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Schizophrenia is a heterogeneous disorder exhibiting variable responsiveness to treatment between 

individuals. Previous work demonstrated that white matter abnormalities may relate to antipsychotic 

response but no study to date has examined differences between first-line treatment responders (FLR) 

and clozapine-eligible individuals receiving first-line antipsychotics. The current study aimed to 

establish whether differences in white matter structure exist between these two cohorts. Diffusion-

weighted images were acquired for 15 clozapine-eligible and 10 FLR participants. Measures of fractional 

anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD) were obtained and between-group t-

tests interrogating differences in FA were conducted. To investigate the neural basis of a decrease in 

FA, the significant cluster from FA analysis was masked and used to obtain mean RD and AD measures 

for that region. Those who were clozapine-eligible had significantly lower FA in the body of the corpus 

callosum (p<0.05), associated with a significant increase in mean RD compared with FLR (p<0.001). No 

difference in mean AD was observed for this region. These data reveal differences in diffusion measures 

between FLR and those eligible for clozapine and suggest that lower FA and greater RD in the corpus 

callosum could exist as a biomarker of treatment resistance in people with schizophrenia.  
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1. Introduction 

Schizophrenia is a heterogeneous disorder, not only in its symptom profile but in the manner with which 

it responds to treatment with antipsychotic drugs. A growing pool of research supports the hypothesis 

that individuals with schizophrenia fall into two distinct categories: those who respond to first-line 

treatment with typical or atypical antipsychotics; and those who require treatment with clozapine (an 

agent with unique efficacy in treatment-resistant schizophrenia; this second category may be further 

divided into those who do and do not respond to clozapine monotherapy) (Farooq et al., 2013; Gillespie 

et al., 2017; Howes and Kapur, 2014; Howes et al., 2016; Lee et al., 2015). Studies report that only 60% 

to 80% of individuals initiating treatment with a typical or atypical (non-clozapine) antipsychotic 

experience a positive clinical response (Agid et al., 2011; Elkis and Buckley, 2016), while response rates 

to a second non-clozapine antipsychotic are as low as 16% (Agid et al., 2011). Switching individuals who 

fail two trials of first-line antipsychotics to clozapine results in distinctly higher response rates (Agid et 

al., 2011; Kane and Correll, 2016; Meltzer, 2010), alluding to a subtype of schizophrenia that is resistant 

to most antipsychotics but sensitive to the unique pharmacological effects of clozapine. Evidence 

suggests that treatment-resistance not only develops over time but can occur from the outset (Agid et 

al., 2011; Lally et al., 2016) making classification by responsivity a valid proposal. Shifting the focus of 

research to investigate underlying differences between distinct response subtypes may provide a 

clearer understanding of schizophrenia.   

Schizophrenia has been hypothesised to be a disorder of dysconnectivity, caused by neuromodulatory 

disruptions (attributed to dopamine, serotonin and acetylcholine) in N-methyl-d-aspartate (NMDA) 

receptor-mediated synaptic plasticity (Stephan et al., 2009). NMDA receptor signalling also plays a role 

in myelination and energy metabolism (Cao and Yao, 2013), promoting myelin induction (Wake et al., 

2011) and regulating α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-

dependent signalling with surrounding axons (De Biase et al., 2011). Disruptions in white matter 

architecture are well-documented in schizophrenia (Bora et al., 2011; Cookey et al., 2014; Samartzis et 

al., 2013; Zhuo et al., 2016). However, despite reporting reliable differences between those with 

schizophrenia and healthy controls, a meta-analysis of studies investigating recent-onset schizophrenia 

and clinical high-risk individuals failed to identify a specific underlying neurobiological deficit in white 

matter (Samartzis et al., 2013). A more recent meta-analysis of 29 independent international studies 

reported widespread disruptions in 20 of 25 regions of interest representing all major white matter 

fasciculi in the brain (Kelly et al., 2017). These findings suggest global disruptions in white matter in 

those with schizophrenia but have not yet identified any specific pathway that is consistently correlated 

with the disorder.  



Subtyping individuals with schizophrenia according to treatment response or resistance has shed some 

light on the issue. Zeng et al. investigated white matter microstructure before and after eight weeks of 

antipsychotic treatment in first-episode schizophrenia and reported a correlation between changes in 

the left superior longitudinal fasciculus and improved positive symptoms (Zeng et al., 2016). These 

authors did not, however, examine features of pre-treatment white matter structure that might predict 

clinical outcome. An earlier study by Mitelman et al. categorised participants with schizophrenia 

according to whether they had good outcome or poor outcome, based on their ability to self-care 

(Mitelman et al., 2006). Those with poor outcome had deficits in white matter in both hemispheres 

compared with healthy controls, compared to only lateralised deficits in those with good outcome 

(Mitelman et al., 2006). More recently, Reis Marques et al. conducted an investigation in first-episode 

psychosis to determine whether pre-treatment fractional anisotropy (FA, the degree of restricted water 

movement in tissue) could distinguish responders from non-responders to a 12 week course of 

antipsychotics (Reis Marques et al., 2014). They identified lower FA in non-responders compared with 

responders at 12 weeks in several white matter tracts, including the uncinate fasciculus, stria terminalis, 

superior frontal-occipital fasciculus, corpus callosum, internal and external capsule and corona radiata 

(Reis Marques et al., 2014). Response was measured at 12 weeks to ensure at least one drug was 

administered for an appropriate length of time (6-8 weeks) according to clinical recommendations 

(Taylor et al., 2007). Diagnostic criteria for treatment-resistant schizophrenia (i.e. schizophrenia eligible 

for treatment with clozapine), however, requires failure to respond to at least two 6-to-8-week trials of 

first-line antipsychotic drugs (McGorry, 2005; Mcilwain et al., 2011). Therefore, although studies to 

date have reported white matter disruptions in those not responding to treatment, none have 

investigated the difference between treatment responders and those with clinically confirmed 

treatment-resistant schizophrenia (clozapine eligibility) receiving first-line antipsychotics. 

We hypothesise that the discrepancies seen in the literature to date are a result of inadequate patient 

subtyping and may be rectified by classifying individuals according to whether they respond to first-line 

antipsychotics or require treatment with clozapine. In the current study, we applied this subtyping 

framework to investigate differences in structural brain connectivity. The study employed tract-based 

spatial statistics to investigate FA, axial diffusivity and radial diffusivity in individuals with schizophrenia 

receiving treatment with first-line antipsychotics. Based on previous work exhibiting increased 

glutamate levels (a downstream effect of NMDA receptor hypofunction) in individuals with treatment-

resistant schizophrenia compared with first-line treatment responders (Demjaha et al., 2014), we 

expected white matter integrity to be lower in individuals who are eligible for clozapine compared to 

those who respond well to first-line therapy.   



 

 

2. Methods 

2.1. Participants 

Details from the functional imaging component of the study have been reported previously (McNabb 

et al., 2018). Fifteen individuals who were eligible for clozapine (with treatment-resistant 

schizophrenia) and ten first-line responders (FLRs) were recruited from inpatient and outpatient clinics 

within the Waitemata, Counties Manukau and Auckland District Health Boards of New Zealand as well 

as from mental health support groups and social media (FLR only). Participants in the FLR group were 

required to be between 18 and 45 years of age, have a history of schizophrenia or a psychotic episode 

according to DSM-5 criteria (American Psychiatric Association, 2013), no history of treatment with 

clozapine, and be clinically stable on a first-line antipsychotic drug, with a Positive and Negative 

Syndrome Scale (PANSS) score of <50 during screening. Participants in the clozapine-eligible group were 

required to meet criteria for treatment resistance current at the time of the study (McGorry, 2005). 

Participants were to be between 18 and 45 years of age, meet DSM-5 criteria for schizophrenia 

(American Psychiatric Association, 2013), have failed at least two six-week trials with first-line 

antipsychotic drugs, still be receiving treatment with at least one of the aforementioned antipsychotics, 

be able to give informed written consent (determined by their treating clinician), and present with 

persistent positive or negative symptoms contributing to a PANSS score of ≥50 during screening. 

Exclusion criteria for both groups included diagnosis of another psychiatric disorder, co-morbid 

neurological illness, self-reported low treatment adherence to current antipsychotic medication, 

claustrophobia, history of traumatic brain injury resulting in loss of consciousness greater than three 

minutes, active substance dependence and standard contraindications to magnetic resonance imaging 

(MRI). Participants in the clozapine-eligible group should not have had a trial of clozapine within three 

months of the screening visit. The study was approved by the Northern A Regional Ethics Committee 

and all participants gave informed written consent. 

Screening for clozapine eligibility consisted of a semi-structured interview with a study psychiatrist to 

confirm diagnosis, as well as a PANSS assessment. Participants in the FLR group were screened by a 

study psychiatrist or nurse using the PANSS. Diagnosis was confirmed by a psychiatrist or general 

practitioner based on clinical notes.  

Participants were requested to provide a urine sample for drug screening (Medix Pro-Split Integrated 

Cup, Multi Drug Screening Test; Sobercheck Ltd) during the study visit. Urine was screened for the 



presence of amphetamine, methamphetamine, benzodiazepines, cocaine, opiates and 

tetrahydrocannabinol (THC).  One participant in the clozapine-eligible group refused drug screening but 

was later excluded due to excessive head motion during scanning. 

Participant demographics were compared across cohorts using IBM SPSS Statistics Version 23. Variables 

that satisfied assumptions of homoscedasticity (Brown-Forsythe test for equality of variances) and 

normality (Shapiro-Wilk test for normality) were analysed using a Student’s t-test. For those variables 

that violated assumptions of normality and/or homoscedasticity, the Mann-Whitney U test was 

employed. Z scores were calculated for demographics that were better described using proportions. 

2.2. Image acquisition 

Magnetic resonance images were acquired on a Siemens Magnetom Skyra 3T scanner at the Centre for 

Advanced MRI, University of Auckland, New Zealand. All participants were imaged using a 32-channel 

head coil. Diffusion-weighted images were acquired using a multiband gradient-echo pulse sequence 

(University of Minnesota (Moeller et al., 2010)). One image without diffusion gradients (b=0 s/mm2) 

was acquired, in addition to 5 images with b=5 s/mm3 and 100 images with unique diffusion-encoding 

directions isotropically distributed in space at b values ranging from 995 to 2010 s/mm2 (9 values in 

total). Seventy-two slices were acquired in the anterior to posterior direction, with the following 

parameters: repetition time (TR) 3600 ms; echo time (TE) 92.4 ms; echo spacing 0.67 ms; echo planar 

imaging (EPI) factor 108; multiband slice acceleration factor 3; flip angle 78°; field of view (FOV) 220 

mm, voxel size 2 x 2 x 2 mm. Gradient distortion images were acquired using a gradient echo pulse 

sequence with the following parameters: TR 704 ms; TE1 4.92 ms; TE2 7.38 ms; voxel size 3.4 x 3.4 x 

2.0 mm; phase-encode direction A >> P; FOV 220 mm. 

2.3. Data analysis 

Image preprocessing and analysis were performed using the FMRIB Software Library (FSL) version 5.0.9 

(Jenkinson et al., 2012). Raw diffusion-weighted images were corrected for head motion and eddy 

current distortions using FSL’s eddy tool (Andersson and Sotiropoulos, 2016). Slices with average 

intensity at least four standard deviations lower than the expected intensity were interpolated with 

predictions made by the Gaussian Process (Andersson et al., 2016). In-scanner head motion was 

determined for each slice and averaged across volumes to give a single mean for each participant. Any 

participant with mean motion greater than two standard deviations away from the group mean was 

excluded. Gradient distortions were corrected using FSL’s fugue function and output registered to 

gradient-free images using the linear registration function (FLIRT) (Jenkinson et al., 2002). 



A single FA image was created for each participant whereby diffusion tensors were independently fit to 

each voxel. Output yielded voxelwise maps of FA, λ1 (axial diffusivity; AD), λ2 and λ3 (combined to give 

radial diffusivity; RD) for each participant. FA is a measure of the shape of an ellipsoid, providing 

information about the degree of anisotropy in a voxel. High FA values represent areas of high 

anisotropy, and consequently restricted water movement, whereas low FA values represent areas of 

low anisotropy where water molecules diffuse freely. Related measures of diffusion are AD and RD, 

which represent diffusion in the principal direction (ε1) and perpendicular directions (ε2 and ε3), 

respectively. In vivo measures of white matter integrity possess limitations in terms of interpretation, 

especially with regard to low FA measurements in areas of crossing or kissing fibres; however, previous 

work (Nair et al., 2005) supports the assumption that FA represents the degree of diffusion orientation 

coherence, AD, the degree of axonal shrinkage and RD, the degree of myelination within a voxel.  

Voxelwise statistical analysis of the FA data was carried out using FSL’s tract-based spatial statistics 

(TBSS) (Smith et al., 2006). First, FA images were eroded and end slices zeroed to remove likely outliers 

from the diffusion tensor fitting. All subjects' FA data were then aligned to a white matter (FMRIB58_FA) 

template and then to MNI152 1mm standard space using nonlinear registration (Andersson et al., 

2007). A mean FA image was created and thinned to produce a mean FA skeleton representing the 

centres of all tracts common to the group. A threshold of 2000 (corresponding to FA>0.2) was applied 

to exclude voxels containing grey matter and cerebrospinal fluid. Each subject's aligned FA data were 

then projected onto the skeleton and fed into voxelwise cross-subject statistics. Between-group t-tests 

interrogating differences in whole-brain FA over 5000 permutations were conducted using the 

Randomise tool (Winkler et al., 2014). Though the difference in the proportion of male and female 

participants between groups was not statistically significant, gender was added as a covariate to 

account for the low number of female participants included in the clozapine-eligible group. Output 

contained statistical maps corrected for multiple comparisons (family-wise error corrected) at the 

cluster level using threshold-free cluster enhancement (Smith and Nichols, 2009). These were further 

corrected for multiple comparisons (contrasts: FLR>clozapine eligibility and clozapine eligibility>FLR) 

using the false discovery rate (FDR).  

Mean FA within the significant cluster was determined for each participant and Glass’s delta (Δ) effect 

size for differences in FA (Ialongo, 2016) was calculated using the following equation: 

𝛥 =
𝑚𝑒𝑎𝑛𝐹𝐿𝑅 − 𝑚𝑒𝑎𝑛𝐶𝑙𝑜𝑧𝑎𝑝𝑖𝑛𝑒

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝐹𝐿𝑅
 

To investigate the neural basis of a decrease in FA, the significant cluster from whole-brain FA analysis 

(covaried for gender) was masked and back projected into native space for each participant. 



Individualised masks were applied to λ1, λ2 and λ3 output and mean values for masked regions 

obtained. Mean λ1 from the masked region provided a mean value of AD for the significant cluster from 

FA analysis. Mean RD was determined by taking the combined mean of masked λ2 and λ3 maps. It was 

not appropriate to investigate mean diffusivity (MD), as it is not independent of AD and RD. Between-

group t-tests were conducted in SPSS (IBM). This method was adapted from previous work by Bennett 

et al., who investigated the neural underpinnings of FA loss in aging adults (Bennett et al., 2010). 

Including only those voxels demonstrating statistically significant differences between groups, post-hoc 

assessments of the relationships between callosal FA and symptom severity (PANSS score) and between 

collosal FA and antipsychotic drug dose (chlorpromazine equivalents) were performed using Pearson’s 

correlation analyses in Matlab 2016a (Mathworks, USA).  

Our hypothesis focused primarily on the assumption that aberrant NMDA receptor function affects the 

integrity of white matter fibres in those with schizophrenia and that underlying causes of NMDA 

receptor dysfunction differ between those whose symptoms respond to treatment and those whose 

symptoms are resistant. Previous work suggests that those who respond well to treatment exhibit 

higher levels of dopamine synthesis capacity compared to those who fail to respond (Demjaha et al., 

2012). If differences in response to first-line antipsychotic drugs are attributable to structural 

disruptions in dopaminergic pathways, limiting FA analysis to those tracts previously identified in the 

pathology of schizophrenia (i.e. mesocortical and mesolimbic pathways (Stahl, 2013)) may demonstrate 

differences between groups. To test this theory, we employed probabilistic tractography to identify 

likely structural connections between the ventral tegmental area (VTA), bilateral striata, ventromedial 

(VM) and dorsolateral (DL) prefrontal cortices (PFC) and compared FA values within these tracts.  

Analysis was carried out using FSL. First, DLPFC and VMPFC masks were created in Neurosynth.org 

(Yarkoni et al., 2011) using an automated meta-analysis of 489 and 199 studies, respectively. Thresholds 

were specific to each mask and were selected such that areas outside the PFC (e.g. precuneus) were no 

longer included (threshold=5 for DLPFC and 7 for VMPFC). Masks were transformed to 1mm MNI space 

from 2mm MNI space using linear registration. The VTA mask was obtained from the Harvard Ascending 

Arousal Network Atlas (www.martinos.org) and the striatal mask was created using the Harvard Oxford 

subcortical atlas in FSL, using a threshold of 0.5. All masks were binarised for use in tractography. 

Using whole-brain diffusion-weighted data, crossing fibres were modelled using Bayesian Estimation of 

Diffusion Parameters Obtained using Sampling Techniques (BEDPOSTX (Behrens et al., 2007)). 

Probabilistic tracts between VTA, striata and DLPFC masks and between VTA, striata and VMPFC masks 

for each participant were determined using FSL’s PROBTRACKX (Behrens et al., 2007; Behrens et al., 



2003). Using multiple seed masks in this way, PROBTRACKX repeatedly samples tracts from every seed 

mask in the list, and retains only those tracts that pass through at least one of the other seed masks. 

Tractography output for each participant was then constrained using a binarised mask of the 

thresholded (FA>0.2) skeletonised group FA map. Voxels included in the group comparison were limited 

to those selected by probabilistic tractography in all participants, meaning that every participant 

contributed an FA value to all voxels in the voxel-wise group comparison. Between-group t-tests 

interrogating differences in FA over 5000 permutations were conducted for both pathways using the 

Randomise tool (Winkler et al., 2014). 

 

3. Results  

3.1. Participant information 

One participant from the clozapine-eligible group was excluded from analysis due to excessive head 

motion during scanning. After exclusion of this participant, mean movements from the first volume and 

from the previous volume were calculated. No significant differences in head movement were found 

between response groups (root mean square motion from first volume 0.95±0.37 mm vs 1.07±0.45 mm 

[p=0.52] and from previous volume 0.51±0.16 mm vs 0.50±0.24 mm [p=0.91] for FLR and those who 

were clozapine eligible, respectively). Participant demographics for the remaining participants are 

reported in Table 1. 

3.2. Diffusion-weighted imaging results 

Results of the mean FA skeleton between-groups t-tests are presented in Figure 1. Significantly lower 

FA was observed in the body of the corpus callosum in individuals who were clozapine-eligible 

compared to FLR (p<0.05, FDR corrected). No other cluster was identified as showing differences in FA 

between groups. 

Glass’s Δ was 0.353 for the difference in mean FA between groups (FLR=0.87 versus clozapine 

eligibility=0.83, see Figure 2), representing a small to moderate effect size. Post-hoc investigation of AD 

and RD in this region revealed a significant increase in mean RD in those who were clozapine-eligible 

(2.1x10-4) compared with FLR (1.6x10-4; p<0.001). No difference in mean AD was observed for this 

region.  

Assessing only those voxels demonstrating statistically significant differences in FA between groups at 

the whole-brain level, PANSS score was significantly negatively correlated with FA (Figure 3). No 

significant correlation was observed between collosal FA and chlorpromazine equivalents (Figure 4). 



No differences in FA were found between FLR and those eligible for clozapine when FA analysis was 

restricted to tracts between VTA, striata and DLPFC or between VTA, striata and VMPFC. 

4. Discussion 

This study examined whether variations in white matter microstructure could account for differences 

in the response to antipsychotic treatment in people with schizophrenia. Tract-based spatial statistics 

revealed significantly lower FA in the body of the corpus callosum in individuals who were clozapine-

eligible compared to FLR. Post-hoc investigation of AD and RD in this cluster revealed greater RD in 

those who were eligible for clozapine compared with FLR, with no difference in AD observed between 

groups. 

These results are in line with a number of studies reporting reduced FA in the corpus callosum of 

individuals with schizophrenia (Henze et al., 2012; Lener et al., 2015; Reis Marques et al., 2014; 

Whitford et al., 2010; Zhuo et al., 2016). Though most studies have focused on differences in the genu 

and splenium of the corpus callosum in those with schizophrenia compared with healthy controls (Zhuo 

et al., 2016), abnormalities in the callosal body have also been reported (Henze et al., 2012; Reis 

Marques et al., 2014; Zhang et al., 2018). Of greatest significance to the current study are findings by 

Reis Marques et al. demonstrating reduced FA in the body of the corpus callosum in non-responders 

compared with responders to a 12-week course of antipsychotic treatment (Reis Marques et al., 2014). 

These authors also identified regions of lower FA in tracts such as the uncinate fasciculus and fornix 

(Reis Marques et al., 2014) that were not seen in the current study. This may be a consequence of our 

stricter criteria for defining treatment failure; whereas those in the study by Reis Marques et al. failed 

to respond to 12 weeks of treatment, participants in the current study met criteria for treatment-

resistant schizophrenia. Therefore, findings from this study expand on those by Reis Marques et al. and 

suggest that low FA in the callosal body, specifically, is associated with clozapine eligibility.  

Assessing only those voxels showing statistically significant differences in FA between response groups, 

FA was shown to be significantly negatively correlated with PANSS score. Given that treatment response 

in our study was defined by PANSS score of less than 50 (and treatment resistance by PANSS greater 

than or equal to 50 after two adequate trials of first-line antipsychotics), the linear relationship between 

PANSS and FA is difficult to disentangle from the primary hypothesis that these two response groups 

represent distinct pathophysiological subtypes of schizophrenia. This is a limitation of conducting cross-

sectional research using this subtyping regime; to better separate the influence of symptom severity 

from the binary measure of response or resistance, longitudinal assessment of treatment response 

following baseline evaluation of symptom scores is necessary. Including baseline PANSS score as a 



covariate (along with follow-up length) in their assessment of treatment response at 12 weeks, Reis 

Marques et al. demonstrated a minimal effect of baseline scores on FA, with an overlap in affected 

regions compared to when no covariates were included (Reis Marques et al., 2014). The relationship 

between FA and PANSS score in the current analysis may therefore be an anomaly of the response 

criteria employed. By conducting more research into the pharmacological and symptomatic boundaries 

between treatment response and resistance, it will become clearer as to which FA properties result 

from a predetermined resistance to medication and which are due to symptom severity at the time of 

assessment. 

To investigate the neural underpinnings of lower FA in the clozapine-eligible group, AD and RD were 

measured in the cluster of voxels that exhibited a significant difference in FA between groups. Greater 

RD in the absence of any change in AD likely reflects reduced myelination in the clozapine-eligible group 

compared with FLR (Budde et al., 2007). This hypothesis is supported by work demonstrating that 

myelin-deficient shiverer mice exhibit increased RD but unchanged AD compared with normal age-

matched controls (Song et al., 2002). A similar pattern of increased RD in healthy aging adults (Bennett 

et al., 2010) as well as increased age-related FA decline in the corpus callosum of people with 

schizophrenia (Kochunov et al., 2013) suggest that the difference in RD observed could be attributable 

to accelerated age-related decline in those eligible for clozapine. Alternatively, these white matter 

deficits may be more static in nature and potentially due to disruptions in myelination that occur during 

adolescence (Whitford et al., 2012). 

It is currently unclear how deficits in white matter relate to treatment response; however, there may 

be an association with NMDA receptor function in oligodendrocytes. In addition to the role of NMDA 

receptors in synaptic plasticity and neuronal communication, NMDA receptor signalling in 

oligodendrocytes is thought to play a crucial role in myelination and energy metabolism (Cao and Yao, 

2013). NMDA receptor hypofunction (as discussed by Howes et al. (Howes et al., 2015)) in those eligible 

for clozapine but not (or to a lesser degree) in FLR may account for the lower FA and higher RD 

compared with FLR, in addition to the poor response to D2 antagonists observed in this population.  

Although FA and RD provide a reliable measure of white matter integrity in areas of coherent fibre 

orientation, DTI studies suffer uncertainty in areas of crossing fibres (Oouchi et al., 2007). This problem 

can be minimised by employing large b values, many diffusion-encoding directions and smaller voxel 

size (as was done in the current study); however, the issue cannot be completely eliminated. As such, 

the decreased FA and increased RD observed in the clozapine-eligible group compared with FLR could 

also be indicative of reduced axon packing density (Beaulieu, 2002) or increased crossing fibres in the 

corpus callosum of those eligible for clozapine, rather than demyelination as previously discussed. This 



would denote a greater level of axon crossing in the clozapine-eligible group, potentially signifying 

greater disorganisation of structural connectivity. Future work may benefit from employing myelin 

water imaging, which assesses myelin changes in cerebral white matter by employing a 

multiexponential T2 relaxation time (Alonso-Ortiz et al., 2015). 

In a recent study by Zeng et al., changes in FA following eight weeks of treatment with antipsychotic 

treatment were discovered in the left superior longitudinal fasciculus and correlated with changes in 

positive symptoms and processing speed (Zeng et al., 2016). The current study’s cross-sectional nature 

prevents determination of causality with regard to the differences in FA observed here. However, the 

observation of decreased FA in the body of the corpus callosum in those eligible for clozapine is 

supported by prospective findings (Reis Marques et al., 2014), suggesting these differences may be 

present prior to the onset of treatment. Further work is needed to determine whether FA can be used 

as a predictor of clozapine eligibility in drug-naïve patients.  

This study benefited from several strengths that contribute to the generalisability of these findings, 

including well-matched duration of illness, age of onset, chlorpromazine equivalents and drug class 

between groups. The effect size for the difference in FA was small to moderate, though still provides 

evidence of lower FA in people eligible for clozapine compared to FLR. This modest effect size may 

relate to the small sample size used in the study. Small sample size was attributable to inherent 

difficulties in recruitment of individuals experiencing little-to-no symptoms associated with 

schizophrenia (FLR) as well as those who were eligible for clozapine and able to provide informed 

written consent. Fifty-one individuals were screened for the study, of which only 25 were eligible and 

willing to participate; therefore, the rate of consent in the current study was lower than that previously 

reported for individuals with psychosis (Patel et al., 2017). Of particular note was the difficulty with 

which FLRs identified by their previous psychiatrist/psychologist were able to be contacted after leaving 

mental health services and the proportion of those contacted who no longer met criteria for treatment 

response. This highlights an increased need for follow-up in mental health services once clients are 

referred back to their general practitioners. 

Small sample size also resulted in an uneven ratio of females to males (p>0.15) between the two groups. 

Differences in FA between healthy male and female participants have been reported in several regions 

of the brain, suggesting that the difference in gender ratios between groups could affect these results 

(Hsu et al., 2008). As a precaution, gender was added as a covariate in the general linear model to 

reduce any likely effect on the results.  



FA values reported in the current study are higher than those typically reported for voxels within the 

corpus callosum, both in healthy individuals and those with schizophrenia (Henze et al., 2012; Knöchel 

et al., 2012). However, values reported here are only for those voxels demonstrating statistically 

significant differences between groups. It is therefore possible that only those voxels with high FA 

exhibit differences between response subtypes of schizophrenia. Future work may benefit from 

applying pre-specified masks to the corpus callosum to measure differences in FA between these 

cohorts.  

No psychiatrically healthy controls were included for comparison in the study. Comparison of 

individuals with schizophrenia and healthy controls introduces an additional confounder of 

antipsychotic drug exposure, from which healthy controls are naïve. Antipsychotic drug exposure is 

correlated with a reduction in age-related FA decline in the corpus callosum in those with schizophrenia 

(Xiao et al., 2018), potentially via facilitation of oligodendrocyte regeneration and myelin repair 

following injury (Zhang et al., 2012). Although in the current study we found no correlation between 

chlorpromazine equivalents and corpus callosum FA, a comparison with healthy controls would likely 

suffer from some degree of interference from antipsychotic drugs. By comparing those with treatment 

resistance to a very well-responding but drug-exposed cohort, a more relevant measure of white matter 

disruption indicative of the pathology associated with treatment-resistance can be obtained. Although 

we have not assessed FA in healthy subjects in the current study, after 12 weeks of treatment, Reis 

Marques et al. showed reduced FA in multiple white matter tracts in non-responders (but not 

responders) to antipsychotics compared with psychiatrically healthy controls (Reis Marques et al., 

2014). These findings suggest that the lower FA observed in those eligible for clozapine compared with 

FLR in the present analysis represents aberrant structural connectivity in clozapine-eligible participants 

rather than in those who respond to treatment. 

Three participants in the FLR group and two in the clozapine-eligible group tested positive for THC on 

the day of the MRI scan. Chronic cannabis use has been reported to reduce FA in several brain regions, 

including the corpus callosum, both in healthy adults and in people with early-phase schizophrenia 

(Cookey et al., 2014). Given that a greater proportion of THC-positive urine screens were observed in 

the FLR group, it is unlikely that these results are confounded by the effects of cannabis use. However, 

it cannot be discounted that the effects of longer term cannabis use or life-time exposure may have 

been greater in the clozapine-eligible group. Unfortunately, it would be impractical to measure life-

time exposure and self-reported use may be inaccurate. 

These data reveal differences in diffusion measures between FLR and those eligible for clozapine and 

suggest that lower fractional anisotropy and greater radial diffusivity in the corpus callosum may be a 



biomarker of treatment resistance in people with schizophrenia. More work is needed to determine 

whether the differences observed during treatment are present in treatment-naïve individuals and 

whether these differences are substantial enough to accurately predict clozapine eligibility.  
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  FLR (n=10) Clozapine-eligible (n=14)   

Age (years) 29.1 (8.4) 25.3 (5.3) t=-1.372; p=0.184,  

Gender (number 
female) 

4 2 
Z score=-1.434; 
p=0.153 

Duration of illness 
(years) Ɨ 

5.5 (5.9) 5.3 (4.5) 
Mann Whitney 
U=66; p=0.841 

Age of onset (years) Ɨ 23.9 (5.5) 21.1 (3.4) 
Mann Whitney 
U=90; p=0.259 

PANSS score    

Positive  8.0 (3.0) 19.5 (10.0)  

Negative  11.0 (6.0) 20.0 (17.0)  

General 
psychopathology  

20.9 (2.8) 37.3 (8.1)  

Total 40.1 (6.3) 79.1 (17.4)  

Current prescribed 
antipsychotic 

Amisulpride=1 Aripiprazole=2 

 

Aripiprazole + olanzapine  Aripiprazole + olanzapine=2 

(low dose)=1 Olanzapine=3 

Olanzapine=4 Olanzapine + quetiapine=1 

Quetiapine=1 Palideridone=3 

Risperidone=3 Risperidone=3 

Chlorpromazine 
equivalents 

438.9 (304.2) 561.6 (267.4) t=1.047; p=0.307 

Positive drug screen 
(THC; number 
participants) 

3 2 
Z score=-0.935; 
p=0.352 

 

Table 1. Demographic data for participants included in the analysis. Values are presented as mean 

(standard deviation), unless denoted by a Ɨ, indicating a non-parametric statistical comparison for 



which results are presented as median (interquartile range). Age of onset was defined as age at first 

recorded contact with mental health services. THC=tetrahydrocannabinol 

 

 

Figure 1. Tract-based spatial statistics results showing FA difference in red-orange (FLR>clozapine-

eligibility; p<0.05, FDR corrected) in the body of the corpus callosum (peak MNI coordinate 5 -10 26 

mm) overlaid onto mean FA skeleton and MNI152 1mm brain.  

 

Figure 2. Mean FA of significant cluster identified during tract-based spatial statistics analysis. Upper 

and lower boxes represent 25th and 75th percentiles, respectively; lines through each box represent 

the median; mean of the sample is represented by an ‘x’; outliers are shown as rings. 

 



 

Figure 3. Pearson’s correlation between mean FA value in significant cluster (from tract-based spatial 

statistics analysis) and PANSS score.  

 

 

Figure 4. Pearson’s correlation between mean FA value in significant cluster (from tract-based spatial 

statistics analysis) and antipsychotic dose in chlorpromazine equivalents.  


