17 Create a subset S from D containing all the
instances covered by selected rule term at line
16 ;

18 D ← S ;
19 end
20 The induced rule R is a conjunction of all selected

(αj = x), (αj > x), or (αj ≤ x) at line 16 ;
21 Remove all instances covered by rule R from

Training Dataset;
22 repeat
23 lines 2 to 21 ;
24 until all instances of class ωi have been removed

from Training Dataset;
25 Reset Training Dataset to its initial state ;
26 end
27 return induced rules ;

A. G-Prism with Fixed Boundaries (G-Prism-FB) and G-
Prism with Dynamic Boundaries (G-Prism-DB)

The authors of [13] introduced two new Prism family
members based on a new rule term structure that makes
use of GPDD to induce computationally efficient continuous
rule terms and to improve the classification performance of
Prism based classifiers. These were termed G-Prism-FB and
G-Prism-DB where G stands for GPDD, FB and DB refer
to the type of rule term boundaries either fixed or dynamic.
The new rule term structure is loosely based on the rule
term structure used in [16], which presented a classifier for
real-time streaming data. The main advantages of this rule
induction approach is that the generated rule terms are more
expressive and computationally less demanding compared with



Fig. 1. The shaded area represents a range of values of attributes αj for class
ωi. (a) 68% of all possible values, (b) 95% of all possible values

the binary splitting approach where two candidate rule terms
have to be generated for every possible attribute value (cut-
point calculations) before selecting the rule term with highest
conditional probability (with which it covers the target class)
to be appended to the rule currently being learned. As shown in
Figure 1(a), G-Prism-FB can produce a rule term in the form of
(x < α < y) by using a class conditional density probability
of the Gaussian distribution function, where x and y are valid
continuous attribute values. Like in [16] x and y are set to
the next closest values left and right of the µ of the attribute’s
values. This algorithm resulted in a better accuracy compared
with original Prism that uses binary splitting with cut-point
calculations to deal with a continuous attribute [13]. However,
the setting of x and y does not explore the rule term boundaries
and in fact the best rule term boundaries may lie further left
and right of µ than just the next attribute values. Thus G-
Prism-FB has been expanded to cover a user defined maximum
number of values left and right of µ. Let k be the number
of user defined values left and right of µ to be considered.
The larger k the more possible rule terms will be evaluated
per attribute, such as (x1 < α ≤ y3), (x3 < α ≤ y5),
(x2 < α ≤ y4),... (xn < α ≤ yk) as illustrated in Figure
1(b). This algorithm was termed G-Prism-DB. However, the
larger k the more computation is required as more rule term
candidates have to be evaluated.

B. Evaluation Summary of G-Prism-FB, G-Prism-DB and
Prism

Both G-Prism approaches (Fixed and Dynamic) and their
predecessor Prism have been evaluated empirically and com-
paratively in [13] using 6 metrics and 11 datasets.

Summary of Results:
Overall, G-Prism-DB achieved a marginally better classifica-
tion accuracy compared with G-Prism-FB and Prism using
binary splitting except for the number of rules and abstaining
rate where Prism with binary splitting performs better. The
abstaining rate can be linked to the lower coverage of data
instances per rule term in G-Prism in general. However, G-
Prism-DB generated marginally fewer rules and has a lower
abstaining rate compared with G-Prism-FB.

Limitations:
Please note that all here listed limitations, except limitation 5
(which is subject to future work), will be revisited in Section
III which describes the proposed G-Rules-IQR algorithm.

1) Execution time: Prism and G-Prism-DB are more com-
putationally expensive than G-Prism-FB as a result of
frequent cut-points calculations for Prism and multiple
rule term bounds evaluation for G-Prism-DB. However,
as expected, both approaches of G-Prism are faster than
original Prism. Please note that this evaluation metric has
not been used in [13], however, it is covered in Section
IV in this paper.

2) Abstaining Rate: the abstaining rate for both approaches
of G-Prism is higher than the one of original Prism.
This will decrease the accuracy of the classifiers despite
the higher tentative accuracy values. This is because
abstained instances were counted as misclassifications.

3) User defined threshold: the user has to define the
maximum number rule term boundary values to the left
and right of µ (by default six values to the left and right).
However, the optimal boundary may lie beyond this
user defined value and is dependent on the number of
training instances. This is because the larger the number
of training instances the more likely it is that there are
more distinct values. Thus the larger the number of
distinct values, the more likely it is that the maximum
boundary is closer to µ.

4) Normal Distribution Assumption: in [13], the authors did
not test the attributes’ distributions in the experiments,
yet the evaluation results reflect a good performance for
G-Prism-DB in most cases. However, it is still possible
that G-Prism algorithms may not perform as well on
attributes that are not normally distributed due to the
use of GPDD.

5) Attribute Dependencies: G-Prism algorithms do not take
potential dependencies between attributes into account to
further improve rule quality and expressiveness.

Limitations 1 to 4 are addressed in the research presented
in this paper.

III. G-RULES-IQR ALGORITHM

The G-Rules-IQR approach is highlighted in Algorithm 3.
The folowing subsections describe the new rule term induction
procedure for continuous attributes and how the algorithm
enables the induction of rule terms using GPDD, even if these
attributes are not normally distributed.

A. Using GPDD to Induce Rule Terms directly from Contin-
uous Attributes

The Gaussian distribution is calculated for each continuous
attribute αj with mean µ and variance σ2 from all the values
associated with classification ωi. The conditional probability
for class ωi is calculated using Equation 1.

P(αj |ωi) = P(αj |µ, σ2) =
1√

2πσ2
exp(− (αj − µ)2

2σ2
) (1)

Hence, a value for P(ωi|αj) or equivalently log(P(ωi|αj))
can be calculated as shown in Equation 2. This value is then



Algorithm 3: Learning classification rules using G-Rules-
IQR Algorithm

1 for i = 1→ C do
2 D ← Training Dataset;
3 while D does not contain only instances of class ωi

do
4 forall attributes αj ∈ D do
5 if attribute αj is categorical then
6 Calculate the conditional probability,

P(ωi|αj) for all possible attribute-value
(αj = x) from attribute α;

7 else if attribute αj is continuous then
8 calculate mean µ and variance σ2 of

continuous attribute α for class ωi ;
9 foreach value αj of attribute α do

10 calculate P(αj |ωi) based on created
Gaussian distribution created in line
8 ;

11 end
12 Select αj of attribute α, which has

highest value of P(αj |ωi) ;
13 Compute 1st and 3rd quartile using zscore

values ;
14 zScore = 0.67 ;
15 x = σ ∗ (−zScore) + αj ;
16 y = σ ∗ (zScore) + αj ;
17 Create rule term rα in form of

(x < α ≤ y) ;
18 Calculate P(rα|ωi)
19 end
20 end
21 Select (αj = x) or (x < αj ≤ y) with the

maximum conditional probability as a rule term ;
22 Create a subset S from D containing all the

instances covered by selected rule term at line
21 ;

23 D ← S
24 end
25 The induced rule R is a conjunction of all selected

rule terms built at line 21 ;
26 Remove all instances covered by rule R from

Training Dataset ;
27 repeat
28 lines 2 to 26 ;
29 until all instances of class ωi have been removed

form the training data;
30 Reset Training Data to its initial state ;
31 end
32 return induced Rules ;

Fig. 2. Interquartile Range of Normal Random variables

used to determine the probability of a given class label ωi for
a valid value of attribute αj .

log(P(ωi|αj)) = log(P(αj |ωi)) + log(P(ωi))− log(P(αj))
(2)

The created Gaussian distribution for each class label in the
training data can then be used to determine the probability of
an attribute value αj belonging to class label ωi, assuming
that αj lies between an upper and lower bound Ωi. This is
based on the assumption that the values close to µ represent
the most common values of continuous attribute αj for ωi.
G-Rules-IQR algorithm proposed in this paper makes use of
the quartiles which divide the probability density function into
four parts with an equal amount of data points (25% each).
As shown in Figure 2, the second quartile is identical to the
median [17] while the InterQuartile Range (IQR) represents
the range of attribute values that cover the middle half of
the dataset. Thus, the size of coverage of this approach is
dependent on the size of the datasets. We termed this G-Rules-
IQR. In Particular, G-Rules-IQR uses the difference between
the third and the first quartiles as in Equation 3 to find the
upper rule term and the lower rule term boundaries. σ is the
standard deviation from the mean, z1 is the standard score
of the first quartile and is ≈ −0.67 while z3 is the standard
score of the third quartile and is ≈ 0.67. x usually represents
the value of the mean µ but in case of data that is normally
distributed it represents the highest probability density of value
of P(αj |ωi) as in lines 15 and 16 of Algorithm 3. Hence, IQR
can also be used as a simple test of whether or not data is
normally distributed as the mean will be zero and the standard
deviation will be equal to 1 [18]. The empirical results in
Section IV-C show that our new improved approach G-Rules-
IQR can resolve most of the limitations of its predecessors
described in Section II-B by improving several evaluation
metrics such as accuracy, tentative accuracy, execution time
and F1 Score, while not requiring the user to balance rule
term boundaries.

Q1 = (σ ∗ z1) + x

Q3 = (σ ∗ z3) + x

IQR = Q3 −Q1

(3)

B. Transformation for Skewed Distribution

A major limitation of G-Prism-FB and G-Prism-DB algo-
rithms [13] is the assumption of normally distributed attributes.



In order to overcome or mitigate this limitation, our pro-
posed G-Rules-IQR algorithm incorporates a prior testing for
normality for each attribute in the dataset. Hence, if values
of an attribute at a particular target class are not normally
distributed, then the algorithm would apply an approximate
normal transformation of the attribute’s values with respect to
that target class. In other words, it reduces the skewness rate
of attribute values from the normal distribution. A common
simple transformation for a skewed long-tailed datasets is to
take the logarithm of the skewed attribute values [19]. This
method of transformation to normal distribution is adopted in
this paper. Every attribute in a dataset prior the application
of a G-Prism classifier of G-Rules-IQR, is tested for normal
distribution using one of the most popular goodness-of-fit tests
called Jarque-Bera test [20] and only if it is not normally
distributed, then the logarithmic transformation is applied
to approximate normal distribution. G-Prism algorithms are
expected to have a better performance on the transformed
version of the data as their rule term induction method for
continuous attributes assumes normally distributed data.

IV. COMPARATIVE EXPERIMENTAL EVALUATION

The experiments in this study firstly aim to evaluate the
performance of the new member of the Prism family (G-
Rules-IQR) compared with its predecessors G-Prism-FB and
G-Prism-DB. Unless stated otherwise the default parameters
of these algorithms as stated in Section II have been used.
Secondly, G-Rules-IQR and the G-Prism algorithms are com-
pared with original Prism using three different discretisation
methods to handle the continuous attributes indirectly. Further
explanations about these versions of original Prism are given
in Section IV-B. The implementation of G-Rules-IQR allowed
to switch off the transformation to approximate normal distri-
bution.

A. Experimental Setup

All the experiments were performed on a 2.3 GHz Intel
Core i7 machine with 16GB DDR3 memory, running macOS
High Sierra version 10.13.2. The evaluation procedure used
in this experimental evaluation is hold-out procedure. All
18 datasets used in the experiments were picked randomly
from the UCI repository [21], the only condition being that
they contain continuous attributes and involve classification
tasks. All algorithms have been implemented in the statistical
programming language R [22] and re-use the same code
base differing only in the methodological aspects described
in this paper. The datasets have been randomly sampled
without replacement into train and test datasets; whereas the
test set consists of 30% the dataset and the remaining 70%
was used to learn the ruleset. The datasets are described
in Table I in terms of number of instances, attributes (and
type of attributes) and classes. Datasets 16 and 17 contained
missing values. Missing categorical values have been replaced
with the most frequent categorical value for the concerning
attribute, and missing continuous values have been replaced
with the average value for the concerning attribute. These

metrics were Number of Rules, Abstaining Rate, F1 Score,
Accuracy, Tentative Accuracy and Execution Time. Please note
there is a relationship between accuracy, tentative accuracy
and abstaining rate. The accuracy counts abstained instances
as misclassification and tentative accuracy does not include
abstained instances. Therefore the higher the abstaining rate,
the lower the accuracy and the higher the tentative accuracy.

TABLE I
LIST OF DATASETS USED IN THE EXPERIMENTS

Dataset No. Instances No. Attributes No. Classes
1. iris 150 4 (cont) 3
2. seeds 210 7 (cont) 3
3. wine 178 13 (cont) 3
4. blood 748 5 (cont) 2
5. bank 1372 5 (cont) 2
6. ecoli 336 8 (7 cont, 1 name) 8
7. yeast 1484 9 (8 cont, 1 name) 10
8. page 5473 10 (cont) 5
9. model 403 5 (cont) 4
10. breast 106 10 (cont) 6
11. glass 214 10 (9 cont, 1 id) 7
12. HTRU2 17898 9 (cont) 2
13. magic 19020 11 (cont) 2
14. quality 4898 12 (cont) 11
15. letter 20000 17 (cont) 26
16. cancer 699 11 (10 cont, 1 id) 2
17. post 90 9 (8 categ, 1 cont) 3
18. EEG 14980 15 (cont) 2

B. Original Prism Incorporating Different Types of Local and
Global Discretisation Methods

G-Rules-IQR was compared against original Prism with
different discretisation methods explained below.

1) Prism-CutP: This extended version of Prism d [8] uses
binary splitting and cup-points calculations to induce rule
terms from continuous attributes.

2) Prism-ChiM: ChiMerge bottom-up global discretisation
method is chosen because it is a well-known approach used
to deal with continuous attributes in classification tasks [23].

3) Prism-Caim: CAIM is a top-down global discretisation
algorithm that does not require user defined parameters [24]. It
is determined as the interdependency between the target class
and the discretisation scheme of a continuous attribute.

These variations of Prism do not assume normally dis-
tributed continuous attributes, thus no transformation has been
implemented for Prism using these discretisation methods.

C. Results and Interpretation

Tables II to VII show the results of the experiments with
respect to 6 evaluation metrics. In each table the ‘#’ symbol
refers to the number of the dataset in Table I. ‘T’ denotes that
the transformation was switched on. The best result(s) in the
tables for each dataset are highlighted in bold letters.

Table II shows the results for the number of rules induced.
A large number of rules may be less beneficial to the human
analyst compared with a well defined smaller number of
rules. This is the only metric where the original version of
Prism (especially Prism-CutP) clearly outperforms G-Prism
algorithms and the new G-Rules-IQR algorithm. However,



what can also be seen is that the introduced G-Rules-IQR
algorithm on the transformed data clearly outperforms its
direct G-Prism predecessors (G-Prism-FB and G-Prism-DB)
and in some cases even generates smaller rulesets than original
Prism.

TABLE II
NUMBER OF RULES

#
Prism G-Prism G-Rules

CutP ChiM Caim DB FB IQR
T T T

1 12 8 9 9 10 20 21 18 18
2 17 27 22 30 27 73 71 31 22
3 15 18 11 16 21 55 38 26 13
4 18 48 7 46 17 109 58 60 20
5 14 196 8 176 250 466 483 101 89
6 57 72 83 44 52 108 97 91 53
7 51 556 537 219 117 511 218 270 132
8 110 412 223 465 430 1236 1325 205 215
9 24 78 46 41 49 122 122 67 57
10 17 33 31 23 17 42 44 32 28
11 56 63 64 45 40 75 81 67 30
12 77 789 39 3928 2074 6292 7107 894 31
13 25 3929 129 3133 4563 7177 8281 3467 155
14 74 1827 1511 923 577 1576 1229 1643 171
15 868 3801 3901 843 320 2334 844 2600 875
16 33 41 37 23 6 48 9 49 11
17 30 32 31 30 30 30 30 29 29
18 37 3706 516 2602 4650 5603 7009 4585 4423

A low abstaining rate is desired as, depending on the
application, abstained instances may have to be manually
classified by a human analyst. Such manual labelling can be
costly. In general we can observe in Table III that in most
cases the abstaining rate is low for all algorithms except for
a few datasets. There is no clear winner, all G-Prism versions
and G-Rules-IQR are generally competitive with the original
Prism versions.

TABLE III
ABSTAINING RATE

#
Prism G-Prism G-Rules

CutP ChiM Caim DB FB IQR
T T T

1 0.09 0.00 0.04 0.04 0.02 0.02 0.02 0.07 0.07
2 0.17 0.05 0.03 0.10 0.10 0.06 0.05 0.03 0.03
3 0.17 0.11 0.08 0.11 0.04 0.19 0.04 0.17 0.06
4 0.00 0.02 0.00 0.10 0.02 0.23 0.00 0.08 0.00
5 0.00 0.10 0.00 0.08 0.13 0.09 0.09 0.00 0.02
6 0.14 0.11 0.12 0.24 0.10 0.31 0.16 0.20 0.08
7 0.07 0.17 0.16 0.36 0.08 0.45 0.08 0.36 0.07
8 0.01 0.05 0.01 0.03 0.03 0.03 0.03 0.04 0.02
9 0.50 0.26 0.03 0.17 0.12 0.28 0.28 0.19 0.30
10 0.31 0.06 0.06 0.31 0.19 0.44 0.22 0.19 0.19
11 0.11 0.08 0.20 0.54 0.12 0.46 0.14 0.42 0.11
12 0.00 0.03 0.00 0.02 0.00 0.03 0.00 0.01 0.00
13 0.00 0.23 0.00 0.31 0.00 0.34 0.01 0.16 0.00
14 0.00 0.22 0.12 0.40 0.01 0.35 0.02 0.41 0.01
15 0.38 0.13 0.14 0.16 0.01 0.16 0.03 0.15 0.04
16 0.02 0.01 0.00 0.03 0.00 0.02 0.02 0.02 0.00
17 0.04 0.04 0.11 0.04 0.04 0.04 0.04 0.11 0.11
18 0.00 0.16 0.01 0.35 0.15 0.33 0.12 0.23 0.19

Table IV lists the results for the F1 Score for each of the
classifiers. This is the harmonic mean of precision and recall.
In multi-class problems such as in these datasets, precision and
recall are computed by building an average of these metrics’
values for each class. The results show that the proposed
method G-Rules-IQR with transformation achieved the best

F1 Score on 11 out of 18 datasets. That is more often than any
of the other evaluated algorithms. For most of the 7 datasets
where the G-Rules-IQR with transformation did not achieve
the best F1 Score, it was still close to the best performing
F1 Score, in particular for 3 datasets it achieved an F1 Score
that was at most only 3% lower than the best F1 Score. This
shows that the method is competitive and in some cases even
outperforms its competitors.

TABLE IV
F1 SCORE

#
Prism G-Prism G-Rules

CutP ChiM Caim DB FB IQR
T T T

1 0.93 0.91 0.95 0.93 0.91 0.93 0.93 0.96 0.96
2 0.96 0.97 0.95 0.93 1.00 0.89 1.00 0.94 1.00
3 0.98 0.93 0.92 0.96 0.98 0.98 0.98 0.89 0.98
4 0.87 0.87 0.87 0.89 1.00 0.90 1.00 0.89 0.98
5 0.80 0.99 0.94 0.96 0.97 0.96 0.97 0.98 0.99
6 0.77 0.61 0.71 0.72 0.80 0.72 0.61 0.62 0.79
7 0.33 0.53 0.55 0.49 0.75 0.49 0.81 0.54 0.86
8 0.64 0.74 0.78 0.80 0.84 0.82 0.85 0.89 0.93
9 0.82 0.91 0.87 0.92 0.86 0.84 0.84 0.94 0.96
10 0.81 0.73 0.83 0.93 0.93 0.79 0.77 0.80 0.81
11 0.64 0.73 0.84 0.67 0.97 0.44 0.90 0.61 0.86
12 0.96 0.99 0.99 0.99 1.00 0.99 1.00 0.99 1.00
13 0.80 0.98 0.85 0.88 0.95 0.87 0.95 0.91 1.00
14 0.29 0.49 0.35 0.50 0.95 0.50 0.79 0.55 0.79
15 0.90 0.82 0.83 0.87 0.99 0.88 0.99 0.88 0.99
16 0.97 0.97 0.97 0.97 1.00 0.98 1.00 0.98 1.00
17 0.38 0.53 0.69 0.49 0.49 0.49 0.49 0.52 0.52
18 0.71 0.83 0.76 0.79 0.79 0.77 0.78 0.87 0.86

TABLE V
ACCURACY

#
Prism G-Prism G-Rules

CutP ChiM Caim DB FB IQR
T T T

1 0.87 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
2 0.92 0.95 0.94 0.86 0.90 0.87 0.95 0.87 0.97
3 0.89 0.83 0.85 0.89 0.96 0.79 0.94 0.85 0.94
4 0.76 0.77 0.77 0.77 0.98 0.77 1.00 0.77 0.97
5 0.72 0.93 0.94 0.92 0.92 0.90 0.93 0.98 0.98
6 0.77 0.75 0.75 0.72 0.85 0.65 0.77 0.73 0.91
7 0.37 0.51 0.51 0.44 0.87 0.46 0.89 0.49 0.89
8 0.95 0.95 0.96 0.95 0.97 0.95 0.97 0.96 0.98
9 0.61 0.74 0.83 0.78 0.76 0.66 0.66 0.82 0.72
10 0.59 0.72 0.81 0.66 0.78 0.50 0.69 0.66 0.66
11 0.60 0.77 0.75 0.55 0.86 0.51 0.83 0.58 0.86
12 0.92 0.97 0.98 0.97 1.00 0.96 0.99 0.98 1.00
13 0.67 0.86 0.80 0.74 0.94 0.72 0.93 0.80 1.00
14 0.49 0.63 0.58 0.56 0.98 0.59 0.97 0.60 0.99
15 0.57 0.72 0.71 0.73 0.98 0.75 0.96 0.75 0.96
16 0.96 0.95 0.96 0.94 1.00 0.96 1.00 0.96 1.00
17 0.59 0.74 0.74 0.63 0.63 0.63 0.63 0.67 0.67
18 0.56 0.75 0.70 0.67 0.71 0.66 0.72 0.77 0.77

Table V lists the results for the accuracy for each of the
classifiers and abstained instances are counted as misclassi-
fications. G-Rules-IQR with transformation achieved the best
accuracy on 12 datasets, more often than any of the other
evaluated algorithms. On 3 datasets G-Rules-IQR was not the
best method, but was still very close within 3% of the best
accuracy. Only on 3 datasets (9, 10 and 17) G-Rules-IQR’s
accuracy was much lower than the other evaluated algorithms.
However, these datasets also cause a relatively high abstaining
rate.



Table VI lists the results for the tentative accuracy. In most
cases the proposed method G-Rules-IQR with transforma-
tion achieved the highest tentative accuracy. In particular it
achieved the highest tentative accuracy on 13 out of 18 datasets
and on 3 out the the remaining 5 datasets its accuracy was
within 3% of the best accuracy.

TABLE VI
TENTATIVE ACCURACY

#
Prism G-Prism G-Rules

CutP ChiM Caim DB FB IQR
T T T

1 0.93 0.91 0.95 0.93 0.91 0.93 0.93 0.95 0.95
2 0.96 0.97 0.95 0.93 1.00 0.93 1.00 0.89 1.00
3 0.98 0.94 0.92 0.96 0.98 0.88 0.98 0.98 0.98
4 0.76 0.78 0.77 0.81 1.00 0.82 1.00 0.80 0.97
5 0.72 0.99 0.94 0.96 0.97 0.95 0.97 0.98 0.99
6 0.86 0.81 0.83 0.86 0.91 0.86 0.86 0.84 0.94
7 0.40 0.54 0.57 0.54 0.95 0.58 0.96 0.59 0.97
8 0.95 0.97 0.97 0.96 0.98 0.96 0.97 0.98 0.99
9 0.83 0.91 0.86 0.91 0.85 0.83 0.83 0.94 0.95
10 0.86 0.77 0.87 0.95 0.92 0.89 0.84 0.81 0.81
11 0.64 0.82 0.87 0.70 0.98 0.54 0.96 0.71 0.97
12 0.92 0.99 0.98 0.98 1.00 0.98 0.99 0.98 1.00
13 0.67 0.97 0.80 0.82 0.94 0.80 0.93 0.87 1.00
14 0.49 0.66 0.61 0.63 0.99 0.66 0.98 0.69 1.00
15 0.90 0.82 0.82 0.87 0.99 0.88 0.99 0.88 0.99
16 0.97 0.96 0.96 0.97 1.00 0.97 1.00 0.98 1.00
17 0.62 0.73 0.75 0.65 0.65 0.65 0.65 0.67 0.67
18 0.56 0.79 0.71 0.74 0.73 0.72 0.72 0.84 0.83

Table VII lists the results for the execution times. These also
include the time needed approximating normal distribution
for G-Prism classifiers and G-Rules-IQR with transforma-
tion. In most cases the proposed method (G-Rules-IQR with
transformation) achieved shortest execution times. On 15 out
of 18 datasets it was the fastest algorithm and thus clearly
outperforms its competitors. Overall the time complexity of
G-Rules-IQR is expected to be similar to that of G-Prism and
Prism algorithms with respect to the number of instances N
and number of attributes M. However, it is expected that G-
Rules-IQR is faster. In [25] the authors estimated the worst
case time complexity of a Prism classifier to be approximately
O(N2M). In the worst case each rule covers exactly one
data instance and each rule has two rule terms per attribute.
This is a very unlikely case and time complexity is strongly
dependent on the pattern in the data that can be expressed
in the form of rules. The worst case of G-Rules-IQR and G-
Prism classifiers would induce only 1 rule term per attribute
and thus already divides the worst case complexity by 2. In
addition G-Rules-IQR is expected to be faster than G-Prism-
DB and Prism because of the number of calculations required
to induce a rule term. In the worst case scenario Prism and
G-Prism have to evaluate either several cut-point calculations
or rule term boundaries, whereas G-Rules-IQR only has to
calculate the quartiles. Also G-Rules-IQR with transformation
has a lower runtime than G-Rules-IQR even though there is an
additional operation. However, this is likely because G-Rules-
IQR with transformation produces fewer rules than G-Rules-
IQR without transformation in most cases.

Fig. 3. Summary of results

D. Summary of Results

Figure 3 summarises how often a particular algorithm
outperformed all of its competitors relating to the evaluation
measures observed in Section IV-C. It can be seen that the
proposed G-Rules-IQR algorithm with transformation outper-
formed its competitors in terms of F1 Score, accuracy, tentative
accuracy and execution time.

V. CONCLUSION

The paper presents the rule-based G-Rules-IQR algorithm
for continuous attributes, a new member of the Prism family of
predictive rule induction algorithms. Previous work in this area
(G-Prism-FB and G-Prism-DB) addressed the shortcoming of
binary splitting to induce rule terms, which leads to rule terms
covering irrelevant proportions of the training data. G-Prism-
FB and G-Prism-DB generate numeric expressive rule terms
using GPDD. There are 4 limitations of these methods. These
are (1) more accurate G-Prism-DB has a longer execution time
than G-Prism-FB, (2) both algorithms have a higher abstaining
rate than the original Prism classifier, (3) G-Prism-DB requires
user defined rule term boundary thresholds and (4) both
approaches assume normally distributed continuous attributes.
With respect to the assumption of normally distributed data, an
approximation towards normally distributed data is integrated
into the G-Rules-IQR algorithm. With respect to underfitting
rule term boundaries, the method optimises these boundaries
by removing user defined thresholds through using IQR. The
approach was termed G-Rules-IQR with transformation and
was evaluated empirically and comparatively with its prede-
cessors including Prism with binary splitting and Prism with
various well established global discretisation methods. Overall
G-Rules-IQR with transformation outperformed its competi-
tors with respect to F1 Score, accuracy, tentative accuracy
and execution time. With regards to limitation (1), G-Rules-
IQR achieves shorter execution times than its competitors,
with respect to limitation (2) G-Prism achieves a competitive
(similar) abstaining rate as its competitors, with respect to
limitation (3) G-Rules-IQR does not require user input for
rule term boundary thresholds and with respect to limitation
(4) the normal distribution approximation made G-Rules-IQR
the best performing Prism based classifier in this paper.



TABLE VII
EXECUTION TIME

#
Prism G-Prism G-Rules

CutP ChiM Caim DB FB IQR
T T T

1 2.66 2.18 2.39 1.92 1.65 2.98 2.61 1.95 1.65
2 3.86 12.11 8.10 5.97 5.52 4.46 4.17 3.07 2.63
3 4.93 11.27 8.52 8.09 5.86 4.73 4.11 3.93 2.75
4 6.10 15.44 7.86 12.22 5.33 11.20 6.90 8.33 5.33
5 15.07 224.80 25.31 32.70 31.64 38.50 38.78 15.64 13.48
6 10.76 18.14 22.62 9.69 6.58 8.37 6.54 7.89 5.23
7 40.37 262.30 394.20 98.40 26.08 100.20 30.32 76.20 23.60
8 1068.00 546.00 407.40 295.80 256.80 440.40 417.00 115.20 87.00
9 12.29 21.77 12.49 7.78 7.46 6.51 6.25 4.98 4.25
10 24.37 19.60 13.77 6.78 4.55 3.11 3.12 3.50 2.88
11 39.87 18.62 27.06 9.26 5.41 6.44 4.63 7.37 3.18
12 352.80 65520.00 2492.40 6600.00 3066.00 5652.00 7200.00 1055.00 165.60
13 568.80 234144.00 3321.00 6500.00 5184.00 6768.00 6840.00 6372.00 238.80
14 198.00 1622.00 2428.20 509.40 248.40 459.60 330.60 1079.00 86.40
15 1720.00 10800.00 11844.00 6000.00 754.80 2583.00 939.00 3182.00 1049.00
16 11.94 12.82 13.72 11.97 5.48 9.04 5.76 8.90 5.03
17 3.66 28.22 5.88 4.28 3.20 3.64 3.50 4.36 3.53
18 262.20 8028.00 1752.00 6540.00 5472.00 4464.00 5508.00 10224.00 10296.00

Ongoing work comprises a voting strategy for G-Rules-
IQR rulesets. Currently the first rule that fires produces the
prediction, however, the rule order has no relationship to the
individual rule’s accuracy. Thus a rule filter and weighting
mechanism (according to rule quality) is currently being inves-
tigated. Also the fact that currently G-Rules-IQR does not take
attribute dependencies into consideration is currently being
investigated (see limitation 5 in Section II-B). For example,
the expressiveness of the ruleset could be improved by not
allowing rule terms of coexisting attributes in the same rule,
which will lead to shorter rules and thus smaller rulesets.
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