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Abstract

We examine long memory volatility in the cross-section of stock returns. We

show that long memory volatility is widespread in the United States and that the

degree of memory can be related to �rm characteristics, such as market capital-

ization, book-to-market ratio, prior performance, and price jumps. Long memory

volatility is negatively priced in the cross-section. Buying stocks with shorter mem-

ory and selling stocks with longer memory in volatility generates signi�cant excess

returns of 1.71% per annum. Consistent with theory, we �nd that the volatility of

stocks with longer memory is more predictable than stocks with shorter memory.

This makes the latter more uncertain, which is compensated for with higher average

returns.
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1 Introduction

To the best of our knowledge, we are the �rst to analyze the asset pricing implications

of long memory volatility in the cross-section of U.S. stocks. We show that long memory

is prevalent in the volatility of individual stock returns. Long memory can be related

to the size, past performance, and the jump intensity of a �rm. Moreover, we provide

time-series and cross-sectional evidence for a negative price of long memory volatility in

the cross-section of stock returns.

We study the implications of long memory by building on three strands of literature.

First, we extend the research on documenting long memory, which, has only focused on

indices or some large �rms by investigating the complete cross-section of U.S. stocks.

Second, we analyze the time variation of long memory in volatility. Third, long memory

has only been analyzed in the time series dimension, not in the cross-sectional one. We

discuss and investigate possible microeconomic fundamentals, which may explain long

memory, and examine whether memory is a priced factor.

We �nd that 95% of stocks possess long memory in volatility, with an average memory

parameter of 0.22. At the �rm level, higher volatility memory estimates are related to

larger size, worse prior performance, and fewer price jumps. Following the investment

strategy of holding stocks with shorter memory volatility and shorting stocks with longer

memory volatility generates excess returns of 1.71% per annum. This result is supported

by cross-sectional regression tests. We �nd a signi�cant risk premium for the memory

parameter where stocks with anti-persistent volatility can earn up to 4.7% per annum

more than stocks with long memory volatility. We show that the volatility of stocks with

higher memory parameters is more predictable than stocks with low memory parame-

ters. This indicates that the lower uncertainty of stocks with longer memory (i.e., more
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persistent volatility) results in a negative premium.1 Our results are robust to controling

for idiosyncratic volatility, size, and other characteristics, as well as to various additional

tests. At the same time, we verify our memory estimates by showing that forecasting

volatility for stocks with longer memory works better than for stocks with shorter mem-

ory. We also relate our results to theoretical models, which show how long memory is

generated through heterogeneity in the market.

Long memory processes (also referred to as long-range dependent processes) are

present in numerous sciences and �elds such as physics, geophysics, hydrology, clima-

tology, biology and, most importantly for the subject of this project, economics and

�nance. Long memory processes can be described as long-range dependent time series

with a hyperbolic decaying autocorrelation function, as opposed to the exponential func-

tion of short memory processes such as autoregressive processes. The introduction of long

memory processes created a huge wave of new time-series models and methodologies to

analyze, estimate, and predict them, since the old methods used for short memory time

series were no longer appropriate. The �rst study to mention is perhaps ?, who examines

the Nile River in order to understand the persistence of stream �ow data. There are also

several papers dealing with long memory in economics and �nance. ? provides a detailed

survey and review for this purpose. The most common models are the autoregressive

fractionally integrated moving average (ARFIMA) model by ?, ? and ? and the frac-

tionally integrated generalized autoregressive conditional heteroskedasticity (FIGARCH)

model introduced by ?. These are extensions of the short memory ARMA and GARCH

models, respectively. Long memory properties have been analyzed comprehensively in

returns and volatilities and our paper draws from several strands of literature.

1In recent studies, ? and ? show that volatility-of-volatility is priced in the cross-section of stock
returns. Although one might think that volatility-of-volatility is related to the degree of long memory in
volatility, we empirically show that (i) it is not, and (ii) it is priced separately.
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The �rst strand focuses on the estimation and detection of long memory in the volatil-

ity of stock returns. Shortly after the introduction of the FIGARCH model, ? and ?

show that the conditional variance and absolute returns of the S&P 500 Index, respec-

tively, possess long memory. ? also �nd long memory in the variance of equally-weighted

and value-weighted Center for Research in Security Prices (CRSP) stock market index

returns. ? investigate the long memory properties of the U.S. stock market index and 30

individual stock returns in the U.S., while ? and ? consider the long memory property

of various international stock indices, including Germany, Japan, Korea, New Zealand,

Malaysia, Singapore, Taiwan, and the U.S.

Another strand of the literature covers breaks in the long memory parameter, and

hence allows memory to vary over time. ? consider long memory dynamics and introduce

a methodology to test for a break from stationary long memory to non-stationary long

memory. Their test is improved by ?, since the results may be distorted when the data-

generating process exhibits long memory. They apply the test to U.S. in�ation data and

�nd a break in the early 1980s. ? test for the persistence of European Monetary Union

government bond yields for France, Italy, and Spain, using the same methodology, and

�nd breaks between 2006 and 2008.

Our paper is mostly related to the asset pricing literature. The research and discovery

of anomalies and e�ects that can explain the cross-section of expected returns is constantly

growing since the introduction of the capital asset pricing model (CAPM) (????). In

addition to the market portfolio, ? show that a three-factor model including size and

book-to-market ratio is better able to capture the cross-sectional variation in average

stock returns. ? adds a momentum factor to the three-factor model, and more recently,

? extend their three-factor model by adding pro�tability and investment factors. The
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list of potential explanatory variables for the cross-sectional variation of stock returns is

ongoing. For example, to name only two, ? �nds a positive relationship between the

illiquidity of stocks and future excess returns while ? show that idiosyncratic volatility

is negatively priced in the cross-section. ? propose the q-factor model including market,

size, investment, and pro�tability factors, and show that the performance of their model

is at least as good as the models proposed by ? and ?.

The rest of the paper is organized as follows. In Section 2, we describe our data set and

estimation procedure for long memory. In Section 3, we examine the cross-section of U.S.

stocks. In Section 4, we relate long memory to predictability. In Section 5, we discuss the

origin of long memory. Robustness tests are presented in Section 6. Concluding remarks

are given in Section 7.

2 Data and methodology

2.1 Data

The data used for our analyses come from various sources. For our cross-sectional analysis

of U.S. stock returns, we obtain equity prices, returns, market capitalization, and volume

data from CRSP for the period from January 1926 to December 2015. In our main

analysis, we investigate four di�erent �rm characteristics that have been shown in the

literature to be priced in the cross-section of stock returns. They include size, value,

momentum e�ects, and the liquidity factor. The construction of the variables, which we

refer to as size, book-to-market, momentum, and illiquidity, follows the convention of the

literature (see ????, among others) and are based on market capitalizations, returns and
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trading volumes from CRSP and balance sheet information from Compustat.2

High-frequency price data are obtained from Thomson Reuters Tick History. When

employing high-frequency data, the analysis is restricted to the period from January 1996

to December 2015 and on the S&P 500 constituents only.3

2.2 Semiparametric estimation of long memory in volatility

Our estimation of the long memory parameter relies on two of the most popular estima-

tors: the GPH estimator and the Local Whittle estimator.

The �rst is based on the log-periodogram and was developed by ?. The GPH estimator

employs a linear regression using the �rstm periodogram ordinates and exploits the shape

of the spectral density around the origin. The spectral density of a stationary process Xt

is estimated empirically by the periodogram:

IX(λj) =
1

2πN

∣∣∣∣∣
N∑
t=1

Xte
−itλ

∣∣∣∣∣
2

, t = 1, ..., N, (1)

where the periodogram is not a�ected by centering of the time series for Fourier frequen-

cies λj = 2πj/N (j = 1, ..., [(N − 1)/2]). The estimator is given by the negative slope

estimate β1 in the regression:

log(I(λj)) = β0 + β1log[4sin2(λj/2)] + εj, j = 1, ...,m, (2)

2Even though the size factor is constructed by calculating the logarithm of the market capitalization,
we refer to this factor as size rather than log(size).

3This choice is due to the restricted availability of high-frequency data for the complete cross-section,
which is crucial for our long memory estimates.
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Under mild conditions (m→∞, N →∞, m
N
→ 0), ? derives the asymptotic distribution:

√
m(d̂− d) −−→

d
N

(
0,
π2

24

)
, (3)

which provides the asymptotic standard errors for the long memory parameter. The

estimator is narrowband since the bandwidth parameterm leads to a bias�variance trade-

o�. While a high m far from the origin leads to bias, a low m too close to the origin leads

to a rise in the variance.

The second estimator is the Local Whittle estimator, which is obtained by minimizing

the following objective function:

d̂LW = arg min
d∈θ

[
log

(
1

m

m∑
j=1

I(λj)

λ2dj

)
− 2d

m

m∑
j=1

logλj

]
, θ ⊆ (−0.5, 0.5), (4)

where m is restricted to m < N
2
. The Local Whittle estimator is an extension of the one

originally proposed by ?, which relies on an approximate maximum likelihood approach.

Under mild assumptions similar to those for the GPH estimator, ? derives the asymptotic

distribution:

√
m(d̂LW − d0) −−→

d
N

(
0,

1

4

)
. (5)

For our main analysis, we focus on the GPH estimator and the bandwidth m = N0.5

following the literature (????).4 The results with alternative bandwidth choices and the

Local Whittle estimator are reported in the robustness section, Section 6.

We refer to d as the memory parameter and di�erentiate between three cases: A time

4Typically, empirical researchers rely on this bandwidth choice since it is robust against short-range
dependencies in the data. In terms of mean squared error (MSE) improvement, ? argue that the
bandwidth m = O(N0.8) is the optimal choice.
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series has short memory if d = 0. A time series has negative memory or is anti-persistent

if d < 0. A time series has long memory if 0 < d < 1 where it is non-stationary if

0.5 < d < 1.

3 Long memory volatility in the cross-section of stock

returns

3.1 Descriptive statistics

We apply the GPH estimator to the time series of squared returns for the cross-section

of U.S. stocks. Since we are interested in the relationship between memory, �rm char-

acteristics, and expected returns, we allow for a time-varying memory parameter. More

speci�cally, we estimate the memory parameter at a monthly frequency using a rolling

window, which includes the most recent �ve years of daily return observations.5 Table 1

provides summary statistics for the memory parameter estimates. In our sample period,

we have on average 2,480 memory parameter estimates at each point of time. The average

estimate is 0.22 with a standard deviation of 0.12. The mean t-statistic of 23.34 suggests

that the memory parameter is statistically signi�cant on average. Also, we �nd that

most of the stocks exhibit long memory in volatility; 95% of the stocks show a memory

parameter with 0.0 < d < 0.5, while 3% of the stocks are anti-persistent and only 2%

show non-stationary long memory.

Our results are consistent with the literature and extend the evidence of long memory

in stock return volatility to a broader cross-section. ?, for example, �nd that components

of the Dow Jones Index show strong evidence of long memory in squared returns for the

5We require at least non-missing return observations on 50% of the days over the examined period
for a stock to be included in our analysis.
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period from July 1962 to December 1994. ? �nd for the equally-weighted CRSP portfolio

for the period from 1962 to 1989 a memory parameter of d = 0.22, which coincides with

both the mean and the median from our analysis of the complete cross-section of U.S.

stocks.

3.2 Explaining long memory with �rm characteristics

In this subsection, we relate the memory parameter of a stock's volatility to �rm char-

acteristics. We include size, book-to-market, momentum, and illiquidity. These variables

have been shown to be priced in the cross-section of stock returns (????). We also include

two jump measures since recent studies have shown that jumps are an important factor

in the cross-section of stock returns. ? analyze the predictability of cross-sectional stock

returns and �nd that once controling for jumps, �rm characteristics such as size and liq-

uidity are no longer predictive. ? and ? show that the sensitivity of stocks to market tail

and jump risk helps to explain the cross-sectional variation in expected returns. We apply

the common jump test proposed by ? (BNS).6 The test relies on the bipower variation,

which decomposes the quadratic variation into its parts due to continuous movements

and a jump part. The jump test statistic is given by:

BNSt =
(π/2)Bt − St√

((π2/4) + π − 5)(π/2)2Qt

(6)

Qt =
1

Kt − 3

Kt∑
k=4

|rt,k||rt,k−1||rt,k−2||rt,k−3| (7)

St =
1

Kt

Kt∑
k=1

r2t,k (8)

Bt =
1

Kt − 1

Kt∑
k=2

|rt,k||rt,k−1|, (9)

6
? show with the help of simulations using di�erent jump size and frequency, that this test is

preferable to those proposed by ?, ?, and ?.
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where Kt is the number of observations over the examined period, rt,k is the kth daily

observation over the examined period t, and BNSt is normally distributed under the null.

First, we compute the BNS jump statistic for each month and stock using daily return

data within each calender month following ?. The �rst measure of jump intensity is given

by the jump test statistic (BNS). Our second measure is a dummy variable indicating

whether the current month includes a signi�cant jump at the 5% level, which we denote

as BNS-I.

Each month for the period from January 1950 to December 2015, we sort all stocks

into quintile portfolios where stocks with the lowest memory parameter are in the �rst

quintile and stocks with the highest memory parameter are in the �fth quintile. We then

track the average �rm characteristics of these quintile portfolios.7

Table 2 shows the results. We report the average memory and �rm characteristics

for each quintile and for the long memory minus short memory (LMS) portfolio. For the

latter, we also present t-statistics in parentheses in the last column. Average portfolio

size, momentum, and jump measures demonstrate a monotonic pattern that is increas-

ing/decreasing in the memory parameter. Stocks with higher market capitalization, worse

past performance, and fewer jumps (higher jump statistics and fewer signi�cant jumps)

exhibit longer memory in volatility. These di�erences are highly statistically signi�cant

with absolute t-statistics above 12. There is no monotonic pattern for Book-to-Market

and Illiquidity but the hedge portfolio shows positive values for both and the t-statistic

is statistically signi�cant for Illiquidity.

We complement the above analysis with cross-sectional regressions. At each point of

time, we regress the memory parameter of each �rm on the predictor variables in the

7We start our analysis in 1950 because book-to-market data are available only from 1950 in Compu-
stat.
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following regression:

di,t = αt + βtXi,t + εi,t, (10)

where di,t is the memory estimate of stock i at time t, Xi,t is the vector containing the

�rm characteristics of stock i at time t, and εi is the error term.8 The slope coe�cients

are expected to have signs as the LMS portfolio spreads. The coe�cients are reported

in Table 3 for three regressions. The �rst row shows the results when excluding the

jump measures, the second when including the BNS jump statistic, and the third when

including the jump dummy variable. In accordance with our portfolio sorts, stocks with

large Size, worse prior performance, and fewer jumps (higher jump statistics and fewer

signi�cant jumps) exhibit higher memory parameters. The coe�cients are all statistically

signi�cant at the 1% level. We additionally �nd that value stocks possess higher memory

parameters, while illiquidity does not provide explanatory power for the degree of memory

in volatility. Intuitively, stocks that tend to exhibit jumps more frequently, are less

persistent and predictable and should possess lower memory parameters. We show the

close connection of long memory and predictability in Section 4 and provide some intuition

for how memory is generated for small (large) and loser (winner) stocks in Section 5.

3.3 Long memory volatility and expected stock returns: portfolio

sorts

In previous sections we relate the memory of volatility to �rm-speci�c variables, trying

to explain the degree of long memory. In the next step, we investigate whether investors

8We experiment with multiple alternative estimation methods for long memory in order to make
sure that the results are robust with respect to the estimation approach. The methods and results are
reported in Subsection 6.4 and are qualitatively similar.
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demand a compensation for holding assets with higher exposure to this factor by looking

at the relationship between the degree of memory in volatility and realized future excess

stock returns. Assuming that the degree of memory in volatility is related to the pre-

dictability of a stock return's volatility, a highly predictable stock should be less uncertain

than an unpredictable stock. We hence expect a negative price for long memory in order

to compensate investors for the additional volatility risk of short memory stocks.9

As in Subsection 3.2, for each month, we sort all stocks into quintile portfolios where

stocks with the lowest memory parameter are in the �rst quintile and stocks with the

highest memory parameter are in the �fth quintile. Excess returns of the equally-weighted

portfolios are tracked over the subsequent month.10 The analysis is out-of-sample in the

sense that there is no overlap between the data used for the memory estimation and the

data used to compute the excess returns of the portfolios. The LMS portfolio returns are

then regressed on risk factors to test whether these returns merely re�ect passive exposure

to standard factors. We include the market portfolio of the CAPM, which controls for

systematic risk and the ? three-factor model (FF3), which additionally includes the size

and value e�ects. Further, we employ the state-of-the art ? �ve-factor model (FF5), and

the ? q-factor model (HXZ).11 We investigate three di�erent sample periods, which start

in 1926, 1963, and 1967, respectively. All periods end in December 2015.12

The results are presented in Table 4. We report the mean return of the quintile

9In Section 4, we use a validity check to con�rm the intuitive relationship between memory and the
predictability of a stock's volatility.

10Since our memory estimates di,t rely on rolling window estimates, one might argue that there is
barely temporal variation in our estimates. If this is true, this should work against our empirical analysis
and we should not �nd any signi�cant relationship between memory and expected returns, but we do.
In the robustness section, Section 6, we repeat the analysis, relying on monthly memory parameters
estimated from high-frequency data in that month. The results are qualitatively similar.

11The factors for the �rst three models are available from the Kenneth French's data library, website:
mba.tuck.dartmouth.edu/pages/faculty/ken.french. The factors of the ? model were kindly provided by
the authors.

12The choice of di�erent sample periods is motivated by the availability of the factor models. The ?
factors are available starting in 1963 while the ? factors are available starting in 1967.
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portfolios and the LMS portfolio (Q5-Q1) and the alphas of the three di�erent models.

We �nd that the annualized mean return generally adheres to a decreasing pattern from

13.57% in the �rst quintile to 11.86% in the �fth quintile. All quintile portfolio returns

are statistically signi�cant, just like the di�erence of −1.71% between the long memory

quintile and the short memory quintile (LMS). Controling for risk factors leads to alphas

of −2.23%, −2.47%, −2.84%, and −2.52% for the CAPM, ? three-factor model, ? �ve-

factor, and ? q-factor model, respectively. The risk-adjusted returns are all statistically

signi�cant.13

Consequently, controling for standard risk factors does not a�ect our main result that

the long memory volatility excess return trade-o� is priced with a negative sign.14

3.4 Long memory volatility and expected stock returns: regres-

sion tests

The portfolio sorts present strong evidence that the degree of long memory in volatility

is (negatively) related to future excess returns. We estimate ? regressions in which we

simultaneously control for di�erent variables and test whether the degree of memory of a

stock's volatility contains information about future excess returns beyond that of various

other �rm characteristics. This exercise, which relies on individual stock returns rather

than stock portfolios, presents an alternative method to estimate the cross-sectional risk

13We focus on equally-weighted portfolios. We have redone the analysis with value-weighted portfolios,
which leads to a spread return of −2.27% and a FF5 alpha of −2.19%. Both are statistically signi�cant
at the 10% level.

14As shown in Subsection 3.2, the memory parameter can be explained by �rm characteristics such as
size, jumps, and momentum. Nonetheless, controling for the risk factors delivers statistically signi�cant
alphas. As an additional robustness check, we investigate whether the isolated e�ect of long memory,
which is orthogonal to �rm size and other �rm characteristics, is priced in the cross-section as well.
Residual long memory is obtained by regressing the memory parameter on the �rm characteristics at
each point of time following ?, ?, and ?. We �nd a CAPM (FF5) alpha of −1.2% (−1.5%), which
is statistically signi�cant at the 10% level or lower. Results are reported in Table 10 in the Online
Appendix.
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premium associated with long memory volatility. We rely on individual stocks rather than

portfolio returns since the formation of portfolios in cross-sectional regressions is shown

to in�uence the results and lead to higher standard errors of the risk premium estimates

(???). for each month, we regress excess stock returns over the following month on the

stock characteristics of the current month:

ri,t+1 − rf,t+1 = αt + γMt di,t + γCt Xi,t + εi,t+1, (11)

where ri,t is the return of stock i and rf,t is the risk-free rate at time t. Xi,t is a vector con-

taining the �rm characteristics size, book-to-market, momentum, illiquidity and jumps.15

γMt and γCt are the risk premia associated with the memory parameter and the remaining

�rm characteristics, respectively, and εi,t is the error term. In a second step, we perform

tests on the time-series averages of the estimated monthly intercept and slope coe�cients

to test for the signi�cance of the risk premia γ̂Mt and γ̂Ct over the sample period.

Table 5 reports the results of the ? regressions presenting the time-series averages of

the coe�cients, α̂t, γ̂
M
t , and γ̂Ct . In Model 1, we regress the excess return of stocks over

the following month on the memory parameter only. The market price of long memory

is −0.0039, which is statistically signi�cant at the 5% level. Consequently, a stock with

anti-persistent volatility can earn average annualized returns of up to 4.7% higher than

a stock with long memory volatility.16 Models 2 to 6 additionally include one of the

15We use the same �rm characteristics as in our portfolio sorts in Subsection 3.3.2. We include further
control variables such as the market beta, idiosyncratic volatility, and more in the robustness section,
Section 6. Moreover, we acknowledge the potential errors-in-variables (EIV) problem since our long
memory parameters are pre-estimated before being included in the cross-sectional regressions. While
our portfolio sorts, which are less strongly a�ected by EIV support our �ndings, we directly control
for EIV by using the instrumental variable approach of ?. Long memory parameters are regressed on
lagged (60 lags in accordance with the estimation window) parameters for which the measurement errors
should be uncorrelated. We then include the �tted values from the regressions in the cross-sectional
regressions instead of the long memory parameter itself. The results are qualitatively similar and we �nd
a cross-sectional price of −0.0054 for long memory, which is statistically signi�cant as well.

16The lowest possible memory parameter for an anti-persistent stock is given by the lower bound
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�rm characteristics in the cross-sectional regression. The magnitude and signi�cance of

the memory risk premium is slightly reduced when adding Size but barely changes when

adding book-to-market, momentum, illiquidity or jumps. Nonetheless, the coe�cient γ̂M

remains statistically signi�cant for all models. The negative (positive) risk premium for

size (book-to-market, momentum and illiquidity) is consistent with the literature (???).

The results are qualitatively similar for the kitchen sink regression (Model 7) where the

coe�cient of the memory parameter remains statistically signi�cant.17

4 Long memory volatility and predictability

A possible explanation for the negative relationship between long memory volatility and

expected stock returns is the uncertainty around a stock's volatility. As discussed earlier,

long memory represents the hyperbolic decay of the autocorrelation function, which on

the other hand allows for (high and long-run) volatility predictability. One can argue

that in times of �nancial distress large negative shocks are more persistent for stocks

with long memory, which makes these stocks less favorable than short memory stocks.

But even though negative shocks are more persistent, the volatility predictability is still

higher for long memory stocks, which makes them less uncertain regarding their level of

risk.

In Subsections 3.3 and 3.4, we provide evidence that stocks with long memory volatil-

of the interval (−0.5; 0) while the highest possible stationary memory parameter is given by the upper
bound of the interval (0; 0.5). The highest possible annualized spread returns can thus be approximated
by 1 ∗ (−0.0039) ∗ 12 = −0.0468.

17In our main analysis, we focus on the asset pricing implications of the long memory volatility
independently from the level of volatility. One might wonder whether the results depend on the level of
volatility. In the robustness section, Section 6, we control for the level of volatility (along with possible
controls). We �nd qualitatively similar results, which emphasizes that investors prefer long memory
stocks due to the higher predictability of volatility conditional on the same level of volatility. For our
main �ndings, on the other hand, long or short memory stocks could have either high or low level of
volatility
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ity earn on average lower returns than stocks with short memory using both portfolio

sorts and cross-sectional regressions. In this section, we supply empirical evidence that

long memory is associated with predictability and hence con�rm our channel of negative

expected returns through volatility uncertainty. Further, this exercise is a validity check

of our long memory estimates. If our memory estimates are not biased by data quality

or spurious long memory, a higher memory parameter should be directly linked to higher

forecasting performance.18

For each stock, we conduct monthly predictability regressions of realized volatility

both in-sample and out-of-sample. The time series of monthly realized volatility is ob-

tained by summing the squared daily returns for each month (?). Following the spirit of

?, we use (heterogenous) autoregressive models of realized volatility (HAR-RV).19 The

regressions include lagged observations of the realized volatility and we allow for �ve dif-

ferent speci�cations by including the volatility from the previous month (HAR(1)), six

18We acknowledge the issue of spurious long memory where higher memory parameters can be caused
by structural breaks. Even though we work with rolling window estimates, which should be only
marginally a�ected by breaks, we control for this in various di�erent ways. First, both our portfolio
sorts and cross-sectional regressions include the BNS jump statistic and the alpha or long memory risk
premium remain statistically signi�cant. Hence, our results are not driven by the BNS variable. Second,
the validity check in this section relates the memory parameter to predictability. If our parameters are
biased by structural breaks or jumps, we should not �nd any clear relationship, however we do. Third,
we repeat our portfolio sorts but rely on returns purged from jumps following ?. Buying stocks with
long memory volatility and selling stocks with short memory volatility, where long memory is estimated
from raw returns, leads to a statistically signi�cant spread (risk-adjusted) return of −1.73% (−2.89%),
which is statistically signi�cant as well and of similar magnitudes to those in our main analysis. Forth,
we consider a modi�ed semi-parametric local Whittle estimator proposed by ?. This estimator is the
most recent long memory estimator, which is robust to low frequency contaminations and robust to
potential structural breaks. When sorting by the ? estimator using the parameters they propose we �nd
a statistically signi�cant spread (risk-adjusted) return of −1.50% (−1.45%). Lastly, we apply the ? test,
which tests for spurious long memory (alternative hypothesis). Relying on the suggested parameters of
the author, we test for spurious long memory for each stock and each month using the rolling windows as
for our long memory estimation. We �lter stocks for which the null of true long memory is rejected and
repeat the sorts. We �nd an average (risk-adjusted) return of −0.83% (−1.06%), which is statistically
signi�cant as well. In summary, the negative price associated with long memory is not due to spurious
long memory.

19We also experimented with simple autoregressive (AR) models including the lags 1, 6, 12, 24, and
60, leading to qualitatively similar results.
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months (HAR(2)), one year (HAR(3)), two years (HAR(4)), and 5 years (HAR(5)):20

HAR(1) : RV M
t+1 = α + βRV M

t + εt+1 (12)

HAR(2) : RV M
t+1 = α + βRV M

t + βRV 6M
t + εt+1 (13)

HAR(3) : RV M
t+1 = α + βRV M

t + βRV 6M
t + βRV 1Y

t + εt+1 (14)

HAR(4) : RV M
t+1 = α + βRV M

t + βRV 6M
t + βRV 1Y

t + βRV 2Y
t + εt+1 (15)

HAR(5) : RV M
t+1 = α + βRV M

t + βRV 6M
t + βRV 1Y

t + βRV 2Y
t + βRV 5Y

t + εt+1 (16)

The multiperiod volatilities are normalized sums of the one-month realized volatilities.

The six-months' realized volatility is exemplarily given by:

RV 6M
t =

1

6
(RV M

t +RV M
t−1 + ...+RV M

t−5). (17)

Despite the simplicity of these models, they are shown to be able to mimic long

memory behavior and exhibit good forecasting performance. We form quintile portfolios

by sorting the cross-section of stock returns by the memory parameter. We then compute

the average adjusted R2, F-statistic, and out-of-sample R2
OOS for each quintile portfolio.

21

The calculation of the out-of-sample R2
OOS follows ?, and measures the di�erences in mean

squared prediction errors (MSPE) for the predictive model, equations (12)-(16), and the

historical mean.

20Our frequency di�ers from the one of ?, who relies on daily, weekly, and monthly volatility to forecast
the volatility over the next day, week or two weeks. Our goal is di�erent. We are interested in the one
month horizon, which is the holding period for our portfolio sorts and the horizon for the cross-sectional
regressions.

21We report t-statistics of the slope coe�cient for HAR(1) and F-statistics for the joint signi�cance
of the slope coe�cients for the remaining models. For the out-of-sample analysis, the R2

OOS for some
stocks show extremely bad performance, with values below −100% due to large spikes. We winsorize the
data at the 1% and 99% level to minimize the e�ect of these outliers. Cleaning the time series of the
outliers delivers qualitatively similar results.
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The results are reported in Table 6. Panel A shows the adjusted R2 of the in-sample

predictability regressions. There is a strictly monotonic pattern of explanatory power,

which is increasing in the memory parameter. This is supported by the increasing t-

statistics and F-statistics in Panel B. Stocks with higher memory parameters exhibit

stronger explanatory power and the predictor variables are more statistically signi�cant

than stocks with lower memory parameters. Lastly, the R2
OOS also show that the out-

of-sample forecasting performance of long memory stocks is stronger than short memory

stocks and exhibits a generally monotonic pattern. A graphical illustration of the results

is presented in Figure 1. One can see that the bars are monotonically increasing for all

�ve models in all cases.

We thus show that the memory of stocks is a proxy for predictability, which explains

the negative spread returns of the LMS portfolio. At the same time, this exercise validates

our estimation approach to memory. Our results are true for both in-sample and out-of-

sample, while we allow for various model speci�cations including short memory processes

and long memory mimicking processes.22

5 Implications for existing models

In this section, we discuss the connection between our empirical results and theoretical

models of how long memory in volatility is generated for individual stocks using the

22In this section, we document the intuitive relationship between long memory and predictability of
volatility. In additional analyses, we repeat the portfolio sorts and cross-sectional regressions relying
on the predictability of volatility as measured by the adjusted R2 of the HAR(1) model. The results
are reported in Tables 11 and 12 of the Online Appendix and show evidence for a negative price of
predictability. However, the statistical signi�cance is weaker than for long memory and the results for the
negative price seem to be explained by the size e�ect. Hence, long memory seems to be more important
and possesses further information compared to known and included control variables. This analysis only
considers one of many possibilities to capture the predictability of volatility and its implications for asset
pricing while our paper speci�cally focuses on the memory of stock return volatility. However, this initial
test shows the potential of volatility prediction in connection to asset pricing and opens the door for
future research.
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proposed �agent-based� model of ? and the `interacting agent view� of ?. These models

rely on heterogeneity across market agents. ?, ?, and ? also consider markets with

heterogenous traders. Motivated by the memory-generating models, we discuss how large

and loser stocks in these models di�er from small and winner stocks.23

5.1 Interacting agent view

? divide traders in a market into two groups � fundamentalists and chartists � whose

interactions are based on the mechanism introduced by ?. The noise traders (chartists)

are driven by herd instincts and buy (sell) if they are optimistic (pessimistic). The long

memory in volatility is then generated by the interaction of agents with heterogenous

beliefs and strategies. The numbers of fundamentalists and chartists are �xed, but tran-

sition from optimists to pessimists and vice versa is allowed by a two-state model. They

derive an equilibrium distribution with two equilibria where a transition between them

has a �nite probability. The average time for the transition is denoted as the mean �rst

passage time T0. From the ratio of mean �rst passage time T0 and available data ob-

servations T , conclusions on the memory of the process can be drawn. For higher T0

relative to T , the memory parameter of squared returns decreases starting with a Hurst

exponent close to 1 and converging to 0 for T >> T0. The mean �rst passage time is

negatively related to the number of agents N in the market. We divide the cross-section

of stock returns into several segments by �rm characteristics. The relation of T and T0

for each submarket allows for conclusions on the memory of the submarket. We focus on

the e�ect of these two variables, assuming that all other variables are the same for the

23For these characteristics, we �nd statistical signi�cance concerning memory parameter spreads for
both portfolio sorts and cross-sectional regressions.

19



two markets.24

First, our main analysis shows that stocks with higher market capitalization exhibit

longer memory in volatility. ? �nd that the demand for large and liquid stocks has grown

due to the increasing share of the U.S. equity market. Additionally, investment decisions

in small stocks are harder for professional managers to justify to sponsors, as argued by ?.

Further, ? argues that small stocks exhibit incomplete information. As a result, there is

a subset of investors who cannot or does not want to invest into small stocks. All of these

�ndings suggest that the number of investors in large stocks dominates those of small

stocks. The larger number of agents for large stocks leads to a higher mean �rst passage

time and hence intuitively to longer memory volatility, as we empirically document.

Second, we �nd that stocks with longer memory volatility tend to be loser stocks.

This result can be explained by the disposition e�ect, as labeled by ?. The e�ect states

that investors tend to hold their losing stocks too long and sell their winner stocks too

soon in �nancial markets. This e�ect can be explained in the context of the prospect

theory of ? and the mental accounting framework of ?. The results suggest that the

number of agents investing in winner stocks tends to decrease while the number for the

loser stocks tends to remain constant or even increase. This leads to longer memory for

loser stocks, as shown in our main analysis.

5.2 Agent-based models

? divides the market into groups according to their investment horizon and hence consid-

ers a heterogenous agent framework. The agents rely on past information such as lagged

returns, dividend�price ratios, and trend indicators to evaluate the rules for investment

24The impact of other variables is neglible, since the memory parameter is high for low T relative to
T0 and always converges to zero for T →∞.
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decisions. This evaluation varies across agents. Some agents rely only on more recent

data, for example only the past six months (short memory investor), while others use

thirty years' of data (long memory investor). The trading rules may evolve over time

and a Walrasian equilibrium is reached by clearing the market. The author shows that

in a market consisting of homogeneous investors (long memory investors only), the price

converges to the equilibrium price through the learning mechanism, which results in a

short memory process for squared returns. If the market consists of all types of agents (all

memory), on the other hand, the price takes large swings from the equilibrium and shows

long memory behavior for volatility. Note that long memory can only be generated if the

market consists of a mixture of both short-term and long-term investors. The HAR-RV

model of ? follows a similar approach in order to mimic long memory by combining both

long and more importantly also short-term horizons for the volatility. As argued by ?,

short-term investors are in�uenced by the long-term variance, which again has an impact

on the short-term variance while long-term investors are not in�uenced by changes in

short-term volatility. The model can be transferred to parts of the complete market as

proxied by the cross-section of U.S. stock returns. We compare the fraction of short- and

long-term investors in various markets and draw conclusions on the degree of memory in

these markets.

? argue that small �rms with little collateral show the highest asymmetry in their risk

across recession and expansion states. Their expected returns are thus more sensitive to

credit market conditions. ? present similar arguments for small �rms being more sensitive

to news about the state of the business cycle. This implies that investors in small �rms

are generally mid- to long-term oriented, while investors of large and better collateralized

�rms may be both short- and long-term oriented. This is supported by the argument
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from the �interacting agent view model.� The higher degree of heterogeneity of large �rm

investors leads to a higher memory parameter compared to small �rms.25

? argue that the momentum strategy generates abnormally high returns on average,

but at the same time experiences abnormally high losses. This is because the loser stocks

embed features of a short call option on the market portfolio. Especially during times

of volatile bear markets, past-loser stocks lose a large fraction of their market value and

contain high �nancial leverage. The equity of theses �rms is similar to out-of-the money

call options on the underlying �rm values, which are correlated with the market. This

implies that loser stocks are much more sensitive to the state of the market (turbulent

vs. calm), which can change quickly. Consequently, the fraction of short-term investors

in the market of loser stocks should be larger than in the market of winner stocks, which

leads to higher memory estimates for loser stocks. This is what we �nd empirically.

6 Extensions and robustness tests

In this section, we discuss additional analyses of long memory volatility in the cross-

section, as well as various robustness tests including alternative estimators and portfolio

sorts. We extend our cross-sectional analysis with further control variables. Detailed

results are reported in the Online Appendix.

6.1 Additional control variables

In Subsection 3.4 we discuss our regression tests including size, book-to-market, momen-

tum, illiquidity, and jumps. We extend these regressions and now also control for further

25Even though small �rm investors are rather short-term oriented, this does not mean there are no
long-term investors. The same is true for large �rms. Hence we consider the relative proportion of
long-term and short-term investors and discuss the degree of heterogeneity.
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e�ects and anomalies, which have been shown to be good predictors of expected returns.

More speci�cally, we add the market beta (BETA), reversal (REV), cokurtosis with the

market (CKT), coskewness with the market (CSK), idiosyncratic volatility (IVOL), real-

ized kurtosis (KURT), realized skewness (SKEW), and demand for lottery (MAX) to the

analysis. We also include a stock's volatility-of-volatility (Vol-of-Vol). In our empirical

analysis we relate the long memory of volatility to the predictability of volatility and

uncertainty. We also relate higher volatility predictability to lower uncertainty regarding

a stock's risk level. In the literature, uncertainty has been measured by the volatility-

of-volatility for both individual stocks and the aggregate market (??).26 We calculate

the volatility-of-volatility as the �ve-year rolling window volatility of monthly realized

volatility.27 We �nd an average cross-sectional correlation of 0.11 between the degree of

long memory volatility of a stock and its volatility-of-volatility. While both are intuitively

related to uncertainty, the measures are barely correlated, thus we do not expect that

our �ndings can be explained by the volatility-of-volatility of a stock.

The market beta is estimated from daily return regressions of excess stock returns

on an intercept and the market excess return over the examined period. Following ?,

idiosyncratic volatility equals the standard deviation of the residuals from the same re-

gression as for the market beta, but additionally includes the size and book-to-market

factors of ?. The short-term reversal at the end of a month is de�ned as the return of

that month following ?. The coskewness and cokurtosis of a stock at the end of a month

is estimated from the daily returns in that month following ?. The kurtosis and skewness

of a stock at the end of a month is given by the sample kurtosis and skewness estimated

26Both studies investigate the asset pricing implication of the volatility-of-volatility and �nd a negative
price, just as we �nd for long memory.

27It is not possible to compute the measure of ? for our sample since they rely on options data of
individual stocks, which are available starting in 1996 from OptionMetrics. Our approach for calculating
the volatility-of-volatility closely follows the approach for our long memory estimates.
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from the daily returns in that month. Lastly, the demand for lottery is given by the

maximum total daily return observation of a month (?).

Table 7 presents the results of the cross-sectional regressions.28 Models 7 to 15 show

the time-series averages of the additional coe�cients in multiple regressions. Most impor-

tantly, the risk premium of the long memory volatility remains negative and statistically

signi�cant for all additional control variables, varying from −0.0043 to −0.0036. The

signs of statistically signi�cant risk premia for variables besides long memory are gener-

ally consistent with the literature. ? �nd that portfolios with higher betas have lower

alphas and Sharpe ratios than portfolios of low-beta assets. ? show that buying stocks

with low realized skewness and selling stocks with high realized skewness generates sta-

tistically signi�cant and positive excess returns at a weekly frequency while there is no

clear relationship for realized kurtosis. The negative and statistically signi�cant premium

for idiosyncratic volatility is consistent with the results of ?. ? argue that investors are

willing to pay more for stocks that exhibit extreme positive returns. As a consequence,

these stocks exhibit lower future returns, which is consistent with the negative premium

we �nd. Model 16 includes the memory parameter and all additional control variables in

this section while Model 17 presents the kitchen sink regression. The coe�cient of the

memory parameter remains statistically signi�cant at the 5% level or lower.

We control for two additional variables: aggregate long memory and aggregate volatil-

ity. Following ?, we rely on changes in the volatility index (VIX) as a proxy for innovations

in aggregate volatility. The VIX presents the implied volatility of a S&P 100 index con-

tract over the next 30 days, which is at-the-money. Since the data goes back only until

1986, we rely on U.S. stock market volatility following ? for the time before. We com-

28We also report mean values of each control variable in quintile portfolios, which are sorted by long
memory volatility. The results are presented in Table 8.
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pute the monthly standard deviation of the daily market returns and normalize the time

series of monthly return volatilities to the same mean and variance as the VIX when they

overlap from 1986 until 2015. For aggregate long memory, we follow the approach in our

main analysis and apply the GPH estimator and the bandwidth parameter m = N0.5 to

squared market returns in the most recent 60 months. For each stock, we then estimate

sensitivities to aggregate long memory and volatility (?):

ri,t − rf,t = β0 + βi,MktMKTt + βi,AF∆AFt + εi,t, (18)

whereMKT is the market excess return, ∆AF describes the innovations in the aggregate

factor (long memory or volatility), βi,Mkt and βi,AF are loadings on the market risk and

aggregate factor, respectively, and ε is the error term. For both, aggregate long memory

and volatility, we estimate the loadings in time-series regressions using a rolling window

of 60 observations.

Lastly, we want to examine the di�erence between the predictability of volatility and

the level of volatility itself. By further controlling for the level of volatility, we can state

that even conditional on the same level of volatility, investors prefer stocks with longer

memory volatility over shorter memory volatility due to their higher predictability. We

include the level of the volatility at the end of the month as measured by the variance of

daily returns in that month.

We then repeat our regression tests and also include the loadings on aggregate long

memory and volatility, as well as the level of variance in the vectorXi,t. Table 9 reports the

results. The �rst three columns present the results when extending our control variables

from Subsection 3.4, while columns four, �ve and six present the results when we include

the control variables discussed above. The coe�cient associated with the risk premium
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of long memory remains negative and statistically signi�cant for all model speci�cations.

Our �ndings thus show that aggregate volatility, aggregate long memory, and the level of

volatility (variance) cannot explain our results.

6.2 Long memory volatility and industries

In Section 3, we consider di�erent �rm characteristics and how they are able to explain

the memory parameter of volatility in the cross-section of U.S. returns. We �nd that

higher memory parameters can be related to large, loser stocks and stocks with fewer

jumps. In this section, we investigate whether �rms in certain industries possess higher

or lower memory parameters. More speci�cally, we use the twelve industry portfolio

identi�ers obtained from Kenneth French's data library. The industries are Consumer

Non-Durables, Consumer Durables, Manufacturing, Energy, Chemicals, Business Equip-

ment, Telecommunication, Utilities, Shops, Healthcare, Money & Finance, and Others.

We apply the GPH estimator and a bandwidth parameter of m = N0.5 as in our main

analysis. Table 13 of the Online Appendix reports the results. The mean and median are

very close to the value for the complete cross-section (0.22). Since the degree of memory

is similar for all industries, industry codes, unlike �rm characteristics, are not able to

explain the cross-sectional variation of the memory parameter.

6.3 Fama�French portfolios

In Section 3, we sort stocks by their memory parameter and investigate the average

�rm characteristics of quintile portfolios. In this subsection, we validate our results by

comparing the memory of Fama�French decile portfolios, which are sorted by size, book-

to-market or momentum. There are two major di�erences with this approach. First,
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instead of sorting by the memory parameter, stocks are sorted by their �rm character-

istics. Second, we consider decile instead of quintile portfolios.29 The portfolio returns

are obtained from Kenneth French's data library. We apply the GPH estimator with

the bandwidth parameter of m = N0.5 as in our main analysis and report the memory

parameter for each decile portfolio and the high-minus-low (D10−D1) in Table 14 of the

Online Appendix. Consistent with our main results, portfolios with larger size, higher

book-to-market, and worse prior performance exhibit higher memory parameters.30 The

book-to-market (momentum) portfolios demonstrate a monotonically increasing (decreas-

ing) pattern in memory.

6.4 Estimation of the memory parameter

For our main analysis, we follow the literature and choose the ad hoc bandwidth param-

eter of m = N0.5. We repeat the estimation using a bandwidth parameter of m = N0.6,

m = N0.7, and m = N0.8 and alternative estimators and report the results in Tables 15,

16, and 17 of the Online Appendix.31

In Panels A, B, and C of Table 15, we report the portfolio sorts for the cross-section of

U.S. returns using the GPH estimator and alternative parameters. We �nd that sorting

by the memory parameter and holding stocks with long memory and selling stocks with

short memory still generates negative excess returns. Using the alternative bandwidth

parameters m = N0.6, m = N0.7, and m = N0.8 leads to returns of −1.80%, −2.71%,

and −2.32% per annum, respectively. Adjusting for the additional risk factors of the ?

29The results for the Fama�French quintile portfolios are qualitatively similar.
30The magnitude of the memory parameters are somewhat higher than in our main analysis. This is

because we here use the complete time series of daily returns over more than 60 years, compared to the
5 years in our main analysis.

31These alternative bandwidth parameters are the most common choices in the literature, see ?, ?, ?,
?, ?, among others, and include the MSE-optimal one for the GPH estimator.
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�ve-factor model leads to signi�cant alphas of similar magnitudes as in our main analysis.

Further, we apply the GPH estimator to the absolute returns rather than the squared

returns as in our main analysis (?). The results are reported in Panel D and are consistent

with our main �ndings. Stocks with a short memory earn on average 2.94% per annum

more than stocks with a long memory. This spread return is statistically signi�cant at

the 1% level and remains signi�cant when controling for the ? risk factors.

A commonly used alternative approach to estimate long memory is the Local Whittle

(LW) estimator. We repeat the estimation with the LW estimator and the same band-

width parameter as in our main results, m = N0.5 (?). The results are provided in Table

16. For the portfolio sorts, we �nd a negative spread return of 2.09% for the LMS port-

folio which is statistically signi�cant at the 5% level (Panel A). The ? �ve-factor alpha

with a value of −3.21% is statistically signi�cant as well. In addition, we apply the LW

estimator with bandwidth parameters of m = N0.6, m = N0.7, and m = N0.8 to the

squared returns and a bandwidth parameter of m = N0.5 to the absolute returns. Panels

B to E report the results. The spread returns are all negative, varying from −1.82% to

−3.03%, and the ? �ve-factor alphas vary from −2.54% to −3.93%, while all returns and

risk-adjusted returns are statistically signi�cant.

Table 17 reports the coe�cient estimates from the cross-sectional regressions in equa-

tion (11) using the alternative long memory estimator and bandwidths. We rely on simple

regressions where individual stock returns are regressed on the long memory parameter

in Panel A and multiple regressions where we additionally include size, book-to-market,

momentum, illiquidity, and the BNS jump test statistic as explanatory variables. The

results are consistent with our main analysis. For the simple regressions, we �nd that long

memory is negatively priced in the cross-section with a risk premium estimate varying
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from −0.0104 to −0.0039, depending on the estimator and bandwidth, which is statis-

tically signi�cant. Including the control variables slightly changes the magnitude of the

long memory premium but they remain statistically signi�cant. In addition, we �nd a

negative (positive) price for the size (book-to-market ratio and momentum) of a stock

which is consistent with both our main analysis and the literature.

6.5 Holding period returns

In our main analysis, portfolios are rebalanced monthly and held for one month. We

next examine whether the negative risk premium associated with long memory volatility

persists for longer holding periods. For each month, we sort all stocks into quintile

portfolios where stocks with the lowest memory parameter are in the �rst quintile and

stocks with the highest memory parameter are in the �fth quintile. Excess returns of

the portfolios are tracked over the subsequent one, two, three, four, and �ve years. To

account for the overlapping returns, we adjust the standard errors following ?, using lags

according to the return horizon expressed in months.

The results are reported in Table 18 of the Online Appendix. Average returns and ?

risk-adjusted returns for the one-, two-, three-, four-, and �ve-year holding periods are

reported in Panels A�E. The annualized mean returns are of similar magnitude as for the

one-month holding period. The LMS spreads are −1.88%, −1.93%, −1.88%, −1.90%,

and −1.91%, respectively, and are all statistically signi�cant at the 5% level or lower.

The risk-adjusted returns only change slightly, and vary from −1.66% to −2.29% and are

generally statistically signi�cant.
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6.6 High-frequency data

We repeat our analysis, but rely on high-frequency data instead of daily returns. We

obtain �ve-minute returns for the S&P 500 constituents for the 1996-2015 period from

Thomson Reuters Tick History. Our choice of the sample period and stocks is restricted

by their availability. The data are cleaned following ?. ? argue that high-frequency data

should always result in a more accurate estimate when used correctly due to the basic

statistical principle that more data are always better. ? show that the high-frequency

data allow for a superior and nearly unbiased estimation of the long memory parameter

using �ve-minute return observations. We apply the GPH estimator and a bandwidth

parameter of m = N0.5 to a month of �ve-minute returns, which is 1,738 (= 22 ∗ 79)

data points per estimation window. This window is comparable to eight years of daily

observations.

The results are reported in Table 19 of the Online Appendix. We �nd a negative

return of −8.83% for the LMS portfolio, which is statistically signi�cant at the 1% level.

Controling for additional risk factors generally slightly mitigates the risk premium but the

alphas remain signi�cant. The results in this section thus con�rm our main results and

show that the negative risk premium is not dependent on the source and frequency of data

and the sample period. We implicitly investigate four subsamples and thus show that

our main results are robust against various sample periods. Our choice of subsamples is

motivated by data availability. The longest period from 1926 to 2015 is chosen according

to the availability of the CRSP stock data. We control for ? (?) risk factors, which are

available from 1963 to 2015 (1967 to 2015). Lastly, we also investigate the most recent

20 years from 1996 to 2015, which is chosen due to the availability of high-frequency data

from Thomson Reuters Tick History.
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6.7 Illiquidity, missing observations, and long memory

One might wonder whether the relationship between the size or jumps of a stock and its

degree of memory is mechanical since volatility measures may be computed with smaller

estimation error for high market capitalization and hence liquid stocks, which translates

into a higher persistence of the volatility dynamics. ? show that the detection of jumps

may be biased by the presence of missing returns, which is more common for illiquid

stocks. In this subsection, we control for these potential issues and show that our results

for size and jumps are not due to such reasons.

First, we plot the time series averages of the size and degree of memory of a stock

in Figure 2 of the Online Appendix which shows that the results are unlikely driven by

strong outliers. In a linear regression (when excluding the 1st and 99th quantiles for both

variables) size is a strongly signi�cant (and positive) explanatory variable for memory,

with a t-statistic that is larger than 19.0 (46.0).

Second, we repeat the portfolio sorts and exclude the most illiquid stocks from the

analysis to see whether our results still hold when considering only liquid stocks. To do

so, we measure illiquidity by the proportion of days with zero or missing returns. The

results are presented in Table 20 in the Online Appendix. Panel A is a replication of the

main results. In Panel B (D), we only consider the 50% of the stocks with the least zero

(missing) returns while in Panel C (E) we require a stock to have zero (missing) returns

on less than 10% of the days. The results are consistent (although slightly weaker) with

our main �ndings for the entire sample and emphasize that the positive relationship we

�nd between size/jumps and the degree of memory also holds for liquid stocks.

Third, we repeat the cross-sectional regressions as for the portfolio sorts and exclude

illiquid stocks measured by the proportion of zero or missing returns. Table 21 of the
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Online Appendix shows the estimation results for the slope coe�cients of Size and BNS,

which are very similar as those for the complete sample.

7 Conclusion

In this paper, we provide new information and insights into the asset pricing implications

of long memory in stock return volatility. Using portfolio sorts and cross-sectional re-

gressions, we analyze how the degree of long memory of a �rm's return volatility can be

explained by its size, book-to-market, prior performance or jumps. Based on theoretical

models, we discuss how long memory is generated in high market capitalization (winner)

stocks compared to low market capitalization (loser) stocks. We estimate a cross-sectional

price of long memory of −4.7% per annum. This estimate is robust to controling for size,

value, momentum, liquidity e�ects, and more. We relate the compensation for holding

short memory stocks to higher risk, which is given by the low predictability of short mem-

ory stocks. Our results are robust against di�erent variations of the estimation approach

and the examined models.
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Figure 1: Predictability of quintile portfolios
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This �gure reports adjusted R2, F-statistics, and R2
OOS for quintile portfolios of the cross-

section of U.S. stock returns. For a better presentation, the test statistics are all divided
by 100.
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Table 1: Summary statistics

This table presents summary statistics for the memory estimates of individual stocks'
volatility. The memory parameter is estimated with the GPH estimator and a bandwidth
parameter of m = N0.5. In our sample, we have an average number of 2480 long memory
estimates per month. AR(1) stands for the cross-sectional average of �rst-order auto-
correlation coe�cients. SD stands for the standard deviation. The middle panel reports
selected quantiles of the averages. t-statistic reports the mean t-statistic. Sign. at 5%
reports the proportion of signi�cant long memory estimates, while the remainder of the
last column reports the proportion of the memory parameter being in a certain interval.

Descriptive Quantiles Memory
AR(1) 0.87 5% 0.04 t-statistic 23.34
Mean 0.22 25% 0.15 Sign. at 5% 0.96
SD 0.12 Median 0.22 −0.5 < d < 0.0 0.03
Skewness 0.40 75% 0.29 0.0 < d < 0.5 0.95
Kurtosis 1.48 95% 0.43 0.5 < d < 1 0.02
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Table 2: Portfolio sorts and characteristics

This table presents the �rm characteristics of portfolios sorted by the memory of volatility.
The memory parameter is estimated with the GPH estimator and a bandwidth parameter
ofm = N0.5. We sort stocks each month for the 1950 to 2015 period and form and hold the
portfolio for one month. We report the average long memory parameter, size, momentum
and illiquidity, BNS statistic, and BNS indicator function of quintile portfolios. The Q5-
Q1 column reports the averages for the long memory minus short memory portfolio (LMS)
with the associated t-statistics in parentheses.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Memory 0.0044 0.1295 0.2118 0.2975 0.4471 0.4427 [202.76]
Size 11.6610 11.8630 12.0161 12.1707 12.3560 0.6950 [23.34]
Book-to-Market 0.8934 0.9168 0.8993 0.8758 0.8996 0.0062 [0.60]
Momentum 0.1681 0.1558 0.1522 0.1483 0.1284 −0.0397 [−14.27]
Illiquidity 0.0044 0.0040 0.0038 0.0040 0.0055 0.0010 [3.92]
BNS −0.1994 −0.0620 −0.0255 −0.0110 0.0036 0.2030 [12.50]
BNS-I 0.0177 0.0126 0.0106 0.0087 0.0074 −0.0103 [−24.26]
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Table 3: Cross-sectional regression

This table presents the results from cross-sectional regressions for the 1950-2015 period.
for each month, we regress the memory parameter of the cross-section on size, book-
to-market, momentum, illiquidity and BNS. The memory parameter is estimated with
the GPH estimator and a bandwidth parameter of m = N0.5. We report the average β
coe�cients and the standard errors in parentheses. Model 1 excludes any jump measures.
Model 2 includes the BNS jump statistic while Model 3 includes the BNS jump indicator.
Stars indicate signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Intercept Size Book-to-Market Momentum Illiquidity BNS BNS-I
Model 1 0.0292∗∗∗ 0.0160∗∗∗ 0.0019∗∗∗ −0.0186∗∗∗ 0.3126

(0.0061) (0.0006) (0.0006) (0.0013) (0.2696)
Model 2 0.0286∗∗∗ 0.0161∗∗∗ 0.0017∗∗∗ −0.0184∗∗∗ 0.3720 0.0052∗∗∗

(0.0061) (0.0006) (0.0006) (0.0013) (0.2738) (0.0005)
Model 3 0.0301∗∗∗ 0.0160∗∗∗ 0.0018∗∗∗ −0.0185∗∗∗ 0.3701 −0.0491∗∗∗

(0.0061) (0.0006) (0.0006) (0.0013) (0.2754) (0.0025)
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Table 4: Sorted portfolio returns

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios for the 1926-2015 period. Each month, stocks are sorted by the degree of long
memory in volatility and we track the portfolio returns over the subsequent month. The
memory parameter is estimated with the GPH estimator and a bandwidth parameter of
m = N0.5. The one-month-ahead portfolio returns are regressed on risk factors in the
Capital Asset Pricing Model (CAPM), the ? three-factor model (FF3), the ? �ve-factor
model (period starts in 1963) (FF5), and the ? q-model (period starts in 1967) (HXZ).
The corresponding alphas are reported. We report ? standard errors using lags equal to
the return horizon in parentheses. Stars indicate signi�cance: ∗ signi�cant at p < 0.10;
∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Mean return 0.1357∗∗∗ 0.1288∗∗∗ 0.1344∗∗∗ 0.1263∗∗∗ 0.1186∗∗∗ −0.0171∗∗

(0.0334) (0.0326) (0.0343) (0.0346) (0.0356) (0.0086)
CAPM 0.0385∗∗∗ 0.0328∗∗∗ 0.0337∗∗∗ 0.0238∗∗ 0.0162 −0.0223∗∗∗

(0.0125) (0.0115) (0.0110) (0.0103) (0.0108) (0.0083)
FF3 0.0136∗∗ 0.0103∗∗ 0.0084∗ −0.0016 −0.0111∗ −0.0247∗∗∗

(0.0062) (0.0051) (0.0048) (0.0048) (0.0062) (0.0077)
FF5 0.0238∗∗ 0.0146∗ 0.0137∗ 0.0045 −0.0046 −0.0284∗∗∗

(0.0108) (0.0087) (0.0076) (0.0075) (0.0095) (0.0099)
HXZ 0.0450∗∗∗ 0.0340∗∗∗ 0.0335∗∗∗ 0.0270∗∗ 0.0198 −0.0252∗

(0.0160) (0.0129) (0.0114) (0.0113) (0.0133) (0.0129)
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Table 5: Fama�MacBeth regression results

This table reports results from ? regressions for the 1950-2015 period. For each month,
excess stock returns are regressed on lagged �rm characteristics including the memory
parameters, market capitalization (Size), book-to-market values, prior returns (Momen-
tum), illiquidity, and jump statistics (BNS). The memory parameter is estimated with
the GPH estimator and a bandwidth parameter of m = N0.5. We report ? standard
errors using lags equal to the return horizon in parentheses. Stars indicate signi�cance: ∗

signi�cant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Intercept 0.0091∗∗∗ 0.0144∗∗∗ 0.0075∗∗∗ 0.0076∗∗∗ 0.0087∗∗∗ 0.0091∗∗∗ 0.0106∗

(0.0025) (0.0051) (0.0025) (0.0025) (0.0025) (0.0025) (0.0056)
Long Memory −0.0039∗∗ −0.0021∗ −0.0038∗∗ −0.0038∗∗ −0.0044∗∗∗−0.0043∗∗∗−0.0024∗∗

(0.0016) (0.0012) (0.0016) (0.0016) (0.0016) (0.0016) (0.0011)
Size −0.0006∗ −0.0005

(0.0003) (0.0003)
Book-to-Market 0.0019∗∗∗ 0.0024∗∗∗

(0.0005) (0.0006)
Momentum 0.0067∗∗∗ 0.0095∗∗∗

(0.0016) (0.0013)
Illiquidity 0.2010∗∗ 0.0991

(0.1010) (0.1768)
BNS 0.0024∗∗∗ 0.0020∗∗∗

(0.0004) (0.0003)
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Table 6: Long memory and predictability

This table reports results of predictive regressions. We run heterogenous autoregressive
regressions of the monthly realized variance for each stock including the previous one,
six, twelve, twenty-four, and sixty observations. We form quintile portfolios where stocks
with the lowest memory parameter are in the �rst quintile and stocks with the highest
memory parameter in the �fth quintile portfolio. We report average adjusted R2 in Panel
A, average t-statistics and F-statistics in Panel B, and out-of-sample R2 in Panel C.

Q1 Q2 Q3 Q4 Q5
Panel A: Adjusted R2

HAR(1) 0.0888 0.1507 0.1822 0.2343 0.3000
HAR(2) 0.1447 0.2111 0.2418 0.2897 0.3491
HAR(3) 0.1529 0.2185 0.2486 0.2946 0.3536
HAR(4) 0.1535 0.2184 0.2484 0.2958 0.3561
HAR(5) 0.1491 0.2132 0.2490 0.2931 0.3579
Panel B: T-statistic/F-statistic
HAR(1) 5.6276 8.5058 9.7878 11.7858 12.9780
HAR(2) 41.2025 74.8700 89.9142 116.0092 123.2804
HAR(3) 29.4787 52.5572 61.9348 78.9834 82.9948
HAR(4) 22.3186 39.6614 46.0103 58.7847 61.2399
HAR(5) 16.2773 29.1439 34.9617 42.7776 45.3960
Panel C: R2

OOS

HAR(1) 0.0474 0.1306 0.1515 0.1967 0.2729
HAR(2) 0.1266 0.2139 0.2237 0.2546 0.3117
HAR(3) 0.1203 0.2090 0.2136 0.2424 0.2921
HAR(4) 0.1039 0.1896 0.1944 0.2233 0.2704
HAR(5) 0.0064 0.1147 0.1194 0.1475 0.1919
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Table 7: Fama�MacBeth regressions: additional control variables

This table reports results from ? regressions for the 1950-2015 period. Each month, excess stock returns are regressed on lagged
�rm characteristics including, memory parameters, market capitalization (Size), book-to-market values, prior returns (Momentum),
illiquidity, and jump statistics (BNS). We further control for Beta, Cokurtosis (CKT), Coskewness (CSK), idiosyncratic volatility
(IVOL), kurtosis (KURT), skewness (SKEW), demand for lottery (MAX), and volatility of volatility (Vol-of-Vol). We report ?

standard errors using lags equal to the return horizon in parentheses. Stars indicate signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05;
∗∗∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17
Intercept 0.0091∗∗∗ 0.0144∗∗∗ 0.0075∗∗∗ 0.0076∗∗∗ 0.0087∗∗∗ 0.0091∗∗∗ 0.0096∗∗∗ 0.0095∗∗∗ 0.0087∗∗∗ 0.0089∗∗∗ 0.0116∗∗∗ 0.0114∗∗∗ 0.0096∗∗∗ 0.0122∗∗∗ 0.0089∗∗∗ 0.0106∗∗∗ 0.0267∗∗∗

(0.0025) (0.0051) (0.0025) (0.0025) (0.0025) (0.0025) (0.0027) (0.0024) (0.0026) (0.0026) (0.0019) (0.0025) (0.0025) (0.0021) (0.0017) (0.0019) (0.0040)
Long Memory −0.0039∗∗ −0.0021∗ −0.0038∗∗ −0.0038∗∗ −0.0044∗∗∗−0.0043∗∗∗−0.0040∗∗ −0.0037∗∗ −0.0036∗∗ −0.0037∗∗ −0.0042∗∗∗ −0.0043∗∗∗ −0.0039∗∗ −0.0041∗∗∗ −0.0038∗∗∗ −0.0041∗∗∗ −0.0021∗∗

(0.0016) (0.0012) (0.0016) (0.0016) (0.0016) (0.0016) (0.0017) (0.0016) (0.0016) (0.0016) (0.0014) (0.0017) (0.0016) (0.0015) (0.0014) (0.0013) (0.0010)
Size −0.0006∗ −0.0013∗∗∗

(0.0003) (0.0002)
Book-to-Market 0.0019∗∗∗ 0.0012∗∗

(0.0005) (0.0005)
Momentum 0.0067∗∗∗ 0.0096∗∗∗

(0.0016) (0.0013)
Illiquidity 0.2010∗∗ 0.4686∗∗

(0.1010) (0.1836)
BNS 0.0024∗∗∗ −0.0001

(0.0004) (0.0003)
Beta −0.0510∗∗∗ −0.0006 −0.0006

(0.0042) (0.0005) (0.0006)
REV −0.0005 −0.0577∗∗∗ −0.0395∗∗∗

(0.0005) (0.0043) (0.0037)
CKT 0.0000 0.0007 0.0011∗∗∗

(0.0005) (0.0005) (0.0004)
CSK −0.0005 0.0003 −0.0010

(0.0008) (0.0007) (0.0007)
IVOL −0.1483∗∗∗ −0.0725 −0.2892∗∗∗

(0.0447) (0.0598) (0.0535)
KURT −0.0006∗∗∗ −0.0003∗∗ −0.0002∗∗

(0.0001) (0.0001) (0.0001)
SKEW −0.0020∗∗∗ 0.0014∗∗∗ 0.0009∗∗∗

(0.0003) (0.0003) (0.0003)
MAX −0.0610∗∗∗ −0.0159 0.0156

(0.0112) (0.0164) (0.0165)
Vol-of-Vol −0.0074 0.0207 −0.0206

(0.0309) (0.0244) (0.0244)
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Table 8: Portfolio sorts and additional control variables

This table presents �rm characteristics of portfolios sorted by the memory of volatility.
The memory parameter is estimated with the GPH estimator and a bandwidth parameter
of m = N0.5. For the 1950-2015 period, we sort stocks for each month and form and hold
the portfolio for one month. We report the average long memory parameter, memory
parameters, market capitalization (Size), book-to-market values, prior returns (Momen-
tum), illiquidity and jump statistics (BNS), Beta, Cokurtosis (CKT), Coskewness (CSK),
idiosyncratic volatility (IVOL), kurtosis (KURT), skewness (SKEW), demand for lottery
(MAX), and volatility of volatility (Vol-of-Vol) of quintile portfolios. The Q5-Q1 column
reports the averages for the long memory minus short memory portfolio (LMS) with the
according t-statistics in square brackets.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Memory 0.0044 0.1295 0.2118 0.2975 0.4471 0.4427 [202.7567]
Size 11.6610 11.8630 12.0161 12.1707 12.3560 0.6950 [23.3435]
Book-to-Market 0.8934 0.9168 0.8993 0.8758 0.8996 0.0062 [0.5910]
Momentum 0.1681 0.1558 0.1522 0.1483 0.1284 −0.0397 [−14.2697]
Illiquidity 0.0044 0.0040 0.0038 0.0040 0.0055 0.0010 [3.9205]
BNS −0.1994 −0.0620 −0.0255 −0.0110 0.0036 0.2030 [12.5035]
Beta 0.8044 0.8458 0.8668 0.8874 0.8998 0.0954 [13.5244]
REV 0.0151 0.0128 0.0124 0.0118 0.0108 −0.0043 [−6.2043]
CKT 0.7717 0.8385 0.8870 0.9271 0.9574 0.1857 [15.0266]
CSK −0.0462 −0.0464 −0.0455 −0.0432 −0.0410 0.0052 [1.9815]
IVOL 0.0245 0.0233 0.0226 0.0224 0.0233 −0.0012 [−3.5765]
KURT 3.9543 3.8076 3.7205 3.6439 3.5518 −0.4024 [−40.4010]
SKEW 0.2678 0.2461 0.2337 0.2232 0.2074 −0.0604 [−16.6647]
Max 0.0672 0.0625 0.0602 0.0594 0.0609 −0.0063 [−7.1539]
Vol-of-Vol 0.0616 0.0551 0.0527 0.0528 0.0577 −0.0039 [−4.4344]
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Table 9: Exposure to market long memory, aggregate volatility, and variance level

This table reports results from ? regressions for the 1950-2015 period. For each month, we
regress excess stock returns on lagged �rm characteristics including, memory parameters,
market capitalization (Size), book-to-market values, prior returns (Momentum), illiquidity
and jump statistics (BNS). We further control for Beta, Cokurtosis (CKT), Coskewness
(CSK), idiosyncratic volatility (IVOL), kurtosis (KURT), skewness (SKEW), demand for
lottery (MAX) and volatility of volatility (Vol-of-Vol), and exposure to market memory
and aggregate volatility. Lastly, we control for the monthly level of variance (Variance
level) in the last row. We report ? standard errors using lags equal to the return horizon in
parentheses. Stars indicate signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 0.0114∗∗ 0.0107∗ 0.0184∗∗∗ 0.0239∗∗∗ 0.0239∗∗∗ 0.0211∗∗∗

(0.0053) (0.0055) (0.0050) (0.0049) (0.0047) (0.0045)
Long Memory −0.0017∗ −0.0024∗∗ −0.0022∗∗ −0.0018∗ −0.0022∗∗ −0.0023∗∗

(0.0010) (0.0011) (0.0011) (0.0010) (0.0010) (0.0010)
Size −0.0004 −0.0005∗ −0.0009∗∗∗−0.0011∗∗∗−0.0012∗∗∗−0.0011∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Book-to-Market 0.0020∗∗∗ 0.0023∗∗∗ 0.0019∗∗∗ 0.0012∗∗ 0.0013∗∗ 0.0014∗∗∗

(0.0005) (0.0006) (0.0006) (0.0005) (0.0005) (0.0005)
Momentum 0.0093∗∗∗ 0.0094∗∗∗ 0.0094∗∗∗ 0.0093∗∗∗ 0.0094∗∗∗ 0.0095∗∗∗

(0.0012) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013)
Illiquidity −0.0091 0.0770 0.2907 0.4028∗∗∗ 0.4076∗∗ 0.4280∗∗

(0.1470) (0.1716) (0.1801) (0.1550) (0.1693) (0.1685)
BNS 0.0020∗∗∗ 0.0019∗∗∗ 0.0003 −0.0001 −0.0002 −0.0002

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Beta −0.0004 −0.0007 −0.0007

(0.0005) (0.0006) (0.0007)
Rev −0.0412∗∗∗−0.0381∗∗∗−0.0398∗∗∗

(0.0037) (0.0038) (0.0039)
CKT 0.0011∗∗∗ 0.0012∗∗∗ 0.0012∗∗∗

(0.0003) (0.0004) (0.0004)
CSK −0.0011 −0.0010 −0.0009

(0.0007) (0.0007) (0.0007)
KURT −0.2973∗∗∗−0.0002∗∗ −0.1960∗∗∗

(0.0515) (0.0001) (0.0650)
SKEW −0.0003∗∗ 0.0009∗∗∗−0.0003∗∗∗

(0.0001) (0.0003) (0.0001)
MAX 0.0008∗∗∗ 0.0145 0.0002

(0.0002) (0.0170) (0.0002)
Vol-of-Vol 0.0200 −0.2936∗∗∗ 0.0565∗∗∗

(0.0164) (0.0585) (0.0187)
Market Long Memory −0.0017 −0.0004

(0.0015) (0.0014)
Aggregate Volatility −0.0008 0.0005

(0.0009) (0.0008)
Variance Level −4.9148∗∗∗ −2.8948∗∗

(0.7209) (1.1656)
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Figure 2: Scatter plot of size and memory
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This �gure plots the time series averages of size of U.S. stocks against their time series
average of long memory estimated by the GPH estimator. Both size and memory are
scaled to the interval between 0 and 1. The dotted lines represent the 1st and 99th
quantile for size and long memory, respectively.



Table 10: Sorted portfolio returns: residual long memory

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios. Each month, stocks are sorted by their residual long memory and we track
the portfolio returns over the subsequent month. The memory parameter is estimated
with the GPH estimator and a bandwidth parameter of m = N0.5. Residual memory
is calculated by regressing the memory parameter on size, book-to-market, momentum,
and illiquidity (Model 1). Model 2 additionally includes the BNS jump test statistic.
The one-month-ahead portfolio returns are regressed on risk factors in the Capital Asset
Pricing Model (CAPM) and the ? �ve-factor model (FF5). The corresponding alphas
are reported. We report ? standard errors using lags equal to the return horizon in
parentheses. Stars indicate signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: Model 1
CAPM 0.0261∗∗∗ 0.0227∗∗ 0.0286∗∗∗ 0.0188∗ 0.0146 −0.0115∗

(0.0101) (0.0100) (0.0098) (0.0101) (0.0097) (0.0060)
FF5 0.0049 −0.0007 0.0034 −0.0090∗ −0.0100∗ −0.0149∗∗

(0.0047) (0.0044) (0.0041) (0.0048) (0.0058) (0.0069)
Panel B: Model 2
CAPM 0.0261∗∗∗ 0.0236∗∗ 0.0293∗∗∗ 0.0176∗ 0.0141 −0.0120∗∗

(0.0100) (0.0100) (0.0099) (0.0100) (0.0097) (0.0060)
FF5 0.0050 0.0006 0.0042 −0.0102∗∗ −0.0099∗ −0.0149∗∗

(0.0047) (0.0043) (0.0041) (0.0048) (0.0058) (0.0068)
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Table 11: Sorted portfolio returns: predictability

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios. Each month, stocks are sorted by their predictability of volatility and we track
the portfolio returns over the subsequent month. The predictability is measured by the
adjusted R2 using the most recent �ve years of monthly volatility in the HAR(1) model.
The one-month-ahead portfolio returns are regressed on risk factors in the Capital Asset
Pricing Model (CAPM) and the ? �ve-factor model (FF5). The corresponding alphas
are reported. We report ? standard errors using lags equal to the return horizon in
parentheses. Stars indicate signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Mean return 0.1434∗∗∗ 0.1390∗∗∗ 0.1313∗∗∗ 0.1303∗∗∗ 0.1244∗∗∗ −0.0190∗

(0.0343) (0.0341) (0.0334) (0.0337) (0.0364) (0.0109)
FF5 0.0405∗∗∗ 0.0244∗∗∗ 0.0191∗∗ 0.0112 0.0018 −0.0387∗∗∗

(0.0119) (0.0089) (0.0084) (0.0076) (0.0104) (0.0105)
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Table 12: Fama�MacBeth regressions - predictability

This table reports results from ? regressions for the 1950-2015 period. Each month, excess
stock returns are regressed on lagged �rm characteristics including the predictability of
volatility, market capitalization (Size), book-to-market values, prior returns (Momentum),
illiquidity, and jump statistics (BNS). The predictability is measured by the adjusted R2

using the most recent �ve years of monthly volatility in the HAR(1) model. We report
? standard errors using lags equal to the return horizon in parentheses. Stars indicate
signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7
Intercept 0.0090∗∗∗ 0.0144∗∗∗ 0.0072∗∗∗ 0.0077∗∗∗ 0.0082∗∗∗ 0.0086∗∗∗ 0.0102∗

(0.0025) (0.0048) (0.0025) (0.0024) (0.0025) (0.0025) (0.0056)
Predictability −0.0055∗∗ −0.0023 −0.0054∗∗ −0.0058∗∗∗−0.0059∗∗∗−0.0051∗∗ −0.0023

(0.0022) (0.0018) (0.0022) (0.0021) (0.0022) (0.0022) (0.0017)
Size −0.0006∗∗ −0.0005

(0.0003) (0.0003)
Book-to-Market 0.0022∗∗∗ 0.0025∗∗∗

(0.0005) (0.0006)
Momentum 0.0053∗∗∗ 0.0092∗∗∗

(0.0015) (0.0013)
Illiquidity 0.1738∗∗ 0.1192

(0.0873) (0.1668)
BNS 0.0024∗∗∗ 0.0020∗∗∗

(0.0004) (0.0003)
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Table 13: Long memory and industries

This table reports descriptive statistics for the memory parameter of industry portfolios.
for the 1926-2015 period. The memory parameter is estimated with the GPH estimator
and a bandwidth parameter of m = N0.5. SD stands for the standard deviation. Min and
Max stand for the minimum and maximum observation over the sample period.

Non-Durables Durables Manufacturing Energy Chemicals Business Equipment
Mean 0.21 0.22 0.22 0.21 0.24 0.19
Median 0.21 0.22 0.21 0.21 0.23 0.20
SD 0.06 0.05 0.06 0.08 0.10 0.08
Min 0.02 −0.02 0.11 −0.03 −0.04 −0.11
Max 0.37 0.39 0.44 0.55 0.80 0.56
Skewness 0.32 −0.06 1.64 0.34 1.08 −0.29
Kurtosis 3.48 4.22 6.33 4.00 6.13 4.22

Telecommunication Utilities Shops Healthcare Money Finance Other
Mean 0.20 0.21 0.23 0.23 0.21 0.21
Median 0.21 0.21 0.22 0.22 0.20 0.21
SD 0.09 0.08 0.05 0.08 0.07 0.07
Min −0.30 −0.15 0.10 −0.01 −0.02 −0.05
Max 0.47 0.53 0.39 0.58 0.45 0.43
Skewness −0.78 −0.29 0.82 1.08 0.03 −0.47
Kurtosis 5.77 5.39 3.53 5.39 3.92 5.10
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Table 14: Long memory and Fama�French portfolios

This table reports the memory parameter for decile portfolios sorted Size, Book-to-Market
and Momentum for the 1950-2015 period. The last column reports the average of the High-
Minus-Low (D10 − D1) portfolio. The memory parameter is estimated with the GPH
estimator and a bandwidth parameter of m = N0.5.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D10-D1

Size 0.3425 0.5483 0.5162 0.4799 0.4955 0.4489 0.4349 0.4397 0.4159 0.3860 0.0436
Book-to-Market 0.3382 0.4249 0.4334 0.4544 0.4808 0.5062 0.5090 0.5326 0.4905 0.6149 0.2767
Momentum 0.6184 0.6202 0.6138 0.5527 0.5215 0.4896 0.4237 0.3635 0.3034 0.1952 −0.4232
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Table 15: Sorted portfolio returns: alternative GPH estimators

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios for the 1926-2015 period. For each month, stocks are sorted by their memory
parameter estimate and we track the portfolio returns over the subsequent month. The
memory parameter is estimated with the GPH estimator and a bandwidth parameter of
m = N0.6,m = N0.7 orm = N0.8 in Panels A-C. The GPH estimator is applied to absolute
returns and m = N0.5 in Panel D. The one-month-ahead portfolio returns are regressed on
risk factors in the ? �ve-factor model (FF5). The average return and the corresponding
alphas are reported. We report ? standard errors using lags equal to the return horizon in
parentheses. Stars indicate signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: GPH m = N0.6

Mean return 0.1347∗∗∗ 0.1353∗∗∗ 0.1316∗∗∗ 0.1248∗∗∗ 0.1167∗∗∗ −0.0180∗∗

(0.0345) (0.0347) (0.0338) (0.0345) (0.0331) (0.0089)
FF5 0.0219∗∗ 0.0174∗ 0.0081 0.0052 −0.0009 −0.0228∗∗

(0.0106) (0.0090) (0.0074) (0.0076) (0.0094) (0.0095)
Panel B: GPH m = N0.7

Mean return 0.1426∗∗∗ 0.1313∗∗∗ 0.1286∗∗∗ 0.1256∗∗∗ 0.1155∗∗∗ −0.0271∗∗∗

(0.0357) (0.0345) (0.0343) (0.0331) (0.0330) (0.0096)
FF5 0.0291∗∗∗ 0.0131 0.0074 0.0070 −0.0043 −0.0334∗∗∗

(0.0105) (0.0093) (0.0078) (0.0076) (0.0088) (0.0097)
Panel C: GPH m = N0.8

Mean return 0.1415∗∗∗ 0.1379∗∗∗ 0.1248∗∗∗ 0.1208∗∗∗ 0.1183∗∗∗ −0.0232∗∗

(0.0361) (0.0361) (0.0335) (0.0335) (0.0313) (0.0099)
FF5 0.0293∗∗∗ 0.0170∗∗ 0.0090 −0.0010 −0.0022 −0.0314∗∗∗

(0.0103) (0.0082) (0.0086) (0.0085) (0.0084) (0.0095)
Panel D: GPH Absolute Returns m = N0.5

Mean return 0.1417∗∗∗ 0.1321∗∗∗ 0.1306∗∗∗ 0.1264∗∗∗ 0.1123∗∗∗ −0.0294∗∗∗

(0.0335) (0.0331) (0.0341) (0.0342) (0.0360) (0.0103)
FF5 0.0202∗∗ 0.0145 0.0106 0.0074 −0.0026 −0.0228∗∗

(0.0102) (0.0091) (0.0074) (0.0074) (0.0105) (0.0105)
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Table 16: Sorted portfolio returns: alternative LW estimators

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios for the 1926-2015 period. For each month, stocks are sorted by their memory
parameter estimate and we track the portfolio returns over the subsequent month. The
memory parameter is estimated with the LW estimator and a bandwidth parameter of
m = N0.5, m = N0.6, m = N0.7 or m = N0.8 in Panels A-D. The LW estimator is applied
to absolute returns and m = N0.5 in Panel E. The one-month-ahead portfolio returns
are regressed on risk factors in the ? �ve-factor model (FF5). The average return and
the corresponding alphas are reported. We report ? standard errors using lags equal to
the return horizon in parentheses. Stars indicate signi�cance: ∗ signi�cant at p < 0.10;
∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: LW m = N0.5

Mean return 0.1391∗∗∗ 0.1299∗∗∗ 0.1309∗∗∗ 0.1256∗∗∗ 0.1181∗∗∗ −0.0209∗∗

(0.0333) (0.0332) (0.0333) (0.0351) (0.0358) (0.0100)
FF5 0.0309∗∗∗ 0.0133 0.0092 0.0009 −0.0012 −0.0321∗∗∗

(0.0115) (0.0086) (0.0077) (0.0076) (0.0097) (0.0109)
Panel B: LW m = N0.6

Mean return 0.1363∗∗∗ 0.1355∗∗∗ 0.1309∗∗∗ 0.1227∗∗∗ 0.1182∗∗∗ −0.0182∗

(0.0342) (0.0344) (0.0341) (0.0345) (0.0334) (0.0099)
FF5 0.0254∗∗ 0.0176∗∗ 0.0079 0.0017 0.0000 −0.0254∗∗

(0.0110) (0.0088) (0.0079) (0.0075) (0.0094) (0.0103)
Panel C: LW m = N0.7

Mean return 0.1435∗∗∗ 0.1324∗∗∗ 0.1307∗∗∗ 0.1238∗∗∗ 0.1137∗∗∗ −0.0298∗∗∗

(0.0352) (0.0349) (0.0338) (0.0343) (0.0326) (0.0101)
FF5 0.0324∗∗∗ 0.0131 0.0093 0.0054 −0.0069 −0.0393∗∗∗

(0.0106) (0.0092) (0.0081) (0.0079) (0.0090) (0.0105)
Panel D: LW m = N0.8

Mean return 0.1427∗∗∗ 0.1370∗∗∗ 0.1275∗∗∗ 0.1230∗∗∗ 0.1135∗∗∗ −0.0292∗∗∗

(0.0366) (0.0351) (0.0344) (0.0334) (0.0315) (0.0112)
FF5 0.0298∗∗∗ 0.0191∗∗ 0.0080 0.0014 −0.0053 −0.0351∗∗∗

(0.0108) (0.0088) (0.0082) (0.0078) (0.0093) (0.0106)
Panel E: LW Absolute Returns m = N0.5

Mean return 0.1445∗∗∗ 0.1327∗∗∗ 0.1336∗∗∗ 0.1175∗∗∗ 0.1141∗∗∗ −0.0303∗∗

(0.0337) (0.0324) (0.0344) (0.0337) (0.0369) (0.0121)
FF5 0.0264∗∗ 0.0147 0.0099 0.0021 −0.0029 −0.0293∗∗∗

(0.0103) (0.0091) (0.0075) (0.0076) (0.0108) (0.0112)
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Table 17: Cross-sectional regressions: alternative estimators

This table reports results from ? regressions for the 1950-2015 period. for each month,
excess stock returns are regressed on the lagged memory parameters in Panel A. Panel
B further includes additional lagged �rm characteristics, which are market capitalization
(Size), book-to-market values, prior returns (Momentum), illiquidity, and jump statistics
(BNS). The memory parameter is estimated by applying the GPH or the LW estimator
and a bandwidth parameter of m = N0.5, m = N0.6, m = N0.7 or m = N0.8 to squared
or absolute returns. We report ? standard errors using lags equal to the return horizon
in parentheses. Stars indicate the signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05;
∗∗∗p < 0.01.

GPH LW
N0.6 N0.7 N0.8 Abs. N0.5 N0.5 N0.6 N0.7 N0.8 Abs. N0.5

Panel A: Simple Regressions
Intercept 0.0089∗∗∗ 0.0091∗∗∗ 0.0091∗∗∗ 0.0094∗∗∗ 0.0092∗∗∗ 0.0091∗∗∗ 0.0094∗∗∗ 0.0095∗∗∗ 0.0097∗∗∗

(0.0026) (0.0026) (0.0027) (0.0025) (0.0026) (0.0026) (0.0027) (0.0027) (0.0025)
Long Memory −0.0039∗ −0.0062∗∗ −0.0075∗∗ −0.0045∗∗ −0.0047∗∗ −0.0053∗ −0.0084∗∗ −0.0104∗∗ −0.0060∗∗

(0.0022) (0.0028) (0.0036) (0.0019) (0.0022) (0.0029) (0.0038) (0.0049) (0.0025)
Panel B: Multiple Regressions
Intercept 0.0106∗ 0.0109∗ 0.0110∗ 0.0111∗∗ 0.0106∗ 0.0106∗ 0.0109∗ 0.0111∗ 0.0110∗

(0.0056) (0.0056) (0.0057) (0.0056) (0.0056) (0.0056) (0.0056) (0.0057) (0.0056)
Long Memory −0.0026∗ −0.0044∗∗ −0.0047∗ −0.0027∗∗ −0.0030∗∗ −0.0033∗ −0.0063∗∗ −0.0071∗ −0.0036∗∗

(0.0015) (0.0021) (0.0028) (0.0013) (0.0015) (0.0019) (0.0028) (0.0039) (0.0017)
Size −0.0005 −0.0005∗ −0.0005∗ −0.0005∗ −0.0005 −0.0005 −0.0005 −0.0005 −0.0005

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
Book-to-Market 0.0024∗∗∗ 0.0024∗∗∗ 0.0023∗∗∗ 0.0024∗∗∗ 0.0024∗∗∗ 0.0024∗∗∗ 0.0024∗∗∗ 0.0023∗∗∗ 0.0024∗∗∗

(0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006) (0.0006)
Momentum 0.0094∗∗∗ 0.0095∗∗∗ 0.0094∗∗∗ 0.0095∗∗∗ 0.0095∗∗∗ 0.0095∗∗∗ 0.0094∗∗∗ 0.0094∗∗∗ 0.0095∗∗∗

(0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013) (0.0013)
Illiquidity 0.0987 0.0952 0.0926 0.0927 0.0993 0.0991 0.0971 0.0924 0.0933

(0.1764) (0.1754) (0.1752) (0.1759) (0.1763) (0.1765) (0.1753) (0.1742) (0.1752)
BNS 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗ 0.0020∗∗∗

(0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)
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Table 18: Sorted portfolio returns: alternative holding periods

This table reports average returns and risk-adjusted returns of equally weighted quintile
portfolios for the 1926-2015 period. For each month, stocks are sorted by their memory
parameter estimate and we track the portfolio returns over the subsequent one, two, three,
four and �ve years in Panel A, B, C, D and E, respectively. The memory parameter is
estimated with the GPH estimator and a bandwidth parameter of m = N0.5. The one-
month-ahead portfolio returns are regressed on risk factors in the Capital Asset Pricing
Model (CAPM) and the ? �ve-factor model (period starts in 1963) (FF5). The mean
returns and the corresponding alphas are reported. We report ? standard errors using
lags equal to the return horizon in parentheses. Stars indicate signi�cance: ∗ signi�cant
at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: One Year Holding Period
Mean return 0.1404∗∗∗ 0.1371∗∗∗ 0.1384∗∗∗ 0.1329∗∗∗ 0.1216∗∗∗ −0.0188∗∗

(0.0503) (0.0504) (0.0472) (0.0438) (0.0448) (0.0095)
FF5 0.1566∗∗∗ 0.1592∗∗∗ 0.1616∗∗∗ 0.1478∗∗∗ 0.1400∗∗∗ −0.0166

(0.0502) (0.0488) (0.0477) (0.0470) (0.0473) (0.0150)
Panel B: Two Years Holding Period
Mean return 0.1453∗∗∗ 0.1431∗∗∗ 0.1412∗∗∗ 0.1371∗∗∗ 0.1260∗∗∗ −0.0193∗∗

(0.0423) (0.0403) (0.0386) (0.0359) (0.0371) (0.0097)
FF5 −0.0059 −0.0037 −0.0076 −0.0200∗∗ −0.0288∗∗∗ −0.0229∗∗

(0.0092) (0.0079) (0.0075) (0.0087) (0.0111) (0.0100)
Panel C: Three Years Holding Period
Mean return 0.1445∗∗∗ 0.1441∗∗∗ 0.1421∗∗∗ 0.1378∗∗∗ 0.1256∗∗∗ −0.0188∗∗

(0.0390) (0.0391) (0.0357) (0.0325) (0.0332) (0.0092)
FF5 −0.0072 −0.0025 −0.0093 −0.0202∗ −0.0292∗∗ −0.0219∗∗

(0.0089) (0.0092) (0.0078) (0.0115) (0.0119) (0.0091)
Panel D: Four Years Holding Period
Mean return 0.1510∗∗∗ 0.1509∗∗∗ 0.1478∗∗∗ 0.1438∗∗∗ 0.1319∗∗∗ −0.0190∗∗

(0.0424) (0.0434) (0.0394) (0.0352) (0.0352) (0.0094)
FF5 −0.0008 0.0017 −0.0031 −0.0152 −0.0212 −0.0204∗∗

(0.0188) (0.0234) (0.0292) (0.0302) (0.0224) (0.0081)
Panel E: Five Years Holding Period
Mean return 0.1534∗∗∗ 0.1537∗∗∗ 0.1493∗∗∗ 0.1464∗∗∗ 0.1343∗∗∗ −0.0191∗∗

(0.0341) (0.0379) (0.0356) (0.0321) (0.0303) (0.0093)
FF5 −0.0191 −0.0204 −0.0263∗ −0.0352∗∗∗−0.0393∗∗∗ −0.0203∗∗

(0.0141) (0.0180) (0.0142) (0.0124) (0.0122) (0.0091)
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Table 19: Sorted portfolio returns: high frequency data

This table reports average returns and risk-adjusted returns of quintile portfolios for the
1996-2015 period. for each month, stocks are sorted by their long memory parameter
estimate and we track the portfolio returns over the subsequent month. The one-month-
ahead portfolio returns are regressed on risk factors in the Capital Asset Pricing Model
(CAPM), the ? 3-factor model (FF3), the ? 5-factor model (FF5), and the ? q-model
(HXZ). The corresponding alphas are reported. We report ? standard errors using lags
equal to the return horizon in parentheses. The memory parameter is estimated using a
month of 5-min returns and the GPH estimator and a bandwidth parameter of m = N0.5.
Stars indicate signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Mean return 0.1638∗∗∗ 0.1246∗∗∗ 0.1091∗∗ 0.1025∗∗ 0.0754∗ −0.0883∗∗∗

(0.0441) (0.0474) (0.0461) (0.0438) (0.0445) (0.0176)
CAPM 0.1508∗∗∗ 0.1138∗∗∗ 0.0980∗∗ 0.0881∗∗ 0.0600 −0.0908∗∗∗

(0.0403) (0.0432) (0.0444) (0.0405) (0.0417) (0.0182)
FF3 0.1369∗∗∗ 0.1040∗∗ 0.0798∗ 0.0768∗ 0.0633 −0.0736∗∗∗

(0.0429) (0.0437) (0.0457) (0.0433) (0.0434) (0.0193)
FF5 0.0963 0.0643 0.0395 0.0558 0.0367 −0.0597∗∗

(0.0644) (0.0638) (0.0612) (0.0581) (0.0563) (0.0257)
HXZ 0.0558 0.0194 −0.0088 0.0259 −0.0169 −0.0727∗∗

(0.0870) (0.0845) (0.0827) (0.0785) (0.0737) (0.0302)
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Table 20: Portfolio sorts and characteristics - liquidity e�ects

This table presents �rm characteristics of portfolios sorted by the memory of volatility.
The memory parameter is estimated with the GPH estimator and a bandwidth parameter
of m = N0.5. From 1950 to 015, we sort stocks for each month and form and hold the
portfolio for one month. We report the average long memory parameter, size, momentum,
and illiquidity, BNS statistic and BNS indicator function of quintile portfolios. The Q5-Q1
column reports the averages for the long memory minus short memory portfolio (LMS)
with the according t-statistics in square brackets. The complete sample �ltered by illiquid
stocks measured by missing observations (missing or zero return). Panel A reports our
main results. Panel B (D) only considers the 50% of the stocks with the least zero
(missing) returns over the lifetime of the stock. Panel C (E) requires a stock to have zero
(missing) returns on less than 10% of the days over its lifetime to be included.

Q1 Q2 Q3 Q4 Q5 Q5-Q1 (LMS)
Panel A: Complete Sample
Memory 0.0044 0.1295 0.2118 0.2975 0.4471 0.4427 [202.7567]
Size 11.6610 11.8630 12.0161 12.1707 12.3560 0.6950 [23.3435]
BNS −0.1994 −0.0620 −0.0255 −0.0110 0.0036 0.2030 [12.5035]
BNS-I 0.0177 0.0126 0.0106 0.0087 0.0074 −0.0103 [−24.2588]
Panel B: Median of Zero-Return-Proportion
Long Memory 0.0099 0.1347 0.2156 0.2990 0.4442 0.4343 [187.7904]
Size 12.1271 12.3084 12.4651 12.6202 12.8074 0.6804 [26.9105]
BNS −0.2095 −0.0817 −0.0493 −0.0377 −0.0236 0.1859 [11.3556]
BNS-I 0.0173 0.0123 0.0105 0.0088 0.0073 −0.0100 [−22.2307]
Panel C: Zero-Return-Proportion<10%
Long Memory 0.0354 0.1577 0.2374 0.3184 0.4540 0.4187 [140.0909]
Size 13.4975 13.5595 13.6571 13.8167 14.0044 0.5069 [17.6627]
BNS −0.2148 −0.1017 −0.0854 −0.0775 −0.0707 0.1441 [6.8881]
BNS-I 0.0153 0.0113 0.0105 0.0085 0.0070 −0.0083 [−11.4569]
Panel D: Median of Missing-Return-Proportion
Long Memory 0.0188 0.1448 0.2281 0.3139 0.4615 0.4426 [199.3277]
Size 12.3504 12.4568 12.5820 12.7180 12.8816 0.5313 [16.5373]
BNS −0.1923 −0.0596 −0.0270 −0.0133 −0.0022 0.1901 [10.2357]
BNS-I 0.0164 0.0112 0.0099 0.0083 0.0068 −0.0095 [−18.4332]
Panel E: Missing-Return-Proportion<10%
Long Memory 0.0044 0.1295 0.2118 0.2975 0.4471 0.4427 [202.7553]
Size 11.6611 11.8631 12.0161 12.1706 12.3561 0.6950 [23.3444]
BNS −0.1993 −0.0620 −0.0255 −0.0110 0.0037 0.2030 [12.5028]
BNS-I 0.0177 0.0126 0.0106 0.0087 0.0073 −0.0103 [−24.2713]
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Table 21: Cross-sectional regression - liquidity e�ects

This table presents the results from cross-sectional regressions for the 1950-2015 period.
For each month, we regress the memory parameter of the cross-section on size and BNS.
The memory parameter is estimated with the GPH estimator and a bandwidth parameter
of m = N0.5. We report the average β coe�cients and the according standard errors in
parentheses below. Stars indicate signi�cance: ∗ signi�cant at p < 0.10; ∗∗p < 0.05;
∗∗∗p < 0.01. Row 1 reports the results using the complete sample. Row 2 (4) only
considers the 50% of the stocks with the least zero (missing) returns over the lifetime of
the stock. Panel 3 (5) requires a stock to have zero (missing) returns on less than 10% of
the days over its lifetime to be included.

Intercept Size BNS
Complete Sample 0.0261∗∗∗ 0.0163∗∗∗ 0.0062∗∗∗

(0.0060) (0.0006) (0.0005)
Median of Zero-Return-Proportion 0.0261∗∗∗ 0.0163∗∗∗ 0.0062∗∗∗

(0.0060) (0.0006) (0.0005)
Zero-Return-Proportion<10% 0.0339∗∗∗ 0.0159∗∗∗ 0.0032∗∗

(0.0083) (0.0008) (0.0013)
Median of Missing-Return-Proportion 0.0598∗∗∗ 0.0138∗∗∗ 0.0082∗∗∗

(0.0082) (0.0008) (0.0009)
Missing-Return-Proportion<10% 0.0414∗∗∗ 0.0153∗∗∗ 0.0060∗∗∗

(0.0067) (0.0007) (0.0004)

13


	Introduction
	Data and methodology
	Data
	Semiparametric estimation of long memory in volatility

	Long memory volatility in the cross-section of stock returns
	Descriptive statistics
	Explaining long memory with firm characteristics
	Long memory volatility and expected stock returns: portfolio sorts
	Long memory volatility and expected stock returns: regression tests

	Long memory volatility and predictability
	Implications for existing models
	Interacting agent view
	Agent-based models

	Extensions and robustness tests
	Additional control variables
	Long memory volatility and industries
	Fama–French portfolios
	Estimation of the memory parameter
	Holding period returns
	High-frequency data
	Illiquidity, missing observations, and long memory

	Conclusion
	Literatur

