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Abstract 

Building stock modeling can predict stock energy consumption and carbon emissions 

for both current and future conditions to inform building design and retrofitting policies. 

A 'bottom-up' engineering approach for building stock energy modeling is attractive to 

built environment energy researchers because of its capacity for detailed energy 

analysis. However, such studies in China have been very limited to date. The aim of 

this research is to develop a modeling approach to residential building stock energy 

consumption for space heating and cooling. A holistic four-step approach of archetype 

configurations; building performance simulation; stock floor area estimation and local 

weather adjustment is presented. The Chongqing municipality was chosen to 

demonstrate the approach. The results show that adopting the northern China standard 
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pattern of central space heating for Chongqing's urban residential stock is not feasible 

because it dramatically increases primary energy consumption and therefore carbon 

dioxide emissions from space heating usage. By applying energy conservation retrofit 

measures to the Chongqing urban residential stock, the total energy consumption for 

space heating and cooling and resulting carbon dioxide emissions can be significantly 

reduced, with estimated reductions of 57.6% to 60.7% in 2020 and 55.3% to 57.2% in 

2050. The method described can provide useful information and guidance for 

policymakers contemplating energy retrofit schemes.  

•Keywords: residential buildings, space heating and cooling, bottom-up engineering 

model, building stock, energy consumption, future climate  

1 Introduction  

Largely driven by economic and population growth, greenhouse gas emissions have 

increased to an historical peak with the accumulation of carbon dioxide emissions 

believed to be instrumental in determining global mean surface warming (IPCC, 2014). 

China is responsible for 20.4% of global total final energy consumption (IEA, 2017). 

As the largest emitter of carbon dioxide, China contributes 30% of global CO2 

emissions from fossil fuel combustion, cement manufacture and gas flaring processes 

(EPA, 2017). According to the Chinese Building Energy Model developed by 

THUBERC (THUBERC, 2017) in 2015, operational energy consumption for Chinese 

buildings accounts for 20% of national total energy consumption and emissions of  

2.22 Billion tons of CO2. As China aims to lower carbon dioxide emissions per unit of 

GDP by between 60% and 65% of the 2005 level by 2030 (Department of Climate 

Change, 2015), the Chinese government is paying great attention to low-carbon 

development (State Council, 2016). Cities are recorded as contributing 70% of the 

world’s energy-related greenhouse gases (Baeumler et al., 2012) and are therefore a 

very important focus for carbon dioxide emission reduction (Shen et al., 2018). The 

Chinese government has been promoting low carbon cities since 2010, with Chongqing 

nominated as one of the pilot cities (National Development and Reform Commission, 

2010). 

Residential building stock, including both urban and rural, accounted for 58.5% of the 

total built floor area in China while consuming 48% of the energy used in Chinese 

buildings (THUBERC, 2017). This gives them an important potential role in controlling 

energy consumption and carbon emissions. China’s 13th Five Year Plan (2016-2020) 

sets the following goals for energy conservation in residential buildings: 1) to achieve 

the energy efficient refurbishment of more than 5 billion m2 of residential floor area, 

and 2) to make at least 60% of the residential building stock, energy efficient 

(MOHURD, 2017; SCC, 2016).  



 

 

Energy consumption for space heating and cooling accounts for 58% of urban 

household energy consumption in China (Zheng et al., 2014). This is comparable to 

levels in Western developed countries (the United States, 48% (EIA, 2013), the United 

Kingdom 70% (Department for Business Energy & Industrial Strategy, 2017), and the 

European Union 65% (Eurostat, 2018)). However, the absolute value of current 

residential space heating and cooling energy consumption in China is still relatively 

much lower (Zheng et al., 2014).  

The Hot Summer and Cold Winter (HSCW) zone, located in southern China, covers 16 

provinces. It is a densely populated region and delivers 48% of the gross domestic 

product of China (Xu et al., 2013). The current indoor environment in the HSCW zone 

is relatively poor (Yao et al., 2018), with indoor temperatures of over 30 oC in summer 

and below 15 oC in winter (Li and Yao, 2012; Li et al., 2014). Due to the thriving 

economy and increasing incomes, occupants’ thermal comfort requirements are also 

improving (Gui et al., 2018; Liu and Kojima, 2017; Liu et al., 2017). The improved 

comfort requirements potentially lead to an increasing need for energy for space heating 

and cooling, which places tremendous pressure on the national energy saving and 

carbon reduction target.  

The Chinese government is particularly concerned with residential energy consumption 

in the hot summer and cold winter zone, through design standard implementation 

(MOHURD, 2001, 2010) and policy guidance (MOHURD, 2012a, 2017). The HSCW 

residential stock at the conclusion of the 12th Five-year plan, including all newly 

constructed residential buildings, has achieved the latest energy efficiency design 

standard. 70.9 million m2 of residential building has undergone the retrofit process, 1.42 

times the original Government Ministry's target (MOHURD, 2017).  

However, the energy conservation and carbon reduction impacts of different energy 

efficiency measures are still unclear at the larger scale of a city or town. There is an 

urgent need to understand the current energy consumption of the existing building stock 

and to have a reliable projection of the future situation in order to guarantee effective 

energy conservation instruction within a city. But, due to the historical system of 

collecting statistical data relating solely to industrial categories in China, no official 

statistical data exists for the operational energy consumption of residential buildings 

(CABEE, 2016). The energy consumption of different end-uses, including space 

heating and cooling, is also unavailable. Although nationwide residential stock survey 

data, like the US Residential Energy Consumption Survey (RECS) data (EIA, 2017), 

would be  very useful for giving an insight into real stock energy consumption, this 

kind of national scale residential stock official survey does not exist in China yet. Zheng 

et al. (2014) conducted a comprehensive survey of residential energy consumption in 

China for 2012. Their survey sample (1450 households in 26 Chinese provinces) is 

rather limited and maybe not fully representative of the entire Chinese residential stock. 



 

 

There are privacy issues related to the collection of residential energy consumption data 

in China. Building stock modeling presents an alternative option to a full large-scale 

survey to investigate Chinese residential building energy consumption.  

1.1 Building stock energy modeling  

Building stock energy modeling is a method of depicting current stock energy 

consumption and predicting its future evolution (Reinhart and Davila, 2016). Broadly, 

building stock energy consumption models can be divided into two types based on the 

modeling approach, namely top-down and bottom-up (Kavgic et al., 2010; Swan and 

Ugursal, 2009). The top-down approach, including econometric and technological top-

down models, uses regression to find the relationship between building stock energy 

consumption and top-level variables like macroeconomic indicators, the energy price, 

and general climate. The bottom-up approach, including statistical and engineering 

bottom-up models, determines the energy consumption of every building within the 

study area before aggregated this data to get the stock energy consumption. The top-

down approach can account for macroeconomic and socioeconomic effects and the top-

level variables are easier to obtain, but it relies on historical consumption information. 

Technical detail cannot be added to the model. However, the bottom-up approach can 

evaluate the impact of energy conservation measures on the stock as a whole, but it 

needs extensive databases containing detailed building characteristics or energy 

consumption. Detailed benefits and limitations of the bottom-up and top-down building 

stock modeling approaches can be found in Kavgic et al. (2010) and Swan and Ugursal 

(2009). Within the bottom-up approach, the bottom-up statistical model relies heavily 

on a historical energy consumption dataset and tries to find the relationship between the 

building energy consumption and building features. The prerequisite of using the 

bottom-up statistical model is the real measured energy consumption of the building 

stock, which is usually unavailable in China. However, the bottom-up engineering 

model is based on the building heat balance calculations which provide a “ground-up” 

energy estimation. Moreover, the bottom-up engineering model provides the maximum 

flexibility for testing energy conservation measures in detail and determining building 

energy end-use distribution. It has been classified as a white-box based approach 

utilizing a detailed thermal physics simulation (Tardioli et al., 2015).  

Bottom-up engineering building stock energy modeling can assess stock end-use 

energy consumption in detail and stock energy consumptions under changing stock 

conditions (i.e. when energy conservation technologies are applied) (Kavgic et al., 2010; 

Swan and Ugursal, 2009). Residential stock bottom-up engineering modeling has been 

applied in EU states (Ballarini et al., 2014; Caputo et al., 2013; Dascalaki et al., 2011; 

Filogamo et al., 2014; Heeren et al., 2013; Kragh and Wittchen, 2014; Mastrucci et al., 

2017; Monteiro et al., 2017; TABULA, 2016); in Japan (Shimoda et al., 2007; Shimoda 

et al., 2004; Shimoda et al., 2010); in the UK (Cheng and Steemers, 2011; Firth et al., 



 

 

2010); in the USA (Cerezo Davila et al., 2016; Sokol et al., 2017; Wilson et al., 2016) 

and in China (An et al., 2017; Wang et al., 2015).  

For the Chinese context, An et al. (2017) set up a small scale but encouraging stock 

cooling energy need model for a community and obtained a result closely matching the 

measured data. Wang et al. (2015) developed a Residential Heating Energy Model 

(RHEM) for studying current residential heating energy consumption in China's HSCW 

zone. However, such studies in China did not consider both space heating and cooling 

energy consumption. Future energy consumption under both climate change and stock 

variation are not considered. Nor did the existing studies analyze the potential future 

stock level total energy conservation performance of different retrofit measures. 

Therefore, this study attempts to cover those gaps and build a bottom-up residential 

stock energy model capable of calculating current and future space heating and cooling 

energy consumption as well as the evaluation of stock level total energy conservation 

performance provided by the different retrofit measures considered. 

1.2 Building archetypes 

The archetype approach aims at defining typical buildings that represent the studied 

stock(Li et al., 2018) widely applied in residential building bottom-up engineering 

modeling. The main selected archetype classification indices include household 

categories (Shimoda et al., 2007; Shimoda et al., 2004; Shimoda et al., 2010; Wang et 

al., 2015); built form (An et al., 2017; Ballarini et al., 2014; Caputo et al., 2013; Cheng 

and Steemers, 2011; Dascalaki et al., 2011; Filogamo et al., 2014; Firth et al., 2010; 

Kragh and Wittchen, 2014; Mastrucci et al., 2017; Monteiro et al., 2017; Shimoda et 

al., 2007; Shimoda et al., 2004; Shimoda et al., 2010; TABULA, 2016; Wilson et al., 

2016), construction age (Ballarini et al., 2014; Caputo et al., 2013; Cerezo Davila et al., 

2016; Cheng and Steemers, 2011; Dascalaki et al., 2011; Filogamo et al., 2014; Firth et 

al., 2010; Heeren et al., 2013; Kragh and Wittchen, 2014; Mastrucci et al., 2017; 

Monteiro et al., 2017; Sokol et al., 2017; TABULA, 2016; Wilson et al., 2016), a 

building’s physical construction (Monteiro et al., 2017; Wilson et al., 2016) and a 

building’s technical system (Heeren et al., 2013; Sokol et al., 2017; Wilson et al., 2016).  

1.3 The aim and scope  

The aim of this research is to develop a localized residential building stock space 

heating and cooling modeling approach to estimate energy consumption and related 

carbon emissions. As building construction and technical systems are commonly 

closely connected with building construction age, in this study only household 

categories, built form and construction age are selected as key indices for archetype 

development. The developed modelling approach is expected not only to be able back-



 

 

estimate historical energy consumption and carbon emission, but also to project future 

scenarios under stock variation and climate change. Moreover, this approach provides 

the method of analyzing energy conservation performance of difference retrofit 

measures for the future building stock. The methodology of the proposed modeling 

approach is suitable to any other cities. 

The utilitilisation of the model for decision-making is explored by testing different 

stock retrofit measures for Chongqing municipality.  

2 Methodology 

The fundamental information required by this approach is the classification of 

archetypes available through national statistical data. Building simulations for each 

archetype are then performed and aggregated to construct the stock model. 

Methodologically, residential building stock energy modelling is a four step process as 

shown in Figure 1: 

Step 1: Develop residential archetypes. Based on household categories, built form and 

the construction age of the residential stock under investigation, identify typical 

archetypes to represent the residential stock; 

Step 2: Space heating and cooling energy consumption simulation and aggregation. 

Utilize computer simulation techniques to calculate space heating and cooling energy 

consumption (more specifically, energy use intensity) for different residential 

archetypes, aggregate the average energy use intensity and carbon dioxide emissions 

for residential buildings of different construction age ranges; 

Step 3: Stock total floor area calculation and construction age distribution. Calculate 

the total floor area of the studied stock and make projections about the possible future 

scenarios, assign the floor area into different construction age groups considering both 

the new construction and old building demolition; 

Step 4: Weather-adjusted stock space heating and cooling energy consumption. Collect 

past real weather data and generate “business as usual” future weather via the climate 

change world weather file generator (SERG, 2017). Calculate heating and cooling 

degree-days to refine the estimation of space heating and cooling energy consumption 

of the studied stock for both past and future time points under different scenarios. 

Convert space heating and cooling energy consumption into carbon dioxide emissions 

using CO2 emission factors. 



 

 

Figure 1: Research Framework  

The Chongqing municipality has a population of over 30 million people located in the 

southwest of China covering an area of 82,400km2 (State Council, 2017) with an 

urbanization rate of 60.9% (Chongqing Minicipal Bureau of Statistics & NBS Survey 

Office in Chongqing, 2016). Urban residential buildings floor area accounts for over 



 

 

65% of the total residential floor area in Chongqing (Chongqing Statistics Bureau, 

2016). A case study of Chongqing city has been conducted to demonstrate the 

application of the proposed approach.  

3 Residential archetypes  

3.1 The household categories  

The household categories provided information about numbers of family members and 

numbers of generations for an individual family. From the most up-to-date 2010 census 

data (Chongqing Statistics Bureau, 2012), less than 3% of all households have six or 

more people, so this minor household category may be ignored. Hence, the maximum 

number of people in a household was selected as five. The information on the number 

of generations was used to give an insight into household structures. For example, 

households with three or above generations will have elderly people at home. Census 

data (Chongqing Statistics Bureau, 2012) about households with elderly members (aged 

60 and over) has been utilized to obtain a much finer classification of household 

structures. Age 60 is the highest retirement age for Chinese citizens, so people at or 

above 60 years old are retired. Households with one elderly retiree and elderly retired 

couples accounted for 4.86% and 4.40% of all households respectively. The selected 

representative household structures and their corresponding percentage for each 

household category are listed in Table 1. Thus, 93% of all household categories have 

been covered in the selected representative household structures, so it is justifiable to 

say this stock model is likely to be adequate to cover Chongqing's urban residential 

households.  

Table 1: The household structure distribution of the Chongqing urban area 

Household 

categories 

Number of 

generations 

Number of 

people in a 

household 

Household structure 
Percentage of 

households  

A 1 1 One working  16.43% 

B 1 1 One retired  4.86% 

C 1 2 Two working [couple] 13.62% 

D 1 2 Two retired [couple] 4.40% 

E 2 2 
One working single + 

one juvenile 
8.63% 

F 2 3 
Two working [couple] 

+ one juvenile 
26.26% 



 

 

G 2 4 
Two working [couple] 

+ two juveniles 
7.80% 

H 3 4 

One retired single + two 

working [couple] + one 

juvenile 

5.58% 

J 3 5 

Two retired [couple] + 

two working [couple] + 

one juvenile 

5.52% 

The family structure influences the occupancy period because the working occupants 

will be at work during working hours while the retired occupants are more likely to 

spend more time at home. The duration of household occupation influences heating and 

cooling energy consumption dramatically since the most common usage mode in China 

for space heating and cooling is part time for partial space (Hu et al., 2017), which 

means that only occupied space will be heated or cooled. 

3.2 The built form 

As the multifamily residential building dominates the Chinese residential stock (Yu et 

al., 2014b), the built form of Chongqing urban residential building is based on the 

individual household flat. The residential floor area per capita for Chongqing urban 

residents is 35m2 (Chongqing Minicipal Bureau of Statistics & NBS Survey Office in 

Chongqing, 2016). The total floor area for each household category was determined 

using equation 1. 

F=f×P                                          (1) 

Where F is the total floor area of the household/studied stock (m2), f is the residential 

floor area per capita (m2) and P is the total number of people in the household/studied 

stock.  

As most Chinese residential buildings are of rectangular shape (Qi and Wang, 2014), 

the floor plans assumed for the different household categories are also rectangular, 

referencing actual extant floor plan design drawings collected from across the 

Chongqing urban residential estate market. The floor area for each individual room was 

checked against the minimum area requirements of the Chinese residential building 

design code (MOHURD, 2011). The detailed information for the selected typical floor 

plan types, including total floor area and its corresponding household categories, is 

shown in Table 2.  

Table 2: Floor plans. The areas covered in a cross hatch pattern and cross pattern are 



 

 

bedrooms and activity areas respectively, while blank areas are kitchen, storage rooms 

and toilets. 

Floor plan 

type 

Floor plan Total floor 

area (m2) 

Corresponding 

household 

categories 

Ⅰ 

 

35 A & B 

Ⅱ 

 

70 C & D & E 

Ⅲ 

 

105 F 

Ⅳ 

 

140 G & H 

Ⅴ 

 

175 J 

The 'typical' household was assumed to be located on a middle floor; each with three 

external walls and one internal wall within which the entrance door is located. Window-

to-wall ratios are set as 0.45, 0.35 and 0.4 for south, east and north external walls 

respectively (MOHURD, 2010). To simplify the simulation, the internal surfaces, 



 

 

including floor, ceiling, and interior walls were assumed to be adiabatic. This represents 

the situation where space heating and cooling behavior and the thermal preferences of 

neighboring households are similar, with very similar indoor temperatures. 

3.3 The construction age 

The first energy efficiency design standard for residential buildings in the hot summer 

and cold winter zone, JGJ 134-2001, came into force in October 2001(MOHURD, 

2001). An updated revised version [JGJ 134-2010] was activated from August 2010 

(MOHURD, 2010). The construction age band classification for residential buildings is 

based on the sequence of improving standards. Three age bands were defined, namely 

pre-2001 (included 2001), 2002-2010 (included 2010), and post-2011 (included 2011) 

enabling the envelope thermophysical characteristics of residential buildings in 

different construction age bands to be defined. Detailed information is presented in 

Table 3. 

Table 3: Residential building envelope characteristics (MOHURD, 2001, 2010) 

Vintage 

Envelope  
Air 

change 

rate( /h) 

Wall Window 

U-value 

(W/m2K) 
U-value (W/m2K) 

Solar heat gain 

coefficient 

Pre-

2001 
1.97 5.74 0.85 2 

2002-

2010 
1.03 2.80 0.48 1 

Post-

2011 
0.83 2.67 0.34 1 

After considering nine typical household categories, assigning an appropriate built form 

for each of the household categories and considering three different construction ages, 

27 residential archetypes have been generated in this section. 

4 Energy simulation and aggregation 

In this study, EnergyPlus (version 8.8.0) is employed to model building space heating 

and cooling energy consumption. EnergyPlus (DOE, 2017), the building energy 

simulation program developed by the United States Department of Energy, is the state-

of-art building simulation program and had been listed in the IBPSA building energy 

software tools list (IBPSA, 2018). A series of analytical tests, comparative tests as well 

as release and executable tests had been conducted to validate EnergyPlus simulation 

results (DOE, 2018). Therefore, EnergyPlus had already been extensively utilized for 



 

 

building energy related studies (Ahn et al., 2017; Chen et al., 2017; Xu et al., 2015; Yao 

et al., 2018; Yi et al., 2015).  

4.1 The verification of the energy modelling 

To ensure the accuracy and reliability of the application of the EnergyPlus simulation , 

a comparisons of the measured and simulated free running indoor air and the surface 

temperatures had been carried out for six days from 7th to 13th April, 2017. The test 

room is located in the 3rd floor of a ten-floor residential building. The outlook of the 

building as well as the floor plan of the test room is shown in  

Figure 2.  

 
 

Figure 2: The outlook of the building (left) and the floor plan of the test room (right)  

The indoor air temperature and external wall surfaces temperature had been measured 

in the test room. By referencing related Chinese standards GB/T 50785-

2012(MOHURD, 2012b) and JGJT 132-2009(MOHURD, 2009), the layout of the 

measurement points are shown in Figure 3 and Figure 4.  The instruments used for 

indoor air temperature measurement are HOBO UX100-003 Temp/RH and Telaire 

TEL-7001, whilst K type thermocouples are used for surface temperature monitoring. 

Considering the real situation of a fire-hydrant cabinet located in the middle of the 

external surface of external wall, the layout of external wall surface temperature 

measuring points had been equally considered for the whole six measurement days. 

Test 

room 



 

 

 

Figure 3: The layout of indoor air temperature measuring points 

 

Figure 4: The layout of external wall surface temperature measuring points (external 

surface (top), internal surface (bottom) 

The building physical model had been generated (shown in Figure 5) for the simulation 

using EnergyPlus. During the test period, the test room is unoccupied with no lighting 

and equipment in operation. The internal load of the test room had been set as none. 

 

Figure 5: Building physical model 



 

 

The local weather condition from a nearby outdoor weather station (Davis Vantage Pro2) 

had been used in the simulation. To quantify the difference between the values of the 

simulated and the measured, two dimensionless error indexes had been used, namely 

Mean Bias Error (MBE) and Coefficient of Variation of the Root Mean Square Error 

(CV(RMSE)) using equation 2 and equation 3 respectively (Royapoor and Roskilly, 

2015), 

MBE =
∑ (𝑀𝑖−𝑆𝑖)

𝑁𝑖
𝑖=1

∑ 𝑀𝑖
𝑁𝑖
𝑖=1

                                       (2) 

CV(RMSE) =

√∑ [
(𝑀𝑖−𝑆𝑖)

2

𝑁𝑖
]

𝑁𝑖
𝑖=1

1

𝑁𝑖
∑ 𝑀𝑖

𝑁𝑖
𝑖=1

                               (3) 

Where, Mi is the measured value corresponding to time i (℃); Si is the simulated value 

corresponding to time i (℃); Ni is the total number of values used in the calculation. 

The MBE and CV(RMSE) between hourly simulation and measurement values for 

indoor air temperature, external wall external surface temperature and external wall 

internal surface temperature are calculated and shown in  

Table 4. The MBEs are negative, which means the measured value is more likely to be 

smaller than the simulation value, but all MBEs are within - 5%, and the CV(RMSE) is 

within 10%. It shows that the deviations between simulated and measured values are 

small. This demonstrates the satisfactory of the application of the EnergyPlus software 

in this research.  

Table 4: MBE and CV(RMSE) between simulation and measurement 

Items MBE CV(RMSE) 

Indoor air temperature -4.5% 7.8% 

External wall external surface temperature -3.9% 9.0% 

External wall internal surface temperature -4.4% 6.4% 

4.2 Energy use intensity for different residential archetypes 

Historically, the Chinese government set north-south dividing Qin-Huai line with 

district heating only available to the north. As southern China is cold and humid in 

winter, southern people, especially people living in the HSCW zone, are interested in 

installing district heating systems (China Daily, 2013; People's Daily, 2013). But the 

deployment of district heating in the HSCW zone will increase dramatically so that the 



 

 

space-heating-related energy consumption would become equal to the entirety of the 

electricity produced by two Three Gorges Project hydroelectric power stations (Guo et 

al., 2015). The impact of adopting northern China type district heating in the Chongqing 

urban residential stock is evaluated using the bottom-up model.  

Chinese Standard Weather Data (CSWD) for Chongqing Shapingba, downloaded from 

the EnergyPlus website, is used in the simulation as the typical climate condition. For 

internal loads, the lighting density of residential building is defined as 

6W/m2(MOHURD, 2013b) and the equipment density is defined as 4.3W/m2. 

Occupancy patterns defined in the Residential Heating Energy Modeling (RHEM) for 

the HSCW zone (Wang et al., 2015) have been utilized in this study (shown in Table 5), 

with both the common work shift timetable as well as the sleeping habits of residents 

being taken into consideration. Lighting is turned on after 17:00 if occupied by an 

awake occupant and equipment is operated when the room is occupied by an awake 

occupant. 

Table 5: Occupancy patterns of different room types (Wang et al., 2015) 

Unoccupied (U), occupied with occupant(s) awake (O.W), occupied with 

occupant(s) asleep (O.S). 

Room type 

0：00-

8：00 

8：00-

12：30 

12：30-

14：00 

14：00-

17：00 

17：00-

22：00 

22：00-

24：00 

Retired people’s 

bedroom 
O.S U O.S U U O.W 

Working/school 

people bedroom 
O.S U U U U O.W 

Retired people 

activity area 
U O.W U U O.W U 

Working/school 

people activity area 
U U U U O.W U 

Air conditioning units with a cooling coefficient of 2.3 (MOHURD, 2001, 2010) are 

used for space cooling. The cooling calculation period for Chongqing residential 

households was taken as 1st June to 30th September, with a cooling set point of 26oC 

(Chongqing municipal commission of urban-rural development, 2016). The authors 

assumed that only activity areas (including the living room and study) and bedrooms 

are cooled. As occupants only stay in the auxiliary areas (including the toilet, storage 

room and kitchen) for a limited amount of time, it is normally not cooled. Cooling is 

made available whenever the room is occupied during the set period. 

For space heating, the heating calculation period for Chongqing residential households 



 

 

was assumed to be from 1st December to 28th February, with a heating set point of 18oC 

(Chongqing municipal commission of urban-rural development, 2016). Two different 

space-heating patterns were considered, as follows: 

1) The northern China heating pattern: As the space heating pattern for district heating 

in China is continuous, with full space heating through the heating period(Wei et 

al., 2014). In the scenario in which district heating is made available in Chongqing, 

the space heating pattern will very likely change to full time-full space (continuous 

space heating supply for all rooms during the heating periods). Gas boilers, coal 

boilers, as well as Combined Heat and Power plants (CHP) are the main heat 

sources in northern China district heating (THUBERC, 2015). The heat source for 

Chongqing urban residential buildings is assumed to be a gas boiler because the 

Chongqing government actively promotes gas boilers instead of coal boilers 

(CQMPG, 2016). The gas boiler efficiency for heating supply is assumed as being 

90% (THUBERC, 2016). 

2) The HSCW heating pattern: Heat pump air conditioning units, the most commonly 

used space heating and cooling integrated terminal in residential buildings within 

the HSCW zone (THUBERC, 2017), are assumed to provide the space heating 

supply. The heating coefficient of the split unit is assumed to be 1.9 (MOHURD, 

2001, 2010) acknowledging that some households are using electric heaters for 

heating in winter. As the current space heating usage pattern is part time - part space 

(THUBERC, 2017), only occupied activity areas (including the living room and 

study) and bedrooms are space heated. Moreover, heating is assumed to be available 

only when the occupants of the room are actually awake. As survey results from 

Wang et al. (2015) suggest, the majority of HSCW residents turn the heating off 

before retiring to sleep. This represents the current situation in the HSCW zone. 

The space heating and cooling EUIs per building floor area for each residential 

archetype under two different heating patterns are shown in Figure 6.  



 

 

 

 

Figure 6: The space heating and cooling energy use intensities for every archetype of 

Chongqing urban residential stock under the different heating scenarios: Northern 

China (top) and HSCW (bottom) pattern 

4.3 The average heating and cooling energy use intensity of the different 

construction age groups 

Space heating and cooling energy use is known to diversify across the different 

archetypes. Establishing the average space heating and cooling energy use intensity of 

the different construction age groups requires the floor area percentage of every 

household category in the whole stock, which is calculated using the following equation 
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𝐹𝐻𝑃𝑦 =
𝑁𝐻𝑃𝑦 × 𝐹𝑦

∑(𝑁𝐻𝑃𝑦 × 𝐹𝑦)⁄                         (4) 

Where FHPy is the floor area percentage of household type y; NHPy is the household 

percentage of household category y; Fy is the total floor area of the floor plan 

corresponding to household category y; y is the household category index, including 

the nine categories A, B, C, D, E, F, G, H and J. The floor area percentage of every 

household category in the stock is shown in Figure 7, the type F households accounted 

for the highest total floor area (34%), while type B households occupy only 2% of the 

total floor area. 

 

Figure 7: Floor area percentage of every household category within the Chongqing 

urban residential stock. 

The average space heating and cooling EUIs for households at each construction age 

were calculated considering the floor area percentage for every household category 

using the following equations 5-6, 

HAEUI𝑥 = ∑ 𝐻𝐸𝑈𝐼𝑥,𝑦 × 𝐹𝐻𝑃𝑦                             (5) 

CAEUI𝑥 = ∑ 𝐶𝐸𝑈𝐼𝑥,𝑦 × 𝐹𝐻𝑃𝑦                             (6) 

Where HAEUIx and CAEUIx are the average space heating and cooling EUI for 

buildings constructed in age x; HEUIx,y and CEUIx,y are the space heating and cooling 

EUI of household category y constructed in age x where x is the construction age index 

which includes 3 classes, namely Pre-2001, 2002-2010 and Post-2011. The average 

space heating and cooling EUIs for residential buildings constructed in these classes 

are listed in Table 6. 
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Table 6: Average space heating and cooling EUIs for different construction ages 

Construction 

age 

Northern China pattern HSCW pattern 

Space heating 

natural gas EUI 

(kWh/m2) 

Space cooling 

electricity EUI 

(kWh/m2) 

Space heating 

electricity EUI 

(kWh/m2) 

Space cooling 

electricity EUI 

(kWh/m2) 

Pre-2001 95.2 20.3 12 20.3 

2002-2010 48.5 15 7.4 15 

Post-2011 47.5 13.2 7.5 13.2 

As different types of energy were consumed for space heating, to compare the energy 

and carbon performance of the northern China pattern and the HSCW pattern in space 

heating, their primary energy consumption as well as carbon dioxide emissions were 

calculated using the following equations 7-8 

S=EUI×Ip                                                                  (7) 

Where, 

S is the source energy use intensity;  

EUI is the studied energy use intensity;  

Ip is the site to source energy conversion factor. 

 

C=EUI×Ic                                                                   (8) 

Where, 

C is the carbon dioxide emission intensity;  

Ic is the CO2 emission factor.  

 

The Ip values are 3.167 for electricity and 1.084 for natural gas(Zhao et al., 2015). The 

Ic values are 0.5257kgCO2/kWh for electricity(NCSC, 2014) and 56,100kgCO2/TJ for 

natural gas(IPCC, 2006). As the cooling energy usage is the same under the two 

different patterns, only source energy use intensity and carbon dioxide emission 

intensity for space heating are shown in Figure 8 and Figure 9 to compare the 

performance. 



 

 

 

Figure 8: The space heating source EUI under different heating patterns 

 

Figure 9: The space-heating-related carbon dioxide emission intensity under different 

heating patterns 

It is clear that applying northern China type District Heating in Chongqing urban 

residential stock will dramatically increase both source energy consumption and carbon 

emissions no matter what the construction age group of the building is. The evidence 

suggests that northern China pattern space heating is not suitable for application within 

the hot summer and cold winter zone considering the national goal of energy 

conservation and carbon emission reduction. Therefore, the current HSCW pattern 

should be encouraged to continue in the future to achieve the balance between a 

comfortable indoor thermal environment and the low carbon and energy conservation 
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targets. 

5 Stock total floor area calculation and construction age distribution    

As a sub-provincial city of Sichuan Province, Chongqing became a municipality on 14 

March 1997 and is currently the youngest municipality with the largest land take. 

Chongqing's urban residential building stock is studied in this section to yield the 

existing urban residential floor area, future floor area projections, and the construction 

age distribution by relative floor area. 

5.1 The existing urban residential floor area 

The residential building average EUIs corresponding to different construction ages 

have been calculated in section 4.3 but the urban residential floor area in Chongqing is 

needed for calculating stock space heating and cooling energy needs. Based on the 

official Chongqing statistical yearbook (Chongqing Minicipal Bureau of Statistics & 

NBS Survey Office in Chongqing, 2001-2016), the existing urban residential floor area 

in Chongqing is calculated using the following equation 9, 

URFAt=RFPt×UPt                                      (9) 

Where, URFAt is the total urban residential floor area in Chongqing in year t;  

RFPt is the urban residential floor area per person in year t; and  

UPt is the urban population in Chongqing in year t. 

The existing urban residential floor area, has increased continuously from 2000 to 2015, 

as shown in Figure 10. In 2015, the existing urban residential floor area was nearly 6 

times the residential floor area of just 15 years earlier in 2000. 



 

 

 

Figure 10: Urban residential floor area in Chongqing from 2000 to 2015 

The urban residential floor area in Chongqing for 2010 is calculated as 484.7 million 

m2. This data, together with the 2010 census data (NBS, 2010) giving the floor area 

construction age distribution, gives the urban residential floor area construction age 

distribution in 2010 as presented in Table 7. 

Table 7: 2010 construction age distribution for Chongqing urban residential floor area  

Construction age Percentage 
Urban residential floor 

area (unit: 10,000 m2) 

pre-1949 0.99% 478.0 

1950-1959 0.63% 307.0 

1960-1969 1.43% 691.9 

1970-1979 3.61% 1751.9 

1980-1989 12.45% 6035.9 

1990-1999 31.95% 15486.2 

2000-2010 48.94% 23720.6 
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5.2 The projection of the future urban residential floor area 

The projection of the future urban residential floor area also utilized equation 9, but 

uses the future urban population and the future residential floor area per person. The 

total Chongqing urban population was 18,384,100 in 2015. The future Chongqing urban 

population trend was assumed to follow the United Nations projection for China (UN, 

2014), with the projected average annual rate of change of the urban population 

presented in Table 8. 

Table 8: Average annual rate of change of the urban population(UN, 2014) 

Period Average annual rate of change of the urban population 

2015-2020 2.30% 

2020-2025 1.61% 

2025-2030 1.06% 

2030-2035 0.61% 

2035-2040 0.28% 

2040-2045 0.12% 

2045-2050 -0.02% 

The post 2015 urban population for Chongqing can be calculated using the following 

equation 10, 

UPt+1= UPt×(1+r)                                      (10) 

Where UPt+1 is the urban population in Chongqing in year t+1;  

r is the average annual rate of change for the urban population (presented in Table 8). 

The urban population in Chongqing at year 2020 and 2050 are 20.6 million and 24.7 

million respectively.  

The future residential floor area per person in Chongqing urban residential stock was 

assumed to have four scenarios as follows: 

1) S1: The future residential floor area per person stays at the same level for future 

years and remains at 35m2 per person. 

2) S2: The future residential floor area per person reaches 40m2, which is the average 

residential floor area per person value for economic great powers including France, 

Germany, the United Kingdom, and Japan (THUBERC, 2017). 

3) S3: The future residential floor area per person reaches 55m2, which is the average 

residential floor area per person value for Denmark, Norway and Canada 



 

 

(THUBERC, 2017). 

4) S4: The future residential floor area per person reaches 60m2, which is assumed to 

be the upper boundary of residential floor area per person, considering the high 

population density and the shortage of habitable land resources in China (Hong et 

al., 2016a). 

The future urban residential floor area in Chongqing under different scenarios is 

calculated and presented in Figure 11 together with the future urban population 

projections. 

 

Figure 11: The future urban residential floor area and population projections for 

Chongqing 

5.3 The construction age distribution 

The past and future urban residential floor areas are known after the statistical-data-

based calculation in section 5.1 and future projections in section 5.2. The demolition of 

some existing buildings should be considered as it offsets some newly constructed floor 

area to give the total stock floor area increase. It also influences the building 

construction age distribution. Huang and Wu (2016) studied housing demolition in 

urban China and projected the 2011-2020 urban housing demolition rate (shown in 

Table 9). The urban housing demolition rate for Chongqing is assumed to equal that of 

China. The decadal urban housing demolition rate after 2020 (including 2021-2030, 

2031-2040 and 2041-2050) is assumed to equal the 2011-2020 rate under the 

assumption that the demolition trend will be unchanged from 2011 to 2050. The 

demolished floor area is calculated using the following equation 11, 
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DFA =d×RFA                                        (11) 

Where, 

 DFA is the demolished floor area; d is the demolition rate (Table 9), 

 RFA is the remaining floor area at the end of the last decade.  

Table 9: Decadal urban residential building demolition rate (Huang and Wu, 2016) 

Construction age Demolition rate 

pre-1949 34.78% 

1950-1959 34.78% 

1960-1969 30.60% 

1970-1979 22.75% 

1980-1989 18.39% 

1990-1999 20.66% 

2000-2010 3.16% 

 

Following the building energy efficiency standards update, the construction age defined 

in section 3.3 split the 2000-2010 constructed residential building into two groups: pre-

2001 and 2002-2010. The existing 2000-2010 floor area is assumed to be evenly 

distributed over the 11 years for simplification. The post-2011 floor area increase 

amount is estimated as the sum of demolished floor area and floor area net growth 

between the studied and previous decade. Post-2011 floor area is assumed to always 

remain without demolition, as they will be less than 40 years old even in 2050 and the 

design lifespan for general buildings is 50 years (MOHURD, 2005), with the average 

real life for urban buildings as 30–40 years(Yang and Kohler, 2007; Yu et al., 2014a). 

The construction age distribution for the four future projection scenarios is presented 

in Figure 12.  

  



 

 

  

Figure 12: Chongqing urban residential floor area construction age distribution under 

four different scenarios  

6 Weather adjustments 

As the performance comparison in Section 4 had already reach the conclusion that 

current HSCW pattern space heating should be encouraged to continue in future, the 

following space heating and cooling energy consumption analysis has been made based 

on the assumption that space heating and cooling usage patterns will stay unchanged as 

the HSCW pattern.  

6.1 Stock average space heating and cooling EUIs  

The average space heating and cooling EUIs for the whole residential stock covering 

different construction ages was calculated using the following equations, 12-14, 

HSEUI = ∑ 𝐻𝐴𝐸𝑈𝐼𝑥 × 𝐶𝐴𝑃𝑥                              (12) 

CSEUI = ∑ 𝐶𝐴𝐸𝑈𝐼𝑥 × 𝐶𝐴𝑃𝑥                               (13) 

𝐶𝐴𝑃𝑥 =
𝐹𝐴𝑥

𝑈𝑅𝐹𝐴⁄                                       (14) 

Where, HSEUI and CSEUI are the stock average space heating and cooling EUIs under 

typical weather data;  

CAPx is the percentage of floor area constructed in age x;  

FAx is the floor area constructed in age x;  

URFA is the total urban residential floor area. 



 

 

The average space heating and cooling EUIs and related carbon dioxide emissions for 

the Chongqing urban residential stock at different time points have been calculated and 

presented in Table 10. The heating EUI for the year 2015 generated from this model is 

9.31kWh/m2, which is close to the study by Wang et al. (2015) at 9.8kWh/m2 with 

variation of only -5%. The cooling EUI for the year 2015 generated from this model is 

16.63kWh/m2, which is within the cooling EUI range (between 9.3kWh/m2 and 21.6 

kWh/m2) from the study by Liu et al. (2014). Referring to the existing studies, it is 

further convinced the degree of the satisfaction of accuracy of the developed model.  

Table 10: Stock average space heating and cooling EUIs and related carbon dioxide 

emissions with the stock construction age variation only 

Scenarios   
Electricity EUI(kWh/m2) CO2 emissions (kgCO2/m2) 

2010 2015 2020 2050 2010 2015 2020 2050 

S1  
Heating 10.16 9.31 8.96 8.18 5.34 4.89 4.71 4.30 

Cooling 18.18 16.63 16.01 14.67 9.56 8.74 8.41 7.71 

S2  
Heating 10.16 9.31 8.77 8.10 5.34 4.89 4.61 4.26 

Cooling 18.18 16.63 15.66 14.48 9.56 8.74 8.23 7.61 

S3  
Heating 10.16 9.31 8.43 7.94 5.34 4.89 4.43 4.17 

Cooling 18.18 16.63 14.99 14.13 9.56 8.74 7.88 7.43 

S4  
Heating 10.16 9.31 8.35 7.90 5.34 4.89 4.39 4.15 

Cooling 18.18 16.63 14.84 14.06 9.56 8.74 7.80 7.39 

6.2 Past and future weather conditions 

The outdoor climate variation has a very significant impact on space heating and 

cooling energy consumption. Two indices, namely Heating Degree-Day (HDD) and 

Cooling Degree-Day (CDD), are commonly used to measure the sum of the daily 

variation of the temperature below or above a certain threshold and to adjust the heating 

and cooling energy demand (Isaac and van Vuuren, 2009). Although the degree-days 

based weather normalization has been criticized for its inherent limitations(Wang et al., 

2016), this approach has been adapted in this study for its simplicity of use and the 

minimal amount of data required. The base temperatures chosen for HDD and CDD are 

18oC and 26oC respectively(MOHURD, 2001). The degree-days were calculated 

according to equations 15-16, 

HDD18 = ∑ ℎ𝑑𝑑365
𝑖=1 , 𝑖𝑓 𝑇𝑜𝑢𝑡 ≥ 18, ℎ𝑑𝑑 = 0; 𝑖𝑓 𝑇𝑜𝑢𝑡 < 18, ℎ𝑑𝑑 = 18 − 𝑇𝑜𝑢𝑡 (15) 

CDD26 = ∑ 𝑐𝑑𝑑365
𝑖=1 , 𝑖𝑓 𝑇𝑜𝑢𝑡 > 26, 𝑐𝑑𝑑 = 𝑇𝑜𝑢𝑡 − 26; 𝑖𝑓 𝑇𝑜𝑢𝑡 ≤ 26, 𝑐𝑑𝑑 = 0 (16) 

Where HDD18 and CDD26 are the annually heating and cooling degree-days and Tout is 

the outdoor daily average temperature. 



 

 

As stated above in section 4.2, the weather data used in the EnergyPlus building energy 

simulation is the CSWD weather, which is the typical year weather data. The historic 

real weather conditions in 2010 and 2015 were collected from the China Meteorological 

Data Service Center(CMDC, 2017). Meanwhile, the climate change world weather file 

generator CCWorldWeatherGen (SERG, 2017) is used to generate the climate change 

future weather file under the IPCC HadCM3 A2 experiment ensemble. The A2 

emissions scenario represents a ‘business as usual’ case for the global development of 

human emissions and can be considered as a ‘likely’ future development path over the 

timescale relevant to building design(Jentsch et al., 2013). Future weather data for 

Chongqing in 2020 and 2050 has been generated, the HDD18 and CDD26 for 2010, 2015, 

2020 and 2050 as well as in the CSWD typical year is presented in Table 11. 

Table 11: HDD18 and CDD26 for different weather conditions  

Item  HDD18  CDD26 

CSWD typical year 1102.7  182.8  

2010 1066.8  277.5  

2015 839.9 218.3 

2020 952.0  277.0  

2050 725.8  431.8  

Comparing to the CSWD typical year weather file, the 2010, 2015, 2020, and 2050 data 

have smaller HDD values and bigger CDD values. This indicates that the CSWD typical 

year weather file tends to overestimate heating energy consumption and underestimate 

cooling energy consumption with regard to the weather data of the specific year. It is 

also noted that, in 2050, the cooling degree-days will reach 431.8, which is 2.36 times 

the value for the CSWD typical year. 

6.3 The weather adjusted stock average space heating and cooling EUIs  

The space heating and cooling EUIs for Chongqing urban residential building stock 

considering the weather adjustment are calculated using equations 17-19, 

WHEUI = HSEUI ×
𝐻𝐷𝐷18,𝑠

𝐻𝐷𝐷18,𝑡
⁄                        (17) 

WCEUI = CSEUI ×
𝐶𝐷𝐷26,𝑠

𝐶𝐷𝐷26,𝑡
⁄                         (18) 

WTEUI = WHEUI + WCEUI                               (19) 

Where, WHEUI, WCEUI and WTEUI are the weather adjusted stock average heating, 

cooling and total EUIs respectively;  



 

 

HDD18,s and CDD26,s are the heating and cooling degree-days for the studied year;  

HDD18,t and CDD26,t are the heating and cooling degree-days for the CSWD typical 

year.  

The weather adjusted stock average EUIs and related carbon dioxide emissions are 

shown in Table 12. 

 

 

 

 

Table 12: Weather adjusted stock average space heating and cooling EUIs 

Scenarios 

EUI(kWh/m2) 
Carbon dioxide emissions 

(kgCO2/m2) 

2010 2015 2020 2050 2010 2015 2020 2050 

S1  

Heating 9.83 7.09 7.74 5.38 5.17 3.73 4.07 2.83 

Cooling 27.60 19.86 24.26 34.65 14.51 10.44 12.75 18.22 

Total 37.43 26.95 32.00 40.03 19.68 14.17 16.82 21.04 

S2  

Heating 9.83 7.09 7.57 5.33 5.17 3.73 3.98 2.80 

Cooling 27.60 19.86 23.73 34.20 14.51 10.44 12.47 17.98 

Total 37.43 26.95 31.30 39.53 19.68 14.17 16.45 20.78 

S3  

Heating 9.83 7.09 7.27 5.23 5.17 3.73 3.82 2.75 

Cooling 27.60 19.86 22.71 33.38 14.51 10.44 11.94 17.55 

Total 37.43 26.95 29.98 38.61 19.68 14.17 15.76 20.30 

S4  

Heating 9.83 7.09 7.21 5.20 5.17 3.73 3.79 2.73 

Cooling 27.60 19.86 22.49 33.21 14.51 10.44 11.82 17.46 

Total 37.43 26.95 29.70 38.41 19.68 14.17 15.61 20.19 

7 Evaluating the retrofit measures  

As the current Chongqing urban residential building stock failed to perform well 

enough to achieve the 20kWh/m2 space heating and cooling EUI goal (MOST, 2016; 

Wang, 2017), retrofit measures should be considered to improve its energy efficiency. 

The Chongqing green building technology recommendation list(CQGBC, 2017) 



 

 

introduced by the Chongqing Green Building Council was referenced for retrofit 

measures selection. As the technologies included in this list had already considered the 

building sector characteristics in Chongqing as well as the implications of the current 

situation and future technology development trends, their feasibility and usability for 

retrofitting the existing stock were already proved under the condition of little change 

being made to the building framework. As the space heating and cooling equipment in 

residential buildings are normally heat pump air conditioner units, retrofit measures 

using system optimization are not applicable, so the retrofit measures considered are as 

follows: 

1) Improve the thermal physical performance of the building envelope;  

2) Improve HVAC equipment efficiency. 

The four energy conservation retrofit scenarios considered are presented in Table 13. 

The stock average weather adjusted space heating and cooling EUIs as well as the 

corresponding carbon dioxide emissions for the different scenarios are presented in 

Table 14. 

Table 13: Retrofit scenarios  

Retrofit scenarios Scenario description  

RE-1 All building envelope physical characteristics meet the current 

HSCW 2010 standard(MOHURD, 2010), while the HVAC 

equipment efficiency stays unchanged. 

RE-2 All building envelope physical characteristics stay unchanged, 

while the HVAC equipment efficiency is improved to an annual 

performance factor =3.5 (Energy efficiency rating level 

3)(MOHURD, 2013a). 

RE-3 All building envelope physical characteristics meet the current 

HSCW 2010 standard(MOHURD, 2010), while the HVAC 

equipment efficiency is improved to an annual performance 

factor =3.5 (Energy efficiency rating level 3) (MOHURD, 

2013a). 

RE-4 All building envelope physical characteristics meet the current 

HSCW 2010 standard(MOHURD, 2010), while the HVAC 

equipment efficiency is improved to an annual performance 

factor =4.0 (Energy efficiency rating level 2) (MOHURD, 

2013a). 



 

 

Table 14: Stock average space heating and cooling EUIs and its corresponding carbon dioxide emission intensities at different retrofit 1 

scenarios 2 

Scenarios   
EUI(kWh/m2) Carbon dioxide emissions intensity (kgCO2/m2) 

RE-1 RE-2 RE-3 RE-4 RE-1 RE-2 RE-3 RE-4 

2020 2050 2020 2050 2020 2050 2020 2050 2020 2050 2020 2050 2020 2050 2020 2050 

S1 

Heating 6.48 4.94 4.20 2.92 3.52 2.68 3.08 2.34 3.41 2.60 2.21 1.54 1.85 1.41 1.62 1.23 

Cooling 20.00 31.18 15.94 22.77 13.14 20.49 9.50 14.81 10.51 16.39 8.38 11.97 6.91 10.77 4.99 7.79 

Total 26.48 36.12 20.14 25.69 16.66 23.17 12.58 17.16 13.92 18.99 10.59 13.51 8.76 12.18 6.61 9.02 

S2 

Heating 6.48 4.94 4.11 2.89 3.52 2.68 3.08 2.34 3.41 2.60 2.16 1.52 1.85 1.41 1.62 1.23 

Cooling 20.00 31.18 15.59 22.48 13.14 20.49 9.50 14.81 10.51 16.39 8.20 11.82 6.91 10.77 4.99 7.79 

Total 26.48 36.12 19.70 25.37 16.66 23.17 12.58 17.16 13.92 18.99 10.36 13.34 8.76 12.18 6.61 9.02 

S3 

Heating 6.48 4.94 3.95 2.84 3.52 2.68 3.08 2.34 3.41 2.60 2.08 1.49 1.85 1.41 1.62 1.23 

Cooling 20.00 31.18 14.93 21.93 13.14 20.49 9.50 14.81 10.51 16.39 7.85 11.53 6.91 10.77 4.99 7.79 

Total 26.48 36.12 18.88 24.77 16.66 23.17 12.58 17.16 13.92 18.99 9.93 13.02 8.76 12.18 6.61 9.02 

S4 

Heating 6.48 4.94 3.91 2.82 3.52 2.68 3.08 2.34 3.41 2.60 2.06 1.48 1.85 1.41 1.62 1.23 

Cooling 20.00 31.18 14.78 21.82 13.14 20.49 9.50 14.81 10.51 16.39 7.77 11.47 6.91 10.77 4.99 7.79 

Total 26.48 36.12 18.69 24.65 16.66 23.17 12.58 17.16 13.92 18.99 9.83 12.96 8.76 12.18 6.61 9.02 

 3 



 

 

All four energy conservation retrofit scenarios are beneficial to the reduction of stock 4 

average space heating and cooling EUIs and the carbon dioxide emission intensities, 5 

while RE-4 can achieve the highest energy conservation and carbon reduction. By 6 

applying RE-4 under even the most severe future weather conditions in 2050, the total 7 

space heating and cooling EUIs below 20kWh/m2 can be achieved with carbon dioxide 8 

emissions of less than 10kgCO2/m
2. 9 

A comparative cost analysis is included to assist the evaluation of energy conservation 10 

retrofit measures, The net present value of delivered electricity savings had been 11 

calculated using equations 20-21 (Stephan and Stephan, 2016; Wang et al., 2014), 12 

PV = ∑
𝐶𝑖

(1+𝑟)𝑖
𝑛
𝑖=1                                                    (20) 13 

𝐶𝑖 = p𝑒 × (1 + 𝐶𝑃𝐼)𝑖 × (WHEUI𝑏𝑎𝑢,𝑖 + WCEUI𝑏𝑎𝑢,𝑖−WHEUI𝑟,𝑖 − WCEUI𝑟,𝑖)  (21) 14 

Where,  15 

PV is the accumulated present value of delivered electricity savings per floor 16 

area(RMB/m2);  17 

n is the assumed payback periods (year);  18 

r is the annual discount rate(3.9%), which is assumed to be equal to the annual interst 19 

rate of Chinese national debt(MOF, 2018); 20 

𝐶𝑖 is the delivered electricity saving at the ith year per floor area (RMB/m2);  21 

p𝑒  is the electricity price at base year (RMB/kWh), which is set as 22 

0.57RMB/kWh(THUBERC, 2017), the same as the second level electricity price in 23 

Chongqing;  24 

CPI is the considered inflation rate(1.93%), which is computed as the average of the 25 

consumer price index (CPI) over the last 20 years(NBS, 2018);  26 

WHEUI𝑏𝑎𝑢,𝑖 and WCEUI𝑏𝑎𝑢,𝑖  are the weather adjusted stock average heating and 27 

cooling EUIs for business-as-usual scenarios, where no action has been taken to 28 

improve residential building energy efficiency, at ith year(kWh/m2); 29 

WHEUI𝑟,𝑖 and WCEUI𝑟,𝑖 are the weather adjusted stock average heating and cooling 30 

EUIs for retrofitted scenarios at ith year(kWh/m2). 31 



 

 

In order to simplify the consideration of climate change and stock variation in deducing 32 

average heating and cooling EUIs, the stock average heating and cooling EUIs between 33 

2015 to 2020 and 2020 to 2050 are assumed to following a linear trend. Moreover, three 34 

payback periods, namely 15 years (from 2016 to 2030), 25 years (from 2016 to 2040) 35 

and 35 years (from 2016 to 2050) were set to calculate the accumulated present value 36 

of delivered electricity saving per floor are., The results are presented in Table 14. The 37 

accumulated present value of delivered electricity saving can be use as the evaluation 38 

benchmark for the whole residential stock energy conservation retrofit measure 39 

selection. To ensure positive outcomes from the residential stock retrofit, the average 40 

initial retrofit cost per floor area for improving building envelope thermal physical 41 

performance as well as improving HVAC equipment efficiency should be controlled in 42 

response to the accumulated present value of delivered electricity savings per floor area. 43 

For example, under the S1 future stock development scenario, when the used retrofit 44 

measures bundle is able to meet the RE-4 requirement, only if the average initial retrofit 45 

cost per floor area is below 124.52 RMB/m2, can the payback period be equal or less 46 

than 15 years ) see Table 15). 47 

Table 15: Accumulated present value of delivered electricity saving per floor area 48 

(Unit:RMB/m2) 49 

Payback period Scenarios S1 S2 S3 S4 

15 Years 

RE-1 33.24  29.02  21.08  19.40  

RE-2 76.35  74.79  71.81  71.26  

RE-3 97.35  93.13  85.20  83.51  

RE-4 124.52  120.30  112.36  110.68  

25 Years 

RE-1 51.35  44.82  32.59  29.98  

RE-2 126.97  124.56  120.01  119.15  

RE-3 159.49  152.97  140.73  138.12  

RE-4 206.22  199.70  187.46  184.85  

35 Years 

RE-1 64.59  56.38  41.01  37.73  

RE-2 171.40  168.38  162.72  161.63  

RE-3 212.42  204.21  188.85  185.56  

RE-4 277.36  269.14  253.78  250.49  

8 Stock space heating and cooling energy consumption  50 

The weather adjusted stock total space heating and cooling energy consumption of 51 

residential buildings in the Chongqing urban area can be calculated using the following 52 

equations 22-23.  53 

WHEUI = WHEUI × 𝑈𝑅𝐹𝐴                              (22) 54 



 

 

WCEUI = WCEUI × 𝑈𝑅𝐹𝐴                               (23) 55 

The weather adjusted stock space heating and cooling energy consumption for 2010, 56 

2015, 2020 and 2050 under different scenarios are presented in Figure 13. The 57 

Chongqing urban residential stock space heating and cooling total energy consumptions 58 

are 18.1×109 and 17.4×109 kWh respectively for 2010 and 2015 respectively. For the 59 

business-as-usual (BAU) scenarios, where no action has been taken to improve 60 

residential building energy efficiency, the space heating and cooling total energy 61 

consumption can reach 23.1-36.7×109 kWh for 2020 and 34.6-56.9×109 kWh for 62 

2050. All four energy conservation retrofit scenarios show reductions in residential 63 

stock space heating and cooling energy consumption. Under S1 and S2 future 64 

residential building stock development scenarios and by applying the most prestige 65 

bundle of retrofit measures (RE-4), the future stock space heating and cooling energy 66 

consumption will be reduced from the current 2015 level. However, for scenarios S3 67 

and S4, even applying retrofit measures bundle RE-4 cannot stop the energy 68 

consumption increasing in the future. This further stresses the importance of total 69 

residential floor area and per person floor area control as discussed by Peng and Jiang 70 

(2015). The carbon dioxide emissions for the corresponding scenarios are shown in 71 

Figure 14. The space heating and cooling related carbon dioxide emissions for 72 

Chongqing urban residential stock are 9.5 × 109 kgCO2 and 9.2 × 109 kgCO2 73 

respectively for 2010 and 2015. The stock space heating and cooling related carbon 74 

dioxide emissions are 12.1-19.3×109 kgCO2 and 18.2-29.9×109 kgCO2 for 2020 and 75 

2050 for the business-as-usual(BAU) scenarios. However, by applying the highest 76 

prestige bundle of retrofit measures (RE-4), the residential stock space heating and 77 

cooling related carbon dioxide emissions can be reduced to only 4.8-8.2×109 kgCO2 78 

for 2020 and 7.8-13.4×109 kgCO2 for 2050. 79 



 

 

 80 

Figure 13: The Chongqing urban residential stock space heating and cooling energy consumption 81 
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Figure 14: The Chongqing urban residential stock space heating and cooling related carbon dioxide emissions 84 
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The space heating and cooling total energy saving/carbon dioxide emission reduction 86 

percenteges for different retrofit scenarios compared to the business-as-usual scenario 87 

are shown in Table 16. The application of RE-1 can achive more than 10% energy 88 

saving and carbon reduction in 2020, this figure is smaller in 2050 at less than 10%. 89 

For the RE-4 scenario, the space heating and cooling total energy saving/carbon dioxide 90 

emissions reduction percentages vary from 57.6% to 60.7% in 2020 and 55.3% to 57.2% 91 

in 2050. 92 

Table 16: The space heating and cooling total energy saving/carbon dioxide emission 93 

reduction percenteges for different retrofit scenarios 94 

Scenarios  
2020 2050 

RE-1 RE-2 RE-3 RE-4 RE-1 RE-2 RE-3 RE-4 

S1 17.2% 37.0% 47.9% 60.7% 9.8% 35.8% 42.1% 57.2% 

S2 15.4% 37.1% 46.8% 59.8% 8.6% 35.8% 41.4% 56.6% 

S3 11.7% 37.1% 44.5% 58.1% 6.4% 35.8% 40.0% 55.6% 

S4 10.8% 37.1% 43.9% 57.6% 6.0% 35.8% 39.7% 55.3% 

9 Discussion  95 

As mentioned above, due to the lack of statistical data about residential building space 96 

heating and cooling energy consumption as well as the lack of a representative 97 

residential building energy consumption survey, there are not much data available to 98 

calibrate the space heating and cooling energy consumption calculated from  99 

Chongqing urban residential stock model. Results from other research papers are 100 

referenced to attempt to check the accuracy. Further large scale residential stock surveys 101 

are needed to collect more information about the space heating and cooling energy 102 

consumption in the Chongqing urban area. Moreover, the authors argue that in 103 

residential buildings, energy consumption, as well as the end-use residential buildings 104 

energy consumption, including but not limited to the consumption of space heating and 105 

cooling energy, should be considered urgently as a part of energy consumption 106 

statistical data collection.   107 

It is important to note that for all of the space heating and cooling energy consumption 108 

presented above, occupant behavior, including responses to heating and cooling 109 

setpoints and, the operation of heating and cooling, is assumed to remain unchanged 110 

from 2010 to 2050 under the sequence of changing scenarios. However, in reality 111 

occupant behavior might vary in building retrofit scenarios, exhibiting what is 112 

commonly known as the 'rebound effect', in which occupants' aspirations for a more 113 

comfortable and convenient lifestyle drive the installation of more energy services in a 114 

building even as building energy efficiency improves (Lin and Liu, 2015). Changing 115 

occupant behavior has led to energy saving uncertainty as occupant behaviors emerge 116 



 

 

as an important feature in building energy consumption (Delzendeh et al., 2017; Happle 117 

et al., 2018; Hong et al., 2016b; Paone and Bacher, 2018). So future research will 118 

consider the impact of occupant behavior on energy saving outcomes within the 119 

residential stock. 120 

10 Conclusions 121 

This paper presents a newly developed bottom-up engineering building energy 122 

modeling approach for residential space heating and cooling energy consumption and 123 

carbon emissions calculation. The key elements in developing the bottom-up 124 

engineering residential stock model include: 1) developing building archetypes; 125 

categorizing construction age, household composition, and floor plan; 2) archetypes 126 

energy simulation and aggregation; 3) estimating the stock floor area and floor area age 127 

distribution analysis; 4) weather adjustments. 128 

Four energy conservation retrofit adaptation schemes are proposed with consideration 129 

of both a passive strategy for improving building envelope performance and an active 130 

strategy for improving HVAC equipment efficiency. The developed stock modeling 131 

approach can provide evidence and strategic guidance for policy-makers and building 132 

energy designers on the retrofitting and designs. The method is applicable to any other 133 

region so long as the information for the individual cities/regions is available. A case 134 

study of Chongqing city has been conducted to demonstrate the application of the 135 

proposed approach; the main findings are as follows: 136 

 The northern China space-heating pattern using a centralised heating system 137 

continuously should not be considered in Chongqing, which is located in the 138 

Hot Summer and Cold Winter zone, as it will dramatically increase both 139 

primary energy consumption and carbon dioxide emissions from space heating 140 

usage. 141 

 The urban residential floor area in Chongqing increased continuously from 142 

2000 to 2015. Under four different future scenarios, the urban residential floor 143 

area in Chongqing is projected to become stable. The pre-2001 and 2002-2010 144 

residential buildings will gradually undergo a demolition process, leading to 145 

an increasing percentage of post-2010 residential buildings. 146 

 Energy conservation retrofit measures can significantly reduce total space 147 

heating and cooling EUIs and the intensity of carbon dioxide emissions to 148 

12.58 kWh/m2 and 6.61 kgCO2/m
2 for 2020 and 17.16 kWh/m2 and 9.02 149 

kgCO2/m
2 for 2050. The space heating and cooling total energy saving/carbon 150 

dioxide emission reduction percentage for Chongqing urban residential stock 151 

can reach 57.6% to 60.7% in 2020 and 55.3% to 57.2% in 2050.  152 



 

 

 Apart from the energy conservation retrofit measures, controlling total 153 

residential floor area and per person floor area is important for lowering total 154 

stock space heating and cooling energy consumption and carbon dioxide 155 

emissions.  156 

The developed bottom-up engineering stock model for residential buildings can be 157 

applied to any other cities with the required information following the step-by-step 158 

approach described in this paper. The energy stock modelling can provide insights into  159 

current and future energy consumption in residential buildings and assist local 160 

authorities in decision-making about the most appropriate building retrofitting 161 

strategies.  162 
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