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Abstract

We study the term structure of variance (total risk), systematic,

and idiosyncratic risk. Consistent with the expectations hypothesis,

we find that, for the entire market, the slope of the term structure

of variance is mainly informative about the path of future variance.

Thus, there is little indication of a time-varying term premium. Turn-

ing the focus to individual stocks, we cannot reject the expectations

hypothesis for systematic variance, but we strongly reject it for id-

iosyncratic variance. Our results are robust to jumps and potential

statistical biases.
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I Introduction

Recent studies document the predictive power of the term structure of risk-related

variables. For example, Vasquez (2016) and Koijen et al. (2017) show that the spread

related to option-implied volatilities of different maturities predicts future option returns.

At the same time, security exchanges are increasingly disseminating information about

the term structure of option-implied volatility. For instance, the Chicago Board Options

Exchange (CBOE) now publishes information not only about the popular 1-month VIX

but also about the 3-month VIX and the option-implied correlation of various maturities.

The academic and professional interest in the term structure of risk raises several ques-

tions: What does the term structure of variance tell us about future developments? Are

there differences in the term structures of market and stock option prices? Do the term

structures of systematic and idiosyncratic risk behave differently? In particular, does the

term structure encode information about the future path of the variable of interest or

does it instead reflect variations in a possible term premium?

Understanding whether there is a time-varying term premium or not is important in

many situations. For asset managers, knowledge about the term premium is essential for

strategies that take positions in the long-term variance and roll over short positions in

the short-term variance. If the term premium varies over time in a predictable fashion,

investors could exploit this. On the other hand, it is important to know whether it is

cheaper to hedge against variance increases by buying a long-term variance swap contract

or rolling over short-term variance swaps. Understanding the differences in the term

structures of systematic and idiosyncratic variance can help asset managers decide how

to hedge individual stock variance. Answers to the above questions are also important for

risk managers who need an estimate of future stock or market variance. To the extent that

there is a time-varying premium in the term structure of variance, the implied forward
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variance will be a noisy proxy for the expected future implied variance. Thus, a risk

manager would need to purge the implied forward variance from the time-varying term

premium.

This paper analyzes the term structures of total, systematic, and idiosyncratic vari-

ance. We formally derive testable predictions of the expectations hypothesis. The expec-

tations hypothesis states that the spread between the current long-term estimate of these

risk measures and the current short-term estimate of risk is mainly informative about

future developments in short-term risk. Our derivation points to a relationship between

the term structure of equity index options prices and that of the option prices on the

underlying equities.

We use a large options dataset to empirically test the expectations hypothesis. Our

results suggest that the expectations hypothesis generally cannot be rejected for the term

structures of the option-implied variance of the market as well as for systematic stock

variance. Thus, there is little indication of a time-varying term premium associated with

systematic risk. As a consequence, the slope of each term structure is informative about

investors’ expectations of future short-term (systematic) variance. As opposed to that,

we typically detect a negative term premium in the term structure of option-implied

idiosyncratic variance. Additionally, we also cannot reject the expectations hypothesis in

the term structure of option-implied correlation. These results are robust to the presence

of jumps in the underlying price process, as well as potential statistical biases in our tests.

We thus conclude that overall the expectations hypothesis provides a good description of

the term structure of market option prices, but not to the extent that it accounts for

idiosyncratic variance.
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Our work extends the literature on the term structure of variance and volatility.1

Campa & Chang (1995) and Della Corte et al. (2011) study the term structure of foreign

exchange variance and volatility, respectively. Mixon (2007) and Johnson (2016) extend

these studies to the term structure of equity index implied variance. Our work is related

to a study by Heynen et al. (1994), who focus on the term structure of the index and

individual equity option-implied volatility. Taken together, the above studies reach con-

flicting conclusions. These range from a rejection of (an implication of) the expectations

hypothesis (Della Corte et al., 2011 and Johnson, 2016) to mixed results (Mixon, 2007)

and not being able to reject the expectations hypothesis for the term structure of variance

(Heynen et al., 1994 and Campa & Chang, 1995). Our study is different in several im-

portant aspects. First, unlike Heynen et al. (1994), Campa & Chang (1995), and Mixon

(2007), we study the model-free option-implied variance, which makes our results immune

to potential misspecification of a specific option pricing model used. That is, we avoid

performing a joint test of correct option pricing model specification and the expectations

hypothesis. Second, we extend the work of Mixon (2007) and Johnson (2016), who focus

on the market index only. Because our derivation points to the link between the option-

implied variances of the index and the individual equities, we study the term structure

of the option-implied variance of individual equities. Third, and most importantly, mo-

tivated by partly differential results on the market and individual stocks, we decompose

the term structure of option-implied variance into systematic and idiosyncratic variance.

Our paper is also related to Clara (2018), who uses the slope of the term structure

of beta to predict the cross-section of excess stock returns. Our focus is very different.

Our main interest is to understand the term structure of option-implied variance. We
1Ait-Sahalia et al. (2015) extend the work of Egloff et al. (2010), modeling the term structure of

variance swaps in a continuous time setup. Further papers that model the term structure of variance
swap rates include Andries et al. (2015), Amengual & Xiu (2015), Dew-Becker et al. (2017), and Filipović
et al. (2016).
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use forward-looking betas to decompose the option-implied variance of each stock into

systematic and idiosyncratic parts and test the expectations hypothesis for both compo-

nents.

Feunou et al. (2014) show that principal components from the option-implied variance

term structure have predictive power for bond and equity returns. Our results indicate

that factors capturing the slope of the term structure on the market level are related to

expectations about the future variance and may help rationalize these findings.

We also add to the literature on the term structure of option-implied correlation. Faria

& Kosowski (2016) study the term structure of option-implied correlation. However, they

make no attempt to test the expectations hypothesis.

Our study carries implications for asset pricing and risk management in general, and

the design of trading strategies in particular. From an asset pricing standpoint, our find-

ings imply, though do not directly test, that the cross-sectional strategies of Vasquez

(2016) and Koijen et al. (2017) mainly sort on the expected path of the future short-term

option-implied volatility, rather than a related term premium. Thus, our results suggest

that these studies capture a risk premium associated with cross-sectional differences in

expectations about future short-term risk. Furthermore, our finding that the implied

systematic variance term structure mainly reflects expectations about future short-term

systematic variance can be used for risk management purposes. Finally, the results pre-

sented in this study reveal that a trading strategy that buys the long-term option-implied

variance and sells the future short-term option-implied variance is not profitable on aver-

age at the market level but yields substantial negative returns when applied to individual

stocks.

The remainder of this paper is organized as follows. In Section II, we introduce

the data and the methodology for the estimation of the option-implied quantities. In
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Section III, we derive the theoretical relationship between option-implied variances of

different maturities and present our empirical results for variance. In Sections IV and

V, we separately study the term structure of option-implied systematic and idiosyncratic

variance, respectively. We conduct additional analyses and test the robustness of our

results in Section VI. Section VII concludes.

II Data and Methodology

A Data

We obtain monthly options data for all stocks in the S&P 500 and the corresponding

index from IvyDB OptionMetrics for the sample period between January 1996 and Au-

gust 2015.2 We use the Volatility Surface that directly provides implied volatilities over

standardized times to maturity for certain levels of delta.3,4 We select out-of-the-money

options, namely puts with deltas larger than −0.5 and calls with deltas smaller than 0.5,

using constant maturities of 1, 3, 6, 9, and 12 months for our analysis. Data on the

interest rate come from the IvyDB zero coupon yield curve file.5 Additionally, we obtain

daily return data for the S&P 500 index and its constituents from the Center for Research

in Security Prices (CRSP).

When testing the expectations hypothesis for individual stocks, we require at least 50
2The starting date of our study aligns with the start of the OptionMetrics database in 1996, while

options data were only available up to August 2015 when we started this study, determining the end
point of our sample period.

3IvyDB uses a kernel smoothing algorithm that generates standardized options only “if there exists
enough option price data on that date to accurately interpolate the required values”. For more details we
refer the interested reader to the IvyDB technical document.

4The results are qualitatively similar when directly using “real” options instead of the Volatility
Surface.

5IvyDB derives the zero coupon yield from the London Interbank Offered Rates (LIBOR) and settle-
ment prices of Chicago Mercantile Exchange Eurodollar futures.
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monthly observations to include the firm in the sample.6

B Variance, Correlation, and Beta Estimation

We follow the approach developed by Britten-Jones & Neuberger (2000) and Jiang &

Tian (2005b) to compute the (annualized) model-free option-implied variance:

σ2
j,t,T =

2ert(T−t)

T − t

∫ ∞

0

Mt(T,K)

K2
dK. (1)

σ2
j,t,T is the (annualized) option-implied variance of asset j for the period starting at time

t and ending at time T . Note that the option-implied variance is available at time t. rt

is the risk-free rate and T − t is the time to maturity of the option, denominated as the

fraction of one year. Mt(T,K) is the price of the out-of-the-money option (put or call)

with strike K and time to maturity T − t at time t.

For the empirical implementation, we follow Chang et al. (2012).7 First, we compute

ex-dividend stock prices. Second, we interpolate implied volatilities on a grid of 1,000

moneyness levels (K
S
, strike-to-spot), equally spaced between 0.3% and 300%, for any

given stock and trading day. For implied volatilities outside the range of available strike

prices, we extrapolate using the nearest neighbor method (as in Jiang & Tian, 2005b and

Chang et al., 2012).8 Using the interpolated volatilities, we compute Black & Scholes

(1973) option prices for calls if K
S
> 1 and puts if K

S
< 1. Third, we use these prices

to numerically compute the above integral using a trapezoidal rule (Dennis & Mayhew,

2002).
6Overall, we are able to include 658 of the constituents of the S&P 500, which vary over time due to

index additions and deletions.
7Given the well-documented issues with the VIX, we decided to follow the methodology described

here instead of that used by the CBOE (Jiang & Tian, 2005a; Andersen et al., 2015).
8The OptionMetrics Volatility Surface contains calls with deltas down to 0.20 and puts with deltas

ranging up to −0.20.
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For the computation of the option-implied correlation, we follow Driessen et al. (2009),

computing the average pairwise correlation among all N stocks in an index:

ρt,T =
σ2
M,t,T −

∑N
j=1 ω

2
j,tσ

2
j,t,T∑

j,l 6=j ωj,tωl,tσj,t,Tσl,t,T
. (2)

σ2
M,t,T is the (annualized) option-implied variance of the market index and ωj,t denotes

the weight of asset j in the market index at time t.

To obtain forward-looking estimates of beta, we use the methodology proposed by Buss

& Vilkov (2012). The Buss & Vilkov (2012) approach enables us to obtain a term structure

of beta. In addition, Hollstein & Prokopczuk (2016) show that this estimator predicts

future realized beta significantly better than all other forward-looking option-implied

beta estimators such as those of French et al. (1983), Skintzi & Refenes (2005), Chang

et al. (2012), and Kempf et al. (2015), that would also allow us to obtain information

on the term structure of beta. Hollstein & Prokopczuk (2016) find that the Buss &

Vilkov (2012) estimator predicts future betas even better than the classical historical

approach for horizons between one and twelve months. The approach essentially consists

in mapping historical correlations, obtained from a 12-month time-series of daily returns,

to risk-neutral correlations (ρjl,t,T ) and combining these estimates with the model-free

option-implied volatilities.9 A forward-looking estimate for the beta of security j is given

by:

βBV
j,t,T =

σj,t,T
∑N

l=1 ωl,tσl,t,Tρjl,t,T
σ2
M,t,T

, (3)

where all variables are as previously defined. The implied volatilities needed for the
9The authors use (i) the identity that the implied variance of the market index has to be the same as

the implied variance of the value-weighted portfolio of all index constituents and (ii) a technical condition
that maps physical correlations (ρPjl,t,T ) into risk-neutral correlations, namely ρjl,t,T = ρPjl,t,T − αt,T (1−
ρPjl,t,T ). Combining these two relations and solving for αt,T , the authors recover the implied correlation
matrix of a stock index. For further details, we refer the interested reader to the original article.
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approach are obtained as the square-root of the option-implied variance extracted from

options with time to expiration matching the forecast horizon. We test the robustness of

our results to using alternative option-implied beta estimators in Section VI.E.

III The Term Structure of Option-Implied Variance

A Derivation of the Term Structure Relation

Let Xt denote the price of an asset at time t. Under no arbitrage, the price should be a

semi-martingale. Under the assumption that the price is an Itô semi-martingale and there

are jumps of finite variation in the price process, the price dynamics can be expressed as

(e.g., Bollerslev & Todorov, 2011):

dXt

Xt

= αtdt+ vtdWt +

∫
R

(ex − 1) µ̃P (dt, dx) . (4)

αt is the drift and vt is the instantaneous volatility process. Wt is a standard Brownian

motion. µ̃P (dt, dx) = µ(dt, dx) − νPt (dx)dt is the compensated jump measure, where

µ(dt, dx) is a counting measure for the jumps and νPt (dx)dt denotes the compensator of

the jumps. The time-t expectation of the quadratic variation of the log price process,

Et(QVj,t,t+km), then solves

Et (QVj,t,t+km) =

∫ t+km

t

Et
(
v2j,τ
)

dτ +

∫ t+km

t

∫
R
x2Et

(
vPt (dτ, dx)

)
. (5)

Et(QVj,t,t+km) denotes the time-t expectation of the variance of stock j over k periods,

each of lengthm (expressed in months), following time t. v2j,τ is the instantaneous variance

at time τ . Without loss of generality, in the following we set t = 0. For discrete time
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steps, we have
1

k

k−1∑
i=0

E0

(
QVj,im,(i+1)m

)
= E0 (QVj,0,km) . (6)

Equation (6) reveals that the long-term implied variance is equal to the mean of time-0

expectations of future short-term implied variances.10 Note that this equation holds un-

der both the physical and the risk-neutral probability measures. Under the expectations

hypothesis, E0(QVj,im,(i+1)m) is an unbiased predictor of Eim(QVj,im,(i+1)m). Hence, we can

test the expectations hypothesis by substituting E0(QVj,im,(i+1)m) with Eim(QVj,im,(i+1)m) =

σ2
j,im,(i+1)m.

Intuitively, Equation (6) implies that an upward-sloping term structure reveals that

the market expects the future short-term implied variance to rise and vice versa. Notice

also that Equation (6) implies a constant and zero term premium if the expectations

hypothesis holds, where the term premium is defined as the return to the strategy that

takes a long position in the long-term implied variance and rolls over short positions in

the short-term implied variance (see also Section III.C).

Since the level of variance may have a unit root or follow a near-unit-root process,

we follow Campa & Chang (1995) and subtract the short-term option-implied variance

on both sides of Equation (6). Hence, we test the expectations hypothesis in the term

structure of option-implied variance by estimating the following regression model:

1

k

k−1∑
i=0

(
σ2
j,im,(i+1)m − σ2

j,0,m

)
= aj + bj

(
σ2
j,0,km − σ2

j,0,m

)
+ νj,km, (7)

where aj and bj are the regression intercept and slope, respectively. All other variables are

as previously defined. For example, when testing the expectations hypothesis comparing

a 12-month variance contract with 12 successive 1-month contracts, we set k = 12 and
10Note that the term 1

k in Equation (6) reflects the fact that all variances are annualized.

9



m = 1 in Equation (7).11

The regression equation above provides several insights. First, the regression slope bj

is economically interesting since it reveals the share of variation in the slope of the term

structure that relates to future changes in the short-term option-implied variance. The

remainder (1− bj) captures that share of the variation in the slope of the term structure

that is related to the variation in the term premium. Notice that if the term premium is

zero (constant), as predicted by the expectations hypothesis, we expect (1− bj) = 0.

Second, Equation (7) presents two formally testable versions of the expectations hy-

pothesis. The pure version of the expectations hypothesis predicts a zero term premium.

We can formally test the pure expectations hypothesis with the joint null hypothesis

aj = 0 and bj = 1. The general version of the expectations hypothesis instead allows for a

non-zero but constant term premium (Cargill, 1975), i.e., the null hypothesis only states

bj = 1. We test the pure expectations hypotheses using a Wald test and the general

expectations hypothesis with a t-test. For all tests at the market level, we use Newey

& West (1987) corrected standard errors with lag length equal to k times m, with m

expressed in months.

Finally, to gain power for the tests on the market level, we also perform a joint Wald

test across all maturity specifications of both the pure and general expectations hypothe-

ses. Since the residuals are not independent across maturity specifications, we simulate the

critical values with a block-bootstrap that also preserves the dependence across maturity

specifications. We sample the residuals with replacement in blocks of 12 observations us-
11Different from, e.g., Campbell & Shiller (1991), Bekaert & Hodrick (2001), and Della Corte et al.

(2008) we do not use a vector autoregressive (VAR) approach for the expectations hypothesis tests. As
noted by Della Corte et al. (2008), in order to set up a VAR for the short-term and long-term variances,
one has to make additional assumptions on their data-generating processes (dgp). This implies that the
VAR approach is a joint test of the expectations hypothesis and model specification of the dgp. In light
of this and the evidence on explosive paths by Downing & Oliner (2007), we choose not to follow the
VAR approach.

10



ing blocks that begin at the same time across each maturity specification. Afterwards, we

create an artificial time-series of the same length as the original one for the expectations

hypothesis test, imposing the joint restrictions implied by the pure expectations hypoth-

esis and compute both test statistics. We repeat this step 1,000 times, thus obtaining the

distribution of the two test statistics.

For tests on individual stocks, we estimate Equation (7) jointly for all stocks in a panel

regression. To perform the inference, we follow the advice of Petersen (2009) and use the

two-way clustering approach of Cameron et al. (2011).12 We cluster the residuals by both

calendar time and firm observations.

B Empirical Results

Table 1 presents summary statistics on the option-implied variance and correlation for

different maturities. In Panel A, we present summary statistics on the market option-

implied variance. We find that the term structure is relatively flat on average and increases

only marginally with time to maturity. Since the variance is positive by definition, this

preliminary evidence indicates that the average variance term premium is likely small. The

1-month option-implied variance is far more volatile than the 12-month option-implied

variance with standard deviations of 0.041 and 0.027, respectively. The fact that short-

term variance has a higher standard deviation, to some extent, indicates that shocks to

variance might be mainly transitory.13 The first-order autocorrelation is higher for longer

maturities and both skewness and kurtosis decrease with maturity.

Figure 1 shows the evolution of 1-month and 12-month option-implied variance of the
12If the resulting coefficient covariance matrix is not positive semi-definite, we follow the approach of

Higham (1988).
13A similar pattern across maturities holds for the term structure of interest rates, where shocks cannot

easily be considered transitory. It is thus also possible that there is simply more noise in short-term options
prices. However, we find further support for our conclusion, e.g., studying Figure 1.
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S&P 500 over time.14 There is a large peak during the financial crisis for both maturities.

We find that the slope of the term structure, defined as the 12-month minus the 1-month

option-implied variance is frequently positive during calm periods, when estimates for the

option-implied variance are small. However, the term structure becomes inverted during

bad economic times, e.g., during recessions, highlighted by the shaded areas. Taken

together, these patterns further strengthen the view that variance shocks are mainly

transitory and point towards the presence of mean-reversion in risk-neutral expectations

about the future variance.

Panel A of Table 2 reports the results of the test of the expectations hypothesis for

the market. We present the results for different pairs of long and short horizons. Several

findings are worth noting. First, the slope estimates are generally close to the value of

1 predicted by the expectations hypothesis. For instance, we obtain a slope estimate

of 1.042 that is not significantly different from 1 when analyzing 12 months as the long

horizon vs. the 12 consecutive 1-month short horizons. The magnitude of the slope coeffi-

cient indicates that the term structure slope is almost exclusively informative about future

short-term changes in the option-implied variance. Similar results emerge for other com-

binations of maturities. Second, the intercept is generally of small economic magnitude

and not significantly different from 0. Third, we formally test the joint restriction implied

by the pure expectations hypothesis, i.e., a = 0 and b = 1. As the p-value associated with

the Wald test shows, we cannot reject this null hypothesis. Finally, we also cannot reject

the expectations hypothesis based on a joint test across all maturity specifications. We

thus conclude that the pure expectations hypothesis provides a good description of the

term structure of the market option-implied variance.15

14To enhance the exposition, we plot the longest and the shortest time to maturity only. The variances
of intermediate maturities are generally in between those of the 1-month and 12-month maturities.

15In a recent related study, Johnson (2016) tests an implication of the expectations hypothesis and
rejects it. In Section VI.A, we discuss the relation of his results to ours.
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Turning the focus on individual stocks, Panel B of Table 1 presents some key statistics.

We obtain the numbers in the table by first averaging over time and then across stocks.

We first note that the average level of option-implied variance is substantially higher

compared to that of the market. This indicates that a substantial fraction of the option-

implied variance of individual stocks consists of idiosyncratic variance. Furthermore,

we find that, on average across stocks, the term structure of the stock option-implied

variance is downward-sloping with an average 1-month variance of 0.166 and an average

12-month variance of 0.145. A similar relation results when value-weighting the stocks.

This clear pattern in the option-implied variance across maturities delivers some indication

of a negative term premium. The remaining patterns regarding standard deviations,

persistence, skewness, and kurtosis across maturities are similar to those of the market

index.

Panel B of Table 2 presents our tests of the expectations hypothesis for individual

stocks.16 These deliver an interesting pattern. For the 12 months vs. 1 month maturity

specification, we find a statistically significant positive intercept coefficient of 0.012 and a

slope coefficient of 0.909 that is not significantly different from one. The Wald test rejects

the pure expectations hypothesis in the term structure of individual stock variance but

we cannot reject the general expectations hypothesis. For long overall horizons, we obtain

similar results. We are typically able to reject the pure but not the general expectations

hypothesis. On the other hand, for short horizons of especially 6 and 3 months, we can

strongly reject both the general and the pure expectation hypothesis.

Taken together, although we are not able to reject the expectations hypothesis for

the market option-implied variance, Panels A and B of Table 2 indicate that there is

in general, both for the market and for individual stocks, a decreasing pattern in the
16Note that for our main results, we restrict both the intercept and slope coefficients to be the same

across all stocks. We relax this assumption in Section VI.D.
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slope estimates of the term structure of option-implied variance with respect to the time

to maturity. To our knowledge, this pattern has not been documented in the previous

literature, presenting a new stylized fact in options markets.

A natural question to ask is: does the expectations hypothesis work for some stocks and

not others? If so, one possibility is that the firms for which the expectations hypothesis

is rejected are small firms with illiquid options. Indeed, when testing the expectations

hypothesis separately for each stock, we find that it can only be rejected for part of the

stocks while it cannot be rejected for others. Stocks for which we reject the expectations

hypothesis are typically small firms relative to the average firm in our sample, have low

options trading volumes, and have high average variances. We present these results in

Table 3. For example, for the 12 months vs. 1 month maturity specification, the average

1-month and 12-month option-implied variances are 0.19 and 0.16 for stocks for which we

reject the pure expectations hypothesis and 0.16 and 0.14 for stocks for which we cannot

reject the pure expectations hypothesis, respectively. Furthermore, the average weight in

the market index for stocks for which we reject the pure expectations hypothesis is 0.13%

while that for the remaining stocks is 0.22% on average. Finally, the average daily options

volume is 4,412 for stocks for which we reject and 6,117 for the stocks for which we cannot

reject the pure expectations hypothesis.

One possible interpretation of these results could be that in the term structure of option

prices expectations evolve more consistently for large firms and firms with more liquid

options. On the other hand, given that the expectations hypothesis cannot be rejected for

the market option-implied variance, it could be that the expectations hypothesis holds for

systematic but not for idiosyncratic risk. Thus, the firms for which we are able to reject

the expectations hypothesis might simply carry more idiosyncratic risk. In the following

sections, we therefore test the expectations hypothesis separately for the systematic and
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idiosyncratic parts of the variance.

C Variance Term Premia

We also examine the return on a strategy that takes a long position in the long-term

option-implied variance and rolls over short positions in the short-term option-implied

variance.17 We compute these returns as

σ2
j,0,km − 1

k

∑k−1
i=0 σ

2
j,im,(i+1)m

σ2
j,0,km

, (8)

where all variables are as previously defined. The results of Section III indicate that the

variance term premia should be close to zero on average.

We present the results on the variance term premia in Table 4. For example, buying the

12-month option-implied variance and rolling over 12 1-month contracts yields an average

annualized return of 1.1%. However, this point estimate is not significantly different from

zero. Neither do we obtain a significant average return for any of the other maturity

specifications. Hence, on average, there seems to be no variance term premium on the

market level.

For the variance term premia of the individual stocks, presented in Panel B of Table 4,

the picture looks quite differently. On average across all stocks, the variance term premia

are economically and statistically clearly significantly negative. For example when buying

a 12-month variance swap contract and rolling over 12 consecutive 1-month contracts, one

realizes an average return of −17%.
17Note that, in practice, this payoff can be achieved by buying a long-term variance swap and shorting

consecutive short-term variance swaps. The payoffs of the floating leg on the long and short positions
offset one another.
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IV The Term Structure of Systematic Risk

A Derivation of the Term Structure Relation

Bringing together the results of the option-implied variance of the market and the

individual stocks, in this section we study the term structure of systematic risk. We

find that we cannot reject the expectations hypothesis for the market variance but in

part for the variance of individual stocks. A potential explanation for these findings is a

differential pattern in the evolution of option-implied systematic and idiosyncratic risk.

Thus, in this and Section V, we decompose the variance term structure into its systematic

and idiosyncratic components.

While the terms “systematic risk” and “beta” are often used interchangeably, in the

following we use the term “systematic risk” to denote the systematic part of the total

variance (β2
j,t,Tσ

2
M,t,T ) while beta relates to the standard definition, i.e., the expected

covariance of an asset’s excess return with that of the market over the expected variance of

the market excess return. During our sample period, on average, systematic risk accounts

for roughly 40% of the total variance of individual stocks.18 Leading theoretical models

predict that the exposure to systematic risk is priced.19 Hence, it might be that the

expectations hypothesis holds only for systematic risk, while investors pay less attention

to the term structure of idiosyncratic risk.
18For example, for the 1-month horizon, the firm-level average total variance is 0.166 and the average

systematic variance (β2
j,t,Tσ

2
M,t,T ) amounts to 0.064, which corresponds to a share of 38.7%. For the 12-

month horizon, the average option-implied variance is 0.145. The systematic part, on average amounts
to 0.063, which means that it accounts for 43.2% of the total variance.

19Although, recent empirical evidence partly suggests otherwise (e.g., Ang et al., 2006; Herskovic
et al., 2016; and Schürhoff & Ziegler, 2016), which is part of the motivation for why we also examine
idiosyncratic risk in the next section.
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We assume that asset returns are generated by a single index model of the form

rj,t,T = αj,t,T + βj,t,T rM,t,T + εj,t,T , (9)

where rj,t,T and rM,t,T denote the excess returns of stock j and the market for the period

t until T , respectively. εj,t,T is the idiosyncratic return component.

In Section A1 of the Appendix, we derive the term structure equation systematic risk

under the return generating process of Equation (9) and obtain the following result:

1

k

k−1∑
i=0

[
E0

(
βj,im,(i+1)m

)2 E0

(
σ2
M,im,(i+1)m

)]
+ ∆βσ + ∆βr + ∆ε = E0 (βj,0,km)2 E0

(
σ2
M,0,km

)
.

(10)

∆βσ, ∆βr, and ∆ε are defined in Section A1 of the Appendix.

For testing the expectations hypothesis, we proceed analogously to the case of the

option-implied variance and subtract the short-term estimate for systematic risk on both

sides of Equation (10), and set up a regression similar to that of Equation (7). An

investment strategy on the systematic risk of a firm is realizable much easier than one,

e.g., directly on beta. An investor simply needs to compute the forward-looking beta of

a stock and trade β2 shares in the variance of the market index.

B Empirical Results

In Panel C of Table 1, we present summary statistics on the estimated betas. Naturally,

there cannot be a term structure in the value-weighted average since this has to be one

for every horizon. Indeed, we find that the value-weighted average is close to one for all

horizons. However, there are some differences. The standard deviation, skewness, and

kurtosis are generally higher for shorter-term betas while the autocorrelation typically
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increases with time to maturity.

Table 5 shows the results of expectations hypothesis tests in the term structure of

systematic risk for individual stocks.20 As was the case for the total variance of individ-

ual stocks, we detect an intercept coefficient that is positive and significantly different

from zero in many cases. We are thus able to reject the pure expectations hypothesis

which states that both the intercept should be zero and the slope coefficient should be

equal to one at least marginally for all maturity specifications but one. However, the

slope coefficients for all horizons are typically close to one, and we are not able to reject

the general expectations hypothesis for individual stocks’ systematic risk for any of the

maturity specifications. Thus, given that we are able to reject the general expectations

hypothesis for the total variance of individual stocks especially for short horizons, but not

for systematic risk, it appears worthwhile to take another look at the term structure of

idiosyncratic variance.

V The Term Structure of Idiosyncratic Variance

A Derivation of the Term Structure Relation

In the previous sections, we find that the term structure of option-implied variance is

downward-sloping on average while the term structure of the market option-implied vari-

ance is rather flat. Furthermore, we cannot reject the general expectations hypothesis for

systematic risk while the expectations hypothesis does not overall obtain similar support

in the term structure of total stock variance. These stylized facts may be indicative of a

downward-sloping term structure of option-implied idiosyncratic variance. Thus, in this

section, we study the term structure of idiosyncratic variance. We obtain the idiosyn-
20Note that the results of this section are not entirely model-free since the option-implied beta of Buss

& Vilkov (2012) depends on a parametric model.
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cratic variance for all stocks and maturities by solving Equation (A1) of the Appendix

for the idiosyncratic variance E0

(
σ2
ε,t,T

)
.21 We then test the expectations hypothesis for

idiosyncratic variance as

1

k

k−1∑
i=0

(
σ2
ε,j,im,(i+1)m − σ2

ε,j,0,m

)
= aj + bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+ νj,km, (11)

where σ2
ε,j,im,(i+1)m denotes the estimate for the option-implied idiosyncratic variance.22

All other variables are as previously defined.

B Empirical Results

In Panel D of Table 1, we present the summary statistics on idiosyncratic variance. Id-

iosyncratic variance, similar to the total option-implied variance has a slightly downward-

sloping term structure on average. Compared to total stock variance, for idiosyncratic

variance, the standard deviation, skewness, and kurtosis are reduced, while the autocor-

relation is somewhat higher.

In the previous sections, we find that the slope coefficients for the expectations hypoth-

esis tests on systematic risk are typically larger than those for the expectations hypothesis

tests on the total stock variance. Thus, given these patterns and the finding that the

option-implied variance term structure of individual stocks is typically downward-sloping,

we expect the slope coefficients to be below 1.

We present the results of the expectations hypothesis tests in the term structure of

idiosyncratic variance in Table 6. Consistent with our previous results, and as expected,
21As described in Section A1, we proxy the expected squared market return by the market variance

and obtain estimates for the variance of beta and the covariance of beta with the market variance using
the full sample estimate.

22Note that the decomposition of the total stock variance term structure into a systematic and an
idiosyncratic part is not entirely exhaustive. We neglect the parts ∆βσ and ∆βr of Equation (10) that
are difficult to interpret.
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we find that the slope coefficient is clearly below 1 for all maturity combinations. For

example, for the 12 months vs. 1 month maturity specification, the slope coefficient is

0.737. For other maturity specifications, the slope coefficients are typically even lower.

We are able to strongly reject both the general and the pure expectations hypothesis for

all maturity combinations.

Thus, overall we find that the expectations hypothesis cannot be rejected for the

market as well as the systematic risk of individual stocks. However, we can strongly

reject the expectations hypothesis for idiosyncratic variance.

C Idiosyncratic Variance Term Premia

In the recent years, there has been an extensive literature that studies strategies on

idiosyncratic volatility (e.g., Ang et al., 2006, 2009; Fu, 2009; Bekaert et al., 2012).

Typically, the authors find that stocks with high past idiosyncratic volatility underperform

those stocks with low past idiosyncratic volatility. As opposed to that, in this section, we

examine the average term premia on idiosyncratic variance. Instead of sorting the stocks

on their past idiosyncratic variance, the strategy considered here takes a long position in

the long-term option-implied idiosyncratic variance and rolls over short positions in the

short-term option-implied idiosyncratic variance of the same stock. We compute these

returns as
σ2
ε,j,0,km − 1

k

∑k−1
i=0 σ

2
ε,j,im,(i+1)m

σ2
ε,j,0,km

. (12)

All variables are as previously defined.

We present the average results in Table 7.23 Consistent with the results of the previ-

ous subsection, we find that the average idiosyncratic variance term premia are typically
23To limit the effect of outliers, we winsorize the idiosyncratic variance term premia each month at

the 1% and 99% quantiles.
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negative and significantly different from zero. Hence, buying a long-term position in id-

iosyncratic stock variance is typically cheaper than rolling over short-term positions. Thus,

there is a negative term premium in the term structure of option-implied idiosyncratic

variance. Compared to the average total variance term premia for individual stocks, the

idiosyncratic variance term premia are even clearly larger in magnitude. Thus, it seems

that it is mostly the idiosyncratic part of the stock variance that drives the negative

average payoffs.

In the following, we examine the properties of the idiosyncratic variance term premia

further.24 In Figure 2, we present the time-series of the stock-level average idiosyncratic

variance term premia. We find that the stock-level average idiosyncratic variance term

premia is volatile, as evidenced by a volatility of 0.688. It takes particularly low values

during two distinct time periods: (i) the Long Term Capital Management (LTCM) crisis

followed by the height of the dot-com bubble and (ii) the 2008–2009 financial crisis.

Motivated by the distinct patterns in the time series of average idiosyncratic variance

term premia, we analyze the determinants of these in further detail. For so doing, we run

a panel regression of idiosyncratic variance term premia on several stock and aggregate

time-series characteristics. All characteristics are observed at the same time with the

idiosyncratic variance for the long horizon, i.e., at the beginning of the trading period for

the idiosyncratic variance term premia. We use the firm size, the book-to-market ratio, the

momentum characteristic, and the option volume as potential firm-specific determinants.25

We also use the default spread and the term spread as potential aggregate time-series
24We thank an anonymous referee for suggesting this analysis.
25The construction of these variables follows the standard practice in the literature. Size is the stock’s

market capitalization, obtained from CRSP. The book-to-market ratio uses accounting data from Com-
pustat and is the book value of equity divided by end-of-December market capitalization. We update
the book-to-market ratios annually in June, using accounting data from the previous fiscal year. For the
momentum signal, we use the return over the period t − 12 until t − 1, thus skipping one month. The
option volume is the total options volume during the previous month, obtained from OptionMetrics.
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determinants of firms’ idiosyncratic variance term premia.26

The empirical results are presented in Table 8. We find that among the firm charac-

teristics only the book-to-market ratio has a significant effect on variance term premia.

These appear to be largely independent of the firm size, the momentum signal, and the

option volume. As opposed to that, stocks with higher book-to-market ratios tend to

have significantly lower idiosyncratic risk term premia. Thus, it seems that value firms

have higher idiosyncratic variance term premia than growth firms.

In contrast to the firm characteristics, we find that both aggregate time-series charac-

teristics, the default premium and the term premium, are significantly positively related

to idiosyncratic variance term premia. Thus, overall, particularly crisis-related variables

appear to predict idiosyncratic variance term premia. At the first glance, in light of the

average results in Figure 2, which indicate that the idiosyncratic variance term premia

are especially low preceding or during distressed times, it appears puzzling that both the

default spread and the term spread are significantly positively related to idiosyncratic

variance term premia. This puzzle gets at least partly resolved by the fact that the

book-to-market ratio, which also strongly reacts to economic conditions, is a significantly

negative predictor. That the book-to-market ratio influences idiosyncratic variance term

premia further indicates that there is some heterogeneity in idiosyncratic variance term

premia across firms.
26We obtain data on the term default spread and the term spread from Amit Goyal’s webpage.
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VI Additional Analyses

A Forward Unbiasedness

Equation (7) is not the only implication of the expectations hypothesis. The forward-

unbiasedness hypothesis, that can also be derived as an implication of Equation (6), states

that current forward rates of implied variance should predict future spot rates of implied

variance as (Johnson, 2016):27

σ2
j,m,km − σ2

j,0,m = aj + bj
(
f 2
j,0,m,km − σ2

j,0,m

)
+ νj,km. (13)

The forward variance implied by the term structure is obtained as f 2
j,0,m,km = σ2

j,0,km +

1
k−1

(
σ2
j,0,km − σ2

j,0,m

)
. As before, the pure expectations hypothesis predicts aj = 0 and

bj = 1, while the general expectations hypothesis only states bj = 1. To thoroughly assess

its validity, in this section, we also examine the forward unbiasedness implication of the

expectations hypothesis.

We present the results in Table 9.28,29 In Panel A, we present the results for the

option-implied variance of the market. Overall, the results for the forward unbiasedness

formulation of the expectations hypothesis are qualitatively similar to those in Section

III. For most of the maturity specifications, we cannot reject the expectations hypothesis.

The expectations hypothesis receives the strongest empirical support for long forward

horizons of 9 and 6 months. On the other hand, the slope coefficients for the shortest

forward horizons is lower. For the 3 months vs. 1 month horizon (2 months forward
27We make use of the expectations hypothesis to substitute En(QVj,n,km) = σ2

j,n,km for E0(QVj,n,km).
28Note that we only present the results for option-implied variance and not systematic risk, idiosyn-

cratic variance, and correlation. In principle, a forward formulation can also be derived for these term
structures. However, in the derivations, the forward beta and correlation contain information that be-
comes known after t only. Hence, with an unobservable forward rate, the forward unbiasedness hypothesis
is not testable.

29Note that for this analysis, we additionally use the 2-month option-implied variance contract.
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horizon), we even reject the expectations hypothesis in its pure form at 5% and the

general form at 10%. For all other horizons as well as with the joint test, we cannot reject

the expectations hypothesis.

Using the aforementioned setup, Johnson (2016) rejects the expectations hypothesis

for the market index. There are two core differences between our approach and that of

Johnson (2016). First, the author uses daily observations, which induces a substantial

amount of overlap, likely introducing an overlapping-observations bias in the analysis.

We use monthly observations, which substantially reduces the overlap and makes a bias

less likely. On the other hand, moving from daily to monthly observations reduces the

sample size and most likely also the statistical power of the test. However, our sample

period covers almost 20 years and thus involves 236 monthly observations. Additionally,

we address this issue with our joint test that pools observations across maturities. Hence,

it is unlikely that our expectations hypothesis tests lack power. Second, Johnson (2016)

concentrates on short horizons. Dew-Becker et al. (2017) show that the variance term

structure is only upward-sloping at the very short end: There is a large difference between

the shortest term implied variance and that with 1-2 months to maturity. Our results of

the expectations hypothesis tests are also weaker for short horizons. Thus, these results

are ultimately consistent with those of Johnson (2016) and Dew-Becker et al. (2017).

In Panel B of Table 9, we present the results for the forward unbiasedness hypothesis

for individual stocks. We can reject both the pure and the general forward unbiasedness

hypothesis at least weakly for every horizon. Since we find that we cannot reject the

expectations hypothesis for the systematic part of the total stock variance, but strongly

reject the expectations hypothesis for the idiosyncratic part, it seems that the forward

unbiasedness test loads more strongly on the idiosyncratic part of the stock variance than

the test in Section III.B.
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Panel C of Table 9 presents the results for the forward unbiasedness hypothesis for

option-implied idiosyncratic variance. Consistent with our previous results, we find that

we can strongly reject both the pure and the general expectations for every maturity

specification.

B The Term Structure of Option-Implied Correlation

In order to further link the evidence on the term structure of the option-implied

variance of the market and the individual stocks, we study the term structure of the

option-implied correlation. Using the fact that the index is a value-weighted portfolio of

its constituents, Equation (6) implies:

1

k

k−1∑
i=0

E0

(
N∑
j=1

ω2
j,imQVj,im,(i+1)m +

∑
j,l 6=j

ωj,imωl,im
√
QV j,im,(i+1)m

√
QV l,im,(i+1)mρim,(i+1)m

)

=E0

(
N∑
j=1

ω2
j,0QVj,0,km +

∑
j,l 6=j

ωj,0ωl,0
√
QV j,0,km

√
QV l,0,kmρ0,km

)
.

(14)

N is the number of stocks in the index and ωj,im is the market capitalization weight

of stock j in the index at time im. ρim,(i+1)m denotes the average correlation of all

stocks in the index between times im and (i + 1)m, following the definition of Driessen

et al. (2009). In Section A2 of the Appendix, we show that Equation (14) implies the

following relation between the long-term and short-term expectations about the future

option-implied correlation:

1

k

k−1∑
i=0

(
E0

(
ρim,(i+1)m

) E0

(
qim,(i+1)m

)
E0 (q0,km)

)
+ ∆QV + ∆pq = E0 (ρ0,km) . (15)

Equation (15) provides several interesting insights. First, it shows that the long-term

correlation is informative about (i) the (weighted) expectation about future short-term
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correlations, (ii) the spread between the average long-term and rolled short-term implied

variance of individual equities (∆QV ), and (iii) the spread between the long-term and rolled

short-term covariances of the option-implied correlation with the weighted cross-sum of

option-implied volatilities (∆pq). The expression makes it clear that, contrary to what

one might intuitively expect, changes in the term structure of the implied correlations

need not be linked to the future path of the implied correlation.

Notice, however, that if the expectations hypothesis holds for individual equities, the

second part on the left hand side of Equation (15) is relatively small.30 Since Section III.B

shows that in some instances we can reject the expectations hypothesis while in others

we cannot, it remains an empirical question whether the long-term implied correlation

mainly reflects information about the weighted future short-term implied correlation. We

formally test the expectations hypothesis in the term structure of the option-implied

correlation by running the regression:

1

k

k−1∑
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+ ∆̂QV + ∆̂pq = a+ b (ρ0,km − ρ0,m) + νkm. (16)

with q∗t,T =
∑

j,l 6=j ωj,tωl,t (σj,t,Tσl,t,T + Covt (σj,t,T , σl,t,T )). ∆̂QV and ∆̂pq are defined in

Section A2 of the Appendix.

To begin with, Panel E of Table 1 presents summary statistics on the option-implied

correlation for different maturities. We find that, on average, the term structure of the

option-implied correlation slopes upward. The average over a 1-month horizon amounts

to 0.418, which rises monotonically to 0.490 for the 12-month horizon. Hence, it seems

that participants in the options market expect (i) the correlations to rise in the long

run and/or (ii) a negative term premium. As is the case for option-implied variance, we
30Note that the weights are also potentially time-varying. Thus, changes in long-term implied corre-

lation could also be linked to changes in the index weights.
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find the long-horizon option-implied correlation estimates to be more persistent and less

volatile, but only slightly less skewed and the kurtosis is close to 3 for all maturities.

Figure 3 presents the time series of option-implied correlation for maturities of 1 and 12

months. We find that the term structure is in general upward-sloping; however, consistent

with recent evidence in Faria & Kosowski (2016), we also find that the term structure of

implied correlation flattens during times of economic distress.

Table 10 presents the results for expectations hypothesis tests.31 Again, we test both

the pure expectations hypothesis, which predicts aj = 0 and bj = 1 and the general

expectations hypothesis, that only requires bj = 1. For the 12 months vs. 1 month

horizon, we obtain a slope estimate of 0.626 and an intercept estimate of 0.035. We

cannot reject the null of the pure expectations hypothesis. For the remaining horizons,

we find that the slope estimates are also generally below 1, with values between 0.47

and 0.70. For all horizons, we can neither reject the pure nor the general expectations

hypothesis. However, one should notice that the standard errors are relatively large.

Thus, our failure to reject might also be driven by a lack of power in the statistical test.

To further address the potential lack-of-power issue, we also run a joint test across all

maturity specifications. The test shows that we can neither reject the pure nor the general

expectations hypothesis in the term structure of option-implied correlation.

C The Role of Jumps

Du & Kapadia (2013) show that the Britten-Jones & Neuberger (2000) approach is

not robust to the presence of jumps in the underlying price process. Hence, jumps in the

31One may wonder about the effect of the multiplicative term
q∗im,(i+1)m

q∗0,km
in Equation (16). For example,

the average of the 1-month q∗ is 0.115, while that of the 12-month q∗ is 0.107. The average of fraction when
using the q∗ observed at the same time only is 1.04. Hence, on average, the short-term option-implied
correlation is multiplied by a factor slightly above 1.
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price processes might affect the results of our expectations hypothesis tests. To account

for this, we repeat our main tests using the option-implied variance following Bakshi

et al. (2003), which Du & Kapadia (2013) show to be empirically robust to jumps. The

alternative option-implied variance can be computed as:

QUAD =

∫ ∞

S

2
(
1− ln

[
K
S

])
K2

C(T,K)dK (17)

+

∫
S

0

2
(
1 + ln

[
S
K

])
K2

P (T,K)dK,
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∫
S

0

12
(
ln
[
S
K

])2
+ 4

(
ln
[
S
K

])3
K2

P (T,K)dK.

µj,t,T = ert(T−t) − 1− ert(T−t)

2
QUAD− ert(T−t)

6
CUBIC− ert(T−t)

24
QUART, (20)

σ2
j,t,T = ert(T−t)QUAD− µ2

j,t,T , (21)

where all variables are as previously defined. We implement the variance computation

along the lines outlined in Section II.B.

We present the results for the expectations hypothesis tests using the jump-robust

option-implied variance in Tables 11–14. In Table 11, we present the results for the option-

implied variance. For the market, these are qualitatively similar as before. For individual

stocks, presented in Panel B of Table 11, with the jump-robust variance estimates we
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are able to reject the general expectations hypothesis also for long horizons. Thus, once

we account for jumps, the expectations hypothesis receives only little empirical support

anymore in the term structure of individual stock option-implied variance.

For systematic and idiosyncratic risk, presented in Tables 12 and 13, we obtain largely

similar results as before. In the case of systematic risk, we can reject the pure expectations

hypothesis, but we are typically not able to reject the general expectations hypothesis.

For idiosyncratic variance, we are able to reject both the general and pure versions of the

expectations hypothesis in each case.

Table 14 presents the results for option-implied correlation. With the jump-robust

option-implied variance, the slope coefficients of the expectations hypothesis regression

are even further from one than with the standard measure. For all but two maturity

specifications we are able to marginally reject the general expectations hypothesis. Thus,

overall the expectations hypothesis also receives only little support in the term structure

of option-implied correlation.

D Firm-Specific Intercept Coefficients

Note that estimating just one intercept coefficient in a panel regression essentially

restricts the intercept coefficient for all stocks to be the same. However, in reality, some

stocks might have positive average term premia while others have zero or negative average

term premia. In this section, we test the robustness of our main results to this restriction.

To do so, we set up a panel regression with firm-fixed intercept coefficients. The Wald test

then tests the joint hypothesis that the slope coefficient is equal to one and all intercept

coefficients are equal to zero.

We present these results in Tables A1–A3. Overall, these results are largely similar

as those without allowing for firm-specific intercepts. We find that in all term structures
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only part of the stocks have intercept coefficients that are significantly different from zero.

However, in every instance, the joint Wald test yields a strongly significant rejection of

that the “expanded” pure expectations hypothesis, which states that it holds jointly for

all stocks.

E Alternative Option-Implied Betas

Given that previous studies indicate that the Buss & Vilkov (2012) estimator outper-

forms all option-implied alternatives, we consider this estimator as a sensible choice for

our main analysis. However, to demonstrate the robustness of our results with respect

to this choice, we repeat the analysis on the decomposition of the total variance into sys-

tematic and idiosyncratic risk.32 In particular, we consider the estimators suggested by

Skintzi & Refenes (2005) and Kempf et al. (2015). These two estimators turn out second-

and third-best among the option-implied estimators examined in Hollstein & Prokopczuk

(2016).

The option-implied beta based on Skintzi & Refenes (2005) (βSR
j,t,T ) can be obtained as

βSR
j,t,T =

ωj,tσ
2
j,t,T +

∑
l 6=j ωl,tρt,Tσj,t,Tσl,t,T

σ2
M,t,T

, (22)

where ρt,T is the option-implied correlation with time-to-maturity T . The estimator of
32In theory, an additional analysis, in which we compute the idiosyncratic variance from a multi-

factor model, would be very interesting. Unfortunately, this analysis is not practically feasible at the
moment. This is because there are currently no options on the size- and value-portfolios traded in the
market. Therefore, we do not have any term structure information on the option-implied variances of
these factors. Furthermore, in a multifactor model, the betas reflect partial comovement between an
explanatory variable and the dependent variable. In this setting, the correlation among the factors
becomes important, which further complicates the estimation of factor sensitivities. Unfortunately, there
are currently no traded options on the correlation between two risk factors, e.g., the market and size.
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Kempf et al. (2015) (βKKS
j,t,T ) is

βKKS
j,t,T =

σj,t,T∑N
l=1 ωl,tσl,t,T

. (23)

where all variables are as previously defined.

We present the results for the expectations hypothesis tests for systematic and idiosyn-

cratic risk in Tables A4 and A5 of the Online Appendix. The results are qualitatively very

similar to our main results. Rejections of the pure and general expectations hypotheses in

the term structure of systematic risk are slightly more frequent. However, given the use

of inferior beta estimators, this result does not seem very surprising. For idiosyncratic

risk, we can reject the expectations hypothesis in every single case.

F Finite Sample Bias

We account for possible finite sample bias in the expectations hypothesis tests, as

discussed in the literature, e.g., by Bekaert et al. (1997). We address this issue in two

steps. First, we study the bias in coefficient estimates. Subsequently, we use a bootstrap

approach to infer critical values for the test statistics, avoiding reliance on asymptotic

results that may not be valid in finite samples.

To correct the bias in coefficient estimates, we first estimate the regression model of

Equation (7). We use the parameter estimates and the time series of residuals to conduct

a block-bootstrap of the dependent variable, sampling with replacement from the residuals

to create the same number of observations as in the initial regression model.33 We run the

expectations hypothesis regression of Equation (7) on the simulated data. We repeat this

procedure 1,000 times. In a final step, we obtain the finite sample bias as the difference

33We follow Hall et al. (1995) using a block length of n
1
3 , where n is the total sample size. We use

overlapping blocks (Lahiri, 1999).
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between the original coefficient estimate and the average of coefficients across the 1,000

simulations.34

Second, using the bias-corrected coefficients, we obtain the series of residuals and

examine the finite sample properties of the t- and Wald tests. We sample the residuals

with replacement and obtain the time series of the dependent variable under the null

hypothesis of a = 0 and b = 1. We run the regression of Equation (7) and save the

values of the test statistics. Again, we repeat this step 1,000 times, thus obtaining the

distribution for each of the test statistics. Finally, from the percentiles of the simulated

distribution of the test statistics, we obtain the p-values for our expectations hypothesis

tests.

We present the empirical results in Table A6 of the Online Appendix.35 The results

suggest that our main conclusions are robust to potential finite sample bias. The bias in

coefficient estimates is negligible throughout. For example, for the option-implied variance

of the market, the maximum (absolute) bias in the slope coefficient is −0.24 percentage

points, which is far too low to overturn our results on the expectations hypothesis. Turning

the focus to finite sample distributions of the test statistics, we also find that the results

with the simulated critical values are qualitatively similar to those relying on asymptotic

critical values for the test statistics. Hence, it is very unlikely that our main results are

significantly affected by finite sample distortions.
34Efron & Tibshirani (1986) and Kosowski et al. (2006) show that, typically, the bootstrap results are

not sensitive for repetitions larger than 500–1,000. Therefore, we choose 1,000 simulations to limit the
computational effort.

35To limit the number of tables, we only report the results for option-implied variance. The results
on systematic risk and idiosyncratic variance for Sections VI.F and VI.G are qualitatively similar. These
results are available upon request.
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G Errors-In-Variables

Finally, we examine the robustness of our results to potential errors-in-variables con-

cerns. To do that, we follow the instrument variable approach of Christensen & Prabhala

(1998). First, we regress the right-hand-side variables on their observation one period

before. Subsequently, we replace the right-hand-side variables with their fitted values and

run the expectations hypothesis regressions. In the presence of measurement errors in

the independent variable, there is a downward attenuation bias in the slope coefficient.

Hence, we expect the regression slopes to rise once we use the instrumental variables.

We present the results in Table A7 of the Online Appendix. Consistent with our

expectation, we find that the slope coefficients rise in general. Our conclusions, however,

remain unchanged.

VII Conclusion

This study analyzes the term structure relationship for total, systematic, and id-

iosyncratic risk. Using model-free option-implied variance estimates, we find evidence in

support of the expectations hypothesis for the S&P 500 market index. Hence, the term

structure slope is mainly informative about future changes in the option-implied vari-

ance. Second, we test the expectations hypothesis in the term structure of the model-free

option-implied variance of individual stocks. We find that the expectations hypothesis

results are mixed, although in many instances we reject both the pure and the general

expectations hypothesis.

Motivated by the differential results for the market and individual stocks, we further

decompose the variance term structure, separately studying systematic and idiosyncratic

risk. We find that the term structures of these variables are behaved differently. Consistent
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with the results for the market, we cannot reject the general expectations hypothesis for

systematic risk while we strongly reject the expectations hypothesis for idiosyncratic risk.

Thus, our results suggest that systematic risk evolves consistently over time while there

are large and time-varying negative term premia for idiosyncratic risk. Buying long-term

market or systematic risk contracts on average yields similar results as rolling over short-

term contracts, while for idiosyncratic variance contracts rolling over short-term contracts

is considerably more expensive.
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Technical Appendix: Derivations

A1 Systematic Risk and Beta

It is straightforward to show that the return generating process of Equation (9) im-

plies:36

E0 (V art,T (αj + βjrM + εj)) =E0 (βj,t,T )2 E0

(
σ2
M,t,T

)
+ V ar0(βj,t,T )E0

(
σ2
M,t,T

)
+ Cov0

(
β2
j,t,T , r

2
M,t,T

)
+ E0

(
σ2
ε,t,T

)
.

(A1)

Et,T (·), V art,T (·), and Covt,T (·) are the conditional time-t expectations, variance, and

covariance operators for the period t until T , respectively. To empirically implement the

expectations hypothesis test, we proxy the expected squared market return by the market

variance. Finally, we obtain estimates for the time-t variance of beta and covariance of

beta with the market variance using the full sample estimate. Inserting the relation of

Equation (A1) into Equation (6), we get

1

k

k−1∑
i=0

[
E0

(
βj,im,(i+1)m

)2 E0

(
σ2
M,im,(i+1)m

)
+ V ar0(βj,im,(i+1)m)E0

(
σ2
M,im,(i+1)m

)
+Cov0(β

2
j,im,(i+1)m, r

2
M,im,(i+1)m) + E0

(
σ2
ε,im,(i+1)m

)]
= E0 (βj,0,km)2 E0

(
σ2
M,0,km

)
+ V ar0(βj,0,km)E0

(
σ2
M,0,km

)
+ Cov0(β

2
j,0,km, r

2
M,0,km) + E0

(
σ2
ε,0,km

)
.

(A2)
36We assume continuous time, that αj,t,T is constant for each period, and that εj,t,T is

independent of βj,t,T rM,t,T . Using E0 (V art,T (αj + βjrM + εj)) = E0 (V art,T (βjrM + εj)) =

E0

(
Et,T ((βjrM + εj)

2
)− Et,T ((βjrM + εj))

2
)
and accounting for the fact that the squared expectation

part is negligible for a continuous time process, one can easily derive Equation (A1).
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Collecting terms on the left hand side of the equality sign, we obtain:

1

k

k−1∑
i=0

[
E0

(
βj,im,(i+1)m

)2 E0

(
σ2
M,im,(i+1)m

)]
− V ar0(βj,0,km)E0

(
σ2
M,0,km

)
+

1

k

k−1∑
i=0

[
V ar0(βj,im,(i+1)m)E0

(
σ2
M,im,(i+1)m

)]
− Cov0(β2

j,0,km, r
2
M,0,km)

+
1

k

k−1∑
i=0

[
Cov0(β

2
j,im,(i+1)m, r

2
M,im,(i+1)m)

]
− E0

(
σ2
ε,0,km

)
+

1

k

k−1∑
i=0

[
E0

(
σ2
ε,im,(i+1)m

)]
= E0 (βj,0,km)2 E0

(
σ2
M,0,km

)
.

(A3)

Defining ∆βσ = 1
k

∑k−1
i=0

[
V ar0(βj,im,(i+1)m)E0

(
σ2
M,im,(i+1)m

)]
−V ar0(βj,0,km)E0

(
σ2
M,0,km

)
,

∆βr = 1
k

∑k−1
i=0

[
Cov0(β

2
j,im,(i+1)m, r

2
M,im,(i+1)m)

]
− Cov0(β

2
j,0,km, r

2
M,0,km), and

∆ε = 1
k

∑k−1
i=0

[
E0

(
σ2
ε,im,(i+1)m

)]
− E0

(
σ2
ε,0,km

)
, we obtain:

1

k

k−1∑
i=0

[
E0

(
βj,im,(i+1)m

)2 E0

(
σ2
M,im,(i+1)m

)]
+ ∆βσ + ∆βr + ∆ε = E0 (βj,0,km)2 E0

(
σ2
M,0,km

)
.

(A4)

A2 Option-Implied Correlation

Re-arranging Equation (14), we obtain:

1

k

k−1∑
i=0

(
E0

(
ρim,(i+1)m

) E0

(
qim,(i+1)m

)
E0 (q0,km)

)

−
E0

(∑N
j=1 ω

2
j,0QVj,0,km

)
− 1

k

∑k−1
i=0

(
E0

(∑N
j=1 ω

2
j,imQVj,im,(i+1)m

))
E0 (q0,km)

−
Cov0 (ρ0,km, q0,km)− 1

k

∑k−1
i=0

(
Cov0

(
ρim,(i+1)m, qim,(i+1)m

))
E0 (q0,km)

= E0 (ρ0,km) ,

(A5)

with qt,T =
∑

j,l 6=j ωj,tωl,t
√
QV j,t,T

√
QV l,t,T and E0 (qt,T ) =

∑
j,l 6=j E0 (ωj,t)E0 (ωl,t)(

E0

(√
QV j,t,T

)
E0

(√
QV l,t,T

)
+ Cov0

(√
QV j,t,T ,

√
QV l,t,T

))
.37 Defining

37We assume that the weights are independent of the quadratic variations.
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∆QV = −E0(
∑N

j=1 ω
2
j,0QVj,0,km)− 1

k

∑k−1
i=0 (E0(

∑N
j=1 ω

2
j,imQVj,im,(i+1)m))

E0(q0,km)

and ∆pq = −Cov0(ρ0,km,q0,km)− 1
k

∑k−1
i=0 (Cov0(ρim,(i+1)m,qim,(i+1)m))
E0(q0,km)

, Equation A5 reads:

1

k

k−1∑
i=0

(
E0

(
ρim,(i+1)m

) E0

(
qim,(i+1)m

)
E0 (q0,km)

)
+ ∆QV + ∆pq = E0 (ρ0,km) . (A6)

We formally test the expectations hypothesis in the term structure of the option-

implied correlation by running the regression:

1

k

k−1∑
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+

1
k
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i=0
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2
j,imσ

2
j,im,(i+1)m

)
−
∑N

j=1 ω
2
j,0σ

2
j,0,km

q∗0,km

+

1
k
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(
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∗
im,(i+1)m)

)
− Cov0

(
ρ0,km, q

∗
0,km

)
q∗0,km

= a+ b (ρ0,km − ρ0,m) + νkm,

(A7)

with q∗t,T =
∑

j,l 6=j ωj,tωl,t (σj,t,Tσl,t,T + Covt (σj,t,T , σl,t,T )).

Defining ∆̂QV =
1
k

∑k−1
i=0 (

∑N
j=1 ω

2
j,imσ

2
j,im,(i+1)m)−

∑N
j=1 ω

2
j,0σ

2
j,0,km

q∗0,km
and

∆̂pq =
1
k

∑k−1
i=0 (Covim(ρim,(i+1)m,q

∗
im,(i+1)m

))−Cov0(ρ0,km,q∗0,km)
q∗0,km

, we obtain the equation presented

in the main text:

1

k

k−1∑
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+ ∆̂QV + ∆̂pq = a+ b (ρ0,km − ρ0,m) + νkm. (A8)
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Figure 2: The Time Series of Average Idiosyncratic Variance Term Premia

This figure plots the average idiosyncratic variance term premium for the S&P 500 stocks for the 12-month

minus 1-month specification. The sample spans 1996 until 2015. The shaded areas indicate business cycle

contractions as identified by the NBER.

43



F
ig
u
re

3:
T
h
e
T
er
m

S
tr
u
ct
u
re

of
O
p
ti
on

-I
m
p
li
ed

C
or
re
la
ti
on

T
hi
s
fig

ur
e
pl
ot
s
th
e
12
-m

on
th

op
ti
on

-im
pl
ie
d
co
rr
el
at
io
n
(d
as
he
d,

bl
ue

),
th
e
1-
m
on

th
op

ti
on

-im
pl
ie
d
co
rr
el
at
io
n
(d
as
he
d,

or
an

ge
),

an
d
th
e
12
-

m
on

th
m
in
us

1-
m
on

th
te
rm

st
ru
ct
ur
e
sl
op

e
(d
as
h-
do
tt
ed
,
tu
rq
uo

is
e)
.
T
he

sa
m
pl
e
sp
an

s
19
96

un
ti
l2

01
5.

T
he

sh
ad

ed
ar
ea
s
in
di
ca
te

bu
si
ne
ss

cy
cl
e

co
nt
ra
ct
io
ns

as
id
en
ti
fie
d
by

th
e
N
B
E
R
.

44



Table 1: Summary Statistics

This table presents summary statistics on the (annualized) option-implied variance of the market (Panel

A) and individual stocks (Panel B) of different maturities, as well as summary statistics on the option-

implied beta (Panel C) idiosyncratic variance (Panel D), and correlation (Panel E). We report the results

for maturities of 1, 3, 6, 9, and 12 months. Mean and Median are the overall average and median of

the estimates over the entire sample period. Std. and AR(1) present further summary statistics on the

(average) standard deviations and first-order autocorrelations, while Skew andKurt denote the (average)

skewness and kurtosis, respectively. For individual stocks, we present cross-sectional averages of the firms’

time-series statistics. In case of Meanvw, we present the time-series average of the value-weighted cross-

sectional average.

Panel A. Market Option-Implied Variance

Horizon Mean Median Std. AR(1) Skew Kurt

1 month 0.046 0.035 0.041 0.789 3.27 17.8
3 months 0.047 0.039 0.035 0.842 2.69 13.0
6 months 0.048 0.041 0.030 0.878 2.29 10.4
9 months 0.049 0.042 0.028 0.894 2.11 9.30
12 months 0.049 0.044 0.027 0.903 2.00 8.76

Panel B. Stock Option-Implied Variance

Horizon Mean Meanvw Median Std. AR(1) Skew Kurt

1 month 0.166 0.116 0.097 0.153 0.772 2.64 13.9
3 months 0.156 0.112 0.093 0.132 0.856 2.43 12.3
6 months 0.149 0.110 0.092 0.118 0.882 2.26 11.1
9 months 0.147 0.109 0.093 0.111 0.889 2.13 10.1
12 months 0.145 0.109 0.094 0.103 0.898 2.06 9.78

Panel C. Beta

Horizon Mean Meanvw Median Std. AR(1) Skew Kurt

1 month 1.076 0.975 1.024 0.277 0.738 0.47 4.70
3 months 1.071 0.991 1.018 0.239 0.842 0.32 4.16
6 months 1.070 0.993 1.023 0.221 0.869 0.30 4.10
9 months 1.067 0.992 1.019 0.214 0.872 0.31 4.08
12 months 1.061 0.993 1.016 0.205 0.875 0.29 4.00
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Table 1: Summary Statistics (continued)

Panel D. Idiosyncratic Variance

Horizon Mean Meanvw Median Std. AR(1) Skew Kurt

1 month 0.104 0.064 0.054 0.098 0.797 2.41 11.8
3 months 0.094 0.060 0.050 0.085 0.873 2.36 11.4
6 months 0.087 0.057 0.046 0.078 0.895 2.31 10.9
9 months 0.085 0.056 0.045 0.074 0.902 2.20 10.0
12 months 0.083 0.055 0.046 0.068 0.909 2.12 9.50

Panel E. Option-Implied Correlation

Horizon Mean Median Std. AR(1) Skew Kurt

1 month 0.418 0.403 0.138 0.744 0.49 3.05
3 months 0.447 0.449 0.128 0.814 0.32 3.73
6 months 0.476 0.480 0.123 0.886 0.03 3.06
9 months 0.487 0.500 0.123 0.912 0.01 2.86
12 months 0.490 0.493 0.120 0.915 0.03 2.85
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Table 2: Expectations Hypothesis Test: Option-Implied Variance

This table reports the results of the expectations hypothesis tests for the model-free option-implied

variance. In Panel A, we present the results for the S&P 500 market index and Panel B shows

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
= aj + bj

(
σ2
j,0,km − σ2

j,0,m

)
+ νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1

means we have km = 12 andm = 1 month(s)). The pure expectations hypothesis posits that the constant

a is zero and that the slope b is one while the general expectations hypothesis requires only the latter. We

test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ

Newey & West (1987) standard errors (s.e.) with km lags. We also present the results of a joint test

of the expectations hypothesis along with bootstrapped p-values. In Panel B, we present the results of

a panel regression using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.003 −0.002 −0.001 −0.003 −0.002 −0.002 −0.001 −0.001
(s.e.) (0.004) (0.003) (0.002) (0.004) (0.003) (0.003) (0.002) (0.002)
Slope 1.042 1.060 1.198 0.981 0.964 0.873 0.862 0.745
(s.e.) (0.139) (0.208) (0.347) (0.123) (0.179) (0.142) (0.179) (0.230)

adj. R2 0.38 0.26 0.13 0.32 0.20 0.24 0.15 0.10
Wald 0.63 0.53 0.75 0.53 0.43 1.99 1.21 3.15
p-value [0.73] [0.77] [0.69] [0.77] [0.81] [0.37] [0.55] [0.21]

Joint Pure General

Wald 22.1 6.23
p-value [0.59] [0.54]

Panel B. Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012∗∗∗ 0.006∗ 0.002 0.012∗∗∗ 0.005∗ 0.009∗∗ 0.003 0.005∗

(s.e.) (0.005) (0.003) (0.003) (0.004) (0.003) (0.004) (0.002) (0.003)
Slope 0.909 0.890 0.751∗∗ 0.881 0.838∗ 0.754∗∗∗ 0.640∗∗∗ 0.620∗∗∗

(s.e.) (0.069) (0.088) (0.110) (0.078) (0.089) (0.078) (0.060) (0.065)
adj. R2 0.34 0.21 0.11 0.29 0.16 0.23 0.11 0.17
Wald [0.02]∗∗ [0.18] [0.07]∗ [0.02]∗∗ [0.09]∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 3: Stock Characteristics

This table reports the average stock characteristics separately for stocks for which we can reject the pure

expectations hypothesis in the term structure of option-implied variance and for those for which we cannot

reject the pure expectations hypothesis. We present the results for different maturity combinations. In

each column, the first number denotes the long horizon (k times m) and the second number denotes the

short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)). IVst and IVlt denote the

average option-implied variance for the respective short and long horizons. Weight is the average market

capitalization share of the stocks relative to the total market share of stocks in our sample and Volume

is the average daily options volume of the stocks in the respective groups.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

rej. Stocks IVst 0.19 0.17 0.16 0.19 0.18 0.17 0.17 0.16
IVlt 0.16 0.16 0.15 0.16 0.17 0.15 0.16 0.15
Weight 0.0013 0.0015 0.0013 0.0012 0.0013 0.0012 0.0011 0.0014
V olume 4412 4700 3589 3780 4200 3081 3150 3399

non-rej. Stocks IVst 0.16 0.15 0.14 0.16 0.15 0.16 0.15 0.18
IVlt 0.14 0.14 0.14 0.14 0.14 0.15 0.15 0.17
Weight 0.0022 0.0020 0.0020 0.0021 0.0020 0.0022 0.0021 0.0024
V olume 6117 5551 5887 6164 5611 6863 6212 8069
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Table 4: Variance Term Premia

This table reports the average returns to a strategy that takes a long position in the long-term option-

implied variance and rolls over short positions in the short-term option-implied variance. In Panel A,

we present the results for the S&P 500 market index and Panel B shows the aggregated results for the

individual stocks included in the S&P 500. The return is
σ2
j,0,km− 1

k

∑k−1
i=0 σ

2
j,im,(i+1)m

σ2
j,0,km

. In each column, the

first number denotes the long horizon (k times m) and the second number denotes the short horizon (m)

(e.g., 12,1 means we have km = 12 and m = 1 month(s)). In parentheses, we present Newey & West

(1987) standard errors (s.e.) with km lags. We also present the results of a joint test of that the returns

of all maturity specifications are jointly zero along with bootstrapped p-values.In Panel B, we present

the results of a panel regression on a constant using the two-way clustered standard errors of Cameron

et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

avg. Ret. 0.011 0.001 −0.011 0.010 0.003 0.016 0.012 0.004
(s.e.) (0.093) (0.072) (0.043) (0.077) (0.055) (0.058) (0.033) (0.030)

Joint

Wald 1.08
p-value [0.95]

Panel B. Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

avg. Ret. −0.177∗∗∗ −0.099∗∗∗ −0.049∗∗∗ −0.162∗∗∗ −0.082∗∗∗ −0.138∗∗∗ −0.053∗∗∗ −0.090∗∗∗

(s.e.) (0.032) (0.024) (0.018) (0.028) (0.021) (0.023) (0.014) (0.015)
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Table 5: Expectations Hypothesis Test: Systematic Risk

This table reports the results of the expectations hypothesis tests for systematic risk. We

show the aggregated results for the individual stocks included in the S&P 500. The regres-

sion equation is 1
k

∑k−1
i=0

(
β2
j,im,(i+1)mσ

2
M,im,(i+1)m − β

2
j,0,mσ

2
M,0,m

)
+ ∆̂βσ + ∆̂βr + ∆̂ε = aj +

bj

(
β2
j,0,kmσ

2
M,0,km − β2

j,0,mσ
2
M,0,m

)
+ νj,km. In each column, the first number denotes the long horizon

(k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12

and m = 1 month(s)). The pure expectations hypothesis posits that the constant a is zero and that the

slope b is one while the general expectations hypothesis requires only the latter. We test the individual

hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a panel regression

approach using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate

significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012∗∗ 0.007∗ 0.002 0.012∗∗ 0.006∗ 0.011∗∗∗ 0.005∗∗ 0.007∗∗

(s.e.) (0.005) (0.004) (0.003) (0.005) (0.003) (0.004) (0.002) (0.003)
Slope 1.149 1.286 0.914 1.109 1.120 0.916 0.917 0.741
(s.e.) (0.164) (0.228) (0.372) (0.164) (0.228) (0.171) (0.212) (0.237)

adj. R2 0.20 0.13 0.03 0.18 0.09 0.13 0.06 0.07
Wald [0.01]∗∗∗ [0.02]∗∗ [0.67] [0.01]∗∗ [0.08]∗ [0.03]∗∗ [0.09]∗ [0.07]∗
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Table 6: Expectations Hypothesis Test: Idiosyncratic Variance

This table reports the results of the expectations hypothesis tests for idiosyncratic variance. We show

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
ε,j,im,(i+1)m − σ

2
ε,j,0,m

)
= aj+bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1

means we have km = 12 andm = 1 month(s)). The pure expectations hypothesis posits that the constant

a is zero and that the slope b is one while the general expectations hypothesis requires only the latter. We

test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ

a panel regression approach using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗,

and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.008∗∗∗ 0.005∗∗ 0.002 0.008∗∗∗ 0.004∗∗ 0.006∗∗∗ 0.002∗∗ 0.004∗∗

(s.e.) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.001) (0.001)
Slope 0.737∗∗∗ 0.724∗∗∗ 0.651∗∗∗ 0.696∗∗∗ 0.629∗∗∗ 0.601∗∗∗ 0.455∗∗∗ 0.548∗∗∗

(s.e.) (0.060) (0.088) (0.103) (0.069) (0.083) (0.078) (0.091) (0.076)
adj. R2 0.23 0.15 0.09 0.18 0.09 0.15 0.04 0.12
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 7: Idiosyncratic Variance Term Premia

This table reports the average returns to a strategy that takes a long position in the long-term option-

implied idiosyncratic variance and rolls over short positions in the short-term option-implied idiosyncratic

variance. We show the aggregated results for the individual stocks included in the S&P 500. The return

is
σ2
ε,j,0,km− 1

k

∑k−1
i=0 σ

2
ε,j,im,(i+1)m

σ2
ε,j,0,km

. In each column, the first number denotes the long horizon (k times m)

and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1

month(s)). We present the results of a panel regression on a constant using the two-way clustered

standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%

level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

avg. Ret. −0.377∗∗∗ −0.236∗∗∗ −0.119∗∗∗ −0.323∗∗∗ −0.211∗∗∗ −0.262∗∗∗ −0.130∗∗∗ −0.162∗

(s.e.) (0.067) (0.053) (0.042) (0.057) (0.039) (0.089) (0.044) (0.093)
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Table 8: Explaining Idiosyncratic Variance Term Premia

This table reports the results of a panel regression of idiosyncratic variance term premia on different

stock and aggregate time-series characteristics. All characteristics are observed at the same time with

the idiosyncratic variance for the long horizon, i.e., at the beginning of the trading period for the idiosyn-

cratic variance term premia. “log(Size)” and “log(BtM)” are the natural logarithms of the stocks’ market

capitalization and book-to-market ratio, respectively. “Momentum” denotes the cumulative return of the

stocks during the months t−12 until t−1 and “Opt. Volume” is the average daily options volume during

the past month. “DEF” is the default spread (average yield of BAA minus that of AAA rated corporate

bonds) and “TERM” is the term spread (yield of long-term government bonds minus that on t-bills). In

each column, the first number denotes the long horizon (k times m) and the second number denotes

the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)). We use the two-way

clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%,

and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Intercept −1.444∗∗∗ −0.529∗∗ −0.161 −1.303∗∗∗ −0.380∗ −1.251∗∗∗ −0.306∗∗ −0.702∗∗∗

(s.e.) (0.416) (0.253) (0.176) (0.405) (0.212) (0.422) (0.150) (0.241)
log(Size) 0.025 −0.005 −0.009 0.027 −0.005 0.035∗ 0.001 0.004
(s.e.) (0.021) (0.013) (0.009) (0.019) (0.010) (0.019) (0.008) (0.010)

log(BtM) −0.061∗∗∗ −0.041∗∗∗ −0.023∗∗ −0.045∗∗ −0.037∗∗∗ −0.030∗∗ −0.027∗∗∗ −0.000
(s.e.) (0.023) (0.015) (0.010) (0.018) (0.011) (0.012) (0.008) (0.032)

Momentum 0.059 0.040 0.030 0.044 0.021 0.017 0.002 0.154
(s.e.) (0.045) (0.034) (0.024) (0.038) (0.026) (0.028) (0.016) (0.143)

Opt. Volume −0.000 −0.000 −0.000 −0.000 0.000 −0.000 −0.000 0.000
(s.e.) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
DEF 24.23∗∗∗ 12.48∗∗∗ 5.920∗ 23.95∗∗∗ 11.23∗∗∗ 19.90∗∗∗ 7.585∗∗∗ 20.12∗

(s.e.) (5.098) (4.424) (3.488) (4.693) (3.624) (4.234) (2.496) (10.78)
TERM 15.69∗∗∗ 8.897∗∗∗ 4.573∗∗∗ 10.39∗∗∗ 5.106∗∗∗ 7.570∗∗ 2.552∗∗ 8.576
(s.e.) (3.505) (2.385) (1.634) (3.059) (1.893) (3.007) (1.162) (5.777)

adj. R2 0.036 0.024 0.013 0.026 0.013 0.012 0.008 0.000
Wald 59.26∗∗∗ 33.44∗∗∗ 19.01∗∗∗ 67.85∗∗∗ 38.09∗∗∗ 45.93∗∗∗ 29.86∗∗∗ 45.49∗∗∗

p-value [0.000] [0.000] [0.004] [0.000] [0.000] [0.000] [0.000] [0.000]
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Table 9: Expectations Hypothesis Test: Forward Unbiasedness

This table reports the results of the expectations hypothesis tests for the model-free option-implied

variance. In Panel A, we present the results for the S&P 500 market index and Panel B shows the

aggregated results for the individual stocks included in the S&P 500. The regression equation is σ2
j,m,km−

σ2
j,0,m = aj + bj

(
f2j,0,m,km − σ2

j,0,m

)
+ νj,km, with f2j,0,m,km = σ2

j,0,km + 1
k−1

(
σ2
j,0,km − σ2

j,0,m

)
. In each

column, the first number denotes the long horizon (k times m) and the second number denotes the short

horizon (m) (e.g., 12,3 means we have km = 12 and m = 3 month(s)). The pure expectations hypothesis

posits that the constant a is zero and that the slope b is one while the general expectations hypothesis

requires only the latter. We test the individual hypotheses with t-tests and the joint hypothesis with a

Wald test. All tests employ Newey & West (1987) standard errors (s.e.) with km lags. We also present

the results of a joint test of the expectations hypothesis along with bootstrapped p-values.In Panel B,

we present the results of a panel regression on a constant using the two-way clustered standard errors of

Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Market

12,3 12,6 12,9 9,3 9,6 6,3 3,1

Const. −0.001 −0.003 −0.005 −0.001 −0.003 −0.002 0.000
(s.e.) (0.002) (0.004) (0.006) (0.003) (0.005) (0.003) (0.002)
Slope 1.003 1.198 1.389 0.945 1.051 0.862 0.582∗

(s.e.) (0.112) (0.347) (0.767) (0.135) (0.375) (0.179) (0.223)
adj. R2 0.36 0.13 0.07 0.27 0.07 0.15 0.10
Wald 0.34 0.75 0.66 0.51 0.37 1.21 9.00∗∗

p-value [0.85] [0.69] [0.72] [0.78] [0.83] [0.55] [0.01]

Joint Pure General

Wald 14.8 5.49
p-value [0.77] [0.67]
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Table 9: Expectations Hypothesis Test: Forward Unbiasedness (continued)

Panel B. Stocks

12,3 12,6 12,9 9,3 9,6 6,3 3,1

Const. 0.002 0.004 0.007 0.003 0.008 0.007 0.004
(s.e.) (0.003) (0.005) (0.007) (0.004) (0.006) (0.005) (0.003)
Slope 0.787∗∗∗ 0.751∗∗ 0.493∗∗∗ 0.785∗∗∗ 0.768∗∗ 0.640∗∗∗ 0.588∗∗∗

(s.e.) (0.054) (0.110) (0.083) (0.052) (0.102) (0.060) (0.058)
adj. R2 0.26 0.11 0.05 0.22 0.08 0.11 0.18
Wald [0.00]∗∗∗ [0.07]∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.05]∗ [0.00]∗∗∗ [0.00]∗∗∗

Panel C. Idiosyncratic Variance

12,3 12,6 12,9 9,3 9,6 6,3 3,1

Const. 0.001 0.004 0.009∗∗ 0.002 0.009∗∗∗ 0.005∗∗ 0.005∗∗∗

(s.e.) (0.002) (0.003) (0.004) (0.002) (0.003) (0.002) (0.002)
Slope 0.672∗∗∗ 0.647∗∗∗ 0.402∗∗∗ 0.667∗∗∗ 0.566∗∗∗ 0.466∗∗∗ 0.590∗∗∗

(s.e.) (0.053) (0.101) (0.079) (0.059) (0.095) (0.086) (0.057)
adj. R2 0.19 0.09 0.05 0.13 0.05 0.04 0.18
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 10: Expectations Hypothesis Test: Option-Implied Correlation

This table reports the results of the expectations hypothesis tests for the option-implied correlation of the

stocks of the S&P 500. The regression equation is 1
k

∑k−1
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+ ∆̂QV + ∆̂pq =

a+b (ρ0,km − ρ0,m)+νkm. In each column, the first number denotes the long horizon (k times m) and the

second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)).

The pure expectations hypothesis posits that the constant a is zero and that the slope b is one while

the general expectations hypothesis requires only the latter. We test the individual hypotheses with

t-tests and the joint hypothesis with a Wald test. All tests employ Newey & West (1987) standard errors

(s.e.) with km lags. We also present the results of a joint test of the expectations hypothesis along with

bootstrapped p-values. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.035 0.027 0.008 0.043 0.035 0.024 0.011 0.019
(s.e.) (0.048) (0.034) (0.019) (0.039) (0.025) (0.027) (0.014) (0.018)
Slope 0.626 0.504 0.704 0.631 0.470 0.689 0.673 0.499
(s.e.) (0.292) (0.385) (0.571) (0.273) (0.369) (0.218) (0.349) (0.323)

adj. R2 0.04 0.02 0.01 0.04 0.01 0.05 0.03 0.02
Wald 1.65 1.68 0.37 2.00 2.66 2.08 1.05 2.51
p-value [0.44] [0.43] [0.83] [0.37] [0.26] [0.35] [0.59] [0.28]

Joint Pure General

Wald 35.2 30.0
p-value [0.91] [0.22]
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Table 11: Expectations Hypothesis Test: Option-Implied Variance – The
Role of Jumps

This table reports the results of the expectations hypothesis tests for the model-free option-implied

variance. In Panel A, we present the results for the S&P 500 market index and Panel B shows

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
= aj + bj

(
σ2
j,0,km − σ2

j,0,m

)
+ νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1

means we have km = 12 andm = 1 month(s)). The pure expectations hypothesis posits that the constant

a is zero and that the slope b is one while the general expectations hypothesis requires only the latter. We

test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ

Newey & West (1987) standard errors (s.e.) with km lags. We also present the results of a joint test of

the expectations hypothesis along with bootstrapped p-values. In Panel B, we present the results of a

panel regression on a constant using the two-way clustered standard errors of Cameron et al. (2011). ∗,
∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.005 −0.003 −0.001 −0.004 −0.002 −0.003 −0.001 −0.001
(s.e.) (0.005) (0.004) (0.002) (0.004) (0.003) (0.003) (0.002) (0.002)
Slope 0.973 0.947 0.880 0.931 0.887 0.844 0.834 0.706
(s.e.) (0.184) (0.261) (0.402) (0.151) (0.210) (0.145) (0.188) (0.253)

adj. R2 0.30 0.19 0.06 0.26 0.15 0.20 0.12 0.08
Wald 1.06 0.78 0.59 1.23 0.96 2.93 1.64 4.39
p-value [0.59] [0.68] [0.75] [0.54] [0.62] [0.23] [0.44] [0.11]

Joint Pure General

Wald 56.5 13.8
p-value [0.50] [0.42]

Panel B. Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.009∗ 0.005 0.002 0.009∗ 0.004 0.007 0.003 0.004
(s.e.) (0.005) (0.004) (0.003) (0.005) (0.004) (0.004) (0.003) (0.003)
Slope 0.872∗∗ 0.801∗∗∗ 0.610∗∗∗ 0.879∗ 0.737∗∗∗ 0.698∗∗∗ 0.545∗∗∗ 0.598∗∗∗

(s.e.) (0.054) (0.060) (0.074) (0.067) (0.086) (0.092) (0.095) (0.052)
adj. R2 0.37 0.26 0.14 0.30 0.18 0.22 0.11 0.18
Wald [0.03]∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.06]∗ [0.01]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 12: Expectations Hypothesis Test: Systematic Risk – The Role of
Jumps

This table reports the results of the expectations hypothesis tests for systematic risk. We

show the aggregated results for the individual stocks included in the S&P 500. The regres-

sion equation is 1
k

∑k−1
i=0

(
β2
j,im,(i+1)mσ

2
M,im,(i+1)m − β

2
j,0,mσ

2
M,0,m

)
+ ∆̂βσ + ∆̂βr + ∆̂ε = aj +

bj

(
β2
j,0,kmσ

2
M,0,km − β2

j,0,mσ
2
M,0,m

)
+ νj,km. In each column, the first number denotes the long horizon

(k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12

and m = 1 month(s)). The pure expectations hypothesis posits that the constant a is zero and that the

slope b is one while the general expectations hypothesis requires only the latter. We test the individual

hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a panel regression

approach using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate

significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.010 0.007 0.004 0.010 0.006 0.010 0.006 0.006
(s.e.) (0.009) (0.007) (0.005) (0.009) (0.006) (0.008) (0.005) (0.006)
Slope 1.044 0.947 0.367∗∗∗ 1.086 1.009 0.837 0.632 0.606∗

(s.e.) (0.136) (0.176) (0.221) (0.152) (0.199) (0.218) (0.272) (0.201)
adj. R2 0.20 0.11 0.03 0.18 0.10 0.11 0.04 0.05
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table 13: Expectations Hypothesis Test: Idiosyncratic Variance – The Role
of Jumps

This table reports the results of the expectations hypothesis tests for idiosyncratic variance. We show

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
ε,j,im,(i+1)m − σ

2
ε,j,0,m

)
= aj+bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1

means we have km = 12 andm = 1 month(s)). The pure expectations hypothesis posits that the constant

a is zero and that the slope b is one while the general expectations hypothesis requires only the latter. We

test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ

a panel regression approach using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗,

and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.008∗∗∗ 0.005∗∗ 0.002 0.008∗∗∗ 0.005∗∗ 0.006∗∗ 0.003∗∗ 0.003∗

(s.e.) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.001) (0.002)
Slope 0.747∗∗∗ 0.710∗∗∗ 0.580∗∗∗ 0.716∗∗∗ 0.684∗∗∗ 0.583∗∗∗ 0.474∗∗∗ 0.511∗∗∗

(s.e.) (0.054) (0.059) (0.063) (0.063) (0.057) (0.067) (0.052) (0.081)
adj. R2 0.28 0.20 0.13 0.21 0.15 0.14 0.08 0.12
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗

59



Table 14: Expectations Hypothesis Test: Option-Implied Correlation – The
Role of Jumps

This table reports the results of the expectations hypothesis tests for the option-implied correlation of the

stocks of the S&P 500. The regression equation is 1
k

∑k−1
i=0

(
ρim,(i+1)m

q∗im,(i+1)m

q∗0,km
− ρ0,m

)
+ ∆̂QV + ∆̂pq =

a+b (ρ0,km − ρ0,m)+νkm. In each column, the first number denotes the long horizon (k times m) and the

second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1 month(s)).

The pure expectations hypothesis posits that the constant a is zero and that the slope b is one while

the general expectations hypothesis requires only the latter. We test the individual hypotheses with

t-tests and the joint hypothesis with a Wald test. All tests employ Newey & West (1987) standard errors

(s.e.) with km lags. We also present the results of a joint test of the expectations hypothesis along with

bootstrapped p-values. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.040 0.036 0.015 0.043 0.039 0.021 0.011 0.014
(s.e.) (0.051) (0.037) (0.021) (0.040) (0.027) (0.028) (0.015) (0.018)
Slope 0.425∗ 0.215∗ 0.100 0.495∗ 0.296∗ 0.603∗ 0.583 0.463∗

(s.e.) (0.297) (0.401) (0.575) (0.276) (0.376) (0.223) (0.365) (0.307)
adj. R2 0.02 0.00 0.00 0.03 0.00 0.04 0.02 0.01
Wald 4.08 3.87 2.49 3.34 3.78 3.23 1.34 3.84
p-value [0.13] [0.14] [0.29] [0.19] [0.15] [0.20] [0.51] [0.15]

Joint Pure General

Wald 116.3 21.9
p-value [0.34] [0.29]
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Table A1: Expectations Hypothesis Test: Option-Implied Variance –
Firm-Fixed Effects

This table reports the results of the expectations hypothesis tests for the model-free option-implied

variance. In Panel A, we present the results for the S&P 500 market index and Panel B shows

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
= aj + bj

(
σ2
j,0,km − σ2

j,0,m

)
+ νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1

means we have km = 12 andm = 1 month(s)). The pure expectations hypothesis posits that the constant

a is zero and that the slope b is one while the general expectations hypothesis requires only the latter. We

test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a

panel regression approach, allowing for firm-specific intercept estimates and using the two-way clustered

standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%

level, respectively. [share] denotes the percentage share of stocks for which the intercept is significantly

different from zero at the 5% level.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.014 0.007 0.002 0.014 0.006 0.011 0.004 0.006
(s.e.) (0.008) (0.006) (0.005) (0.008) (0.005) (0.007) (0.004) (0.005)
[share] [0.52] [0.34] [0.19] [0.49] [0.27] [0.44] [0.18] [0.30]
Slope 0.948 0.939 0.798∗ 0.917 0.883 0.783∗∗∗ 0.670∗∗∗ 0.638∗∗∗

(s.e.) (0.070) (0.087) (0.110) (0.080) (0.089) (0.081) (0.060) (0.068)
adj. R2 0.36 0.22 0.12 0.30 0.17 0.24 0.11 0.18
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table A2: Expectations Hypothesis Test: Systematic Risk – Firm-Fixed
Effects

This table reports the results of the expectations hypothesis tests for systematic risk. We

show the aggregated results for the individual stocks included in the S&P 500. The regres-

sion equation is 1
k

∑k−1
i=0

(
β2
j,im,(i+1)mσ

2
M,im,(i+1)m − β

2
j,0,mσ

2
M,0,m

)
+ ∆̂βσ + ∆̂βr + ∆̂ε = aj +

bj

(
β2
j,0,kmσ

2
M,0,km − β2

j,0,mσ
2
M,0,m

)
+ νj,km. In each column, the first number denotes the long horizon

(k times m) and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12

and m = 1 month(s)). The pure expectations hypothesis posits that the constant a is zero and that the

slope b is one while the general expectations hypothesis requires only the latter. We test the individual

hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a panel regression

approach, allowing for firm-specific intercept estimates and using the two-way clustered standard errors

of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

[share] denotes the percentage share of stocks for which the intercept is significantly different from zero

at the 5% level.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.014 0.007 0.003 0.013 0.007 0.013 0.006 0.008
(s.e.) (0.008) (0.006) (0.005) (0.008) (0.006) (0.007) (0.004) (0.005)
[share] [0.48] [0.38] [0.24] [0.46] [0.31] [0.45] [0.31] [0.37]
Slope 1.191 1.353 1.029 1.143 1.175 0.948 0.963 0.759
(s.e.) (0.164) (0.229) (0.376) (0.165) (0.229) (0.172) (0.215) (0.237)

adj. R2 0.23 0.15 0.04 0.20 0.11 0.15 0.07 0.07
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table A3: Expectations Hypothesis Test: Idiosyncratic Variance –
Firm-Fixed Effects

This table reports the results of the expectations hypothesis tests for idiosyncratic variance. We show

the aggregated results for the individual stocks included in the S&P 500. The regression equation is
1
k

∑k−1
i=0

(
σ2
ε,j,im,(i+1)m − σ

2
ε,j,0,m

)
= aj+bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1

means we have km = 12 andm = 1 month(s)). The pure expectations hypothesis posits that the constant

a is zero and that the slope b is one while the general expectations hypothesis requires only the latter. We

test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a

panel regression approach, allowing for firm-specific intercept estimates and using the two-way clustered

standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%

level, respectively. [share] denotes the percentage share of stocks for which the intercept is significantly

different from zero at the 5% level.

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.010 0.006 0.002 0.009 0.005 0.008 0.003 0.005
(s.e.) (0.005) (0.004) (0.003) (0.005) (0.003) (0.004) (0.003) (0.003)
[share] [0.54] [0.39] [0.21] [0.53] [0.33] [0.49] [0.23] [0.36]
Slope 0.782∗∗∗ 0.768∗∗∗ 0.701∗∗∗ 0.741∗∗∗ 0.676∗∗∗ 0.641∗∗∗ 0.516∗∗∗ 0.586∗∗∗

(s.e.) (0.058) (0.084) (0.100) (0.069) (0.081) (0.081) (0.092) (0.080)
adj. R2 0.25 0.16 0.10 0.20 0.10 0.16 0.05 0.13
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table A4: Expectations Hypothesis Tests: Alternative Option-Implied Beta I

This table reports the results of the expectations hypothesis tests for systematic and idiosyncratic risk. We

show the aggregated results for the individual stocks included in the S&P 500. For systematic risk (Panel

A), the regression equation is 1
k

∑k−1
i=0

(
β2
j,im,(i+1)mσ

2
M,im,(i+1)m − β

2
j,0,mσ

2
M,0,m

)
+ ∆̂βσ + ∆̂βr + ∆̂ε =

aj + bj

(
β2
j,0,kmσ

2
M,0,km − β2

j,0,mσ
2
M,0,m

)
+ νj,km. For idiosyncratic variance (Panel B), the regression

equation is 1
k

∑k−1
i=0

(
σ2
ε,j,im,(i+1)m − σ

2
ε,j,0,m

)
= aj + bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+ νj,km. We use the beta

estimator of Skintzi & Refenes (2005). In each column, the first number denotes the long horizon (k

times m) and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12

and m = 1 month(s)). The pure expectations hypothesis posits that the constant a is zero and that the

slope b is one while the general expectations hypothesis requires only the latter. We test the individual

hypotheses with t-tests and the joint hypothesis with a Wald test. All tests employ a panel regression

approach using the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate

significance at the 10%, 5%, and 1% level, respectively.

Panel A. Systematic Risk

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.014∗∗∗ 0.007∗ 0.003 0.013∗∗∗ 0.006∗ 0.012∗∗∗ 0.005∗∗ 0.007∗∗∗

(s.e.) (0.005) (0.004) (0.003) (0.005) (0.003) (0.004) (0.002) (0.003)
Slope 1.115 1.186 0.863 1.058 1.077 0.836 0.693∗∗ 0.505∗∗

(s.e.) (0.137) (0.188) (0.272) (0.140) (0.185) (0.145) (0.143) (0.205)
adj. R2 0.20 0.13 0.04 0.17 0.10 0.11 0.05 0.04
Wald [0.00]∗∗∗ [0.02]∗∗ [0.65] [0.01]∗∗∗ [0.08]∗ [0.01]∗∗ [0.01]∗∗ [0.01]∗∗∗

Panel B. Idiosyncratic Variance

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.009∗∗∗ 0.004∗∗ 0.001 0.008∗∗∗ 0.004∗∗ 0.007∗∗∗ 0.002∗∗ 0.004∗∗∗

(s.e.) (0.002) (0.002) (0.001) (0.002) (0.001) (0.002) (0.001) (0.001)
Slope 0.727∗∗∗ 0.664∗∗∗ 0.600∗∗∗ 0.686∗∗∗ 0.576∗∗∗ 0.593∗∗∗ 0.454∗∗∗ 0.512∗∗∗

(s.e.) (0.056) (0.083) (0.088) (0.068) (0.076) (0.083) (0.084) (0.078)
adj. R2 0.27 0.14 0.10 0.23 0.09 0.19 0.06 0.17
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table A5: Expectations Hypothesis Tests: Alternative Option-Implied Beta
II

This table reports the results of the expectations hypothesis tests for systematic and idiosyncratic risk. We

show the aggregated results for the individual stocks included in the S&P 500. For systematic risk (Panel

A), the regression equation is 1
k

∑k−1
i=0

(
β2
j,im,(i+1)mσ

2
M,im,(i+1)m − β

2
j,0,mσ

2
M,0,m

)
+ ∆̂βσ + ∆̂βr + ∆̂ε =

aj + bj

(
β2
j,0,kmσ

2
M,0,km − β2

j,0,mσ
2
M,0,m

)
+ νj,km. For idiosyncratic variance (Panel B), the regression

equation is 1
k

∑k−1
i=0

(
σ2
ε,j,im,(i+1)m − σ

2
ε,j,0,m

)
= aj + bj

(
σ2
ε,j,0,km − σ2

ε,j,0,m

)
+ νj,km. We use the beta

estimator of Kempf et al. (2015). In each column, the first number denotes the long horizon (k times

m) and the second number denotes the short horizon (m) (e.g., 12,1 means we have km = 12 and m = 1

month(s)). The pure expectations hypothesis posits that the constant a is zero and that the slope b is

one while the general expectations hypothesis requires only the latter. We test the individual hypotheses

with t-tests and the joint hypothesis with a Wald test. All tests employ a panel regression approach using

the two-way clustered standard errors of Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% level, respectively.

Panel A. Systematic Risk

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.014∗∗∗ 0.007∗ 0.003 0.013∗∗∗ 0.006∗ 0.012∗∗∗ 0.005∗∗ 0.007∗∗∗

(s.e.) (0.005) (0.004) (0.003) (0.005) (0.003) (0.004) (0.002) (0.003)
Slope 1.103 1.167 0.822 1.048 1.061 0.826 0.683∗∗ 0.496∗∗

(s.e.) (0.137) (0.188) (0.269) (0.140) (0.185) (0.145) (0.141) (0.203)
adj. R2 0.20 0.13 0.03 0.17 0.10 0.11 0.05 0.03
Wald [0.00]∗∗∗ [0.03]∗∗ [0.63] [0.01]∗∗∗ [0.09]∗ [0.01]∗∗ [0.01]∗∗ [0.01]∗∗∗

Panel B. Idiosyncratic Variance

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.009∗∗∗ 0.005∗∗∗ 0.002 0.008∗∗∗ 0.004∗∗ 0.007∗∗∗ 0.002∗∗ 0.004∗∗∗

(s.e.) (0.002) (0.002) (0.001) (0.002) (0.001) (0.002) (0.001) (0.001)
Slope 0.734∗∗∗ 0.674∗∗∗ 0.607∗∗∗ 0.690∗∗∗ 0.582∗∗∗ 0.597∗∗∗ 0.455∗∗∗ 0.513∗∗∗

(s.e.) (0.056) (0.081) (0.087) (0.067) (0.076) (0.082) (0.083) (0.077)
adj. R2 0.28 0.15 0.10 0.23 0.10 0.20 0.06 0.17
Wald [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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Table A6: Finite Sample Bias: Option-Implied Variance

This table reports the results accounting for the potential finite sample bias in expectations hypoth-

esis tests. In Panels A and B, we show the results for the bias in coefficient estimates. We obtain

the bias-corrected coefficient estimates by conducting an block-bootstrap of the dependent variable.

We run 1,000 repetitions and report the simulated coefficients with supplement (sim) and report the

bias in percentage points. For individual stocks, we report the median bias as well as the 10% and

90% quantiles (q0.1 and q0.9). In Panels C and D, we report the results for expectations hypothe-

sis tests with a bootstrapped distribution of the test statistics. We use the bias-corrected coefficient

estimates and simulate the dependent variable under the null of a = 0 and b = 1. We repeat this

step 1,000 times and obtain distributions of the t- and Wald statistics. The regression equation is
1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
= aj + bj

(
σ2
j,0,km − σ2

j,0,m

)
+ νj,km. In each column, the first number

denotes the long horizon (k times m) and the second number denotes the short horizon (m) (e.g., 12,1

means we have km = 12 andm = 1 month(s)). The pure expectations hypothesis posits that the constant

a is zero and that the slope b is one while the general expectations hypothesis requires only the latter.

We test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. We also present

the results of a joint test of the expectations hypothesis along with bootstrapped p-values. ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Coefficient Bias – Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.003 −0.002 −0.001 −0.003 −0.002 −0.002 −0.001 −0.001
Const. (sim) −0.003 −0.002 −0.001 −0.003 −0.002 −0.002 −0.001 −0.001
bias (in pp) 0.003 0.003 0.001 0.005 −0.002 0.001 −0.003 0.006

Slope 1.042 1.060 1.198 0.981 0.964 0.873 0.862 0.745
Slope (sim) 1.040 1.059 1.198 0.979 0.961 0.871 0.860 0.747
bias (in pp) 0.146 0.152 −0.063 0.171 0.235 0.141 0.191 −0.236
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Table A6: Finite Sample Bias: Option-Implied Variance (continued)

Panel B. Coefficient Bias – Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012 0.006 0.002 0.012 0.005 0.009 0.003 0.005
Const. (sim) 0.012 0.006 0.002 0.012 0.005 0.009 0.003 0.005
bias (in pp) −0.004 0.000 −0.004 −0.005 −0.003 −0.003 −0.005 0.003

Slope 0.909 0.890 0.751 0.881 0.838 0.754 0.640 0.620
Slope (sim) 0.909 0.890 0.750 0.881 0.839 0.754 0.640 0.621
bias (in pp) −0.027 −0.007 0.026 −0.005 −0.011 0.015 −0.063 −0.020

Panel C. Finite Sample Distributions – Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.003 −0.002 −0.001 −0.003 −0.002 −0.002 −0.001 −0.001
p-value [0.724] [0.740] [0.719] [0.741] [0.755] [0.746] [0.741] [0.718]
Slope 1.042 1.060 1.198 0.981 0.964 0.873 0.862 0.745
p-value [0.849] [0.856] [0.709] [0.911] [0.894] [0.485] [0.554] [0.270]
adj. R2 0.38 0.26 0.13 0.32 0.20 0.24 0.15 0.10
Wald 0.63 0.53 0.75 0.53 0.43 1.99 1.21 3.15
p-value [0.91] [0.92] [0.88] [0.91] [0.93] [0.67] [0.75] [0.30]

Joint Pure General

Wald 22.1 6.23
p-value [0.59] [0.54]

Panel D. Finite Sample Distributions – Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012∗∗ 0.006∗ 0.002 0.012∗∗ 0.005∗ 0.009∗∗ 0.003 0.005∗

p-value [0.010] [0.098] [0.490] [0.011] [0.072] [0.010] [0.141] [0.068]
Slope 0.909 0.890 0.751∗∗ 0.881 0.838∗ 0.754∗∗∗ 0.640∗∗∗ 0.620∗∗∗

p-value [0.213] [0.266] [0.048] [0.180] [0.094] [0.001] [0.001] [0.000]
adj. R2 0.34 0.21 0.11 0.29 0.16 0.23 0.11 0.17
Wald 7.39∗∗ 3.39 5.19 8.25∗∗ 4.88 14.4∗∗∗ 36.4∗∗∗ 35.2∗∗∗

p-value [0.04] [0.24] [0.12] [0.03] [0.11] [0.00] [0.00] [0.00]
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Table A7: Errors-In-Variables: Option-Implied Variance

This table reports the results accounting for errors-in-variables in expectations hypothesis tests. We

replace the independent variable with the fitted value of a regression on its first lag. The regression

equation is 1
k

∑k−1
i=0

(
σ2
j,im,(i+1)m − σ

2
j,0,m

)
= aj + bj

(
σ2
M,0,km − σ2

M,0,m

)
+ νj,km. In each column, the

first number denotes the long horizon (k times m) and the second number denotes the short horizon (m)

(e.g., 12,1 means we have km = 12 and m = 1 month(s)). The pure expectations hypothesis posits that

the constant a is zero and that the slope b is one while the general expectations hypothesis requires only

the latter. We test the individual hypotheses with t-tests and the joint hypothesis with a Wald test. All

tests employ Newey & West (1987) standard errors (s.e.) with 4 lags. For the market and each stock,

we average the coefficient estimates, standard errors, and p-values across sub-samples. We also present

the results of a joint test of the expectations hypothesis along with bootstrapped p-values.In Panel B,

we present the results of a panel regression on a constant using the two-way clustered standard errors of

Cameron et al. (2011). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% level, respectively.

Panel A. Option-Implied Variance – Market

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. −0.004 −0.003 −0.002 −0.003 −0.002 −0.003 −0.001 −0.002
(s.e.) (0.004) (0.003) (0.002) (0.003) (0.002) (0.002) (0.001) (0.001)
Slope 1.284 1.209 1.576 1.266 1.152 1.216 0.933 1.564
(s.e.) (0.270) (0.337) (0.579) (0.227) (0.261) (0.193) (0.220) (0.350)

adj. R2 0.23 0.17 0.11 0.20 0.14 0.16 0.08 0.12
Wald 1.90 0.95 1.62 2.41 0.96 2.68 0.66 4.30
p-value [0.39] [0.62] [0.44] [0.30] [0.62] [0.26] [0.72] [0.12]

Joint Pure General

Wald 33.0 18.4
p-value [0.47] [0.25]

Panel B. Option-Implied Variance – Stocks

12,1 12,3 12,6 9,1 9,3 6,1 6,3 3,1

Const. 0.012∗∗∗ 0.006∗ 0.002 0.012∗∗∗ 0.005∗ 0.009∗∗ 0.003 0.005∗

(s.e.) (0.005) (0.003) (0.003) (0.004) (0.003) (0.004) (0.002) (0.003)
Slope 0.909 0.890 0.751∗∗ 0.881 0.838∗ 0.754∗∗∗ 0.640∗∗∗ 0.620∗∗∗

(s.e.) (0.069) (0.088) (0.110) (0.078) (0.089) (0.078) (0.060) (0.065)
adj. R2 0.34 0.21 0.11 0.29 0.16 0.23 0.11 0.17
Wald [0.02]∗∗ [0.18] [0.07]∗ [0.02]∗∗ [0.09]∗ [0.00]∗∗∗ [0.00]∗∗∗ [0.00]∗∗∗
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