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[1] We introduce a technique for assessing the diurnal development of convective
storm systems based on outgoing longwave radiation fields. Using the size distribution
of the storms measured from a series of images, we generate an array in the length
scale‐time domain based on the standard score statistic. It demonstrates succinctly the
size evolution of storms as well as the dissipation kinematics. It also provides evidence
related to the temperature evolution of the cloud tops. We apply this approach to a
test case comparing observations made by the Geostationary Earth Radiation Budget
instrument to output from the Met Office Unified Model run at two resolutions. The 12 km
resolution model produces peak convective activity on all length scales significantly earlier
in the day than shown by the observations and no evidence for storms growing in size.
The 4 km resolution model shows realistic timing and growth evolution, although the
dissipation mechanism still differs from the observed data.

Citation: Pearson, K. J., R. J. Hogan, R. P. Allan, G. M. S. Lister, and C. E. Holloway (2010), Evaluation of the model
representation of the evolution of convective systems using satellite observations of outgoing longwave radiation, J. Geophys.
Res., 115, D20206, doi:10.1029/2010JD014265.

1. Introduction

[2] Deep convection constitutes the fundamental building
block of tropical weather, producing cloud systems that
organize and interact on many spatial scales. These span the
range from individual convection cells, through clusters of
intense thunderstorms embedded in mesoscale systems and
disturbances such as African EasterlyWaves, to superclusters
related to global circulation patterns such as the Madden
Julian Oscillation [Leary and Houze, 1979; Machado et al.,
1993]. Similarly, a large range of temporal scales are
involved from the diurnal cycle through to interannual modes
of variability.
[3] The upscaling of energy from the smaller and high‐

frequency scales to the larger and low‐frequency regimes is
still poorly understood. The Cascade project (Woolnough,
manuscript in preparation, 2010) is designed to address this
topic by running high‐resolution cloud system resolving
models (1.5 km) over large domains (∼4000 km) using the
Met Office Unified Model (UM). The intention is to capture
both the small‐scale convection physics and large‐scale cir-

culation patterns in the same simulation. As one element, we
are examining the diurnal development of convective systems
over Africa andwe shall address this in detail in a forthcoming
paper. We present here a method developed to test the diurnal
cycle as represented in numerical models against observation.
[4] The fundamental starting point for representation of the

diurnal behavior of tropical convective systems is simply to
plot cloud fraction or some other suitable proxy variable as a
function of time of day. Such an approach, as in the early
study of satellite infrared measurements by Gruber [1976]
for example, rapidly reveals the tendency for peak activity
to occur in the early evening. Repeating this for multiple
locations which can be overplotted is then trivial and addi-
tionally begins to reveal spatial information. A more
sophisticated form of this idea, in the era of high‐resolution
satellite imagery, is to break a scene down to the pixel level
and separately Fourier analyze each in time as in Yang and
Slingo [2001]. These authors compared the results of a
simulation run using the UM with the Cloud Archive User
Service (CLAUS) data set [Hodges et al., 2000]. Their model
was run for a simulated year for all longitudes in the 30°S–
30°N latitude band with a resolution of 3.75° in longitude
and 2.5° in latitude. They conducted their comparative
analysis through two variables acting as proxies for con-
vective activity: window channel brightness temperature and
precipitation rate. At this resolution, these are likely detect-
ing mesoscale convective systems or larger aggregations. For
both variables, the phase of the diurnal Fourier components
indicated that the models produced peak convective activity
much earlier in the day than the observations.
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[5] A generalization of the Fourier approach that includes
spatial variability is principal component analysis with
empirically orthogonal functions as used by Murakami
[1980], Lau and Chan [1985], and Comer et al. [2007]
inter alia. This latter paper used data from the Geostation-
ary Earth Radiation Budget (GERB) instrument [Harries
et al., 2005] to study the diurnal cycle of outgoing long-
wave radiation (OLR). It showed that 95% of the variation
could be explained by the first two components and that the
development of cloudiness was strongly influenced by
orographic features.
[6] While such studies yield spatiotemporal information,

they do not relate directly to the evolutionary processes in a
system’s lifecycle. It is possible to tackle this using a
tracking method that allows individual storms to be fol-
lowed from image to image over time [e.g., Williams and
Houze, 1987; Futyan and Del Genio, 2007]. This enables
all the measurable parameters to be labeled with position
and time coordinates and plotted accordingly. While this
approach is now quite common, the implementation can be
time‐consuming and sensitive to the many parameters that
are required. In addition, to make sense of such information,
the data still need to be reaggregated in some form else we
are left with individual case studies of individual systems.
The method we set out here is fast and has essentially a
single parameter that rapidly produces a representation of
the evolution of storm systems.

2. Method

[7] The model data being tested was generated using the
nonhydrostatic UM version 7.1 in a configuration previously
used by Lean et al. [2008, 2009]. In summary, the model
solves the atmospheric dynamical equations using a semi‐
implicit, semi‐Lagrangian scheme on a rotated latitude‐
longitude grid [Davies et al., 2005; Cullen et al., 1997]. It
utilizes parameterizations to represent, inter alia, subsurface
and surface fluxes [Essery et al., 2001], boundary layer
turbulence [Lock et al., 2000], mixed‐phase microphysics
[Wilson and Ballard, 1999] with multiple hydrometeor
components and, in general, convection [Gregory and

Rowntree, 1990]. The model was run in a limited area
mode forced with constant sea surface temperatures and
initiated with analysis fields from the European Centre for
Medium‐Range Weather Forecasts. These fields were sub-
sequently updated only at the lateral boundaries.
[8] The observed data for comparison was provided by

GERB. This is a broadband radiometer on the Meteosat‐8 sat-
ellite producing data at a nadir resolution of 50 km. The sat-
ellite is positioned on the equator at 3.5°W providing a field of
view covering the whole of Africa and stretching to Northern
Europe, the Middle East and parts of South America. GERB
makes radiation measurements every 6 min enabling it to
follow the evolution of medium‐ to large‐scale weather sys-
tems. We made use of a hybrid product (NRT V003 ARCH)
that additionally includes information from the Spinning
Enhanced Visible and InfraRed Imager (SEVIRI), also on
Meteosat‐8, to produce high‐resolution OLR measurements
with approximately 10 km resolution. The product is described
in Dewitte et al. [2008] where it is termed “Standard High‐
Resolution Image (SHI)” and it has been used previously to
study the effect of Saharan dust on the atmospheric radiation
balance [Slingo et al., 2006].
[9] The test area covered West Africa and used 10 days

of model data running from 26 July to 4 August and
17 days of GERB observations from 22 July to 7 August
during 2006. The model was run at two resolutions: with 460
by 340 pixels of 0.11° and with 1110 by 776 pixels of
0.036°, corresponding to resolutions at the center of the
domain of 12 km and 4 km, respectively. The convection
scheme differed between the two models in that the 12 km
model scheme used a convectively available potential energy
closure method [Gregory and Rowntree, 1990], whereas the
4 km model used a version in which the mass flux at the
cloud base was limited. In practice, the 4 km resolution
model was tuned such that almost all of the convection was
represented explicitly rather than through parameterization.
This configuration leads to an improved representation of
larger storms at the expense of missing some weak showers
[Lean et al., 2008]. The 12 km model included two com-
ponents in the microphysics scheme (cloud liquid and frozen
water) and 38 vertical levels rather than three hydrometeor
components (additionally prognostic rain) and 70 vertical
levels in the 4 km model. The 12 km model was run with
a 300 s time step and the 4 km with a 60 s time step for
the first 5 days and a 30 s time step thereafter. In addition
to an improvement in the direct representation of atmo-
spheric processes, Hohenegger et al. [2009] showed how
moving to an explicit convection, cloud‐resolving model
resulted in a radical change to the behavior of land‐
atmosphere feedbacks.
[10] The GERB data were subsetted and regridded to

match the area and resolution of the 12 km model data
(approximately 5°S–35°N, 25°W–25°E). The 4 km model
was nested inside the 12 km model region and covered a
smaller area (approximately 0°N–30°N, 20°W–20°E). These
regions are shown in Figure 1. Both the model output and
the observed data products were generated at 15 min inter-
vals. As the models were driven only at the boundary by
analysis fields, we are not able to match individual observed
clouds to the model. Thus, comparisons with observation
rely on indirect statistical methods.

Figure 1. The West Africa test area covered by the 12 km
model and the subset of the GERB data with the nested
domain of the 4 km model.
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[11] Pixels were identified as cloud on the basis of being
below a threshold OLR flux (Fth). An alternative approach
would be to use SEVIRI window channel data for the
observations and apply a more sophisticated algorithm to
identify clouds which could then be compared to internally
flagged cloudy regions from the model. However, as we
intend to study the model representation of convection, we
prefer the approach that the burden should rest with the
numerical simulations to produce directly observable quan-
tities. These can then be processed in an identical way for
both observations and models. With the observations then
acting as “truth,” any differences must rest with some aspect
of the modeling. The alternative approach leaves open the
possibility that the cloud detection algorithm applied to the
observations is the source of the discrepancies.
[12] It is a common approach to identify cold cloud regions

with sites of deep convection. However, studies such as those
by Rickenbach [1999] and Rickenbach et al. [2008] indicate
that as propagating systems mature, the locations of cold
cloud can become separated from those of precipitation and
that these cloudy regions can continue to grow despite
becoming decoupled from the original convection cells. This
can complicate detailed interpretation of the convective
behavior. However, understanding the diurnal cycle of the
cloud cover itself is of direct relevance to studies of the
radiative processes and feedbacks that are important to both
weather and climate prediction. In particular, both the sign
and magnitude of cloud radiative forcing varies according to
the diurnal phase. During the day, the reflection of incoming
radiation by cloud tends to dominate over the tendency to trap
the OLR emitted by the surface that is the dominant effect at
night. Cloud feedbacks are the largest uncertainties in climate
sensitivity estimates [Randall et al., 2007].

[13] Mapes and Houze [1993] show the wide range of
blackbody temperatures (188–267 K) that could be used to
determine a cloudy region. Among these, Fu et al. [1990] use
temperature thresholds of 215 K for deep convective clouds
and 267 K for convective anvil cloud. Our fluxes are not
directly comparable, however, as they are broadband mea-
surements that include absorption features, in contrast to an
effective temperature based on narrow window channel mea-
surements. Fu et al. [1990] also quote a value of 240 W m−2

as an OLR threshold often used to diagnose deep convec-
tion. We use Fth = 150 W m−2 here initially which corre-
sponds to an effective broadband emission temperature (Tb,e)
of 227 K. The OLR flux distributions plotted in Figure 2
show that this conservatively restricts the sample to cold
cloud tops, minimizing any possible noncloud contamination.
While increasing this threshold increases the range of length
scales being sampled, it reduces the ability to identify the
coldest regions at small scales arising from deep convection.
Contiguous regions of pixels below Fth sharing an edge (i.e.,
not including diagonal adjacency) were then identified as
clusters using the intrinsic IDL routine label_region and the
area (A), based on the nominal equatorial resolution, and
length scale (L =

ffiffiffi
A

p
) calculated.

[14] To examine the character of the diurnal signal, the
cluster length scale distribution at each time (t) was nor-
malized by calculating the standard score statistic (Z) for the
number of systems (N) in each length scale bin

Z L; tð Þ ¼ N L; tð Þ � N Lð Þ
� Lð Þ ; ð1Þ

using the measured mean (N ) and measured standard devi-
ation (s) over time for each length scale bin separately.

Figure 2. The frequency distribution of OLR fluxes for the GERB data (solid), 12 kmmodel (dashed), and
4 kmmodel (dot‐dashed) at 27 July 2006::15:00. The 4 kmmodel values have been normalized to ensure the
same total number of pixels as the other two data sets. The mismatch between model and observations in the
“Desert” regionmost likely results from the lack ofmineral dust aerosols in themodel [Haywood et al., 2005].

PEARSON ET AL.: EVALUATION OF CONVECTION MODELING D20206D20206

3 of 11



Taking the Fourier transform of this array in the time
direction confirms the presence of a dominant signal on a
period of 1 day. Accordingly, while calculations were car-
ried out on the full field, the plotted results are folded on the
daily cycle (i.e., diurnally composited).

3. Discussion

[15] Equation (1) measures the deviation from the mean
number of storms at each size in multiples of the measured
standard deviation for that size bin. As such, it is essentially
“self‐normalized” by the data set and makes no assumption
about any underlying spatiotemporal distribution of the data.
The values generated from equation (1) for the GERB data
are shown in the gray scale image in Figure 3. The length
scale bins in this and subsequent figures are logarithmic
with edge values given by Li = 22+i/4 km.
[16] In the following analysis, we proceed on the basis

that the data is composed of two dominant components.
Fundamentally, we assume that there is an underlying ran-
dom distribution for the number of clouds in each scene
which, being essentially counting statistics, is Poisson. We
also assume that there is an additional diurnal signal that
results in no net increase in the number of storms when
averaged over the daily cycle but has a potentially large
variance.
[17] In order to find regimes where the diurnal forcing is

having an impact on the number of systems, the significance
of each measured value of N(L,t) can be calculated from a
Poisson distribution with the appropriate mean N (L) for
each length scale bin. The contours for several probability
levels are overplotted on Figure 3. These contours indicate

the size regimes and time of day where there is significant
evidence for the effect of a nonrandom signal in addition to
the underlying Poisson distribution. We should note in
passing that, in a situation with large N and a weak diurnal
signal, the Poisson distribution could be approximated as
Gaussian with s =

ffiffiffiffi
N

p
and the probability calculation

would reduce to a simpler case based directly on Z.
[18] The images formed from equation (1) for the three

data sets are plotted alongside each other in Figure 4. This
figure provides an elegant tool to compare and contrast the
diurnal behavior of convection in the different data sets.
Similar to the way that a Hovmöller plot demonstrates the
trajectory of some anomaly against a position coordinate,
these plots represent the evolution in length scale space. The
bright areas show, for each data set, the times when there are
more storm systems than average at each length scale. The
GERB data show a broad upward stripe beginning shortly
after midday, fitting with the paradigm of small convective
systems forming, growing, and merging during the day. In
contrast, the 12 km model data exhibit a flat response across
all length scales: showing that storm systems of all sizes
switch on and off together. There is a tendency for param-
eterized schemes to generate deep convection rapidly,
shortly after sunrise [Guichard et al., 2004; Grabowski et al.,
2006] rather than generating steadily deepening convection
cells. The parameterized convection scheme also triggers
convection independently in grid cells. As a result, cold
cloud tops are generated very early in the day with an initial
cluster size distribution reflecting the similarity or otherwise
of the conditions in adjacent grid cells.
[19] The 4 km model bears much closer comparison to the

observations with a progression in the excess number of

Figure 3. Normalized time series of cloud cluster size distributions Z(L,t) observed by GERB with Fth =
150 W m−2. The data have been folded on a period of 1 day and repeated for clarity. Overplotted are the
probability contours p = 0.01, 0.1, 0.9, 0.99 for the observed number of systems or fewer to occur ran-
domly from a Poisson distribution with the observed mean number for each length scale. The probability
field has been smoothed in the time direction by a 1 h running mean.
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systems from medium to large length scales at a similar rate
to the observations. An intriguing additional feature, how-
ever, is that the peak for smaller systems occurs early in the
morning. From animations of the OLR this appears to cor-
respond to the way that the large systems in the model tend
to “shatter” overnight into many small systems rather than
the more organic “dissolving” behavior exhibited by the
GERB data. Two series of snapshots illustrating this for the
4 km model and GERB data are shown in Figures 5 and 6,
respectively.
[20] The improvement in the representation of convection

with resolution is consistent with the results ofGuichard et al.
[2004] who compared the behavior of seven single column
models (SCM) with parameterized convection to that of three
cloud resolving models (CRM) with horizontal resolutions of
2 km or better. The SCMs generally showed precipitation
beginning early in the day and continuing until evening. In
contrast, the CRMs produced precipitation strongly peaked in
the late afternoon and early evening. While our 4 km model
has too coarse a resolution to be truly cloud resolving and still
includes convective parameterization, it generates less than
1% of the total rainfall through this scheme. In contrast, 94%
of the rainfall is generated by the convection scheme in the
12 km model.
[21] As a test of our understanding, we can apply a

Fourier analysis as described earlier to the data. In this case,
we calculate the Fast Fourier Transform of Z(L,t) in the time
direction and examine the phase (�(L)) of the coefficient
corresponding to the diurnal signal. This phase is plotted
against length scale in Figure 7 for the three data sets. The
diagram confirms the principal interpretation of Figure 4
given above, with the 12 km model response flat across

all length scales and earlier in the day than the observations,
and the 4 km model results diverging from the observations
at short length scales. The apparent precision of this type of
plot makes it appealing to use as the primary analysis tool
rather than the underlying image of Z(L,t). However, in
situations with only slightly greater complexity, �(L) can
begin to vary significantly and loses its utility. In contrast,
plots of Z(L,t) retain the subtlety of the evolutionary
behavior and remain useful.
[22] An equivalent diagram to Figure 4 is plotted in

Figure 8 but now using Fth = 210 W m−2 (Tb,e = 247 K). At
this level, the clusters are additionally sampling significantly
lower, warmer clouds. Both models show the same behavior
as at the lower threshold flux level. In contrast, the GERB
panel is now remarkably different, exhibiting a clear semi-
diurnal signal. The previous late afternoon evolution appears
to have been retained, if less distinctly, at all length scales.
However, there is now an additional peak number of systems
occurring at the same early morning time as in the 4 km
model for small‐ and medium‐scale systems. This covers a
larger range of length scales than the 4 km model but there is
no slope apparent that might suggest a progression from
larger to smaller systems mirroring the earlier growth for the
cold systems. Instead, the large cold systems that have been
generated during the day appear to break up as warmer
systems with a spectrum of sizes in the early morning. The
consistency of the behavior of the 4 km model at both flux
thresholds suggests that there we are seeing growth of cold
systems during the day toward large scales that appear to
suddenly break up into small fragments of equally cold
clouds.

Figure 4. Normalized time series of cloud cluster size distributions Z(L,t) observed by GERB and pro-
duced by the two model runs with a threshold flux for cloud detection of 150 W m−2. The data have been
folded on a period of 1 day and repeated. The gray scale for each frame has been set independently to
ensure each utilizes the entire contrast range.
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[23] Several authors have reported semidiurnal cycles in
total cloudiness and precipitation in the tropics [e.g., Gruber,
1976; Augustine, 1984; Liu and Zipser, 2008]. Almost
invariably, these occur over the ocean. Minnis and Harrison
[1984] do report two maxima in the diurnal behavior of
cloudiness over parts of South America but they attribute this
to the peculiar local interaction of the coastline and moun-
tainous terrain. In direct contrast, versions of Figure 8 gen-
erated separately for each quarter of the GERB domain show
a clear double peaked behavior arising from the NE quadrant
(that is almost exclusively land) but no apparent signal from
the SW quadrant (containing a substantial fraction of ocean).
This result is consistent, however, with Allan et al. [2007]
who examined the cloud masks derived from SEVIRI data
for equatorial Africa (7°E–45°E,10°S–10°N) during July
2006. They showed that, while the convective cloud fraction
exhibited a single‐peaked diurnal signal, the total cloud
fraction that also included warmer clouds had two peaks at
3 and 12 UTC.
[24] The underlying distributions of the two statistics (N , s)

used to generate Figures 4 and 8 themselves yield useful
information about the relative behavior of modeled and
observed systems. The mean size distributions plotted in
Figure 9 appear to follow a power law of the form N = N0L

−G

over a large range of length scales found by several other

studies [e.g., Machado et al., 1992]. Zhao and Di Girolamo
[2007] highlight the difficulties involved with comparing
parameters derived from fitting to such a form from different
data sets due to variations such as scene selection and cloud
detection criteria, regional peculiarities, the overall meteo-
rological state, and the details of the fitting procedures
themselves. Nonetheless, having produced three data sets in a
consistent way from the same physical quantity, we can be
confident, at least, of being able use this as a fair test of our
models against the GERB data.
[25] The derivation of values for the parameters N0 and G

requires a weighted fit to the data which in turn requires an
estimate for the standard error (s

N
) on each data point. The

plotted error bars represent the measured standard deviation
s of each bin. However, the significant variability evinced
by the size of these error bars is due largely to the systematic
diurnal cycle signal superimposed on to the random vari-
ability. To make progress we must appeal to our assumption
that the diurnal signal averages to zero and that the mean
size distribution is thus subject solely to an underlying
intrinsic Poisson noise with s =

ffiffiffiffi
N

p
. We would then nor-

mally proceed by calculating the standard error on the mean
in each bin from the population variance sN

2 = s2/nf = N /nf
where nf is the total number of image frames in the data set.
However, given that systems can persist for many hours, it is

Figure 5. Snapshots of pixels in the 4 km model data falling below Fth = 150 W m−2 two hourly illus-
trating the overnight breakup of a large system into many smaller fragments. The data were rebinned to
12 km resolution.
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not valid to assume that each image is an independent trial.
Using a mean lifetime for a convective storm system (tc) and
interval between images (Dt), we have instead effectively
nfDt/tc independent trials. The standard error on the mean
number of systems in each length scale bin we adopt is thus
sN =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ntc=nfDt

p
. In order to place conservative error esti-

mates on the fitted parameters, we use a long tc = 6 h. This
results in 40 “trials” over the course of the 10 days of model
data. It is therefore reasonable to appeal to the central limit
theorem and assume that the distribution of mean values has
a Gaussian distribution. Values derived from a nonlinear
least squares fit to the data sets are listed in Table 1. The
fitted region was restricted to 30 km < L < 200 km to avoid
apparent breaks in the power law. The reduced c2 values
are all agreeably <1, consistent with our conservative error
assumptions.
[26] At the lower threshold, the fitted power law index (G)

is much smaller for the observed data than for the model.
This is apparent in Figure 9 with the slope of the GERB data
clearly differing from the models. The two model distribu-
tions appear to have similar slopes. However, the derived
error estimates for G from the models indicate that they are
formally inconsistent with each other. Although the 4 km
model does represent an improvement in G, it consistently

overpredicts the amount of cloud at all length scales. The
model values change little between the two thresholds.
However, the observed value of G is much larger at the
higher flux threshold, now falling between the two model
values and in agreement with them both at around the 2s
level.
[27] The above remarks concerning the difficulties of

intercomparison notwithstanding, Zhao and Di Girolamo
[2007] present values for G ranging from 1.19 to 2.18 for
cumulus cloud in the size range of interest [Cahalan and
Joseph, 1989; Sengupta et al., 1990; Benner and Curry,
1998]. These arise from high‐resolution observational studies
(∼50 m) with similar numbers of pixels to ours but conse-
quently much smaller domains. Machado et al. [1992] use
Meteosat data with a similar resolution and covering a sim-
ilar region to ours, finding G = 1.3 for their warm detection
threshold (TIR = 253 K) and G = 0.8 for TIR = 218 K. In all
these cases, we have accounted for the authors’ use of the
number density and our logarithmic binning by subtracting 1
from the quoted values.
[28] As we move to longer length scales, the diurnal

signal in Figure 4 becomes less distinct. Figure 10 shows the
measured s2/N plotted against L for the three data sets using
Fth = 150 W m−2. Since the main source of variability is the

Figure 6. Snapshots of pixels in the GERB data falling below Fth = 150 W m−2 two hourly illustrating
the overnight weakening of large‐scale systems. The data cover the same area and similar time period to
Figure 5.
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diurnal signal, this plot essentially measures the strength of
that signal against length scale. All three data sets asymptote
to s2 ≈ N that one would expect for pure Poisson noise,
supporting our earlier assumption regarding the underlying

distribution. However, both models inject a greater signal
than apparent in the observations at length scales ≲100 km,
although the 4 km model does represent an improvement.
The 12 km model generates a large number of single pixel

Figure 7. The phase of the maximum of the diurnal component derived from the Fourier transform of
the cloud cluster size distribution time series. Each data set is plotted with a different style: GERB (dia-
monds, solid line), 12 km model (triangle, dashed line), and 4 km model (square, dot‐dashed line).

Figure 8. Normalized time series of cloud cluster size distributions Z(L,t) observed by GERB and pro-
duced by the two model runs with a threshold flux for cloud detection of 210 W m−2. The data have been
folded on a period of 1 day and repeated. The gray scale for each frame has been set independently to
ensure each utilizes the entire contrast range.
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storms with a strong diurnal variability that runs off of the
scale in Figure 10.

4. Summary

[29] A technique for assessing the diurnal development of
convective storm systems has been presented based on
comparisons of OLR simulated by high‐resolution versions
of the Met Office UM and observed by GERB. Applying an
OLR thresholding technique to define the distribution of
convective systems, a direct representation of the aggregated
evolutionary behavior of convective storms can be gener-
ated by considering anomalies in the size distribution
through the standard score statistic. The values in the length
scale‐time domain reveal the time of peak activity for storms
of different sizes from which the growth and dissipation
behavior can be inferred. Greater precision and insight can
be gained by using the underlying statistics of the dis-
tributions to define how data sets differ in the way they
exhibit convection. The 12 km model test case produced
convection significantly earlier in the day than observed and

showed no evidence for size growth. In contrast, the 4 km
model produced realistic evolution at medium to large scales
but the small‐scale behavior was dominated by the large
number of systems suddenly produced when the storms
broke up overnight rather than the gentler dissipation in the
observed data. Both models generated a greater variability in
the number of storms of all sizes.
[30] Now that we can diagnose the realism or otherwise of

a model’s evolutionary behavior, we can begin to probe the
mechanisms that cause this. Is the crucial process mesoscale
circulation such as downdrafts and subsequent cold pools
propagating as density currents and organizing convection?
How do the clouds “communicate” with each other? Is it
through direct tendencies or the large‐scale environment?
What is the balance between the growth of individual sys-
tems and mergers? We also intend to investigate the rela-
tionship between the African Easterly Wave present in the
domain and the growth behavior, the representation of ini-
tiation in different regions in the domain and the structure of
the mature systems.

Figure 9. Mean number of clouds identified in each 15 min image for GERB (diamond, solid line), 12 km
model (triangle, dashed line), and 4 km model (square, dot‐dashed line) data using Fth = 150 W m−2. The
length scale bins are arranged logarithmically with edge values given by Li = 22+i/4 km. The error bars indi-
cate the standard deviation measured for each data set and are displaced slightly for the model data sets for
clarity.

Table 1. The Derived Parameters for the Best Fit Power Laws of the Form N = N0L
−G to the Mean Size Distribution of Cloud Clusters

for Two Values of Fth
a

Data Set

150 W m−2 210 W m−2

N0 G c2
/n N0 G c2

/n

GERB 189 ± 30 0.931 ± 0.038 0.17 2590.9 ± 1.1 1.40482 ± 0.00011 0.44
4 km model (rebinned) 2240 ± 310 1.304 ± 0.034 0.50 2880 ± 390 1.352 ± 0.033 0.36
4 km model (full resolution) 2960 ± 400 1.360 ± 0.033 0.35 3450 ± 470 1.392 ± 0.033 0.34
12 km model 3140 ± 690 1.633 ± 0.055 0.27 2290 ± 490 1.517 ± 0.053 0.29

aThe fitted region was restricted to 30 km < L < 200 km to avoid apparent breaks in the power law. The value of N0 for the 4 km model was corrected to
account for the smaller area it covered.
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