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5National Centre for Agricultural Research and Technology Transfer,
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This paper is concerned with the quantification of the likely effect of anthropogenic
climate change on the water resources of Jordan by the end of the twenty-first century.
Specifically, a suite of hydrological models are used in conjunction with modelled
outcomes from a regional climate model, HadRM3, and a weather generator to determine
how future flows in the upper River Jordan and in the Wadi Faynan may change.
The results indicate that groundwater will play an important role in the water security
of the country as irrigation demands increase. Given future projections of reduced
winter rainfall and increased near-surface air temperatures, the already low groundwater
recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan
indicates that extreme flood flows will increase in magnitude, despite a decrease in the
mean annual rainfall. Simulations projected no increase in flood magnitude in the upper
River Jordan. Discussion focuses on the utility of the modelling framework, the problems
of making quantitative forecasts and the implications of reduced water availability
in Jordan.

Keywords: climate change; water resources; hydrology; groundwater; Jordan

1. Introduction

Water is scarce in Jordan, and the pressure on this resource will increase as the
population is projected to rise from an estimated 5.10 million today to 8.55 million
by 2030 owing to natural increase and immigration (United States Statistics
Division 2010). Jordan is seeking economic development, thus water is required
for industrial expansion and tourism (US Geological Survey 1998). Surface waters Q1
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are already fully exploited, and most of those wadis (ephemeral streams) draining
to the lower Jordan have dams built in them. The water resource of the upper
Jordan and its tributaries is shared between Israel, Jordan, Lebanon, Syria and
the West Bank. The main water resource is groundwater, and there are three main
aquifers in Jordan, although the full extent and water capacity of these have yet
to be determined (Puri 2001; Puri et al. 2001; Puri & Aureil 2005; Struckmeier
et al. 2006). The four aquifers are the Syrian Steppe, the Hauran and Jabal
Al-Arab aquifer, the Disi aquifer and the Eastern Mediterranean aquifer. In all
cases, recharge is low at 15 mm yr−1 or less (Puri 2001). In Jordan, trends in the
groundwater salinity are unclear (US Geological Survey 2006).

Food security is poor in Jordan. In the marketing year 2005–2006, Jordan
imported 93 per cent of its annual wheat and 95 per cent of its annual barley
requirements (United States Department of Agriculture 2006). Vegetables are the
main crops grown in northwest Jordan where the annual precipitation is highest.
These crops are important to the national economy and as a food resource.

Water and food security are under further threat from the continued over-
abstraction of the water resource likely amplified by climate change. Between now
and the end of the twenty-first century, increased near-surface air temperatures
and reduced precipitation are projected for the Middle East (IPCC 2007;
Krichak et al. 2007); thus, it is important to quantify the likely effects of
climate change on the hydrology of the Jordan Valley and environs and to
interpret this in terms of the socio-economic consequences. Other studies have
looked at the water resources of the Jordan Valley and the likely changes
given climate projections (e.g., Kunstmann et al. 2005; Samuels et al. 2009).
A simple physically based model suggested that the water yield in Jordan
would reduce by up to 60 per cent if precipitation were to decrease by 10 per
cent and the region were to become 2◦C warmer (Oroud 2008). Bou-Zeid &
El-Fadel (2002) suggested zero change in the October to April precipitation
over Lebanon by the 2020s with a warming in July of 2◦C, leading to increased
soil moisture deficits and irrigation demands. A major initiative in the Jordan
Valley is the Globaler Wandes des Wasserkreislaufs—Jordan River (GLOWA
JR) project (Hoff et al. 2006). Results show that although annual streamflow
is proportional to total precipitation, provided annual precipitation exceeds
400 mm, a projected increase in the frequency of wet spells lasting longer than
3 days may result in more frequent and more intense floods in the upper Jordan
(Samuels et al. 2009).

Messager et al. (2006) question the reliability of outputs from hydrological
models driven with climate model data. The question of how climate change
may impact on river flow is challenging because of the difficulty that climate
models have with representing spatial and temporal variability in daily rainfall
and the structural and parameter uncertainty in hydrological models. Wilby
et al. (in press) also note that there is little consensus between climate model
output in the Middle East and North Africa region. Thus, modelled forecasts
of future river flows are uncertain, although multiple climate model applications
that consider a range of emission scenarios can help build confidence or otherwise
in projected changes. Despite this, individual model simulations are still useful
as they contribute to the total number of model runs available for analysis and,
as in this case, provide an example of how climate model output can be used in
a modelling framework to assess changes in runoff.

Phil. Trans. R. Soc. A (2010)
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The aim of this work is to develop and test a new meteorological and

Q10

hydrological model framework and to assess the output from this new model chain
to assess the likely impacts of climate variability and change on water availability
in Jordan. Specifically, the objectives are as follows:

— to link a regional climate model (RCM), a weather generator, a rainfall-
runoff model and a runoff routing model to create a framework with which
to assess the impacts of climate variability and change;

— to collate a database to provide sufficient suitable data with which to
develop and test a climate-hydrological model chain in a data-poor region;

— to assess the impact of anthropogenic climate change on flows in the upper
River Jordan and the Wadi Faynan and to compare the modelled outcomes
with other studies; and

— to consider the benefits and disadvantages of the approach within the
context of other available methods.

The study has two parts. In the first part, the effects of daily and seasonal
precipitation patterns on streamflow in the upper River Jordan are explored using
climate scenarios as inputs to the modelling framework. In the second part, the
same methodology is applied to a site in western Jordan, the Wadi Faynan, which
is considered representative of the wadis draining to the lower Jordan, although
the Wadi Faynan itself drains to the Dead Sea rather than the Jordan River.
Considered together, these two components provide insight into the mechanisms
by which the projected changes in precipitation and evaporation will affect the
hydrological cycle in semi-arid environments.

2. Study areas and data resource

(a) The upper River Jordan

In this study, the upper Jordan (1752 km2) is defined as the catchment area from
the headwaters to the Obstacle Bridge gauging station (33.03◦ N, 35.62◦ E). This
study area was chosen because of its importance in terms of water provision
to Jordan, the West Bank and Israel (figure 1). The headwaters of the Jordan
drain from Lebanon and from Mount Hermon in the Golan Heights, the highest
point in the catchment (2814 m), where precipitation can fall as snow during the
winter. The key tributaries of the upper Jordan are the Dan, Snir (of which the
Hasbani is a tributary) and the Hermon (of which the Banias is a tributary).
The geology of the upper Jordan is predominately limestone, which includes
Karst development. The springs, which form the Dan river, drain from the Karst,
and the groundwater sustaining the spring flow is estimated to have a retention
time of 2–3 years (Rimmer & Salingar 2006). The upper Jordan drains into the
Sea of Galilee, and the outlet, which supplies the lower Jordan River, is located
near Degania Bet, Israel. Downstream of the Sea of Galilee, the Yarmouk drains
into the Jordan River. The King Abdullah Canal is used to provide water for
irrigation in northwest Jordan, and water is diverted from the lower Yarmouk
to supply the canal, thereby lowering flows in the Yarmouk and the Jordan
River. Water is abstracted for irrigation in Israel using the National Water

Phil. Trans. R. Soc. A (2010)
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Figure 1. The location of the study sites with an inset schematic map of the upper River Jordan.
Square, daily rainfall; circle, daily discharge.

Carrier, which draws water upstream of the inlet to the Sea of Galilee, and
this also lowers flow in the Jordan River. Downstream of the confluence with
the Yarmouk, the Jordan River flows southward to the Dead Sea where over the
past 30 years, water levels have dropped at the rate of 0.5 m yr−1 as a result of
over-abstraction.

Phil. Trans. R. Soc. A (2010)
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Precipitation patterns in Jordan show a strong gradient from west to east.
The main storm track affecting northern Jordan is from west to east along the
Mediterranean Sea. Precipitation in the south of Jordan can be affected by low
pressure systems over the Red Sea, known as Red Sea lows, particularly in the
boreal autumn and spring (Alpert et al. 2004). The mean annual precipitation
over Israel is 500–900 and 200–700 mm in the northwest of Jordan, where the
majority of the crops are cultivated. Wadi Araba, the valley along the Israel–
Jordan border, is an extension of the Great Rift of Africa. This valley affects
the precipitation distribution. To the east of the valley axis is a scarp slope.
Along the ridge of the scarp slope and into northwest Jordan, which is at an
elevation of between 400 m above sea level at Umm Qais in the north and 1727 m
above sea level at Jebel Mubrak in the south, the mean annual rainfall tends
to be higher (200–700 mm yr−1) than in the valley bottom (approx. 50 mm yr−1),
which, at the Dead Sea, is approx. 400 m below sea level. The scarp slope causes
orographic lifting of the moist air masses moving east over Israel and the valley,
and this leads to greater precipitation over the ridge of the scarp. Further east,
towards the desert centre, the rainfall is much lower at approximately 60 mm yr−1

at Ma’an and along the ‘pan-handle’ of Jordan towards the border with Iraq.
The spatial coverage of readily available meteorological and hydrological data

is sparse. For the purpose of this study, data were collated from 60 rainfall stations
and 7 discharge gauging stations across Israel, Syria, Lebanon, the West Bank
and Jordan. Daily rainfall data were purchased from the Israeli Meteorological
Service for the period 1984–2005 for nine sites, and further daily rainfall data were
available for seven stations in Jordan from 1937 to 1974 from the yearbooks of the
Water Resources Division of the National Resources Authority. Monthly rainfall
data were available from the United States National Climate Data Centre for 11
sites in Israel (1846–1995), 11 sites in Jordan (1960–2000), 15 sites in Lebanon
(1888–2000) and 7 sites in Syria (1951–2000).

Daily flow data were, in general, difficult to find, but these are needed to
assess the flood extremes. Ideally, 15 min data should be used, but no such
data were available for this study. Daily data from the United States National
Climate Data Centre were available for flow gauges on the Jordan at Sede
Nehemya (1984–1992), Obstacle Bridge (1973–1993) and Naharayim (1988–1993).
The Naharayim gauging station is located downstream of the confluence of the
Jordan and Yarmouk rivers, and although daily measurements are available for
the period 1988–1993, the flows at this point are heavily modified by upstream
abstractions to supply the National Water Carrier and the King Abdullah Canal.
Monthly flow data were available at six stations, and daily and monthly flows
were reported for gauges in the 1963 Jordan Hydrological year book (Central
Water Authority 1963). This yearbook includes flows for the main channel of the
Jordan and contributing side wadis. It should be noted, however, that in many
cases, the flows for the side wadis were estimated using engineering calculations
(flood hydrographs) rather than measurements. The flow in dryland systems is
notoriously difficult to measure as rainfall is infrequent and large floods can
damage measuring structures.

The rainfall and runoff data were supplemented with data describing the local
climate at 12 sites across Jordan. These data included monthly averages for the
period 1983–2002 for precipitation, near-surface air temperature, solar radiation,
wind speed and sunshine hours.

Phil. Trans. R. Soc. A (2010)
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Figure 2. A topographic map of the Wadi Faynan.

Land surface elevation data for the Middle East region were obtained from the
Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM).
This dataset has a resolution of 90 m and a vertical accuracy of 15 m. Land cover
was taken from the Global Land Cover Map 2000 (v. 1.1) downloaded from the
HYDE land cover database (Klein Goldewijk 2001).

(b) The Wadi Faynan

The Wadi Faynan drains the eastern scarp slope of Wadi Araba, south of
the Dead Sea (figures 1 and 2), and is approximately 25 km long flowing east
to west. The Wadi Faynan (241 km2) disgorges to Wadi Araba after passage
through the Jebel Hamrat al Fidan, an Aplite-granite mass located at the mouth
of the Wadi Fidan; the Wadi Fidan is the name given to the extension of
Wadi Faynan between Al Qurayqira and Jebel Hamrat al Fidan. The climate of
Wadi Faynan is currently classified as semi-arid as annual potential evaporation
exceeds precipitation (Al-Qawabah et al. 2003). The Wadi Faynan has two major
tributaries, the Wadi Ghuwayr and the Wadi Dana, developed along two NE-SW
trending geological faults (Tipping 2007; figure 2).

The Wadi Faynan region has a rich archaeological heritage comprehensively
described in several recent volumes (Barker et al. 2007; Finlayson & Mithen
2007; Hauptmann 2007). Given that the focus of this paper is the hydrology, the
archaeology is not considered further. Today, the Bedouin located in the Wadi
Faynan use the perennial water flowing from springs in the Wadi Ghuwayr to

Phil. Trans. R. Soc. A (2010)
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irrigate their fields near the villages of Al Qurayqira and Rashida by conveying
the water in plastic pipes under gravity from the mid-reaches of the wadi. There
are no major urban centres in the catchment, with the population being sparse
in comparison to that of northwest Jordan where the rainfall and topography are
more favourable for irrigation. The Wadi Faynan fringes the Dana National Park
(Al-Qawabah et al. 2003).

Geological and hydrological information was derived from digital and paper
maps and field-based measurements. The geology of the Wadi Faynan comprised
fluvial deposits and eolian sands from the Quaternary period; limestones from the
Eocene/Paleocene and Cretaceous periods; sandstones from the Cambrian period,
and Porphyrite and Aplite-granite from the Precambrian eon. There is also an
outcrop of basalt from the Quaternary on the northeast rim of the catchment,
which forms the Jebel al Afa’ita. The Wadi Ghuwayr and the Wadi Dana have
contrasting geology, and springs are also found in the Wadi Dana and are used
to irrigate gardens and to supply a hotel, though the water from these does
not typically reach the Wadi Faynan. The highest point in the Wadi Faynan
catchment is Jebel Al Afa’ita at 1641 m above sea level. The elevation of the
confluence with the Wadi Araba in the Rift Valley is 300 m below sea level. The
range in altitude on the scarp slope varies from approximately 300 m above sea
level at the Ghuwayr-Dana confluence on the alluvial plain to 1300 m above sea
level on the plateau.

Hydrological measurements were collated from previous academic, government
agency and engineering studies. These data were integrated with new field
measurements of baseflow, open-channel hydraulics (to estimate flood peaks) and
water chemistry during field visits in 2006, 2007 and 2008. There was recourse
to satellite imagery to confirm the presence of specific geological structures and
to verify the catchment boundaries of the study area derived from the SRTM
DEM. The full details of these data and the sampling and analysis methods are
given in Wade et al. (in press a).

Rainfall patterns in the region of Faynan are dominated by the orographic
effect of the rift escarpment, and the area of highest annual rainfall follows a
north-south line between Kerak, Tafilah and the Wadi Musa (figure 1). Mean
annual rainfall across the Wadi Faynan catchment decreases from 400 mm yr−1

at El Atate on the plateau to 50 mm in the Rift Valley floor; the latter is in
a rain shadow being surrounded by highlands. The mean annual rainfall at
Shawbak, which is located on the plateau on the southern boundary of the
Faynan catchment, is 312 mm yr−1, with a standard deviation of 136 mm yr−1

(Tarawneh & Kadioğlu 2003). Rainfall generally occurs between October and
May, as elsewhere in Jordan. During winter, the precipitation can fall as snow on
the plateau (Al-Qawabah et al. 2003).

The air temperatures in the Dana Reserve, which are assumed to be
representative of those in the Wadi Faynan, are typically a mean of 9◦C
and 27◦C during January and August, respectively (Al-Qawabah et al. 2003).
The mean annual potential evaporation measured at Tafilah during the
period 1999–2003 was 1978 mm yr−1 (EMWATER 2005; Hashemite Kingdom of
Jordan—Meteorological Department 2006). Given the higher rainfall in winter
and the lower evaporation rates, the optimum period for cropping is winter. The
land cover is characterized as desert on the floor of the Wadi Araba, changing to
steppe in the mid and upper reaches of the Wadi Faynan.

Phil. Trans. R. Soc. A (2010)
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Figure 3. The conceptual model of the Wadi Faynan hydrology. This schematic is based on the
geological cross-section of the Geological Map of Jordan 1 : 250 000, prepared by F. Bender,
Bundesanstait für Geowissenschaften und Rohstoffe, Hannover 1968 (Sheet: Aqaba-Ma’an and
Amman). Red region, porphyrite and Aplite-granite; brown region, sandstone; green region,
limestone; yellow region, alluvial sands, blue arrow, flow pathway.

A conceptual model was developed to describe the Wadi Faynan hydrology
(figure 3). This model was built by integrating all the knowledge ascertained from
the review of the existing and newly collected data (Wade et al. in press b). The
model is as follows: the major aquifers are defined by the catchment boundary and
the major aquifers are the limestone and the sandstone; groundwater recharge of
the limestone and sandstone aquifers occurs through the limestone and colluvium
mantle in the upper reaches of the Wadi Faynan around Dana and Shawbak; this
recharge is supplemented by transmission losses from the main wadi channels
to the underlying aquifers and the shallow channel alluvium; springs occur at
the contact between the limestone and sandstone and between the sandstone
and Precambrian volcanic rocks; the Precambrian volcanic rocks act as an
impermeable layer keeping the water near the surface as it flows past from the
Wadi Ghuwayr before the sand and gravels in the channel deepen in the Wadi
Fidan alluvial plain and the water flows beneath the surface, possibly along the
contact with the underlying Aplite-granite; the key pathways are lateral perennial
flows through the limestone and sandstone with surface overland flow generated
during rainfall events and snow does fall during winter in the headwaters of the
catchment, but it is assumed that this will infiltrate into the well-drained soils
upon melting. A full justification for these assumptions is provided in Wade et al.
(in press b).

3. Methodology

An overview of the modelling framework is shown in figure 4. It can be seen
that the framework consists of hydrological models driven by daily precipitation
time series derived using a statistical rainfall model (weather generator) and
climatological potential evaporation (Black et al. in press). Observed daily
precipitation data were used to parametrize the weather generator, and HadRM3-
modelled daily precipitation data were used when making projections of
flow changes.

Phil. Trans. R. Soc. A (2010)
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Figure 4. Overview of the modelling framework showing the data and model linkages for the upper
Jordan and the Wadi Faynan applications for (a) calibration, (b) the control period (1961–1990),
and (c) the scenario period (2071–2100; A2).

(a) Climate component of the modelling framework

The RCM used in this study was a variant of HadRM3. HadRM3 is a
regional scale climate model with a spatial resolution of 0.44◦ (approx. 50 km)
for both latitude and longitude developed by the UK Hadley Centre. As such,
the model has a finer spatial scale than global circulation models (GCMs)
such as HadCM3, which has a spatial resolution of 3.75 by 2.5◦ for longitude
and latitude, respectively. Climate projections were extracted from HadRM3
RCM simulations of the 1961–1990 control and the 2071–2100 future periods.
The output from HadRM3 was formally compared with observations in Black
(2009). For the control period (1961–1990), the modelled near-surface air
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temperatures in the eastern Mediterranean were reasonably well represented. The
modelled control-period precipitation data show that, while the spatial pattern
of precipitation over the 30-year control period was generally modelled well, the
resolution of the HadRM3 model was too coarse to capture the subtle variations
in rainfall across the extension of the Rift Valley and northern Jordan. Moreover,
the intensity in rainfall was underestimated, leading to biases in the annual
totals. Thus, these results highlight the need for statistical downscaling, both to
interpolate the RCM simulations to a point and to correct the climate model bias.

The A2 emission scenario was used for all the 2071–2100 projections. This
scenario represents a world with a slow technological response to mitigate climate
change and where the economic differences between the industrial and developing
worlds do not narrow (IPCC 2001). The greatest changes are expected in near-
surface air temperature and precipitation by the end of the century; therefore, the
scenario and the period considered represent a ‘bad’ case scenario. Current data
suggest that global CO2 emissions are following the ‘worst’ case A1F1 scenario (le
Quéré et al. 2009). The consideration of a single emission scenario only and the
output from one RCM are limitations of the study. Despite this, the work is still
useful as it explores a new modelling framework, and the results are interpreted
in terms of those generated from other contemporary model-based assessments.

A weather generator was used for the control period and future scenario model
runs. The weather generator is described fully and evaluated in Black et al.
(in press), where it was shown that, while the weather generator was capable
of reproducing the main features of the observed rainfall seasonal cycle, there
were some biases—with more rain at the margins of the rainy seasons than
observed. The weather generator derives rainfall stochastically, according to the
underlying patterns of daily rainfall. In the weather generator used, the patterns
of daily rainfall were described statistically through the mean rain per rainy day
(rainfall intensity) and the probabilities of rain both given rain the day before
(PRR) and given no rain the day before (PDR). PRR and PDR were calculated
separately and varied by season. In the summer, when rainfall is low, both PDR
and PRR were set to 0.01; in the rainy season, PDR varies from approximately
0.15 to 0.25 with lower values at the margins of the rainy seasons and PRR
from approximately 0.55 to 0.65. The distribution of rainfall intensities (rain per
rainy day) was based on the observed time series, with an extra parameterization
for extreme rainfall events. The distribution was adjusted to take into account
changes in the rain per rainy day in the future scenarios. For the upper Jordan
and the Wadi Faynan applications, rainfall observations from Degania Bet and
Tafilah were used, respectively. For the future scenario integrations, the changes in
rainfall occurrence probabilities (as defined above) were derived from the regional
model integrations. In order to correct for model bias, these changes were then
applied to the observed probabilities.

(b) Hydrological components of the modelling framework

The hydrological components of the model framework are the Pitman
rainfall–runoff model and the Integrated Catchments model (INCA v. 1.11.10).
The Pitman model is a conceptual, process-based model of the rainfall–runoff
relationship (Pitman 1973). The Pitman model was chosen because it is a model
developed in South Africa for semi-arid hydrological conditions and forms a
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trade-off between model complexity, data requirements and useful model output
appropriate for the aims of this study. The Pitman model was designed to be
applicable at the catchment scale and, in this study, was applied at the daily
time step to investigate flood characteristics. The Pitman model does not include
flow-routing for multiple reaches.

INCA is a hydrological and water quality model that incorporates a simple,
flow-routing model that divides the main channel into a user-defined number
of reaches (Whitehead et al. 1998; Wade et al. 2002). For this study, only the
hydrological components of the INCA model were used. To apply the INCA
model, it was necessary to determine the hydrologically effective rainfall (HER)
to calculate the water volume contribution from the catchment each day. The
HER is the rainfall that contributes to the river flow after evapotranspiration
losses and replenishment of the soil moisture deficit are accounted for. In this
study, HER was calculated using the Pitman rainfall–runoff model and a bucket-
type soil moisture deficit model to calculate the actual evaporation (figure 4).
Thus, together the Pitman and INCA models allowed the calculation of the
runoff response to rainfall for the upper River Jordan. INCA was not applied
at the Wadi Faynan.

(c) Model set-up and calibration for the upper River Jordan

The Pitman model was configured to simulate the surface and groundwater
flows and to calculate the HER at a daily time step using observed precipitation
and an estimate of the actual evapotranspiration (AET) by a bucket-type soil
moisture model based on the Penman equation. The mean annual HER was
estimated as 45 per cent of the mean annual precipitation input and thereby
in agreement with the estimate of Kunstmann et al. (2005). The estimated HER
was input to the INCA model, which was then used to route water along the
upper reaches of the River Jordan with a daily time resolution. The INCA water
balance is computed on a 1 × 1 km grid cell, and this is then multiplied by the
unit area in each subcatchment to calculate the volume of water transferred from
the unit to the main channel. Within each subcatchment, different landscape
units are specified according to soil, land use and geological types. The INCA
model has two reservoirs in each landscape unit: one represents the flow of water
through the unsaturated zone, incorporating the soil, and the other represents
the groundwater.

Initially, the entire Jordan River basin was subdivided into 19 reaches based on
gauging stations and points just downstream of major confluences with tributaries
and side wadi channels. The Dead Sea was included and, of the defined reaches,
this had the largest drainage area of 49 000 km2. The following land cover types,
selected from the Global Land Cover Map 2000, were also initially included in the
INCA application: broadleaved tree cover (open), shrub cover, cultivated, bare
areas, inland water and urban. Shrub cover for the INCA application included
closed or open cover, deciduous, sparse herbaceous or sparse shrub cover and
regularly flooded shrub and/or herbaceous cover. In practice, it was not possible
to use 19 reaches nor to differentiate between land cover types because of a lack
of data to calculate the AET for each. Thus, Pitman was set-up for a compound
single land cover as was the INCA model.
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Figure 5. Modelled (grey line) and observed (black line) mean daily flows in the Jordan River at
Obstacle Bridge from 1 October 1988 to 30 September 1993. Black line, observation; grey line,
calibration.

During the study, it became apparent that only limited daily time-step
discharge data could be obtained. Given that the purpose was to look at extremes
in flow, this cannot be done with monthly flow data. Downstream of the Sea of
Galilee at Naharayim, the observed flows were heavily modified by the upstream
abstractions. Thus, the INCA model was applied to the upper four successive
reaches (figure 1) from the headwaters to the discharge gauging station at
Obstacle Bridge in Israel. The flows measured at Obstacle Bridge were not as
heavily modified as at Naharayim so the hydrological response to climate could
be better determined.

For the upper River Jordan, the INCA model was calibrated for the period
1 October 1988 to 30 September 1993 (figure 5). The purpose of the calibration
was to set the values of the model parameters, and this period was chosen to
provide the maximum overlap of available daily rainfall from Degania Bet and
flow data from Obstacle Bridge. The unsaturated and the groundwater zone
residence times, the instream routing parameters that control the reach residence
times and the baseflow indices were adjusted until the modelled output flow
matched, as closely as possible, the observed flow time series at Obstacle Bridge.
There were insufficient data to perform a split-sample test and to assess the model
performance for a second period.

The INCA model performance was assessed using the R2-value and the Nash–
Sutcliffe criterion. The R2-value for the calibration period was 0.7, and the
Nash–Sutcliffe criterion was negative. This result indicates that the pattern in
the observed flows was simulated, but the actual values were not replicated. This
was due to an inability to quantify the volume of abstractions in the upper Jordan
owing to a lack of data. Despite this inability to quantify the abstractions, the
study is still useful as it provides an indication of how water availability will
change relative to the present and the control period.

Once INCA was calibrated, the control period rainfall data derived from
HadRM3 and the weather generator were input to the Pitman model to provide a
second estimate of the HER for the control period for comparison with the model
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calibration. These HER data were input to INCA to derive a control period flow
series. This process was repeated but using the 2071–2100 scenario precipitation
data derived from the HadRM3 runs and the bias correction using the weather
generator to derive, through the Pitman model, the HER for the INCA 2071–2100
scenario run. Given the difference in the estimated HER between the calibration
and control period run, there was a difference in the flows simulated, but this
was acceptable: the control period maximum mean daily flow was 138 m3 s−1

compared with 161 m3 s−1 during calibration and the comparative Q10 (the flow
exceeded 10% of the time), Q50 and Q95 mean daily flows for the control
and calibration periods, respectively, were 76 and 110, 15 and 16, 3.3 and
2.6 m3 s−1.

(d) Model set-up and calibration for the Wadi Faynan

The Wadi Faynan conceptual model was realized as a numerical model through
calibration of the Pitman model (Wade et al. in press b). The purpose of the
model application was not to quantify flood flows exactly. This could not be
achieved in this case because of a lack of observed time-series flow data with
which to rigorously assess the model performance. Rather, the purpose was to
define a hydrological model as a best estimate of the hydrological functioning
and then run scenarios to explore how changes in rainfall amounts affect flood
characteristics and the baseflow.

The Pitman model was applied to the Faynan catchment, defined from a point
on the channel network adjacent to the ancient field system and immediately
downstream of the confluence between the Wadi Ghuwayr and the Wadi Dana
(figure 2). At this point, the upstream contributing area is 115 km2. This was done
as the lowest point at which the measurements of both the baseflow and peak
floods were made was the outflow of the Wadi Ghuwayr and the Wadi Dana, thus
allowing estimates of the baseflow and peak flow to be made at the confluence for
comparison with those modelled. It was extremely difficult to survey the channel
downstream of the confluence, here the alluvial plain has a width of approximately
1 km. Modelling the catchment flows to a point on the channel network adjacent
to the ancient field system also removes the complication of simulating the
transmission losses and water residence (or transit) times in the alluvial plain
of the Wadi Fidan and eliminates the need for a definitive understanding of the
source of the Fidan spring within this model-based assessment.

This application of the Pitman model to the Wadi Faynan required daily
estimates of rainfall and the potential evaporation. The use of the rainfall data
from Tafilah was appropriate for the model application. Tafilah is located on the
plateau 18 km north-northeast of Dana and receives rainfall similar to the upper Q2
reaches of the Wadi Faynan. Moreover, a substantial daily record of rainfall was
available from 1 October 1937 to 30 April 1974, allowing the model to be run for
a relatively long period, which is important when making an assessment of flood
magnitude and frequency.

An estimate of the daily potential evaporation was derived from monthly
measurements of wind speed, sunshine hours, relative humidity and air
temperature available for a 2-year period from Ma’an using the Penman equation.
This 2-year estimated time series was repeated to form a daily time series of 36
years, the same length as the observed daily rainfall time series. This repetition of
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the 2-year time series, although a clear over-simplification of the changes expected
during the 36-year period, was done to allow the model to be run on a daily time
step to allow progression with the model application.

It is practically impossible to separate the effects of transmission loss from
those of infiltration and deep percolation when estimating groundwater recharge.
As such, no attempt was made to distinguish transmission loss from infiltration
to the soils and the subsequent deep percolation of water to the underlying
aquifer within the simulations. Rather, the combined effects of transmission loss,
infiltration to the soil and subsequent deep percolation are considered together
as a single groundwater-recharge mechanism. To apply the model, estimates of
the groundwater volume and infiltration rate were made (Wade et al. in press b).

The simulated flows output from the PITMAN model generally falls within
the baseflow and peak flow constraints identified by field observations for model
calibration (not shown). The baseflow in catchment was observed to be in the
range 0.02–0.09 m3 s−1, and the model replicated this. The simulated annual flood
ranged from 2 to 98 m3 s−1, and for return periods of 1–2 years, the range of the
simulated floods was 2–17 m3 s−1, which was within broad agreement with the
annual floods estimated by the survey (14–22 m3 s−1). The simulated extreme
floods with return periods of 12–37 years are lower than the estimated flow range
when the channel is flowing full (120–180 m3 s−1). For only 15 per cent of the
calibration time-period considered did the simulated flows increase in response
to precipitation events, and this hydrological behaviour is typical of semi-arid
catchments (Bull & Kirby 2002).

4. Results

(a) Impact of anthropogenic climate change on the regional rainfall

A reduction in the mean annual rainfall is projected under the A2 scenario for
the 2071–2100 period for the Middle East (Black 2009). In the upper Jordan,
the largest monthly reductions (around 30% in the River Jordan region) are
during December and January (figure 6). The rainy season is predicted to become
longer, which partially offsets the marked decrease in precipitation projected at
the peak of the rainy season. At the margins of the rainy season, small increases
in monthly rainfall are projected by the climate model. The reasons for this are
not fully understood, but may be related to changes in the occurrence of Red Sea
troughs, which are the dominant observed cause of rain in these seasons (Black
2009). The reduction in winter rainfall can be related to changes in the large-scale
circulation and is predicted by most climate models (for example, Kitoh et al.
2008; Evans 2009; Hemming et al. this volume; Jin et al. this volume), the sameQ11
cannot be said for the spring precipitation, which leads to large uncertainties in
the prediction of rain in this season (Black et al. in press). Sensitivity studies
of the hydrological response to rainfall imply that the changes in spring rainfall
have relatively little impact, and hence the uncertainties in our predictions of
spring rainfall do not prejudice the reliability of the predictions of flow (Wade
et al. in press a). At the peak of the rainy season, the number of rainy days
is projected to decrease, reflecting reductions in both the PRR and the PDR,
of approx. 25 per cent (PRR reduced from approx. 0.6 to 0.4–0.5 and PDR
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Figure 6. Projected changes in the monthly rainfall totals at Degania Bet, Israel from the HadRM3
and weather generator models for 2070–2100 under the SRES A2 scenario. Grey bars, control; black
bars, 2070 A2.
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Figure 7. Modelled mean daily flows in the Jordan River at Obstacle Bridge for control (1961–1990)
and scenario (2071–2100) periods. Grey solid line, control; black solid line, A2 2070s.

reduced from approximately 0.2 to 0.15). The overall picture is, therefore, of
a longer rainy season with a less pronounced peak, with the mean annual rainfall
decreasing in the headwaters of the River Jordan and the Wadi Faynan. The
reduction in rainfall is accompanied by an increase in temperature by 2◦C and
hence evaporation increases.

(b) Impact of anthropogenic climate change on flow in the upper River Jordan

In comparison to the control period, the modelled outcome for the 2071–2100
A2 scenario is that the low (base) flows will remain similar to those occurring at
present; there is little difference in the forecast median (Q50) flows, and the Q50
in the control and scenario periods are 15 and 12 m3 s−1, respectively (figure 7).
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and scenario (2071–2100) periods. Blue solid line, control; red solid line, A2 2070s.

This lack of response is a result of the long residence time in the groundwater
component of the INCA model, which suggests that groundwater acts to buffer
changes in the rainfall amounts to maintain the low and intermediate flows. The
flood response is different. There is a drop in the Q10 flow (exceeded 10% of
the time) from 76 to 57 m3 s−1 between the control and scenario periods as a
result of the reduced winter rainfall, and this indicates that flood magnitudes
will be reduced. Increases in the flow extremes, in terms of flood magnitude
and occurrence, are not evident, which is consistent with Black (2009), who
found no significant changes in rainfall intensity in these projections for this
region.

(c) Impact of anthropogenic climate change on flow in the Wadi Faynan

For the Wadi Faynan, the baseflows in the period 2071–2100 under the A2
scenario are predicted to decrease by 12 per cent (figure 8). The number of years
with five floods greater than 12 m3 s−1 will decrease from 9 to 7 in the 30-year
period, and the median flow will decrease by 6 per cent. The flow threshold of
five floods greater than 12 m3 s−1 is derived from the measurement of flows in the
annual flow channel and the number of flows from Bedouin anecdotal evidence of
years with good harvests (Lancaster & Lancaster 1999; Wade et al. in press b). As
a result of the projected reduced rainfall and increased near-surface temperature,
the baseflow decreases as recharge declines, though because recharge is already
low then the impact on the baseflow is small. Interestingly, although the mean
annual rainfall decreases, the flow exceeded 10 per cent of the time (Q10), which
is representative of the flood extremes, increases, and the maximum flood flow
also increases; peak flows will be approximately 1.25 (82/66) times what they
are at present. This increase in flood extremes results from subtle changes in
the distribution of rainfall intensities in the A2 scenario projections and should
therefore be regarded with caution, particularly bearing in mind model bias.
This caveat should also be applied to the projected flows in the upper River
Jordan.
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5. Discussion

The RCM projections suggest that in a world that does not work to find an
integrated way to reduce greenhouse gas emissions, then a temperature increase
of 2 ◦C and a decrease in rainfall by 25 per cent are projected in the eastern
Mediterranean by the end of this century. In addition to a reduction in the mean
annual rainfall, the seasonality of the rainfall will change also as the start and
end of wet season are projected to become wetter, but there will be less rainfall
in December and January.

In the upper River Jordan, the change in the low flows will depend on the
volume of water stored in the Karst system of the northern Jordan valley and the
recharge rate, both of which are poorly characterized. The modelled outcomes
from the conceptual Hydrological Model for the Karst Environment (HYMKE),
described in Rimmer & Salingar (2006), corroborate the results from this study
that the low flows will not change. It is unclear over what simulated time period
the HYMKE model was run for the modelled scenarios. The INCA model was run
for 30 years with a daily time step, so this may be sufficient to examine long-term
trends but the relationship between groundwater recharge through percolation
and soil moisture has not been modelled in detail. Thus, it is proposed that it
will be necessary to run transient scenarios from present day to 2100 to see how
the groundwater will change over the long term using both the HYMKE and
INCA models and that further consideration be given to the likely groundwater-
recharge mechanisms to determine whether the current groundwater components
of both models are a good representation of water storage and flow in the Karst.

In a study of the upper Jordan catchment that used a distributed hydrological
model informed by RCM input, Suppan et al. (2008) predicted that under a
scenario in which the present rates of greenhouse gas emission increase slowly, the
total runoff will decrease by 23 per cent by the end of the twenty-first century—
a conclusion consistent with the linear relationship between annual precipitation
and streamflow proposed in Samuels et al. (2009). However, in contrast to Samuels
et al. (2009), which suggested little change in the baseflow, Suppan et al. (2008)
suggested that groundwater recharge would decrease, resulting in a reduction in
the baseflow. Samuels et al. (2009) showed that increasing the frequency of rainy
spells lasting 3 days or more, without changing the annual total precipitation,
increased the impact of high intensity rainfall events on the River Jordan,
resulting in more frequent and intense floods. The results for the hydrological
projections for the Wadi Faynan corroborate this result, but the projected flows
in the upper Jordan suggest that flood magnitude will not increase. This reflects
the fact that, in the simulations, rainfall intensity seen in the River Jordan region
in the future is very similar to that observed today, whereas in the Wadi Faynan,
there is a small increase in the extreme rainy events. However, these results should
be regarded with caution because the climate model represents rainfall intensity
poorly. Moreover, further work is required to confirm the results of this and
other studies and to verify the representation of the rainfall extremes used in the
weather generator.

The reduction in the mean annual rainfall and the increase in near-surface
air temperatures suggest that irrigation requirements will increase, worsening
the water shortage in the region. This suggestion is supported by preliminary
applications of the CROPWAT model in the Water, Life and Civilisation study

Phil. Trans. R. Soc. A (2010)



834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

ARTICLE IN PRESS
18 A. J. Wade et al.

and by applications of a soil-vegetation-atmosphere transfer (SVAT) model
TRAIN, which indicate increases in evapotranspiration and water demand
(Menzel et al. in press). The preliminary predictions of the CROPWAT model
suggest that at Ramtha in northwest Jordan, the irrigation demand will increase
from 62 to 132 mm of water when growing vegetables under the A2 scenario
for 2071–2100 using HadRM3 and an assumed irrigation efficiency of 70 per
cent. The TRAIN model provides an overview of the Jordan Valley region, and
the modelled outcomes suggest a 6 per cent increase in the water demand for
agriculture over the entire region and up to a 50 per cent decrease in water
availability in northwest Jordan, Israel and the West Bank (HadCM3, A1B
scenario, 2021–2050 compared with 1961–1990 control period). Menzel et al.
(in press) note that this region includes the Negev, where water scarcity is a factor
that will in effect lessen the future projection of water demand. These preliminary
results highlight the local and regional differences that might be expected in
irrigation demand and do not account for the possibility the crop stomata may
close in response to increased near-surface air temperatures, resulting in little
difference in crop evapotranspiration, but lower yields owing to the increased crop
stress of an increased canopy temperature (Kimball & Bernacchi 2006). Higher
atmospheric CO2 may also reduce stomata activity. An overall increase in local
and regional irrigation demand has serious implications for Jordan since further
stress, including increased salinity, will be put on the groundwater resource. Israel
has already invested heavily in the desalination of groundwater. Jordan may have
to do likewise.

The modelling framework proposed has the same uncertainties as outlined
by Wilby & Harris (2006). These uncertainties in model application are the
choice of the SRES scenario; the subsequent regional climate projections; the
probabilities and rainfall intensity distribution chosen for the weather generator;
the structure and calibration of the hydrological models and the sampling errors
of the observed data used to define the structure and parameters of the model
ensemble. In particular, there are limited daily flow data with which to calibrate
and test the hydrological models, not only in the upper Jordan but also in the
side wadis and other tributaries that comprise the Jordan drainage network.
As such, this and other model chains cannot provide absolute changes in the
rainfall–runoff response, but rather give an indication of the possible changes in
the distribution of flows. Further complications in the case of the Jordan River
include an inability to quantify exactly the volume of water abstracted from
different reaches owing to the numerous and diffuse nature of the abstractions;
further regulation or quantification of these abstractions may help manage the
resource. Until such quantification is done, it will be difficult to separate the
effect of abstractions from that of climate. Further investigation is also required
to determine whether the use of a weather generator approach introduces bias
itself, as suggested here where more rain was predicted at the margins of the
rainy season than observed. In addition, further work is needed to determine how
important this bias is in terms of other uncertainties such as structure of the
climate model and the choice of emission scenario. A potentially fruitful method
for progress in the development of coupled climate-hydrological assessments would
be the determination of what aspects of the climate or weather are most critical to
the hydrological assessment. The climate and weather projections from a GCM,
RCM, weather generator or a combination of these could then be tested, in terms
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of these aspects, against observation to assess reliability. In addition, further work
is required to assess the capability of climate models to simulate the frequency and
duration of rainfall events, as well as the magnitude. This capability assessment is
required to determine how well antecedent moisture conditions and groundwater
recharge can be estimated and whether the increases in the simulated rainfall
extremes are valid.

Although coupling uncertainties together means that the quantification of the
runoff response is likely to be inaccurate, the modelling framework can be used to
explore the hydrological system and to assess the impact of different scenarios and
management decisions. At present, this study is limited in that only rainfall and
runoff are considered. Further work is required to understand the implications
of the projected temperature and precipitation changes on other aspects of the
water resource, such as groundwater recharge and soil moisture availability. This
task has been started by Menzel et al. (in press), using another methodology, but
further work is required to substantiate initial projections of change.

It is recommended that an ensemble approach to climate and hydrological
modelling be taken to account for structural uncertainty. In particular, it is useful
that a number of studies do the same thing so that results can be compared (e.g.
Samuels et al. 2009). In addition, it is recommended that a study of the effects of
parameter uncertainty in the INCA and Pitman models on the modelled flows be
done using an ensemble of generated weather time series. Further applications of
the framework proposed here and other coupled climate-hydrological approaches
will allow a more extensive review of potential outcomes to population and climate
change to be achieved. With such an ensemble approach, care must be taken to use
the same SRES emission scenarios, time periods and spatial scale of comparison.
This will require discussion and cooperation between hydrological modellers
of the nature already achieved in the ENSEMBLES climate-modelling project
(http://www.ensembles7eu.org). Although such an ensemble approach will be
useful to quantify uncertainties, this approach should be balanced with a diversity
of climate and hydrological modelling approaches that cover a range of emission
scenarios and spatial scales. A diversity of approaches will help understand a
range of possible futures and may explain discrepancies in the projected flows
between the upper River Jordan and the Wadi Faynan.

6. Conclusions

This study is one of the first to combine an RCM, a weather generator and
hydrological models to project the likely rainfall–runoff response of the upper
River Jordan and side Wadis in Jordan, framing the results within other
contemporary research. A substantial dataset has been collated to develop and
test the modelling framework, and in a data-poor region, this represents a
substantial undertaking. The modelled results provide a contribution to the
debate about how the runoff response will change in the upper Jordan River
and the side wadis of western Jordan.

Owing to the uncertainties associated with the chosen greenhouse gas emissions
scenario, the RCM, the weather generator and the hydrological models, the results
can only be assumed to be indicative at this stage. Nevertheless, the modelled
outcomes suggest that although the mean annual flow of the River Jordan will
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reduce, the baseflow of the upper Jordan will not change significantly in response
to climate change, although flood extremes may increase—a result corroborated
by other comparable studies.

The results of this study suggest that the impact of precipitation decreases on
flow may be, to a degree, mitigated by the contribution of groundwater. However,
the combined effects of expected population increase and the changes in the
projected climate are yet to be modelled. Although the groundwater levels appear
to be maintained in response to climate change alone, it is likely that they will
decrease if the population increases. Water security in Jordan, and Israel and the
West Bank, will probably depend on how exploitable the groundwater reserves
prove to be.
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