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It is not a dream. It is a simple feat of scientific electrical engineering. Electric power

can drive the world’s machinery without the need of coal, oil or gas. Although perhaps

humanity is not yet su�ciently advanced to be willingly lead by the inventor’s keen

searching sense. Perhaps it is better in this present world of ours where a

revolutionary idea may be hampered in its adolescence. All this that was great in the

past was ridiculed, condemned, combatted, suppressed only to emerge all the more

triumphantly from the struggle. [...] Our duty is to lay the foundation for those who

are to come and to point the way, yes humanity will advance with giant strides. We

are whirling through endless space with an inconceivable speed, all around everything

is spinning, everything is moving, everywhere there is energy.

— Nicola Tesla
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Abstract

British Distribution Network Operators (DNOs) are facing challenges due to the

energy sectors transitioning into a low carbon economy. This thesis aims to present

novel methods to aid DNOs in operating their Low-Voltage (LV) networks despite this

ongoing transition and its entailed challenges. The presented methods are realised

with the use of Battery Energy Storage Solutions (BESS) and they develop BESS

energy management algorithms whilst focusing on communication regimes and

sub-half-hourly volatility in demand. Consequently, improving LV network operation

mainly considers the reduction of peak power flow, but also includes reducing

energy losses, voltage deviation, the magnitude of neutral currents and phase un-

balance. Without these methods, DNOs would have to rely on traditional network re-

enforcements so that LV networks are kept within statutory voltage bands, for

example. Extending current literature with methods to control a single energy

resource and a distributed BESS - whilst considering requirements for communication

systems that e�ect BESS control - is the main contribution of this thesis.

The BESS control algorithm developed in this thesis is designed to incorporate

half-hourly forecasts and sub-half-hourly load volatility. Resulting key network pa-

rameters and their interplay are identified and daily load peaks, caused by load volatil-

ity, could be reduced by an average of 3.8kW (from 45kW). Methods are developed and

address challenges for controlling a single BESS. Neglected challenges are addressed in

the subsequent BESS control methods where a desynchronised Multi-Agent Network
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(MAS) and communication-less BESS control fill this gap. Results show how internal

algorithm behaviour changes when desynchronising the communication environment,

but without impacting the global performance of the distributed BESS. Also, real-

time performance of the communication less control algorithm is studied on di�erent

basis to show how e�ects from uncoordinated Low-Carbon Technologies (LTCs) like

Electric Vehicle (EV) charging, can be successfully mitigated. All objectives aligning

with the aforementioned achievements have been met and the comparable storage

control techniques in literature are either met or exceeded in performance when sub-

jected to the available datasets.
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Chapter 1

Introduction

The aim of the work that is presented in this thesis is to make a contribution in

control of Battery Energy Storage Systems (BESS) that can aid Distribution Network

Operators (DNOs) in improving the operation and reliance of their Low-Voltage (LV)

networks. By adjusting sub-half-hourly operation and communication regimes of the

BESS grid operation, performance is improved by mainly considering peak power flow;

but performance criteria also include voltage deviation, phase imbalance, distribution

losses and the magnitude of neutral currents.

Providing BESS based network support is expected to become a vital necessity

since the predicted increase in electricity demand and its volatility will negatively

e�ect the performance of the UK distribution networks. Due to the design and topol-

ogy of the network higher and more volatile demand is predicted to cause issues

including voltage deviation, asset overloads, equipment damage and (in the worst

case) service disruptions. As discussed in this thesis, BESS is a suitable alternative

to traditional network reinforcements. However, successfully combining fast system

response capabilities (at sub-half-hourly resolution) with traditional operation sched-

ules (at half-hourly resolution) to yield the best impact on network performance is

still an open research challenge. Also, with the proliferation of household-connected
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BESS and Electric Vehicles (EVs), the development of control methods (particularly

in respect to communication and synchronisation requirements that are needed to

coordinate BESS operation) is also an ongoing research challenge.

In Chapter 1, the background and motivation for the conducted research are

presented. Then, on the basis of the identified challenges and opportunities for battery

energy storage in the electricity distribution network, the problem statement and all

research objectives are outlined. At the end of this chapter, all contributions and

publications are summarised, and the structure of the rest of this thesis is presented.

1.1 Background and motivation

Today’s society and economy are highly dependent on the continuous availability

of energy or more specifically: electric energy. In the UK, demand for electricity

has increased over the past decades and this trend is expected to continue into the

future [5]. This increase is only accelerated since a major focus of UK energy policies

has been put on transitioning towards a low carbon economy [6]. Particularly the

decarbonisation of heat and transport sectors are two areas of significant strategic

focus and Low Carbon Technology (LCT) such as Photovoltaic (PV) installations,

Electric Vehicles (EVs) and heat pumps are expected to contribute significantly to

the energy mix of this transition.

As the uptake of LCTs continues and they start penetrating power distribution

networks, stress on these networks will also continue to increase, resulting in issues

that in the worst case will lead to additional service disruptions. Furthermore, the

uptake of LCTs is not expected to progress evenly throughout the entire power net-

work, but instead clusters of early adopters are predicted to form, leading to certain

LV networks exceeding their operational constraints even at a relatively low national

rate of LCT adaption [7]. The scale of this energy transition becomes becomes par-
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ticularly apparent when referring to the UK’s 2017 Future Energy Scenarios (FES)

comparing the predicted future load scenarios for the upcoming decades [1].

Figure 1.1: Change in residential annual electricity demand excluding electric vehicles
from FES2017 [1]

Figure 1.1 shows the predicted increase in annual residential electricity demand.

Here, the market driven scenario or the “Consumer Power” scenario shows the largest

increase until 2050. When putting more emphasis on environmental concerns, the

“Two Degrees“ scenario is considered instead. This scenario refers to the intention

of limiting global temperature increase to two degrees; in previous FES reports this

scenario was referred to as “Gone Green“. According to the FES 2017 those two

scenarios enable a continuing growth of the UK economy, but put very di�erent

emphasis on decarbonisation targets. Although the rise in demand for electricity is

projected to di�er by more than 30TWh in 2050 (for instance if the “Two Degrees“

scenario is achieved), the aforementioned uptake of LCTs like EVs is expected to put

additional load onto the power network in both scenarios.

When focusing on the electrification of personal transport, for example by intro-

ducing EVs into the electricity demand, Figure 1.2 shows that both the “Consumer

Power” as well as the “Two Degrees” scenario will add more than 35TWh of annual
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Figure 1.2: Rise in energy demand due to the uptake of electric vehicles as predicted
by FES 2017 [1]

energy demand by 2045. Since most of these EVs were expected to charge at home

and (at least in the beginning) at similar times, aggregating e�ects will not only

exhaust national energy supply capabilities but also power distribution capacities.

Figure 1.3: Change in annual peak power demand as predicted by FES2017 [1]

Figure 1.3 highlights this fear since uncontrolled proliferation of LCTs and EVs,

as shown in the “Consumer Power” scenario, will add more than 20GW of power
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demand onto the present peak power level. Such a rise in peak power exceeds today’s

supply capacities since the new energy mix and decommissioning of fossil fuelled

power plants have resulted in the present capacity margin to only lie between 3.7GW

and 4.9GW [8] (this equates to a 7.2% margin whilst in for example 2010 this margin

was at 15% with 11.7GW [9]).

Although FES 2017 expects the “Two Degrees” scenario to also show an increase

in peak power, better coordination and control is expected to mitigate half of the

20GW peak increase. From this point of view, today’s narrow capacity margins could

already cater for nearly half of the increase in peak demand that is expected to occur

over the next 33 years (i.e. until 2050). Whilst UK power transmission networks

are being upgraded and will therefore be capable of handling this increased power

demand, the increasing stress on the distribution network still remains. This stress

is due to the fact that loads in the residential and commercial sectors are typically

situated at the network edge in the LV distribution network and reinforcing these

networks can result in costly service disruptions.

1.1.1 Topology and challenges of the UK electricity network

The UK electricity network in its present form has grown over the past century and

is based on an interconnected high-voltage network. Its largest part is also known

as the transmission network, which connects remote power stations to distribution

networks. Typically those distribution networks supply electricity to all loads across

the mainland of the UK, including industrial, urban and rural customers1. However,

larger customers that are not situated within the distribution network need not be

supplied by said network.

The entire structure of the electricity network is a three-phase Alternating Current
1
Some small and remote UK islands like the Shetland islands are not connected to this national

grid and have their separate electricity infrastructure. Therefore they are not considered as part of

this thesis since the study of this kind of network lies outside the research scope.
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(AC) system, allowing easy voltage level conversion with the use of transformers and

without the need for power electronics. In the UK, the highest voltage level for

generation and transmission is 400kV. Such a high voltage requires a relatively small

current to transmit the generated bulk power, which in turn reduces conduction

losses and maximises the e�ciency of the network. Regional supply points step-

down this high voltage to 132kV2 to deliver power to Distribution Network Operators

(DNOs). From the primary level of the distribution network and onwards, this so

called medium-voltage is stepped down to 33kV, then 11kV and finally 400V phase to

phase (P2P), in order to cater for heavy industry, medium clients and household sized

customers, respectively. In the UK, all households are connected to one of the three

phases of the distribution network and therefore are supplied at a nominal voltage

of 230V (phase to neutral - P2N). To achieve a balanced network, each customer’s

phase allocation is chosen at pseudo-random3.

This LV part of the electricity network is its weakest part, since its assets were

designed to cater for small powers between 315kVA to 500kVA [12]. Despite this

capacity limitation, DNOs aim to maintain distribution level voltages within their

statutory operating bands of 230V +10% -6% for the LV network. This band is

defined by the Electricity Supply Quality and Continuity Regulation (ESQRC) [13]

and Engineering Recommendation G59 [14]. Primary substations in the UK are

equipped with regulation equipment, like On-Line Tap-Changers (OLTC), to increase

or decrease the voltage on the secondary transformer side depending on the current

level of demand. Secondary transformers do not have such regulating equipment

and instead apply a constant voltage conversion ratio which is set according to the

network’s typical demand.

A project based on the findings from Electricity North West (ENW) in [15] em-
2
In some cases regional supply points provide 127kV instead of 132kV.

3
Guidance for customer phase allocation is not explicitly specified in the network’s design frame-

work [10]. Therefore, choosing the “top phase” qualifies as pseudo-random phase allocation with

statutory compliance [11].
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phasises the issues that result from residential increase in demand for electricity. In

summary, their findings highlight issues regarding voltage deviation due to an uptake

of LCTs. More specifically however, in the ENW lead project 200 LV networks in the

UK were monitored to assess the capacity for LCT adoption. Initial findings showed

that even in the present distribution networks, 15% of all monitored substations ex-

perienced reverse power flow, 4.5% substations reported high voltages (i.e. above

253V), and only 2% substations reported occasional low voltages (i.e. below 216V).

With the voltage drop assumption however, it was believed that customers in these

network were still operating at BSEN50160 compliant voltage levels. Models to as-

sess the LCT headroom indicated that the first issue will always be voltage deviation

and the thermal/capacity limits are of second concern. This finding is based on the

fact that LV networks are highly resistive and rarely managed in an active manner.

Therefore, as the number of PV installations is expected to grow the voltage deviation

magnitude and frequency will increase [16]. Since the expected voltage deviation was

caused despite a relatively low adaptation of residential LCTs, strict precautionary

regulation has been put in place to assure continuous operation without violating any

operational constraints. Otherwise additional voltage deviation, unbalanced network

operation or asset overloads would be the result.

Traditional network planning approaches that have been used by DNOs to ex-

pand and install network assets were designed to circumvent such issues in order to

follow the aforementioned standards and regulations. The most common approach

follows the commonly used practice of aggregating a large number of customers and

designing the power delivery network to cater for their largest probable demand. This

method is called the After Diversity Maximum Demand (ADMD) method [17] and

uses historical load analysis and standard growth assumptions that are both no longer

valid in this unprecedented LCT uptake scenario [18]. To make things worse, LV net-

works in the UK are generally unmonitored once installed [18]. Distribution Network
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Operators (DNOs) have become aware of this issue and are developing updated plan-

ning strategies involving “smart” and “flexible” electricity grids [19]. However, in

situ equipment that will become subject to the same adaptation of LCT needs to be

managed actively via innovation in the use of existing and new technologies. Oth-

erwise both frequency of service disruptions and customer minutes lost will increase

alongside the proliferation of LCTs [20]. One such innovative technology, which is

the main focus of the presented thesis, is the installation and management of battery

storage [21]. The following section is going to introduce the two favoured solutions

to address network issues and explain why battery energy storage was chosen as part

of the presented research.

1.1.2 Solutions to mitigate impact of LCT

The two most favoured solutions that allow DNOs to support LV network operation

are: 1. the reinforcement of in situ network assets or 2. the deployment of network

support equipment. Whilst network reinforcement certainly addresses the immedi-

ate issues of current network capacity constraints, this approach is also the more

expensive and disruptive option. More specifically, certain customers need to deal

with outages during periods of asset upgrades (for example transformer upgrade and

line re-conductoring after secondary transformers’ tap settings have been adjusted).

Therefore, alternatives to defer or avoid network reinforcements have been pursued

and assessed [22–25]. Most promising alternatives are to install flexible and con-

trollable Distributed Energy Resources (DERs) or, more specifically, Battery Energy

Storage Solutions (BESS) [26]. After all, BESS has not only seen significant advance-

ments in technology, but also received increasing attention in both academic studies

and industry trials [27].

Installing BESS at a strategic location in the LV network brings several advan-

tages, for instance to better control the network performance. Roles for and advan-
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tages of energy storage technology are extensively reviewed in Section 2.2. Nonethe-

less, a few examples of benefits from BESS are highlighted here. For instance, they

include the regulation of voltages in order to to operate within statutory voltage

bands [28], they allow shaving peak loads to relieve stress from the installed net-

work assets [29], and enable the reduction of phase unbalance to increase network

e�ciency [30]. These three examples all implement a similar control paradigm where

BESS is charged during periods of low demand and discharged at peak demand pe-

riods in order to achieve the best possible impact. Whilst the questions regarding

locating and scaling of BESS have mostly been addressed, BESS control can still be

split into two complementing yet unmarried approaches:

1. “o�-line” control, using load forecasts and BESS schedules [31–34], and

2. “on-line” control, using Set-Points Control (SPC), Model Predictive Control

(MPC) or similar dynamic control methods [35–38].

These two control approaches are reviewed in detail in Section 2.4.1. Also, with

the anticipated uptake of household BESSs and DERs, mechanisms to control and

coordinate multiple storage systems have also grown in popularity [39–42]. An ex-

ample in [42] proposes to store solar energy in order to support charging of EVs and

is particularly interesting since it shows a well coordinated home storage system that

does not impose any additional load onto the power distribution network. These re-

sults also highlight that without rooftop PV installations (or any co-located energy

resource for that matter), distributed storage systems need to work in a coopera-

tive manner to avoid adding network straining. Control methods that are capable

of coordinating DERs by letting devices make intelligent control decisions have been

summarised under the keyword “smart control”.
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1.1.3 Smart control

As already mentioned in the previous section, Section 1.1.2, o�-line and on-line con-

trol strategies exist to manage BESS. This traditional control often dealt with the

dispatch of a single energy entity, but due to the distributed nature of the expected

LCT uptake, methods to manage cooperative behaviour needed to be developed, too.

With the penetration of smart meters and communication-enabled devices in for ex-

ample the “Internet of Things“ (IoT), power systems have the potential of becoming

interlinked networks of smart devices. Therefore “smart control” mechanisms can

complement the traditional o�-line and on-line control strategies and are of great re-

search interest to enable the uptake of distributed LCTs since these strategies remove

the single point of failure, reduce computational burden from centralised controllers

and allow individual devices to respond intelligently and quickly to local events like

sudden voltage drops or capacity notifications.

For example the key term “smart charging” summarises EV charging mechanisms

where the limited distribution network capacity causes multiple EVs to share the

available resource amongst themselves [43–45]. However without any network load

information EV coordination still exhausts the network’s capacity, even when EVs

are intelligently limiting their maximum charging rates. Limiting their charge rates

based upon the current network demand as well as their own energy needs is a more

sophisticated control option [46]. A similar key term is the “smart grid” where DER

communicate and cooperate in order to, for example, shed load using Demand Side

Response (DSR) or maintain microgrid operation in fault situations [47–49]. However,

the fundamental requirement for the successful realisation of any such smart control

method is the reliable exchange of information amongst the participating entities that

physically operate within the power network.

Therefore smart control does not only require robust control mechanisms, but also

a robust communication infrastructure. In Section 2.4.2, literature that reviews and
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compares centralised control methods with distributed control paradigms will show

the implicit need to synchronise the coordination of multiple smart devices to achieve

their promised benefits. It will be shown that all underlying control mechanisms deal-

ing with the coordination of distributed energy resources either explicitly or implicitly

assume a robust communication infrastructure where communication is synchronised.

For instance, this requirement is assumed whenever messages are received and exe-

cuted immediately (i.e. without delay) after they have been dispatched or whenever a

single control instruction result in the synchronised reaction of all controlled entities.

In reality however, the strength of the communication link does vary with weather or

current network tra�c, so that fixed message delays and exact device synchronisation

can no longer be guaranteed. Therefore, not only smart control algorithms, but also

their sensitivity to the strength of the underlying communication infrastructure is of

interest. As a result the research question can be risen whether communication desyn-

chronisation can result in equal or better coordination performance; i.e. in reducing

peak load.

The alternative to relying on telecommunication in order to coordinate DERs

is to remove the requirement for device communication altogether. For instance,

communication-less control of multiple power devices has been of particular interest

in noisy environments like ships [50] or islanded power networks that do not have

strong telecommunication capabilities [51]. Whilst these control methods support

network operation they have not been designed to take device operation into account.

More specifically, in a network where devices like household-connected BESS are no

longer owned by DNOs, the interest of guaranteeing a certain lifetime is likely to

surpass the need to provide network support operation. Therefore distributed and

communication-less control strategies need to assure a more equal device utilisation

to spread to burden onto the entire collection of DERs. Otherwise, batteries situated

at the end of the distribution network experience the largest voltage swing and are
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therefore likely to cycle more than those batteries located closer to the substation

where voltages are more stable. Hence, following the review of several communication-

less control methods in Section 2.4.3, an improved distributed and communication-less

BESS control algorithm is proposed that takes this neglected network inequality into

account.

1.2 Problem statement and research objectives

The focus of the research presented in this thesis is put on aiding DNOs to manage

and operate their power distribution networks by installing energy storage into their

distribution networks in order to counteract the e�ects from electrification of heat and

transport sectors as well as the decarbonisation of the grid itself. Therefore BESS

control is the main focus of this work since BESS is a rapidly improving technology

that has the potential to defer or even mitigate costly network reinforcements. Mod-

ern battery technology allows the storage of electrical energy in ever-decreasing form

factors, whilst power electronics technology becomes more e�cient at integrating bat-

teries into power networks. As shown in the literature review in Chapter 2, methods

to control BESS, for instance, in order to optimise power flow, have been and still are

of great research interest.

Therefore, the aim of this thesis is to present a contribution in BESS control to

improve grid operation and reliance, when deploying it in the UK LV distribution

network. Given the already established control approaches of “o�-line” and “on-line”

control, merging the two in order to take advantage of BESS schedules and real-

time information is still an open research challenge. Subsequently, applying real-time

corrections to BESS schedules in order to decrease peak demand whilst obeying to

technical and operational constraints is also an identified research challenge. Since the

expected uptake of distributed LCTs and DERs through proliferation of household-
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connected storage solutions (for example to support PV integration or to counteract

EV impacts) requires “smart” coordination mechanisms. When requiring communi-

cation to implement this smart coordination, another challenge exists in developing

algorithms that function despite communication disturbances (i.e. through message

desynchronisation). Lastly, in the case where communication-less coordination of

distributed devices is sought, the challenge of assuring equal device usage whilst pro-

viding network support (for example to guarantee a minimum lifetime) has also been

identified.

These research challenges are extensively reviewed in the literature review in Chap-

ter 2, and in accordance to these identified key challenges that motivate the conducted

research, a set of objectives is presented in order to achieve the aim of contributing

to the existing field:

Objective 1 Develop a control mechanism for a single BESS to further improve

three-phase network operation without changing half-hourly real power

schedules by adjusting BESS power phasors and reactive power injec-

tion.

Objective 2 Develop a control mechanism that dynamically adjusts half-hourly sched-

ules on a sub-half-hourly basis, hence modifying the half-hourly sched-

ule to reduce daily load peaks by combining control elements from both

o�-line and on-line control.

Objective 3 Develop and compare operation of a scheduling algorithm that manages

the charging behaviour of multiple BESS by submitting it to perfor-

mance analysis in a synchronised and desynchronised communication

environment.

Objective 4 Develop a communication less control strategy for distributed BESS

by modifying the traditional and robust Additive Increase Multiplica-
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tive Decrease (AIMD) algorithm by introducing a threshold dependent

scaling of the additive term and by individually assigning control pa-

rameters.

1.3 Contributions to knowledge

The literature that is reviewed in Chapter 2 introduces the key contributions sur-

rounding the control of energy storage in power distribution networks, and therefore

supports the thesis problem statement that was presented in Section 1.2. This review

concludes by identifying gaps in literature which are used as starting points to formu-

late the research objectives and resulting research contributions. Those contributions

can be summarised as follows:

• An iterative closed-loop power adjustment method is presented that controls

a DNO owned storage devices in such a way that its three-phase power flow

improves LV network operation. This contribution is the result of Objective 1

and is achieved by using the device’s flexibility in assigning active power to

the three phases, and by using the remaining capacity of power electronics to

inject or absorb reactive power. Meanwhile the BESS is obeying its underlying

half-hourly schedule.

• A dynamic control method to merge o�-line BESS scheduled control with an on-

line power prediction mechanism (i.e. Model Predictive Control) is developed

to minimises both the imminent sub-half-hourly load peaks as well as the day-

ahead half-hourly load peaks. This contribution is the result of Objective 2

and is achieved by merging schedules that are based on real load forecasts with

an autoregressive model that is fed by real load data.

• A robust charge scheduling algorithm for multiple, distributed entities is de-

veloped to prevent charging spikes from adding excessive stress onto the dis-
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tribution network which would otherwise experience capacity shortages. This

contribution is the result of Objective 3 and is achieved by implementing a

“Multi-Agent System” (discussed in the literature review in Section 2.4.2) on a

compute cluster to compare algorithm performance for both synchronised and

desynchronised message exchange.

• A communication-less distributed control method is developed that improves

the traditional Additive-Increase Multiplicative-Decrease (AIMD) algorithm to

achieve cooperative behaviour of distributed BESS in order to mitigate the

impact of co-located “dumb-charging” EVs. This contribution is the result of

Objective 4 and is achieved by individually assigning control parameters to

all BESS to infer the current network status whilst only using local voltage

measurements.

In line with the NTVV project some of the algorithms presented in this thesis

were field trialed by SSEN in the town of Bracknell UK. Preliminary results show

however the inherent di�culty caused by control systems relying on communication.

As such, lessons learnt from Chapter 5 of this thesis might have provided insight

ahead of system trialing. Project results and lessons learnt may be taken from:

http://www.thamesvalleyvision.co.uk/our-project/.

1.4 Publications

• First-authored publications:

– M. J. Zangs, P. B. E. Adams, T. Yunusov, W. Holderbaum, and B. A.

Potter, “Distributed energy storage control for dynamic load impact miti-

gation,” Energies, vol. 9, no. 8, 2016.
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– M. J. Zangs, T. Yunusov, W. Holderbaum, and B. Potter, “On-line adjust-

ment of battery schedules for supporting LV distribution network opera-

tion,” in 2016 International Energy and Sustainability Conference, IESC

2016, 2016.

• Co-authored publications:

– T. Yunusov, M. J. Zangs, and W. Holderbaum, “Control of Energy Stor-

age,” Energies, vol. 10, no. 7, p. 1010, 2017.

– T. Yunusov, M. J. Zangs, and W. Holderbaum, “Online Control Algorithm

for Sub-Half-Hourly Operation of LV-Connected Energy Storage Devices

Owned by DNO”, in 24th International Conference & Exhibition on Elec-

tricity Distribution (CIRED), CIRED 2017, 2017

• In preparation:

– M. J. Zangs, T. Yunusov, W. Holderbaum, and B. Potter, “Battery control

algorithm for peak load shaving in low-voltage power network with high

demand volatility,” Energies

– M. J. Zangs, T. Yunusov, W. Holderbaum, and B. Potter, “Improved

Estimation Method of Customer Voltages in Low-Voltage Networks with

Sparse Network Measurements using Mutual Information Theory,” IEEE

Transactions on Smart Grid

– M. J. Zangs, T. Yunusov, W. Holderbaum, and B. Potter, “Assessing

the E�ects of Desynchronising Information Propagation when Distributing

Smart-Charging,” IEEE Transactions on Smart Grid

1.5 Thesis structure

The structure of this thesis is organised as follows:
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• Chapter 2 carries out an extensive review of the literature surrounding the

field in order to support the problem statement and proposed contribution.

• Chapter 3 develops a BESS scheduling mechanism and identifies key net-

work parameters that are used in their corresponding cost functions to improve

network operation. Then, this chapter address Objective 1 by presenting a

method that assigns a BESS schedule to the three-phase power distribution net-

work whilst minimising the aforementioned cost functions; therefore improving

network operation. Results are compared against a “baseline” and a “normal”

(or traditional) operation case by assessing them on a temporal and probabilistic

level.

• Chapter 4 then extends the work in Chapter 3 by presenting a dynamic control

method that adjusts a half-hourly BESS schedule at sub-half-hourly temporal

resolution in order to reduce both volatile and the daily load peak. This is

achieved by combining two PID compensated control loops with a MPC and

BESS schedule. Therefore, this chapter addresses Objective 2.

• Chapter 5 addresses Objective 3 by presenting a cooperative battery charging

algorithm that is deployed on a Multi-Agent System and assessed in both a

synchronised and desynchronised communication environment. In this chapter,

both algorithm convergence and algorithm performance is compared between

its implementation in the synchronised and desynchronised scenario.

• Chapter 6 develops a stochastic EV demand model that is based on real vehi-

cle mobility data, and it will develop a control algorithm for distributed BESS

to mitigate the negative impact from the resulting EV demand. This chapter

address Objective 4, the final research objective, by extending the Additive-

Increase Multiplicative-Decrease algorithm to enable cooperating BESS opera-

tion under the absence of a shared communication infrastructure.
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• Chapter 7 presents a detailed conclusion that relates all findings back to the

initial problem statement and the overarching aim of the presented PhD thesis.

Also, this chapter highlights potential future work based on the findings from

the conducted research.
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Chapter 2

Literature Review

2.1 Overview

With the ongoing electrification and decarbonisation of the heat and transport sectors

in the UK demand across the electricity network is expected to double by 2050 [52].

One contributor towards this increasing demand is the expected uptake of LCTs

as they start penetrating power distribution networks. As discussed in Chapter 1

of this thesis, conventional reinforcement to upgrade the network’s infrastructure

in order to counteract capacity shortages is e�ective but costly. Instead, this PhD

research focuses on the improvement of grid operation by controlling BESS in the

LV distribution network, and together with recent availability of load information

due to the distribution and installation of smart-meters, the opportunity arises for

DNOs to develop energy storage control strategies in order to achieve the best possible

performance and add most benefits to their distribution networks.

In fact, energy storage as an alternative to grid reinforcement has seen an increas-

ing interest in industry since there are more than 1200 energy storage projects world-

wide according to the Department of Energy’s global energy storage database [53].

More specifically, as of 2016, 27 store projects were installed in the UK and they
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accumulate to an energy storage capacity of 33GWh [54]. Out of all global energy

storage projects, 61% use “electro-chemical energy storage technology” (i.e. recharge-

able batteries) and 49% of those BESS are rated at less than 250kW. Their sizes and

ratings make such BESS suitable for deployment in distribution networks, and the

figures in the energy storage database indicate that worldwide 131 of these projects

are indeed used for support of the secondary distribution network [53].

The range of applications for energy storage in the electricity grid has grown

significantly over the past decades. Therefore, the first section of this chapter, Sec-

tion 2.2, presents an extensive survey of roles for electrical energy storage solutions

and narrows the focus on those roles that are applicable for the conducted PhD re-

search. Section 2.3 then provides an extensive review of already conducted BESS

research projects that support LV network operation; i.e. that are concerned with

voltage control and power flow management. Next, Section 2.4 presents and reviews

di�erent control methods for grid connected energy resources that have either been

used in the already discussed BESS research projects or that have been studied on

a theoretical basis. Particular focus is put on comparing o�-line and on-line control,

centralised and distributed control and communication-less control. In the end of this

chapter, in Section 2.5, the gaps and research opportunities are summarised to link

to the research contributions and to support the problem statement of this thesis.

2.2 Role of energy storage - a survey

The idea of using energy storage in the electricity grid has been discussed for quite

some time, and its important role in future energy systems has already been identi-

fied in the 70s [55]. As the name suggests electrical energy storage systems have the

ability to consume, store and release electrical energy by converting it into a di�er-

ent form of energy. Depending on the rate at which energy can be consumed and
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Figure 2.1: Energy storage applications and corresponding value for various discharge
durations [2]

released (i.e. the system’s power rating) as well as the amount of energy that can be

stored (i.e. system’s capacity) di�erent functions can be provided. A Canadian and

US based study for the Department Of Energy (DOE) showed that (when correctly

exploited) these functions can yield direct financial benefits of $157.56 billion on a

national level over an estimated 10 year system lifecycle [56]. Figure 2.1 shows these

benefits in relation to the storage system’s typical discharge period, and links them to

their associated functions, too. Here, Time Of Use (TOU) energy cost management

yields the largest economic profit, yet from a historical point of view, bulk energy

storage has played the most important role in the energy system.

Nowadays, storage can also tap into emerging revenue streams and perform ad-

ditional functions. As identified in several review articles [21, 57, 58], the key roles

and applications of energy storage systems, regardless of profitability in the current

market situation, can be identified as follows:
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• Energy shifting (arbitrage): This function uses the di�erence in energy price

to yield revenue. More specifically, as energy pricing is expected to become

more dynamic and responsive to current energy demand and generation, stor-

age is controlled to charge when energy prices are low and discharge when

energy prices are high [21, 59]. Such dynamic pricing schemes are expected to

emerge due to significant changes in demand at morning and evening peaks [60].

However, small storage need not be su�cient to justify energy shifting in LV

networks. (Time-of-use energy charges): A hurdle to DSM through flexible

tari�s or TOU tari�s is the reason that consumers would have to adjust their

energy consumption based on external price signals, which many are do not

want to do. Energy storage could however decouple the consumer from these

tari�s and allow them to continue with their normal lifestyle [61]. Additionally,

when exploiting the energy price di�erence, storage could even supply arbitrage

functions to some customers and reduce their electricity bill [62]. For customers

with local generation (for example through a PV installation) their bill can be

reduced even further. This would be done by storing the generated energy until

a period of high energy prices arises. At this time energy storage could release

the energy to maximise self-consumption [63]. (Renewables integration): Unlike

traditional energy sources, renewables have are highly volatile and have limited

availability. Since their availability (for example for PV installations) does not

always align with periods of high demand (i.e. during morning and evening) ar-

bitrage functions can be provided to maximise the use of renewable generation

- i.e. renewables “shifting” [64]. Furthermore, by discharging energy storage

during times of low renewable generation (for example due to cloud cover or

varying wind speeds [65]) a continuous supply of energy can be assured - i.e.

renewables “smoothing”. And lastly, if a renewable resource was committed

for longer periods of time, yet the associated energy forecasts overestimated its
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generation capacity, storage can supply the gap to avoid balancing charges - i.e.

renewables “firming” [66].

• Supply capacity: In order to meet future energy demand, energy suppliers

commit their resources in advance. Doing so allows them to plan for their

operation and solve the economic dispatch problem. With increasing demand,

the supply volume will have to increase, too. However, it is predicted that energy

storage can defer or even avoid investments in power plants, assuming they are

sized accrodingly (i.e. several 100MW) [67]. Bulk energy storage was the first

choice to support supply capacity. One example is pumped hydro-electric energy

storage, which has seen a global growth of 127GW since 1979 [68–70].

• Ancillary services: These services are of interest to transmission and dis-

tribution system operators since they support the operation of their networks.

For example, load following and frequency regulation are two complementing

applications of that address the imbalance between demand and supply [71]. In

case of a severe imbalance that resulted in network outage, black start is also a

function that can be supplied by energy storage [72, 73]. Since modern energy

storage systems can absorb and inject both active and reactive power, they can

also provide voltage support [74].

• Grid stability: To make the grid more resilient to network faults (for example

short-circuit or loss of a large generator), or to overcome scheduled network

outages, energy storage can be used as an intermittent energy source [75]. To

provide optimal operation conditions for energy generators, storage can sup-

port rotor angle stability and voltage stability by injecting active and reactive

power at the point of common coupling [66,76]. Furthermore, sub-synchronous

resonance and harmonic interference can also be reduced [77]. This coupling

resonance can occur between electrical and mechanical systems and can damage
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the mechanical structure due to repetitive stresses and strains.

• Upgrade deferral: As already stated in Section 1.1.2, both transmission and

distribution systems would have to be upgraded unless energy storage could

provide network-support functions. By deferring network upgrades, network

assets will be used more e�ciently, and customer supply disruptions will be

avoided [56,78]. Furthermore, in areas where the expected load has already been

met and growth has levelled out, deployed energy storage is flexible enough to

provide alternative functions (unlike other network assets) [79]. Equally, high

congestion at substations of heavily loaded transmission or distribution lines

can be tackled by co-located energy storage units [74,80]. This can be achieved

by, for example, shaving peak load or relaxing the energy requirements from

distributed generation [81,82].

• Transmission charges: In scenarios where generators are charged to use trans-

mission systems (due to the capacity limitations of the transmission system),

energy storage could take advantage of the price structure to maximise the profit

from the generated energy [59,78].

• Service reliability: In areas where a strong grid connection is needed to

assure for example industry operations, an “uninterruptible power supply” is

required. Traditionally, these power supplies were diesel backup generators,

but modern energy storage technology can provide similar services at lower

cost [83] (particularly when including alternative revenue streams).

• Demand charges: Larger customers (i.e. industrial and commercial loads)

are not only charged for their total energy demand, but also for their largest

continuous power demand [84, 85]. Therefore, a factory that uses a relatively

small amount of energy over a comparatively short amount of time, is billed

accordingly. After all, the infrastructure to deliver the required power needs
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to be installed and maintained. In this scenario, energy storage could reduce

the intermittent power demand without significantly increasing the total energy

demand, and therefore reduce demand charges for larger customers [86].

• Power quality: In addition to the above-mentioned benefits, power electronics

provided with the BESS can be used beneficially. Sub-cycle and harmonic dis-

tortions for instance can severely deteriorate power quality, since they have un-

wanted e�ects on connected equipment (similar to the issue of sub-synchronous

resonance at the generation side). Energy storage with modern power electron-

ics could be capable of providing power filtering functions that suppress those

distortions [87]. This feature could be of particular interest to LV networks in

the UK, since customers are arbitrarily connected to a single phase of a three-

phase network. Therefore, the discrepancy of power quality between the phases

is even larger, yet available energy storage resources could even address this

issue [88] (especially when considering household connected units).

This extensive list of possible applications for energy storage systems emphasises

the potential for energy storage solutions in the future energy market. However, as

also stated by Taylor et al. in [89]: “The market for use [of electrical energy storage]

is motivated by the need to increase the e�ciency of the grid by the integration of

RES”. For this very reason, upgrade deferral, congestion relief, ancillary services (i.e.

voltage support) and renewable integration are the key challenges that are of interest

to DNOs. This finding is also supported by the motivation of research projects and

field trials that were conducted with energy storage solutions in the LV distribution

networks. These research projects are reviewed in the subsequent section, Section 2.3.
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2.3 Energy storage research for LV application

The challenge for DNOs to manage their distribution networks is caused by the DER’s

and LCT’s di�cult predictability, their volatile nature, and the weakness of the net-

work into which they are deployed. If left unmanaged, voltage fluctuations caused

for example by PV systems [16,90] or capacity shortages due to additional loads like

EVs [91, 92] will threaten the power system’s stability. Improved network manage-

ment methods that are summarised under the term “smart grid” have thus become

increasingly popular to counteract the negative impact from DERs and LCTs [93].

However, when deferring the reinforcement or retrofitting of network assets to con-

struct such a smart grid, deployment of BESS can provide a significant contribution

to the integration of DERs and LCTs. For instance, Grillo et al. in [94] showed how

probabilistic price driven storage control successfully supports renewable integration.

Their simulated and validated BESS model provides arbitrage functions through gen-

eration shifting and was able to achieve a daily gain of more than Ä130. But such

an immediate financial benefit can only be achieved when their dynamic pricing is

implemented and the repetitive discharge to 20% does not shorten the BESS lifetime.

Focusing on grid support instead, Rowe et al. in [95] showed how a BESS schedule

can maximise the peak reduction capability in order to free system resources. Since

their BESS schedules were based on sometimes unreliable demand forecasts, they had

to implement filtering operations to vary the forecast’s peak magnitude, peak width

and peak shape. This filtering maximised the resulting peak reduction performance

to a median peak reduction between 5kW to 7kW (instead of 0kW when no forecast

filtering was implemented). Similarly Hosseina et al. in [96] also used residential load

forecasts to schedule BESS operation in order to level demand by shaving peak load.

Their BESS was installed in the medium voltage distribution network since their re-

dox flow-battery was significantly larger than the lithium-ion battery that was used

by Rowe et al. (i.e. 34MWh instead of 25kWh). Apart from the di�erence in scale,

26



both pieces of research used residential load forecasts only whilst Li et al. solved a

stochastic unit commitment and economic dispatch problem to maximise renewable

integration in [97]. Unlike traditionally scheduled BESS operation, Li et al. also sim-

ulated real-time operation but assumed perfect demand and pricing knowledge at the

time of operation. As a result they achieved a financial gain of more than $34000, but

did not guarantee the BESS impact on the underlying power distribution network.

Over the past decade electricity DNOs and supplier branches from the Big Six (i.e.

the UK’s six major energy suppliers) begun trialling of BESS across their distribution

network to better their understanding and potential contribution. This was done since

the BESS benefits had only been estimated and not thoroughly studied through field

trials. Showcase examples from some DNOs include:

• Scottish and Southern Electricity Networks (SSEN) in [98] where BESSs were

deployed in Bracknell distribution networks to uphold voltage stability and

power quality;

• EDF Energy Networks in [26] where BESS was installed in the 11kV distribution

network for power flow management and to validate and improve system models;

• UK Power Networks (UKPN) in [99] where BESS was installed to shave load

peaks and level supply volatility from an adjacent wind farm;

and showcase examples from some of the energy suppliers include:

• E.ON UK in [100] where a 5MWh BESS was colocated with a combined heat

and power plant to stabilise its energy supply; and

• Scottish Power in [101] where 1MWh of distributed batteries were installed in

households to support grid operation through flexible tari�s.

Nonetheless, from lessons learnt and aiming to meet statutory and physical restric-

tions under the future load changes, voltage control and the power flow problem have
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been identified as the two key challenges for DNOs [102,103].

2.3.1 Voltage control

LV distribution networks in the UK operate at 230V Phase to Neutral (P2N) or 400V

Phase to Phase (P2P) and have a statutory tolerance band of +10% and -6%. But

these voltages can deviate significantly due to the varying load on the network. Al-

though todays deviations infrequently exceeds high-voltage or low-voltage thresholds,

conduction losses and imperfect network conditions result in a lower overall system

e�ciency. Traditionally, On-Line Tap Changers (OLTCs) are used to raise and lower

voltages across the entire LV distribution network in order to counteract voltage devi-

ations [104]. However, such a hierarchical voltage control with OLTCs has its limited

applicability, especially in cases where the voltage deviation significantly di�ers along

individual branches of a feeding network [105]. More specifically, if voltages diverge

along di�erent branches or di�erent phases of a feeder due to asymmetric loads then

the adjustment of transformer taps will lead to high or low voltage violations regard-

less of the tap change direction. Installing a BESS at a strategic location (i.e. closer

to the regions where voltage deviation takes place) and controlling the device to best

suit the network’s requirements is generally more applicable and commercially the

more viable alternative [106].

As stated by Wade et al. [107], allocation of the BESS’s limited storage capacity

so it can solve the voltage problem most e�ectively is still a sophisticated challenge.

Nonetheless, by installing a 200kWh unit that is rated at 600kW in a project that

was carried out with EDF Energy, they showed the potential of BESS in a network to

provide targeted voltage support [26]. Their results for a 0.4MWh BESS achieved a re-

duced voltage variation by 2.4% which resulted in a complete elimination of any “out-

of-limit” voltage events, and a 70.96% reduction of all network events (including power

events) over the annual simulation period. A demonstration project in Germany that
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was titled “More Microgrids” used four 180kWh batteries and demonstrated how both

voltage stability as well as grid independence could be improved [108]. In this “More

Microgrids” project a collection of holiday homes were fitted with a distributed PV

system that is capable of generating a peak power of 315kW, and BESS was used to

maximise the utility from this generation. However, due to the relatively small size

of the network, due to the di�erent behavioural patterns of holiday home occupants,

and due to the di�erent means of connecting customers to the German three-phase

network, voltage deviation and phase unbalance issues were not as big as a concern

as they are for UK distribution feeders. An equally sized German project entitled

“GROWDERS” also used multiple BESS in the LV network, but instead of focusing

at grid independent network operation, they mainly contributed to frequency and

thermal constraints as well as voltage stability [109].

BESS that are sized between 100kWh to 200kWh (as those in the aforementioned

projects [26, 107–109]) can easily address network issues, especially even when op-

erating in a grid independent or “islanded” mode. Results from these early field

trials show how BESS store the excess renewable power for usage during later times.

But neither high nor low voltage events could be omitted once capacity limits were

reached. An oversized BESS would be less likely to meet its operating limits, but

the associated cost makes this oversizing unfeasible. Findings therefore indicate that

not only the sizing, but also the BESS control method is of significant importance.

Nonetheless, continuous voltage violations that require strong voltage support have

not yet been encountered in any of these projects, and instead occasional violations

accumulating to less than an average of 1.1 minutes (instead of 2.3 minutes) per

day are the norm [110]. Also, the majority of recorded low-voltage events on the

UK distribution networks (i.e. when voltage levels fall below 216.2V) are caused by

anomalous network events or are due to failures of the measurement equipment [111].

Therefore the complementing task of choosing correct control methods to optimally
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manage the network’s power flow is also important.

2.3.2 Power flow management

Interest in BESS control for power flow management has grown since improved mea-

surement equipments in LV substations is more reliable and precise than traditional

smart meter readings, but also since excessive power flow is the main cause for opera-

tional issues which do eventually lead to system overloads and outages1 [114,115]. To

prevent future power flow from exceeding the system’s capacity, BESS has been pro-

posed to function as an instantaneous reserve [116,117]. Resulting methods like BESS

droop control use local voltage and frequency measurements to infer the latest loading

and stress on the network to issue corresponding BESS control instructions [118]. The

initial simulations in [118] showed how droop control can e�ectively remove reactive

power demand and thus free the corresponding resource. Conventional droop control

was designed to inject reactive power into high voltage transmission lines to counter-

act voltage drops and inject active power to counteract phase shift [119]. This control

mechanism works since the impedance of high voltage transmission networks is more

inductive than resistive. LV distribution networks on the other hand are more resistive

in nature. Droop control for the LV applications is therefore founded on the assump-

tion that network frequency will drop as demand begins to exceed supply, and that

voltages along the distribution feeder drop more significantly when load is increased.

Yet as already stated in Section 1.1.1, reversed power flow can raise voltage levels

which makes such droop control methods less reliable and potentially unsuitable for

LV network support. This problem was also encountered by Ri�onneau et al. in [120],

where they control BESS to solve an optimal power flow problem for grid connected
1
In fact, according to the UK energy regulator OFGEM, on average 45% of all customers expe-

rienced service disruptions in the period 2015-16 [112]. Unanticipated outages due to severe winter

weather did lead to £39 million worth of damages. Whilst the resulting planned outages (i.e. for

network repairs and upgrades to prevent future failures) also took place, unanticipated outages do

still make up the larger amount of customer interruptions and customer minutes lost [113].
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PV systems. Ultimately, they were able to achieve a 13% reduction of electricity bills

by implementing a rule-based dynamic programming optimiser, and they reduced

peak power by successfully integrating PV. However, they do not consider reactive

power within their power management method although it could free additional net-

work resources and yield benefits to the distribution network, better voltage control

and lower phase imbalance. The reason behind excluding it from their study was due

to the potential conflicts that arise with the proposed voltage control method which

heavily relies on voltage measurements. Using BESS to reallocate PV generation for

maximised self-consumption [121] or to achieve “peak-shaving” behaviour [29, 122]

has seen continued interest in the field of BESS power flow management.

Aiming to address both voltage and power flow problems, Scottish and Southern

Electricity Networks (SSEN) became the first UK network operator to trial street-level

BESS deployment in the LV network, and they installed 500kWh worth of storage

in Bracknell, UK [123]. This capacity was achieved by 25 Energy Storage Manage-

ment Units (ESMUs), like those pictured in Figure 2.2. Each ESMU had cascadable

12.5kWh Energy Storage Units (ESUs), and the ESUs were connected to the distribu-

tion network via a three-phase 36kW Power Electronic Unit (PEU) to both manage

the batteries and perform filtering operations. The aim of this so called New Thames

Valley Vision (NTVV) project was to understand potential benefits, practicalities and

costs of installing street-level BESS. In the beginning the main problem of finding

an optimal deployment location for the ESMUs to achieve their best possible impact

on system voltages had to be addressed. Yunusov et al. and Rowe et al. worked

in collaboration with SSEN, and they assessed di�erent BESS locations in several

networks [18, 95, 124]. They found that a location 4/7 to 2/3 down the feeder yields

the best overall impact on voltage levels and power flow. However, their findings also

show that this location can vary significantly when not focusing on voltage support

exclusively; i.e. proximity to the feeding substation was of greater importance when
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(d)

Figure 2.2: Energy Storage Management Unit overview: (a) 12.5kWh Energy Storage
Unit, (b) Power Electronics Unit, (c) deployed 12.5kWh system, (d) deployed 25kWh
system - pictures are taken from the NTVV close down report [3]

32



reducing the system’s overloads or distribution losses. Also, the chosen control system

had significant impact on the BESS performance, which is why more emphasis has

been put on BESS control instead of locating or constructing BESS. Therefore, a

review of BESS control methods including those that are implemented in the NTVV

project are presented in the next section, Section 2.4.

2.4 Control of energy storage and its applications

Installing BESS at a strategic location in the LV network brings several advantages

to DNOs’ control over the network’s performance. Regulating voltages to stay within

statutory operating bands [28], improving power quality by optimising its power factor

[125], shaving peak load to relieve stress from the installed network assets [29] or

reducing phase unbalance to increase network e�ciency [30] are only a few examples

of recent research in this field. Whilst the questions regarding locating and scaling of

BESS have mostly been addressed, BESS control still remains an open question and

can be split into two complementing yet unmarried approaches:

1. “o�-line” control, using load forecasts and BESS schedules; and

2. “on-line” control, using Set-Points Control (SPC), Model Predictive Control

(MPC) or similar dynamic control methods.

These two control approaches have evolved from two di�erent fields of active

network management. Nonetheless, both approaches hold significant benefits to the

operational performance of power distribution networks and neither of the two can be

neglected. Therefore, Section 2.4.1 addresses and discusses the two control approaches

and their missing link.

The current form of the NTVV project focuses on controlling a single BESS in

the LV distribution network. However, the uptake of household connected BESS
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will increase the number of distributed systems, which need to be managed cooper-

atively. Therefore, Section 2.4.2 reviews and discusses di�erent control approaches

for distributed BESS since the control of multiple single-phase storage units in a

three-phase network is inherently more challenging that controlling one three-phase

device.

2.4.1 O�-line and on-line control

O�-line control uses historic data to predict future load patterns which are used to

schedule BESS operation accordingly. Early approaches by Oudalov et al. [84], who

used dynamic programming to generate BESS schedules had relatively high forecast

errors due to the inherent di�culty of predicting future loads. These errors ulti-

mately limit the ability of any given BESS schedule to e�ectively reduce peaks. This

is why recent research begun including uncertainty, like the work done by Baker et

al. [126] where uncertainty of wind power was taken into account when scheduling

and sizing BESS. Other work frequently re-evaluates BESS schedules to control and

adjust its schedules after completing individual decision epochs [127]. Nonetheless,

load forecasting remains a key component for BESS scheduling despite those load

forecasts (and the resulting BESS schedules) being imperfect. This fact was empha-

sised by Rowe et al. in [95], and they developed a filtering mechanism for scheduling

algorithms to reduce peak load in LV networks due to the presence of forecast er-

rors. They also highlight the fact that most day-ahead load forecasts only predict

at a temporal resolution down to half-hourly periods which makes estimating errors

at higher temporal resolution less dominant. The reason behind choosing this half-

hourly forecasting period was pointed out by Haben et al. in [7, 128], as they argue

that forecasts at half-hourly resolution yield the best compromise between high accu-

racy and high temporal resolution. Therefore, half-hourly forecasts have become the

standard for generating any resource commitment and resource operation schedules.
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However, sub-half-hourly load volatility imposes the biggest stress on the network

and it is this volatility that cannot be addressed when relying on half-hourly forecast

alone. In conclusion, on-line control has been considered as an alternative to o�-line

control.

One flavour of on-line control is the Set-Point Control (SPC) which is a robust

technique that can immediately respond to network changes. SPC achieves this be-

haviour by measuring some properties of the power system (for example voltage level

or frequency) and comparing those values to an internal target value, i.e. the set-point.

Droop control, as mentioned in Section 2.3.2, was one of the first control methods

that followed the SPC paradigm. A single set-point is however not suitable for a net-

work that changes dynamically which is why droop control was extended to become

adaptive as done by Tayab et al. in [119]. Their research shows how conventional

droop control runs the risk of allowing system frequency to drop to 48.4Hz (from a

nominal 50Hz), whereas adaptive droop was capable of frequency restoration with

little to no observable frequency variation. However, their solution relied on PV and

gas turbines to provide active power injection and could only injected reactive power

into the system when these are not available - a comparable scenario can occur when

BESS completely discharges. Therefore, voltage compensation can still be realised,

but frequency remains unchanged. Conventional droop control does therefore run the

risk of reaching energy shortage or surplus if the set-points and system dynamics are

chosen too low or high. Modifications like hysteresis control and ramp-rate control

were proposed to yield an adaptive SPC [129–132]. Hysteresis control prevents the

device from oscillating between di�erent power states even when small changes in

the network are detected and would otherwise trigger an SPC change. When imple-

menting a dead-band around the controller’s set-point as well as utilising a ramp-rate

control, as done by Such et al. in [132], BESS can correct its internal energy state

and therefore prevent hitting its operational limits. Furthermore, Such et al. showed
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how reverse power flow can be completely omitted through the use of on-line BESS

control. However, this kind of on-line control is less e�ective when addressing daily

demand peaks since pure SPC can only react to present network demand and does

not respond to general trends or upcoming load events.

In order to address these shortcomings SPC has been extended by using short-term

load predictions through the implementation of Model Predictive Control (MPC)

[133, 134]. Some MPC examples include Auto-Regressive (AR) models [135, 136],

fuzzy logic models [137, 138], genetic algorithms [139, 140] or Artificial Neural Net-

works (ANN) [81, 141–146]. Advancements in computational power allowed ANN to

gain traction, and as shown in the study by Quan et al. in [142] ANN is becoming

a promising method to generate load forecasts. In fact, in their study, Quan et al.

proved how ANN can outperform AR and fuzzy logic models given that the ANN was

optimally trained. Therefore, MPC can yield a acceptable prediction performance for

linear systems when its complexity is su�ciently increased. For instance, Reihani et

al. in [81] used the most recent 20 minutes of load information with a complex-valued

ANN to predict the next 20 minutes of minutely load variations. Since their raw fore-

casts were more erratic than the actual load profile, a Kalman filter was implemented

to smoothen the MPC’s output, yet this step introduced significant discrepancies

between the actual and the forecasted load. Therefore they increased MPC com-

plexity even further by taking into account parallel time-series, i.e. they considered

the same 20 minutes from previous days in the prediction mechanism. This addition

produced significantly better results and they shaved daily peaks by around 300kW

(from 1.6MW) in the medium-voltage network. Implementing such increasingly com-

plex MPC to support on-line control is therefore a promising research trend, however

the computational burden to deliver real-time solutions makes deployment of such

systems costly and/or di�cult.

Therefore, finding a way of combining both o�-line control (i.e. scheduled BESS
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operation which is executed at half-hourly resolution) with on-line control (i.e. a

mechanism that is responsive to power system changes) allows application of real-time

corrections to the BESS schedule. Since this is still an open and ongoing research

problem that has not yet been solved, Objective 1 and Objective 2, as outlined in

Section 1.2, aim to develop and present a control mechanism that utilises the benefits

from scheduled and real-time control. The objectives’ corresponding chapters are,

respectively, Chapter 3 and Chapter 4, and they address this research problem in

two stages. At first the problem is addressed by developing a framework to apply

scheduled BESS operation to a three-phase network in a sub-half-hourly manner but

without modifying its underlying half-hourly schedule. Secondly, this hard constraint

is removed by developing and implementing a dynamic controller that allows an op-

erational tolerance around the pre-computed BESS schedule in order to guide BESS

operation without violating its energy storage limits whilst maximising its flexibility

to respond to sudden system changes. This a control system does however rely on

a communication infrastructure in order to be implemented and deployed in reality.

These infrastructures and their underlying control either follow a centralised or dis-

tributed networking paradigm. Both paradigms entail their specific costs and benefits

which are addressed in the subsequent section, Section 2.4.2.

2.4.2 Centralised and distributed control

It is important to understand the topology of an on-line control system since most

of them have to gather power system information from multiple locations in order

to make intelligent control decisions. This is particularly true if the control system

consists of multiple entities that are distributed across the power network. The mon-

itoring and control of such a distributed system (and hence of any power network)

includes four systems that are inherently linked [147]:

1. The managed system itself, like a power network, that needs to be controlled;
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2. a monitoring system that generates data through sensors and measuring equip-

ment that is installed in the managed system;

3. a decision making system that uses the provided data to generate certain aims,

to improve the system state; and

4. a control system to generate control actions for the managed system.

In traditional power system control, systems 1 and 2 are grouped into the dis-

tributed measuring system and systems 3 and 4 are grouped into a centralised con-

troller [148]. Therefore a bidirectional flow of information must exist in order to

control and assure operation of the underlying physical network. Supervisory Con-

trol And Data Acquisition (SCADA) is the typical control architecture that enables

the implementation of this bidirectional information flow. Tokyo is a showcase of

successfully implementing such a centralised control system on a very large scale. In

1990, Tokyo Electric Power Co. (TEPCO) and Toshiba presented their latest instal-

lation of a centrally managed power distribution network that could deliver 43GW of

power to the entire city of Tokyo [149]. All control instructions were generated from

TEPCO’s central dispatching centre, which took into account measurements from a

network of 819 nodes and 938 branches. Since Tokyo has grown significantly over the

past decades, computational burden to relay data and act upon the information has

increased, too. The UK transmission system is also a centrally managed system that

has seen an increase in complexity, yet in 2017 “the network is 99.9999% reliable - a

statistic we’re proud of “ [150].

But with the deployment of smart meters, network enabled appliances and con-

trollable LCTs that can be part of the so called “Internet of Things” (IoT) system

complexity is expected to increase beyond the capabilities of a single central man-

agement centre. This reason is why research began focusing on distributed control

mechanisms [151–160]. For example, Vovos et al. in [151] compared centralised and
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distributed systems for voltage control and showed how they can yield a 86% gain

(using centralised control) and 72% gain (using distributed control) in connectible

capacity. Adding distributed BESS into the energy mix, Toledo et al. in [154] evalu-

ated its impact on the IEEE-14 bus network when subjected to PV energy injection.

Their developed voltage index showed how voltages can deviate from nominal levels.

In their results this index was 0.074%, 2.823%, and 3.471% for a release of system

capacity of 500kW, 1000kW, and 1500kW, respectively. In their work a higher index

represents a larger voltage deviation in comparison to a predefined base case without

PV or BESS. To counteract this voltage rise, research like that by Marra et al. in [155]

used coordinated EV charging to maximise self-consumption and thus alleviate grid

power injection by PV. Focusing on the LV network’s voltage issues, Marra et al.

showed how high voltage incidents are completely avoided by charging at strategic

times throughout the day, and at relatively low charging powers of 3.5kW. In fact,

the majority of existing literature that uses BESS in distribution networks focuses on

voltage security [39, 110, 154, 155, 158], power flow management [152, 160] and man-

agement of flexible loads [156, 157]. For instance, the approach used by Mokhtari et

al. in [39] relies on bus voltage and network load measurements to prevent system

overloads, and Marra et al. in [155] go even further and use information sharing

between PV and BESS in order to limit voltage deviation. Both research teams were

able to stabilise the network, and Marras et al. even increased the voltage margin by

an additional 6.1V. The reasons why the usage of distributed and hierarchical control

systems have become this attractive include lighter computational load for all control

systems through abstraction at higher control levels and improved system stability,

security and redundancy [161,162].

Approaches and topologies to manage the flow of information within these con-

trol systems are classified by Bidram et al. in [153] where they separate the real

network (i.e. the physical layer) from Information and Communication Technology
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(ITC) (i.e. the cyber communication layer). This separation allowed them to repre-

sent any distributed power system as a system of multiple cooperating entities, i.e.

intelligent agents that form a so called Multi-Agent System (MAS). The technology

of MAS comes from computer science and is well established in theory and practice of

intelligent agents [163]. As stated by Wooldridge et al. in [164] intelligent agents are

flexible and autonomous entities that are defined by three fundamental properties:

1. Reactivity, which allows an agent to respond to changes in its observed environ-

ment,

2. Pro-activeness, which makes an agent act to meet its own or a collaborative

goal, and

3. Social-ability, which enables the agent to coordinate its action with other agents.

Computer scientists would describe an agent as a component that gathers and

collaboratively reacts to information about its environment. But distributed con-

trol systems in power distribution networks share the same characteristics. For this

very reason MAS has seen increasing attention in the power and energy engineering

disciplines. Some MAS applications are focusing on integration of DERs [165–169],

matching of demand and supply [170], restoring the power distribution network [171],

reconfiguring the network to reduce unbalance [172], integration of EVs [46,173–175]

and providing voltage support [176]. For example, Dou et al. in [167] proposed a MAS

that coordinates DERs in as a so called Virtual Power Source (VPS). This VPS is an

aggregate of all distributed entities and responds to voltage events throughout the LV

distribution systems. In the case where generation increase would raise voltage levels

beyond their statutory limits their VPS control could maximise power sharing and

thus limit voltage overshoot to stay within voltage tolerance. This VPS is typically

referred to as a Virtual Power Plant (VPP), which has also been implemented as a

MAS by Vasirani et al. in [168]. In their work Vasirani et al. propose a distributed
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control strategy that utilises EVs as an energy storage medium to maximise prof-

its from operating distributed renewable energy sources. Their findings suggest that

when providing 12kWh of the EV’s energy storage capacity for renewable integration

an annual EV profit of more than Ä250 (at 40% depth of discharge) can be achieved.

However, research involving MAS or any distributed control for that matter does

require strong and standardised communication mechanisms.

A standard for MAS was established by the Foundation for Intelligent Physi-

cal Agents (FIPA) since the underlying versatility of di�erent MAS would otherwise

make integration very challenging. This challenge was also raised by Catterson et

al. in [177], where they tried to merge the Condition Monitoring Multi-agent Sys-

tem (COMMAS) [178] with the Protection Engineering Diagnostic Agents (PEDA)

system [179]. They showed the inherent di�culty of combining di�erent ontologies

despite the similar underlying goals. Also, as the number of independent elements

becomes ubiquitous requirements for a strong telecommunication infrastructure be-

come equally important [134]. So far synchronisation amongst agents has been taken

for granted, yet MAS on multilayer networks need not automatically be synchro-

nised [180]. The impact of desynchronised information exchange on the performance

of a MAS driven energy scheduling algorithm still remains an open research question.

Therefore, assessing the impact of introducing such a desynchronisation has become

part of the research that is presented in this thesis, and Objective 3 as outlined in

Section 1.2 aims to answer this research question. Regardless of the synchronised or

desynchronised nature of the distributed control, they both do however require some

kind of communication infrastructure which need not always be present. Therefore,

the next section, Section 2.4.3, introduces control mechanisms where communication

between devices is no longer a strong requirement.
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2.4.3 Communication-less control

Lastly, developing control methods for distributed system that do not rely on a com-

munication infrastructure is also an important research topic since this infrastructure

need not always be available; despite this being a common assumption [134]. So called

communication-less systems are typically collections of multiple “dumb” devices that

follow their own control instructions without any external inputs. The current pro-

cedure of charging EVs is a perfect example of such a system since their charging

typically commences immediately after they have been plugged into the grid. At the

current rate of EV uptake so called “dumb charging” (or any “dumb action” for that

matter) has high potential of causing significant network issues [181,182]; i.e. voltage

deviations, equipment overloads, asset damage and system outages. This issue is am-

plified since the EV uptake is anticipated to increase as driving range increases, cost of

purchase decreases and the emphasis on leading an environmentally-friendly lifestyle

is favoured more [183]. ICT reliant distributed control methods aim to circumvent

these issues by using Demand Side Management (DSM) strategies. In [184] for ex-

ample, Mohsenian-Rad et al. based developed a DSM mechanism that was based

on game theory where multiple users engaged in the energy market to minimise the

Peak-to-Average Ratio (PAR) of the resulting demand profile. Their results show that

both minimising financial cost or the PAR of the resulting demand profile resulted

in a 21.9% reduction in PAR when compared to a scenario without scheduling the

energy consumer. But minimising PAR resulted in only a 7.31% reduction in energy

cost, whilst minimising cost directly lead to a 19.6% reduction, despite the similar

improvements in demand profile. However, this approach highly relies on ICT, as do

similar DSM approaches that use for example time-of-use tari�s [185, 186] or other

pricing signals [187]. None of them can be implemented without ICT and instead an

indirect method must be sought.

A communication-less form of controlling Distributed Energy Resources (DERs) is
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the already mentioned Set-Point Control (SPC) [188]. Using traditional SPC on mul-

tiple identically-configured DERs can provide an optimal operation conditions, if each

DER’s control parameters (bus voltage) were shared [189]. But in a communication-

less environment this requirement cannot be satisfied which is why DER control

algorithms have to be improved to prevent for example devices located furthest from

the substation from being used more frequently than others. The algorithm that is to

be extended to control several BESS in a LV network is the Additive Increase Mul-

tiplicative Decrease (AIMD) algorithm. Unlike traditional SPC or hysteresis control

like in [190], where a fuel-cell’s bus voltage was used as input to a ramp control for

active power sharing, AIMD (like MAS) has its roots in computer science. Originally,

AIMD algorithms were applied to congestion management in telecommunication net-

works using the TCP protocol [191] to maximise utilisation while ensuring a fair

allocation of data throughput amongst a number of competing users [192]. The same

AIMD-type algorithms have previously been applied to power sharing scenarios in

low voltage distribution networks where the limited resource is the availability of

power throughput capacity of the substation’s transformer. One of the first proposed

implementations for DER management was by Stüdli et al. [193], yet their system

still required a one-way communication infrastructure to broadcast a so called “ca-

pacity event” [194, 195]. Later their work was extended to include Vehicle to Grid

(V2G) applications with reactive power support [196], but this work still relied on a

functioning and robust ICT infrastructure. Therefore, the question whether a truly

communication-less dynamic control method can be developed (i.e. mitigating volt-

age deviation and capacity limitations) is still a remaining research problem. More

specifically, this control method should not only avoid to impose any ICT require-

ments, but it should also aim to equalise the utilisation of all controlled devices which

is not guaranteed by the traditional AIMD algorithm. Objective 4, as outlined in

Section 1.2 aims to solve this research problem by extending AIMD to AIMD+, where
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natural voltage drops are taken into account to correctly skew the algorithm’s control

decisions for individual control entities. Previous research is therefore extended since

previous work has only utilised common SPC thresholds for controlling each of the

DERs or previous work relied still on some form of communication infrastructure. In

strong contrast to the former objectives of this thesis where substation monitoring

was used, the proposed AIMD+ algorithm does not require this information or any

communication infrastructure for that matter.

2.5 Summary of gaps in literature

In this chapter, Chapter 2, the current and future roles for energy storage have been

laid out. When focusing on BESS applications that support DNO owned networks, i.e.

to enable the integration of LCTs and DERs within the LV distribution network with-

out the need for network reinforcements, two key functions have emerged: 1. limiting

voltage deviation to within statutory regulations, and 2. avoid thermal constraints by

solving the power flow problem. Since DNOs had little experience with using BESS

in their LV networks, several research projects and field trials were undertaken over

the past decade. So far this research has already focused on sizing, locating and

operating BESS. From the presented literature BESS control methods can be split

into two categories that still remain unlinked: o�-line control (for example scheduled

or forecast driven control) and on-line control (for example SPC or MPC). Whereas

o�-line control takes into account daily load trends (i.e. at half-hourly resolution) it

cannot compensate for load volatility due to DERs and LTCs (i.e. at sub-half-hourly

resolution). On-line control methods on the other hand are designed to react quickly

when system changes occur (i.e. at sub-half-hourly resolution), but they cannot e�-

ciently include daily or weekly load patterns (i.e. at half-hourly resolution) due to the

increase in model complexity. On the basis of the gaps in literature, as highlighted
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in the literature review, Chapter 2, and the problem statement of this thesis which

is stated in Section 1.2 research Objective 1 and Objective 2 were derived. Fur-

thermore, as the number of DERs increases throughout the grid methods to manage

them need to become more sophisticated, too. However, all developed algorithms

to control DERs either explicitly or implicitly assume synchronisation amongst all

controlled entities which need not be the case in reality. Assessing how information

desynchronisation impacts the performance of a distributed algorithm is still an open

research question that is addressed by Objective 3. Objective 4 then aims to

extend a distributed control algorithm by developing a method that no longer de-

pends on communication systems. To summarise, the problems that arises from the

identified gaps in literature are:

• how to assign a BESS power profile that is pre-scheduled at half-hourly reso-

lution to the three-phase network that operates at sub-half-hourly resolution

in order to yield the largest positive and targeted impact on the underlying

network performance parameters (Objective 1),

• how to adjust a half-hourly BESS schedule (derived from a realistic but erro-

neous load forecast) based on sub-half-hourly load variations to minimise daily

peak demands at both temporal resolutions (Objective 2),

• how large the impact will be on the performance of a scheduling and control al-

gorithm when information exchange or message passing amongst the distributed

control entities becomes desynchronised (Objective 3), and

• how multiple BESS can be coordinated in a communication-less environment to

circumvent the need for ICT whilst contributing to voltage stability and thermal

constraints without allocating their energy resources unevenly (Objective 4).

Despite some of the literature including aspects of the proposed research, none

of them answer the research questions that are identified above. The novelty of the
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research in this thesis consists of combining on-line and o�-line control, as well as to

assess and extend the control of distributed BESS. All contributions, corresponding

publications and draft papers, as outlined in Section 1.3 and Section 1.4, reflect upon

the novelty of the presented research against the objectives as well as their aim and

gaps in literature upon which they are founded.
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Chapter 3

Improving network performance by

adjusting battery operation at

sub-half-hourly resolution

M. J. Zangs, et al., “On-line adjustment of battery schedules for supporting LV

distribution network operation,” 2016 International Energy and Sustainability

Conference (IESC), Cologne, Germany, 2016, pp. 1-6.

— Available: http://dx.doi.org/10.1109/IESC.2016.7569485

3.1 Overview

Due to the trends in energy demand, future network load is expected to increase in

both magnitude and volatility. As a result, DNOs have two choices to address the

issues that are expected to result from increased network stress. They can either

invest in network reinforcement or install network support equipment. For several

reasons, like decommissioning cost, installation cost, service disruption, etc., which

have been outlined in Chapter 1, the installation of network support equipment was

favoured. As also mentioned in Chapter 1 SSEN deployed and trialled an Energy

47



Storage Management Unit (ESMU) in some of their Low-Voltage (LV) power dis-

tribution networks. Within the scope of their trials ESMU had to be controlled to

benefit the network without exceeding or violating any operational constraints. In

order to achieve this kind of operation ESMU operation had to be scheduled. Dur-

ing this kind of operation the system either consumes or injects power according to a

predetermined plan that changes at regular intervals. For historic reasons and system

compliance this interval was chosen to be of 30 minutes (i.e. at half-hourly period).

Since the ESMU schedule was generated based upon a demand forecast any re-

sulting impact on the LV network operation is therefore based upon two factors:

1. quality of the underlying forecast that is used to generate ESMU schedules, and

2. network parameters that are used to quantify the improvements that would

have been expected, when the half-hourly schedule is applied.

The previous research that was conducted by the Energy Research Laboratory

(ERL) at the University of Reading (UoR) focused on improving half-hourly network

operation to reduce peak load [95, 197]. However, in that research sub-half-hourly

demand variability has not been taken into account. Therefore previously used per-

formance parameters and the corresponding measure of success did not e�ectively

quantify the ESMU’s capability at mitigating negative impacts from this sub-half-

hourly demand.

In conclusion, this chapter addresses Objective 1 of this thesis (which is outlined

in Section 1.2) and a closed-loop optimisation method is proposed that adjusts the

ESMU’s phase powers at a sub-half-hourly resolution in order to improve network

operation whilst maintaining the charging and discharging profile during the corre-

sponding half-hourly period. Unlike previous work in the field, this approach makes

the ESMU follow its predetermined ESMU schedule, as well as allowing it to respond

to high-resolution variations in three-phase network load.
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In order to investigate how network operation can be improved, a collection of

commonly used parameters are evaluated in a set of corresponding cost functions.

Initially these cost functions are minimised on an individual basis to inspect their

separate impact on network performance. Then all cost functions are combined as

a weighted sum to form a global cost function which is used in the final analysis.

For each optimisation approach power flow simulations are run on a standardised UK

power distribution feeder model in the simulation environment OpenDSS. This chap-

ter therefore addresses the research question whether sub-half-hourly adjustments to

scheduled ESMU operation can significantly improve measured key network parame-

ters.

The obtainment of key network parameters and their corresponding measure of

improvement is explained next, in Section 3.2. All acquired data and the power

network models used for this piece of work are shown in Section 3.3. Subsequently,

the closed-loop optimisation method is presented in Section 3.4. At the end of this

chapter, all results are presented and discussed in Section 3.5, and a concluding

summary is presented in in Section 3.6.

3.2 Key network parameters and derived cost func-

tions

Two distinct approaches have emerged to quantitatively improve the performance of

a system: either “cost” is reduced or “utility” is maximised. Both approaches rely

on a mathematical explanation of underlying features that relate to performance of

the system. The choice for the work in this thesis was to associate a cost to each

key network parameter for the reason that cost functions can be minimised towards

a finite value i.e. zero. Utility maximisation on the other hand is a theoretically

unbound problem that can only reach a maximum if its maximum can be estimated
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in advance. In other words, solutions to a cost function where the resulting cost is

zero are by definition part of the set of optimal solutions. Determining the set of

optimal solutions for the maximisation of a utility function is more di�cult however.

With this in mind the key network parameters are defined and their corresponding

cost functions are introduced. In this chapter, Chapter 3, power flow simulations are

run at discrete times, t, which are separated by a sampling period �t. The model

used for these simulations is the IEEE LV Test Case, i.e. a network consisting of 906

three phase buses which resulting in a total of 2718 observable nodes. For each node

complex currents and voltages can be obtained making the number of parameters to

chose from nearly inexhaustible. In reality however a power distribution network can

only be observed at a limited number of measuring points. For the NTVV project

these points were at the substation and the ESMU’s Point of Common Coupling

(PCC). Therefore all derived network parameters that could be obtained in reality

are seen as “realistic parameters” despite the fact that all key network parameters

are extracted from power flow simulations. The remaining key network parameters

(i.e. those that could not easily be obtained in reality) are therefore referred to as

“theoretical parameters”1.

Due to the high number of these theoretical parameters, only a subset of them

is used. The choice of parameters is based on their importance, role and impact on

the actual network operation. A list of all key network parameters is presented below

and in this list all theoretical key network parameters are marked with a dagger (†).

• Voltages at substation transformer’s secondary winding, i.e. vss(t)

• Voltages at ESMU’s PCC, i.e. vESMU(t)

• Voltages at customer lateral†, i.e. Vload(t)
1
In literature parameters are usually referred to as being “observable” or “unobservable”. From

a technical perspective however all simulated parameters are observable. Therefore a parallel to

real life observability and unobservability is drawn with the keywords “realistic” and “theoretical”,

respectively.
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• Total power flow, i.e. snet(t)

• Substation line utilisation, i.e. iss(t)

• Maximum line utilisation†, i.e. iline(t)

• Distribution losses†, i.e. slosses(t)

The following three subsections cover all key network parameters by detailing

the cost functions relating to voltages, powers and currents within the simulated LV

network.

3.2.1 Voltage related cost functions

In the UK, LV networks operate at a nominal voltage of 230V Phase-to-Neutral

(P2N) or 400V Phase-to-Phase (P2P). Substations supply electricity to a three-phase

cable (i.e. the feeder) and link to MV distribution networks which operate at 11kV

P2P. In an ideal case the voltage measured at the substation transformer’s secondary

winding remains constant as load changes. But in reality internal losses (for example

conductive losses and magnetic leakage) lead to a dropping voltage level when load

increases. Therefore any deviation from the substation’s nominal voltage can be seen

as an indication of suboptimal network operation.

The “voltage deviation cost function” ’voltage(v(t)) captures and associates a cost

to this suboptimal operation. This cost function is defined for a multi-phase complex

voltage vector as v(t) where v(t) = (v„(t)), where „ is the phase number and where t

the time at which the measurement was taken. Both phase and time are discrete, i.e.

„ œ {1, . . . , �} where � œ Z>0 and t œ ZØ0. When using the three-phase substation

voltage vector, vss(t) (where vss(t) = (vss,„(t))), with this cost function any drop in

transformer voltage results in a positive cost.
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’voltage(v(t)) :=
�ÿ

„=1

Y
___]

___[

’h(v„(t)) if Vss Æ v„

’l(v„(t)) otherwise

where � œ Z>0

(3.1)

In this voltage cost function, � represents the number of phases (i.e. � = 3), and

’h(v„) and ’l(v„) are two functions that convert a single voltage value (i.e. v„) into

a normalised positive cost based upon the direction of voltage deviation. High and

low voltage thresholds, respectively Vh and Vl, are introduced in order to define these

two functions. When choosing these two thresholds, then they must also satisfy the

following inequality:

Vl < Vss < Vh (3.2)

For the work presented here these two thresholds are based on the UK’s nominal

LV voltage range of +10% -6% around Vn, i.e. 230V P2N. As a result the following

upper and lower threshold functions are subsequently defined in order to form a

continuously di�erentiable cost function with a single zero tangent.

’h(v„) :=
3

v„ ≠ Vss

Vh ≠ Vss

42

(3.3)

’l(v„) :=
3

Vss ≠ v„

Vss ≠ Vl

42

(3.4)

Substations can raise their voltage slightly above the nominal LV voltage level

since voltage do typically drop continuously along a purely consumptive feeder. The

impact on the cost function ’voltage(v) when Vss is increased is shown in Figure 3.1

(for simplicity a single-phase voltage vector is shown, i.e. � = 1).
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Figure 3.1: Cost function ’voltage(v„) values for di�erent substation voltages

In this figure, it can be seen that ’voltage(v) at the thresholds Vl and Vh equates

to one, and to zero at the set substation voltage, even when this voltage is risen.

This intentional feature is demonstrated by raising Vss from Vn by +4% and +8%.

At the ESMU’s Point of Common Coupling (PCC) the device has access to all three

phases of the feeder. One can assume that the line voltage along a purely consumptive

feeder will drop continuously. Reasons behind this voltage drop are the resistive and

inductive losses in the distribution lines which are amplified with proximity to the

substation due to aggregated load currents from “down stream” customers. Under

heavy load conditions this voltage is likely drop below the statutory operation limit.

Yet this limit must not be violated since it is an operational constraint for DNOs.

To mitigate this voltage drop power is injected into the feeder at the ESMU’s PCC.

Doing so increases the voltage at its PCC and surrounding nodes since the portion of

load current that would normally be supplied by the substation is now delivered by

the ESMU. This e�ect when injecting power is sketched in the Figure 3.2 below.

In this figure the expected voltage drop along the entire feeder is sketched. It

can be seen how the voltage of the feeder’s tailing section can potentially drop below

Vl, but ESMU’s intervention can alleviate some load and bring voltages back within

operational bounds. The three-phase ESMU voltage, vESMU(t) (where vESMU(t) =
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(a) Voltage drop along feeder without ESMU

intervention

(b) Voltage drop along feeder with ESMU in-

tervention

Figure 3.2: Sketch of the benefits that occur when ESMU injects power into the feeder
in order to mitigate the voltage drop along the cable

(vESMU,„(t))) is seen as a realistic key network parameter which is also used in combi-

nation with a cost function. In fact, vESMU(t) is used with cost function, ’voltage(v(t)),

which was defined in Equation 3.1. This is the same cost function (i.e. ’voltage(v))

that was used to asses the deviation in transformer voltage. Therefore, the resulting

cost can be formulated as ’voltage(vESMU(t)).

The Electricity Safety, Quality and Continuity Regulations (ESQCR) define the

statutory voltage range at UK electricity customers [13]. However monitoring those

voltages to assure they lie within limits is unfeasible since the installation of synchro-

nised voltage measurement equipment at all loads implies significant cost. Therefore

these voltages are unknown in reality. Nonetheless, in simulations all load voltages

can easily be extracted and since ESMU can impact all voltage levels to some degree

they are treated as theoretical key network parameters.

To illustrate this load voltage drop a snapshot OpenDSS simulation was run on

the used network model with all load consuming 8kW of power2. Figure 3.3 then

shows all load bus voltages against their distances to the substation.

In this figure, two observations can be made.

1. It can be seen that phases are significantly unbalanced.
2
Whilst historic and recent loads reach values of this magnitude quite infrequently, future cus-

tomer demand with the aggregated e�ect home-charging of EVs is expeceted to yield extreme sce-

narios like this.
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Figure 3.3: Voltage at the loads in the IEEE LV Test Case network for a total load
of 440kVA against distance between the corresponding load and substation: for the
quadratic fit R

2 = 58.76%

2. Customers further than 200m from the substation are likely to experience low-

voltage events for the conducted simulation.

Although ESMU can reduce the number of such low-voltage events, including

a cost for each load would add significant di�culty to the minimisation problem.

Therefore, to solve this problem more e�ciently the previously defined voltage cost

function (i.e. Equation 3.1) is expanded to only return a single value for all customer

voltages. More specifically, only the worst deviation cost is used. By reducing this

number to the worst case any implemented solver thus focuses on the edges of the

minimisation problem. This focus is of particular importance especially if the impact

of the ESMU on some customer voltages is comparatively low. An aggregated voltage

deviation cost would potentially obfuscate this impact and prevent the solver from

e�ectively targeting the worst cases. Therefore, the customer (or load) voltage is

defined as Vload(t), where vload(t) = (vload,i,„(t)), and used in the new cost function,

’load voltage(Vload(t)), which is defined as:
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’load voltage(v(t)) := max
i,„

(’voltage(vi,p(t)))

where i œ {1, . . . I} and „ œ {1, . . . , �} and I œ Z>0 and � œ Z>0

(3.5)

Here, i represents the customer number out of a total customer count I, and „

represents the phase, out of the phase count �, to which the customer is connected.

3.2.2 Power related cost functions

Beside meeting voltage constraints DNOs need to assure that their distribution net-

works operates both in an e�cient and hence ideal manner. How ideal a three-phase

network operates is indicated by its phase unbalance. This disturbance due to unbal-

anced phase load need not have an immediate impact, but negative long term e�ects

(for example asymmetric load on transformers, rotating machines and increased neu-

tral current) do weaken network assets and cannot be neglected. The approach by

which UK customers are connected to the feeder increases the problem of phase

unbalance even more because the single phase allocation is performed arbitrarily.

Randomly assigning customers’ phases was intended to distribute load evenly across

all three phases which in theory should balance the three-phase network load. In

reality however this is not the case. Even in the unlikely event where the number of

customers per phase is the same the probability that all their loads match is very low.

Therefore, the probability that LV distribution feeders in the UK are unbalanced is

high.

Substation monitoring is capable of providing reliable three-phase power measure-

ments. Hence, they can be used as realistic key network parameters to calculate the

network’s phase unbalance. The American National Standards Institute’s (ANSI)

definition of Unbalance Factor (UF) is used to calculate the phase unbalance [198]:

56



UF(x) :=maxn |x ≠ xn|
x

where x = (xn)

and n œ Z>0

(3.6)

Here, x can be an arbitrary vector, consisting of scalar values xn (for example

xn is the voltage, current or power measurement per phase n). In this context xn is

chosen to be the power flow into one of the network’s phases. For clarity the notation

of x is used to define the mean of the given vector, i.e.:

x := 1
N

Nÿ

n

xi (3.7)

Substituting the three-phase substation power vector, sss(t) (where sss = (sss,„)),

for x, allows the formulation of another cost, i.e. the “unbalance” cost, ’unbalance(sss(t))

which is defined as:

’unbalance(s(t)) :=UF(s(t)) ≠ 1

=
max„

---s(t) ≠ s„(t)
---

s(t)
≠ 1

where „ œ {1, . . . �} and � œ Z>0

(3.8)

Since the lowest value of UF(x) is one, the corresponding cost function had to be

adjusted in order to reach a minimum value of zero instead. A sample illustration

that shows how this cost behaves as phase unbalance increases is included in the

Figure 3.4.

Here, it can be seen how ’unbalance(s(t)) rises with an increasing separation of the

three-phase power values. Additionally, to assess the e�ective utilisation of the power

distribution network deviation from a unity Power Factor (PF) is also formulated
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Figure 3.4: Sample network imbalance for di�erent phase loadings as defined in
ANSI/NEMA MG 1-2011

as a cost. PF is the ratio between active (p) and apparent power (s), and gives an

indication of how much “good” power is being consumed by the system3. Keeping

PF of a system close to unity indicates that it only requires active power to operate

which implies that it uses the lowest possible amount of power transmission resources.

In order to indicate the proximity to unity PF a corresponding cost, ’PF(sss(t)), is

used and which is defined as:

’PF(s(t)) := � ≠
�ÿ

„=1

Re(s„(t))
|s„(t)| where s(t) = (s„(t)) and � œ Z>0 (3.9)

Any deviation from a unity PF per phase increases the associated cost whilst

achieving a perfect PF for each phase results in a total cost of zero. In perfectly bal-

anced systems that operate at unity PF all three phases are 120¶ out of phase, and the

sum of their instantaneous powers should equate to zero. This zero-sum also indicates

that no neutral current is flowing in the system. However, in an unbalanced system

that operates at non-unity PF the power transmitted through the neutral conduc-

tor can significantly deviate from zero. The negative impact of transmitting current
3
Reactive power is used to maintain magnetic fields in rotating machines, yet this can be supplied

by local reactive power compensators and thus need not occupy otherwise free power transmission

resources.
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through the neutral conductor is further amplified since typical power distribution

cables often use neutral conductors with significantly smaller cross-section areas than

those used as line conductors. Results of any such additional current in the neutral

conductor are further deviation of neutral voltages from ground, increased losses and

quicker exhaustion of the neutral conductor’s power carrying capability (making the

system become more prone to failures). A somewhat unconventional approach is used

here, since neutral power is estimated instead of neutral current. The mechanism to

calculate this power flow in the neutral conductor is however identical to calculating

neural current. To address this last point a “neutral load” cost, ’neutral load(sss(t)), is

defined as follows:

’neutral load(s(t)) :=

------

�ÿ

„=1

s„(t)e
j2fi„

�

------
where s(t) = (s„(t)) and � œ Z>0 (3.10)

Equation 3.10, superimposes the three-phase network powers whilst rotating each

power vector by an integer multiple of 120¶ (i.e. e
j2fi„

3 where „ = {1, 2, 3}) in the

complex plane. In a perfectly balanced scenario the summation results in no neutral

power (i.e. a value of zero), but for an unbalanced network the magnitude value will

be greater than zero. Therefore this magnitude of the neutral’s apparent power vector

is computed which is then used as the resultant cost.

In comparison to the losses of the HV electricity networks, losses in the LV dis-

tribution network are comparably small. After all, a single LV feeder can distribute

up to 500kW of power, whilst HV networks transmit more than 60GW. Nonetheless

the aggregate e�ect of reducing those losses could have a noticeable impact on both

network e�ciency and maximising profit margins (after all, energy suppliers cannot

charge for undelivered energy). For example, in the high load scenario that was simu-

lated in in Section 3.2.1 distribution losses were calculated as 58kW. This equates to
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12% of the total network power, but losses would be noticeably lower during normal

network operation, for instance at a maximum of 5%. The rising proportion of losses

as uniform network load is continuously increased is shown in Figure 3.5.

Figure 3.5: Losses against increasing power demand

In Figure 3.5, the region where losses exceed 5% of the total network power is

highlighted in red. Whilst these losses are easily obtained from power flow simulations,

in reality distribution losses cannot be determined with such ease. Therefore, the

network losses, slosses(t), are seen as theoretical key network parameters and they are

used in the final power related cost, ’losses(s(t)), which is defined as follows:

’losses(s(t)) := |s(t)| (3.11)

3.2.3 Current related cost functions

Although voltage deviation and ine�cient network operation have been addressed,

physical network limits have not yet been taken into account: i.e. the current carrying

capabilities of the cables. Heat (i.e. losses that are caused by the line’s impedance)

deteriorates the cable over time. Therefore cables have an assigned thermal rating

which should not be exceeded in order to minimise permanent cable damage and

mitigate possible network failure. At substation level, fuses or reclosers are installed
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that will disconnect the network under fault or high current conditions to prevent over-

currents. To quantify whether the substation fuse is approaching its tripping point, its

nominal fuse rating, Ifuse, is used. For the context of this work, Ifuse, is a static value

which must not be exceeded. Using the three-phase current vector, iss(t) (obtained

via substation monitoring, where iss(t) = (iss,„(t))) a cost, ’fuse utilisation(iss(t)), is

formulated and defined as follows:

’fuse utilisation(i(t)) :=
Aq

�

„=1
i„(t)

Ifuse

B2

where „ œ {1, . . . , �} and � œ Z>0 (3.12)

In the Figure 3.6, a plot has been included to illustrate how this quadratic cost

behaves as substation current increases. For this simple case the substation line rating

was set as ifuse = 400A and the total substation current is the sum of all three phase

currents. The red area indicates the region where current exceeds the fuse’s nominal

rating.

Figure 3.6: Cost of line or fuse utilisation against network current

In addition to the currents flowing through the substation’s fuse, currents flowing

through all lines in the network are also considered. Just like voltage levels at each

customer, line currents are also seen as theoretical key network parameters since

they cannot easily be obtained. Generally as the distance to the substation increases
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fewer “down stream” customers are connected to a radially expanding feeder and

therefore cables can be scaled down (for example to save cost). However with the

expected uptake of LCTs, feeders are expected to deliver increasingly larger currents

throughout all lines. For smaller lines at the network edge these currents can increase

to a magnitude larger than their nominal ratings. Therefore the fuse current cost is

expanded to take into account all line currents, iline,l,„(t), and their nominal ratings,

Inom,l. Here l represents the line number and „ the phase of that line. Collecting

them in iline(t) (where iline(t) = (iline,l,„(t))) allows the formulation of an extended

line utilisation cost, ’line utilisation(iline(t)), which is defined as follows:

’line utilisation(i(t)) := max
l

AqP
„=1

il,„(t)
Inom,l

B2

where l œ {1, . . . , L} and „ œ {1, . . . , �} and L œ Z>0 and � œ Z>0

(3.13)

Similar to Equation 3.5, this cost function only considers the maximum line util-

isation in order to reduce computational burden without decreasing any parameter

sensitivity.

3.3 Data, models and storage scheduling

In this section the used power data is presented first. Then the network model from

which all aforementioned key network parameters are extracted and the battery model

are explained. In the end the ESMU scheduling procedure is detailed.

3.3.1 Load profiles

Alongside the LV Test Case model the IEEE published 100 minutely demand profiles;

each profile lasting 24h. Therefore by assigning one load profile to each customer a

series of 1440 snapshot simulations could be run in OpenDSS in order to simulate the
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variation and volatility in demand over the entire day. A standardised power factor

of 0.95 was used for all loads to calculate their reactive component. The apparent

network power, snet(t), is therefore defined for each time-step, t, as the aggregate of

all load apparent powers, sload(t):

snet(t) :=
Iÿ

i=1

sload,i(t) where I œ ZØ0 (3.14)

However, this demand profile does not take into account the distribution losses

since they are only known after performing the power flow simulations. Nonetheless,

it functions as a simple time-series to schedule ESMU operation which is detailed in

Section 3.3.4.

3.3.2 Network model

The IEEE Power and Energy Society (IEEE-PES) provides several multi-node test

cases. These test cases used to be limited to distribution networks in the United

States. In 2015 however, they published a standardised model of a LV distribution

network for the UK power network. This model is called the “European Low Voltage

Test Feeder” [4]. Within the context of the work in this thesis, this feeder is referred

to as the “LV Test Case” and a network plot of this feeder has been included for

reference.

A substation (triangle in north west) provides power to the feeder and the power

magnitude is visualised by the thickness of the feeder’s lines. In total there are 55

single-phase households connected to the substation which represents a medium-sized

and unbalanced UK feeder.
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Figure 3.7: A power flow plot of the IEEE-PES European Test Case Feeder, i.e. a
LV distribution network in the UK [4].
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3.3.3 Battery model

The ESMU systems that were deployed throughout the NTVV project consisted of two

parts: the Power Management Unit (PMU) and the Energy Storage Unit (ESU). The

PMU controls three-phase powers and links the ESU to the grid. Each PMU’s single-

phase power rating, Srating, is 12kVA and can also perform filtering functions beside

battery charging and discharging (for example to compensate for harmonic distortion,

reactive power and phase unbalance). The ESU is a modular container of 12.5kWh of

Li-Ion energy storage that can be concatenated to increase the total energy storage

capacity. All battery monitoring, conditioning and regulation is performed within

the ESU and hence lies outside the scope of this work. However, control instructions

that are sent to the ESMU system should not request the device to operate outside

its own specifications (i.e. avoid under- or over-charge).

In order to simulate this constrained ESMU system and its energy storing be-

haviour, in this section, Section 3.3.3, an energy model is developed from the given de-

vice specifications. This model includes an charge-discharge e�ciency, ÷, and standby

losses, µ. ÷ is related to the e�ciency of the PMU’s power converters, which are

quoted to have a round trip e�ciency of 98% (i.e. ÷ = 0.98) yet the whole range is

÷ œ [0, 1]. µ on the other hand (where µ œ [0, 1]) is linked to the nominal power drawn

by the battery’s control system as well as the battery’s self-discharge rate. With the

charge-discharge e�ciency, ÷, the battery charge-discharge power, pbat(t), can be cal-

culated for any given ESMU power, sESMU(t) (where sESMU(t) = (sESMU,„(t))).

pbat(t) :=

Y
___]

___[

÷Re
Óq

�

„=1
sESMU,„(t)

Ô
if Re

Óq
�

„=1
sESMU,„(t)

Ô
Ø 0

1

÷ Re
Óq

�

„=1
sESMU,„(t)

Ô
otherwise

where „ œ {1, . . . , �} and � œ Z>0

(3.15)
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Although the ESMU’s PSU rating, Srating, allows for a maximum power consump-

tion of 36kVA (i.e. = 3◊12kVA) the charging power is internally limited by a charging

factor, Cf . This factor is the ratio between the battery’s maximum discharge power

and its total capacity (i.e. maxt(pbat(t)) Æ Cf · Cbat). In accordance to the ESMU’s

specification, Cf was set to 1.6. With those restrictions in mind a charge-discharge

power can be applied to charge or discharge the battery. Assuming that this power

remains constant during a predefined sample period, �t, then the change in stored

energy can be defined as follows.

�Ebat(t) = pbat(t)�t (3.16)

The battery’s dynamics can therefore be modelled as the change in energy level

from time t to time t+�t. Taking into account the standby losses, µ, the next energy

level Ebat(t + �t) is defined as:

Ebat(t + �t) := µ (�Ebat(t) + Ebat(t)) (3.17)

In an ideal case where µ = 1 no energy would be lost in the storage system.

However, to model energy storage dynamics it became common practice to assess

the energy storage’s charge level as the State of Charge (SOC) instead of using the

actually stored energy level. This SOC is defined as the actual energy stored in the

ESU, Ebat(t), divided by the total capacity of the system, Cbat. i.e.:

SOC(t) := Ebat(t)
Cbat

(3.18)

Similar to the energy dynamics the SOC dynamics can therefore be defined as:

SOC(t + �t) := µ

A
pbat(t)�t

Cbat

+ SOC(t)
B

(3.19)
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When summarising ŝESMU(t) = Re
Óq

�

„=1
sESMU,„(t)

Ô
and combining Equation 3.15

with Equation 3.19, then the battery model’s full dynamics can be defined as:

SOC(t + �t) :=

Y
___]

___[

µ

1
÷ŝESMU(t)�t

Cbat
+ SOC(t)

2
if ŝESMU(t) Ø 0

µ

1
ŝESMU(t)�t

÷Cbat
+ SOC(t)

2
otherwise

(3.20)

A flowchart to visually represent the developed battery model, is included in

Figure 3.8. In this figure all green and blue fields indicate, respectively, model inputs

and results. The white states represent operations that are applied to those inputs

and results. The flowchart’s output is marked as the yellow field.

sESMU(t) charging

÷

1

÷

pbat(t) �t

�Ebat(t)

+Ebat(t)CbatSOC(t)

µ�tEbat(t + �t)1

Cbat
SOC(t + �t)

yes

no

Figure 3.8: Flowchart to calculate the next SOC (i.e. SOC(t+�t)) based on current
ESMU power (i.e. sESMU(t) which is predefined) and current SOC (i.e. SOC(t) which
is predefined).
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3.3.4 ESMU scheduling

Computing the ESMU’s daily schedule at the dataset’s temporal resolution (i.e. sub-

half-hourly) is ine�ective and slow because demand variability due to behavioural

unpredictability makes forecasting at high temporal resolution unfeasible. In addi-

tion the large number of search parameters makes finding a solutions very compu-

tationally demanding. Therefore forecasting and scheduling is generally performed

at half-hourly temporal resolution. To obtain such a half-hourly profile the sub-

half-hourly profile had to be down-sampled and synchronised. This is done with the

synchronisation function k(t) which links the original sub-half-hourly demand to a

half-hourly time-series and is defined as follows:

k(t) :=
7

t ≠ 1
K�t

8
+ 1 (3.21)

Here, t is the same positive integer as before to indicate time in minutes, �t is

the sub-half-hourly sampling period of the simulation at minutely time intervals (i.e.

1 minute in this case) and K is the number of the half-hourly time-slot (or number

of sub-half-hourly periods) within the half-hourly slot (i.e. 30 slots per minute in

this case). It is worth mentioning that the minutely sampling period �t currently

equates to one, yet for flexibility of this equation (for instance when using seconds as

a base unit) it remains included. It should be noted that the integer multiple of K

has to equate to the scheduling horizon’s length, Tsch; i.e. a := K
Tsch

where a œ Z>0.

Otherwise the sub-half-hourly profile cannot be divided into a set of equal length

time-slots where each time-slot is of length K�t. Therefore the resulting half-hourly

network load, s
ú
net

(t) (where s
ú
net

= (sú
net

(t))) is defined as follows:
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s
ú
net

(t) = 1
K

—(t)ÿ

·=–(t)

snet(·) where K œ Z>0

where –(t) := k(t)K and —(t) := (k(t) + 1)K ≠ 1

(3.22)

Now, over the period from –(t) to —(t), power values are equal. To illustrate

the di�erence between the original sub-half-hourly network load and the resulting

half-hourly demand, both profiles are plotted in Figure 3.9. In this figure it can be

observed how the high variability and volatility in power is removed in the half-hourly

profile. When generating ESMU schedules these variations are neglected and thus the

unwanted peak power demands cannot be su�ciently compensated.

Figure 3.9: Highly variable and volatile demand profile vs half-hourly demand (i.e. a
forecast under perfect foresight conditions)

The main goals when scheduling battery operation are to achieve “valley-filling”

and “peak-shaving” behaviour. As shown in the literature review in Chapter 2,

the Peak-to-Average Ratio (PAR), the min-max-di�erence (MMD) and the power

transients (TRA) are good indicators of such a behaviour. Therefore three half-

hourly costs regarding are used as, ’PAR(sú
ESMU

+ s
ú
net

), ’MMD(sú
ESMU

+ s
ú
net

), and

’TRA(sú
ESMU

+ s
ú
net

) are defined as follows:
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’PAR(s) := maxt |s|
1

K

qa
t=1

s(t) ≠ 1 where s = (s(t)) (3.23)

’MMD(s) := maxt (s) ≠ mint (s)
1

K

qa
t=1

s(t) where s = (s(t)) (3.24)

’TRA(s) := max
t

|s(t + �t) ≠ s(t)| where s = (s(t)) (3.25)

The half-hourly cost in Equation 3.23 computes the ratio between the maximum

network power and the mean network power. One is subtracted from the original

PAR function to normalise this value with a minimum value of zero. Equation 3.24

returns the di�erence between the largest and smallest network power and Equa-

tion 3.25 computes the change in network power over time. All three costs functions

assess the sum of the half-hourly ESMU schedule, s
ú
ESMU

, and the half-hourly network

load profile, s
ú
net

, and when they reach a value of zero then a perfectly flat profile (i.e.

valley-filled and peak-shaved) is obtained. Combined with all underlying model con-

straints, the following minimisation problem is defined to aim and obtain such a flat

power profile:

min
sú

ESMU
{’PAR(sú

ESMU
+ s

ú
net

) + ’MMD(sú
ESMU

+ s
ú
net

) + ’TRA(sú
ESMU

+ s
ú
net

)}

s.t.

Y
________]

________[

pbat(t) Æ Cf ◊ Cbat

|sESMU,„(t)| Æ Srating’„

0 Æ SOC(t) Æ 1

(3.26)

To solve this minimisation problem, a Sequential Quadratic Programming (SQP)

approach was chosen. The resulting half-hourly ESMU power, s
ú
ESMU

, could then be

extrapolated using the same synchronisation function, k(t), to yield a sub-half-hourly
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ESMU schedule.

For the work presented in this chapter the supplied half-hourly network load (or

forecast) was obtained from sub-half-hourly data. Treating it as a forecast with

perfect foresight does not skew the already imperfect schedule performance which is

obtained when applying the resulting half-hourly schedule to sub-half-hourly load.

Figure 3.10 shows a sample day where the impact of this half-hourly ESMU schedule

becomes apparent.

(a) Half-hourly ESMU power impact (�S = 9.46kW )

(b) Sub-half-hourly ESMU power impact (�S = 6.36kW )

Figure 3.10: Impact of half-hourly ESMU schedule on sub-half-hourly power profile

This figure shows the positive impact on the half-hourly profile (i.e. in Fig-

ure 3.10a) which is particularly dominant during the evening peak load. However,

the impact on the actual sub-half-hourly demand (i.e. in Figure 3.10b) has a much
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larger demand spike during the morning hours which is not that strongly addressed.

When compared, the ideal peak power shaving dropped from 9.46kW to only 6.36kW.

Nonetheless, the overall improvement yielded by the ESMU schedule can still be no-

ticed. The method of how to adjust the ESMU’s phase powers to mitigate the impact

of such volatile load spikes is addressed in the following section.

3.4 Optimisation method

Previously, in Section 3.2, the key network parameters and associated cost functions

have been established, and the data, models and schedule generation is explained in

Section 3.3. A summary of all key network parameters that are used in this work is

listed below, but the full notation is defined in the nomenclature of this thesis:

• substation phase voltages, vss(t) = (vss,„(t)) where vss(t) œ R�,

• ESMU phase voltages, vESMU(t) = (vESMU,„(t)) where vESMU(t) œ C�,

• all load voltages, Cload(t) = (vload,i,„(t)) where Vload(t) œ CI◊�,

• substation apparent phase power, sss(t) = (sss,„(t)) where sss(t) œ C�,

• substation phase currents, iss(t) = (iss,„(t)) where iss(t) œ R�,

• all line currents, Iline(t) = (iline,l,„(t)) where Iline(t) œ RL◊�, and

• all network losses, slosses(t) where slosses(t) œ C.

In this section, the method of adjusting the predetermined ESMU schedule on

a sub-half-hourly basis is presented. This method is designed to improve network

performance which in turn is indicated by the aforementioned key network param-

eters. After detailing the method itself the generation and assessment of all results

are explained.
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3.4.1 Closed-loop schedule adjustment

A global cost function is generated to summarise and combine all eight costs that were

derived from the key network parameters, and that were defined in Equations 3.1,

3.5, 3.8, 3.9, 3.10, 3.11, 3.12, and 3.13. This cost function is defined as follows:

’(vss(t), vESMU(t), vload(t), sss(t), iss(t), iline(t), slosses(t), –) :=

–1

�ÿ

„=1

’voltage(vss,„(t)) + –2

�ÿ

„=1

’voltage(vESMU,„(t)) + –3’load voltage(vload(t))

+ –4’unbalance(sss(t)) + –5’PF(sss(t)) + –6’neutral load(sss(t))

+ –7’fuse utilisation(iss(t)) + –8’line utilisation(iline(t)) + –9’losses(slosses(t))

where „ œ {1, . . . , �} and � œ Z>0

and – = {–1, . . . , –9} and –n œ {0, 1} (3.27)

Here, – is a binary choice vector with which the weight of the global cost function

can easily be adjusted. In other words, this vector allows the global cost to target

any specific key network improvement which is based on a specific cost. To simplify

the notation, and since all key network parameters are outputs of the power flow

simulations and not directly adjustable, the global cost function is shortened to ’(–).

The underlying method that performs the proposed closed-loop optimisation is

shown in Figure 3.11. For each time-slot, t, the pre-scheduled ESMU power vector,

sESMU(t), is extracted and adjusted by an o�set vector, ”sESMU(t). An optimal o�set

vector is found through iterative optimisation to minimise the global cost function,

’(–). This minimisation is achieved by repetitively running power flow simulations

of the IEEE distribution feeder and adjusting ”sESMU(t). Once the adjusted ESMU

schedule (i.e. sESMU(t) + ”sESMU(t)) has converged and a solution has been found,

then the closed-loop optimisation process terminates and the simulation begins op-
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Closed-Loop Optimisation

SimulationSimulation

Cost FunctionCost Function OptimiserOptimiser

+
ModelModel

Output

key parameters

’(–)

”sESMU(t)

sESMU(t) + ”sESMU(t) sESMU(t)

constraints

Figure 3.11: ESMU schedule adjustment flow diagram

timising the next time slot (i.e. t + �t). One additional constraint is defined since

”sESMU(t) must not impact the underlying half-hourly ESMU schedule. This con-

straint assures that the sum of all phase powers in the adjustment vector equates

to zero; hence keeping the internal battery’s charging-discharge power the same. In-

cluding the previously mentioned battery system constraints which ensure that the

ESMU operates within its technical limitations, the minimisation problem for the

closed-loop optimisation mechanism is formulated as follows:

min
”sESMU(t)

’(–) s.t.

Y
_____________]

_____________[

q
�

„=1
Re (sESMU,„(t)) = 0

pbat(t) Æ Cf ◊ Cbat

|sESMU,„(t)| Æ Srating’„

0 Æ SOC(t) Æ 1

where sESMU(t) = (sESMU,„(t)) and � œ Z>0

(3.28)
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3.4.2 Execution and result assessment procedure

Being able to focus the global cost function in Equation 3.27 on improving a particular

key network parameter by adjusting the binary choice vector –, and after having es-

tablished how the closed-loop optimising method aims to achieve these improvements,

the performance assessment procedure is introduced. The complete evaluation pro-

cedure and assessment is summarised in Figure 3.12.

Power Profiles Battery Model

In
pu

t
D

at
a

Closed-Loop Optimisation MethodNormal SimulationBase Simulation
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’(–2 = 1)

’(–5 = 1)

’(–4 = 1)

’(–7 = 1)

’(–6 = 1)

’(–9 = 1)

’(–8 = 1)R
es
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ts
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D

at
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s
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’(–1 = 1) assessment

’(–2 = 1) assessment

’(–3 = 1) assessment

’(–4 = 1) assessment

’(–5 = 1) assessment

’(–6 = 1) assessment

’(–7 = 1) assessment

’(–8 = 1) assessment

’(–9 = 1) assessment

Data Assessments
Each assessment compares

all nine cost-functions

Figure 3.12: Method execution and results assessment flowchart

75



Since the global cost function can be focused in nine distinct ways using –, eleven

datasets of simulation results can be assessed and compared. These additional two

results are obtained from a base simulation and a normal simulation (and nine cost

driven i.e. optimisation simulations). For the base simulation the outcome is gen-

erated by applying just the daily power profiles without any ESMU intervention.

Therefore this case represents the baseline of network performance which should be

improved by any ESMU intervention. The normal simulation is the simplest of all

ESMU interventions since the ESMU executes its normal (or traditional) half-hourly

schedule without any additional modifications. Comparing results from the base and

normal simulations will show the direct impact of the traditional ESMU operation on

network performance. The remaining nine datasets are results of the nine di�erent

cost driven simulations where the ESMU schedule is adjusted on a sub-half-hourly

level for each simulation. This adjustment is designed to minimise one underlying

cost-function, whilst conforming to the ESMU’s overall half-hourly charging and dis-

charging profile. In order to treat each cost-function separately – is set to focus on

each cost independently, for example by setting –1 = 1 and –2 = –3 = · · · = –9 = 0.

For simplicity the flowchart in Figure 3.12 abbreviates the specific cost choice by only

indicating which entry in the – vector is set to 1, for example ’(–1 = 1).

Once all eleven simulations have completed their corresponding datasets are as-

sessed in an identical manner so that their impact on network performance can be

compared. This comparison is broken into three parts for all dataset:

1. Time Series Analysis - The underlying profiles are plotted and compared

against their respective counterpart cases in order to link the immediate network

impacts to their physical meaning. Here the used performance metric is the

cost that is calculated from the simulation specific cost function. For the same

profiles their corresponding cost profiles are calculated and plotted in the results

section. This is done to highlight how the profiles are interpreted by the cost-
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functions in terms of improvement (i.e. lower cost) or worsening (i.e. increased

cost).

2. Di�erence Analysis - The di�erence in cost profiles compared to the respec-

tive base or normal case is calculated and boxplots of these di�erences are

presented in the results section to show the statistical spread of improvements

or worsening. For these plots a generally positive boxplot indicates a general

improvement of the underlying network parameters whilst a generally negative

boxplot does indicate worse performance in regards to the underlying network

parameters.

3. Probability Density Analysis - A set of Probability Density Functions (PDF)

is derived for each cost profile using the well established and standardised ker-

nel density estimation. These PDFs indicate the probability that a certain

cost value occurs. An improvement is noted when the PDF is shifted towards

the lower cost values, whereas a shift towards higher cost values worsened the

network performance.

The above cost function is however limited to target each individual cost separately

since – is a binary choice vector. As discussed in the future work in Chapter 7.4 a

multi-objective problem is considered as a next step where costs are weighted against

each other. After all, the di�erence of importance of each cost that DNOs care about

can then be reflected accordingly.

3.5 Results and Discussion

In this section all results are presented and discussed. Each of the three assessments

in this section focuses on improvements in voltage level, improvements in network

e�ciency (i.e. power quality and network losses) and improvements in resource utili-

sation. Hence only a subset of all relevant results is included in each subsection, but
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the complete set of results has been appended to this Thesis in Appendix A.1. Data

is used and collected in this section as per Section 3.3.1.

3.5.1 Time Series Analysis

The ESMU’s largest impact on network voltage levels can be noticed at the ESMU’s

PCC. Consequently any adjustments to the ESMU powers should become noticeable.

This impact can clearly be observed in Figure 3.13.

(a) Voltage levels at ESMU’s PCC when minimising its voltage deviation (nominal substation

voltage is 252V)

(b) Cost associated with the minimisation of the ESMU’s PCC voltage deviation

Figure 3.13: Voltage level modifications as noted at the ESMU’s PCC by adjusting
its schedule

In this figure the base and normal case’s voltage profiles are plotted alongside
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the minimisation case for which voltage deviation is minimised. The plot shows that

during the night’s light load (i.e. from 0:00 to 6:00) ESMU was able to boost its

voltage towards the nominal feeder voltage. This is also the case during the lighter

load in the afternoon (i.e. between 12:00-14:00). But during the rest of the day

when network load increases, the ESMU is unable to reduce voltage deviation to

match its PCC voltage with the network’s nominal substation voltage. The reason

behind this behaviour is that the ESMU has allocated its resources to serve for the

underlying half-hourly ESMU schedule. Therefore the remaining resources that could

provide voltage support during periods of low demand become limited during periods

of high demand. Combined with the fact that the LV distribution networks are more

resistive than inductive (i.e. unlike HV transmission networks), adjustments using

the ESMU’s reactive powers to stabilise voltage levels has an even smaller impact.

Nonetheless, due to some continuous yet small availability of power resource ESMU

is able to boost voltages to some extent at all times. In Figure 3.13b this can be

seen since the associated cost has always been reduced in comparison to the base and

normal cases.

The ability to support voltage levels at the ESMU’s PCC is interesting, yet sup-

porting voltage levels at all buses throughout the network is more relevant since some

of these buses are linked to customers for which it is essential to maintain a constant

voltage level. Therefore, the following results assess both the highest and lowest

voltage level that is recorded throughout the network.

In Figure 3.14a, despite no voltage violations taking place due to the already

boosted substation voltage, the ESMU’s positive impact can be observed. Here the

di�erence between highest and lowest bus voltage of the network is indicated by two

lines of the same colour. It is this di�erence that is noticeably reduced and their

average voltage is brought closer to a nominal voltage level. The ESMU’s function to

support the network in providing more stable voltage levels at customer endpoints is

79



(a) Highest and lowest voltage levels that were recorded throughout the network when min-

imising the worst voltage deviation (nominal substation voltage is 252V)

(b) Cost associated with the worst voltage deviation throughout the entire network

Figure 3.14: Voltage level improvements at all buses in the entire distribution network
due to the ESMU schedule adjustment.
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therefore met. This fact is also supported by the associated cost plot in Figure 3.14b

where a reduction in cost can be observed throughout the entire simulated day.

(a) Network’s highest and lowest phase power demand when phase unbalance was minimised

(b) Cost associated with the network’s phase unbalance

Figure 3.15: Reduction of the network’s phase unbalance due to the adjustment of
the ESMU schedule.

Beside providing stable voltage levels, power quality should also be upheld to

assure that distribution networks operate as e�cient as possible. The first power re-

lated parameter that indicates network e�ciency is phase unbalance. In Figure 3.15a

the power value of the highest and lowest loaded corresponding phases is plotted over

time. At all times the sub-half-hourly adjustments of the ESMU’s schedule did reduce

the underlying phase imbalance. This was achieved by redistributing power from the

most loaded phase to the least loaded phases; hence utilising the unused capacity
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of the lighter loaded phases. As expected, the associated cost has been noticeably

lowered in comparison to the base and normal cases. It should however be noted

that phase balancing during the morning hours is predominantly achieved by using

reactive power injection and absorption. This can be seen by the similar yet increased

phase loadings between 0:00 and 7:00. Therefore the tradeo� between adding addi-

tional strain onto the network versus balancing phases has to be taken into account.

One such strain that is being put onto the network is increased neutral power flow

due to phasor misalignment.

Figure 3.16: Neutral power reduction due to the ESMU schedule adjustments

For the results that are plotted in Figure 3.16, neutral power flow is minimised

through the adjustment of ESMU powers. It can be seen that for the normal case

neutral power is not a�ected at all. Reason for this result is the choice of evenly

assigning the scheduled ESMU power to all three phases. Therefore neither phase

unbalance nor loading of the neutral conductor is being taken into account. For the

minimisation case however, loading of the neutral conductor is successfully reduced

in comparison to both the normal and base case.

Unlike neutral phase unbalance and neutral loading, power factor on the other

hand is impacted just by introducing the half-hourly ESMU schedule as shown in

Figure 3.17. Whilst the choice of a static power factor for all loads in the base case
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Figure 3.17: Power factor cost improvements due to the adjustment of the ESMU
schedule

resulted in a constant power throughout the day, half-hourly ESMU intervention

in the normal case results in a noticeable power factor variation. This variation is

however successfully reduced throughout the entire day for the minimisation case in

comparison to the normal case.

Figure 3.18: Instantaneous losses of the distribution network when adjusting the
ESMU schedule in order to reduce the former (energy lost: 4.55kWh for base; 4.47kWh
for normal; 4.19kWh for minimised).

The final parameter that indicates system e�ciency are the distribution losses.

Figure 3.18 shows the reduction in distribution losses that were achieved when ad-

justing the ESMU powers accordingly. In fact, when compared to the base case, the

normal case lead to a daily energy saving of 0.07kWh. The minimised case however
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reduced daily losses by 0.36kWh. This equates to more than five times the energy

saving achieved, simply by adjusting the ESMU’s power injection and absorption

behaviour. Although this amount of energy seems negligibly small these saving can

amount to a noticeable level of savings on a national scale which can potentially ben-

efit the entire power network. Nonetheless, measuring losses is di�cult and costly

which is why attempting to do so will likely outweigh the benefits that are shown

above.

Instead, a better way of relieving stress from the power network is to minimise its

assets utilisation by mitigating demand spikes that were taken into account in Equa-

tion 3.26. However, since the ESMU was constraint to not deviate from its underlying

half-hourly schedule only phase related demand di�erences can be addressed and the

impact of correcting those phase di�erences is barely noticeable. This limitation can

be seen in Figure 3.19.

Figure 3.19: Improvement of the worst line utilisation across the entire network when
adjusting the ESMU schedule correspondingly.

Whilst the normal case noticeably lowered some of the daily demand, power spikes

after for example 9pm were not addressed at all. Even the minimisation case could

barely reduce those spikes due to the constraining half-hourly schedule. Nonetheless,

throughout the entire day ESMU was still able to reduce line utilisation at the sub-

station level; despite those improvements being relatively small in comparison to the
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impact in the normal case.

3.5.2 Di�erence Analysis

In order to gage whether the sub-half-hourly ESMU power adjustment results in a

statistical di�erence in network performance, a box-plot was generated to compare

each minimisation with the corresponding normal case. Hence, the underlying data

for each box-plot represents the di�erence between the minimisation case’s costs

and the normal case’s costs, i.e. when operating without adjusting ESMU powers.

Therefore any positive di�erence in cost indicates an improvement to the system’s

performance whilst a negative di�erence would imply a worsening. All cases are

compared and plotted in Figure 3.20, and the complete set of box-plots (i.e. showing

the “cross-cost di�erence”) is included in Appendix A.1.2. On each of these box-

plots, the central red mark indicates the median, and the bottom and top edges of

the blue box indicate the 25th and 75th percentiles, respectively. The whiskers extend

to the most extreme data points not considered outliers, and the outliers are plotted

individually using the red ’+’ symbol. In Figure 3.20 an individual axis, scaled at

10:1, is used for indicating the cost of neutral power to better visualise its distribution.

This figure shows the how the reduction in cost (defined in Equation 3.27) is dis-

tributed. In this case the cost reduction (i.e. ≠”’(–)) is the change in cost from the

normal ESMU operation case to minimisation operation cases, for “phase unbalance”

”’(–) = ’(–1 = 1) ≠ ’(–6 = 1)). Due to the di�erent scales however, the improve-

ments are di�cult to observe. Therefore, this cost reduction has been normalised in

regards to the normal ESMU operation case and is replotted in Figure 3.21.

In this figure it can be seen that the most significant cost related impact on the

network is yielded when improving voltage deviation, phase unbalance and power

factor costs. Reason for this noticeably larger impact is due to ESMU being able to

assign its scheduled active power to all three phases in an optimal manner as long
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Figure 3.20: Cost improvement spread, when comparing against the normal ESMU
operation case and when optimising for the underlying cost (a separate y-axis is
introduced for the optimisation of “neutral power”).
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Figure 3.21: Relative cost improvement spread, when comparing against the normal
ESMU operation case and when optimising for the underlying cost.

as the predetermined half-hourly schedule is obeyed. It is this obedience constraint

that limits the extend by which all other key network parameters can be impacted.

Reactive power on the other hand is only indirectly constrained by the ESMU sched-

ule. The only limit that applies to the ESMU’s reactive power injection capabilities is

the remaining PMU capacity after committing to the scheduled active power. Also,

unlike active power, reactive power has a smaller impact on the LV network due to its

physical property (i.e. being more resistive than inductive). Nonetheless, when each

key network parameters became subject to their corresponding cost minimisation all

of them were impacted positively.

In addition to the box-plots, the cost improvements (whose box-plots are presented

in the Appendix A.1.2), are calculated and tabulated in Table 3.1. This table shows

the cumulative di�erence in ≠”’(–) between the normal case and the minimisation

case, i.e. where ”’(–) = ’(–1 = 1) ≠ ’(–2 = 1). However, instead of only presenting

the cost reduction that is yielded when minimising it this table also includes all other
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resulting costs, i.e. the daily aggregated cost to be precise. This value is defined as the

“cumulative cost di�erence”, i.e. q
t ”’(–). In addition to the comparison between

minimisation and normal cases, the normal case is compared to the base case for

reference. For convenience all positive cost reductions (i.e. network improvements)

have been highlighted.

As expected all entries along the diagonal are positive in cross-cost di�erence, i.e.

where the evaluated cost is also the cost that was minimised. But beside this fact

one can also observe which cost minimisation has an impact on di�erent costs. For

example, adjusting the ESMU schedule to achieve the largest reduction in distribu-

tion losses (i.e. far right column) improves nearly all key network parameters apart

from substation voltage deviation. Furthermore, Table 3.1 indicates that reducing

battery voltage deviation, maximum voltage deviation, phase unbalance and neutral

power (respectively, columns 3, 4, 5 and 6) have a noticeable impact on each other.

Minimising any of these four costs does however not impact power factor, loading and

losses (apart from reducing battery voltage deviation).

Although the impact on network improvements for some costs is easily determined

and explained with the underlying physical properties of distribution systems, other

impacts of minimising cost do not share this transparency. For example, minimising

power factor (column 7) has a greater impact on reducing line loadings than directly

minimising substation or maximum line loading (column 8 and 9, respectively). The

reason behind this e�ect is due to instantaneous apparent power contributing to

the line current. This means that maximising the network’s power factor minimises

reactive load which in turn lowers the total line current. Since the solving algorithm

does not know which cost to minimise first, the task of finding a global minimum

becomes more di�cult. To improve the performance of adjusting ESMU powers one

could propose to concatenate several cost minimisation procedures in a sequential

series. Doing so would focus the search for global minima for each iteration of the
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sequence, yet this lies outside the scope of this Thesis and can be continued in future

research.

3.5.3 Probability Density Analysis

The final part of analysing the results is to determine whether the cumulative cross-

cost di�erences are statistically significant. To do so, the probability density functions

(PDF) of the cross-cost di�erences is analysed using a null hypothesis test. The

underlying data is conditioned in order to meet all prerequisites that are necessary

to perform the null hypothesis test, like the standard t-test. These prerequisites

include stationarity, low auto-correlation and high gaussianity of the underlying time-

series. The procedure to meet these prerequisites is carried out without falsifying the

data which means that all applied conditioning operations were restricted to time-

series division and linear transformation. Details on the exact data conditioning

steps are outside the scope of this chapter, but for completeness they are included in

Appendix A.1.3.

Table 3.2 presents the results from this analysis, where p-values have been tabu-

lated and those cells with a value below 0.05 have been highlighted. A similar pattern

to that in the previous table can be seen (i.e. Table 3.1). In this table however, in-

stead of just comparing cross-cost reductions, statistical indications to support the

significance of the findings is presented. In combination with the preceding table one

can therefore determine that the impact of optimising operation based on maximum

voltage deviation has little to no significant impact on improvements in power factor

whilst adjusting ESMU powers to improve the network’s power factor has the most

significant statistical impact on the chosen key network parameters.
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3.6 Summary

In this chapter, a method to adjust three-phase ESMU powers on a sub-half-hourly

basis to support network operation whilst following a pre-determined half-hourly

schedule is proposed and tested. The ESMU schedule is tailored to result in a “peak-

shaving” and “valley-filling” behaviour and uses a realistic ESMU model to meet any

operational constraints. A set of key network parameters to indicate the performance

of the network was used for the development of a corresponding set of cost functions.

By adjusting the ESMU’s active and reactive powers, each cost could be minimised

and therefore network operation was improved.

Results therefore indicate that when explicitly focusing on the improvement of

certain key network parameters then the derived cost reduces for every single case.

The scale by which the cost was reduced and network performance was improved

became apparent for the time-series assessments in Section 3.5.1 since 5kWh of energy

was saved (instead of only 1.2kWh) when explicitly focusing on reducing the cost that

is tied to distribution losses. It was found that during periods of low demand and low

ESMU powers (i.e. before 7am), reactive power injection provided the largest benefits.

Active power that is dictated by the underlying ESMU schedule did however provide

peak reduction and thermal constraint functions for the remaining time of the day

(i.e. after 7am). Nonetheless, any cost minimisation always had an e�ect on di�erent

costs since loss minimisation positively impacted nearly all other costs.

Using cumulative cross-cost di�erences in Section 3.5.2 it was shown that a net

cost reduction was achieved simply by implementing the proposed ESMU power ad-

justment method on top of the normal execution of a half-hourly schedule. Although

the amount by which di�erent costs reduce is not as large as the amount for the cost

that was presently focused on, all costs did experience some kind of cross-cost impact.

For example, when optimising for distribution losses then substation voltages, power

factor, line loadings and the ESMU’s voltages were also improved. Since the units
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of this assessment were however cost specific, a true assessment of the correlation

between costs could be performed.

Therefore, Section 3.5.3 focused on the statistical sensitivity of the cost reduction

to attempt such an assessment. Using the two-paired t-test the aforementioned fact

that costs do indeed impact each other is supported. Hence there is strong evidence

(i.e. p Æ 0.05) that those power adjustments do have a positive impact on the

distribution network’s operation. The strength of this impact can be used when trying

to impact theoretical key network parameters in reality (i.e. when only realistic key

network parameters can be observed). From these lessons learnt one can conclude

that the first objective of this thesis which is outlined in Section 1.2 has been met.

The main limitation of the proposed method is however the battery’s half-hourly

schedule. It dictates the active power that has to be injected into or absorbed from

the distribution network. Also, this schedule inadvertently dictates the remaining

overhead in reactive power that can compensated on each phase. Therefore, the next

chapter in this thesis presents a method of dynamically adjusting this scheduled power

profile in real-time without violating any physical constraints.
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Chapter 4

Real-Time Adjustment of Battery

Operation using MPC Guided

Schedule Deviation

4.1 Overview

In the preceding chapter, Chapter 3, an Energy Storage Management Unit (ESMU)

is used to improve network operation. This improvement is achieved by optimally

adjusting the device’s scheduled three-phase powers at sub-half-hourly resolution.

Any improvement is indicated by a cost reduction where the underlying cost functions

are tied to changes in key network parameters. The extent to which ESMU is able

to improve network operation was then shown by focusing on the minimisation of

di�erent cost functions and repetitively optimising and simulating the distribution

network. However, this network improvement was limited by the constraint of having

to obey the underlying half-hourly ESMU schedule despite applying adjustments at

a sub-half-hourly level.

In this chapter, research Objective 2 is addressed (i.e. to develop a control
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method that dynamically adjusts half-hourly BESS schedules on a sub-half-hourly

basis in order to reduce daily load peaks by combining control elements from both

o�-line and on-line control; this was outlined in Section 1.2) by removing these limit-

ing constraint and proposing a corresponding sub-half-hourly ESMU schedule adjust-

ment method. This method unifies the benefits from sub-half-hourly demand mea-

surements and half-hourly demand forecasts. Unlike previous work in the field, the

proposed approach reverses the traditional control paradigm to compensate for sched-

ule inaccuracies. Put di�erently: traditional approaches implemented on-line control

mechanisms like Set-Point Control (SPC) in combination with prediction models in

order to adjust and prepare ESMU for future load trends. In this chapter however,

forecast driven schedules are adjusted using on-line measurements instead of support-

ing on-line control with real-time load predictions. This adjustment is achieved by

first scheduling ESMU operation at half-hourly resolution (i.e. by following a “peak-

shaving” and “valley-filling” behaviour which has been explained in Chapter 3) and

then modifying this schedule using MPC. In this case, Model Predictive Control

(MPC) is comprised of a lightweight Autoregressive (AR) model to assure real-time

deployability. These two control signals are unified using two Proportional Integral

Derivative (PID) compensators that are tuned to assure system robustness regardless

of the forecast’s erroneousness. All ESMU schedules are generated under the con-

straints of a realistic ESMU model, and all demand measurements and corresponding

forecasts that are used in this work are based on real data that is provided by the

project partner and DNO: Scottish and Southern Energy Networks (SSEN). Results

are generated from this realistic (i.e. provided) network load with their corresponding

load forecasts and cases are compared against the original and a baseline load case

(i.e. traditional o�-line control). It is shown that the proposed schedule adjustment

method can successfully reduce sub-half-hourly peaks even under these imperfect fore-

cast conditions. In fact, whilst the probability distribution of the baseline case sat
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around an average of 1.78kW peak reduction, the proposed method could increase

the reduction to 5.24kW. Since this proposed control method is the natural extension

of our previous work in [105], hereon it is also referred to as “dynamic control”.

The chapter is organised as follows: In Section 4.2 all constituent system compo-

nents including ESMU model, forecast acquisition and ESMU schedule generation are

explained. Section 4.3 presents the dynamic control, including the dual PID setup and

MPC. Section 4.4 outlines the di�erent case studies that were used to compare the

performance of the dynamic control. In Section 4.5 all results from these case studies

are presented and discussed. Finally, conclusion and the future work are described in

Section 4.6.

4.2 System Explanation

Data

Forecast

Schedule

Battery

Network

(a)

Controller

MCP

Battery

Network

(b)

Data

Forecast

Schedule

Battery

Network

Controller

MCP

(c)

Figure 4.1: (4.1a) Traditional forecast driven BESS control; (4.1b) Traditional on-line
system; (4.1c) Proposed dynamic control system

The presented work is part of the New Thames Valley Vision (NTVV) research

project and was conducted in collaboration with the British DNO Scottish and South-

ern Energy Networks (SSEN) [98]. From the findings of this research project the

diagram in Figure 4.1 was generated, showing two well established ESMU control
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approaches and the proposed dynamic control approach. This figure includes all

constituent systems that were used during the ESMU street-level deployment. The

two traditional systems are o�-line and on-line ESMU control which are shown in

Figure 4.1a and 4.1b, respectively. Alongside these two control approaches is the pro-

posed dynamic control system that is shown in Figure 4.1c. This control approach

entails the benefits from both the traditional half-hourly forecast driven and the sub-

half-hourly ESMU control system and can therefore be seen as the hybrid of the two

traditional systems. Unlike previous work this hybrid system does not rely on Set-

Point Control (SPC) which is adjusted by a MPC to compensate for trends in the load

profile. Instead, it operates by executing a predetermined half-hourly ESMU schedule

which is adjusted at sub-half-hourly intervals. Therefore the necessity of relying on

a stable SPC is removed and replaced by a robust schedule execution. Nonetheless,

flexibility is provided by allowing the aforementioned schedule adjustments. The pre-

ceding work by Rowe et al. in [124] inspired this hybrid system and used a similar

approach that emphasises these benefits of using a hybrid system. Unlike the work

by Rowe et al. in [124] however, the proposed hybrid system operates at a higher

temporal resolution (it uses a light weight deterministic adjustment method in the

form of MPC), and it does not rely on a long forecasting horizon since it recom-

putes the power adjustments for every single time-step. As already mentioned, those

adjustments are based on MPC-guided instructions and details about this dynamic

control are outlined in Section 4.3.

In this section however the battery model which is used in this work is reminded

first. Also the load data acquisition, forecasting and ESMU schedule generation are

outlined where scheduling is performed in accordance to the ESMU model’s con-

straints.
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4.2.1 ESMU model

The ESMU model is based on the physical system that was deployed by SSEN during

the NTVV project. Since this model is the same model as the one used in the

preceding chapter which has been explained in detail in Section 3.3.3, only the model’s

final equation (as well as all used parameters) are detailed, hence foregoing the re-

deriving of the same battery storage model. This ESMU model equation is as follows:

SOC(t + �t) =

Y
___]

___[

µ

1
SOC(t) + ÷�tp(t)

Cbat(3.6◊106)

2
if p(t) Ø 0

µ

1
SOC(t) + �tp(t)

÷Cbat(3.6◊106)

2
otherwise

(4.1)

Here the next State of Charge, SOC(t + �t), is computed from the current State

of Charge, SOC(t), and the current battery power, p(t). This is done by calculating

the current change in SOC as the added energy �tp(t), divided by the total battery

capacity Cbat. Dynamic properties of the model also take into account the energy

conversion e�ciency, ÷, and the self-discharge factor, µ.

For the purpose of the simulation, it is assumed that the battery is initially charged

up to 50%. Hence, the initial conditions of this model are defined as SOC(0) = 0.5,

which makes the model valid for a time span of t Ø 0, where t œ ZØ0.

4.2.2 Load data and ESMU scheduling

Having established the ESMU model, the procedure to generate a corresponding

schedule is explained in this subsection. This procedure follows the same practice

as outlined in the previous chapter (i.e. in Section 3.3.4) where an ESMU schedule

is generated at half-hourly temporal resolution. Therefore the same synchronisation

function, k(t), that was used in Section 3.3.4 can be used to link the native minutely

sampling period of �t to the schedule’s half-hourly time slots. Since the sub-half-

hourly operation was at a minutely period and the generated schedule is at half-hourly
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period, this fixed conversion function is defined as:

k(t) :=
7

t ≠ 1
30�t

8
+ 1 (4.2)

Having established a means of synchronising the two sampling periods, the shape

of the ESMU schedule that would “smoothen” the underlying power profile is defined

next. For simplicity linear forwarding was chosen which means that the power as-

signed at for instance t = 1 remains constant over the scheduling period of 30�t until

t = 31. With this assumption the ESMU’s SOC can be calculated for each t despite

the scheduled power profile only having been defined for every 30th
t. Furthermore,

with this second assumption not only every sub-half-hourly ESMU power can be de-

rived from its half-hourly schedule, but it also enables the calculation of every SOC,

i.e. SOC(t) is well defined.

For the generation of the ESMU schedule a load forecast, p
for

, was required; here

p
for

= (pfor(k(t))). Just like the ESMU forecast this forecast is also produced at

half-hourly temporal resolution and it was provided by SSEN as part of the NTVV

research project. The task at hand is to find a half-hourly ESMU schedule, p
sch

,

where p
sch

= (psch(k(t))), that improves the shape of the underlying forecast, for

example by reducing load peaks. In order to generate this optimised ESMU schedule a

performance metric quantifying improvements had to be defined first. The remaining

task is to now compute a half-hourly schedule, p
sch

, that yields the best performance.

This computation is done by minimising several cost-functions.

In Chapter 3 several cost functions were defined. Here however, three shape

dependent cost-functions are used that quantify the profile improvements that are

yielded by p
sch

. These costs entailed the Peak-to-Average Ratio (PAR), the di�erence

between the resulting power profile’s maximum and minimum (MMD) load, and the

magnitude of all power transients (TRA) [184, 199]. Although these costs and their

benefits have already been presented in Section 3.3.4 of this thesis, they are reminded
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for convenience. Before however detailing each of these three cost functions, a notation

that simplifies power as, p, is introduced:

p(t) = pfor(k(t)) + psch(k(t))

where p = (p(t))
(4.3)

Within this section, the vector p represents the power profile as it would be mea-

sured at the substation when both forecast, pfor(t), and scheduled, psch(t), power were

applied. The first cost function that is used in this chapter addresses the minimisation

of PAR and is defined as follows:

’PAR(p) :=
A

maxt |p|
p

B2

≠ 1 (4.4)

Here, p represents the mean power, i.e. p = �t
Tsch

qTsch
t=1 p(t) and p œ R, where Tsch

is the length of the scheduling horizon in regards to the sampling period �t. If the

profile p had a lot of spikes then the ratio between its maximum and its mean value

is greater than one (or with the ≠1 term greater than zero). A perfectly flat power

profile on the other hand would thus result in cost of zero. However, due to limited

battery capacity achieving such a cost of zero is highly unlikely. This is why a solution

to minimise this cost needs to be found that minimises this cost in accordance to the

previously explained ESMU model. To not only increase the mean power or reduce

peak power, the second cost function is defined as the di�erence between minimum

and maximum power of p:

’MMD(p) := (max
t

(p) ≠ min
t

(p))2 (4.5)

Similar to the PAR this cost also reduces to zero when the resulting power profile

is perfectly flat. Unlike the PAR however, this cost does not incentivise an increase
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of mean power. Minimising PAR by itself results in unnecessary and potentially

damaging battery cycling when trying to raise the mean power of the profile, yet this

behaviour is avoided when ’MMD is included alongside ’PAR. Nonetheless, ’PAR and

’MMD only impact the fringes of the resulting half-hourly power profile and could lead

to an erratic load profile. Therefore the third and final cost addresses the interim

power volatility by aiming to minimise the largest possible power transient:

’TRA(p) := max
t

(p(t + �t) ≠ p(t))2 (4.6)

Minimising this final cost has a smoothening e�ect on the improved half-hourly

power profile since a profile with no transients is by definition a flat and smooth

profile. Since all three cost functions are normalised, they are summaries into a single

global cost function. In this cost function only the half-hourly ESMU schedule, p
sch

,

is used as an input and the forecast, p
for

, is kept constant:

’(psch) :=’PAR(psch + pfor)

+ ’MMD(psch + pfor)

+ ’TRA(psch + pfor)

(4.7)

Subject to ESMU constraints, this global cost function is minimised using a stan-

dard solver (i.e. Sequential Quadratic Programming - SQP) to yield a ESMU schedule

that is optimised for the given forecast:

minpsch

’(psch) s.t.

Y
________]

________[

SOCtol Æ SOC(t)

SOC(t) Æ 1 ≠ SOCtol

|pbat(t)| Æ Cbat · Cf

(4.8)

In order to limit the control’s flexibility a State Of Charge tolerance, SOCtol, is
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included in this minimisation problem. SOCtol defines the maximum allowed devia-

tion from the computed SOC profile without hitting operational limits (i.e. SOC of

one or zero) and can take values in the form of SOCtol œ [0, 0.5) where 0 implies no

tolerance and 0.5 implies complete flexibility as if no schedule were computed. For

the work at hand a value of 0.1 was chosen to allow a ±10% energy tolerance band.

(a)

(b)

Figure 4.2: An example of applying a half-hourly ESMU schedule to the half-hourly
substation load (Subfig. 4.2a) and the actual, sub-half-hourly daily load, measured
at the substation (Subfig. 4.2b).

As repetitively mentioned, the ESMU operation that results from this scheduling

mechanism is at half-hourly resolution and has therefore limited impact on sub-half-

hourly load variation. To visualise this limitation a singe day’s ESMU schedule was
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generated from its corresponding forecast as defined in Equation 4.8 and plotted in

Figure 4.2. In this simple comparison the noticeable discrepancy between the half-

hourly ESMU schedule and the actual, sub-half-hourly demand can be observed.

Furthermore, noticeable disparity in peak duration, magnitude and volatility can be

noted. This discrepancy and disparity emphasise the incompatibility issues between

half-hourly ESMU schedules and the actual sub-half-hourly load. As previously dis-

cussed benefits of ESMU were intended to mitigate sub-half-hourly load volatility, yet

this cannot be achieved when solely applying half-hourly ESMU schedules in an o�-

line manner. Therefore, the control strategy to add an on-line component is explained

in the next section.

4.3 Control of ESMU

Network

Battery

PID1 PID2

Schedule predictor

p1(t + �t) p2(t + �t)

SOC
ú(t)

pnet(t)

SOC(t) p̂net(t + �t)

pnet(t)

Controller

Figure 4.3: Dynamic controller breakdown as previously shown in Figure 4.1c.

This section explains the dynamic control (i.e. the controller block as shown in

Figure 4.1c) in the shape of an MPC, containing the two PID compensators to adjust

operation around the predetermined ESMU schedule. The first PID compensator is
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fed by the ESMU schedule and the other is fed by the predictor load estimations.

After the control system is detailed in this section the auto-regressive models which

were used during the course of this research are also explained.

4.3.1 Dynamic control

The content of the dynamic control procedure is shown in Figure 4.3. Here two ref-

erence signals are used as inputs to the dynamic control. The first reference signal

is the SOC profile derived from the ESMU scheduled, SOC(t), and the second is an

estimated future network power, p̂net(t + �t). These two inputs are fed into compen-

sator PID1 and compensator PID2, respectively. The output of each compensator is

a corrective battery power component that, when summed, yields the next ESMU

power (i.e. p1(t + �t) and p2(t + �t)) which is applied to the ESMU model. Each

PID compensator also receives a feedback signal to compute the internal error states.

More specifically, PID1 receives the most recent SOC value that is obtained from the

ESMU model, SOC
ú(t), and PID2 receives the network’s most recent power demand,

pnet(t) (for example through measurements by substation monitoring).

Inside the PID1 component a SOC error term, ESOC(t), is computed. This term

is the di�erence between the scheduled SOC profile, SOC(t), and the actual (or

simulated) SOC values, SOC
ú(t). The following equation captures this error term.

ESOC(t) := SOC
ú(t) ≠ SOC(t) (4.9)

Applying a standard and linearly weighted dynamic gain vector, –, to the SOC

error allows the calculation of a corrective ESMU power component dynamically.

Here – = {–P , –I , –D} and the components are the P, I and D weights, respectively.

How to determine the values of – is explained later in this section. This corrective

power is denoted as p1(t + �t), and is defined as follows:
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p1(t + �t) := –P ESOC(t)

+ –I

Œÿ

i=0

ESOC(t ≠ i�t)

+ –D
ESOC(t) ≠ ESOC(t ≠ �t)

�t

(4.10)

Here the integral component removes steady-state error and the instantaneous

error di�erential prevents overshooting. All in all, this compensator uses present and

past values to issue a corrective future ESMU instruction. Compensator PID2 on the

other hand uses values from the present, past and future in order to minimise the

power transient and load peaks.

Time

Po
we

r

t t + �t t + 2�t t + 3�t

pnet(t) pnet(t + �t) pnet(t + 2�t) pnet(t + 3�t)

p̂net(t + �t) p̂net(t + 2�t) p̂net(t + 3�t)

Ep(t)

Ep(t + �t)

Ep(t + 2�t)

Figure 4.4: Underlying time-series based compensation strategy for compensator
PID2.

Figure 4.4 summarises the time series computations for each power sample at

times t, t + �t, etc. Ideally, PID2 uses present power readings, pnet(t), and a power

value of the immediate future, i.e. pnet(t + �t), to compute a power error signal,

which is to be reduced to a smallest possible value. This error signal is defined as:

Ep(t) := pnet(t + �t) ≠ pnet(t) (4.11)
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However, since the future network power is unknown an “estimated next power”,

p̂net(t + �t), is used instead. This value is the PID2’s input from the predictor and

results in an “estimated power error signal”:

Êp(t) = p̂net(t + �t) ≠ pnet(t) (4.12)

Similarly to PID1, PID2 produces a corrective ESMU power component, p2(t), that

smoothens the resulting power profile. This corrective ESMU power is also computed

using a standard linear weighted dynamic vector —, with — = {—P , —I , —D}, being the

P, I and D weight, respectively:

p2(t + �t) := —P Ep(t)

+ —I

Œÿ

i=0

Ep(t ≠ i�t)

+ —D
Ep(t) ≠ Ep(t ≠ �t)

�t

(4.13)

Similar to – how to determine the values of — is explained later in this section.

Finally, the “next ESMU power” can be deduced by adding the two corrective ESMU

power components, as shown in the equation below.

p(t + �t) = p1(t + �t) + p2(t + �t) (4.14)

Both PID compensators do however depend on correctly chosen weights for –

and —. Therefore they need to be tuned prior to executing the dynamic control. For

this work a minimisation problem was formulated that is based on a cost function,

’
ú(–, —), to deduce the two weight vectors as follows:
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min
–,—

’
ú(–, —)

s.t.

Y
________]

________[

SOC(t) ≠ SOCtol Æ 0

≠SOC(t) Æ 0

SOC(t) ≠ 1 Æ 0

(4.15)

Here, ’
ú(–, —) is defined as:

’
ú(–, —) := max

t
(pnet + p)

where pnet = (pnet(t)) and p = (p(t))
(4.16)

In Equation 4.15 and Equation 4.16, ’
ú(–, —) represents the sub-half-hourly peak

load during a day when ESMU schedules are adjusted with the corresponding – and

— weights. Also, the same SOC tolerance that was used to generate the SOC schedule

(i.e. SOCtol) is included to prevent the solution from deviating o� the prescheduled

SOC profile. To generalise this solution for all load cases this minimisation problem

was formulated to solve multiple daily load profiles in order to find ideal values for

– and —. The system of two PID compensators for discrete time is unconventional

and it is worth considering di�erent types of control or compensator. However, with

the above-explained approach and for the data used as part of this research, the

computed set of – and — weights resulted a convergent and stable solutions. In this

context, convergent means that the SOC
ú(t) values tend towards the SOC(t) values,

and stable means that the SOC
ú(t) values never clipped at zero or one. The details

concerning these case studies themselves are however outlined in Section 4.4.
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4.3.2 Model predictive control

As explained in the literature review in Chapter 2, Model Predictive Control (MPC)

is favoured over Set-Point Control (SPC), since it takes into account time-series to

produce a behaviour. With this knowledge, MPC can be used to not only react to

recent changes but also to counteract foreseen trends. Di�erent approaches exist to

obtain these foreseen trends and these approaches highly vary in accuracy, computa-

tional burden and robustness. Equally, the characteristics of underlying data which

is used to train these models impacts their performances. For the presented work

in this chapter, an e�cient and robust approach is required since potential ESMU

deployment with SSEN demands these functional requirements. Prediction accuracy

on the other hand is an optional requirement which becomes important only when

the predicting model can issue predictions in real-time and does (for the predicting

horizon) remain stationary and bounded.

The simplest form of producing a prediction is to assume that the currently ob-

served trending load will also occur in the future. This kind of prediction does however

not take into account demand dynamics. An AR model on the other hand uses a series

of past observations and their individual contribution to predict the next power. But

the further into the future these predictions are made the less accurate they become.

This accuracy loss is however circumvented since the hybrid system was designed to

only apply corrections based on load predictions of the immediate future (i.e. next

sample time at t + �t and not t + 2�t or similar). This simplification also reduces

computational burden and guarantees real-time operation especially when choosing

the simplest dynamic model (i.e. an Auto-Regressive (AR) model instead of deep ar-

tificial neural networks). Since external forces can and often do impact the behaviour

of the model, the AR model is treated as an exogenous model with a time-series of

input powers, p = (p(t)), a time-series of predicted “next powers”, p̂ = (p̂(t)), and

an internal delay function t ≠ �t.
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p(t) p̂(t + �t)+

t ≠ �t

a1

t ≠ �t

b1+

t ≠ �t

a2

t ≠ �t

b2+

p(t ≠ �t) p̂(t)

t ≠ �t

a3

t ≠ �t

b3+

p(t ≠ 2�t) p̂(t ≠ �t)

p(t ≠ 3�t) p̂(t ≠ 2�t)

Figure 4.5: Example of exogenous auto-regressive model that is used for model pre-
dictive control. Here, t ≠ �t indicates the time delay by one sample period.

Figure 4.5 graphically captures the standard AR model’s function tree which is

equivalently represented mathematically in the following equation:

p̂(t + �t) = p(t) +
Nÿ

i=1

aip(t ≠ i�t) +
Nÿ

i=1

bip̂(t ≠ (i ≠ 1)�t) (4.17)

Values of the two weight vectors a and b, where a = (ai) and b = (bi), are

determined during runtime using the standard adaptive least squares algorithm, i.e.:

min
a,b

(p(t) ≠ p̂(t))2 (4.18)

Or:

min
a,b

A

p(t) ≠ p(t ≠ �t) +
Nÿ

i=2

aip(t ≠ i�t) +
Nÿ

i=2

bip̂(t ≠ (i ≠ 1)�t)
B2

(4.19)
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Therefore, the proposed algorithm adjusts a and b to minimise the prediction

error at each time-step. Beside finding optimised values for a and b, the model’s

number of regressors, N , is also expected to impact the model’s performance (N

is also referred to as the “model length”). The example in Figure 4.5 represents a

symmetric model where N = 3. This short length however is most likely insu�cient in

predicting p(t+�t) which is why several models of increasing lengths are assessed and

compared in the results section of this chapter. From this comparison the impact of N

on the models’ resulting values of p̂(t + �t) and correspondingly on the performance

of the dynamic controller can be determined and discussed. Details about the cases

for di�erent model length are presented in the case studies in Section 4.4.

4.4 Case studies

All cases that are used to demonstrate the operation of the proposed hybrid control

use 27 days of uninterrupted historical demand data. In total five cases are assessed.

Two special cases, respectively case O and case B, assess the performance of the

original case, i.e. where no ESMU operation takes place, against a baseline case, i.e.

where traditional o�-line ESMU operation that only uses predetermined half-hourly

ESMU schedules is referred to as the benchmark case. The remaining cases which are

explained below, capture di�erent implementations of the dynamic control. These

three case studies are defined as: cases I, II and III. This group of three case studies

evaluates the impact of the proposed dynamic control when subjected to realistic (i.e.

imperfect) half-hourly load forecasts. In each of the three cases a di�erent mechanism

is used to predict the power volatility. More specifically:

• case I represents an ideal scenario where perfect foresight is assumed and the

exact next load can be estimated,

• case II uses the aforementioned MPC and performance of di�erent AR model
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lengths is compared, and

• case III is the third and final case and implements the simplest prediction

mechanism (i.e. it is assumed that the current power measurements repeats).

For clarity, all three cases, numbered I to III, are summarised and tabulated in

Table 4.1.

estimation method real forecast
perfect foresight I

MPC (AR/ARX) II

power repetition III

Table 4.1: Three cases and their dynamic control input assumptions

Results from all ESMU cases (B, I, II and III) are first compared against the

original (i.e. uncompensated) network load case O. In this first set of results the

assessment of load profile improvements are made clear by using only one sample

day. Once it is clear how the day’s peak is reduced by the algorithm the daily peak

reduction capability from all cases’ results are compared across the entire set of days.

Rather than assessing the underlying load profile from a time-series perspective, focus

is only put on any additional reductions of peak load. However, the number of days

makes it di�cult to spot trends and improvements in the data. Therefore a Proba-

bility Density Function (PDF), based on kernel density estimation, is derived from

the daily peak reduction results. The PDF shows the stochastic improvement of each

case in comparison to the original case O. Finally, to assess the AR model’s impact

on the peak reduction performance, the simulations are re-run using di�erent AR

model lengths (N) are and the results are compared using the same PDF comparison

method.
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4.5 Results and discussion

All proposed cases are used to control power flow of the ESMU using 27 days of

uninterrupted sub-half-hourly load records. In this section the time-series improve-

ments are presented at first where a day’s peak reduction due to the sub-half-hourly

schedule adjustment are highlighted. After all, reducing peaks both frees additional

resources for future load and reduces ohmic losses in the cables. Then the daily peak

reduction across the entire dataset is presented and followed by a probability density

plot to better compare these findings. In the end the model’s impact on the peak

reduction performance is assessed.

4.5.1 Time-series analysis

A single day was plotted in Figure 4.6 which shows the time-series improvements

that were yielded by the ESMU operation. For visual clarity Figure 4.6a and 4.6b

show, respectively, the entire day and a zoomed in version that focuses on the period

of interest where the ESMU impact is most apparent. It can be observed that the

unmodified demand profile (i.e. the original case O) and the case where scheduled

half-hourly ESMU operation is applied (i.e. the baseline case B) result in noticeably

higher load peaks than any of the three adjustment cases. More specifically, the

original peak reduction (which is equal to the scheduled ESMU power) was 1.8kW

(or 3.9% peak reduction). The average peak reduction when applying adjustments to

the ESMU operation was 9.6kW (or 20.6% peak reduction). Although it is too early

to conclude on any overall performance improvements this time-series modification

does show the physical impact of the ESMU schedule adjustments on the network’s

load profile. Furthermore Figure 4.6a highlights the volatility of the underlying data

which would be neglected for half-hourly ESMU schedules.

Interestingly, both the standard AR and the exogenous AR estimation models
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(a)

(b)

Figure 4.6: Time series performance over a single day when using realistic load fore-
casts: (4.6a) total day; (4.6b) zoomed in on critical period
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that were used in case II performed very similar and show little to no significant

di�erence in peak reduction performance. Equally noteworthy is the fact that the

simplest prediction methods of them all in case III (i.e. the method of assuming a

power repetition occurs) yields positive peak power reductions, too. However, case I

slightly outperformed all other cases since perfect knowledge would also imply best

results. Nonetheless, only a small improvement was possible due to the imperfect

underlying half-hourly ESMU schedule. The amount by which the three cases were

able to reduce the daily peak load is also indicated by horizontal dashed lines and

dots located at the point of peak load for each profile. These initial findings show

that every single version of dynamic control reduces peak load when compared to the

baseline case B. This finding is also tabulated in Table 4.2, and it suggests that the

prediction mechanism by itself did play some role when compensating for demand

volatility.

case O B I
II II

III
(AR) (ARX)

peak 46.6 44.8 36.4 36.8 36.6 38.4(kW)

Table 4.2: Peak reduction in time-series sample

However, the general impact of each prediction method on the resulting peak

reduction performance can only be assessed if the complete dataset is evaluated.

Hence, the next section compares the daily peak load reduction from the application

of each case.

4.5.2 Daily peak reduction

In Figure 4.7, every day’s power peak was extracted in a similar way to the procedure

that was used for Figure 4.6. Here the actual power peaks were plotted in Figure 4.7a,

and the relative power improvements (i.e. ratio to the baseline power peaks from case

B) were plotted in Figure 4.7b. From both plots it can be seen that controlling ESMU
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(a)

(b)

Figure 4.7: Daily peak reduction when using realistic forecasts as: (4.7a) peak power
values; (4.7b) percentage of original case B.
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using the proposed dynamic control (I, II, III) lowers peak load. This is true even

when the underlying ESMU schedule originally worsened and increased peak load (see

B vs O). Such a behaviour can be observed clearly during days 6 and 25, where the

half-hourly ESMU schedule based on B increased the actual load peak from case O

by 2.8kW and 2.5kW, respectively. The ESMU schedule adjustment mechanisms (I,

II, III) however compensated for this error, but in those two cases the compensation

was not enough to reduce peak power below the original value. Day 26 on the other

hand experienced a similar increase in peak power during the baseline case B by

1.2kW, but the proposed power adjustment mechanism according to IIcorrected this

forecast error and reduced the final peak power below the original value.

Nonetheless, the sensitivity to the underlying power prediction approaches be-

comes apparent when having this larger set of peak reduction results to compare the

dynamic control’s performance against its baseline cases. As seen in Figure 4.7b the

scenario with perfect foresight (i.e. case I) frequently outperformed all other cases

since it appears to achieve largest peak power reduction from the baseline case. Dur-

ing some days however (i.e. day 3, 4 and 24) the compensators could not correctly

compensate despite the perfect foresight. This behaviour was unexpected, but it

turns out that the discrepancy between the underlying half-hourly BESS schedule

and the actual load curve (i.e. due to erroneous half-hourly load forecasts) caused

the dynamic control to reach its SOC tolerance limit. Reaching its limit during those

three days consequently worsened the daily peak. The simplest of all cases on the

other hand (i.e. case III) yielded a constant but small reduction when compared to

the baseline case. Case II seems to perform similar, but slightly better than case

III. One could therefore assume that by maintaining a constant error in the power

prediction does positively skew the results when already subjected to low-resolution

forecasting errors. Whether this assumption holds can however not be said with the

presented analysis and instead, in order to obtain an more general picture of the
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overall peak reduction performance, the Probability Density Function (PDF) had to

be estimated and analysed for all cases. This is done in the following section.

4.5.3 Probability of peak reduction

Figure 4.8: Peak load probability for di�erent prediction mechanisms.

With the use of the standard kernel density estimation, the PDF is plotted in

Figure 4.8. The data used to generate these plots is the same data as shown in

Figure 4.7. Now however, the probability of a peak power occurring is linked to the

magnitude of this peak. It can be seen that case O has the highest probability around

a peak load of 45kW, whilst case B has its highest probability around a peak load of

42kW. This indicates that there is even a high probability that the half-hourly ESMU

schedule has a positive impact on the load peaks. When adjusting this schedule by

using the proposed dynamic control, this peak was however lowered further. Case I

performed best by having a most probable peak power of 36.1kW. Case II achieve

the second best values at 36.7kW and 36.8kW (for AR and ARX case, respectively)

whilst the simplest prediction mechanism has its peak power probability maximised
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at 38.4kW.

Figure 4.9: Probability of peak load reduction for di�erent prediction mechanisms.

Figure 4.9 takes this analysis even further where only the di�erence in peak load

to the original case (i.e. case O) is plotted. Now the ESMU impact can easily be

seen since a high probability of positive peak load reduction indicates a beneficial

impact of the ESMU operation. A negative peak load reduction (i.e. increased peak

load) would therefore indicate a worse performance. As expected, case B has a slight

positive impact on the system whilst a cumulative probability of more than 25% (i.e.

area under curve of case O) to the left of 0kW suggests that the peak might be

worsened one in four times. The dynamic control with its simplest prediction method

however (i.e. case III) lowered this probability to already 7.4%. The perfect foresight

model (i.e. case I) performed only at 11.8% and the MPC based cases (i.e. case II)

achieved an average of 8.0% probability of worsening the peak power. The fact, that

the perfect foresight model III could not reduce the probability of peaks as well as the

simple model I is likely due to the used power profiles and forecast errors. However,

the mean probabilities (that are discussed below) di�er as expected.
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In the following, the mean peak reduction of the base case B (i.e. where the

cumulative probability reaches 50%) is treated as the benchmark for peak reduction.

This probability is reached at 1.7kW or in other words: the probability of reducing

load peaks by 1.7kW or more was at 50% for case B. The simplest case III however

increased this probability to 77.7%, case II to 84.5 5% (AR) / 83.1% (ARX), and

the perfect foresight case I to 79.8%. The reason why this simplest case achieved a

slightly lower value than the AR/ARX cases was due to aforementioned discrepancy

between actual and forecasted load profiles. Due to the discrepancy in erroneousness

the chosen SOC tolerance was exhausted and lead to some worsening cases that

negatively skewed results of the perfect foresight case (i.e. case I). Nonetheless, when

comparing the three dynamic control cases with each other as done in Figure 4.9, then

it can be seen that case II using an AR model for MPC performed best at reducing

peak loads for the used dataset.

4.5.4 Impact of varying the model’s length

The subsequent results are intended to show whether the length of the AR/ARX

model impacted the peak reduction performance. To do so, the same procedure was

use as shown in Section 4.5.3, but the length of the AR and ARX models was varied

from five minutes to two hours. Therefore the MPC of the dynamic control took

into account a longer power history to potentially improve the prediction of the next

power.

Similar to Figure 4.9, Figure 4.10 shows the probability for the di�erence in peak

power between the original case (O) and all other cases. In this plot however all

PDFs for the di�erent model lengths have been included (whilst the previous study

only showed the inter-model means). It can be seen that both the AR and ARX case

(i.e. case II) performed noticeably better than the baseline case B. Despite the vary-

ing model length all PDFs appear to peak around a reduction performance of 5kW.
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Figure 4.10: Probability of peak load reduction for di�erent prediction mechanisms
and di�erent AR/ARX model lentgths.

Therefore it is assumed that the length of the chosen models does not significantly

impact the results.

This assumption is also supported by the boxplots in Figure 4.11 where the peak

power distributions are visualised for all di�erent model lengths and the six di�erent

case studies. It can be seen that the di�erent AR/ARX model lengths (i.e. case II)

outperforms both the original and baseline cases (i.e. case O and case B, respectively).

All in all, a certain variation in peak reduction performance can be observed, but

no apparent trend. Therefore the assumption that the model length impacts the

performance of the dynamic control is true, but for the used data the assumption

that a longer model generally yields better results is not.

4.6 Summary

In this chapter a dynamic control method is proposed to address Objective 2 in the

objective list which is presented in Section 1.2. The proposed method adjusts half-
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Figure 4.11: Visualisation of the peak power distribution for di�erent AR/ARX model
lengths.

hourly Energy Storage Management Unit (ESMU) schedules on a sub-half-hourly

basis in order to minimise otherwise neglected sub-half-hourly power spikes without

risking a shortage or surplus of ESMU stored energy. Traditional load forecasts usu-

ally lack accuracy and temporal resolution which makes it hard to schedule ESMU

in an optimal manner. Recent research implements derivations of Set-Point Control

(SPC) which is typically guided by a short-term Model Predictive Control (MPC)

mechanism to address both load volatility and to prepare ESMU for upcoming load

spikes. Those approaches do however not utilise the information, quality and opera-

tional certainty that would be provided by load forecasts and ESMU schedules. The

proposed dynamic control addresses this shortcoming by approaching the problem

from the opposite direction: i.e. it adjusts a predetermined ESMU schedule based on

two linked PID compensators.

The first compensator was designed to minimise the deviation from the presched-

uled ESMU’s State Of Charge (SOC) profile and the second compensator was designed
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to minimise the load volatility. For the second compensator to operate however a

short-term predictive model was used to estimate the load power in the immediate

future (i.e. the next time step). Two di�erent light weight and well established mech-

anisms were used to implement this predictive model in order to assure real-time

operation and robustness of the system.

Simulating these di�erent models to guide schedule adjustments yielded positive

results for each test case that used dynamic control. A sample day showcased how

additional adjustments can reduce a sub-half-hourly power spike by 10kW whilst the

execution of a traditional half-hourly schedule would have only resulted in reduction

of 1.8kW. In fact, dynamic control outperformed the baseline case in nearly every case

(where the baseline case is the scenario of applying a traditional half-hourly ESMU

schedule in an o�-line manner). Whilst this baseline operation did also increase peak

load under severe forecast errors, the best performing dynamic control case was able

to reduce the probability of increasing peak loads by a factor of 3.12. Also, the length

of the underlying prediction models was varied from 5 minutes to 2 hours in order

to assess the impact of this variation on the performance of the dynamic control. It

was determined that there is no linear correlation between the models’ lengths and

the performance of the dynamic control. Instead, the dynamic control operated with

slight performance variations, yet always outperformed the original and baseline cases.

Those performance gains were achieved despite the fact that all cases used the same

underlying ESMU schedule that were generated from realistic (hence imperfect and

erroneous) load forecasts. In conclusion, Objective 2 which is defined in Section 1.2

has been successfully met with the provided data.

The work presented here demonstrates how imperfect ESMU schedules can still

be used to yield more beneficial impacts on the overall load profile. With future de-

ployment of ESMU throughout Low-Voltage power distribution networks, advanced

ESMU control is necessary to assure their impact is in accordance to volatile de-
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mand. Control, like the one proposed here can take into account the complete range

of demand volatility and when implemented correctly, can defer or avoid network

reinforcement altogether. This is particularly true since ongoing electrification of UK

heat and transport sectors change consumers’ electricity consumption and increase

stress on power distribution networks.
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Chapter 5

E�ects of Desynchronising

Information Propagation when

Distributing Smart-Charging

5.1 Overview

In previous chapters, the question has been addressed how one can optimally control

a single battery energy storage unit. It was shown that half-hourly forecasts can be

used to predict demand that is based on customers’ behaviours. With this knowl-

edge Battery Energy Storage Systems (BESS) were scheduled to shave half-hourly

peak loads on a daily basis in order to avoid overloading the power distribution sys-

tem. Yet sub-half-hourly issues could not be addressed by this traditional BESS

schedules which is why two successive sub-half-hourly power adjustment methods

were proposed and developed as extended BESS control methods. The first method

in Chapter 3 focused on improving network operation by considering the underly-

ing three-phase network properties whilst strictly following its underlying half-hourly

operating schedule. The second method on the other hand which was presented in
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Chapter 4 alleviated this constraint by adjusting the total power flow instead. Bene-

fits like preparing the storage for a day-ahead peak can be exploited by using BESS

schedules and complementing them with dynamic feedback enabled the device to take

into account sub-half-hourly volatility, too. As shown in those previous two chapters

(Chapter 3 and Chapter 4) together, these two methods yield improved system oper-

ation as well as a reduction in both daily and intermittend peak load.

The next step would be to take such control methods and apply them to multiple

and distributed batteries. To prevent the negative impact from simultaneous bat-

tery charging, particularly when dealing with the home-charging of Electric Vehicles

(EVs), battery energy consumption needs to be coordinated. As already discussed in

the literature review in Chapter 2, multiple control methods that can also be used to

coordinate Distributed Energy Resources (DER) that include EV charge scheduling

methods (i.e. [39, 110, 147, 151–162]). Those approaches propose demand prioritisa-

tion, multi-tari� environments and even game theory based methods to maximise

utility or to reduce operating cost. In the context of EV charging, reacting to other

EV’s changes in charging plans becomes a vital requirement when scheduling and coor-

dinating their own charging profiles. For this very reason has research predominantly

focused on improving so called smart-charging algorithms, but in a distributed sys-

tem this scheduling assumption of perfect knowledge exchange does not always hold:

In fact, during the scheduling of distributed EVs, control instructions broadcasted

by one EV to inform all other EVs (for example of an updated charging schedule)

need not or cannot receive and respond to this instruction at the exact same time,

unless some synchronisation amongst all EVs is emplaced. A method to develop

smart-charging algorithms that explicitly function in both synchronised and desyn-

chronised environments does not yet exist, to the best of the author’s knowledge.

Therefore, this chapter, Chapter 5 first develops a smart-charging method for a syn-

chronised fleet of EVs and then introduces message desynchronisation to assess the
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performance di�erence between the two operating environments. By doing so, Chap-

ter 5 addresses Objective 3 of this thesis that aims to develop an EV scheduling

method that is immune to message desynchronisation (details of this objective was

outlined in Section 1.2).

It should be noted that the charging of EVs is explicitly assessed instead of man-

aging a collection of BESSs since storage is able to release energy and thus provide

grid support, too. Traditional EVs on the other hand do not have such capabilities1

and need to be coordinated in order to avoid home-charging related load spikes. To

achieve this coordination Chapter 5 implements a Multi-Agent System (MAS) to en-

able the distributed scheduling using the Foundation for Intelligent Physical Agents

(FIPA) compliant agents as communication entities [200]. A smart-charging algo-

rithm is developed and implemented in each agent where communication is initially

assumed to be synchronised. Results show how EV scheduling in a synchronised en-

vironment leads to the expected outcomes - some of which have also been established

in literature (for example oscillating load assignment like in [46]). However, adding

jitter to message broadcasting significantly changes the algorithm’s behaviour. Dif-

ferences regarding rate of convergence and criteria for stability are most noticeable

whilst scheduling performance on the other hand does not deteriorate. The structure

of this chapter is as follows: First, the EV demand and scheduling mechanism to

coordinate the synchronised and desynchronised smart-charging is explained in Sec-

tion 5.2. Next, in Section 5.3 the distributed control system for the chosen MAS is

presented alongside the two cases for synchronised and desynchronised information

propagation or message exchange. Section 5.4 presents and discusses the results from

these two cases, upon which a conclusion is drawn in Section 5.5.
1
Research delving into Vehicle-to-Grid (V2G) support do consider reverse energy flow, yet this

is not included in the work presented in this thesis as it lies outside the scope for message desyn-

chronisation when considering the generation of traditional EV charging plans.
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5.2 Coordination of EV charging

In this section an algorithm for EV charging is presented which is implemented in

both a synchronised and desynchronised case. The Irish load dataset [201] is used in

combination with EV energy demand to test the proposed smart-charging algorithm.

Performance of the algorithm at preventing new power spikes from occurring is then

assessed with the use of standard performance metrics that have already been used

throughout this thesis (i.e. the PAR and TRA metric). Finally, to study the con-

vergence of the algorithm a convergence criteria as well as rate of convergence are

presented, too.

5.2.1 EV Demand

In order to simulate the fleet of charging EVs, U where U œ Z>0, each EV, u where

u œ {1, . . . , U}, is modelled as a load that needs to consume a certain amount of

energy, Eu where Eu œ RØ0, over the course of a scheduling horizon, T
sch where

T
sch œ Z>0. Unlike typical load profiles (for example household load profiles) EVs

are modelled to not have a predetermined load profile. Instead they are flexible so

they schedule their own demand, p
EV

u,n(t) where p
EV

u,n = (pEV

u,n(t)), at any moment time, t

where t œ ZØ0. In other words, EVs can autonomously assign their own charging plan

over the predetermined number of future time-slots, T
sch. Due to limitations in on-

board power electronics each EV’s maximum charge rate, P
max

u where P
max

u œ R>0, is

restricted and must not be exceeded. In order to meet the EV’s charging demand over

the scheduling horizon, T
sch, a soft minimum charging power, P

min

u where P
min

u œ R>0,

is also introduced:

Pmin,u := Eu

T sch
(5.1)

Although the upper limit represents the technical restriction of the on board
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charging equipment, this lower limit is a necessity to assure the demanded energy is

charged over the entire charging period and thus this limit is also used to initiate the

scheduling procedure itself. This charging procedure is explained in Section 5.2.3.

EVs utilise their agent system to purchase energy quantities for each time-slot, t, and

also sell or “undo” some of the already acquired energy quantities if it contributes

towards the lowering of a potential load spike.

5.2.2 Baseline Load

Historic customer load profiles were used in this work to represent real power con-

sumption in simulations [201]. For every of the containing 543 loads, this dataset

consisted of 7392 demand readings which were sampled at half-hourly period (i.e.

�t = 0.5 hours). A single scheduling horizon was defined as one day (i.e. T
sch = 48

samples).

In this MAS related context, each household dispatches its agents once to ac-

quire the household’s half-hourly energy demand for the entire day; thus making the

assumption that demand foresight is available. It is worth mentioning that perfect

demand foresight, especially for domestic loads, is di�cult to realise. Imperfect fore-

sight would result in sub-optimal power profile allocation, for example. Therefore,

due to the focus of this chapter (which is to determine the di�erence between synchro-

nised and desynchronised algorithm execution) the assumption of perfect foresight is

made. After each household has acquired or reserved its daily demand by issuing an

energy request, the entire network demand is known to the energy supplier and can

be relayed to all EV agents when they query for the overall demand profile. This abil-

ity is exploited when scheduling and negotiating the unknown EV charging profiles.

More specifically, all EV’s agents communicate with the supplier’s agent to optimally

embed their charging profiles (i.e. p
EV

u,n(t)) within this aggregated baseline load.
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5.2.3 Scheduling Algorithm

For the EV charging coordination strategy, an algorithm was designed that generates

charging profiles for each EV so that the network power, p
net(t) where p

net(t) œ R, is

optimised. Here an optimal network power implies that when adding all aggregated

charging profiles to the network’s baseline load, p
base(t) where p

base(t) œ R>0, no

additional power spikes occur in the resulting power profile (i.e. p
net(t) = p

base(t) +
qU

u=1
p

EV

u,n(t) where p
EV

u,n(t) is the EV charging power). The charging profiles are gener-

ated by repetitively querying energy supplies for the network’s baseline load, adjusting

individual EV charging profiles and resubmitting the adjusted charging profile. As

already stated, the common assumption when designing such a scheduling algorithm

is that all scheduling entities are synchronised (i.e. they wait for each other) before

querying for the network’s baseline load. For visualisation the message exchange be-

tween two loads and a supplier is shown in Figure 5.1. This visualisation also includes

the agent synchronisation event.

In Figure 5.1 the horizontal arrows indicate messages being sent from loads (i.e.

EV agents) to a supplier and vertical lines indicate processing or idle time. Here

a single scheduling iteration is shown, which can be broken into the sub-processes

of: querying, scheduling, updating and synchronising. From top to bottom, the

sequential execution of these sub-processes is as follows First, both load1 and load2

query the supplier for the currently known network load (i.e. query(l1) and query(l2)).

This network load is used to schedule their power profiles to “fill valleys” (i.e. only

charge EVs during periods of low demand). Upon receipt of a reply from the energy

supplier (i.e. reply(l1) and reply(l2)) both loads immediately start scheduling their

profiles. In the example above load1 found a solution before load2 and can therefore

inform the supplier about its intended load profile sooner. It does so by sending

an update (i.e. update(l1)) to the supplier. Subsequently querying the supplier

for an updated network load would be premature since the other load (i.e. load2)
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Supplier Load1 Load2

query(l1)

reply(l1) waiting

update(l1)

scheduling

ack(l1) waiting

syncing

query(l2)

reply(l2)
waiting

update(l2)

scheduling

ack(l2) waiting

syncing

SYNC
query(l1) query(l2)

Figure 5.1: Example of agent synchronisation process before re-scheduling their EVs
charging profile.
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has not yet generated and updated its load profile. Therefore a synchronisation

mechanism had to be used which forces load1 to wait until all loads have sent updates

to the supplier. In this example load1 waits until load2 has sent an update and the

corresponding profile was acknowledged by the supplier (i.e. ack(l2)). Only after this

had happened, a synchronisation event would be triggered (i.e. SYNC event). After

this synchronisation event the next algorithm iteration is initiated and the procedure

repeats. Since all subsequent iterations are similar to the one shown in Figure 5.1

only the two querying messages of the second iteration are shown.

Although timing and message exchange has been outlined, the mechanism to

allocate and reallocate charging powers in order to achieve the aforementioned valley

filling behaviour has not yet been defined. This behaviour is shown in Figure 5.2 where

several iterations numbered n (where n œ [1, . . . , N ] where N œ Z>0) are shown and

for each subsequent iteration some amount of prescheduled power is reallocated to

di�erent time-slots. It is this reallocation to di�erent time-slots that reduces and

eventually completely mitigates EV charging spikes.

For every iteration, n, in Figure 5.2, charging profiles are added onto a baseline

network load, p
base

n , where p
base

n = (pbase

n (t)). This base load is shown as the bold

black line and does not change throughout the EV scheduling procedure. For every

iteration numbered n, the charging profile of EV number u is defined as p
EV

u,n, where

p
EV

n = (pEV

u,n(t)) (i.e. p
EV

n consists of all EV charging profiles at iteration n). During

the first iteration however (for example Figure 5.2a where n = 1) this charging profile

is determined by assigning the maximum EV charging power to the time-slots of

lowest load, until the total EV energy demand is met (i.e. consecutive time-slots

t are chosen where t = argmin(pbase)). Resulting is an aggregated charging power

that is likely to contain at least one new charging spike since all EVs scheduled their

profiles based upon the same knowledge of p
base

n . This spike is seen on an updated

(i.e. temporary) demand profile, p̂
base

n , where p̂
base

n = (p̂base

n (t)), is defined as:
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Figure 5.2: Charging power (green line) allocation on top of base network load (black
line) for valley-filling behaviour. Here n = 1 for Fig. 5.2a, n = 2 for Fig. 5.2b, n = 3
for Fig. 5.2c, and n = N for Fig. 5.2d.

p̂
base

n (t) := p
base

n (t) +
Uÿ

u=1

p
EV

u,n(t)’t, n (5.2)

For the next iteration n + 1 (for example Figure 5.2b where n = 2) a proportion

of the previously scheduled power vector p
EV

n≠1
is “undone”. Subsequently, the spike

in the resulting p̂
base

n is reduced, yet the energy that has been undone needs to be

reallocated to meet the EVs’ demands. The amount by which p
EV

n≠1
is reduced is

determined by the “undoing” parameter –, where – œ [0, 1). A new reduced (i.e.

temporary) charging vector p̂
EV

u,n(t) is therefore defined as:

p̂
EV

u,n(t) := p
EV

u,n≠1
(t)(1 ≠ –) (5.3)

Using this temporary charging power the temporary energy demand, Êu,n, that

needs to be reallocated can also be defined by including the sampling period �t:
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Êu,n := Eu ≠
T schÿ

t=1

p̂
EV

u,n(t)�t’u and n œ 2, . . . , N (5.4)

To include the first iteration of the algorithm, Equation 5.4 needs to be expanded

to redefine Êu,n for all successive algorithm iterations n:

Êu,n :=

Y
___]

___[

Eu if n = 1

Eu ≠ qT sch
t=1

p̂
EV

u,n(t)�t otherwise
’u, n (5.5)

Following the similar procedure as for the first iteration, Êu,n is then allocated to

di�erent time-slots where the rule of performing the power allocation (i.e. allocating

p
EV

u,n(t) based on p
EV

u,n≠1
(t)) is defined as follows:

p
EV

u,n(t) =

Y
___]

___[

p̂
EV

u,n≠1
(t) + Êu,n

�t — if p̂
EV

u,n≠1
(t) + Êu,n

�t — Æ P
max

u

P
max

n otherwise
’u

where p̂
EV

u,n≠1
+ Êu,n

�t
— Ø Pmin,u

(5.6)

Here — is the maximum “allocation” parameter, where — œ (0, 1], and this param-

eter limits the power that can be allocated to any successive time-slot (i.e. t ≠ �t).

To not exceed the EV’s maximum charging power any value in the charging vector,

p
EV

u,n, is capped to P
max

u . If — is chosen as one then the undone energy is allocated as

quickly as possible, but this can lead to new power spikes and this slow the converging

behaviour. For smaller values of — on the other hand, the undone charge is reallocated

in smaller portions and the old power spike is distributed gradually. If this value is too

small however then the total EV demand, Eu, cannot be allocated across the entire

scheduling horizon, T
sch. The constraint in Equation 5.6 thus guarantees that EV

demand is allocated over this finite scheduling horizon. By doing so, the temporary
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energy demand equates to the original energy demand after the new charging powers

are assigned to their corresponding time-slot (i.e. after p
EV

u,n is updated).

In any following algorithm iteration (i.e. n > 2 as shown in Figure 5.2c) each

EV’s charging profile is adjusted and spread further over the base load, p
base. In

the end (i.e. when n = N) the ideal EV charging profiles add to the base load in

such a way that the resulting network load has an optimally filled valley. This valley

filling behaviour was thus achieved by the “undoing” and “allocation” of EV charging

power from one algorithm iteration to the next. For the purpose of this simulation,

the algorithm terminates when the final iteration is reached (i.e. n = N) regardless of

the final network load’s shape. Here the rate of convergence of the algorithm di�ers

based upon the choice of – and — values. This rate can be estimated and compared

for each choice of – and — since the simulations terminate after the same number of

iterations. However, convergence is in fact guaranteed when selecting values of – < 1

and — < 1 since, in those cases, the algorithm satisfies the D’Alembert Criterion;

the criterion requires a continuous but not necessarily regular reduction in successive

outputs.

To summarise this section, the complete EV scheduling algorithm was developed

by: 1. defining the message exchange and synchronisation mechanism, which is shown

in Figure 5.1; 2. formulating the initial and successive “undoing” of charging power,

as shown in Equation 5.3; and 3. defining the iterative update and “allocation” of

the temporary energy demand, as defined in Equation 5.5. For clarity, this smart

charging algorithm’s pseudocode that performs the complete valley filling procedure

has been included below; in Algorithm 1.
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1 // Input data, i.e. initial conditions

Data: p
base,n, Eu, Pmax,u, Pmin,u, �t, Tsch

Result: p
EV,u,n

2 for n Ω 1 to N do

3 // Query for base load

4 p
base,n Ω query();

5 // Forward and undo previous schedule

6 if n > 1 then

7 p
EV,u,n Ω p

EV,u,n≠1
(1 ≠ –);

8 else

9 p
EV,u,n Ω [0, 0, . . . , 0];

10 end

11 // Determine unallocated energy

12 Êu,n = Eu ≠ qTsch
·=1 pEV,u,n(·)�t;

13 // Fill valley

14 for · Ω argmin(pbase,n) to argmax(pbase,n) do

15 if pEV,u,n(·) + Êu,n

�t — Æ Pmax,u then

16 pEV,u,n(·) Ω pEV,u,n(·) + Êu,n

�t —;
17 else

18 pEV,u,n(·) Ω Pmax,u;
19 end

20 Êu,n = Eu ≠ qTsch
·=1 pEV,u,n(·)�t;

21 // Once EV profile is found, send update

22 if Êu,n = 0 then

23 update(pEV,u,n);
24 break();
25 end

26 end

27 synchronising();
28 end

Algorithm 1: Robust valley filling algorithm for a single EV in the synchronised
case
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5.3 Distributed Systems

As discussed in the literature review in Chapter 2 several mechanisms exist to de-

centralise control of DERs. For their reactivity, pro-activeness, social ability and

flexibility however, the Multi Agent System (MAS) distinguished itself from tradi-

tional software and hardware systems which is why it was also chosen for the co-

ordination of this smart EV charging. Several agent package implementations exist

where each follows a di�erent interaction paradigm. Some of these paradigms in-

clude “Belief, Desire and Intention” (BDI), neutral behaviour or other specialised

functionality [202]. From the catalogue of MAS paradigms the Java Agent Devel-

opment Framework (JADE) was chosen since it natively implements the Foundation

for Intelligent Physical Agent (FIPA) specification [203, 204]. Furthermore, JADE is

an application independent package that has become quite popular as seen by the

increasing number of publications (for example [46,205–208]).

In this work multiple virtual trading agents are used to negotiate their correspond-

ing EV charging profile with other trading agents. Tying virtual agents to a physical

entity is not new [166,209–211] and allows a clear decoupling of the data storing enti-

ties from the interacting entities. In previous work however, physical agents directly

controlled the virtual entities whilst the agents in the presented work negotiate sched-

ules that will be applied after schedule ratification. Therefore, the physical agent is

never notified of any intermediate charging profile and only receives the final schedule

(i.e. scheduling is delegated to a broker). Scheduling and inter-agent communication

is achieved by so called “broker” agents that follow the Brokering Interaction Protocol

(BIP) to serve the final charging profile when it is requested. It is those broker agents

that communicate and negotiate with each other by following the Contact-Net Pro-

tocol (CNP). All these FIPA protocols are based on the FIPA Agent Communication

Language (ACL) that is required to communicate over a shared telecommunication

infrastructure since it standardises the communication ontology and schemas. Follow-
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ing this standard also opens the possibility of including di�erent agent packages into

the scheduling mechanism, but this lies outside the scope of this thesis. Explanations

of all protocols that were used in this implementation of FIPA agents also lie outside

the scope of this thesis, but for completeness they are included in Appendix B. In

this work, each broker is linked to a single EV and negotiates its charging profile over

the aforementioned scheduling horizon (i.e. Tsch). This link is shown in Figure 5.3.

Supplier

Buyer Seller

Buyer

Load

Seller Seller

Load

Buyer

buys
from

buys
from

sells
to

sells
to

physical entity

CNP responding
broker agents

CNP initiating
broker agents

physical entities

Figure 5.3: A simplified MAS structure containing virtual seller and buyer agents
(white), that negotiate power/charging profiles for physical entities (grey).

The example in Figure 5.3 shows the structure of a MAS with three physical

agents and six virtual agents. A supplier and two loads are the physical agents that

each dispatch two brokers. One of the brokers buys energy (i.e. “allocating” energy

to the profile) and the other one sells energy (i.e. “undoing” energy from the profile).

With this kind of system architecture the scheduling algorithm can be executed to

mitigate the potential EV charging spikes.

How this MAS is implemented, synchronised and desynchronised is explained in

the following sections, Section 5.3.1 and Section 5.3.2, respectively. Subsequently, in

Section 5.3.3, all case studies and performance metrics that are used to assess the

MAS performance are outlined.
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5.3.1 MAS Implementation

The MAS is implemented in Java and runs on a parallel compute cluster (i.e. the

HTCondor cluster at the former School of Systems Engineering at the University of

Reading). How the compute cluster was used to realise multiple agents is shown in

Figure 5.4.

lab PC HTCondor
master node network drive

fast
network storage

submit

network
load *.jar file

MAS(1)
worker1

MAS(2)
worker2

MAS(3)
worker3

MAS(4)
worker4

worker pool

fast data
normal data

message

Figure 5.4: The implementation of FIPA on HTCondor.

In this figure, Figure 5.4 a collection of MAS simulations is compiled in order to

extensively cover the algorithm’s operating spectrum. This compilation is done at

the laboratory workstation. More specifically, 10000 repetitions of the scheduling al-

gorithm are queued for a single baseline load, but with di�erent – and — parameters.

Therefore, the algorithm’s parameter sensitivity is probed at a resolution of 0.01 for

both – and — (i.e. – œ {0.01, 0.02, . . . , 1.00} and — œ {0.01, 0.02, . . . , 1.00}). This

queue of 10000 simulations is then submitted to the HTCondor master node which

schedules the execution of each simulation to its pool of workers. Each worker inter-

nally simulates an instance of the MAS and stores its outputs to a fast networked

storage which also serves as the worker’s data source. The Irish dataset [201] com-

prising several weeks of uninterrupted power data is used since it also provides 1540
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di�erent half-hourly load profiles. Given this large number of load profiles, provided

from the Irish dataset, and assuming a typical distribution network of 55 customers,

a theoretical limit of 6.11 ◊ 10101 simulations would exist. Due to the limited time

and size of the available worker pool (ca. 200 workers), a total number of 1.5 ◊ 107

MAS simulations is chosen to yield a su�ciently accurate estimate of the algorithm’s

performance. For all submitted simulations a relatively high EV uptake of 20% was

chosen in order to maximise the e�ect of badly scheduled EV charging and in order to

give the algorithm a larger energy volume when adjusting the EV charging schedules.

Also, in the diagram in Figure 5.4, all bold arrows indicate data transmissions that

are faster than the lab PC connection (this connection is used to acquire and store the

datasets that are used for each MAS simulation), solid arrow indicates the loading of

simulation data and the dotted arrows indicate the software messages to submit and

launch the MAS simulations.

5.3.2 MAS Desynchronisation

Originally the smart-charging algorithm was intended to run in a synchronised MAS

environment as shown in Figure 5.1. However, when aiming to desynchronise this

operation two distinct ways exist: Either any idle state that is interrupted by the

synchronising signal (which is shown in Figure 5.1) is removed and agent execution

continues immediately or agents are launched with a random jitter and operate in an

execution loop with a fixed time delay. Although the first approach would result in

the quickest simulation execution, it still would require a synchronised start since one

agent would already finish all algorithm iterations by the time a second agent joins the

MAS. Therefore, only the second way yields a truly desynchronised and simultaneous

execution of all agents (i.e. guaranteeing that all agents partake in the scheduling

process). Furthermore, using this jitter and therefore extending the execution time of

each simulation makes the algorithm compliant with the compute cluster’s terms of
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usage since it would otherwise threaten to overload HTCondor by having to manage

the submission and data transfer between all workers at once.

In order to implement the second way of desynchronising agents, each agent is

equipped with its individual loop timer that regulates its execution behaviour. All

agents are launched in quick succession and immediately begin their enumeration

and scheduling tasks. Desynchronisation amongst all agents is then achieved by

introducing a jitter to both the agents’ loop timers and the period between successive

agent launches. The resulting MAS then consisted of a completely desynchronised

collection of agents (i.e. none of the agent’s loop execution is aligned or dependent on

any other agent’s loop execution). An example of this desynchronisation mechanism

is presented in Figure 5.5.

From Figure 5.5 the successful desynchronisation can be observed since the sup-

plier never receives more than one message at a time. Whilst the synchronised and

desynchronised algorithm implementation do not di�er in the scheduling method,

their updating procedure does distinguish them. More specifically, for the synchro-

nised implementation the algorithm obtains the complete demand (i.e. Equ. 5.2)

after all EVs have sent their updated charging profiles. The desynchronised imple-

mentation on the other hand receives intermittent updates of the network demand.

To investigate the di�erence in performance a set of cases and performance metrics

are defined in the following section, Section 5.3.3.

5.3.3 Cases and Performance Metrics

A set of load profiles is assessed with three di�erent configurations:

1. Synchronised algorithm execution

2. Desynchronised algorithm execution with regular loop delays

3. Desynchronised algorithm execution with irregular loop delays
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EV0 EV1 EV2 EV3 EV4

start delay

loop jitter

loop jitter

loop jitter

loop jitter

Figure 5.5: Example of agent desynchronisation when running through algorithm
iterations in their respective execution loop. Here, communication events are in quick
succession, but never at the exact same time.

142



For each load profile 10000 MASs are simulated to cover a high range of – and —

parameter pairs. In this context each simulation is seen as an individual case study.

Therefore each case study executes up to 100 iterations after which the smart-charging

algorithm terminates. Throughout the progress of executing the algorithm every EV’s

charging profile is recorded for each iteration. Also, when the simulation terminates

the final aggregated charging profile is also recorded. Therefore, an information on

the development of the total demand profile can be obtained for every single algorithm

iteration. The performance of the algorithm is then determined by assessing the shape

of the resulting demand profile by using the Peak-to-Average Ratio (PAR) and the

Transient power metric (TRA).

Similar to the previous chapters (i.e. Chapter 3 and Chapter 4) the PAR and TRA

values are used as performance metrics for the demand profile. There two metrics,

respectively ’
PAR(pnet

n ) and ’
TRA(pnet

n ), have already been defined in those preceding

chapters. Here, p
net

n denotes the total network demand (i.e. p
net

n = p
base + qU

u=1
p

EV

u,n)

for algorithm iteration n and as a reminder the two parameter definitions are included

in Equation 5.7 and Equation 5.8, respectively.

’
PAR(pnet

n ) :=
A

maxt(pnet

n )
1

T

qT
t=0

pnet
n (t)

B2

where p
net

n = (pnet

n (t)) (5.7)

’
TRA(pnet

n ) :=
ı̂ıÙ 1

N ≠ 1

N≠1ÿ

n=1

(pnet
n+1 ≠ pnet

n )2 where p
net

n = (pnet

n (t)) (5.8)

If the proposed scheduling algorithm successfully fills valleys and avoid adding

new charging peaks then the gap between mean and maximum demand reduces and

’
PAR in Equation 5.7 tends towards one. At this point one might assume a perfectly

flat demand profile. However, if the total charging power of all EVs constructively

superimposes at the same time and if this additional power does not increase the daily

demand peak then ’
PAR would still decrease despite the unwanted demand shape.

Therefore, the change in power (i.e. the mean transient) is also taken into account
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in Equation 5.8 with ’
TRA. This value is only lowered when the change in power

between consecutive time-steps is reduced and thus the profile becomes smooth.

When the scheduling algorithm was detailed in Section 5.2.3, convergence for

the synchronised case was guaranteed since the algorithm follows the D’Alembert

Criterion. This criterion holds if the ratio between the metrics for the current and

previous algorithm outputs (i.e. from Algorithm 1) is less than one or; as long as

these values are decreasing for every successive algorithm iteration. Formally, this

criterion is satisfied when

lim
næŒ

|’PAR(pnet

n )|
|’PAR(pnet

n≠1)|
< 1 where n Ø 2 and ’

PAR(pnet

n ) ”= 0 (5.9)

and

lim
næŒ

|’TRA(pnet

n )|
|’TRA(pnet

n≠1)|
< 1 where n Ø 2 and ’

TRA(pnet

n ) ”= 0 (5.10)

These two convergence criteria in Equation 5.9 and Equation 5.10 are limited to

values of ’
PAR and ’

PAR greater than zero. ’
PAR satisfies this criterium since the ratio

between maximum and mean can only reduce to a value of one. ’
TRA on the other

hand may reduce to a value of zero. To prevent this from happening, the number

of EVs and their total demand are limited to a value that could not fully “fill” the

network demand’s valleys and lead to a perfectly flat demand profile.

Although the chosen D’Alembert Criterion can be used to validate whether the

smart-charging algorithm converges, it cannot produce the rate of convergence. In-

stead the rate of convergence is determined by an exponential decay function (for

example similar to Laplace). Since the underlying mathematical function is unknown,

an estimated exponential is used instead. The estimate is obtained by fitting an ex-

ponential function to the series of ’
PAR and ’

TRA values over all iterations, and by

using the following definition of a simple exponential function:
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fn(a, b) = ae
≠bn where a œ R>0 and b œ R>0 (5.11)

In Equation 5.7 a is the zero-crossing point of this function and b the rate of

convergence. The size of b indicates how fast the values converged which is why b is

used as a convergence indicator. Values for a and b are found by reducing the error

between the exponential function and the series of ’
PAR or ’

TRA values, i.e.:

min
a,b

Nÿ

n=1

---
1
’PAR(pn) ≠ min(’PAR(p))

2
≠ fn(a, b)

--- (5.12)

and

min
a,b

Nÿ

n=1

---
1
’TRA(pn) ≠ min(’TRA(p))

2
≠ fn(a, b)

--- (5.13)

It is however worth mentioning that the condition is not satisfied when – = 1 and

— = 1 since in this case an algorithm behaviour is expected where each EV’s demand

is oscillating between a set of profile troughs. A similar behaviour has already been

observed by Karfopoulos et al. in [46] which is why the main part of the results in

this chapter study values where – and — are not one at the same time.

Results are split into three subsections. In the first subsection, results are pre-

sented for the time-series evolution when using the algorithm in a synchronised MAS.

Di�erent – and — values are used to explore and show the sensitivity of the algo-

rithm. With this in mind the corresponding ’
PAR and ’

TRA values are presented to

show their link to the underlying load profile’s shape and their convergence values

(i.e. b is also presented). In the end, a complete set of final ’
PAR and ’

TRA values,

as well as their convergence values, b, are plotted for the entire spectrum of – and

— pairs. This is to show the sensitivity of the algorithm for the complete range of –

and —.

The second subsection then introduces algorithm desynchronisation, but with reg-
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ular loop delays. Then the complete analysis (i.e. as performed for the first subsec-

tion) is repeated for the results in this second subsection, in order to compare them

with the results in the previous subsection.

In the third and last subsection, the algorithm desynchronisation is changed so

that the algorithm’s loop delays are irregular. All results are once again compared to

the preceding two subsection of the results by following the same analysis.

5.4 Results and Discussion

5.4.1 Algorithm performance for synchronised operation

The objective of the smart-charging algorithm is to distribute the charging demand

of a fleet of EVs over the underlying baseline load in such a way that no additional

demand spikes are produced. After assigning each EV’s energy demand to its initially

known demand trough, the algorithm produces a new demand spike since all EVs are

charging simultaneously. Through repetitive iterations and reallocating a portion of

the assigned energy to di�erent demand troughs, the algorithm is then able to spread

all EVs’ demands to form a flat demand profile in the end. This process is shown in

Figure 5.6.

Here, the first algorithm iteration is shown in Figure 5.6a, where allocated power

profile produces two new morning spikes of around 200kW and subsequently 110kW.

The second iteration however reduces these spikes by the factor – (i.e 0.2) and redis-

tributes the undone charging powers over the new power profile. Figure 5.6b shows

this reduction and reallocation. Figure 5.6c is the third iteration that reduces and

redistributes the peaks even further. In the end (i.e. when n = 100) the resulting

power profile becomes as flat as possible which is shown in Figure 5.6d. Throughout

these iterations, it can be observed how the peak load in the total power (i.e. pn)

reduces and it can be observed how the changes in charging power (i.e. pn+1
≠ pn)
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(a)

(b)

(c)

(d)

Figure 5.6: Synchronised time series evolution for – = 0.02 and — = 0.20, where (a)
is at n = 1, (b) is at n = 2, (c) is at n = 3, and (d) is at n = N ≠ 1.
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(a)

(b)

(c)

(d)

Figure 5.7: Synchronised time series evolution for – = 1.00 and — = 1.00, where (a)
is at n = 1, (b) is at n = 2, (c) is at n = 3, and (d) is at n = N ≠ 1.
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reduce in variance, which indicates that the algorithm works for the chosen parame-

ters of – and —. However, di�erent parameters of – and — do impact the performance

of this synchronised algorithm execution as shown in Figure 5.7.

iteration (n) – = 0.02 and — = 0.20 – = 1.00 and — = 1.00
’PAR ’TRA ’PAR ’TRA

1 46.84 45.86 46.84 45.86
2 30.61 35.54 47.66 46.26
3 20.10 27.31 46.84 45.86
4 13.28 20.75 47.66 46.26
5 8.83 15.56 46.84 45.86
6 5.93 11.41 47.66 46.26
7 4.02 8.20 46.84 45.86
8 2.76 5.83 47.66 46.26
9 1.92 4.24 46.84 45.86

10 1.83 3.22 47.66 46.26
... ... ... ... ...

100 1.83 2.72 47.66 46.26
convergence (b) 0.47 0.32 0.00 0.00

Table 5.1: Comparison of ’
PAR and ’

TRA for two – and — parameter pairs as shown
in Figure 5.7 and Figure 5.6. Each value per iteration n and the convergence b is
shown.

Whereas the – and — parameters use to produce the results in Figure 5.6 reduced

the power spike, those parameters in 5.7 where – = — = 1.0 did not. In fact, an

oscillating behaviour can be observed since the initially applied power profile is com-

pletely undone and completely reassigned onto a di�erent demand trough. Since this

produces similar peaks, the same procedure repeats and reassigns the complete power

profile back to the original demand troughs. In the end, these charging spikes can

never be fully mitigated and the algorithm did not smoothen the total demand. The

resulting charging spike of more than 200kW could therefore cause significant issues if

the underlying physical network has not been scaled appropriately, for example. This

longevity of issue becomes more evident when comparing the ’
PAR and ’

TRA values

for both parameter pairs. The evolution of ’
PAR and ’

TRA, as tabulated in Table 5.1,
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shows this di�erence in performance and convergence of the algorithm when subjected

to di�erent values of – and —. Those figures indicate that a well chosen pair of – and

— results in a convergence value (i.e. b) that is greater than zero. No convergence

occurred however for those values of – and — that resulted in the oscillating behaviour

(i.e. convergence rate b is zero).

Next, the entire range of – and — needed to be studied since di�erent parameter

pairs are likely to result in di�erent convergence rates (and therefore di�erent algo-

rithm performance). These results (i.e. for the synchronised algorithm performance)

are plotted in Figure 5.8.

Figure 5.8a and Figure 5.8c show how the final values for both ’
PAR and ’

TRA

were lowest when either – or — was chosen closer to zero. This result coincides

with the finding that hard reduction and reallocation lead to an oscillating behaviour

of the algorithm. Similarly, the convergence of those two performance metrics, as

shown in Figure 5.8b and Figure 5.8d, was highest when – approached one and —

approached zero. This behaviour is by design since a larger value of – increases the

rate at which the currently applied peak is reduced whilst a smaller value of — limits

the amount that can be reallocated for each time slot. Such a clear di�erence in

behaviour for di�erent pairs of – and — indicates an optimal operation region of the

algorithm within the top right quadrant of the plot. This quadrant indicates optimal

operation since low ’PAR and ’TRA values are achieved (see Fig. 5.8a and Fig. 5.8c)

at a relatively high rate of convergence (see Fig. 5.8b and Fig. 5.8d). Whether the

algorithm still performs in this way when introducing desynchronisation is answered

in the subsequent section, Section 5.4.2.
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(a) (b)

(c) (d)

Figure 5.8: Full range analysis of – and — for the synchronised MAS where, (a) shows
the final ’PAR, (b) shows the convergence, b, for ’PAR, (c) shows the final ’TRA, and
(d) shows the convergence, b, for ’TRA (red indicates missing data).
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(a)

(b)

(c)

(d)

Figure 5.9: Desynchronised time series evolution for – = 0.02 and — = 0.20, where
(a) is at n = 1, (b) is at n = 2, (c) is at n = 3, and (d) is at n = N ≠ 1.
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5.4.2 Algorithm performance for desynchronised operation

with regular timing

Looking at the evolution of the time-series when desynchronising the algorithm’s

execution shows significant di�erences already. Figure 5.9 shows thie evolution for

the same parameters as those chosen for Figure 5.6. The di�erence is however that

the assignment of charging powers lead to a significantly lower demand spike at the

very beginning of executing the algorithm. Subsequent iterations then reduce this

spike much broader than it has been the case when executing the algorithm in a

synchronised manner. Therefore, more demand troughs are filled and a smoother

profile is obtained in comparison to sub-optimal pairs of – and —. It should however

be noted that the valley filling is not as e�ective, but much quicker, when compared

to the same synchronised case. After all, the initial power spike already reduced to

below 100kW, whilst the synchronised cases always started at peaks above 200kW.

This behaviour becomes particularly apparent when looking at the full range of

– and — values. Figure 5.10 shows the same full range analysis as the figure in

the previous section did, i.e. Figure 5.8. When comparing them at the same scale,

’
PAR and ’

TRA values (plotted in Figure 5.10a and Figure 5.10c, respectively) have

significantly lowered in magnitude. This indicates a much better performance of the

algorithm across the entire range of – and — parameters. Convergence rates (i.e.

plotted in Figure 5.10b and Figure 5.10d) were however not impacted to the same

extend. This indicates that the underlying execution of the algorithm still performs as

intended, but the interplay between the agents that implement this algorithm changes

the outcome of the aggregated result.

The next step is to assess whether desynchronising the algorithm’s execution by

randomising the loop delays yields any further changes in algorithm performance and

behaviour. Results from that step are presented in the following section, Section 5.4.3.
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(a) (b)

(c) (d)

Figure 5.10: Full range analysis of – and — for the desynchronised MAS where, (a)
shows the final ’

PAR, (b) shows the convergence, b, for ’
PAR, (c) shows the final ’

TRA,
and (d) shows the convergence, b, for ’

TRA (red indicates missing data).
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5.4.3 Algorithm performance for desynchronised operation

with irregular timing

As shown in Figure 5.11, the di�erence between regular and irregular loop delays

when executing the smart-charging algorithm is barely noticeable. The interlaced

querying still causes each agent to react to a slightly di�erent network demand profile

which results in a varied power profile allocation. A functioning peak reduction

behaviour is therefore a positive sign since this irregular algorithm desynchronisation

(as introduced in Section 5.3.2) represents the worst algorithm deployment scenario.

Performance and convergence do however need to be inspected for the complete range

of – and — values so that the results can be compared to the previous findings.

Figure 5.12 shows the results for this range of – and — values when executing

the algorithm on a desynchronised MAS with irregular loop delays. The values for

’
PAR and ’

TRA are still significantly lower than they were for the synchronised case,

but they do not di�er much from the regular desynchronisation case. The same is

true when comparing convergence which indicates that the algorithm’s underlying

execution still performs as intended.
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(a)

(b)

(c)

(d)

Figure 5.11: Desynchronised time series evolution when using irregular loop delays
for – = 0.02 and — = 0.20, where (a) is at n = 1, (b) is at n = 2, (c) is at n = 3, and
(d) is at n = N ≠ 1.
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(a) (b)

(c) (d)

Figure 5.12: Full range analysis of – and — for the desynchronised MAS with irregular
loop delays where, (a) shows the final ’

PAR, (b) shows the convergence, b, for ’
PAR,

(c) shows the final ’
TRA, and (d) shows the convergence, b, for ’

TRA (red indicates
missing data).
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5.5 Summary

When designing a smart-charging algorithm to distribute the EV load over the en-

tire day and thus avoid new demand spikes, coordination between EVs is usually

achieved by the means of ICT. In this chapter, Chapter 5, such an algorithm was

developed to assure that the coordinated charging of an EV fleet dos not add a new

demand spike onto the base power profile. This algorithm was then deployed on a

MAS and controlled using two parameters, i.e. – and —, that allowed each agent to,

respectively, undo and reassign a certain amount of its charging profile. By repeating

this behaviour of undoing and reassigning fractions of the charging profile, agents

were able to respond to each other and avoid simultaneous charging actions. Two

performance metrics (i.e. ’
PAR and ’

TRA) indicated the spikiness and volatility of

the final power profile. Reducing these metrics is therefore the key function of the

smart-charging algorithm, despite the fact that the algorithm is not metric dependent

or metric driven.

Originally, the presented smart-charging algorithm was designed for synchronised

MAS execution which means that all agents obtain a network update to calculate

their charging profile at exactly the same time. For properly chosen values of – and

—, this resulted in an algorithm convergence in accordance to the D’Alembert Crite-

rion which was explained in Section 5.3.3. Extreme control parameters (i.e. where

– = 1.0 and — = 1.0) resulted in an oscillating behaviour where an aggregated charg-

ing spike of more than 200kW would continue to persist. This persistence lead to the

conclusions that the underlying scheduling algorithm is highly dependent on a correct

choice of values for – and —. The dependence on these control parameters is however

significantly reduced when desynchronising the agent communication (i.e. compared

to the synchronised execution of the algorithm). In fact regular and irregular desyn-

chronisation yielded much lower values for ’
PAR and ’

TRA as seen in Section 5.4.2

and Section 5.4.3. For example, in the synchronised case ’
PAR converged to a value
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below 5 after 100 algorithm if the control parameters where chosen for – < 0.2 or

— < 0.1. The desynchronised execution however showed that after 100 algorithm

iterations ’
PAR values always reach a value below 5.

The rate of convergence towards these final performance values on the other hand

did maintain a similar distribution to the synchronised algorithm execution despite

the di�erence in MAS execution behaviour. Therefore, the algorithm’s valley-filling

behaviour was still upheld, yet the interplay between agents that implement this al-

gorithm significantly changed the outcome of the aggregated result. This work thus

completes Objective 3 of this thesis (which was outlined in Section 1.2) since it shows

the capabilities of a smart-charging algorithm and highlights the importance of con-

sidering agent de/synchronisation when developing a multi-controller DSM network.

Such findings are especially relevant due to the inherent di�culty and cost associated

with the synchronisation of a distributed control system. More specifically, synchroni-

sation becomes particularly di�cult when the network size and number of controllers

increases. With lightweight algorithms like the one proposed in this chapter synchro-

nisation can be neglected without sacrificing algorithm performance. Nonetheless,

this finding is true for any smart algorithm as long as the algorithm is studied in

both a synchronised and desynchronised test environment; which is however done

very seldom. This inherent di�culty of designing and implementing any smart algo-

rithm with ICT would thus raise the question if it is possible to design a cooperative

algorithm that does not rely on ICT. The subsequent chapter, Chapter 6, intends to

answer this question.
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Chapter 6

Cooperative Battery Operation

without Need for Communication

Infrastructures

M. J. Zangs, P. Adams, et al., “Distributed Energy Storage Control for Dynamic

Load Impact Mitigation,” Energies, vol. 9, no. 8, p. 647, August 2016

— Available: https://dx.doi.org/10.3390/en9080647

T. Yunusov, M. J. Zangs, et al., “Control of Energy Storage,” Energies, vol.7, no 10,

p. 1010, July 2017

— Available: https://doi.org/10.3390/en10071010

6.1 Overview

In the past three chapters of this thesis on-line control methods have been developed

to optimally control power injection into the LV network and to shave or prevent load

peaks. Chapter 3 and Chapter 4 showed how such an on-line control can be tuned to

maximise BESS impact on a three-phase LV network and how it can also minimise

both daily (i.e. half-hourly) and intermittent (i.e. sub-half-hourly) demand peaks.
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Then, in Chapter 5 a smart-charging algorithm was developed to mitigate charging

peaks from an EV fleet. This algorithm’s communication requirements were analysed

by executing it in di�erent MAS environments where its distributed control was run

in both a synchronised and desynchronise system. It was found that control methods

that rely on such information exchange also rely on a stable ICT infrastructure since

the impact of control parameters on the algorithm’s global performance significantly

deviated from the expected smart-charging behaviour. To continue contributing to-

wards the aim of this thesis, in this chapter, Chapter 6 the impact of charging an EV

fleet is mitigated in a di�erent communication-less approach. More specifically, this

chapter addresses Objective 4 of this thesis (which is outlined in Section 1.2) and

proposes an individually tuned control algorithm for multiple household connected

BESSs in order to mitigate the impact from charging EVs. As already discussed in

the literature review in Chapter 2, although the adoption of EVs is often seen as the

potential solution to decarbonise future transport networks, conventional charging

(i.e. “dumb-charging”) is expected to dominate the domestic charging demand [183].

In the near future such a charging behaviour is expected to put the most significant

burden on the power distribution network. This burden is aimed to be mitigated

by the extended control of distributed BESS that is proposed in Chapter 6. More

specifically, the proposed algorithm uses an individualised Set-Point Control (SPC) to

regulate bi-directional battery power flow and is built upon the traditional Additive-

Increase Multiplicative-Decrease (AIMD) algorithm for stability [191]. Results show

how the developed battery control method reduces voltage deviation, how it reduces

over-currents and how it reduces the otherwise uneven usage of deployed batteries

without relying on any ICT. Equalising this uneven battery usage leads to a more

homogeneous operation of all of the distributed BESSs and prevents unequal degra-

dation rates and potentially unfair device utilisation.

The remainder of Chapter 6 is organised as follows: Section 6.2 gives some back-
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ground to related work on AIMD algorithms on which this research is based. Sec-

tion 6.3 outlines the EV, network and storage models used in this research. Ad-

ditionally, it explains the assumptions that accommodate and justify these models.

Section 6.4 elaborates on the proposed AIMD control algorithm (AIMD+). Next,

Section 6.5 details the implementation and scenarios used for a set of test cases. For

later comparison, this section also outlines a set of comparison metrics. Section 6.6

presents and discusses the results, followed by a chapter summary in Section 6.7.

6.2 Related Work

The main body of existing literature on communication-less control has already been

covered in Section 2.4.3. Within this literature the main usage of BESS in LV dis-

tribution networks is to assure voltage security (this was addressed in Section 2.4.3

i.e. [39,110,154,155,158]). However, as also identified by Hatziargyriou et al. in [134],

the underlying but strong requirement for a communication infrastructure to relay

network information and control instructions still remains. Therefore this chapter

presents a control algorithm that removes the need for any such BESS communica-

tion. It does so by implementing local voltage measurements with individually tuned

control parameters which are used to infer the network operation from a local stand-

point. The underlying coordination mechanism of each control entity is of particular

importance so that conflicting device behaviour is prevented. An AIMD algorithm

is perfectly suited for such coordinated control despite originating from a di�erent

research area. In this section, Section 6.2 the origin and current usage of AIMD are

explained to emphasise the algorithm’s suitability and room for improvements.

Originally, AIMD algorithms were applied to congestion management in telecom-

munication networks using the TCP protocol [191] (i.e. to maximise utilisation

while ensuring a fair allocation of data throughput amongst a number of competing
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users [192]). Later, AIMD-type algorithms have also been applied to power sharing

scenarios in LV distribution networks where the limited resource is the availability

of power from the substation’s transformer. For EV charging, one such algorithm

was initially proposed by Stüdli et al. in [193] yet this algorithm still required a one-

way communication infrastructure to broadcast a “capacity event” [194, 195]. Later,

their work was extended to include vehicle-to-grid applications with reactive power

support [196], but the ICT requirements were still not reduced. The battery control

algorithm that is proposed in this chapter thus builds upon the algorithm used by

Stüdli et al. and Mareels et al. [212], where EV charging was organised by including

bidirectional power flow and the use of a reference voltage profile that is derived from

network model simulations. Similar to the work by Xia et al. [213] who utilised local

voltage measurements to adjust the charging rate, the work presented in this chapter

only uses voltage measurements at the batteries’ connection sites in order to control

the batteries’ operations. However, the fact that the charging of EVs is based upon

a traditional (i.e. “dumb”) charging approach and that co-located BESS is used to

mitigate this charging impact di�erentiates the proposed algorithm from the work by

Xia et al.

In summary, previous research is extended by developing the bi-directional and

individually tuned BESS AIMD control algorithm since it has only utilised common

set-point thresholds for controlling each of the Distributed Energy Resources (DERs).

The approach proposed in this chapter ensures that unavoidable voltage drops along

the feeder do not skew the global control decisions. Nonetheless, despite the robust-

ness to voltage drop, voltage oscillations that are caused by demand variation are

still taken into control considerations. Therefore, in strong contrast to previous work

where substation monitoring was used to inform control units of the transformer’s

present operational capacity, the proposed algorithm does not require this informa-

tion and does not require such any extensive ICT infrastructure.
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6.3 System Modelling

In this section, Section 6.3 the underlying assumptions to validate the research are

presented. Then the EV charging model and a BESS model are explained. In the end

of this section, the network models that are used to simulate the power distribution

networks are presented.

6.3.1 Assumptions

Several underlying assumption were made to obtain the models that are used through-

out this work :

1. The uptake of EVs is assumed to increase and, hence, to have a significant

impact on the normal operation of the low voltage distribution network. This

assumption is based on a well-established prediction that the majority of EV

charging will take place at home [214].

2. The transition from internal combustion engine-powered vehicles to EVs is as-

sumed to not impact the users’ driving behaviour - apart from the introduc-

tion of home-charging. Similar to [215] this assumption allows the utilisation

of recent vehicle mobility data [216] to generate leaving, driving and arriving

probabilities, from which the EV charging demand can be determined and the

resulting energy demand can be calculated.

3. The transition to low carbon technologies will increase the variability of electric-

ity demand and therefore, grid-supporting devices such as BESS are anticipated

to play a more important role [217]. Hence, alongside a high uptake of EVs an

increased adoption of distributed BESS devices is assumed.

4. A realistic behaviour of BESS is also assumed since they are not 100% e�cient

at storing and releasing electrical energy as in [95]. Furthermore the assump-
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tion is made that BESS start the simulations at 50% State of Charge (SOC).

Additionally, it is assumed that BESS utilisation will degrade its energy storage

capability and power performance over time as shown in [218]. Therefore, the

requirements for equal and fair storage usage is of high importance.

5. It is assumed that the load profiles provided by the IEEE Power and Energy

Society (PES) are su�cient as base load profiles for all simulations and capture

enough realistic demand variability to generate results from which conclusions

(regarding the algorithm performance) can be drawn.

6.3.2 EV charging behaviour

An empirical EV model was developed to capture the underlying driving behaviour

that was captured in the publicly-available car mobility dataset named Mobilität

in Deutschland that was published by the German Department of Transport [216]

and validated by Dallinger et al. in [215]. This dataset contained three parts: the

probability of starting a trip, ns(t), the probability of a weekday trip being of a certain

distance, wwd(t), and the probability of a weekend trip being of a certain distance,

wwe(t). Both probabilities are at a 15 minutely period. The probability of starting

a trip (i.e. ns(t)) is approximated by three continuous normal distribution functions

since it is assumed that driver behaviour is distributed normally around three key

times throughout the day. These three key times are: morning time to leave home to

drive to work; lunchtime to leave home to run errands; and evening time to return

home. It should be noted that the naming is purely for exemplification and that

this choice of three normal distributions reflects the average vehicle usage determined

in the dataset [216]. However, individual driving behaviour di�ers from these three

events, which is why the models only uses statistical representations. Therefore,

and to avoid splitting the dataset into an arbitrarily large number of approximating

distributions, these three daily events are chosen as a basis for the subsequent work,
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and each distribution is based on the subsequent equation of a normal distribution:

n̂x(—x, µx, ‡x, t) := —x
1

‡x

Ô
2fi

exp
C

≠(t
/24 ≠ µx)2

2‡2
x

D

where t œ [0, 24] and —x œ R and µx œ R and ‡x œ R
(6.1)

For better readability and since they are function specific constants, —x, µx and ‡x

are dropped from the equations within the text - i.e. n̂x(—x, µx, ‡x, t) is abbreviated

by n̂x(t). From Equation 6.1 a probability distribution is denoted n̂m(t) to represent

the probability of a vehicle leaving in the morning. n̂l(t) represents the probability

of it leaving during lunch time and n̂e(t) represents the probability of an EV leaving

during the evening. If it is assumed that vehicles perform a round trip from their

home to a certain location and back, then a symmetric commuting behaviour (i.e.

vehicles departing in the morning return during the evening) and an equality amongst

the three probabilities (i.e. a constraint) can be defined as follows:

0 =
⁄

24

0

n̂m(—m, µm, ‡m, t) + n̂l(—l, µl, ‡l, t) ≠ n̂e(—e, µe, ‡e, t)dt (6.2)

To approximate the original probability of starting a trip, the di�erence between

these three probability functions’ aggregate and the original distribution (i.e. ns(t))

had to be minimised. Therefore, this minimisation problem is defined as follows:

min
—,µ,‡

⁄
24

0

(n̂m(—m, µm, ‡m, t) + n̂l(—l, µl, ‡l, t) + n̂e(—e, µe, ‡e, t) ≠ ns(t))2
dt

s.t.

Y
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0 =
s

24

0
n̂m(—m, µ,m ‡m, t) + n̂l(—l, µl, ‡l, t) ≠ n̂e(—e, µe, ‡e, t)dt

1 =
s

24

0
n̂e(—e, µe, ‡e, t)dt

where — = {—m, —l, —e} and µ = {µm, µl, µe} and ‡ = {‡m, ‡l, ‡e}

(6.3)
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This minimisation problem was solved using a Generalised Reduced Gradient

(GRG) algorithm so that the obtained parameters make the three functions fit best

to the original dataset. The resulting parameters from the GRG fitting of the three

distribution functions are tabulated in Table 6.1. Additionally, the resulting depar-

ture probabilities as well as the original data (i.e. ns(t)) are shown in Figure 6.1 for

visualisation.

Equation n̂x(t) µx (Mean) ‡x (SD) —x (Weight)

n̂m(t) 0.3049 0.0488 0.00206
n̂l(t) 0.4666 0.0829 0.00314
n̂e(t) 0.7042 0.0970 0.00521

Table 6.1: Parameters for normal distributions.

Figure 6.1: The probability of starting a trip at a particular time during a weekday,
extrapolated into three normal distributions (RMS error: 9.482%).

The second statistical data (i.e. the data capturing the probability distribution of

a trip being of a certain distance) was also extracted from the dataset and approx-

imated using probability distributions. This approximation was performed for both

the weekdays (i.e. wwd(d)) and weekends (i.e. wwe(d)) data. The Weibull function

was chosen to fit these probability distributions to the original data since it best

suited the underlying data distribution - it is defined as follows:
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if d Ø 0

0 if d < 0
(6.4)

Similar to the approximation of the probability of starting a trip, a minimisation

problem was designed to fit the two probability distributions to their original data.

min
“x,kx

⁄
(ŵx(“x, kx, d) ≠ wx(“x, kx, d))2

dd

s.t. 1 =
⁄

ŵx(“x, kx, d)dd

(6.5)

This problem was also solved using the same GRG algorithm and for better read-

ability, “x and kx are dropped within the text - i.e. Ê̂x(“x, kx, d) is abbreviated by

Ê̂x(d). As a result, the weekday trip distance distribution, ŵwd(d), and the weekend

trip distribution, ŵwe(d), could be estimated. The computed function parameters for

these two estimated distribution functions are tabulated in Table 6.2. Furthermore,

their resulting probability distributions are plotted in comparison to the real data

(i.e. wwd(d) and wwe(d)) in Figure 6.2.

Equation ŵx(d) “x (Scale) kx (Shape)

ŵwd(t) 15.462 0.6182
ŵwe(t) 38.406 0.4653

Table 6.2: Parameters for Weibull distributions.

In addition to these probabilities an average driving speed of 56 kmh or 35 mph is

taken from the UK Government Digital Service dataset [219] and an average driving

energy consumption of 0.1305 kWh/km or 0.21 kWh per mile is used, based on a BMW

i3 energy demand measured during its New European Driving Cycle (NEDC) [220].

Using the predicted driving distance and driving energy e�ciency, it is possible to

estimate an EV’s energy demand upon arrival. A single EV charging profile is then

estimated by starting to charge from the EV’s predicted arrival time until the energy
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Figure 6.2: The probability of a trip being of a particular distance during a weekday,
extrapolated into a Weibull distribution (RMS error: 3.791%).

demand has been met. To do so a maximum charging power of the UK’s average

household circuit rating (i.e. 7.4kW) and an immediate disconnection of the EV

upon charge completion were assumed to comply with the guidance of the UK’s

Electric Vehicle Home Charging Scheme [221]. It is worth mentioning, that a more

homogeneous energy demand can also be estimated when using di�erent polynomial

e�ciency functions. However, to provide a general estimate of charging demand,

using the data from a field tested vehicle is assumed su�cient for the work presented

here.

Figure 6.3: Excerpt from the aggregated 50 EVs; charging powers that were each
generated from the empirical models.

Generating several of those charging profiles and aggregating them produces an

estimated charging demand for an entire fleet of EVs. To provide an example, charge

demand profiles for 50 EVs were generated, aggregated and plotted in Figure 6.3. This
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plot shows the expected magnitude and variability in energy demand that is required

to charge several EVs at consumers’ homes based on the vehicles’ daily usage.

This model’s EV charging behaviour has been implemented to reflect EV demand

if applied today without widespread smart charging infrastructure. It does therefore

reflect the worst assumable charging scenario. This model’s data is used to simulate

additional demand in the power network which is supported by batteries whose model

is detailed in the next section.

6.3.3 Battery Modelling

In this chapter a similar BESS model is used as the one that has already been in-

troduced in Chapter 3 and in Chapter 4 of this thesis (i.e. see Section 3.3.3 and

Section 4.2.1). The following paragraphs are however used as a reminder of this

model for convenience. In summary, the battery model consists of a self-discharge

loss (i.e. µ where µ œ (0, 1]) that is dependent on the current State Of Charge (SOC)

and the model contains an energy conversion e�ciency (i.e. ÷ where ÷ œ (0, 1]) to

compute the amount of energy that is lost when charging or discharging this battery.

In an ideal battery the change in SOC is determined by the battery power pbat(t).

By sampling battery operation at a regular period (i.e. �t) the energy transferred

into the battery can be described as pbat(t)�t. The change in SOC for this ideal

battery that is of capacity C is therefore defined as:

�SOC(t) := pbat(t)�t

C
= SOC(t) ≠ SOC(t ≠ �t) (6.6)

Next, the self-discharge loss is determined by µ and is included in this ideal battery

model to represent the continual loss of energy in the battery - which is typical for

chemical energy storage. This loss, �SOCself-discharge, is defined as a proportion of the

most recent SOC and is determined using the self-discharge loss factor (i.e. µ) as
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follows:

�SOCself-discharge(t) := µSOC(t) (6.7)

Additionally, to represent the losses in the power electronics and energy conver-

sion process, an energy conversion loss (i.e. �SOCconversion(t)) is defined next. This

loss is proportional to the rate at which the battery’s SOC changes. Since a di�er-

ence is made between charging and discharging BESS, a “direction dependent energy

conversion e�ciency” (i.e. ÷̂) is derived from ÷ and used as follows:

�SOCconversion(t) := ÷̂�SOC(t) where ÷̂ œ (0, 1] (6.8)

Here, the conversion losses in the power electronics are reflected as an asymmetric

e�ciency that depends on the direction of the flow of energy. This is done by charging

the battery at a lower power when consuming energy and discharging it more quickly

when releasing energy. Mathematically, this is represented as:

÷̂ =

Y
___]

___[

÷ if �SOC(t) Ø 0

1

÷ if �SOC(t) < 0
where ÷ œ (0, 1] (6.9)

When substituting the self-discharge loss from Equation 6.7 (i.e. �SOCself-discharge)

and conversion losses from Equation 6.8 (i.e. �SOCconversion) into the SOC evolution

equation, then the full battery model (i.e. the transition from SOC(t) to SOC(t+�t))

can be derived as follows:

SOC(t + �t) : = �SOC(t) ≠ �SOCself-discharge(t) ≠ �SOCconversion(t)

= (1 ≠ µ)�SOC(t) ≠ ÷̂�SOC(t)
(6.10)

In addition, both the SOC and the battery power (i.e. pbat(t)) are constrained
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due to the device’s maximum and minimum energy storage capabilities (i.e. respec-

tively SOCmax and SOCmin and maximum charge and discharge rate Pmax). These

limitations are captured in Equations 6.11 and Equation 6.12, respectively.

SOCmin Æ SOC(t) Æ SOCmax (6.11)

|pbat(t)(t)| Æ Pmax (6.12)

6.3.4 Network Models

Similar to Chapter 3 of this thesis, the Open Distribution System Simulator (OpenDSS)

that is developed by the Electronic Power Research Institute (EPRI) was used in order

to simulate the LV energy distribution networks. It requires element-based network

models including line, load and transformer information to generate realistic power

flow results.

(a) (b)

Figure 6.4: Sample OpenDSS power networks, where consumers are indicated as red
crosses and 11/0.416-kV substations are marked with a green square. Here, (a) is the
IEEE PES EU LV test feeder, and (b) is a SSEN Common Information Model (CIM)
based feeder
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Initial simulations were conducted using the IEEE’s European Low Voltage Test

Feeder [222] and later six detailed UK feeder models were added that are based on

real power distribution networks. These models were provided by the project partner

Scottish and Southern Electricity Networks (SSEN). The SSEN circuit models were

provided as Common Information Models (CIM) during the collaboration on the New

Thames Valley Vision (NTVV) project [98]. An example of the IEEE EU LV Test

feeder and a UK feeder provided by SSEN are shown in Figure 6.4b and Figure 6.4b,

respectively. A summary of all model’s parameters is given in the Table 6.3.

Parameter IEEE Feeder SSEN Feeders
network No. 1 2 3 4 5 6 7

no. of customers 55 56 53 91 59 88 37
mean customer load (VA) 227 227 231 241 224 237 237

max. customer load (kVA) 16.8 16.8 16.8 19.5 16.8 19.5 16.8
mean net. load (kVA) 24.4 24.9 23.9 41.9 25.6 38.9 16.3
max. net. load (kVA) 72.6 72.7 72.2 92.9 73.5 89.6 60.5

Table 6.3: Network model parameters [98].

Throughout the remainder of this chapter, all excerpt and time series results were

extracted from experiments with the IEEE EU LV Test feeder (i.e. Network No. 1).

Any further results are then based on an aggregation of all networks to include their

network diversity in the analysis.

The same model-derived EV data and the IEEE provided consumer demand pro-

files were used in all power flow simulations. The resulting demand profiles therefore

represent the total daily electricity demand of households with connected EVs. These

profiles were sampled at �t = 1 minute. The OpenDSS simulation environment was

controlled using MATLAB that communicated with OpenDSS through its Common

Object Model (COM) interface which is accessible using Microsoft’s ActiveX server

bridge.
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6.4 Storage Control

In this section, the control of the energy storage system is explained. More specifically,

all parameters that are used in the Additive-Increase Multiplicative-Decrease (AIMD)

algorithm are explained first. Secondly, the structure of the BESS based AIMD

algorithm is presented, where its decision mechanism is explained in full. In the end

the voltage referencing that is used to extend AIMD to AIMD+ is detailed.

6.4.1 Algorithm Parameters

The proposed distributed battery storage control is shown in Algorithm 2. This

algorithm takes the current voltage reading at BESS level (i.e. vbat(t)), the current

BESS power (i.e. pbat(t)) and the current state of charge (i.e. SOC(t)) as time-

variant inputs. Using a set of reference parameters that include a nominal voltage

threshold (i.e. Vthr), the minimum voltage level (i.e. Vmin), the maximum voltage

level (i.e. Vmax), the minimum allowable state of charge (i.e. SOCmin), the maximum

allowable state of charge (i.e. SOCmax) and two control parameters (i.e. – and —), this

Algorithm 2 computes the next BESS power (i.e. pbat(t + �t)). Here the two control

parameters – (where – œ [0, 1]) and — (where — œ [0, 1]), respectively control the size

of the power’s additive increase step and the size of the multiplicative decrease. In

traditional Internet base applications of AIMD algorithms – is set to a value that

slowly increases the number of sent messages (for example 0.1) and — is set to a

larger value (for example 0.5) to quickly decrease throughput if congestion is noticed.

The constants Vmax, Vmin and Vthr are the maximum and minimum historic voltage

values and the set-point threshold that is used to regulate the BESS operation. In

the case when the total demand is too high, the local voltages will fall below Vthr

and the batteries reduce their charging power and eventually start discharging. This

behaviour raises overall voltage levels since the total demand on the feeder is reduced.
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Data: pbat(t), SOC(t), vbat(t), Vthr, Vmax, Vmin, SOCmax, SOCmin, –, —

Result: p(t + �t)
1 for t Ω 1 to T do

2 // Define the rate for the recent voltage reading

3 r(t) = (vbat(t) ≠ Vthr);
4 if vbat(t) Ø Vthr then

5 // If voltage levels are above a threshold and...

6 if SOC(t) Æ SOCmax then

7 // ...SOC is not at max.: increase charging power

8 p(t + �t) = pbat(t) + –Pmaxr(t)
9 else

10 // ...SOC is at max.: shut off

11 p(t + �t) = 0;
12 end

13 // If the battery has been discharging...

14 if pbat(t) < 0 then

15 // ...reduce discharging power by —

16 p(t + �t) = —pbat(t);
17 end

18 else

19 // If voltage levels are below a threshold and...

20 if SOC(t) Ø SOCmin then

21 // ...SOC is not at min.: increase discharging power

22 p(t + �t) = pbat(t) ≠ –Pmaxr(t)
23 else

24 // ...SOC is at min.: shut off

25 p(t + �t) = 0;
26 end

27 // If the battery has been charging...

28 if pbat(t) > 0 then

29 // ...reduce charging power by —

30 p(t + �t) = —pbat(t);
31 end

32 end

33 // Restrict power to BESS limits

34 pbat(t + �t) = signum(pbat(t))min(|pbat(t)|, Pmax);
35 end

Algorithm 2: Compute battery power
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For the simulations in this chapter, Vmax is set to the nominal voltage of the substation

transformer (i.e. 240V) and Vthr is set to a value below Vmax which was found by

solving a balanced power flow analysis of the underlying network. For each BESS Vmin

is then chosen as the value below Vthr so that Vthr lies equidistant to Vmax and Vmin.

The variable vbat(t) is the battery’s local bus voltage and is used to trigger control

actions. This value is obtained by solving the power flow of the underlying network

and it is used to adjust the battery power (i.e. pbat(t)) as defined in Algorithm 2.

To stay within operational limits, Pmax is set as the maximum charging/discharging

power of the battery. The charging and discharging power of the batteries is increased

in proportion to the available headroom on the network (which is inferred from the

local voltage measurement vbat(t)) to avoid any sudden overloading of the substation

transformer.

6.4.2 AIMD Algorithm Structure

The algorithm itself, as shown in Algorithm 2, contains two decision levels. The

first level (lines 4-17) determines whether the network is underloaded by comparing

the local bus voltage (i.e. vbat(t)) to the battery’s set-point threshold (i.e. Vthr). If

the network is under low load (i.e. when vbat(t) Ø Vthr) then the BESS is triggered

to decrease its power injection until it begins charging. In this case the battery’s

SOC is compared to its operation limit to check whether the battery can charge (i.e.

SOC <SOCmax). If there is enough charging capacity left then the battery’s charging

power is linearly increased using – (lines 6-8). Otherwise (i.e. when the BESS is

fully charged by reaching its highest charge level of SOCmax) the charging process is

turned o� (lines 9-11). If the battery was previously discharging however, the related

discharging power is multiplicatively reduced (lines 14-17) to begin reducing voltage

levels.

The second decision level (lines 18-32) is entered when the network is overloaded.
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If the network is under high load (i.e. when vbat(t) < Vthr) then the BESS is triggered

to decrease its charging power until it begins to inject energy into the network. In this

case the discharging power is linearly increased if the battery has enough energy stored

(i.e. SOC >SOCmin - lines 20-22). Otherwise (i.e. when the BESS has discharged

to its low charge level of SOCmin) the discharging process is turned o� (lines 23-

25). However, if the battery was previously charging, then its charging power is

multiplicatively reduced (line 28-31) to begin increasing voltage levels.

The direction of the charging/discharging power adjustment is determined by the

first decision level, as well as the threshold proximity ratio r(t). As the battery’s bus

voltage (i.e. vbat(t)) approaches the threshold voltage (i.e. Vthr) this ratio tends to zero

and thus stops the adjustments of the battery operation. Therefore the oscillatory

hunting around the BESS threshold is e�ectively mitigated. The last step of the

algorithm (lines 33-34) assures that the battery’s charge/discharge power stays within

the device’s rating (i.e. |pbat(t)| Æ Pmax).

6.4.3 Reference Voltage Profile

The di�erence in the location and load of each customer results in the over-utilisation

of the batteries that are located at the feeder end. This is particularly true when

using a fixed voltage threshold. To individualise the voltage thresholds, a reference

voltage profile is generated by performing a power flow analysis of the network model

by subjecting it to its maximum power demand. This approach is comparable to the

procedure by Papaioannou et al. in [223] who generated profiles for the control of EV

charging. In this chapter however, bi-directional power flow of BESS is controlled.

An example of a fixed threshold and reference voltage profile is shown in Figure 6.5.

Therefore, BESSs in the AIMD+ algorithm that are located at the head of the

feeder are allocated a higher voltage threshold than those towards the end of the

feeder. However, BESSs with lower thresholds are allocated a voltage threshold sim-
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Figure 6.5: An example plot showing the di�erence between the fixed voltage thresh-
old (AIMD) and the reference voltage profile (AIMD+) against the load’s distance to
its feeding substation.

ilar to that of the fixed threshold control. This allocation takes into account the

expected voltage drop that occurs along the length of the feeder and hence results in

a better tuned utilisation of all battery storage units - regardless of their distance to

the substation. For the work presented in this chapter, the voltage threshold is set in

such a way as to limit the maximum voltage drop to 3% at the end of the feeder.

6.5 Scenarios and Comparison Metrics

This section covers several scenarios that were used to test the performance of the

battery control algorithm. Following that is the definition of three comparison met-

rics. These metrics quantify the improvements caused by the di�erent algorithms in

comparison to the worst case scenario.

6.5.1 Test Cases and Scenarios

In all simulations, the EVs plug-in on arrival and charge at their nominal charging

rate until fully charged. The BESS devices were chosen to have a capacity of 7kWh

with a maximum power rating of 2kW (i.e. battery specifications are based on the

Tesla Powerwall [224]). Four excerpt cases were defined with di�erent levels of EV
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and storage uptakes. The detail of these cases are as follows:

Case A A normal scenario, where only household demand is used.

Case B A baseline or worst case scenario, in which EV uptake is 100% and no BESS

is used.

Case C An AIMD scenario in which EV uptake is 100% and each household has a

battery energy storage device. Here each battery was controlled using the

AIMD algorithm using a fixed voltage threshold.

Case D An AIMD+ scenario in which EV uptake is 100% and each household has a

battery energy storage device. Here each battery was controlled using the

AIMD+ algorithm using the reference voltage profile.

An EV uptake of 100% was adopted to represent the worst case scenario. In

addition to the four defined scenarios, a full set of simulations was performed with

EV and storage uptake varying between 0% to 100% in steps of 10%.

6.5.2 Performance Metric Definition

In order to compare the network’s performance during execution of the predefined

cases, three performance metrics (i.e. ’
ú, ’

úú and ’
úúú) are defined. These metrics

capture, respectively, the improvements in voltage violation mitigation, line overload

reduction and the equality of battery usage. They are derived from the Probability

Distribution (PD) of the underlying measurements and thus allow an comparison of

the four scenarios. Each PD is generated using the standard kernel density estimation.

In the following sections, all subscripts of the metrics notate which scenario they

represent (for example ’
úú
C represents results from Case C and ’

ú
D represents results

from Case D). For reproducibility, all excerpts to showcase the performance metrics
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were generated from simulations based on the IEEE EU LV Test feeder. Only the

full set of simulations is based on the combination of all network models.

6.5.2.1 Parameter for Voltage Improvement

Metric ’
ú is designed to assess the changes in voltage PD. For instance, a narrow

voltage PD around the nominal voltage (i.e. Vss) would indicate a stable voltage at

all nodes of the network. A wider or even shifted PD would however indicate that the

voltage deviation has increased and that voltage levels are not stable at all nodes. In

order to compare the AIMD and AIMD+ cases (i.e. respectively Case C and Case

D), the two voltage PD dependent performance metrics are defined:

’
ú
C :=

Vmaxÿ

v=Vmin

”
ú(v) [PB(v) ≠ PC(v)] (6.13)

’
ú
D :=

Vmaxÿ

v=Vmin

”
ú(v) [PB(v) ≠ PD(v)] (6.14)

”
ú(v) :=

Y
___]

___[

Vss≠v
Vss≠Vlow

if v Æ Vss

v≠Vss
Vhigh≠Vss

otherwise

where Vlow < Vss < Vhigh

(6.15)

Together with their scaling function (i.e. ”
ú in Equation 6.15) Equation 6.13 and

Equation 6.14 define the performance metrics ’
ú
C and ’

ú
D, respectively. In these equa-

tions PB(v) represents the probability distribution of all voltages for Case B (i.e.

the baseline case). The two metric specific PDs (i.e. PC(v) and PD(v)) represent the

voltage PDs (i.e. for Case C and Case D, respectively). By computing the weighted

di�erence, a reduction in probabilistic voltage deviation is found. The weighting is

necessary to emphasise those changes in PD that do not lie close to the nominal sub-
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station voltage (i.e. Vss). Vhigh and Vlow are also used in Equation 6.15 to normalise

the deviation at the upper and lower voltage bounds (these constants are also used in

the AIMD+ algorithm in Section 6.4). With ”
ú(v), regions outside the nominal oper-

ating band are thus weighted higher than those within and surrounding the nominal

voltage level. In summary, the proposed voltage comparison parameters ’
ú
C and ’

ú
D

show an improvement in voltage PD when they are negative, whereas a positive value

implies a voltage PD with higher deviation from the nominal level of Vss.

6.5.2.2 Parameter for Line Overload Reduction

Similar to measuring the voltage level improvements, all line utilisation PDs are also

compared with the base case (i.e. Case B). This follows a similar approach as in

Equations 6.13 to 6.15, but the line utilisation PD uses a di�erent scaling factor. The

two line utilisation performance metrics, ’
úú
C and ’

úú
D , for assessing, respectively, Case

C and Case D are defined as follows:

’
úú
C :=

Cmaxÿ

c=0

”
úú(c) [PC(c) ≠ PB(c)] (6.16)

’
úú
D :=

Cmaxÿ

c=0

”
úú(c) [PD(c) ≠ PB(c)] (6.17)

”
úú(c) :=

Y
___]

___[

1
c

1≠Cmin

22

if c Ø Cmin

0 otherwise

where Cmin œ [0, 1)

(6.18)

Here, PB(c) represents the baseline PD (i.e. Case B), PC(c) represents the line

utilisation PD for the AIMD scenario (i.e. Case C) and PD(c) represents the line

utilisation PD for the AIMD+ scenario (i.e. Case D). Line utilisation is computed
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as the ratio between the simulated current in each line and the nominal line rating.

A value of one would therefore indicate a fully loaded line. To scale the comparison

with the baseline case correctly, a corresponding scaling function ”
úú(c) is defined in

Equation 6.18. This function is a quadratic function since the relationship between

line current and resistive losses is also quadratic. A minimum line current (i.e. Cmin)

is however used to neglect those probabilities where lines are only lightly loaded. The

resulting scaling e�ect thus amplifies the impact of line current reduction beyond the

line’s nominal rating and reduces the weight on those improvements within the line’s

thermal constraints. For the work presented in this chapter, the value for this modifier

is set to 0.5 since only line utilisation improvements above 0.5 per unit are considered

noteworthy. In summary, a reduction in line overloads would give a negative ’
úú
C

or ’
úú
D , whereas a positive value implies a higher line utilisation or worse network

operation.

It should be noted, that maximised asset utilisation is also of benefit to the DNO

since such a state would reflect a best return for the investment. Di�erent ownership

of the support asset would therefore reflect di�erent incentives for using the asset.

Therefore, in scenarios where a longevity of BESS whilst providing network support is

of importance, the above metric is used. Nonetheless, di�erent usage and ownership

scenarios are discussed in Section 7.4 of this thesis.

6.5.2.3 Parameter for the Improvement of Battery Cycling

The final metric, ’
úúú, gives an indication of the inequality of battery cycling. Here,

one battery cycle is defined as a full discharge and charge of the BESS at its maximum

operating power. Since BESS at the bottom of the feeder are more likely to partake

in voltage correcting functions than a BESS located closer to the substation, higher

degradation would be expected. To assess the di�erence in cycling between di�erent

BESSs, the ratio between the peak and mean battery cycling is used. Previous
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chapters used this so called Peak-to-Average Ratio (PAR) to assess smoothness of

load profiles (see Section 3.3.4, Section 4.2.2 and Section 5.3.3 of this thesis). In this

chapter however, PAR is used to quantify the maximum deviation in battery usage

from the mean battery cycling. The metrics to determine the PAR for Case C and

Case D are defined as follows:

’
úúú
C := max |cC|

U≠1
qU

u=1
|cu

C|
where cC = (cu

C) (6.19)

’
úúú
D := max |cD|

U≠1
qU

u=1
|cu

D|
where cD = (cu

D) (6.20)

In Equation 6.19 and Equation 6.20 c
u is the total cycling of a BESS unit (i.e.

unit u) out of a total number of units U . For simplicity, a BESS cycling vector (i.e.

c where c = (cu)) is used to combine the cycling of all devices. To di�erentiate

between Case C and Case D, cC (where cC = (cu
C)) and cD (where cD = (cu

D)) are

respectively used to indicate the total cycling of each BESS unit for the AIMD and

AIM+ case. In the event of a perfectly equal cycling of all batteries, ’
úúú
C and ’

úúú
D

will have a value of one. But these values are expected to be greater than one since

batteries are more likely to operate di�erently. Therefore, values closer to one imply

a more equal and therefore fairer utilisation of the deployed batteries whilst values

deviating further from one imply the opposite.

6.6 Results and Discussion

In this section, all presented results were generated from the simulation of the di�erent

cases. In each of the following three subsections, the performances of the AIMD and

AIMD+ algorithm are compared against each other and the baseline cases. To do so,

the performance metrics that were outlined in Section 6.5.2 are used. Results from

the four test cases, which have been defined as Case A, Case B, Case C and Case
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D in Section 6.5.1, are explained at first. Then the results from the full analysis over

the large range of EV and battery storage uptake is presented.

6.6.1 Voltage Violation Analysis

Figure 6.6: Mean voltage profiles for all four test cases over a single day.

For the assessment of improving voltage levels, results are compared for the algo-

rithms’ performances at reducing bus voltage deviation - particularly by increasing

the lowest recorded bus voltage. Each load’s bus voltage was recorded and a sample

voltage profile (shown in Figure 6.6) was extracted. Here the bus voltage fluctuation

over time becomes apparent. It can be seen that the introduction of EVs has sig-

nificantly lowered the line-to-neutral voltage. Adding energy BESS devices did raise

the voltage levels during times of peak demand. AIMD+ did however outperform

AIMD since a further voltage increase can be seen between 17:00 and 21:00 where the

AIMD+ algorithm has elevated voltages further than the AIMD scenario. To obtain

a better understanding of the level of improvement, the voltage frequency distribution

of all buses along the feeder was generated and plotted in in Figure 6.7.

In this figure the voltage PD for all four cases were normalised and plotted against

each other. Here the previous drop in voltages that was generated by introducing EVs

is recorded as a shift in the voltage distribution towards the left. Additionally, the
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Figure 6.7: Voltage level probability distribution for the entire feeder where
’

ú
C = ≠0.153 and ’

ú
D = ≠0.135.

widened left hand tail of Case B can be clearly observed in Figure 6.7. This voltage

drop and spread is then mitigated by the introduction of the storage solutions since

the voltage PD is shifted towards higher voltage bands (i.e. towards the right).

Since the di�erence between the BESS controlled by AIMD and AIMD+ is di�cult

to see, a comparison of their underlying performance metrics (i.e. values of ’
ú) is

necessary. In Figure 6.7 for the IEEE EU LV Test feeder, the AIMD+-controlled

batteries outperform the AIMD devices since the resulting ’
ú
C is greater than ’

ú
D.

(a) (b)

Figure 6.8: Comparison of voltage improvement indices for (a) ’
ú
C indices (AIMD);

(b) ’
ú
D indices (AIMD+).

186



However, to gain a full understanding of the performance of the AIMD and

AIMD+ algorithms, a full sweep of EV and BESS uptake combinations was sim-

ulated on all available power distribution networks. The resulting parameters were

averaged and plotted in Figure 6.8.

These figures show that the AIMD+ control algorithm reduces voltage deviation

more e�ectively as the uptake in storage and EVs increases. For low storage uptake,

the AIMD algorithm does not perform as strongly since more ’
ú
C values are positive

and larger than their corresponding ’
ú
D value. This becomes more apparent when

averaging all ’
ú
C and ’

ú
D values across all EV uptakes for their common storage uptake.

The resulting averaged metrics are plotted in Figure 6.9.

Figure 6.9: Average ’
ú
C and ’

ú
D values recorded against the corresponding storage

uptake.

In this last figure (i.e. Figure 6.9) it can be seen how the sole impact of BESS

uptake reflects in a continuing improvement of voltage levels. In fact, both compared

algorithms improved the bus voltage which coincides with the findings in the case

studies. On average, this is the case for all BESS uptakes, as ’
ú
C ¥ ’

ú
D. Nonetheless,

it should be noted that for scenarios with lower BESS uptake, the AIMD+ algorithm

has better reduced the frequency of severe voltage deviations in comparison to the

AIMD algorithm. For scenarios with higher BESS uptake however, AIMD proved

more e�ective.
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6.6.2 Line Overload Analysis

Figure 6.10: Line utilisation probability distribution of all lines in the simulated feeder
where ’

úú
C = ≠0.360 and ’

úú
D = ≠0.518.

Similar to the voltage PD analysis, a PD of the line utilisation was generated and

plotted in Figure 6.10. This figure shows a normalised PD plot of the per unit current

in all lines for each of the four scenarios (here per unit represents a 100% line usage,

i.e. a line current of the same value as the line’s nominal current rating). Whilst

the case without any charging EVs (i.e. Case A) shows no overloading, Case B has

significantly widened the probability spectrum. AIMD and AIMD+ controlled BESS

can mitigate the e�ect of this EV introduction, and the di�erence in performance

becomes more apparent than it did for the voltage PD analysis. In Figure 6.10 the

PDs for Case C and Case D intersect at one per unit load, but overloads were

less likely for the AIMD+ scenario than they were for the AIMD controlled scenario.

Furthermore, in this figure it can also be observed that the used test network is of

insu�cient capacity to cater for the chosen EV uptake since the probability of line

over-utilisation is still above zero.

Nonetheless, the AIMD+ controlled storage devices yielded a noticeable reduction

in line overloads despite being a voltage driven control method. This improvement

is apparent through the compressed width of the probability distribution and the
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negative ’
úú
D value. In contrast, the AIMD controlled storage devices do not utilise

the line capacity as e�ectively as the AIMD+ controlled devices which resulted in

its value of ’
úú
C to be more positive than the value for AIMD+. To evaluate the

line utilisation improvement across all simulations, the full range of EV and storage

uptake was evaluated. The resulting plots are shown in Figure 6.11.

(a) (b)

Figure 6.11: Comparison of line utilisation improvement indices for (a) ’
ú
C indices

(AIMD); (b) ’
ú
D indices (AIMD+).

In these figures it can be seen how the performance metrics change as EV up-

take and storage uptake increase. For the AIMD-controlled BESS, the resulting ’
úú
C

values are distributed around zero throughout the entire spectrum of EV and BESS

uptake, whereas the AIMD+ algorithm achieved values of ’
úú
D of zero or below for

91% of the performed simulations. These negative values confirm the better usage of

available line capacity. This becomes particularly apparent for scenarios where very

low EV uptake is combined with larger BESS uptake. Here, AIMD-controlled storage

devices commence their initial charge simultaneously. As they are located closer to

the substation they do not measure a su�cient bus voltage o�set to regulate down

their charging power. This behaviour causes a number of line overloads at the very

beginning of the simulated days. The AIMD+ algorithm on the other hand, with its
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adjusted thresholds, is more responsive to non-optimal network operation and thus

increases the charging rate gradually.

Figure 6.12: Average ’
úú
C and ’

úú
D values recorded against the corresponding storage

uptake.

This gradual adjustment is based on the fact that the bus voltages in the AIMD+

algorithm are closer to their nominal voltages (i.e. bus voltages found by simulating

the feeder with its equally-distributed nominal load) than they are in the conven-

tional AIMD case. A greater voltage disparity which is the case in AIMD causes a

prolonged additive adjustment to the battery’s power. This prolonged adjustment

is particularly apparent for batteries situated at the bottom of the feeder since their

voltage measurements deviate the furthest from the substation voltage level. AIMD+

on the other hand prevents this behaviour by setting the voltage threshold based on

the network’s nominal voltage drop - which is dependent on the distance between

the BESS and its feeding substation. As a result, the set-point voltage thresholds at

the bottom of the feeder are lower than those closer to the substation and hence the

additive power adjustment becomes equal for all BESS along the feeder. Therefore,

by applying these individualised control thresholds, the sensitivity of the algorithm

is corrected, whilst successfully mitigating the severity of line overloads.

Averaging the ’
úú
C and ’

úú
D values over all EV uptakes gives a clearer indication of

performance since this now becomes the only variable in the performance analysis.
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The result is plotted in Figure 6.12. Here the hypothesis that AIMD-controlled energy

storage devices do not always improve line utilisation is confirmed. In contrast the

AIMD+-controlled devices succeed on average at e�ectively reducing line overloads.

This is also demonstrated since the values of ’
úú
C lie close to zero for low BESS uptake

and stay above the values for ’
úú
D that are shown Figure 6.12.

Whilst the deployment of energy storage has often been seen as a possible solution

to defer network reinforcements, the presented results show that this is not always the

case. In fact, due to technical limitations of the algorithm, choosing an appropriate

control algorithm enables the BESS to perform optimally. This becomes particularly

apparent when energy storage devices need to recharge their injected energy for times

of peak demand. For the AIMD case, this recharging was not controlled in accordance

to the underlying network properties which led to higher line currents. The proposed

AIMD+ algorithm was not as susceptible to this kind of behaviour since it has been

designed to take battery location into account. This immunity and well-controlled

power flow caused little to no additional strain on the network’s equipment, allowing

the deployed storage devices to free some of the network resources.

6.6.3 Battery Utilisation Analysis

In this part of the analysis, the batteries’ equality of use was evaluated by comparing

the battery cycling for each AIMD implementation. As already mentioned, a single

battery cycle is defined as a full discharge and recharge. In Figure 6.13 the battery

power profiles are plotted along the horizontal axis and they are ordered by increasing

distance to the substation:

Figure 6.13 shows a load profile plotted from the left to right for each load, where

all loads are numbered in increasing order (top to bottom) as their distance to the

substation increases. The shade of the colour indicates the energy consumed or in-

jected into the grid. From this figure, it can be seen that only about one third of the
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(a) (b)

Figure 6.13: Battery power profiles of each load’s battery storage device over four
days for (a) Case C and (b) Case D.

deployed storage devices were active in Case C (i.e. using AIMD control) whereas all

devices are utilised in Case D (i.e. using AIMD+ control). Alongside the these power

profiles, the SOC profiles were also recorded, and from these recorded battery SOC

profiles, the net cycling of each battery was computed and divided by the duration

of the simulation to give an average daily cycling value. This average battery cycling

value is plotted for each load in Figure 6.14a - the corresponding box-plot is included

in Figure 6.14b, where the central red mark indicates the median, the bottom and

top edges of the blue box indicate the 25th and 75th percentiles, respectively, and the

whiskers extend to the most extreme data points not considered outliers.

These two plots in Figure 6.14 show the under-use of AIMD controlled batteries,

as well as the variance in battery usage under AIMD control (i.e. Case C) and

AIMD+ control (i.e. Case D). In fact, when using the AIMD control, 20 out of 55

batteries experienced a battery cycling of less than 10% per day whereas the remaining

devices were utilised fully. This discrepancy causes the cycling performance metric of

Case C (i.e. ’
úúú
C ) to be higher than the performance metric of Case D (i.e ’

úúú
D ).

Such a di�erence supports the assumption that AIMD+ yields a more equal battery
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(a) (b)

Figure 6.14: Each load’s battery cycling compared for (a) each BESS and (b) the two
cases, where ’

úúú
C = 3.89 and ’

úúú
D = 2.54.

cycling than traditional AIMD. For a more detailed comparison however, the PARs of

the batteries’ daily cycling over the full range of EV and storage uptake scenarios are

plotted in Figure 6.15 (Section 6.5.2 gave details on all performance metrics including

’
úúú which is the PAR as defined in Equation 6.19 and Equation 6.20):

(a) (b)

Figure 6.15: Peak-to-Average Ratios (PAR) of the battery cycling profiles of each
load’s battery storage device over four days for (a) Case C and (a) Case D.

In Figure 6.15 it can be seen that for any EV uptake scenario, AIMD-controlled

energy storage units were cycled less equally than the AIMD+ controlled devices. The

results also show that with an increasing storage uptake, BESS were cycled less equally
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for both control methods. However, AIMD+ (i.e. Case D) always outperformed the

traditional AIMD algorithm (i.e. Case C). When averaging the values of ’
úúú over

all EV uptake percentages for all batteries’ SOC profiles, then a clear performance

di�erence between AIMD and AIMD+ can be observed. These resulting averaged

PARs are plotted in the subsequent figure, Figure 6.16.

Figure 6.16: The performance index ’
úúú
C for AIMD storage and ’

úúú
D for AIMD+

storage control against storage uptake.

Although the AIMD controlled batteries were on average cycled less than the

batteries controlled by the proposed AIMD+ algorithm, inspecting the average by

itself produces a distorted understanding of the algorithm’s performance. After all,

since more than a third of the assigned AIMD BESS devices never partook in the

network control, a lower average cycling would be expected to begin with. The

di�erence in cycling across all batteries (or the cycling PAR) reveals the di�erence

between usage equality as well as e�ective usage. And since a lower PAR indicates a

more equal usage of the deployed batteries, AIMD+ clearly outperforms AIMD when

subjected to the provided power data.
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6.7 Summary

In this chapter, Chapter 6 an algorithm is proposed for distributed battery energy

storage in order to mitigate the negative impact of highly variable and uncontrolled

loads - such as the charging of EVs. Unlike previous algorithms, the improved al-

gorithm (i.e. AIMD+) only uses local bus voltage measurements to issue control

instructions. It implements a reference voltage profile which is derived from power

flow analysis of the distribution network for its individualised set-point control. Tak-

ing the distance to the feeding substation into account allows an optimisation of

the algorithm’s parameters for each BESS. Simulations were performed on the IEEE

EU LV Test feeder and a set of real UK LV network models that were provided by

SSEN. Comparisons were made of the standard AIMD algorithm with a fixed voltage

threshold against the proposed AIMD+ algorithm with its individualised control. A

set of European demand profiles and a realistic EV travel model were used to feed

load data into the simulations. For all conducted simulations, network performance

was improved by using the AIMD and AIMD+ algorithm in the distributed BESS.

However, AIMD+ frequently outperformed the traditional AIMD control. Although

the improved algorithm only resulted in a comparable reduction of voltage variation

(for example voltage deviation was reduced by an average of 4% when using AIMD

and an average of 5% when using AIMD+ in a scenario of 50% BESS uptake), it did

outperform AIMD when decreasing line utilisation, thus reducing the frequency of

line overloads. But the AIMD+ algorithm made better use of the deployed battery

assets since it always reduced the corresponding metric (i.e. ’
úú
D ) by an additional

7.1% in comparison to the AIMD algorithm’s results (i.e. for ’
úú
C ). Additionally,

the same AIMD+ algorithm equalised the cycling and utilisation of battery energy

storage to since the BESS located at the top of the feeder were also included into

the distributed BESS operation. Quantitatively, this was shown by a reduction in

the PAR of battery cycling, where the AIMD+ algorithm outperformed the AIMD
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algorithm by an average of 1.3 for all storage uptake scenarios (i.e. when comparing

’
úúú
D with ’

úúú
C ). Despite being data driven, all findings indicate a similar improvement

in performance when extending the traditional AIMD based control to AIMD+. As

a result, Objective 4 (which was outlined in Section 1.2 of this thesis) has been

met since all the aforementioned benefits were achieved without the use of any ICT

infrastructure whilst satisfying all assumptions that were outlined in Section 6.3.1.
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Chapter 7

Discussion and Conclusion

The aim of this thesis was to present the development of novel control methods for

Battery Energy Storage Solutions (BESS) that aid Distribution Network Operators

(DNOs) in improving the operation and reliance of their Low-Voltage (LV) networks.

Throughout this thesis, methods have been developed and studied that concern the

scheduling and control of energy storage in the LV network. Each contribution chap-

ter of this thesis thus built upon the outlined gaps in literature (i.e. presented in

Section 2.5), developed control methods, presented its findings and drew conclusions

upon those. From the collection of results and findings of each chapter, this thesis

provides several contributions to knowledge. Therefore, this chapter is going to ret-

rospectively summarise those contributions to knowledge and link them back to the

overarching problem statement that was presented in Section 1.2. At first, the main

findings are summarised in Section 7.1. Then, the contributions to knowledge are

presented in Section 7.2. The limitations of the conducted research and the potential

future work are discussed in Section 7.4 and in the end an overarching conclusion is

drawn in Section 7.5.

197



7.1 Overview of Main Findings

The objective of this thesis, which has been presented in Chapter 1, is summarised

as follows:

• It was to investigate how BESS in the LV network should be controlled in order

to achieve best possible network support, including the reduction of peak load,

voltage deviations and phase unbalance.

• To assess the impact of BESS on the operation of the LV network, simulations

were run to compare on-line and o�-line control performance.

• Given that BESS can operate flexibly but had a predetermined half-hourly

schedule based on half-hourly load forecasts, the presented research studied

how sub-half-hourly corrections can improve the performance of LV networks

without exceeding the limited energy resource of the BESS.

• Additionally the aim was extended to assess the e�ects of, and to develop algo-

rithms for, desynchronised and communication less BESS control.

The reviewed literature in Chapter 2 as well as the findings in Chapter 3 empha-

sised the need for improving methods of control for energy storage in the LV network.

Chapter 3 explores how optimising sub-half-hourly BESS operation on a specific met-

ric impacts other metrics, that define network performance More specifically, using

the LV connected BESS, its impact on each of key network parameters was assessed by

optimising each parameter through its corresponding cost function. The same BESS

would have been operated traditionally with a half-hourly schedule that dictates the

active powers of the device. Using this operation as a benchmark, sub-half-hourly

phase adjustments were proposed to tune the BESS operation to achieve optimal

impact for any given key network parameter without violating the power constraints.

As shown in several resulting time-series plots in Section 3.5 that were summarised
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in Table 3.1, optimising BESS operation for certain key network parameters had two

resulting impacts:

1. The minimisation of a cost function, derived from a specific key network pa-

rameter, results in BESS operation improving the associated network operation.

For example, when minimising the cost that was linked to distribution losses,

then a mean reduction in losses of 5.0kWh was achieved instead of a 1.2kWh

reduction which would have been the result for traditional BESS scheduling.

2. The minimisation of a cost function, derived from a specific key network param-

eter, also results in BESS operation that impacts other parameters, indirectly

associated to the same network operation. For example, when minimising the

cost that was linked to BESS voltage deviation, then the worst voltage de-

viation, the worst line loadings and the network’s neutral currents were also

reduced, but voltage deviation, line loadings and power factor at substation

level were worsened.

The analysis of simulations in Chapter 3 also showed that whilst the half-hourly

average BESS schedule remained una�ected, there are positive and negative rela-

tionships between combinations of metrics being selected for optimisation and net-

work performance assessment. A statistically significant positive impact (i.e. where

p < 0.05) was proven for only certain pairs of network parameters (for example

and as stated earlier, maximum bus voltage deviation, phase unbalance and neutral

power when minimising voltage deviation at ESMU level). Nonetheless, showing that

sub-half-hourly phase power adjustments can result in improved network operation

formed the basis for the next chapter, Chapter 4, where the half-hourly active power

constraints were eliminated.

Chapter 4 relaxed the constraint on half-hourly average schedule of a BESS and

applied model-predictive approach for sub-half-hourly adjustment. More specifically,
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it presented an approach in combining both on-line and o�-line energy storage control

to dynamically reduce both daily and minutely load peaks. An average peak load

reduction of 5kW was achieved for the best algorithm configuration without reaching

a surplus or shortage of stored energy since a half-hourly BESS schedule (similar to

Chapter 3) was followed. Unlike the preceding chapter however, the BESS control in

Chapter 4 had operational flexibility within a certain tolerance band of 10% around

its predetermined half-hourly schedule. Combined with a predictor to estimate the

sub-half-hourly power volatility, results were achieved that noticeably reduced load

peaks in comparison to the traditional forecast driven control. In fact, as shown

in Figure 4.9, the mean peak load reduction increased from 1.7kW to around 5kW

for di�erent prediction mechanisms. These findings from Chapter 3 and Chapter 4

thus form the contribution to knowledge regarding Objective 1 and Objective 2,

respectively.

Chapter 5 explores the impact of communication latency on the coordination of

charging for multiple EVs, which demonstrated that the stability of asynchronous

coordination is less sensitive to the choice of control parameter values. For example,

they simply used all network information when computing BESS control instructions

without considering possible latency issues. Therefore, Chapter 5 developed the new

smart-charging algorithm and used a novel MAS implementation that operated in

an intentionally desynchronised manner. This desynchronisation was to assess the

algorithm performance when the previously assumed communication infrastructure

becomes less reliable. Since uncoordinated EV charging is expected to put the most

significant load on the LV network, any algorithm failure (like failure to coordinate

this charging) would become noticeable. And indeed, the results in Chapter 5 showed

that the converging behaviour of the algorithm became less sensitive to its control

parameters in the desynchronised environment, when compared to the traditional syn-

chronised algorithm execution. For example, when extreme control parameter values

200



were chosen, an oscillating behaviour was observed for the synchronised case which

lead to the repetitive allocation of a 200kW charging spike. However, this oscillating

behaviour disappeared in the desynchronised case which meant that the algorithm

converged on a global level. In this desynchronised case the algorithm’s performance

and convergence became less sensitive to the choice of control parameter values. This

fact became particularly apparent when the overall performance of avoiding charging

peaks between the synchronised case (i.e. Figure 5.8) and the fully desynchronised

case (i.e. Figure 5.12) was compared. Chapter 5 therefore achieved Objective 3 by

developing a robust smart-charging algorithm that is thoroughly assessed in regards

to possible communication desynchronisation.

Lastly, Chapter 6 proposes an improvement on an iterative and uncoordinated

BESS algorithm for voltage support and the improved algorithm achieves more uni-

form voltage support. More specifically, in Chapter 6 a communication-less control

method for distributed BESS was developed to reduce peak load, voltage deviation

and unequal asset utilisation. This communication-less control was achieved by using

individualised control parameters in a modified AIMD algorithm. Dynamic loads (i.e.

uncoordinated EVs) were simulated on the feeder to maximise the stress on the LV

network that the developed control algorithm aimed to mitigate. The results showed

that for di�erent EV uptake levels, BESS could always yield improvements for both

AIMD and the proposed AIMD+ control methods. However, as seen in Figure 6.13,

only the latter method did compensate uniformly across the LV network since it took

into account the network specific voltage characteristics like the voltage drop along

the feeder. Therefore, these findings formed the contribution to knowledge regarding

Objective 4.

The research over these four chapters has shown that energy storage algorithms

can be improved by merging on-line and o�-line control at high and low temporal

resolution. Additionally, the research has shown that desynchronised control instruc-
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tions can yield significantly di�erent operation of otherwise synchronised control al-

gorithms. However, this issue can be avoided when mitigating the need for communi-

cation technology altogether. In each chapter, this thesis comprehensively tested the

presented control algorithms on real demand data, allowing it to encapsulate varying

demand behaviour and characteristics at both high and low temporal resolutions. All

findings were generated from the available datasets and were therefore subject to its

properties of comprehensively capturing typical demand behaviours.

In summary, it is concluded that individual control algorithms presented in this

thesis provide an improvement on the network operation using di�erent aspects of con-

trol, but there is no algorithm presented that combines all aspects. However, results

showed that focused control can be tuned to achieve a significantly higher positive

impact on a narrow set of key parameters, which is why the chapters that implement

such methods did also present the means of implementing their control in regards to

the available data (thus achieving the subsequent network improvements which were

derived from data driven simulations). Nonetheless, all objectives that were set out

in the problem statement of this thesis have been met by making the aforementioned

key contributions. One can therefore conclude that the research presented in this

thesis is beneficial to both industry and the academic research community. These

contributions to knowledge, possible research limitations and future work discussing

these benefits, are outlined in the subsequent sections.

7.2 Contribution to Knowledge

The main contribution presented in this thesis is the development of control methods

for BESS in the LV network that improve network operation (for example power flow,

voltage deviation and phase unbalance) whilst taking into account telecommunication

limitations (for example possible desynchronisation or total absence of a communica-
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tion infrastructure) in later chapters. With this knowledge, when developing BESS

control systems, on-line and o�-line control methods can be combined to complement

each other whilst keeping in mind limitations regarding their ICT implementation.

All in all, the chapters presented in this thesis made contributions within these iden-

tified gaps and in accordance to the outlined research objectives, these contributions

are summarised as follows:

• In accordance with Objective 1, Chapter 3 has proposed a control algorithm

to adjust the active and reactive BESS operation whilst maintaining given

BESS schedule and achieving improved network operation. Findings in Chap-

ter 3 showed how network issues (for example voltage deviation, neutral cur-

rents, phase unbalance and losses) can be reduced individually when adjusting

BESS operation at a sub-half-hourly resolution, even though the BESS was

constrained by an active power schedule at half-hourly time scale. Knowing

how improving one key network parameter impacts di�erent network operation

is of relevance to industry since their limited network observability constrains

their assessment of any control actions. Being able to infer and possibly predict

the overall network impact from a limited set of measurements allows DNOs to

better control BESS and thus improve operation of their LV networks.

• Then, in Chapter 4, a method to dynamically correct BESS schedules was de-

veloped in order to control DNO owned BESS and to maximise its capabilities

at reducing both daily demand peaks whilst also mitigating volatile load peaks.

This method is thus in accordance with Objective 2 and findings in Chap-

ter 4 showed how the control method outperformed traditional BESS control

and how the probability of reducing peak load could be noticeably increased.

Having developed such a method that functions despite the underlying errors

in the load forecasts allows DNOs to reduce the occurrence of power peaks and

thus prevent possible tripping of protection equipment, for example. Therefore,
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DNOs will be able to leverage the proposed dynamic control method instead

of only relying on the accuracy of the underlying load forecast when aiming to

ensure an undisrupted supply of electricity.

• Regarding Objective 3, in Chapter 5, a smart-charging algorithm for dis-

tributed control of an EV fleet was developed and simulated on a standardised

Multi-Agent System (MAS) in both a synchronised and desynchronised envi-

ronment to study the performance of the algorithm. Findings showed that the

algorithm became less dependent on the underlying control parameters when

executed in a desynchronised environment, yet the overall performance of the

algorithm remained intact. This di�erence in performance highlights the dan-

ger of assuming that distributed algorithms will function in any environment.

With this knowledge, both academic and industry based research can to take

into account the e�ect of latency on an algorithm when designing their own

BESS control systems.

• Lastly, in accordance with Objective 4, a communication-less control method

for distributed BESS was developed in Chapter 6 to assess the ability at reduc-

ing the negative impact from the charging of co-located EVs. Findings showed

that the developed AIMD+ algorithm did not only reduce load peaks and volt-

age deviation, but that it also harmonised the asset utilisation across the entire

feeder. The achievement of this improvement was due to the individual algo-

rithm tuning which was based on the properties of the underlying power delivery

network. Whilst academic and industry based research projects typically use

historic demand data to derive set-points for their control algorithms, system

models allow better tuning when the traditional demand assumptions no longer

hold. This was done in Chapter 6 which is why a stochastic EV model was de-

veloped to simulate a future load scenarios. Such an approach in combination
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with the proposed AIMD+ algorithm would therefore benefit the planning and

performance assessment of future power distribution networks.

7.3 Research Limits

Throughout Chapters 3 to 6, several models, algorithms and assumptions were pre-

sented that formed the basis of the conducted research. This basis allowed a focused

research execution, but also imposed limitations on the developed methods. After all,

since these models, algorithms and assumptions formed the basis of the conducted

research, their limitations and their implications for academia and industry should

be discussed. This is done in the following subsections.

7.3.1 Energy storage model

From an academic standpoint, modelling is seen as a first step to mathematically rep-

resent a system to simulate experiments that are conducted before investing in larger

field trials. The energy store model that was developed during the NTVV project

with SSEN is such an academic model since it was targeted at only representing

the deployed BESS. Whilst this model did predict SOC behaviour, conversion and

energy storage e�ciencies, it did not take into account external e�ects, for example.

For the assessment of BESS in a half-hourly and minutely environment, this model

was adequately accurate since the power and time scales were su�ciently large so as

to neglect small discrepancies. However, when taking into account external distur-

bances, more work needs to be done in the future. A possible extension should include

the non-linear discharging behaviour as a result of battery stress or due to di�erent

operating temperatures since they have a noticeable impact on the battery operation.

Nonetheless, having established the presented model for simulated experiments is the

first step towards field testing BESS.
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On that note, and as mentioned in the literature review (Section 2.3.2), SSEN

did in fact deploy several ESMUs in the town of Bracknell as a result of the NTVV

project and the work presented in this thesis. This deployment allowed to draw a

first conclusion regarding the industrial applicability of the developed model. It was

found that latency issues, dynamic control restrictions and safety precautions played

a much larger role when managing the operation of BESS than the above-mentioned

non-linear e�ect. On a positive note, however, and as may be taken from the NTVV

project reports [3] when operating within its nominal mode the behaviour of the BESS

did match the predictions made by the model. Although di�erent battery models

including RC-bridges, steady state systems or more complex feedback systems exist,

these preliminary results showed that it was valid to use the developed model at least

within the scope of the NTVV project.

7.3.2 Electric vehicle charging

In Chapter 6 of this thesis a stochastic EV model was developed to simulate the pre-

dicted increase in electricity demand. Being based on statistical data from 2008, this

model does however bring inherent temporal limitations since driving behaviour most

likely changed since then. Also, the typical commuter leaving home in the morning

or lunch time and returning (or leaving work) in the evening has also seen changes.

After all, fleet-cars, home-o�ce and night-shifts can avoid commuting at those times

and are reasonable possibilities impacting the driving behaviour. Therefore, assuming

that charging will take place at home is an assumption necessary for the conducted

work and valid at the time of formulating the research objective. However, charg-

ing stations or power sockets at work weaken this assumption since the necessity for

home-based charging is being steadily removed.

Therefore, one concludes that the EV demand model has noticeable limitations,

but for the sake of academic research and focus on the problem of home-charging, a
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worst case assumption was still worth considering. After all, if co-located BESS is able

to provide noticeable network support during the most extreme scenarios, then a pro-

portionally larger impact can be achieved when the network is less stressed. Nonethe-

less, since EV technology and the use of EV technology has noticeably changed over

less than a decade, providing a future proof EV demand model is a challenge worthy

of its own doctoral research project. It is therefore reasonable to consider the pre-

sented model as a su�cient first step to provide an estimated charging demand for

commuters. Possible extensions are therefore discussed in the Future Work section

(Section 7.4) of this thesis.

7.3.3 Data

All findings throughout the presented work were generated from historic demand

data. This data has both limitations in temporal resolution and data length, which

therefore limit the ability to capture a number of load scenarios necessary to guar-

antee correct algorithm operation. After all, since the entire work presented in this

thesis relies on carrying out data driven simulations, using these datasets with vary-

ing demand characteristics is of high importance. More specifically, the size of the

used Irish dataset allows to cover such a range with high certainty, but it has a low

temporal resolution of only half an hour. Using minutely data from the IEEE and the

NTVV project complemented this Irish dataset since they compensate for its tem-

poral deficiencies. It is worth mentioning, that obtaining domestic demand data is a

challenge to begin with; partially due to privacy, but also due to IP issues. However,

constructing models and stating the corresponding assumptions that validate their

utilisation is su�cient for the development and testing of the presented BESS control

methods. Needless to say, the scope of this thesis was put on the development of

BESS control methods and not on development of load prediction mechanisms.

By di�erentiating between measurable and theoretical data (for example data
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measurable at a substation and data only obtainable from simulations) motivations

to develop targeted measurement systems are also better understood. For instance,

measuring or better estimating feeder voltages is of larger interest that precise cal-

culation of neutral currents since obtaining those network parameters in reality can

only be done at significant financial cost or at unusable low resolution. Substation

monitoring and voltage measurements at the BESS were a certain prerequisite for

most of the presented research and do not pose such financial issues. Therefore, be-

ing able to include data acquisition mechanisms that are comparable to reality (for

example data acquisition through the deployment of smart-meters) would strengthen

the validity of the findings. In cases where data acquisition is not possible, however,

either due to the lack of measuring equipment or legal barriers to uphold customer

privacy, endpoint data needs to be estimated instead. Developing a reliable method

of estimating this endpoint data from a limited number of measuring points is still

an open research challenge. This point is also briefly addressed in the Future Work

section of this thesis (Section 7.4), but more emphasis is put on data handling and

acquisition from an industrial point of view. All in all however, the domestic demand

predictions and publicly available datasets do serve as a valid starting point for the

conducted academic research.

7.3.4 Network models and Power Flow Simulations

The dominant network model that was used throughout the research was a European

LV model published by the IEEE. This so called “LV Test Case” complemented

some of the in-house network models that were provided by SSEN - particularly since

reproducibility of the findings can assured with the IEEE model. However, this model

aims at presenting a typical European feeder, yet feeding two households per lateral on

a single-phase basis is a characteristic shared by only by some distribution networks in

the UK. In the German distribution networks, each household is always connected to
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all three phases and specialised technicians aim to balance the three-phase load when

connecting large domestic appliances in the house. Since the focus of the research is

however targeted at supporting UK based networks to begin with, the use of models

of several UK power networks is still valid. When, for example assessing whether the

algorithms function where three-phase loads are connected, di�erent models need to

be considered.

The method of averaging the results from multiple simulations is only statistically

valid if the number of network models is of su�cient size. After all, the correctness of

the models cannot be guaranteed (for example due to degradation or misinformation).

In conclusion, a higher number of detailed and accurate network models allows the

proposed algorithms to be tested with larger network variety, which in turn improves

certainty that the proposed algorithms functions correctly if deployed. This is also

briefly addressed in the Future Work section.

7.3.5 Di�erent Control Methods

So far, the selection of control methods was based on both literature recommendations

and the scope of the presented research. As already stated in Chapters 4 and 6, the

modifications and tuning of the control methods was unconventional. For a valid

contribution in the field of control systems for example, a more formal approach would

have to be formulated to assure stability and convergence of the proposed predictor.

The complexity of the underlying network and battery models did however increase

the di�culty of establishing this formal approach. This means that the associated

work is certainly worth its own doctoral research and due to the time constraints a

di�erent solution was pursued instead. Therefore, assuring stability and convergence

for the used data was considered the valid approach. This assumption goes hand in

hand with the preceding discussion about data and number of used network models.

After all, since this data captured su�cient load variation, findings are seen as valid.
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Further, since the stability and convergence can be guaranteed for this dataset, it

is also reasonable to assume that the methods will operate similarly when deployed.

Nonetheless, the above-mentioned formal approach would also proof stability and

convergence mathematically, which is why this proof is indeed worth pursuing as part

of the future work.

7.3.6 Communication System

Lastly, Chapter 5 addressed the common assumption that control instructions propa-

gate in a synchronised manner. However, other communication issues beside message

desynchronisation do still remain an open research challenge. As mentioned in the

beginning of this section, the field trials during the NTVV project found that delay

and “hidden” safety systems increase the di�culty of providing scheduled BESS con-

trol. Also, a sudden loss of communication will result in a cluster of control devices,

operating in a so called “islanded” or unsupervised manner (especially from an ICT

point of view). However, the assumption made for assessing the e�ect of desynchro-

nisation are valid, especially since the focus of the research had to be targeted at the

known problem at hand. With the posterior knowledge regarding ESMU operation

from the NTVV field trials, further studies regarding the communication system are

worth pursuing. However, these further issues do lie beyond the scope of the presented

research, but should be included in the future work.

7.4 Future Work

The models, algorithms and control methods presented in this thesis provide an as-

sessment of the impact of BESS on LV distribution networks in the UK. Regarding the

limitations outlined in Section 7.3 it is worth discussing the next steps for improving

the models from an academic standpoint to eventually make them “industry ready”.
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These considerations are discussed in the subsequent subsections before concluding

on the entire work presented in this thesis.

7.4.1 Modelling

The developed BESS model did perform to accurately schedule the ESMU operation

during the field trials of the NTVV project. However, there are still certain enhance-

ments that should be considered in future research to extend this BESS model. The

non-linearity regarding the battery’s charging behaviour for instance should be in-

cluded since a better understanding of battery characteristics has been established

over the recent past. This is partially due to the increased number of EVs where

battery information is continuously fed back to manufacturers, but also due to the

increased industrial demand for improved battery cells. Constant-current constant-

voltage charging paradigms, temperature, mechanical integrity, degradation and bat-

tery conditioning are only some examples of battery characteristics that have become

better understood. Additionally, from the lessons learnt during the NTVV field trials,

safety mechanisms, operating independent of the BESS instructions (i.e. instructions

sent from a control centre) should also be included into the model. After all, it were

those safety mechanisms that physically limited BESS to operate as scheduled; and

this limitation occurred without warning. Predicting when these safety mechanisms

will allow a better schedule generation. For example, taking into account tempera-

ture increase allows a better prediction of when the safety mechanism will disconnect

the battery and a more strategic charging profile can be generated in advance. The

data collected during the field trials is therefore a great starting point to continue

the further research for enhanced BESS models. In future work, such data does not

only highlight unconsidered issues, but also aids the simulation of battery control

algorithms since it also takes into account the battery conditions itself.

Equally, the EV demand model where it was assumed that vehicles charge at home
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and begin doing so immediately after being connected, is considered an outdated as-

sumption. Although this so called “dumb-charging” is still seen as the baseline when

determining the worst impact of EVs on power networks, more sophisticated and

coordinated charging mechanisms (like the one hinted at in Chapter 5) do certainly

mitigate the impact of EV charging. For example, the proposed AIMD+ algorithm

can be run on EVs directly and such an inclusion of smart charging is a promis-

ing future work project. However, the implementation, validation and extension of

available smart-charging schemes currently lies beyond the scope of this thesis.

Regarding the use of network models to assess the impact on the LV network is

also considered as future work. It is even contemplated to use real-time simulations

in order to support BESS control. After all, power flow solvers like OpenDSS, Pow-

erSim, GridLab-D or similar tools are frequently used throughout literature to create

accurate assessments of network impact and they are being continuously improved,

too. Using such faster and more accurate tools allows real-time response to system

changes that were not possible at the beginning of the presented doctoral research.

OpenDSS, for example, only recently became multi-threaded and opened its repos-

itory for open-source development. Also, having learnt how the standardised IEEE

network model is structured allows future work to fully utilise the updated collection

of network models in an IEEE compliant manner. Such compliance does not only

allow a better comparative studies, but with the updated tools enables assessment

of network failures, harmonics and islanded operation. Furthermore, with improved

and updated network information that is provided by SSEN, simulations will give

more realistic results regarding the location and scaling of LV assets. In fact, private

correspondence with researchers at the Electric Power Research Institute (EPRI) and

the National Energy Research Laboratory (NERL) in the United States has become

possible as a result of this doctoral research and a cooperative development to extend

OpenDSS for multiple platforms is currently ongoing. This cooperation entails the
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acceleration of simulations of network models by parallelising the power flow solver

and porting the execution to di�erent programming languages. Therefore, the pos-

sibility of extending the number of simulated trials would improve the certainty of

BESS performance before committing it to further field trials. However, for the scope

of the conducted research and time limitation imposed, any improvements of network

models and simulation tools will only be part of the future work.

7.4.2 Realisation considerations for DNO

Regarding industrial applicability, the main question to make BESS control algorithm

viable depends on the ownership and revenue mechanisms. Future research work is

therefore required to assess the monetary benefits of the proposed algorithms for BESS

owners since they would not have invested into the asset, unless it generates them

a profit. Optimisation objectives under a range of the BESS ownership models and

commercial arrangements should therefore be considered beside the aspect regarding

safety, improved modelling, data privacy and data security. After all, di�erent owners

prioritise di�erent use cases for the asset. For example, if a DNO owned the BESS,

they would want it to operate at maximum capacity to fully utilise the asset and

produce the largest return for their investment. On the other hand, if BESS was

owned by a household, a reduction of the electricity bill would be more interesting

than providing network support. Therefore, establishing means to compensate or pay

private owners for providing network support is considered as an incentive for private

owners to partake in network support.

Finally, although the topic of data privacy and security is not part of the presented

research as such, it is still worth discussing possible considerations in light of era of

big data with Industry 4.0 and the Internet of Things. Put briefly, because the

trend of computer based decision making is also becoming increasingly popular in the

field of power delivery, risks regarding privacy concerns and ethics associated with
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the decision making need to be considered. This is especially true since artificial

intelligence is likely to outperform traditional deterministic and probabilistic control

methods in the near future. In summary, an inter-disciplinary research category

should focus on power delivery, control systems and telecommunication issues with

particularly target of AI in power networks, and this should most certainly be part

of the future work.

7.5 Conclusion

As identified in Chapter 1 of this thesis the aim of the presented work was to:

[...] make a contribution in control of Battery Energy Storage Systems (BESS)

that can aid Distribution Network Operators (DNOs) in improving the operation and

reliance of their Low-Voltage (LV) networks.

To achieve this aim, four objectives were identified from the literature review in

Chapter 2 and met in the four contribution chapters of this thesis (i.e. Chapter 3 to

Chapter 6). Within these chapters, key network parameters were identified to assess

the impact of BESS control methods on the underlying power delivery network when

adjusting BESS phase powers whilst conforming to a half-hourly schedule. When

alleviating this scheduling constraint, it was shown how a developed dynamic BESS

control can achieve greater reduction of power peaks. Then coordinated control of

multiple BESS was assessed regarding the desynchronisation of control instructions.

Since this analysis showed the sensitivity of control methods on their implementa-

tion (even when operating in a desynchronised environment) a truly communication

less control algorithm was developed next. Through developing these algorithms and

testing them by simulating several LV distribution network models, aspects involving

network operation, system deployability, information propagation and telecommu-

nication restrictions were studied. Therefore, a technical contribution that can aid
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DNOs in improving the operation and reliance of LV networks has been achieved and

thus the overarching aim was met.

The limitations of the presented research do, however, ask for future work to

be conducted in order to ready the algorithms and methods for implementation in

industry. Beside the restrictions outlined in Section 7.3 due to time constraints and

the targeted research focus, future work will comprise further improvement of network

and BESS models, mathematical formulation of proof of stability and convergence.

Furthermore, DNOs should address the issue of ownership and possible means of

incentivising customers to provide network support with their home-connected assets.

Also, safety, security and ethics associated with emerging control methods and data

handling should also be considered, not only by academics, but also by industry, their

customers and legislation makers.

Overall, in the context of power systems, the conducted research focused on pro-

viding improvements at the fringes of the electricity network; that is at the LV dis-

tribution level. With the international aim of transitioning towards a low-carbon

economy, national issues are mostly expected to occur in the transmission and inter-

connection of electricity grids. This issue is particularly apparent when planning the

generation of bulk power at remote locations (for example o�shore) without having

installed the required power lines. Equally, with higher reliance on renewable energy

resources, national power systems must become more flexible to not only cater for

the volatility in demand but also for the expected intermittency in supply. Whilst

energy storage on a national scale would address the di�culty of matching modern

supply and demand, the complexity of a project, the size and the associated cost make

deployment of such a system a significant logistic challenge. By focusing on smaller

scaled projects first (i.e. BESS in the LV networks) the first step is provided towards

this larger goal. After all, it is easier to develop, test and eventually deploy control

algorithms on such a smaller scale than it is for larger scaled projects. Also, at the
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end of the day, it is the DNO that needs to provide the final physical link between

demand and supply and their power delivery networks are expected to cater for the

immediate increase in volatile demand. Therefore, targeting research at this fringe of

the electricity network provides a small contribution to the overall operation of the

electricity network, but this research still provides support for DNOs when catering

for the future load scenarios.
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Appendix A

Additional Results

A.1 Improving operation performance of battery

schedules at sub-half-hourly resolution

A.1.1 Additional Time Series Analysis

Since the plots in Section 3.5.1 are averages over a 10 minute moving average window

(in order to aid visual representation of the volatile data), the raw and unfiltered data

is included for reference in this appended section.
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(a) Voltage levels as measured at the substation

(b) Cost associated with the voltage levels as measured at the substation

Figure A.1: Additional substation voltage level comparison between base, normal and
the case where the ESMU’s schedule was adjusted.
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(a) ESMU voltage levels

(b) Cost associated with the ESMU voltage levels

Figure A.2: Additional ESMU voltage level comparison between base, normal and
the case where the ESMU’s schedule was adjusted.
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(a) Highest and lowest voltage levels in entire network

(b) Cost associated with highest and lowest voltage levels in entire network

Figure A.3: Additional voltage level comparison between base, normal and the case
where the ESMU’s schedule was adjusted.
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(a) Highest and lowest phase power

(b) Phase unbalance cost

Figure A.4: Additional phase unbalance cost comparison between base, normal and
the case where the ESMU’s schedule was adjusted.
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(a) Network load

(b) Power factor

Figure A.5: Additional power factor cost comparison between base, normal and the
case where the ESMU’s schedule was adjusted.
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(a) Utilisation of the substation fuse

(b) Cost associated with the utilisation of the substation fuse

Figure A.6: Additional comparison of the substation fuse utilisation between base,
normal and the case where the ESMU’s schedule was adjusted.
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(a) The highest line utilisation of any line in the entire network

(b) The highest cost associated to the highest line utilisation of any line in the entire network

Figure A.7: Additional line utilisation comparison between base, normal and the case
where the ESMU’s schedule was adjusted.
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(a) Distribution losses

(b) Cost associated to distribution losses

Figure A.8: Additional comparison of distribution loss cost between base, normal and
the case where the ESMU’s schedule was adjusted.
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A.1.2 Additional Di�erence Analysis

Only the cost di�erences for the case of actual cost minimisation were compared in

Section 3.5.2. Therefore, all remaining cost di�erences have been included in this

appended section.

Figure A.9: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise substation voltage deviation
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Figure A.10: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise ESMU’s PCC voltage deviation
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Figure A.11: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise the maximum voltage deviation on any bus of the network
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Figure A.12: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise the network’s phase unbalance
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Figure A.13: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise the network’s power flow in the neutral conductor
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Figure A.14: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise the network’s o�set to unity power factor
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Figure A.15: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise the substation’s fuse utilisation
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Figure A.16: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise the maximum line utilisation of any line in the network
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Figure A.17: Cost di�erence spread, based on the ESMU schedule adjustment to
minimise distribution losses
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A.1.3 Probability Density Analysis

The details described in this section address the prerequisites for the performed null

hypothesis test in Section 3.5.3. These steps lie beyond the content of the correspond-

ing chapter, yet have been included for completeness. Here, each step to condition

the raw data for the t-test is explained in detail.

The original data is a highly volatile and non-stationary time-series that has a

non-gaussian probability distribution. However, in order to apply the t-test, these

criteria have to be met. Data conditioning steps were followed for each dataset that

would modify the properties of the time-series without modifying their context. These

steps are listed below and go as follows: First

1. the time-series is rescaled using the log() function, then

2. the rescaled values is averaged over N samples, then

3. the averages are split into two distinct sections (one prior to 11am and one after

11am), then

4. the sections are compared against each other (i.e. by computing the di�erence),

then

5. the comparison’s auto-correlation is computed to check for the presence of self-

dependence.

(a) If the self-dependence is low enough (i.e. within confidence interval) the

t-test is executed

(b) otherwise the data is feathered and the auto-correlation is tested again,

and

(c) if the results still indicate a self-dependence, then a di�erent N is chosen

and the steps are repeated.
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To visualise this procedure, the dataset corresponding to the minimisation of

distribution losses, i.e. ’losses(), is presented and the data modifications are explained.

Since the steps apply to all data sets, only one is being presented in this appendix.

Figure A.18: Raw time-series that are supposed to be compared.

Figure A.18 shows the raw data of the two time-series that are going to be com-

pared in the t-test. Since this data is very spiky and has many values located closely

to zero, they are scaled using the log() function.

Figure A.19: Rescaled time-series that are supposed to be compared.

Figure A.19 shows this rescaled cost. It can be observed how di�erences, like the

increase in load during the morning hours, has become more apparent. Nonetheless,

this data is still volatile and is averaged over N values.
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Figure A.20: Averaged log-scaled time-series.

The two di�erent levels in the data can clearly be observed in Figure A.20. This

distinction in levels allows an easy separation of the data into two sections: morning

and afternoon.

Figure A.21: Splitting of the conditioned data into two stationary sections

The preconditioned data in the two sections, that are highlighted in Figure A.21,

are now compared by computing their di�erence. Figure A.22 shows this di�erence.

This di�erence is now auto-correlated and to indicate if any “self-dependence” (i.e.

indicating auto-regression) is still present in the data. Results from both sections are

shown in Figure A.23

Using the statistics package MINITAB, the significance bounds are determined.

If any auto-correlation value lies outside this bound, then the data still contains
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Figure A.22: Di�erence of the two pre-conditioned time-series.

(a)

(b)

Figure A.23: Auto-correlation of signal for (A.23a) morning and (A.23b) afternoon
sections

266



significant self-dependence and must be re-conditioned. In the case presented in

Figure A.23 however, the auto-correlation indices lie within the bounds for all lags.

Therefore, the criteria for the t-test are met and the data can be assessed. In this

case, the t-test resulted in p < 0.001, which is the same value that is used in the

“Probability Density Analysis” Section 3.5.
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Appendix B

Multi-Agent Systems

This appendix, Appendix B, presents additional details on the MAS implementation.

More specifically, the method used to implement FIPA are presented, and the main

communication protocols that war used within this method are detailed.

B.1 FIPA Implementation

The Foundation for Intelligent Physical Agents (FIPA) has established a standard

set of protocols that allow agents to interact with each other. These protocols form

the so called Agent Communication Language (ACL) Telecom Italia has successively

begun to develop a JAVA Agent Development Framework (JADE) that puts the entire

ACL at the programmer’s disposal. Published under LGPL (i.e. the Lesser General

Public License Version 2), JADE is a free software package that can easily be used

to construct large MASs.

In order to perform optimisation functions however, a way to interact with OpenDSS

was required. On Microsoft Windows, the ActiveX COM server provided a simple ac-

cess point to MATLAB and OpenDSS specific functions, and the JAVA COM Bridge

(JACOB) made this server accessible to the JAVA run-time environment.

JADE and JACOB were, respectively, obtained from the following two sources:

269



• JADE: http://jade.tilab.com

• JACOB: https://sourceforge.net/projects/jacob-project/

By including the jade.jar and jacob.jar, and the corresponding Dynamic Linked

Libraries (DLLs) jacob-1.8-M2-x86.dll and jacob-1.8-M2-x64.dll, FIPA was fully im-

plemented and linked to MATLAB and OpenDSS.

B.2 Communication Protocols

The main three protocols that were used within Chapter 5 are:

1. FIPA Query Protocol (FIPA-standard-SC00027H)

2. FIPA Brokering Protocol (FIPA-standard-SC00033H)

3. FIPA ContractNet Protocol (FIPA-standard-SC00029H)

The flowcharts for these three protocols were taken from the corresponding stan-

dards and, for completeness, are explained in the following three subsections.

B.2.1 FIPA Query Protocol

Figure B.1 shows the complete flow chart of the FIPA Query protocol. This protocol

is initiated by an “initiator” that send a “query” message (either “if” or “reference”

message) to a “Participant”. In Chapter 5, the initiators were the brokering agents

of the loads and the participant were the brokering agents of the energy supplier.

The participant replies either with an “agree” to inform the initiator that the query

is received, or a “refuse” message is sent to terminate the communication. After an

agree message, the participant sends the required information in an “inform” message

(as a reply to the “if” or “reference” query), or a “failure” is sent when no data is

available. In Chapter 5, the data that is sent in the inform messages includes the daily

load profile onto which the EV agents should superimpose their charging demand.
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Figure B.1: FIPA Query Protocol flow chart
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B.2.2 FIPA Brokering protocol

Figure B.2: FIPA Brokering Protocol flow chart

The brokering protocol, as shown in Figure B.2, is used to delegate an agents task

to a di�erent agent in order to free up its own computational resources. In Chapter 5

for instance, the load agents never communicate with the energy supplier directly,

since the applying and undoing of power profiles is delegated to their brokering agents.

The protocol is initiated by assigning a broker to a load agent by sending a “proxy”

message. This message contains the required information for the broker, like the

power profile a buying broker should apply. If the broker can fulfil this request, then

an “agree” message is sent, otherwise a “refuse” message is sent. The broker uses

the FIPA Query protocol, as explained in Section B.2.1, to obtain a list of broker

agents that are linked to energy suppliers, which can be used to apply the load’s

demand profile. However, if no such broker is found, then a “failure” (i.e. “no

match”) message is sent. Alternatively, the broker begins its delegating task and it
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forwards the requested demand profile to the corresponding energy supplier (i.e. it

uses the FIPA ContractNet protocol as outlined in the next section, Section B.2.3).

If an error occurs during this delegating process, then a “failure” message is sent (i.e.

“proxy failure” or “inform falure”). Upon successful delegation, the broker replies to

the “Initiator” with a “reply” message that contains information about the applied

demand profile. Theoretically, this information can also contain pricing information,

yet this feature was disregarded since it lies outside the scope of this thesis.

B.2.3 FIPA ContractNet Protocol

Figure B.3: FIPA ContractNet Protocol flow chart

Figure B.3 shows the FIPA ContractNet Protocol that allows an agent to nego-

tiate a binding contract. After executing this dual handshake protocol, all contract

participants are informed about the final contract decision and no information is lost

during the message exchange. The protocol is initiated by an “Initiator”, who sends
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a “Call For Proposal” (cfp) to m “Participants”. This cfp contains a deadline within

which all agents that do want to participate should reply. They can reject their

participation by sending a “refuse” message, or acknowledge their participation by

sending a “propose” message that also contains proposition information (for example

pricing information). Once all participants have replied or the deadline has expired,

the initiator continues executing. It collects and assesses all proposals, choses the

accepted and rejected ones and, respectively, issues “accept” and “reject” notifica-

tions. The participating agents reply with an “inform” message if they acknowledge

the “accept“ or “reject” message, and in case of an error, they reply with a “failure”

message.
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