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STOCHASTIC MODEL REDUCTION FOR SLOW-FAST SYSTEMS
WITH MODERATE TIME-SCALE SEPARATION∗

JEROEN WOUTERS† AND GEORG A. GOTTWALD‡

Abstract. We propose a stochastic model reduction strategy for deterministic and stochastic
slow-fast systems with a moderate time-scale separation. The stochastic model reduction strategy
improves the approximation of systems with finite time-scale separation, when compared to classical
homogenization theory, by incorporating deviations from the infinite time-scale limit considered in
homogenization, as described by an Edgeworth expansion in the time-scale separation parameter.
To approximate these deviations from the limiting homogenized system in the reduced model, a
surrogate system is constructed the parameters of which are matched to produce the same Edgeworth
expansion as in the original multi-scale system. We corroborate the validity of our approach by
numerical examples, showing significant improvements to classical homogenized model reduction.

Key words. multi-scale dynamics; homogenization; stochastic parametrization; Edgeworth
expansion

AMS subject classifications. 60Fxx, 60Gxx

1. Introduction. Complex systems in nature and in the engineered world often
exhibit a multi-scale character with slow variables driven by fast dynamics. For ex-
ample, large proteins [12] and the climate system [26] exhibit both fast, small scale
fluctuations and slow, large scale transitions. The high complexity often puts the
system out of reach of both analytical and numerical approaches. Typically one is,
however, only interested in the dynamics of the slow variables or observables thereof.
It is then a formidable challenge to distill reduced slow equations which can make
the problem amenable to theoretical analysis, allowing to identify relevant physical
effects, or, from a computational perspective, allow for a larger computational time
step tailored to the slow time scale.

Homogenization theory [7, 28] derives reduced slow dynamics by assuming an
infinitely large time-scale separation between slow and fast variables. It has been
rigorously proven for multi-scale systems with stochastic [16, 17, 27] and deterministic
chaotic fast dynamics [25, 8, 14] and has been applied with great success in the
design of numerical algorithms for molecular dynamics [3, 15] and in stochastic climate
modelling [19, 21].

Several challenges remain, however, in formulating reliable stochastic slow limit
systems. Whereas homogenization is rigorously proven only for the limiting case of
infinite time scale separation, this assumption is never met in the real world. Hence,
homogenized stochastic systems may fail in reproducing the statistical behaviour of
the underlying deterministic multi-scale system for finite time-scale separation when
an intricate interplay between the fast degrees and the slow degrees of freedom is at
play.
Homogenization relies on the fact that the slow dynamics experiences the integrated
effect of, in the limit of infinitely fast dynamics, infinitely many fast fluctuations.
Therefore, homogenization is in effect a manifestation of the central limit theorem
(CLT). Finite time scale effects are then akin to finite sums of random variables. In
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2 J. WOUTERS AND G. A. GOTTWALD

the context of random variables, corrections to the CLT for sums of finite length
n can be described by the Edgeworth expansion, which provides an expansion of
the distributions of sums, asymptotic in 1/

√
n [2]. Such an expansion provides an

improved approximation of the pdf of sums for large enough n. Edgeworth expansions
have been developed for independent and for weakly dependent identically distributed
random variables [10], continuous-time diffusions [1] and ergodic Markov chains [11].
In [30], we have derived an expression for the Edgeworth expansion of multi-scale
systems, including the deterministic case. Similarly to the case of sums of random
variables, we obtained an improved approximation of transition probabilities of the
slow variable for a large enough time scale separation.

The Edgeworth expansion is universal in the sense that it is agnostic about the
microscopic details of the fast process. Only integrals over its higher-order corre-
lation functions appear in the analytical expressions we obtain. We will use this
aspect of Edgeworth expansions to derive a reduced model by constructing a low-
dimensional surrogate model with the same Edgeworth corrections as the original
multi-scale model. Surrogate models have previously been used to sample from
complex multi-scale systems, see for example [29]. We numerically demonstrate that
this surrogate system is superior to homogenization in reproducing the statistical
behaviour of the slow dynamics.

The paper is organised as follows. In Section 2 we introduce the multi-scale
systems under consideration and their diffusive limits in the case of infinite time
scale separation, as provided by homogenization theory. In Section 3 we establish
corrections to the homogenized limit using Edgeworth expansions. These are then
used in Section 4 to construct a reduced surrogate stochastic model which captures
finite time-scale separation effects. We conclude in Section 5 with a discussion and
an outlook.

2. Multi-scale systems. We consider multi-scale systems of the form

dx =
1

ε
f0(x, y) dt+ f1(x, y) dt(1)

dy =
1

ε2
g0(y) dt+

1

ε
β(y) dWt +

1

ε
g1(x, y) dt,(2)

with slow variables x ∈ Rd and fast variables y ∈ RN . We assume that the fast
dynamics dy = g0dt+βdWt admits a unique invariant physical measure ν(dy) and the
full system admits a unique invariant physical measure µ(ε)(dx, dy) 1. The system may
be stochastic with a non-zero diffusion matrix β ∈ RN×l and l-dimensional Brownian
motion dWt, or may be deterministic with β ≡ 0. In the latter case we assume that
the fast dynamics is sufficiently chaotic 2.
Homogenization theory deals with the limit of infinite time-scale separation ε → 0.
In this limit it is well known that when the leading slow vector field averages to zero,
i.e. 〈f0(x, y)〉 = 0, where 〈A(y)〉 :=

∫
ν(dy)A(y), the slow dynamics is approximated

by an Itô stochastic differential equation [16, 17, 27, 25, 9, 13] of the form

(3) dX = F (X)dt+ σ(X) dWt .

1An ergodic measure is called physical if for a set of initial conditions of nonzero Lebesgue measure
the temporal average of a typical observable converges to the spatial average over this measure.

2The assumptions on the chaoticity of the fast subsystem are mild. For continuous-time fast
system, an associated Poincaré map needs to have a summable correlation function (irrespective of
the mixing properties of the flow). Systems with such mild conditions on the chaoticity include, but
go far beyond, Axiom A diffeomorphisms and flows, Hénon-like attractors and Lorenz attractors; see
[22, 23, 24]
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The drift coefficient is given by

F (x) = 〈f1(x, y)〉+

∫ ∞
0

ds
(
〈f0(x, y) · ∇xf0(x, ϕty)〉

+ 〈g1(x, y) · ∇y
(
f0(x, ϕty)

)
〉
)
,(4)

where ϕt denotes the flow map of the fast dynamics, and the diffusion coefficient is
given by the Green-Kubo formula

σ(x)σT (x) =

∫ ∞
0

ds
〈
f0(x, y)⊗ f0(x, ϕty) + f0(x, ϕty)⊗ f0(x, y)

〉
,(5)

where the outer product between two vectors is defined as (a ⊗ b)ij = aibj
3. For

details the reader is referred to [13].

3. Edgeworth approximation for dynamical systems. There are three dis-
tinct time scales in the system (1)-(2): a fast time scale of O(ε2), an intermediate
time-scale of O(ε) on which the fast dynamics has equilibrated but the slow dynamics
has not yet evolved, and a long diffusive time scale of O(1) on which the slow variables
exhibit non-trivial dynamics. It is on the intermediate time scale that we can expect
corrections to the CLT: the time scale is sufficiently long for the fast dynamics to
generate near-Gaussian noise but not long enough for the slow dynamics to dominate.
This is also reflected in the homogenized SDE (3): displacements of the slow variable
are near-Gaussian with dX ∼ σ(X) dWt on short time scales. We therefore focus
our attention on the limit ε → 0 with t/ε = θ constant, and study the transition
probabilities between initial conditions x0 into the interval (x, x + dx)

πε(x, t, x0) = P
(
x(t)− x0√

t
∈ (x, x + dx)

∣∣∣∣x(0) = x0, y(0) ∼ µ(ε)
x0

)
.

Here µ
(ε)
x0 denotes the conditional measure of µ(ε) conditioned on x = x0. In the limit

of homogenization theory ε→ 0, the transition probability πε with t/ε constant con-
verges to a normal distribution n0,σ2(x) with the covariance given by the Green-Kubo
formula (5). For finite ε, the transition probability will not be Gaussian but will have
correction terms of O(

√
ε), the so called Edgeworth corrections. As we have shown in

[30], the corrections to the limiting Gaussian distribution of x̂(t) := (x(t)−x0)/
√
t are

most readily calculated through the characteristic function χε(ω) = Ex0,µ
ε [exp(iωx̂)]

where Ex0,µ
ε is the expectation value w.r.t. πε. We can expand the characteristic

function and then determine the expansion of the probability distribution by inverse

Fourier transform. Since lnχε =
∑
n c

(n)
ε (iω)n/n! with the cumulants of x̂

c(p)ε = m(p)
ε −

p−1∑
j=1

(
p− 1

j − 1

)
m(p−j)
ε c(j)ε ,

and the moments m
(p)
ε = Ex0,µ

ε [x̂p], we can expand χε by seeking an asymptotic
expansion

c(p)ε = c
(p)
0 +

√
εc

(p)
1
2

+ εc
(p)
1 +O(ε

3
2 ) .

3As stated here the formulae for the drift and diffusion matrix are only valid for correlation
functions which are slightly more than integrable. When the autocorrelation function of the fast
driving system is decaying but is only integrable, more complicated formulae apply; see [14] for
details.
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To this end, the expectation values appearing in the cumulants Ex0,µ
ε are expressed

as

Ex0,µ
ε [A(x(t), y(t))] =

∫ ∫
A(x, y)eLεtδx0

(dx)µ(dy) ,

with the transfer operator eLεt (also known as Frobenius-Perron operator) associ-
ated with the multi-scale system (1)-(2). This transfer operator can be expanded
by successive application of the Duhamel-Dyson formula [4, 32], resulting in explicit

expressions for the c
(p)
j . We find c

(1)
0 = c

(1)
1 = 0, c

(1)
1
2

= F (x0), c
(2)
0 = σ2, c

(2)
1
2

= 0,

c
(3)
0 = c

(3)
1 = 0, c

(4)
0 = c

(4)
1
2

= 0 and c
(p)
ε = O(ε

3
2 ) for p > 4, while the coefficients c

(2)
1 ,

c
(3)
1
2

and c
(4)
1 depend non-trivially on the correlations of y (see appendix A for their

expressions). Finally, by taking the inverse Fourier transform of χε, we can formally

expand the probability density πε = π
(2)
ε +O(ε

3
2 ) with

π(2)
ε (x, t = θε, x0) = n0,σ2(x)

[
1 +
√
ε

F (x0)

σ
H1

( x

σ

)
+
c
(3)
1
2

3!σ3
H3

( x

σ

)+ ε

(
F (x0)

2
+ c

(2)
1

2σ2
H2

( x

σ

)

+
c
(4)
1 + 4F (x0)c

(3)
1
2

4!σ4
H4

( x

σ

)
+

c
(3)
1
2

2

2(3!σ3)2
H6

( x

σ

))]
.(6)

Here Hn(x) = (x− d
dx )n1 are Hermite polynomials of degree n. It is readily seen from

(6) that for ε → 0, the homogenization limit limε→0 πε = n0,σ2 is recovered. For a

derivation of the Edgeworth expansion and explicit formulae for the c
(p)
j the reader is

referred to [30]. For completeness we present in the Appendix the expressions for the
Edgeworth expansion coefficients. Note that the expressions for the cumulant expan-
sions as derived in [30] determine the form of the expansion, but are not sufficient to
show that an Edgeworth expansion actually holds for a given class of dynamical sys-
tems. However, the numerical evidence presented below and in [30] suggests strongly
that Edgeworth expansions hold for the model systems studied.

3.1. Numerical validation of the Edgeworth expansion. We now numer-
ically demonstrate the validity of the Edgeworth expansion for a multi-scale system
of the form (1)-(2). In particular, we consider

ẋ =
1

ε
f0(y) + f1(x)(7)

ẏi =
1

ε2
g0(y)(8)

with y ∈ RN , f1(x) = −∂xV (x), V (x) = x2(b2x2 − a2), g1(x, y) = 0, g0(y) =
yi−1(yi+1 − yi−2) + R − yi and yN+i = yi for 1 ≤ i ≤ N . The system consists
of a single degree of freedom x in a symmetric double well potential V driven by
a fast Lorenz ’96 (L96) y-system. The L96 system was introduced to mimic atmo-
spheric chaos in the midlatitudes [18]. The system (7)-(8) can therefore be viewed as
a simple toy model of the ocean exhibiting two regimes, driven by a fast chaotic atmo-
sphere. We take the classical parameters of Lorenz’ with N = 40, R = 8 and choose

f0(y) = σm

(
1
5

∑5
i=1 y

2
i − C0

)
where C0 is chosen such that 〈f0〉 = 0. Randomness
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is introduced solely through a random choice of the initial condition y0, distributed
according to the physical invariant measure of the fast L96 system.

To demonstrate the validity of the Edgeworth expansion we show in Figure 1
the transition probabilities for the full multi-scale system (7)-(8) as well as those of
the reduced homogenized system (3) and of the Edgeworth expansion (6). Whereas
homogenization fails to approximate the transition probability (with a relative error
in the skewness of 0.87), our Edgeworth approximation describes the statistics of the

true system remarkably well. Note that the transition probability π
(2)
ε is not a proper

probability density function in the sense that it is not a non-negative function. The oc-

currence of negative values is due to the expansion of π
(2)
ε in Hermite polynomials (cf.

(6)). This implies that one cannot sample directly from the Edgeworth-approximated

transition probability π
(2)
ε . However, as we will see in the next section, one can con-

struct a dynamical system with expansion coefficients approximating those in π
(2)
ε ,

and this surrogate system can then be used to sample from a pdf which has the same
Edgeworth expansion of the transition probability as the full multi-scale system.

multi-scale
homogenized
Edgeworth

Fig. 1: Transition probability πε(x, t = 0.02, x0 = −
√

2) of the system (7)-(8) (labelled
“multiscale”) with a = 1, b = 0.5, ε = 0.1 and σm = 0.1821 (implying σ = 1.25),

the Edgeworth expansion π
(2)
ε (6) (labelled “Edgeworth”) and the pdf of X(t) in (3)

(labelled “homogenized”).

We now describe how the Edgeworth coefficients of Eqs. (7)-(8) are estimated
numerically. For the case of the multi-scale Lorenz ’96 system Eqs. (7)-(8) the

formulae for the Edgeworth coefficients σ, c
(2)
1 , c

(3)
1
2

and c
(4)
1 appearing in the transition

probability π
(2)
ε (x, t = θε, x0) (6) presented in the appendix yield

F = −∂x0
V (x0)

σ2 = µ20
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c
(2)
1 = −θσ2∂2x0

V (x0) +
1

θ
µ21

c
(3)
1
2

=
1√
θ
µ30

c
(4)
1 =

1

θ
µ40

where

µ20 = 2

∫ ∞
0

C2(τ) dτ(9)

µ21 = −2

∫ ∞
0

τ C2(τ) dτ(10)

µ30 = 6

∫ ∞
0

C3(τ1, τ2) dτ1dτ2(11)

µ40 = 6µ20 µ21 − 24

∫ ∞
0

(C4(τ1, τ2, τ3)− C2(τ1)C2(τ3)) dτ1dτ2dτ3(12)

with the two-point autocorrelation function C2(τ) = 〈f0(y)f0(ϕτy)〉, the three–point
autocorrelation function C3(τ1, τ2) = 〈f0(y)f0(ϕτ1y)f0(ϕτ1+τ2y)〉 and the four–point
autocorrelation function C4(τ1, τ2, τ3) = 〈f0(y)f0(ϕτ1y)f0(ϕτ1+τ2y)f0(ϕτ1+τ2+τ3y)〉,
where we recall that ϕt denotes the flow map of the fast dynamics.
The terms µ20, µ21, µ30 and µ40 can be calculated directly by estimating the corre-
lation functions C2,3,4. This, however, is computationally expensive to get accurate
results. Here we estimate the terms as follows. As shown in [30], the Edgeworth
coefficients appear as the coefficients of an expansion in t and ε of the cumulants
of transition probabilities of the multi-scale system. If we were to set V = 0, the
terms µ20, µ21, µ30 and µ40 are the leading order terms appearing in the Edgeworth
expansion of the second, third and fourth cumulant. More specifically, for the system

˙̃x =
1

ε
f0(ỹ)(13)

˙̃y =
1

ε2
g0(ỹ)(14)

with initial conditions x̃(t = 0) = x̃0 and ỹ(t = 0) = ỹ0, we can integrate the slow
dynamics to obtain

ξε :=
x̃(t = ε)− x̃0√

ε
=
√
εz(

1

ε
)

with z(t) :=
∫ t
0
f0(y(τ)) dτ . As shown in [30], the second, third and fourth cumulants

of ξε can be expanded in orders of
√
ε as

Ex0,µ
ε

[
ξ2ε
]

= µ20 + εµ21 +O(ε2)

Ex0,µ
ε

[
ξ3ε
]

=
√
εµ30 +O(ε

3
2 )

Ex0,µ
ε

[
ξ4ε
]
− 3Ex0,µ

ε

[
ξ2ε
]2

= εµ40 +O(ε2) .

It follows by taking t = 1
ε that µ2 := E

[
z(t)2

]
, µ3 := E

[
z(t)3

]
and µ4 := E

[
z(t)4

]
scale with t as

µ2

t
= µ20 +

µ21

t
+O(

1

t2
)
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µ3

t
= µ30 +O(

1

t
)

µ4 − 3µ2
2

t
= µ40 +O(

1

t
) .

This suggests to perform a least squares fit of µ2

t , µ3

t and
µ4−3µ2

2

t to a two-
parameter family of functions `(t) = a+ b/t. Denoting the result of the least squares

fit of µ2

t by a?2 and b?2, of µ3

t by a?3 and b?3 and of
µ4−3µ2

2

t by a?4 and b?4, we can
extract the leading order coefficients. From the fits we obtain µ20 = a?2 and µ21 = b?2,
µ30 = a?3 and µ40 = a?4. Figure 2 shows the scaled cumulants of z(t) together with
their respective least squares fit of functions `(t) = a+ b/t.

multi-scale

fit
multi-scale

fit

multi-scale

fit

Fig. 2: Scaled cumulants of z(t) for the system (13)-(14) with f0 and g0 as in (7)-(8).
The smooth line represents a least squares fit to `(t) = a + b/t. Top left: second
cumulant, top right: third cumulant, bottom: fourth cumulant.

4. The surrogate system. The Edgeworth expansion is universal in the sense
that only a limited number of statistical properties of the fast system appear in the
expansion. Therefore, the microscopic details of the fast y-dynamics are of no impor-
tance to the slow x-dynamics. As we have seen, one cannot sample directly form

the Edgeworth expansion of the transition probability π
(2)
ε since it is not a proper

probability density function and involves negative values due to the expansion in Her-
mite polynomials (cf. (6)). However, we can construct a surrogate system such that

the Edgeworth expansion of its transition probability, which we label π
(2)
surr, closely

approximates the expansion π
(2)
ε of transition probabilities of the full multi-scale sys-

tem. From the macroscopic point of view the y-dynamics can be substituted with a
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simpler surrogate system, as long as the statistical properties encoded in the Edge-
worth expansion are preserved. This suggests a new way of performing stochastic
model reduction for the slow dynamics: construct a class of simple surrogate sys-
tems (X(t), η(t)) dependent on a set of parameters psurr. Here X ∈ Rd denotes the
slow variables, approximating the slow dynamics x in the multi-scale system (1)-(2),
and η ∈ Rk with k < N mimics the effect of the fast dynamics y. The functional
form of the surrogate system, determining the evolution of X(t) and η(t), and the
dimension k of the fast surrogate variables η are chosen sufficiently simple to allow
for an explicit analytical expression of the Edgeworth expansion coefficients of the

transition probability π
(2)
surr of the surrogate system. These coefficients will depend

on the set of free parameters psurr appearing in the surrogate system. Judiciously
choosing the free parameters of the surrogate system psurr allows us to match the
Edgeworth corrections of the surrogate system to the observed Edgeworth corrections
of the original multi-scale model we set out to model. This is achieved as follows: the
transition probability of the surrogate slow variables X,

πsurr(x, t = θε, x0) = P
(
X(t)−X(0)√

t
∈ (x, x + dx)

∣∣∣∣X(0) = x0

)
,

is approximated by the second order Edgeworth expansion πsurr = π
(2)
surr + O(ε

3
2 ).

The expression for the Edgeworth expansion of πsurr is the same as for πε given in

(6). We denote the cumulant expansion coefficients for π
(2)
surr in (6) as c

(p,s)
k . The

free parameters psurr of the surrogate system are then determined by the constrained
optimization, at a fixed time which we choose arbitrarily as t = ε,

arg min
psurr

∥∥∥π(2)
surr(x, t = ε, x0)− π(2)

ε (x, t = ε, x0)
∥∥∥(15)

of the L2-norm with respect to x for fixed initial condition x0 subject to the constraint
of the exact matching of the leading order diffusivity σ (5) and drift F (4). A further
appropriately weighted norm w.r.t. x0 (e.g. weighted with the invariant measure
restricted to x) can be taken to ensure one set of parameter values for all x0. Since
σ and F determine the limiting system (3), this constraint assures that the surrogate
system and the full deterministic system have the same homogenized limit. Using

the Edgeworth expansions for both π(s) and πε, we have, if c
(2,s)
0 = c

(2)
0 = σ2 and

c
(1,s)
1
2

= c
(1)
1
2

= F , that

‖π(2)
surr(x, ε, x0)− π(2)

ε (x, ε, x0)‖ = εE(1)(x0) + ε2E(2)(x0) ,(16)

with

E(1)(x0) =
15κ23

16
√
πσ

E(2)(x0) =
3
(
16κ22 − 80κ2κ4 + 140κ24 + 3465κ26 + 140 (2κ2 − 9κ4)κ6

)
128
√
πσ

,

where the coefficients

κ2 =
c
(2)
1 − c

(2,s)
1

2σ2
, κ3 =

c
(3)
1
2

− c(3,s)1
2

6σ3
, κ4 =

c
(4)
1 − c

(4,s)
1

24σ4
, κ6 =

c
(3)
1
2

2
− c(3,s)1

2

2

72σ6
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are given in terms of the expansion coefficients of the original multiscale system and
of the surrogate system. The expansion coefficients of the original multi-scale system

c
(p)
k are determined numerically through evaluation of their expressions for long-time

numerical simulations, as described in Section 3.1. Their surrogate counterparts c
(p,s)
k

can be determined analytically as a function of the free parameters psurr. This then
allows to evaluate the error terms in (16). The constrained optimization problem (15)
can then be solved by varying the surrogate parameters psurr.

We consider here the following family of surrogate models for the multi-scale
system (1)-(2)

Ẋ =
1

ε
f
(s)
0 (X, η) + F (X) + f

(s)
1 (X, η)(17)

dη = − 1

ε2
Γ(s)η dt+

σ(s)

ε
dWt +

1

ε
g
(s)
1 (X, η) .(18)

The fast process η(t) is a k-dimensional Ornstein-Uhlenbeck process with Γ
(s)
ij = γiδij

and σ
(s)
ij = ζiδij . The noise is here, different to the homogenized diffusive limits,

coloured and enters the slow dynamics in an integrated way, allowing for non-trivial
memory.

The vector fields f
(s)
0 , f

(s)
1 and g

(s)
1 of the surrogate system are chosen to be polynomial

f
(s)
l (X, η) =

∑
|α|<αl,|β|<βl

a
(α,β)
l Xα ηβ(19)

g
(s)
1 (X, η) =

∑
|α|<α2,|β|<β2

a
(α,β)
2 Xα ηβ(20)

for l = 0, 1. The degree of the polynomials αl and βl, l = 0, 1, 2, and the dimensionality
of the surrogate process k are chosen as the smallest degree and dimension which still
allow the surrogate system to capture the statistical features of the vector field f0(x, y)
of the original multi-scale system (1)-(2).

4.1. Surrogate model for the Lorenz ’96 driven system. To test the abil-
ity of the Edgeworth expansion-based surrogate model (17)-(18) to approximate the
statistics of the slow variable x, we first consider the multi-scale system (7)-(8). Since
g1 = 0 in this case, we set α2 = β2 = 0. Furthermore, we find that k = 1, α1 = β1 = 0,
α0 = 3, β0 = 1 are sufficient. The Edgeworth coefficients (9)-(12) for the surrogate
model can be explicitly calculated. We obtain

c
(2,s)
0 =

11 a
(3,0)
0

2
ζ61 + 4 a

(1,0)
0

2
γ21ζ

2
1 + 2

(
a
(2,0)
0

2
+ 6 a

(1,0)
0 a

(3,0)
0

)
γ1ζ

4
1

4 γ41

(21)

c
(2,s)
2,−1 = −

29 a
(3,0)
0

2
ζ61 + 12 a

(1,0)
0

2
γ21ζ

2
1 + 3

(
a
(2,0)
0

2
+ 12 a

(1,0)
0 a

(3,0)
0

)
γ1ζ

4
1

12 γ51

(22)

c
(3,s)

1,− 1
2

=
3
(

22 a
(2,0)
0 a

(3,0)
0

2
ζ81 + 4 a

(1,0)
0

2
a
(2,0)
0 γ21ζ

4
1 +

(
a
(2,0)
0

3
+ 18 a

(1,0)
0 a

(2,0)
0 a

(3,0)
0

)
γ1ζ

6
1

)
2 γ61

(23)
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c
(4,s)
0 = 6 c

(2,s)
0 c

(2,s)
1 +

(
48 γ41a

(1,0)
0

4
+ 420 γ31ζ

2
1a

(1,0)
0

2
a
(2,0)
0

2

(24)

+ 66 γ21ζ
4
1a

(2,0)
0

4
+ 480 γ31ζ

2
1a

(1,0)
0

3
a
(3,0)
0

+ 2268 γ21ζ
4
1a

(1,0)
0 a

(2,0)
0

2
a
(3,0)
0 + 1976 γ21ζ

4
1a

(1,0)
0

2
a
(3,0)
0

2

+ 3259 γ1ζ
6
1a

(2,0)
0

2
a
(3,0)
0

2

+3912 γ1ζ
6
1a

(1,0)
0 a

(3,0)
0

3
+ 3109 ζ81a

(3,0)
0

4) ζ41
8 γ91

.

The parameter a
(0,0)
0 = −a(0,2)0 ζ21/(2γ1) is fixed by requiring the centering condition

〈f (s)0 〉 ≡ 0. The remaining parameters for the surrogate system are determined by
constrained minimization of (15) using sequential least squares programming as im-
plemented in the SciPy library.

Figure 3 shows the invariant measure and the third moment of the slow dynamics
of the multiscale Lorenz system (7) with a moderate time scale separation ε = 0.15,
as well as of the homogenized equation (3) and of the surrogate process (17)-(18). It
is clearly seen that the stochastic model reduction based on the Edgeworth expan-
sion captures the nontrivial non-Gaussian behaviour of the full slow dynamics very
well, whereas the homogenized equation converges to a Gaussian with a zero third
moment. Note that the surrogate naturally supports an invariant measure from

which one can sample, unlike the expansion π
(2)
surr which was used for its construc-

tion. Figure 4 shows the second and fourth cumulants, for the full multi-scale system
(7) and for the homogenized equation (3) as well as for the surrogate process (17)-
(18). For the second moment we show the long-time behaviour where homogenization
matches well, as well as the intermediate time evolution where the Edgeworth expan-
sion clearly outperforms the homogenized result. For the fourth moment the classical
homogenization results fail to capture the long-time and the intermediate time tem-
poral evolution whereas the Edgeworth expansion closely follows the true evolution
of the moments, capturing the non-Gaussian behaviour of the slow dynamics in the
moderate timescale separation case.

4.2. Surrogate model for a triad system. We now treat a multiscale system
that includes a non-zero backcoupling term g1. In particular, we consider the triad
model

dx =
B0

ε
y1y2 dt(25)

dy1 =
B1

ε
y2xdt− γ

(t)
1

ε2
y1 dt+

σ
(t)
1

ε
dW1(26)

dy2 =
B2

ε
xy1 dt− γ

(t)
2

ε2
y2 dt+

σ
(t)
2

ε
dW2 .(27)

This model has been used as a low-dimensional toy model for fluid flows with quadratic
nonlinearities [20]. The triad system allows for an explicit calculation of the homog-
enized system and Edgeworth coefficients (see Appendix A for the general formulae).
For the zero order homogenized equations, we obtain for the drift F and diffusion
coefficient σ

F (X) = ΘX ,(28)
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multi-scale
homogenized

surrogate

0.45 0.9 1.35 1.80

Fig. 3: The invariant measure (left) and third moment (right) for x of the multi-scale
Lorenz system (7)-(8) with ε = 0.15, a = 1, b = 2/3 and σm = 0.48567 (implying
σ = 10/3), the homogenized equation (3) and the surrogate process (17)-(18). The
parameters of the surrogate process are obtained by the method in Section 4 as γ1 =

2.479, ζ1 = 25.793, a
(0,3)
0 = −9.7467 10−3, a

(0,2)
0 = 19.72 10−2, a

(0,1)
0 = 7.1933 and

a
(0,0)
0 = −a(0,2)0 ζ21/(2γ1).

σ2 = 2
B2

0σ
2
1∞σ

2
2∞

γ
(t)
1 + γ

(t)
2

(29)

with Θ = B0(
γ
(t)
1 +γ

(t)
2

)2 (B1σ
2
2∞ +B2σ

2
1∞) and σ2

i∞ =
σ
(t)
i

2

2γ
(t)
i

.

For the Edgeworth coefficients up to order ε3/2 we find

c
(2)
2,−1 = − σ2

γ
(t)
1 + γ

(t)
2

c
(2)
0,1 = σ2Θ + Θ2x20

c
(4)
2,−1 = 6σ2c

(2)
2,−1 + 6

σ
4

γ
(t)
1 + γ

(t)
2

(
(γ

(t)
1 + γ

(t)
2 )2

γ
(t)
1 γ

(t)
2

+ 2

)

and c
(3)

0, 12
= c

(3)

1,− 1
2

= c
(2)
1,0 = c

(4)
0,1 = c

(4)
1,0 = 0.

Since g1 is now non-zero, we construct a surrogate system with non-zero α2. We
find that a simple surrogate system of the form

dx =
1

ε
f
(s)
0 (y) dt(30)

dy =
a
(1,0)
2

ε
xdt− γ1

ε2
y dt+

ζ1
ε

dW(31)

with

f
(s)
0 (y) = a

(3,0)
0 y3 + a

(2,0)
0 y2 + a

(1,0)
0 y + a

(0,0)
0

gives a good approximation. For the zero order homogenized equations of the sur-

rogate, we obtain a drift F (s)(x) = Θ(s)x with Θ(s) =
a
(1,0)
2

2γ2
1

(2γ1a
(1,0)
0 + 3a

(3,0)
0 ζ21 )

and diffusion σ(s)2 =
11 a

(3,0)
0

2
ζ61+4 a

(1,0)
0

2
γ2
1ζ

2
1+2

(
a
(2,0)
0

2
+6 a

(1,0)
0 a

(3,0)
0

)
γ1ζ

4
1

4 γ4
1

. The non-zero
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multi-scale
homogenized

surrogate

0.45 0.9 1.35 1.80

multi-scale
homogenized

surrogate

0.45 0.9 1.35 1.80

multi-scale
homogenized

surrogate

0 0.045 0.09

multi-scale
homogenized

surrogate

0.45 0.9 1.35 1.80

Fig. 4: The first moment (top left), second moment (over long times (top right) and
over intermediate times (bottom left)) and fourth cumulant over long times (bottom
right) for x of the multi-scale Lorenz system as a function of time. Parameters are
ε = 0.15, a = 1, b = 2/3 and σm = 0.48567 (implying σ = 10/3). We show results for
the full multi-scale system (Eqn (7)), the homogenized equation (Eqn (3)) and the
surrogate process (Eqns (17)-(18)). The parameters of the surrogate process are ob-

tained by the method in Section 3 as γ1 = 2.479, ζ1 = 25.793, a
(0,3)
0 = −9.7467 10−3,

a
(0,2)
0 = 19.72 10−2, a

(0,1)
0 = 7.1933 and a

(0,0)
0 = −a(0,2)0 ζ21/(2γ1).

Edgeworth coefficients of the surrogate system are given by those in Eqns. (21)-(24)
and

c
(2,s)
0,1 = σ(s)2Θ(s) + Θ(s)2x20

c
(2,s)
1,0 = a

(1,0)
2 x

91a
(2,0)
0 a

(3,0)
0 ζ41 + 42a

(1,0)
0 a

(2,0)
0 γ1ζ

2
1

12γ41

Figure 5 shows the mean and standard deviation over time of an ensemble of real-
izations starting from a fixed initial condition x0 = −1 for the multiscale triad system
(25)-(27), the limiting homogenized equation (3) with drift (28) and diffusion (29)
and the surrogate model (30)-(31). The mean and standard deviation are indistin-
guishable from those of the multiscale triad system, whereas the standard deviation
of the homogenized equation exhibits significant deviations from that of the original
triad system.

5. Discussion. We developed a new framework in which to perform stochas-
tic model reduction of multi-scale systems with moderate time scale separation. We



STOCHASTIC MODEL REDUCTION FOR SLOW-FAST SYSTEMS 13

0 .0 0 0 .0 5 0 .1 0 0 .1 5 0 .2 0 0 .2 5 0 .3 0 0 .3 5 0 .4 0
1 .8

1 .6

1 .4

1 .2

1 .0

0 .8

0 .6

0 .4

0 .2

0 .0
triad

surrogate

homogenized

t

x

Fig. 5: Mean and standard deviation of the triad model (25)-(27), the homogenized
system (3) and the surrogate system (30)-(31). The solid lines represent the mean of
the sample, while the upper and lower dashed lines represent the mean plus or minus
two standard deviations, respectively. The parameters of the triad model are B0 =

−0.75, B1 = −0.25, B2 = 1, γ
(t)
1 = 4/3, σ

(t)
1 =

√
8/3, γ

(t)
2 = 1, σ

(t)
2 =

√
2, ε = 0.25.

The parameters of the surrogate model are γ1 = 2.166, ζ1 = 1.243, a
(3,0)
0 = 0.786,

a
(2,0)
0 = −5.6 10−6, a

(1,0)
0 = 0.301 and a

(1,0)
2 = −0.4569.

showed how Edgeworth expansions can be used to construct reduced models for the
slow dynamics of a chaotic deterministic multi-scale model. The surrogate system
implies a non-Markovian effective slow dynamics, where the noise enters the slow dy-
namics in an integrated fashion. This reflects the memory effects in slow-fast systems
with finite time-scale separation, where the fast dynamics has not yet sufficiently equi-
librated on a slow characteristic time scale, preventing the homogenized Markovian
limit. We considered a family of surrogate models where the free parameters were
chosen to match the Edgeworth expansion of the original multi-scale model under
consideration. The degree of the surrogate model was chosen by assuring to have the
lowest possible order of the polynomials while still allowing for the surrogate system
to capture the overall statistical features of the full multi-scale system. Matching the
Edgeworth expansion then singles out the optimal member in the prescribed class.
We remark that the Edgeworth expansion is based on the transition probability on
the intermediate time scale. In some applications, such as weather forecasting, one
is interested in the transitional dynamics and their statistical modelling rather than
in the long term statistical behaviour. In this situation Edgeworth expansions allow
for a faithful description of the effects of finite time scale separation. The aim of the
reduced model in other applications, however, may be to describe the statistical be-
haviour on the longer diffusive time scale, for example in climate science. We observe
that in the system considered here, matching the short time transition probabilities
translates into a more reliable description of the long time statistics as well. Although
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this property may not hold in general, we expect it to hold in sufficiently smooth sys-
tems.
Our framework is not limited to deterministic continuous time systems. It can be
extended to stochastic multi-scale systems and to discrete time maps which would
allow the study of numerical integrators and their statistical limiting behaviour of re-
solved modes. More importantly, Edgeworth approximations can be determined from
observational data; this allows for the application to systems with high complexity
prohibiting an analytical estimation of the Edgeworth corrections. This opens up
the door to perform mathematically sound stochastic model reductions for real-world
problems. Furthermore, Edgeworth approximations are not limited to multi-scale sys-
tems. As an extension of the CLT, they can be used to study finite size effects to the
thermodynamic limit of weakly coupled systems such as Kac-Zwanzig heat baths for
distinguished particles [6, 31, 5].

Acknowledgments. The research leading to these results has received fund-
ing from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement noPIOF-GA-2013-626210. We thank Ben Goldys and
Françoise Pène for enlightening discussions and comments.

Appendix A. Cumulant expansion for slow-fast system.
In [30] we derived expression for the expansion in ε of the cumulants of the slow

variable x in the slow-fast system (1)-(2).

The first cumulant is given up to order O(ε
3
2 ) by

c(1) =
√
t c

(1)

0, 12
,(32)

where

c
(1)

0, 12
= F (x0) = 〈f1〉 − 〈f0L−10⊥∂xf0〉 − 〈(g1∂y)L−10⊥f0〉 .(33)

Upon explicit substitution of the intermediate time scaling t = εθ, with fixed θ, this
becomes

c(1) =
√
εθ c

(1)

0, 12
.(34)

The second cumulant is given up to order O(ε
3
2 ) by

c(2) = m(2) = c
(2)
0 + t c

(2)
0,1 +

ε2

t
c
(2)
2,−1 + ε c

(2)
1,0.(35)

Upon explicit substitution of the intermediate time scaling t = εθ, with fixed θ, this
becomes

c(2) = m(2) = c
(2)
0 + εc

(2)
1 ,(36)

with c
(2)
1 = θ c

(2)
0,1 + 1

θ c
(2)
2,−1 + c

(2)
1,0. The O(1) contribution is given by the homogenized

Green-Kubo formula (5)

c
(2)
0 = σ2 = −2〈f0L−10⊥f0〉

and higher-order contributions are given by

c
(2)
0,1 =

1

2
σ2

(
∂σ

∂x

)2

+
1

2
σ3 ∂

2σ

∂x2
+ σ2 ∂F

∂x
+ Fσ

∂σ

∂x
+ F 2(37)
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c
(2)
2,−1 = −2〈f0L−20⊥f0〉(38)

c
(2)
1,0 = −2〈f0L−10⊥f1〉 − 2〈f1L−10⊥f0〉+ 2〈f0L−10⊥∂xf0L

−1
0⊥f0〉

+ 4〈f0L−10⊥f0L
−1
0⊥∂xf0〉+ 2〈f0L−10⊥(g1∂y)L−10⊥f0〉

+ 2〈(g1∂y)L−10⊥f0L
−1
0⊥f0〉.(39)

Here L−10⊥ denotes the invertible operator whose inverse is the restriction of L0 to the

space orthogonal to the projection onto the invariant measure µ
(0)
x0

The third moment and its cumulant are given up to order O(ε
3
2 ) by

c(3) = m(3) =
√
t c

(3)

0, 12
+

ε√
t
c
(3)

1,− 1
2

.(40)

Upon explicit substitution of the intermediate time scaling t = εθ, with fixed θ, this
becomes

c(3) = m(3) =
√
εc

(3)
1
2

,(41)

with

c
(3)
1
2

=
√
θ c

(3)

0, 12
+

1√
θ
c
(3)

1,− 1
2

(42)

c
(3)

0, 12
= 6〈f0L−10⊥f0〉

∂

∂x
〈f0L−10⊥f0〉(43)

c
(3)

1,− 1
2

= 6
〈
f0L−10⊥f0L

−1
0⊥f0

〉
.(44)

The fourth cumulant is given up to order O(ε
3
2 ) by

c(4) = t c
(4)
0,1 + ε c

(4)
1,0 +

ε2

t
c
(4)
2,−1 .(45)

Upon explicit substitution of the intermediate time scaling t = εθ, with fixed θ, this
becomes

c(4) = εc
(4)
1(46)

with

c
(4)
1 = θ c

(4)
0,1 + c

(4)
1,0 +

1

θ
c
(4)
2,−1

(47)

c
(4)
0,1 = −24 〈f0L−10⊥f0〉

(
∂

∂x
〈f0L−10⊥f0〉

)2

− 16 〈f0L−10⊥f0〉
2 ∂

2

∂x2
〈f0L−10⊥f0〉

(48)

c
(4)
1,0 = −24 〈 ∂

∂x
f0L−10⊥f0L

−1
0⊥f0〉〈f0L

−1
0⊥f0〉 − 36 〈f0L−10⊥f0L

−1
0⊥f0〉

∂

∂x
〈f0L−10⊥f0〉

(49)

c
(4)
2,−1 = 24

(
〈f0L−20⊥f0〉〈f0L

−1
0⊥f0〉 − 〈f0L

−1
0⊥f0L

−1
0⊥f0L

−1
0⊥f0〉

)
.

(50)
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