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Abstract

Machine learning algorithms are inherently multiobjective in nature, where approximation error minimiza-

tion and model’s complexity simplification are two conflicting objectives. We proposed a multiobjective

genetic programming (MOGP) for creating a heterogeneous flexible neural tree (HFNT), tree-like flexible

feedforward neural network model. The functional heterogeneity in neural tree nodes was introduced to

capture a better insight of data during learning because each input in a dataset possess different features.

MOGP guided an initial HFNT population towards Pareto-optimal solutions, where the final population

was used for making an ensemble system. A diversity index measure along with approximation error and

complexity was introduced to maintain diversity among the candidates in the population. Hence, the

ensemble was created by using accurate, structurally simple, and diverse candidates from MOGP final

population. Differential evolution algorithm was applied to fine-tune the underlying parameters of the se-

lected candidates. A comprehensive test over classification, regression, and time-series datasets proved the

efficiency of the proposed algorithm over other available prediction methods. Moreover, the heterogeneous

creation of HFNT proved to be efficient in making ensemble system from the final population.

Keywords: Pareto-based multiobjectives, flexible neural tree, ensemble, approximation, feature

selection;

1. Introduction

Structure optimization of a feedforward neural network (FNN) and its impact on FNN’s generalization

ability inspired the flexible neural tree (FNT) [1]. FNN components such as weights, structure, and

activation function are the potential candidates for the optimization, which improves FNN’s generalization

ability to a great extent [2]. These efforts are notable because of FNN’s ability to solve a large range of real-

world problems [3, 4, 5, 6]. Followings are the significance structure optimization methods: constructive

and pruning algorithms [7, 8], EPNet [2], NeuroEvolution of Augmenting Topologies [9], sparse neural
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trees [10], Cooperative co-evolution approach [11], etc. Similarly, many efforts focus on the optimization

of hybrid training of FNN such as [12, 13, 14]. FNT was an additional step into this series of efforts,

which was proposed to evolve as a tree-like feed-forward neural network model, where the probabilistic

incremental program evolution (PIPE) [15] was applied optimize the tree structure [1]. The underlying

parameter vector of the developed FNT (weights associated with the edges and arguments of the activation

functions) was optimized by metaheuristic algorithms, which are nature-inspired parameter optimization

algorithms [16]. The evolutionary process allowed FNT to select significant input features from an input

feature set.

In the design of FNT, the non-leaf nodes are the computational node, which takes an activation

function. Hence, rather than relying on a fixed activation function, if the selection of activation function

at the computational nodes is allowed to be selected by the evolutionary process. Then, it produces

heterogeneous FNTs (HFNT) with the heterogeneity in its structure, computational nodes, and input set.

In addition, heterogeneous function allowed HFNT to capture different feature of the datasets efficiently

since each input in the datasets posses different features. The evolutionary process provides adaptation

in structure, weights, activation functions, and input features. Therefore, an optimum HFNT is the

one that offers the lowest approximation error with the simplest tree structure and the smallest input

feature set. However, approximation error minimization and structure simplification are two conflicting

objectives [17]. Hence, a multiobjective evolutionary approach [18] may offer an optimal solution(s) by

maintaining a balance between these objectives.

Moreover, in the proposed work, an evolutionary process guides a population of HFNTs towards

Pareto-optimum solutions. Hence, the final population may contain several solutions that are close to

the best solution. Therefore, an ensemble system was constructed by exploiting many candidates of the

population (candidate, solution, and model are synonymous in this article). Such ensemble system takes

advantage of many solutions including the best solution [19]. Diversity among the chosen candidates holds

the key in making a good ensemble system [20]. Therefore, the solutions in a final population should fulfill

the following objectives: low approximation error, structural simplicity, and high diversity. However, these

objectives are conflicting to each other. A fast elitist nondominated sorting genetic algorithm (NSGA-II)-

based multiobjective genetic programming (MOGP) was employed to guide a population of HFNTs [21].

The underlying parameters of selected models were further optimized by using differential evaluation (DE)

algorithm [22]. Therefore, we may summarize the key contributions of this work are as follows:

1) A heterogeneous flexible neural tree (HFNT) for function approximation and feature selection was

proposed.

2) HFNT was studied under an NSGA-II-based multiobjective genetic programming framework. Thus,

it was termed HFNTM.

3) Alongside approximation error and tree size (complexity), a diversity index was introduced to maintain

2



diversity among the candidates in the population.

4) HFNTM was found competitive with other algorithms when compared and cross-validated over classi-

fication, regression, and time-series datasets.

5) The proposed evolutionary weighted ensemble of HFNTs final population further improved its perfor-

mance.

A detailed literature review provides an overview of FNT usage over the past few years (Section

2). Conclusions derived from literature survey supports our HFNTM approach, where a Pareto-based

multiobjective genetic programming was used for HFNT optimization (Section 3.1). Section 3.2 provides

a detailed discussion on the basics of HFNT: MOGP for HFNT structure optimization, and DE for HFNT

parameter optimization. The efficiency of the above-mentioned hybrid and complex multiobjective FNT

algorithm (HFNTM) was tested over various prediction problems using a comprehensive experimental set-

up (Section 4). The experimental results support the merits of proposed approach (Section 5). Finally,

we provide a discussion of experimental outcomes in Section 6 followed by conclusions in Section 7.

2. Literature Review

The literature survey describes the following points: basics of FNT, approaches that improvised FNT,

and FNTs successful application to various real-life problems. Subsequently, the shortcomings of basic

FNT version are concluded that inspired us to propose HFNTM.

FNT was first proposed by Chen et al. [1], where a tree-like-structure was optimized by using PIPE.

Then, its approximation ability was tested for time-series forecasting [1] and intrusion detection [23],

where a variant of simulated annealing (called degraded ceiling) [24], and particle swarm optimization

(PSO) [25], respectively, were used for FNT parameter optimization. Since FNT is capable of input feature

selection, in [26], FNT was applied for selecting input features in several classification tasks, in which

FNT structure was optimized by using genetic programming (GP) [27], and the parameter optimization

was accomplished by using memetic algorithm [28]. Additionally, they defined five different mutation

operators, namely, changing one terminal node, all terminal nodes, growing a randomly selected sub-tree,

pruning a randomly selected sub-tree, and pruning redundant terminals. Li et al. [29] proposed FNT-

based construction of decision trees whose nodes were conditionally replaced by neural node (activation

node) to deal with continuous attributes when solving classification tasks. In many other FNT based

approaches, like in [30], GP was applied to evolve hierarchical radial-basis-function network model, and

in [31] a multi-input-multi-output FNT model was evolved. Wu et al. [32] proposed to use grammar guided

GP [33] for FNT structure optimization. Similarly, in [34], authors proposed to apply multi-expression

programming (MEP) [35] for FNT structure optimization and immune programming algorithm [36] for

the parameter vector optimization. To improve classification accuracy of FNT, Yang et al. [37] proposed

a hybridization of FNT with a further-division-of-partition-space method. In [38], authors illustrated
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crossover and mutation operators for evolving FNT using GP and optimized the tree parameters using

PSO algorithm.

A model is considered efficient if it has generalization ability. We know that a consensus decision

is better than an individual decision. Hence, an ensemble of FNTs may lead to a better-generalized

performance than a single FNT. To address this, in [39], authors proposed to make an ensemble of FNTs

to predict the chaotic behavior of stock market indices. Similarly, in [40], the proposed FNTs ensemble

predicted the breast cancer and network traffic better than individual FNT. In [41], protein dissolution

prediction was easier using ensemble than the individual FNT.

To improve the efficiency in terms of computation, Peng et al. [42] proposed a parallel evolving algo-

rithm for FNT, where the parallelization took place in both tree-structure and parameter vector popula-

tions. In another parallel approach, Wang et al. [43] used gene expression programming (GEP) [44] for

evolving FNT and used PSO for parameter optimization.

A multi-agent system [45] based FNT (MAS-FNT) algorithm was proposed in [46], which used GEP

and PSO for the structure and parameter optimization, respectively. The MAS-FNT algorithm relied on

the division of the main population into sub-population, where each sub-population offered local solutions

and the best local solution was picked-up by analyzing tree complexity and accuracy.

Chen et al. [1, 26] referred the arbitrary choice of activation function at non-leaf nodes. However, they

were restricted to use only Gaussian functions. A performance analysis of various activation function is

available in [47]. Bouaziz et al. [48, 49] proposed to use beta-basis function at non-leaf nodes of an FNT.

Since beta-basis function has several controlling parameters such as shape, size, and center, they claimed

that the beta-basis function has advantages over other two parametric activation functions. Similarly,

many other forms of neural tree formation such as balanced neural tree [50], generalized neural tree [51],

and convex objective function neural tree [52], were focused on the tree improvement of neural nodes.

FNT was chosen over the conventional neural network based models for various real-world applications

related to prediction modeling, pattern recognition, feature selection, etc. Some examples of such appli-

cations are cement-decomposing-furnace production-process modeling [53], time-series prediction from

gene expression profiling [54]. stock-index modeling [39], anomaly detection in peer-to-peer traffic [55],

intrusion detection [56], face identification [57], gesture recognition [58], shareholder’s management risk

prediction [59], cancer classification [60], somatic mutation, risk prediction in grid computing [61], etc.

The following conclusions can be drawn from the literature survey.First, FNT was successfully used

in various real-world applications with better performance than other existing function approximation

models. However, it was mostly used in time-series analysis. Second, the lowest approximation error

obtained by an individual FNT during an evolutionary phase was considered as the best structure that

propagated to the parameter optimization phase. Hence, there was no consideration as far as structural

simplicity and generalization ability are concerned. Third, the computational nodes of the FNT were
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fixed initially, and little efforts were made to allow for its automatic adaptation. Fourth, little attention

was paid to the statistical validation of FNT model, e.g., mostly the single best model was presented as

the experimental outcome. However, the evolutionary process and the meta-heuristics being stochastic

in nature, statistical validation is inevitably crucial for performance comparisons. Finally, to create a

generalized model, an ensemble of FNTs were used. However, FNTs were created separately for making

the ensemble. Due to stochastic nature of the evolutionary process, FNT can be structurally distinct when

created at different instances. Therefore, no explicit attention was paid to create diverse FNTs within a

population itself for making ensemble. In this article, a heterogeneous FNT called HFNT was proposed

to improve the basic FNT model and its performance by addressing above mentioned shortcomings.

3. Multi-objectives and Flexible Neural Tree

In this section, first, Pareto-based multiobjective is discussed. Second, we offer a detailed discussion

on FNT and its structure and parameter optimization using NSGA-II-based MOGP and DE, respectively.

Followed by a discussion on making an evolutionary weighted ensemble of the candidates from the final

population.

3.1. Pareto-Based Multi-objectives

Usually, learning algorithms owns a single objective, i.e., the approximation error minimization, which

is often achieved by minimizing mean squared error (MSE) on the learning data. MSE E on a learning

data is computed as:

E =
1

N

N∑

i=1

(di − yi)2, (1)

where di and yi are the desired output and the model’s output, respectively and N indicates total data

pairs in the learning set. Additionally, a statistical goodness measure, called, correlation coefficient r that

tells the relationship between two variables (i.e., between the desired output d and the model’s output y)

may also be used as an objective. Correlation coefficient r is computed as:

r =

∑N
i=1

(
di − d̄i

)
(yi − ȳi)√∑N

i=1

(
di − d̄i

)2∑N
i=1 (yi − ȳi)

2
, (2)

where d̄ and ȳ are means of the desired output d and the model’s output y, respectively.

However, single objective comes at the expense of model’s complexity or generalization ability on

unseen data, where generalization ability broadly depends on the model’s complexity [62]. A common

model complexity indicator is the number of free parameters in the model. The approximation error

(1) and the number of free parameters minimization are two conflicting objectives. One approach is to

combine these two objectives as:

f = αE + (1− α)D, (3)

5



where 0 ≤ α ≤ 1 is a constant, E is the MSE (1) and D is the total free parameter in a model.

The scalarized objective f in (3), however, has two disadvantages. First, determining an appropriate α

that controls the conflicting objectives. Hence, generalization ability of the produced model will be a

mystery [63]. Second, the scalarized objective f in (3) leads to a single best model that tells nothing

about how the conflicting objectives were achieved. In other words, no single solution exists that may

satisfy both objectives, simultaneously.

We study a multiobjective optimization problem of the form:

minimize {f1(w), f2(w), . . . , fm(w)}
subject to w ∈W
where we have m ≥ 2 objective functions fi : Rn → R. We denote the vector of objective functions by

f(w) = 〈f1(w), f2(w), . . . , fm(w)〉. The decision (variable) vectors w = 〈w1, w2, . . . , wn〉 belong to the

set W ⊂ Rn, which is a subset of the decision variable space Rn. The word ‘minimize’ means that we

want to minimize all the objective functions simultaneously.

A nondominated solution is one in which no one objective function can be improved without a simul-

taneous detriment to at least one of the other objectives of the solution [21]. The nondominated solution

is also known as a Pareto-optimal solution.

Definition 1. Pareto-dominance - A solution w1 is said to dominate a solution w2 if ∀i = 1, 2, . . . ,m,

fi(w1) ≤ fi(w2), and there exists j ∈ {1, 2, . . . ,m} such that fj(w1) < fj(w2) holds.

Definition 2. Pareto-optimal - A solution w1 is called Pareto-optimal if there does not exist any other

solution that dominates it. A set Pareto-optimal solution is called Pareto-front.

Algorithm 1 is a basic framework of NSGA-II based MOGP, which was used for computing Pareto-

optimal solutions from an initial HFNT population. The individuals in MOGP were sorted according to

their dominance in population. Note that the function size(·) returns total number of rows (population

size) for a 2-D matrix and returns total number of elements for a vector. The Moreover, individuals were

sorted according to the rank/Pareto-front. MOGP is an elitist algorithm that allowed the best individuals

to propagate into next generation. Diversity in the population was maintained by measuring crowding

distance among the individuals [21].
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Data: Problem and Objectives

Result: A bag M of solutions selected from Pareto-fronts

initialization: HFNT population P ;

evaluation: nondominated sorting of P ;

while termination criteria not satisfied do

selection: binary tournament selection;

generation: a new population Q;

recombination: R = P +Q;

evaluation: nondominated sorting of R;

elitism: P = size(P ) best individuals from R;

end

Algorithm 1: NSGA-II based multiobjective genetic programming

3.2. Heterogeneous Flexible Neural Tree

HFNT is analogous to a multi-layer feedforward neural network that has over-layer connections and

activation function at the nodes. HFNT construction has two phases [1]: 1) the tree construction phase,

in which evolutionary algorithms are applied to construct tree-like structure; and 2) the parameter-tuning

phase, in which genotype of HFNT (underlying parameters of tree-structure) is optimized by using pa-

rameter optimization algorithms.

To create a near-optimum model, phase one starts with random tree-like structures (population of

initial solutions), where parameters of each tree are fixed by a random guess. Once a near-optimum

tree structure is obtained, parameter-tuning phase optimizes its parameter. The phases are repeated

until a satisfactory solution is obtained. Figure 1 is a lucid illustration of these two phases that work

in some co-evolutionary manner. From Figure 1, it may be observed that two global search algorithms

MOGP (for structure optimization) and DE (for parameter optimization) works in a nested manner to

obtain a near optimum tree that may have less complex tree structure and better parameter. Moreover,

evolutionary algorithm allowed HFNT to select activation functions and input feature at the nodes from

sets of activation functions and input features, respectively. Thus, HFNT possesses automatic feature

selection ability.

3.2.1. Basic Idea of HFNT

An HFNT S is a collection of function set F and instruction set T :

S = F ∪ T =
{

+k
2 ,+

k
3 , · · · ,+k

tn

}
∪ {x1, x2, . . . , xd} (4)

where +k
j (j = 2, 3, . . . , tn) denotes a non-leaf instruction (a computational node). It receives 2 ≤ j ≤ tn

arguments and takes an activation function k from a set of activation functions. Maximum arguments tn

to a computational node are predefined. A set of seven activation functions is shown in Table 1. Leaf
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Input: Training data and
parameter settings

MOGP/SOGP: Initialization of HFNT
Population and objective function setting

If MOGP ?

NSGA-II-based
nondominated sorting

Fitness based sorting

New population using selection,
crossover, and mutation

Fitness Evaluation

max
iteration?

Yes

No

Yes No

DE: Initialization of the population for parameter
tuning for a selected fixed HFNT structure

max
iteration?

Yes

No

New population using selection,
crossover, and mutation

Satisfactory
solution found ?

YesNo
STOP

Figure 1: Co-evolutionary construction of the heterogeneous flexible neural tree.
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Table 1: Set of activation function used in neural tree construction

Activation-function k Expression for ϕk
i (a, b, x)

Gaussian Function 1 f(x, a, b) = exp
(
−((x− a)2)/(b2)

)
Tangent-Hyperbolic 2 f(x) = (ex − e−x)/(ex + e−x)

Fermi Function 3 f(x) = 1/(1 + e−x)

Linear Fermi 4 f(x, a, b) = a× 1/((1 + e−x)) + b

Linear Tangent-hyperbolic 5 f(x, a, b) = a× (ex − e−x)/(ex + e−x) + b

Bipolar Sigmoid 6 f(x, a) = (1− e−2xa)/(a(1 + e−2xa))

Unipolar Sigmoid 7 f(x, a) = (2|a|)/(1 + e−2|a|x)

node’s instruction x1, x2, . . . , xd denotes input variables. Figure 2 is an illustration of a typical HFNT.

Similarly, Figure 3 is an illustration of a typical node in an HFNT.

The i-th computational node (Figure 3) of a tree (say i-th node in Figure 2) receives ni inputs (denoted

as zij) through ni connection-weights (denoted as wij) and takes two adjustable parameters ai and bi that

represents the arguments of the activation function ϕki (.) at that node. The purpose of using an activation

function at a computational node is to limit the output of the computational node within a certain range.

For example, if the i-th node contains a Gaussian function k = 1 (Table 1). Then, its output yi is

computed as:

yi = ϕki (ai, bi, oi) = exp

(
−
(
oi − ai
bi

))
(5)

where oi is the weighted summation of the inputs zij and weights wij (j = 1 to ni) at the i-th computational

node (Figure 3), also known as excitation of the node. The net excitation oi of the i-th node is computed

as:

oi =

ni∑

j=1

wijz
i
j (6)

where zij ∈ {x1, x2, . . . , xd} or, zij ∈ {y1, y2, . . . , ym}, i.e., zij can be either an input feature (leaf node value)

or the output of another node (a computational node output) in the tree. Weight wij is the connection

weight of real value in the range [wl, wu]. Similarly, the output of a tree y is computed from the root node

of the tree, which is recursively computed by computing each node’s output using (5) from right to left

in a depth-first method.

The fitness of a tree depends on the problem. Usually, learning algorithm uses approximation error,

i.e., MSE (1). Other fitness measures associated with the tree are tree size and diversity index. The tree

size is the number of nodes (excluding root node) in a tree, e.g., the number of computational nodes and

leaf nodes in the tree in Figure 2 is 11 (three computational nodes and eight leaf-nodes). The number

of distinct activation functions (including root node function) randomly selected from a set of activation

functions gives the diversity index of a tree. Total activation functions (denoted as k in +k
j ) selected by

the tree in Figure 2 is three (+1
3,+

4
3, and +5

3). Hence, its diversity index is three.
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Figure 2: Typical representation of a neural tree S = F ∪ T whose function instruction set F =
{

+1
3,+

4
2,+

5
3

}
and terminal

instruction set T = {x1, x2, x3, x4}.

yini∑
j=1

wi
jz

i
j
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ni
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1

wi
2

zi1

zi2

zini

Figure 3: Illustration of a computational node. The variable ni indicates the number of inputs zij and weights wi
j received

at the i-th node and the variable yi is the output of the i-th node.
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3.3. Structure and Parameter Learning (Near optimal Tree)

A tree that offers the lowest approximation error and the simplest structure is a near optimal tree,

which can be obtained by using an evolutionary algorithm such as GP [27], PIPE [15], GEP [44], MEP [35],

and so on. To optimize tree parameters, algorithms such as genetic algorithm [64], evolution strategy [64],

artificial bee colony [65], PSO [25, 66], DE [22], and any hybrid algorithm such as GA and PSO [67] can

be used.

3.3.1. Tree-construction

The proposed multiobjective optimization of FNT has three fitness measures: approximation error (1)

minimization, tree size minimization, and diversity index maximization. These objectives are simulta-

neously optimized during the tree construction phase using MOGP, which guides an initial population

P of random tree-structures according to Algorithm 1. The detailed description of the components of

Algorithm 1 are as follows:

Selection. In selection operation, a mating pool of size size(P )r is created using binary tournament

selection, where two candidates are randomly selected from a population and the best (according to rank

and crowding distance) among them is placed into the mating pool. This process is continued until the

mating pool is full. An offspring population Q is generated by using the individuals of mating pool.

Two distinct individuals (parents) are randomly selected from the mating pool to create new individuals

using genetic operators: crossover and mutation. The crossover and mutation operators are applied with

probabilities pc and pm, respectively.

Crossover. In crossover operation, randomly selected sub-trees of two parent trees were swapped. The

swapping includes the exchange of activation-nodes, weights, and inputs as it is described in [38, 64, 68].

Mutation. The mutation of a selected individual from mating pool took place in the following manner [38,

64, 68]:

1) A randomly selected terminal node is replaced by a newly generated terminal node.

2) All terminal nodes of the selected tree were replaced by randomly generated new terminal nodes.

3) A randomly selected terminal node or a computational node is replaced by a randomly generated

sub-tree.

4) A randomly selected terminal node is replaced by a randomly generated computational node.

In the proposed MOGP, during the each mutation operation event, one of the above-mentioned four

mutation operators was randomly selected for mutation of the tree.

Recombination. The offspring population Q and the main population P , are merged to make a combined

population R.
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Elitism. In this step, size(Q) worst individuals are weeded out. In other words, size(P ) best individuals

are propagated to a new generation as main population P .

3.3.2. Parameter-tuning

In parameter-tuning phase, a single objective, i.e., approximation error was used in optimization of

HFNT parameter by DE. The tree parameters such as weights of tree edges and arguments of activation

functions were encoded into a vector w = 〈w1, w2, . . . , wn〉 for the optimization. In addition, a cross-

validation (CV) phase was used for statistical validation of HFNTs.

The basics of DE is as follows. For an initial populationH of parameter vectors wi for i = 1 to size(H),

DE repeats its steps mutation, recombination, and selection until an optimum parameter vector w∗ is

obtained. DE updates each parameter vector wi ∈ H by selecting the best vector wg
i and three random

vectors r0
i , r

1
i , and r2

i from H such that r0
i 6= r1

i 6= r2
i holds. The random vector r0 is considered as a

trial vector wt
i . Hence, for all i = 1, 2, . . . , size(H), and j = 1, 2, . . . , n, the j-th variable wtij of i-th

trail-vectors wt
i is generated by using crossover, mutation, and recombination as:

wtij =





r
(0)
ij + F (wgij − r0

ij) + F (r1
ij − r2

ij) uij < cr ‖ j = k

r
(0)
ij uij ≥ cr & j 6= k

(7)

where k is a random index in [1, n], uij is within [0, 1], k is in {1, 2, . . . , n}, cr is crossover probability,

and F ∈ [0, 2] is mutation factor. The trail vector wt
i is selected if

wi =





wt
i f(wt

i) < f(wi)

wi f(wt
i) ≥ f(wi)

(8)

where f(.) returns fitness of a vector as per (1). Hence, the process of crossover, mutation, recombination,

and selection are repeated until an optimal parameter vector solution w∗ is found.

3.4. Ensemble: Making use of MOGP Final Population

In tree construction phase, MOGP provides a population from which we can select tree models for

making the ensemble. Three conflicting objectives such as approximation error, tree size, and diversity

index allows the creation of Pareto-optimal solutions, where solutions are distributed on various Pareto-

optimal fronts according to their rank in population. Ensemble candidates can be selected from the first

line of solutions (Front 1), or they can be chosen by examining the three objectives depending on the user’s

need and preference. Accuracy and diversity among the ensemble candidate are important [20]. Hence, in

this work, approximation error, and diversity among the candidates were given preference over tree size.

Not to confuse “diversity index” with “diversity”. The diversity index is an objective in MOGP, and the

diversity is the number of distinct candidates in an ensemble. A collection M of the diverse candidate

is called a bag of candidates [69]. In this work, any two trees were considered diverse (distinct) if the

followings hold: 1) Two trees were of different size. 2) The number of function nodes/or leaf nodes in two
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trees were dissimilar. 3) Two models used a different set of input features. 4) Two models used a different

set of activation functions. Hence, diversity div of ensemble M (a bag of solutions) was computed as:

div =
distinct(M)

size(M)
, (9)

where distinct(M) is a function that returns total distinct models in an ensemble M and size(M) is a

total number of models in the bag.

Now, for a classification problem, to compute combined vote of respective candidate’s outputs m1,

m2, . . ., msize(M) of bag M and classes ω1, ω2, . . . , ωC , we used an indicator function I (.) which takes 1

if ‘.’ is true, and takes 0 if ‘.’ is false. Thus, ensemble decisions by weighted majority voting is computed

as [70, 71]:

y = arg
C

max
j=1

size(M)∑

t=1

wtI (mt = ωj) , (10)

where wt is weight associated with the t-th candidate mt in an ensemble M and y is set to class ωj if the

total weighted vote received by ωj is higher than the total vote received by any other class. Similarly, the

ensemble of regression methods was computed by weighted arithmetic mean as [70]:

y =

size(M)∑

t=1

wtmt, (11)

where wt and mt are weight and output of t-th candidate in a bag M , respectively, and y is the ensemble

output, which is then used for computing MSE (1) and correlation coefficient (2). The weights may be

computed according to fitness of the models, or by using a metaheuristic algorithm. In this work, DE

was applied to compute the ensemble weights wt, where population size was set to 100 and number of

function evaluation was set to 300,000.

3.5. Multiobjective: A General Optimization Strategy

A summary of general HFNT learning algorithm is as follows:

Step 1. Initializing HFNT training parameters.

Step 2. Apply tree construction phase to guide initial HFNT population towards Pareto-optimal solu-

tions.

Step 3. Select tree-model(s) from MOGP final population according to their approximation error, tree

size, and diversity index from the Pareto front.

Step 4. Apply parameter-tuning phase to optimize the selected tree-model(s).

Step 5. Go to Step 2, if no satisfactory solution found. Else go to Step 6.

Step 6. Using a cross-validation (CV) method to validate the chosen model(s).

Step 7. Use the chosen tree-model(s) for making ensemble (recommended).

Step 8. Compute ensemble results of the ensemble model (recommended).
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Table 2: Multiobjective flexible neural tree parameter set-up for the experiments

Parameter Definition Default Rang Value

Scaling Input-features scaling range. [dl, du], dl ∈ R, du ∈ R [0,1]

Tree height Maximum depth (layers) of a tree model.
{
td ∈ Z+|td > 1

}
4

Tree arity Maximum arguments of a node +k
tn.

{
tn ∈ Z+|n ≥ 2

}
5

Node range Search space of functions arguments. [nl, nu], nl ∈ R, nu ∈ R [0,1]

Edge range Search space for edges (weights) of tree. [wl, wu], wl ∈ R, wu ∈ R [-1,1]

P MOGP population. size(P ) > 20 30

Mutation Mutation probability pm 0.3

Crossover Crossover probability pc = 1− pm 0.7

Mating pool Size of the pool of selected candidates. size(P )r, 0 ≤ r ≤ 1 0.5

Tournament Tournament selection size. 2 ≤ bt ≤ size(P ) 2

H DE population. size(H) ≥ 50 50

General ig Maximum number of trails.
{
ig ∈ Z+|ig > 1

}
3

Structure is MOGP iterations
{
is ∈ Z+|is ≥ 50

}
30

Parameter ip DE iterations
{
ip ∈ Z+|ip ≥ 100

}
1000

4. Experimental Set-Up

Several experiments were designed for evaluating the proposed HFNTM. A careful parameter-setting

was used for testing its efficiency. A detailed description of the parameter-setting is given in Table 2,

which includes: definitions, default range, and selected value. The phases of the algorithm were repeated

until the stopping criteria met, i.e., either the lowest predefined approximation error was achieved, or the

maximum function evaluations were reached. The repetition holds the key to obtaining a good solution. A

carefully designed repetition of these two phases may offer a good solution in fewer of function evaluations.

In this experiment, three general repetitions ig were used with 30 tree construction iterations is, and

1000 parameter-tuning iterations ip (Figure 1). Hence, the maximum function evaluation1 [size(P ) +

ig{is(size(P ) + size(P )r) + ipsize(H)}] was 154, 080. The DE version DE/rand − to − best/1/bin [22]

with cr equal to 0.9 and F equal to 0.7 was used in the parameter-tuning phase.

The experiments were conducted over classification, regression, and time-series datasets. A detailed

description of the chosen dataset from the UCI machine learning [72] and KEEL [73] repository is available

in Table A.17. The parameter-setting mentioned in Table 2 was used for the experiments over each dataset.

Since the stochastic algorithms depend on random initialization, a pseudorandom number generator called,

Mersenne Twister algorithm that draws random values using probability distribution in a pseudo-random

manner was used for initialization of HFNTs [74]. Hence, each run of the experiment was conducted

with a random seed drawn from the system. We compared HFNTM performance with various other

1Initial GP population + three repetition ((GP population + mating pool size) × MOGP iterations + MH population

× MH iterations) = 30 + 3× [(30 + 15)× 30 + 50× 1000] = 154, 080.
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Figure 4: Pareto-front of a final population of 50 individuals generated from the training dataset of time-series problem

MGS. (a) 3-D plot of solutions and a Pareto-front is a surface. (b) 2-D plot of Error versus complexity (in blue dots) and

Error versus diversity (in red squares).

approximation models collected from literature. A list of such models is provided in Table B.18. A

developed software tool based on the proposed HFNTM algorithm for predictive modeling is available

in [75].

To construct good ensemble systems, highly diverse and accurate candidates were selected in the

ensemble bag M . To increase diversity (9) among the candidates, the Pareto-optimal solutions were

examined by giving preference to the candidates with low approximation error, small tree size and distinct

from others selected candidates. Hence, size(M) candidates were selected from a population P . An

illustration of such selection method is shown in Figure 4, which represents an MOGP final population of

50 candidate solutions computed over dataset MGS.

MOGP simultaneously optimized three objectives. Hence, the solutions were arranged on the three-

dimensional map (Figure 4(a)), in which along the x-axis, error was plotted; along the y-axis, tree size

was plotted; and along z-axis, diversity index (diversity) was plotted. However, for the simplicity, we have

arranged solutions also in 2-D plots (Figure 4(b)), in which along the x-axis, computed error was plotted;

and along the y-axis, tree size (indicated by blue dots) and diversity index (indicated by red squares)

were plotted. From Figure 4(b), it is evident that a clear choice is difficult since decreasing approximation

error increases models tree size (blue dots in Figure 4(b)). Similarly, decreasing approximation error

increases models tree size and diversity (red squares in Figure 4(b)). Hence, solutions along the Pareto-

front (rank-1), i.e., Pareto surface indicated in the 3-D map of the solutions in Figure 4(a) were chosen for

the ensemble. For all datasets, ensemble candidates were selected by examining Pareto-fronts in a similar

fashion as described for the dataset MGS in Figure 4.

The purpose of our experiment was to obtain sufficiently good prediction models by enhancing pre-
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Figure 5: Comparison of single and multiobjective optimization course.

dictability and lowering complexity. We used MOGP for optimization of HFNTs. Hence, we were compro-

mising fitness by lowering models complexity. In single objective optimization, we only looked for models

fitness. Therefore, we did not possess control over model’s complexity. Figure 5 illustrates eight runs of

both single and multiobjective optimization course of HFNT, where models tree size (complexity) is indi-

cated along y-axis and x-axis indicates fitness value of the HFNT models. The results shown in Figure 5

was conducted over MGS dataset. For each single objective GP and multiobjective GP, optimization

course was noted, i.e., successive fitness reduction and tree size were noted for 1000 iterations.

It is evident from Figure 5 that the HFNTM approach leads HFNT optimization by lowering model’s

complexity. Whereas, in the single objective, model’s complexity was unbounded and was abruptly

increased. The average tree size of eight runs of single and eight runs of multiobjective were 39.265 and

10.25, respectively; whereas, the average fitness were 0.1423 and 0.1393, respectively. However, in single

objective optimization, given the fact that the tree size is unbounded, the fitness of a model may improve

at the expense of model’s complexity. Hence, the experiments were set-up for multiobjective optimization

that provides a balance between both objectives as described in Figure 4.

5. Results

Experimental results were classified into three categories: classification, regression, and time-series.

Each category has two parts: 1) First part describes the best and average results obtained from the

experiments; 2) Second part describes ensemble results using tabular and graphical form.

5.1. Classification dataset

We chose five classification datasets for evaluating HFNTM, and the classification accuracy was com-

puted as:

fa =
tp+ tn

tp+ fn+ fp+ tn
, (12)

where tp is the total positive samples correctly classified as positive samples, tn is the total negative

samples correctly classified as negative samples, fp is the total negative samples incorrectly classified as
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positive samples, and fn is the total positive samples incorrectly classified as negative samples. Here, for

a binary class classification problem, the positive sample indicates the class labeled with ‘1’ and negative

sample indicates class labeled with ‘0’. Similarly, for a three-class ( ω1, ω2, and ω3) classification problem,

the samples which are labeled as a class ω1 are set to 1, 0, 0, i.e., set to positive for class ω1 and negative

for ω2, and ω3. The samples which are labeled as a class ω2 are set to 0, 1, 0, and the samples which are

labeled as a class ω3 are set to 0, 0, 1.

5.1.1. 10-Fold CV

The experiments on classification dataset were conducted in three batches that produced 30 models,

and each model was cross-validated using 10-fold CV, in which a dataset is equally divided into 10 sets

and the training of a model was repeated 10 times. Each time a distinct set was picked for the testing

the models, and the rest of nine set was picked for the training of the model. Accordingly, the obtained

results are summarized in Table 3. Each batch of experiment produced an ensemble system of 10 models

whose results are shown in Table 7.

The obtained results presented in Table 3 describes the best and mean results of 30 models. We

present a comparative study of the best 10-fold CV models results of HFNTM and the results reported in

the literature in Table 4. In Table 4, the results of HDT and FNT [29] were of 10 fold CV results on the

test dataset. Whereas, the results of FNT [76] was the best test accuracy and not the CV results. The

results summarized in Table 4 suggests a comparatively better performance of the proposed HFNTM over

the previous approaches. For the illustration of a model created by HFNTM approach, we chose the best

model of dataset WDB that has a test accuracy of 97.02% (shown in Table 3). A pictorial representation

of the WDB model is shown in Figure 6, where the model’s tree size is 7, total input features are 5,

(x3, x4, x12, x17, and x22) and the selected activation function is tangent hyperbolic (k = 2) at both the

non-leaf nodes. Similarly, we may represent models of all other datasets.

Table 3: Best and mean results of 30 10-fold CV models (300 runs) of HFNTM

Best of 30 models Mean of 30 models

Data train fa test fa tree size Features train fa test fa avg. tree size diversity

AUS 87.41% 87.39% 4 3 86.59% 85.73% 5.07 0.73

HRT 87.41% 87.04% 8 5 82.40% 80.28% 7.50 0.70

ION 90.92% 90.29% 5 3 87.54% 86.14% 6.70 0.83

PIM 78.67% 78.03% 10 5 71.12% 70.30% 6.33 8.67

WDB 97.02% 96.96% 6 5 94.51% 93.67% 7.97 0.73

In this work, Friedman test was conducted to examine the significance of the algorithms. For this

purpose, the classification accuracy (test results) was considered (Table 4). The average ranks obtained

by each method in the Friedman test is shown in Table 5. The Friedman statistic at α = 0.05 (distributed

according to chi-square with 2 degrees of freedom) is 5.991, i.e., χ2
(α,2) = 5.991. The obtained test value Q
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Table 4: Comparative results: 10-fold CV test accuracy fa and variance σ of algorithms

Algorithms AUS HRT ION PIM WDB

test fa σ test fa σ test fa σ test fa σ test fa σ

HDT [29] 86.96% 2.058 76.86% 2.086 89.65% 1.624 73.95% 2.374

FNT [29] 83.88% 4.083 83.82% 3.934 88.03% 0.953 77.05% 2.747

FNT [76] 93.66% n/a

HFNTM 87.39% 0.029 87.04% 0.053 90.29% 0.044 78.03% 0.013 96.96% 0.005

according to Friedman statistic is 6. Since Q > χ2
(α,2), then the null hypothesis that “there is no difference

between the algorithms” is rejected. In other words, the computed p-value by Friedman test is 0.049787

which is less than or equal to 0.05, i.e., p-value ≤ α-value. Hence, we reject the null hypothesis.

Table 5 describes the significance of differences between the algorithms. To compare the differences

between the best rank algorithm in Friedman test, i.e., between the proposed algorithm HFNTM and the

other two algorithms, Holm’s method [77] was used. Holm’s method rejects the hypothesis of equality

between the best algorithm (HFNTM) and other algorithms if the p-value is less than α/i, where i is

the position of an algorithm in a list sorted in ascending order of z-value (Table 6). From the post hoc

analysis, it was observed that the proposed algorithm HFNTM outperformed both HDT [29] and FNT [29]

algorithms.

Table 5: Average rankings of the algorithms

Algorithm Ranking

HFNTM 1.0

HDT 2.5

FNT 2.5

Table 6: Post Hoc comparison between HFNTM and other algorithms for α = 0.1

i algorithm z p α/i Hypothesis

2 HDT 2.12132 0.033895 0.05 rejected

1 FNT 2.12132 0.033895 0.1 rejected

5.1.2. Ensembles

The best accuracy and the average accuracy of 30 models presented in Table 3 are the evidence of

HFNTM efficiency. However, as mentioned earlier, a generalized solution may be obtained by using an

ensemble. All 30 models were created in three batches. Hence, three ensemble systems were obtained. The

results of those ensemble systems are presented in Table 7, where ensemble results are the accuracies fa

obtained by weighted majority voting (10). In Table 7, the classification accuracies fa were computed over
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Figure 6: HFNT model of classification dataset WDB (test fa = 97.02%).

CV test dataset. From Table 7, it may be observed that high diversity among the ensemble candidates

offered comparatively higher accuracy. Hence, an ensemble model may be adopted by examining the

performance of an ensemble system, i.e., average tree size (complexity) of the candidates within the

ensemble and the selected input features.

An ensemble system created from a genetic evolution and adaptation is crucial for feature selection

and analysis. Summarized ensemble results in Table 7 gives the following useful information about the

HFNTM feature selection ability: 1) TSF - total selected features; 2) MSF - most significant (frequently

selected) features; and 3) MIF - most infrequently selected features. Table 7 illustrates feature selection

results.

Table 7: Ensemble results (10-fold CV) of each classification dataset

Data Batch test fa avg. D div (9) TSF MSF MIF

AUS 1 86.96% 5 0.7 4
x6, x8, x10,

x12

x1, x2, x3,

x11, x14
2 85.51% 6 0.7 5

3 86.81% 4.2 0.8 5

HRT 1 77.41% 6.8 0.5 6
x3, x4, x12,

x13
x62 70.37% 7.6 0.6 9

3 87.04% 8.1 1 10

ION 1 82.86% 7.2 0.9 15

x2, x4, x5, x27

x15, x16, x18,

x19, x21, x23,

x25, x30, x32

2 90.29% 7.3 1 16

3 86.57% 5.6 0.6 6

PIM 1 76.32% 6.9 1 8
x1, x3, x4, x5,

x6, x7
x22 64.74% 5.6 0.7 7

3 64.21% 7.4 0.9 8

WDB 1 94.29% 8.2 0.7 15
x21, x22, x24,

x25

x1, x5, x6, x8,

x14, x20, x30
2 93.75% 5 1 15

3 94.29% 10.7 0.5 15
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5.2. Regression dataset

5.2.1. 5-Fold CV

For regression dataset, the performance of HFNTM was examined by using 5-fold CV method, in which

the dataset was divided into 5 sets, each was 20% in size, and the process was repeated five times. Each

time, four set was used to training and one set for testing. Hence, a total 5 runs were used for each model.

As described in [78], MSE E = 0.5 × E was used for evaluating HFNTM, where E was computed as

per (1). The training MSE is represented as En and test MSE is represented as Et. Such setting of MSE

computation and cross-validation was taken for comparing the results collected from [78]. Table 8 presents

results of 5-fold CV of each dataset for 30 models. Hence, each presented result is averaged over a total 150

runs of experiments. Similarly, in Table 9, a comparison between HFNTM and other collected algorithms

from literature is shown. It is evident from comparative results that HFNTM performs very competitive

to other algorithms. The literature results were averaged over 30 runs of experiments; whereas, HFNTM

results were averaged of 150 runs of experiments. Hence, a competitive result of HFNTM is evidence of

its efficiency.

Moreover, HFNTM is distinct from the other algorithm mentioned in Table 9 because it performs

feature selection and models complexity minimization, simultaneously. On the other hand, the other

algorithms used entire available features. Therefore, the result’s comparisons were limited to assessing

average MSE, where HFNTM, which gives simple models in comparison to others, stands firmly competi-

tive with the others. An illustration of the best model of regression dataset DEE is provided in Figure 7,

where the model offered a test MSE Et of 0.077, tree size equal to 10, and four selected input features

(x1, x3, x4, and x5). The selected activation functions were unipolar sigmoid (+7
2), bipolar sigmoid (+6

2),

tangent hyperbolic (+2
2), and Gaussian (+1

2). Note that while creating HFNT models, the datasets were

normalized as described in Table 2 and the output of models were denormalized accordingly. Therefore,

normalized inputs should be presented to the tree (Figure 7), and the output y of the tree (Figure 7)

should be denormalized.

Table 8: Best and mean results of 30 5-fold CV models (150 runs) of HFNTM.

Best of 30 models Mean of 30 models

Data train En test Et tree size #Features train En test Et tree size diversity

ABL 2.228 2.256 14 5 2.578 2.511 11.23 0.7

BAS 198250 209582 11 5 261811 288688.6 7.69 0.6

DEE 0.076 0.077 10 4 0.0807 0.086 11.7 0.7

ELV∗ 8.33 8.36 11 7 1.35 1.35 7.63 0.5

FRD 2.342 2.425 6 5 3.218 3.293 6.98 0.34

Note: ∗Results of ELV should be multiplied with 10-5
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Table 9: Comparative results: 5-fold CV training MSE En and test MSE Et of algorithms.

Algorithms ABL BAS DEE ELV∗ FRD

En Et En Et En Et En Et En Et

MLP - 2.694 - 540302 - 0.101 - 2.04 3.194

ANFIS-SUB 2.008 2.733 119561 1089824 3087 2083 61.417 61.35 0.085 3.158

TSK-IRL 2.581 2.642 0.545 882.016 0.433 1.419

LINEAR-LMS 2.413 2.472 224684 269123 0.081 0.085 4.254 4.288 3.612 3.653

LEL-TSK 2.04 2.412 9607 461402 0.662 0.682 0.322 1.07

METSK-HDe 2.205 2.392 47900 368820 0.03 0.103 6.75 7.02 1.075 1.887

HFNTM ∗∗ 2.578 2.511 261811 288688.6 0.0807 0.086 1.35 1.35 3.218 3.293

Note: ∗ELV results should be multiplied with 10-5, ∗∗HFNTM results were averaged over 150 runs compared to MLP,

ANFIS-SUB, TSK-IRL, LINEAR-LMS, LEL-TSK, and METSK-HDe, which were averaged over 30 runs.

For regression datasets, Friedman test was conducted to examine the significance of the algorithms.

For this purpose, the best test MSE was considered of the algorithms MLP, ANFIS-SUB, TSK-IRL,

LINEAR-LMS, LEL-TSK, and METSK-HDe from Table 9 and the best test MSE of algorithm HFNTM

was considered from Table 8. The average ranks obtained by each method in the Friedman test is shown

in Table 10. The Friedman statistic at α = 0.05 (distributed according to chi-square with 5 degrees of

freedom) is 11, i.e., χ2
(α,5) = 11. The obtained test value Q according to Friedman statistic is 11. Since

Q > χ2
(α,5), then the null hypothesis that “there is no difference between the algorithms” is rejected. In

other words, the computed p-value by Friedman test is 0.05 which is less than or equal to 0.05, i.e., p-value

≤ α-value. Hence, we reject the null hypothesis.

Table 10: Average rankings of the algorithms

Algorithm Ranking

HFNTM 1.5

METSK-HDe 2.75

LEL-TSK 3.25

LINEAR-LSM 3.5

MLP 4.5

ANFIS-SUB 5.5

From the Friedman test, it is clear that the proposed algorithm HFNTM performed best among all

the other algorithms. However, in the post-hoc analysis presented in Table 11 describes the significance

of difference between the algorithms. For this purpose, we apply Holm’s method [77], which rejects the

hypothesis of equality between the best algorithm (HFNTM) and other algorithms if the p-value is less

than α/i, where i is the position of an algorithm in a list sorted ascending order of z-value (Table 11).

In the obtained result, the equality between ANFIS-SUB, MLP and HFNTM was rejected, whereas
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the HFNTM equality with other algorithms can not be rejected with α = 0.1, i.e., with 90% confidence.

However, the p-value shown in Table 11 indicates the quality of their performance and the statistical

closeness to the algorithm HFNTM. It can be observed that the algorithm METSK-HDe performed closer

to algorithm HFNTM, followed by LEL-TSK, and LINEAR-LSM.

Table 11: Post Hoc comparison between HFNTM and other algorithms for α = 0.1.

i algorithm z p α/i Hypothesis

5 ANFIS-SUB 3.023716 0.002497 0.02 rejected

4 MLP 2.267787 0.023342 0.025 rejected

3 LINEAR-LSM 1.511858 0.13057 0.033

2 LEL-TSK 1.322876 0.185877 0.05

1 METSK-HDe 0.944911 0.344704 0.1
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Figure 7: HFNT model of regression dataset DEE (test MSE Et = 0.077).

5.2.2. Ensembles

For each dataset, we constructed five ensemble systems by using 10 models in each batch. In each

batch, 10 models were created and cross-validated using 5 × 2-fold CV. In 5 × 2-fold CV, a dataset is

randomly divided into two equal sets: A and B. Such partition of the dataset was repeated five times

and each time when the set A was presented for training, the set B was presented for testing, and vice

versa. Hence, total 10 runs of experiments for each model was performed. The collected ensemble results

are presented in Table 12, where ensemble outputs were obtained by using weighted arithmetic mean as

mentioned in (11).

The weights of models were computed by using DE algorithm, where the parameter setting was

similar to the one mentioned in classification dataset. Ensemble results shown in Table 12 are MSE

22



Table 12: Ensemble test MSE Et computed for 5× 2-fold CV of 10 model in each batch

Data batch MSE Et rt avg. D div (9) TSF MSF MIF

ABL 1 3.004 0.65 5 0.1 3

x2, x3, x5,

x6

x1

2 2.537 0.72 8.3 1 7

3 3.042 0.65 8.5 0.5 5

4 2.294 0.75 10.7 1 7

5 2.412 0.73 11.2 0.7 7

BAS∗ 1 2.932 0.79 5.6 0.3 5

x3, x7, x8,

x9, x11, x13

x1, x2, x5,

x6, x10

2 3.275 0.76 8.2 0.3 6

3 3.178 0.77 5 0.2 7

4 3.051 0.78 5.7 0.3 5

5 2.707 0.81 7.3 0.7 9

DEE 1 0.112 0.88 4.3 0.2 4

x1, x3, x4,

x5, x6

x2

2 0.115 0.88 8.9 0.6 6

3 0.108 0.88 5.4 0.5 3

4 0.123 0.87 10.8 0.9 5

5 0.111 0.88 5.2 0.6 4

EVL∗∗ 1 1.126 0.71 9.3 0.1 12

x1, x3, x4,

x6, x17

x7, x8, x12

2 1.265 0.67 9.6 0.1 12

3 1.124 0.71 10.4 0.1 15

4 1.097 0.72 9.2 0.2 10

5 2.047 0.31 3.8 0.4 3

FRD 1 3.987 0.86 6.2 0.2 4

x1, x2, x4,

x5

x3

2 4.154 0.83 8 0.2 4

3 4.306 0.83 5.2 0.4 5

4 3.809 0.86 7.8 0.5 4

5 2.395 0.91 7.7 0.4 5

Note: ∗BAS results should be multiplied with 105, ∗∗ELV results should be multiplied with 10-5.

and correlation coefficient computed on CV test dataset. From ensemble results, it can be said that the

ensemble with higher diversity offered better results than the ensemble with lower diversity. The models

of the ensemble were examined to evaluate MSF and MIF presented in Table 12. A graphical illustration

of ensemble results is shown in Figure 8 using scattered (regression) plots, where a scatter plots show

how much one variable is affected by another (in this case model’s and desired outputs). Moreover, it

tells the relationship between two variables, i.e., their correlation. Plots shown in Figure 8 represents the

best ensemble batch (numbers indicated bold in Table 12) four, five, three, four and five where MSEs

are 2.2938, 270706, 0.1085, 1.10E−05 and 2.3956, respectively. The values of r2 in plots tell about the

regression curve fitting over CV test datasets. In other words, it can be said that the ensemble models

were obtained with generalization ability.

5.3. Time-series dataset

5.3.1. 2-Fold CV

In literature survey, it was found that efficiency of most of the FNT-based models was evaluated over

time-series dataset. Mostly, Macky-Glass (MGS) dataset was used for this purpose. However, only the

best-obtained results were reported. For time-series prediction problems, the performances were computed
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Figure 8: Regression plots of the best ensemble batches on datasets R1, R2, R3, R4, and R5.

24



using the root of mean squared error (RMSE), i.e., we took the square root of E given in (1). Additionally,

correlation coefficient (2) was also used for evaluating algorithms performance.

For the experiments, first 50% of the dataset was taken for training and the rest of 50% was used for

testing. Table 13 describes the results obtained by HFNTM, where En is RMSE for training set and Et

is RMSE for test-set. The best test RMSE obtained by HFNTM was Et = 0.00859 and Et = 0.06349

on datasets MGS and WWR, respectively. HFNTM results are competitive with most of the algorithms

listed in Table 14. Only a few algorithms such as LNF and FWNN-M reported better results than the one

obtained by HFNTM. FNT based algorithms such as FNT [1] and FBBFNT-EGP&PSO reported RMSEs

close to the results obtained by HFNTM. The average RMSEs and its variance over test-set of 70 models

were 0.10568 and 0.00283, and 0.097783 and 0.00015 on dataset MGS and WWR, respectively. The low

variance indicates that most models were able to produce results around the average RMSE value. The

results reported by other function approximation algorithms (Table 13) were merely the best RMSEs.

Hence, the robustness of other reported algorithm cannot be compared with the HFNTM. However, the

advantage of using HFNTM over other algorithms is evident from the fact that the average complexity of

the predictive models were 8.15 and 8.05 for datasets MGA and WWR, respectively.

The best model obtained for dataset WWR is shown in Figure 9, where the tree size is equal to 17 and

followings are the selected activation functions: tangent hyperbolic, Gaussian, unipolar sigmoid, bipolar

sigmoid and linear tangent hyperbolic. The selected input features in the tree (Figure 9) are x1, x2, x3

and x4. Since in time series category experiment, we have only two datasets and for each dataset HFNTM

was compared with different models from literature. Hence, the statistical test was not conducted in this

category because differences between algorithms are easy to determine from Table 14.

Table 13: Best and mean results 2-fold CV training RMSE En and test RMSE Et.

Best of 70 models Mean of 70 models

Data En Et D Features En Et D

MGS 0.00859 0.00798 21 4 0.10385 0.10568 8.15

WWR 0.06437 0.06349 17 4 0.10246 0.09778 8.05

5.3.2. Ensembles

The ensemble results of time-series datasets are presented in Table 15, where the best ensemble system

of dataset MGS (marked bold in Table 15) offered a test RMSE Et = 0.018151 with a test correlation

coefficient rt = 0.99. Similarly, the best ensemble system of dataset WWR (marked bold in Table 15)

offered a test RMSE Et = 0.063286 with a test correlation coefficient rt = 0.953. However, apart from

the best results, most of the ensemble produced low RMSEs, i.e., high correlation coefficients. The best

ensemble batches (marked bold in Table 15) of dataset MGS and WWR were used for graphical plots in

Figure 10. A one-to-one fitting of target and prediction values is the evidence of a high correlation between

model’s output and desired output, which is a significant indicator of model’s efficient performance.
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Table 14: Comparative results: training RMSE En and test RMSE Et for 2-fold CV.

Algorithms MGS WWR

En Et En Et

CPSO 0.0199 0.0322

PSO-BBFN - 0.027

HCMSPSO 0.0095 0.0208

HMDDE-BBFNN 0.0094 0.017

G-BBFNN - 0.013

Classical RBF 0.0096 0.0114

FNT [1] 0.0071 0.0069

FBBFNT-EGP&PSO 0.0053 0.0054

FWNN-M 0.0013 0.00114

LNF 0.0007 0.00079

BPNN - - - 0.200

EFuNNs - - 0.1063 0.0824

HFNTM 0.00859 0.00798 0.064377 0.063489
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Figure 9: HFNT model of time-series dataset WWR (RMSE = 0.063489).

6. Discussions

HFNTM was examined over three categories of datasets: classification, regression, and time-series.

The results presented in Section 5, clearly suggests a superior performance of HFNTM approach. In

HFNTM approach, MOGP guided an initial HFNT population towards Pareto-optimal solutions, where

HFNT final population was a mixture of heterogeneous HFNTs. Alongside, accuracy and simplicity, a

Pareto-based multiobjective approach ensured diversity among the candidates in final population. Hence,

HFNTs in the final population were fairly accurate, simple, and diverse. Moreover, HFNTs in the final
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Table 15: Ensemble results computed for 50% test samples of time-series datasets

Data batch Et rt avg. tree size div (9) TSF MSF MIF

MGS 1 0.018 0.99 9.4 0.6 4 x1, x3, x4 -

2 0.045 0.98 5.8 0.2 3

3 0.026 0.99 15.2 0.5 3

4 0.109 0.92 5.1 0.4 3

5 0.156 0.89 7 0.2 3

6 0.059 0.97 8.2 0.5 3

7 0.054 0.98 6.4 0.4 4

WWR 1 0.073 0.94 5 0.1 3 x1, x2 -

2 0.112 0.85 6 0.2 2

3 0.097 0.91 10.6 0.3 4

4 0.113 0.84 5 0.1 2

5 0.063 0.96 14.4 0.9 4

6 0.099 0.89 8.5 0.7 3

7 0.101 0.88 6.9 0.4 3

Note: Et, rt, and div indicate test RMSE, test correlation coefficient, and diver-

sity, respectively

population were diverse according to structure, parameters, activation function, and input feature. Hence,

the model’s selection from Pareto-fronts, as indicated in Section 4, led to a good ensemble system.

Table 16: Performance of activation functions during the best performing ensembles

activation function (k)

Data 1 2 3 4 5 6 7

AUS 10 - - 2 - - -

HRT 10 - 9 4 - 5 3

ION 6 5 - - 2 4 4

PIM 3 8 2 5 2 1 -

WDB - 3 - 7 8 10 8

ABL 2 10 - - - 10 -

BAS 2 5 - - 2 10 -

DEE - 6 6 4 4 10 -

EVL 10 5 - 3 - - 6

FRD 10 10 - - - - -

MGS 4 1 - 2 1 10 10

WWR 10 - 4 - 4 7 -

Total 67 53 21 27 23 67 31

Note: 67 is the best and 21 is the worst

HFNTM was applied to solve classification, regression, and time-series problems. Since HFNTM is

stochastic in nature, its performance was affected by several factors: random generator algorithm, random

seed, the efficiency of the meta-heuristic algorithm used in parameter-tuning phase, the activation function
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Figure 10: Target versus prediction plot obtained for time-series datasets MGS and WWR.

selected at the nodes, etc. Therefore, to examine the performance of HFNTM, several HFNT-models

were created using different random seeds and the best and average approximation error of all created

models were examined. In Section 5, as far as the best model is concerned, the performance of HFNTM

surpass other approximation models mentioned from literature. Additionally, in the case of each dataset,

a very low average value (high accuracy in the case of classification and low approximation errors in

case of regression and time-series) were obtained, which significantly suggests that HFNTM often led

to good solutions. Similarly, in the case of the ensembles, it is clear from the result that combined

output of diverse and accurate candidates offered high quality (in terms of generalization ability and

accuracy) approximation/prediction model. From the results, it is clear that the final population of

HFNTM offered the best ensemble when the models were carefully examined based on approximation

error, average complexity (tree size), and selected features.

Moreover, the performances of the best performing activation functions were examined. For this pur-

pose, the best ensemble system obtained for each dataset were considered. Accordingly, the performance

of activation functions was evaluated as follows. The best ensemble system of each dataset had 10 models;
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therefore, in how many models (among 10) an activation function k appeared, was counted. Hence, for a

dataset, if an activation function appeared in all models of an ensemble system, then the total count was

10. Subsequently, counting was performed for all the activation functions for the best ensemble systems

of all the datasets. Table 16, shows the performance of the activation functions. It can be observed that

the activation function Gaussian (k = 1) and Bipolar Sigmoid (k = 6) performed the best among all the

other activation functions followed by Tangent-hyperbolic (k = 2) function. Hence, no one activation

function performed exceptionally well. Therefore, the efforts of selecting activation function, adaptively,

by MOGP was essential in HFNTs performance.

In this work, we were limited to examine the performance of our approach to only benchmark problems.

Therefore, in presences of no free lunch theorem [79, 80] and the algorithm’s dependencies on random

number generator, which are platforms, programming language, and implementation sensitive [81], it is

clear that performance of the mentioned approach is subjected to careful choice of training condition and

parameter-setting when it comes to deal with other real-world problems.

7. Conclusion

Effective use of the final population of the heterogeneous flexible neural trees (HFNTs) evolved using

Pareto-based multiobjective genetic programming (MOGP) and the subsequent parameter tuning by dif-

ferential evolution led to the formation of high-quality ensemble systems. The simultaneous optimization

of accuracy, complexity, and diversity solved the problem of structural complexity that was inevitably

imposed when a single objective was used. MOGP used in the tree construction phase often guided an

initial HFNT population towards a population in which the candidates were highly accurate, structurally

simple, and diverse. Therefore, the selected candidates helped in the formation of a good ensemble system.

The result obtained by HFNTM approach supports its superior performance over the algorithms collected

for the comparison. In addition, HFNTM provides adaptation in structure, computational nodes, and

input feature space. Hence, HFNT is an effective algorithm for automatic feature selection, data analysis,

and modeling.
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Appendix A. Dataset Description

Table A.17: Collected datasets for testing HFNTM

Index Name Features Samples Output Type

AUS Australia 14 691 2

Classification

HRT Heart 13 270 2

ION Ionshpere 33 351 2

PIM Pima 8 768 2

WDB Wdbc 30 569 2

ABL Abalone 8 4177 1

Regression

BAS Baseball 16 337 1

DEE DEE 6 365 1

EVL Elevators 18 16599 1

FRD Fridman 5 1200 1

MGS Mackey-Glass 4 1000 1
Time-series

WWR Waste Water 4 475 1

Appendix B. Algorithms from literature

Table B.18: Algorithms from literature for the comparative study with HFNTM

Ref. Algorithms Definition

[82] MLP Multi-layer Perceptron

[83] HDT Hybrid Decision Tree

[76] FNT Flexible Neural Tree

[84] ANFIS-SUB Adaptive Neuro-Fuzzy Inference System Using Subtractive Clustering

[85] TSK-IRL Genetic Learning of TSK-rules Under Iterative Rule Learning

[86] LINEAR-LMS Least Mean Squares Linear Regression

[87] LEL-TSK Local Evolutionary Learning of TSK-rules

[88] RBF Classical Radial Basis Function

[89] CPSO Cooperative Particle Swarm Optimization (PSO)

[90] PSO-BBFN PSO-based Beta Basis Function Neural Network

[91] G-BBFNN GA-based BBFNN

[92] HCMSPSO Hierarchical Cluster-Based Multispecies PSO

[93] FWNN-M Fuzzy Wavelet Neural Network Models

[94] HMDDE-BBFNN Hierarchical Multidimensional DE-Based BBFNN

[95] LNF Local Least-Squares Support Vector Machines-Based Neuro-Fuzzy Mode

[96] BPNN Back-propagation Neural Network

[97] EFuNNs Evolving Fuzzy Neural Networks

[98] FBBFNT-EGP&PSO Extended Immune Programming and Opposite-PSO for Flexible BBFNN

[78] METSK-HDe Multiobjective Evolutionary Learning of TSK-rules for High-Dimensional Problems
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