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Abstract Ethanol is among the largest fermentation product used worldwide, accounting for
more than90%of all biofuel produced in the last decade.However current productionmethods
of ethanol are unable to meet the requirements of increasing global demand, because of low
yields on glucose sources. In this work, we present an in silico multi-objective optimization
and analyses of eight genome-scale metabolic networks for the overproduction of ethanol
within the engineered cell. We introduce MOME (multi-objective metabolic engineering)
algorithm, that models both gene knockouts and enzymes up and down regulation using
the Redirector framework. In a multi-step approach, MOME tackles the multi-objective
optimization of biomass and ethanol production in the engineered strain; and performs genetic
design and clustering analyses on the optimization results. We find in silico E. coli Pareto
optimal strains with a knockout cost of 14 characterized by an ethanol production up to
19.74mmol gDW−1 h−1 (+ 832.88% with respect to wild-type) and biomass production
of 0.02 h−1 (− 98.06%). The analyses on E. coli highlighted a single knockout strategy
producing 16.49mmol gDW−1 h−1 (+ 679.29%) ethanol, with biomass equals to 0.23 h−1

(− 77.45%).We also discuss results obtained by applyingMOME to metabolic models of: (i)
S. aureus; (ii) S. enterica; (iii) Y. pestis; (iv) S. cerevisiae; (v) C. reinhardtii; (vi) Y. lipolytica.
We finally present a set of simulations in which constrains over essential genes and minimum
allowable biomass were included. A bound over the maximum allowable biomass was also
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added, alongwith other settings representing richmedia compositions. In the same conditions
the maximum improvement in ethanol production is + 195.24%.

Keywords Metabolic pathways · Pareto optimality · Genome-scale metabolic models ·
Multi-objective optimization · Global optimization · Ethanol production · E. coli ·
S. cerevisiae · Pareto front · Global sensitivity analysis · Enzymes up- and down-regulation

1 Introduction

About 15 billions of gallons of ethanol fuel were produced in the US in 2016 (World Fuel
Ethanol 2017), that is half a billion more than in 2015; with more than 90% of all biofuels in
the last decade being based on ethanol (Farrell et al. 2006; Balat and Balat 2009). However
current ethanol production methods are unable to meet the increasing global demand of bio-
ethanol production due to their low yield on feedstock whose primary value is of food and
feed (Gupta and Verma 2015).

In this work, we investigate the problem associated to the overproduction of ethanol in
metabolic engineered organisms. By building upon recent achievements of in silico driven
engineering of bacteria strains (Patane et al. 2015; Rockwell et al. 2013; Yim et al. 2011), we
perform extensive in silico optimization (Castrogiovanni et al. 2007) and analyses of eight
different microorganisms for the production of ethanol as output of the metabolic network of
the engineered cell. In fact, the attention given to optimization algorithms for the design of
microbial strains overproducing metabolites of interest has drastically increased in the last
few years (Long et al. 2015). The number of recent successes in the field of synthetic biology
(Church and Regis 2014) seems indeed to shake off all but little doubt that in the near future
the latter will be standard practice in the production of therapeutic drugs (Church et al. 2014),
renewable bio-materials (Yim et al. 2011) and biofuels (Lee et al. 2008; Bro et al. 2006).
However, the intrinsic complexity of biological systems and organisms makes of paramount
importance the design of mathematical and computational approaches to fully exploit the
potential of this discipline (Andrianantoandro et al. 2006). We rely on steady-state genome-
scale metabolic models, such as flux balance analysis (FBA) (Kauffman et al. 2003; Palsson
2015), as it has proven to be a computational efficient and reliable modelling approach for
systematic in silico analysis ofmany organisms (Yim et al. 2011), further allowing for straight
forward implementation of -omics data sets information into the models.

Briefly, a metabolic network includes: (i) metabolic and biophysical processes occurring
in the cell; (ii) chemical reactions; (iii) metabolic pathways; (iv) regulatory interactions; and
models the overall biochemical metabolic properties of a cell. Mathematically, metabolic
networks are modelled as flow graphs, in which metabolites (represented as graph vertices)
flow through the network reactions (that is the graph edges). In particular, in FBAmodelling,
viable fluxes trough the metabolic network are first determined by solving constraints asso-
ciated to mass-conservation within the cell, then the predicted flux through the network is
obtained by maximizing a particular biological objective, e.g. biomass, or growth rate (Orth
et al. 2010). In a bi-level optimization in silico framework, a meta-optimization algorithm
seeks for the genetic manipulation which, applied to the metabolic network model, results in
the overproduction of one or more metabolites of interest (ethanol in the case study presented
in this paper).

Building upon (Patané et al. 2016), we design a multi-objective optimization algorithm
tailored for the analysis of metabolic networks, and apply the latter to the problem associated
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with the overproduction of ethanol in FBA models of: (i) S. aureus; (ii) S. enterica; (iii)
Y. pestis; (iv) S. cerevisiae; (v) C. reinhardtii; (vi) Y. lipolytica. Exploring the Pareto opti-
mal trade-off between the production rate of ethanol and the modelled organism biological
objective, we identify sets of key genetic manipulations, which lead to strains overproducing
ethanol yet with sensible growth as predicted by the FBA model. Results include strains
with percentage variation of ethanol production of+ 832.88% with respect to wild-type pro-
duction rate, as well as many other Pareto optimal strains, having reduced knock-out cost
and increased biomass production, potentially allowing for a sustained industrial process.
We propose then unsupervised clustering as a powerful technique to map the relationship
between phenotype and genotype, aiding the post-processing task by finding patterns on
knocked-out genes among Pareto optimal trade-off strains.

Finally, a set of further analysis were performed, in which information on the essential
genes and others constraints on the growth rate and the external simulated rich media were
added, to better simulate a realistic scenario. In the samemediumused in the other simulations,
the maximum increase in the ethanol production is + 195.24%.

In silico analysis of FBA models for metabolites overproduction was firstly modelled
by directly manipulating the upper and lower bounds on the reaction fluxes (Pharkya and
Maranas 2006). The approach was further improved to account for improved modelling of
genetic manipulations, e.g. using of genetic knockouts (Burgard et al. 2003); or modelling
enzymes up/down-regulation (Rockwell et al. 2013).

Heuristic optimization techniques have been extensively applied for in silico optimization
problem associated to synthetic biology in the last two decades. Example specific to the
field of metabolic engineering are: genetic design through local search (GDLS) (Lun et al.
2009) in which the MILP is iteratively solved in small region of the design space; enhancing
metabolism with iterative linear optimization (EMILiO) (Yang et al. 2011), that use a suc-
cessive linear programming approach in order to solve efficiently a MILP obtained through
the Karush–Kuhn–Tucker method. A recent survey of the state-of-the-art is given in Long
et al. 2015.

The remainder of this paper is organized as follows. In Sect. 2, we review the main
notions of flux balance analysis, and briefly describe how it can be applied to compute in
silico prediction of the effect that genetic knockouts have on genome-scale models. We then
describe the concept of Pareto optimality and the main ideas underlying our multi-objective
optimization approach along with its extension in Sect. 3. In Sect. 4 we report the results
regarding the overproduction of ethanol in genome-scale models for the seven organisms we
consider. Finally, we conclude the paper and give final remarks in Sect. 5.

2 Genome-scale metabolic models

In this section we introduce FBA models, and modelling approach for in silico genetic
manipulations that will be the used in the remainder of the paper.

Briefly FBA is a steady-state model that relies on the mass conservation assumption. Let
S = (

si j
)
be them×n stoichiometric matrix associated with the metabolism of an organism,

where m is the number of metabolites and n is the number of reactions which build up the
organism metabolism, i.e. si j is the stoichiometric coefficient of the i th metabolite in the
j th reaction. Let v = (v1, . . . , vn) be the vector of metabolic fluxes trough the n reaction
of the network, then, the linear system Sv = 0, express the mass conservation and steady
state assumptions (Orth et al. 2010). The solution space of the above linear system defines
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the network capabilities vector space; that is the subset of v allowed from a strictly physical
point of view. Of course, we cannot expect that stoichiometric information can account for the
global behaviour of a cell. This is mathematically reflected by the condition m � n which
usually leads to a high dimensional network capabilities space. Biological information is
summarized into an n dimensional objective coefficient vector f experimentally tuned for
modelling each specific organism, which represents the biological objective of the organism
as a weighted sum of specific reactions included in the model. Although several alternatives
are possible, the most used biological objective is the cell biomass production. By using FBA
modelling the steady-state metabolic behaviours of the cell is hence retrieved by solving the
linear programming problem

maximize f T v

subject to Sv = 0
v− ≤ v ≤ v+

(1)

where v− and v+ are lower and upper bounds vector on the fluxes, whose actual values are
based on empirical observations.

Gene knock-out analysisGene knock-out (KO) analysis trough FBAmodels refer to analysing
how knock-out of specific genes affects the production of specific metabolites in the cell.
Mathematically, this is accomplished by introducing the Gene-protein-reaction (GPR) map-
ping (Palsson 2015). Briefly, the organism genes are grouped into gene sets, i.e. group of
genes linked by Boolean relations accordingly to common reactions that their associated pro-
teins catalyse. For example, a gene set of the form G1 and G2 implies that both G1 and G2

are needed for a particular reaction to be catalysed (i.e. they represent an enzymatic complex),
whereas a gene set of the formG1 orG2 implies that at least one amongG1 andG2 is needed
for that particular reaction to be catalysed (i.e. G1 and G2 code for isoenzymes). The GPR
hence relates sets of reactions to sets of genes, which code for proteins catalysing for the for-
mer sets. Namely this is introduced in the FBAmodel trough amatrixG = (

gl j
)
, where gl j is

equal to 1 if and only if the lth gene set is related to the jth reaction; gl j is equal to 0 otherwise.
This allow us to perform in silico analysis of the effect of genetic knock-outs/knock-ins to
the cell metabolism by simple manipulation of the FBA model implemented as additional
linear constraints. Namely, the knockout of the lth gene set is modelled by constraining to a
zero flux all the reactions j such that gl j is equal to 1.

Finally, gene set knock-out Cost (KC) (Palsson 2015) is recursively defined over the form
of the gene set. Briefly, if a gene set is composed by two smaller gene sets related by an “and”,
then the KC of the composite gene set is the smallest KC of the two gene sets that compose it
(knocking out either one these twowill knock-out the enzymatic complex). If whereas the two
smaller gene set are linked by means of an “or” then the KC of the gene set is the sum of the
KCs of the smaller gene sets (since they are isoenzymes we need to knock-out both of them).

In the last simulation, where information on the single essential genes were added, we
switched to a single gene KO approach. This required a simple further step in which from a
binary vector expressing the presence of the single genes, the gene set Boolean expression
were actually evaluated, to obtain their value.

Enzyme regulation analysis In enzyme regulation analysis, genetic manipulations are mod-
elled as soft up or down regulation of specific enzymes included in the cell (Rockwell
et al. 2013). In particular, the Redirector framework introduces a more biologically rele-
vant approach for the simulation of metabolic alteration in a FBA model. Briefly (refer to
(Rockwell et al. 2013) for a throughout-fully discussion about the methodology and exper-
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imental validation) the regulation of an enzyme is modelled adding all the reaction fluxes,
related to that specific enzyme, to the biological objective of the FBA model. That is, up
(respectively down) regulation is modelled by incentivizing (disincentivizing) the cell to
perform reactions, which are catalysed by specific enzymes. In fact, fluxes added to the bio-
logical objective function are multiplied by a scalar weight, β; a positive β stands for enzyme
up-regulation, whereas a negative β models the down-regulation of that particular enzyme.

3 Multi-objective optimization and analysis

In this section,we review the basic principle ofmetabolic design throughbioCAD tool (Patane
et al. 2015) extending it with a novel approach for the analysis of the relations between the
genotype and the phenotype spaces of metabolic networks.
Multi-objective optimization MOME is built on the concept of Pareto optimality, in which
the ordering relationship among real values is extended along each coordinate direction.
Intuitively, Pareto optimality comes into play when for a particular design problem, it is of
interest to optimize several objective functions, which are in contrast with each other. For
example, there usually exists a trade-off (Conca et al. 2009) between the growth rate of a
bacterium and the production rate of a particular metabolite. In fact, in order to increase the
production of the latter the bacterium has to redirect its resources from the pathways involved
into growth to the pathways involved into the production of the metabolite. Pareto optimality
allows a rigorous analysis of the trade-offs among these two production rates.

Formally, we define a strict ordering relationship ≺ for each x, y ∈ R
k : x ≺ y ⇐⇒

xi ≤ yi i = 1, . . . , k and ∃ j s.t. x j < y j , that is, if each component of x is less than
or equal to its corresponding component of y, and at least one x component is strictly less
than y component. Then, given a generic multi-optimization problemwith objective function
F an input vector x is said to dominate y with respect to F if F(x) ≺ F(y). Finally, the
Pareto-front is defined as the set of input vectors x such that there are no input vectors y that
dominates x (Deb 2001). The goal of a multi-objective optimization algorithm is thus to find
(or approximate) the Pareto front of the problem.

Analogously, a high standard deviation returned for a specific parameter indicates that
either the latter is interacting with other design parameters or that it has strongly nonlinear
effects on the model output.

MOME algorithm The multi-objective metabolic engineering - MOME optimization algo-
rithm builds upon NSGA-II algorithm as for the optimization engine (Deb et al. 2012). As
for being inspired by evolutionary algorithms (Deb 2001), the latter works by sampling from
the optimization problem input domain an initial set of candidate solution to the optimiza-
tion problem, i.e. a population, and it iteratively attempts to optimize the problem objective
function, by applying to the population a set of evolutionary operators (Deb 2001).

The pseudo-code ofMOME in listed in Algorithm 1. The parameters of the algorithm are:
(i) pop, the size of the population; (ii) maxGen, the maximum number of generations (i.e.
iterations of the algorithm main loop) to be performed; (iii) dup, the strength of the cloning
operator (Ciccazzo et al. 2008); and (iv) uKC, the maximum knock-out cost allowed to be
taken into account by the algorithm.

The initial population, P(0), is randomly initialized by the routine InitPop, which just
randomly sample the domain of the problem, by randomly applying few mutations to the
wild type strain. We hence apply FBA to each strain in P(0), and, accordingly to the value of
the production rates ofmetabolite of interest,we compute rank and crowdingdistance for each
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Algorithm 1MOME Optimization Algorithm
procedure MOME(pop,maxGen,dup, uKC)

P(0) ← InitPop(pop)
FBA(P(0))
Rank_and_crowding_distance(P(0))
gen ← 0
while gen < maxGen do

Pool(gen) ← Selection(P(gen),
[ pop

2
]
)

Q(gen)
dup ← GenOffspring(Pool(gen), dup)

Q(gen)
dup ← Force_to_feasible(Q(gen), uKC)

FBA(Q(gen)
dup )

Rank_and_crowding_distance(Q(gen)
dup )

(Q(gen)) ← BestOutOfDup(Q(gen)
dup , dup)

P(gen+1) ← Best (P(gen) ∪ Q(gen), pop)
gen ← gen + 1

return
(⋃

gen P(gen)
)

member of the population (Deb et al. 2012). The former ensures the Pareto-orientation of our
procedure, redirecting the search towards the problem Pareto front. The crowding distance
whereas is a rough estimation of the population density near each candidate solution. During
the optimization main loop, candidate solutions in unexplored regions of the objective space
(thus having small values of crowding distance) are preferred to those which lie in “crowded”
regions of the objective space. This has the purpose of obtaining good approximations of
the actual Pareto front of the problem. We then initialize the generation counter, and enter
the main loop, which is performed maxGen times. At the beginning of each generation the
Selection procedure generate a mating pool Pool(gen), by selecting individual from the
current population P(gen). This is done following a binary tournament selection approach.
Namely, tournaments are performed until there are [pop/2] individuals (parents) in the
mating pool. Each tournament consists of randomly choosing two individuals from P(gen),
and putting the best of the two individuals (in terms of rank and crowding distance) into
Pool(gen).Children individuals are thus generated from the parents by using binarymutation.
Namelywe randomlygeneratedup different children fromeachparent, generating theQ(gen)

dup .
Then, we keep only the best solution of these dup children for each parent, hence defining
the actual offspring set Q(gen). The reason for this lies in the fact that many of the mutations
allowed in an FBA model are lethal mutations, i.e. they severely compromise the bacteria
growth. Of course, a greater value for dup implies that feasible mutations are more likely to
be found, whereas smaller values reduce the computational burden of the optimization. In
order to achieve this, we firstly ensure that each individual of Q(gen)

dup is feasible with respect
to our optimization problem (i.e. it has less than uKC knock-outs). Namely if a child is not
in the allowed region, we randomly knock-in genes, until it is forced back to the feasible
region. We hence evaluate the biomass and metabolites production of each new individual,
and the algorithm computes new values of rank and crowding distance, for each individual.
Procedure BestOutOfDup select from each of the dup children of each parent the best one and
put it in the Q(gen) set. Finally, procedure Best generates a new population of pop individuals,
considering the current best individuals and children. Output of the optimization algorithm is
the union of the populations of all the generations. We then analyse the optimization results
by means of Pareto analysis, hence computing the observed Pareto fronts, i.e. the set of
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⋃
gen P(gen) elements which are not dominated by any other element in

⋃
gen P(gen) (notice

that
⋃

gen P(gen) covers only a portion of the feasible region, hence we talk about observed
Pareto optimality).

Clustering Solutions when represented using, for instance, the production of a metabolite
and biomass production tend to form clusters. These highlight the feasible zones of the space
of solutions, assuming that an exhaustive search has been performed. Performing clustering
on such solutions allows to study the characteristics of the strains that belong to a cluster and
potentially identify similarities. There are several clustering techniques, however we suggest
that in this context density-based clustering seems to be the preferable to centroid-based
or probabilistic techniques such as k-means and expectation maximization, since clusters
generally tend to have irregular shapes.

Briefly, DBSCAN distinguishes three different types of points: core, border and outliers.
Core points are those points with at least k points within a distance epsilon, such points are
directly reachable from the core point. a point that is not a core point is a border point if its
distance from a core point is less than or equal to ε; those points that do not satisfy these
conditions are outliers. A cluster is defined by a set of interconnected core points (forming
paths of directly reachable core points) and the border points that are connected to them.

If not otherwise specified, we set the parameters of the algorithm have been set as follows:
k = 4 and ε = 0.06 and the data was normalized before being clustered.

4 Ethanol production

We analyse the results obtained byMOME when applied to the problem associated to over-
production of ethanol in seven different organisms, as modelled by FBA. First, we focus on
gene KO analysis and discuss extensive comparisons we performed on seven different mod-
els. Then we compare the results of using genetic KO with those obtained using enzymes
up/down regulation, using the Redirector modelling framework in the specific case of S.
cerevisiae.

Gene KO optimization for ethanol production In this section, we present the results for the
optimization of ethanol in Escherichia coli k12 mg1655 FBA model iJO1366 (Orth et al.
2011). Further we compare E. coli results with those obtained using other 7 other organisms;
that is, (i) Staphylococcus aureus subsp. aureus N315 – S. aureus (model used: iSB619 (King
et al. 2016; Becker and Palsson 2005), 655 metabolites, 743 reactions and 619 genes); (ii)
Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 – S. enterica (STM_v1_0
(King et al. 2016; Thiele 2011), 1802 metabolites , 2545 reactions and 1271 genes); (iii)
Yersinia pestis CO92 – Y. pestis (iPC815 (King et al. 2016; Charusanti et al. 2011), 1552
metabolites, 1961 reactions, 815 genes); (iv) Saccharomyces cerevisiae S288C – S. cerevisiae
(Yeast 7.6 (Aung et al. 2013), 2302 reactions, 909 genes); (v) Chlamydomonas reinhardtii
– C. reinhardtii (iRC1080 (King et al. 2016; Chang et al. 2011), 1706 metabolites, 2191
reactions, 1086 genes); (vi) Yarrowia lipolytica – Y. lipolytica (iYL619 (King et al. 2016; Pan
and Hua 2012), 843 metabolites, 1,142 reactions, 619 genes). Unless otherwise specified we
set 50 as the maximum knock-out cost for each strain.

Figure 1a shows the projection on the codomain space of the feasible region explored
by MOME framework and observed Pareto front for the E. coli optimization, and Table 1
shows the 10 best trade-offs found (as for values closer to theoretical maximum production).
Highest production rate for ethanol found is 19.74mmol gDW−1 h−1 which is a + 832.88%
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Fig. 1 Results for optimization of ethanol production and biomass formation in E. coli, anaerobic condition,
glucose uptake rate 10mmol gDW−1 h−1. a Pareto front (in red) and feasible strain (in black). b Clustering
results for the projection of the observed Pareto front. (Color figure online)

Table 1 Maximization of ethanol and biomass production for E. coli

Strain Ethanol (mmol gDW−1 h−1) Biomass (h−1) Knock-out cost

Wild type 2.11603 1.0334 0

S1 16.491892 0.2331 1

S2 18.116785 0.13082 5

S3 18.798875 0.07981 6

S4 19.72478 0.020068 6

S5 19.724782 0.020068 7

S6 18.949056 0.069831 8

S7 19.741314 0.018862 9

S8 19.724780 0.02068 13

S9 19.741314 0.018862 14

S10 19.724782 0.020068 15

improvement with respect to wild-type production. This is obtained by a strain that produce
biomass at a rate of f 0.02 h−1 (i.e. 98.06% reduction with respect to wild type biomass), and
that has a knock-out cost of 14. Specific knock-outs for this strain are: frmA, (fadB or yfcX),
fieF, uxuB, (nuoN and nuoM and nuoL and nuoK and nuoJ and nuoI and nuoH and nuoG
and nuoF and nuoE and nuoC and nuoB and nuoA), ((pflA and pflB) or (pflA and tdcE) or
(pflD and pflC) or ((pflA and pflB) and yfiD)), ppk, rfaS, tpiA, avtA (Table 1).

In Fig. 2 we analyse ethanol production as a function of the knock-out cost in strains
explored by MOME. Intuitively, strains that are in knees of the function represent strains
with an optimal trade-off between knock-out cost and ethanol production rate. Notice a
single gene knock-out strain characterized by 16.49mmol gDW−1 h−1 ethanol production,
i.e. + 679.29% improvement with respect to wild type, and a biomass formation of 0.23 h−1

(− 77.45%). The genetic target knocked-out in this strain is: (nuoN and nuoM and nuoL and
nuoK and nuoJ and nuoI and nuoH and nuoG and nuoF and nuoE and nuoC and nuoB and
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Fig. 2 Pareto optimal ethanol production (in red in the figure) and feasible solutions (in blue in the figure) as
an observed function of the knock-out cost. (Color figure online)

nuoA). Another interesting strain that this analysis reveal is the strain having a knock-out
cost of 6. This produces ethanol at a rate of 18.52mmol gDW−1 h−1 (+ 775.22%) and has
biomass formation of 0.10 h−1 (− 90.32%).

The Pareto front of the values of the objective functions (ethanol production and biomass)
of the selected solutions has been clustered using DBSCAN. The results of the clustering are
shown in Fig. 1b.We can identify 7 separate clusters of solutions. Cluster C3, containing 6294
solutions, provides good ethanol production without penalising biomass. On the contrary, the
low biomass production of clusters C1 and C2 would not allow bacteria to survive, while
clusters C4-C7 produce modest quantities of ethanol.

Figure 3a, b depicts the Pareto fronts obtained for a set of prokaryote and eukaryote
organisms respectively. For ease of comparisons results are normalized by using theoretical
upper bounds for both ethanol and biomass production. As a comparison with the iJO1366
model we also include the E. coli iCA1273 (King et al. 2016). In contrast to the former,
no trade off points between the Biomass and the Ethanol production were found by the
algorithm, resulting only in points on the two axis. Since the algorithm, set with the same
parameters, worked well with all the others models, these results could be caused by the
inner features of the model. Among the organisms here explored, S. cerevisiae is the one for
which the Pareto front computed byMOME is closest to the utopian optimization point (that
is maximal biomass and maximal ethanol production). The Fig. 4a plots the whole feasible
region explored by the algorithm.

On the other hand, both C. reinhardtii and S. enterica do not demonstrate good trade-off
between biomass and ethanol; for only small improvements in ethanol production follows
consistent decreases in the organism biomass.

Enzyme regulation in S. cerevisiae We show in Fig. 4b, the feasible strains and the
Pareto-optimal ones found by MOME for the optimization problem associated to ethanol
overproduction in S. cerevisiae using enzyme up/down regulation. Notice that a linear rela-
tionship between biomass and ethanol production is observed for Pareto-optimal strains,
and that feasible strains found by MOME almost uniformly span the region from maximal
biomass production (≈ 0.28 h−1) to null biomass production, hence discovering a number
of different trade-offs S. cerevisiae strains (Table 2). These widespread results over the phe-
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Fig. 3 Results for optimization of ethanol production and biomass formation in various Prokaryotes and
Eukaryotes organisms. a Normalized Pareto fronts of prokaryote models optimizations. b Normalized Pareto
fronts of eukaryote models optimizations
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Fig. 4 Results for optimization of ethanol production and biomass formation for S. cerevisiae. a Gene set
knock-outmulti-objective optimization using theYeast7.6model.bGene expression redirectormulti-objective
optimization using the iMM904 model

notypic space show that the enzymes regulation approach is in general more flexible than the
“binary” KO one.

Ethanol production without essential genes in E. coli and S.cerevisiae We have described
so far, the results of the simulations without specific constraints; those results can be con-
sidered as an utopian bound of our framework. However, without the introduction of other
external constraints simulating the issues of a possible real-world application, some of the
selected strains could be difficultly applied. To tackle this possible lack of plausibility we
performed further simulations, reported in this section for the ethanol production considering
the essential genes of the given organisms. We used the Yeast 7.6 model of S.cerevisiae and
two models of E. coli, the iJO1366 and the iZ_1308 (King et al. 2016; Monk et al. 2013), the
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Table 2 Maximization of ethanol and biomass production for S. cerevisiae using the redirector approach for
enzymes regulations with the iMM904 genome-scale model

Strain Ethanol (mmol gDW−1h−1) Biomass (h−1) Variations (neg, pos)

Wild type 0.015 0.287 0

S1 0.685 0.272 10 (9, 1)

S2 1.558 0.251 12 (9, 3)

S3 2.876 0.22 10 (7, 3)

S4 4.73 0.176 13 (10, 3)

S5 5.48 0.158 12 (9, 3)

S6 6.73 0.128 12 (10, 2)

S7 7.126 0.119 11 (7, 4)

S8 8.035 0.097 12 (9, 3)

S9 9.493 0.061 11 (8, 3)

S10 11.923 0.002 17 (14, 3)

Table 3 Number of essential genes and lethal gene pairs present in the genome-scale metabolic models

Organism Model Genes Essential genes Lethal gene pairs

E. coli iJO1366 1366 113 108

E. coli iZ_1308 1308 105 64

S. cerevisiae Yeast 7.6 909 215 580

latter modelling the E. coli O157:H7 strain EDL933. In contrast to the iCA1273, this new
model results are quantitative comparable with the iJO1366 ones.

Hence we then changed our framework to tackle this new task, first introducing some
limitations over the genes of the models that can actually be knocked out by the algorithm.
Namely, we included information on the essential genes and the lethal gene pairs of the
different organism, taken from external databases. The list of the essential genes of the E.
coli was taken from the EcoliWiki (Genes-EcoliWiki 2018), whereas we took the essential
couples list for iJO1366 from (Suthers et al. 2009) and the one for iZ_1308 from (Aziz et al.
2015); the genes lists for the S. cerevisiae model were taken from (Heavner and Price 2015)
(see Table 3). The essential genes, defined as the genes whose single KO would result in a
non-viable strain of the organism, are thus always excluded in our framework, i.e. they can
not be turned off by MOME. A similar approach is used for the lethal gene pairs, defined
as the pairs of genes that, if knocked out at the same time, will make the strain non-viable.
While the single KO of one of the genes of a couple is still allowed (if not essential), the KOs
of both are not; a check of the new possible genes to be knocked out is run in every step of
the mutation operator.

Since the databases always refer to single genes, in these simulations we considered the
single genes in the models to obtain a direct comparison between a strain and the lists.
However, it is indeed really simple to obtain the gene sets again starting from a binary vector
representing the single genes of a strain, by just evaluate the Boolean expressions of all the
gene sets.

In addition to this, we also introduced a strict bound on the biomass values. Referring to
the Wild Type value, we force all the strain obtained to have a biomass reduction not greater
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Fig. 5 Results of the gene knock-out constrained multi-objective optimization for different metabolic mod-
els and conditions. a Gene knock-out multi-objective optimization using the iJO1366 model in anaerobic
condition. b Gene knock-out multi-objective optimization using the iJO1366 model in LB medium. c Gene
knock-out multi-objective optimization using the iZ_1308 model in LB medium. d Gene knock-out multi-
objective optimization using the Yeast7.6 model in SD medium

than the 10%. So, if a new selected KO leads the strain to a lower biomass, that gene is
restored, and the mutation operator selects a new one; the procedure is repeated until a strain
with a new KO, having a biomass value above the bound, is reached or until a maximum
number of attempts (in general 10 trials) has been done. This new constraint also lets the
algorithm to more deeply explore a reduced solution space, while forcing the algorithm to
discard the strains with a low growth, which can be considered biologically unfeasible.

Furthermore, for these new simulations we set the bounds of the external exchange reac-
tions of the models in order to simulate the growth in a rich medium, i.e. the well-known
LB medium (Aziz et al. 2015) for the E. coli models and the SD medium (Labhsetwar et al.
2017) for the S. cerevisiaemodel. A simulation with the same anaerobic medium used in the
previous unconstrained tests was also performed.

These new simulations results are shown in Fig. 5. It is remarkable how by changing the
medium setting for the samemodel (iJO1366, ref. to Fig. 5a, b) the phenotypic results are dif-
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Table 4 Maximization of ethanol and biomass in the selected Pareto optimal strains

Strain Ethanol (mmol gDW−1h−1) Biomass (h−1) Knock-out

E. coli—iJO1366 in anaerobic condition

Wild type 2.116 1.0334 0

S1 2.1346 1.0311 1

S2 4.8362 0.97127 2

S3 3.4428 1.0253 2

S4 5.6776 0.9687 3

S5 4.8737 0.96886 3

S6 6.2177 0.93217 4

S7 6.2457 0.93027 5

S8 6.2453 0.9303 6

S9 6.2464 0.93023 7

S10 6.2473 0.93016 9

E. coli—iJO1366 with LB medium

Wild type 25.0757 3.6921 0

S1 31.7284 3.6476 1

S2 79.6763 3.3459 2

S3 31.7387 3.6472 2

S4 81.8296 3.3263 3

S5 80.0633 3.3438 3

S6 80.0521 3.3438 3

S7 82.2129 3.3242 4

S8 82.2404 3.3239 5

S9 82.2569 3.3235 6

S10 82.2582 3.3235 8

E. coli—iZ_1308 with LB medium

Wild type 21.913 3.7522 0

S1 24.0692 3.7345 1

S2 80.7771 3.3776 2

S3 75.6019 3.4169 2

S4 80.7838 3.3773 3

S5 80.7799 3.3776 3

S6 78.8747 3.3921 3

S7 80.7865 3.3773 4

S8 80.7879 3.3773 5

S9 80.7882 3.3771 6

S10 80.7883 3.3771 8

S.cerevisiae—Yeast7.6 with SD medium

Wild type 27.8249 0.4174 0

S1 29.4342 0.4083 1

S2 29.0183 0.41195 1

S3 29.4699 0.40653 2

S4 29.4488 0.40742 2

123



Ann Oper Res

Table 4 continued

Strain Ethanol (mmol gDW−1h−1) Biomass (h−1) Knock-out

S5 29.4715 0.4065 3

S6 29.4829 0.40531 4

S7 29.4879 0.40478 5

S8 29.4911 0.40446 6

S9 29.4939 0.40402 7

S10 30.1258 0.38946 8

ferent in both the ethanol production and biomass value. Namely in the rich medium we have
a much higher value of ethanol production even in the wild type, 25.0757mmol gDW−1 h−1

against 2.116 mmol gDW−1 h−1 in the anaerobic medium, and a corresponding biomass
value of 3.6921 h−1 against 1.0334 h−1 . Also, the progresses of the algorithm solutions
are different, as it can be seen from the trends of the Pareto fronts found, even using the
same parameters. These discrepancies highlight once more the importance of the external
environment settings for the in silico simulations.

Finally, we considered the optimal solutions in the Pareto front and we applied on them a
post processing procedure to keep only the necessary genes KOs. Starting from an optimal
strain, the procedure iteratively select one gene knocked out in it and restores it obtaining
a new strain. If both the biomass value and the ethanol production differences between
these strains were less than a tolerance threshold, that we set at 10−10, the gene KO can be
considered superfluous, and so the gene is permanently reintroduced in the strain; otherwise
it is kept knocked out. The procedures ends when all the knocked-out genes of the strain have
been tested.

In the end we so have a new set of filtered and further optimized solutions, with a low
number of KOs (that never involve essential genes or lethal gene pairs), and with a reasonable
value of the biomass function, ensuring that we are still simulating a well behaving metabolic
pathway. Some of these results are shown in Table 4; the reported strains are selected in this
case as the ones with amaximum ethanol production among the strains with the same number
ofKOs.Usually the increase in the number ofKOswill result in a potentially highermetabolite
production until a maximum number is reached (cf. Fig. 2). There are indeed many other
solutions with higher number of KOs, but the overall maximum production found (always
labelled as S10 in the tables) can be reached with less than 10 KOs. It is notable that all
the E. coli simulations reach a greater maximum ethanol production difference in percentage
from the wild type than the S. cerevisiae simulation. In the anaerobic condition the maximum
production rate of ethanol using the iJO1366 model is 6.2473 mmol gDW−1 h−1 , improving
the wild type of +195.24%. It is indeed a far lower increase if compared to the ones obtained
with the unconstrained algorithm, as expected. Similarly in the LB medium the maximum
ethanol production rate is 82.2582 mmol gDW−1, with a +228.04% improvement , whereas
using the iZ_1308model the increase is +268.68%,with amaximumproduction rate equals to
80.7883 mmol gDW−1 h−1. In the Yeast 7.6, conversely, the maximum increase is +8.24%
and the maximum production rate is 30.1258 mmol gDW−1 h−1. Moreover, while these
strains of the E. coli models have a biomass reduced of approximately 10%, that is the
maximum allowable reduction given the constraint that we used, the strain of S. cerevisiae
reduces the biomass of 6.69%, highlighting a lack of optimal trade-off points in the region
of the solution space closer to the 10% threshold of biomass reduction.
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5 Conclusions

In this paper, we analysed several genome-scale models by using a multi-objective opti-
mization approach for the maximization of the ethanol production. The designed approach
takes into account for finer analysis of the metabolic network models and processing of
Pareto optimal strains. In particular we have also investigated the behaviour of our analy-
sis approach in the case of ethanol production in E. coli. Here we found more than 6000
genotypically different, Pareto optimal trade-off strains. Among the others, the one with the
highest production rate for ethanol improve the wild-type production rate of + 886, 50%,
with a knock-out cost of 20. Other interesting trade-off with just 1 knock-out cost were
found to have produce ethanol at + 679.29% improved rate with respect to the wild-type
one. We have hence clustered Pareto optimal strains found in the co-domain. This was done
in an effort to improve the understanding of the relationship between genotype and phe-
notype in this particular application scenario. Finally, another set of simulations including
external information about essential genes and medium used in in vivo experimentations
were performed. By including also a minimal value of the biomass function, we wanted to
ensure that the strains would be still predicting a satisfying growth. The strains have on one
hand a lower increases of the ethanol production, but on the other could tackle some of the
biological needs of an actual cells. Applying these constraints, the maximum improvement
in comparison with the wild type is + 195.24% . The results we have obtained in this two
scenario demonstrate that our analysis approach can aid synthetic biologist in the solution of
highly complex design problems, and to better analyse the behaviour of genome-scalemodels
in terms of the effect that knock-outs have on the production rate of several metabolite of
interest, both in the case of bio-fuels and enzyme targets discovery for therapeutic purposes.
As well as furnishing an automatic explanation of the knock-outs performed in a particular
Pareto optimal strain, obtained through the statistical analysis of the empiric distribution of
knock-outs in a particular cluster of the Pareto front.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
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