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Abstract: 

The objective of this study was to design and produce highly comfortable shoe products guided by a plantar pressure 

imaging data-set. Previous studies have focused on the geometric measurement on the size of the plantar, while in this 

research a plantar pressure optical imaging data-set based classification technology has been developed. In this paper, an 

improved local binary pattern (LBP) algorithm is used to extract texture-based features and recognize patterns from the 

data-set. A calculating model of plantar pressure imaging feature area is established subsequently. The data-set is 

classified by a neural network to guide the generation of various shoe-last surfaces. Firstly, the local binary mode is 

improved to adapt to the pressure imaging data-set, and the texture-based feature calculation is fully used to accurately 

generate the feature point set; hereafter, the plantar pressure imaging feature point set is then used to guide the design of 

last free surface forming. In the presented experiments of plantar imaging, multi-dimensional texture-based features and 

improved LBP features have been found by a convolution neural network (CNN), and compared with a 21-input-3-output 

two-layer perceptual neural network. Three feet types are investigated in the experiment, being flatfoot (F) referring to 

the lack of a normal arch, or arch collapse, Talipes Equinovarus (TE), being the front part of the foot is adduction, 

calcaneus varus, plantar flexion, or Achilles tendon contracture and Normal (N). This research has achieved an 82% 

accuracy rate with 10 hidden-layers CNN of rotation invariance LBP (RI-LBP) algorithm using 21 texture-based features 

by comparing other deep learning methods presented in the literature.  
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1. Introduction 

 

Pressure sensors are the most commonly used sensor in industrial practice, and the pressure sensor primarily uses the 

piezoelectric effect [1] [2]. The photoelectric sensor can be used to detect the non-electric physical quantities that directly 

cause the changes of optical quantities, such as light intensity, illumination, radiation temperature measurement, gas 

composition analysis, etc. They can also be used to detect other non-electric quantities that can be converted into light 

changes, such as the diameter of parts, surface roughness, strain, displacement, vibration, speed, acceleration, and the 

shape of objects, the identification of working state, etc. [3]. By collecting the dynamic pressure distribution of the sole, 

the biomechanical properties of shoes can be evaluated, such as cushioning performance, support strength, stability and 

so on [4] [5]. By previous works, the results indicated that foot zoning, pressure, press, risk assessment of diabetic foot 

ulcer, load change rate, foot length and width, foot contact area, foot angle, foot axis, and time track are used for stability 

analysis [6][7]. It is an important direction of this research to use sole pressure imaging data set and segmentation results 

to control the bottom surface modeling, and then improve the wearing comfort of shoes [8]. Menz et al. [9] compared the 

plantar pressure between healthy individuals of three feet status as normal, planus and cavus, and confirmed each foot 

posture classification displays unique plantar pressure characteristics through a statistics feature of plantar image feature- 

“peak pressures”. Rome et al. [10] illustrated the relationship between region-specific foot pain and plantar pressure and 

concluded that foot pain at the midfoot and rearfoot is relative to the increasing plantar pressure of toes. 

 

Through the measurement of plantar pressure distribution and gait analysis, scientific shoe selection suggestions can be 

provided for athletes to avoid unnecessary injury risk caused by shoe discomfort. At the same time, personalized 

correction programs can be formulated based on stress test data to improve comfort, enhance endurance, improve 

competitive level and prevent sports injury. Murphy et al. [11] tested many kinds of shoes to show the plantar pressure’s 

importance for the research. Otherwise, two test data can be compared and analyzed: pressure distribution comparison, 

synchronization comparison, impulse comparison, force curve comparison, stability comparison, cerebral palsy pressure 

distribution comparison, preoperative and postoperative gait comparison; multiple test data can be averaged: pressure 

average, valgus average; provide personalized correction program [12] [13] [14]. 

 

Image classification is a new science and technology developed in recent years. Classification methods based on image 

space mainly use the underlying features of image such as color, gray level, texture, shape and position to classify images. 

Image classification is based on texture feature, which describes the distribution characteristics of image gray space [15]. 

Texture is everywhere, and there are different textures on the surface of each object. The texture of the image can be 

processed by computer and digitized, and then the signal of image analysis and processing can be obtained. In the 1970s, 

Haralick [16] proposed a gray level co-occurrence matrix representation method. This method defines the gray level co-

occurrence matrix by using the joint probability density of gray level pixels in two locations, reflecting the direction, 

adjacent interval, change range of the gray level of the image, and thus obtains the texture feature vector. However, due 

to the diversity of texture images and the complexity of analysis algorithms, it is difficult to apply the same texture feature 

in different fields [17]. Traditionally, texture is a macroscopic representation of a local repetitive pattern of eigenvalue 

intensity in an image, and local pattern repetition and stability are its main characteristics. Texture image classification 

refers to the designation of a predefined texture category based on the content of the image or image region to be classified; 

it is widely used in visual navigation and image classification. Scene classification, object recognition, face recognition, 

intelligent video analysis, content-based image and video retrieval, remote sensing image analysis, industrial detection, 

medical image analysis and text classification, as depicted in Figure 1. 

 

 

 
Figure 1. General model of texture-based image classification 
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For the analysis and understanding of various natural image textures in the actual open environment, innovative research 

on theory and algorithm is still needed to better learn and express texture features, and at the same time to improve the 

theoretical analysis, promote. Texture feature extraction method is widely used in practical engineering, among which 

the important issues to be further studied and solved include the construction of large-scale texture database [18]. 

 

Deep convolution neural network for texture analysis and understanding; efficient classification of texture images; robust 

texture classification in open environment; semantic understanding of texture images; and many potential applications 

for two-dimensional texture analysis. For example, industrial surface inspection, remote monitoring, biopharmaceutical 

image analysis and other fields [19]. But in practical applications the texture is not as regular as in experiments, and there 

are many other issues including: illumination changes caused by non-uniform light source; the direction of the objects is 

random; the spatial scale is inconsistent. Moreover, many texture classification methods are too complex to be practical. 

To solve these problems, an improved local two value pattern can be used for texture classification. Ojala et al. [20] 

generalized gray-scale and rotation invariant operator presentation to present a method for combining multiple operators 

for multiresolution analysis. 

 

The improved Local Binary Patterns has the following advantages: gray scale invariance; rotation invariance; multi-

resolution analysis; and, because of its low computational complexity, it is a very practical image processing method [21] 

[22]. Some LBP based improvement algorithms have also been introduced, Yuan et al. [23] proposed Gabor filter and 

CS-LBP operator to extract the polarized image texture effectively. Yang et al. [24] introduced histogram-based LBP for 

face recognition by comparing with naïve holistic LBP and enhanced LBP. Öztürk et al. [25] deployed an image 

classification using LBP and texture features. Otherwise, fractal-based texture classification [26], dictionary learning with 

LBP [27], Histogram of Oriented Gradient (HOG) based LBP [28] were also introduced subsequently. 

 

From image extraction to feature expression, an image can be described by a fixed dimension vector, and then a classifier 

is learned to classify the image. The commonly used classifiers are SVM, nearest neighbor, neural network, random forest, 

etc. Convolutional Neural Networks/CNNs/ConvNets are very similar to traditional neural networks as they are all 

composed of neurons with learnable weights and biases. Each neuron receives some input and does some point product 

calculation. The output is the score of each classification. Some computing techniques in ordinary neural networks are 

still applicable here. The CNN is specially designed for image recognition. It imitates the multi-layer process of human 

recognition image: pupil ingestion of pixels; some cells in the cerebral cortex preliminary processing to find shape edges 

and directions; Abstract judgment of shape (such as circle and square); further Abstract judgment [29]. The difference 

between convolution neural network and a traditional neural network is that convolution neural network contains a feature 

extractor composed of convolution layer and sub-sampling layer. In convolution layer of convolution neural network, a 

neuron is connected only with some adjacent layer neurons. In a convolution layer of CNN, there are usually several 

feature maps. Each feature plane is composed of some rectangular neurons. The neurons in the same feature plane share 

weights. The shared weights here are the convolution core. Convolution kernels are usually initialized in the form of 

random decimal matrices. In the process of network training, the convolution kernels will learn to obtain reasonable 

weights. The direct benefit of shared weights (convolution kernels) is to reduce the connection between layers of the 

network, while reducing the risk of over-fitting. Sub-sampling is also called pooling. There are usually two forms: mean 

sub-sampling and Max sub-sampling. Subsampling can be regarded as a special convolution process. Convolution and 

subsampling greatly simplify the model complexity and reduce the parameter [30] of the model. Paoletti et al. [31] 

presented a new 3D CNN architecture for classifying hyperspectral images effectively. Wan et al. [32] compared AlexNet, 

VggNet, GoogleNet, and ResNet for diabetic retinopathy image classification. 

 

This paper introduces a novel LBP texture-based classification using a CNN for plantar pressure imaging dataset which 

directed from optical sensor acquisition device provides a guidance for shoe customization and has a potential application 

in shoe production industry to create comfortable shoes for people with a wide variety of medical conditions or sports 

enhancement. The organization of the remaining sections is as follows. Section 2 introduces the proposed methods. 

Section 3 addresses the results and comparing analysis. Section 4 involves the conclusions of the present studies. 

 

 

2. Methods 

 

2.1 Feature extraction and selection 

 

In the texture feature description method, the typical representation based on statistical method is a texture feature analysis 

method called gray level co-occurrence matrix. Gotlieb and Kreyszig et al. [33] based on the study of various statistical 

features in the co-occurrence matrix, through experiments, obtained four key features of gray level co-occurrence matrix: 

energy, inertia, entropy and correlation. Another typical statistical method is to extract texture features from image 

autocorrelation function (i.e. image energy spectrum function), that is, to extract texture parameters such as texture 

thickness and orientation by calculating image energy spectrum function. The so-called geometric method is based on 

texture primitives (basic texture elements). A texture feature analysis method based on the theory of texture primitives. 
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According to the theory of texture primitives, a complex texture can be composed of several simple texture primitives 

arranged repeatedly in a regular form. In geometric methods, there are two more influential algorithms: Voronio 

checkerboard feature method and structural method. The model method is based on the image construction model. Typical 

methods are random field model method, such as Markov random field (MRF) model method and Gibbs random field 

model method. Signal processing method: Texture feature extraction and matching mainly include gray level co-

occurrence matrix, Tamura texture feature, autoregressive texture model and wavelet transform. Gray level co-occurrence 

matrix feature extraction and matching mainly depend on four parameters: energy, inertia, entropy and correlation. 

Tamura texture feature is based on human visual perception psychology of texture. Six attributes are proposed: roughness, 

contrast, direction, line image, regularity and roughness. Autoregressive texture model (simulate) Neous Auto-Regressive 

(SAR) is an application example of Markov random field (MRF) model. 

 

 

2.2 Texture feature calculation using statistics methods 

 

2.2.1 Gray difference-based features 

 

Suppose that ( , )x y  is a point’s coordinates in plantar pressure image, {1,2,..., }x m , {1,2,..., }y n , gray level 

L, and the nearby point is ( , )x x y y  , 0x  , 0y  , ( , )f x y  is the value of point. So, the gray value 

can be calculated by, 

( ( , )) ( ( , )) ( ( , ))g f x y g f x y g f x x y y                       (1) 

where, g  is gray difference, and suppose there are m levels, count g  in each m and the probability on each g  can 

be acquired as ( )p i , ( 1, , )i m , 
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2.2.2 Gray-level Co-occurrence Matrix based features 

 

Energy, correlation and inertia moment are defined as, 
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where, xyP  means the probability of point ( , )x y  in 1, ,i m  level. 
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2.2.3 Gray gradient co-occurrence matrix 

 

Let gray image be ( , )g x y ; apply Sobel operator to ( , )f x y  and discrete ( , )g x y  to ( , )G x y ; let new gray level be

gL , hence, the new gray is calculated as, 

( , ) min( ( , )
( , ) ( 1)

max( ( , )) min( ( , ))
g

g x y g x y
G x y L

g x y g x y


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
                (8) 
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GGCM ijH  is defined as number of {( , ) | ( , ) , ( , ) }x y f x y o G x y j  .Normalized Hij  as, 

1 1

0 0

ij

ij L L

ij

i j

H
P

H
 

 





                                   (9) 

Now we defined fifteen features based on ijP , continuously, we have the T1-T15 calculations in Appendix (I). 

 

2.3 LBP features 

 

2.3.1 LBP definitions 

 

Local binary pattern is an operator used to describe local texture features of images; it has significant advantages such as 

rotation invariance and gray invariance. The original LBP operator is defined as a window of 3x3. The gray value of eight 

adjacent pixels is compared with the threshold value of the central pixel of the window. If the surrounding pixel value is 

larger than the central pixel value, the position of the pixel is marked as 1, otherwise 0. In this way, eight points in a 3x3 

neighborhood can be compared to produce eight binary digits (usually converted to decimal digits, i.e. LBP codes, totaling 

256). The LBP value of the central pixel of the window can be obtained and used to reflect the texture information of the 

area. As shown in Figure 2. 

 

 
Figure 2. local binary pattern process 

 

 

There have three main steps for LBP algorithm as firstly, is to calculate the binary values of neighbor pixels (0 or 1) 

comparing with central pixel; and secondly is to encode the binary numbers into local structure pattern, continuously to 

decimal, finally, histogram of the image is presented for those defined textures. Let 
1 1
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0 0

x
s x

x


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, we have that, 
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
                           (10) 

Where, ig  denotes gray value of each neighbor pixel of a circle with R  radius, P  is total numbers pixels, cg  

means central pixel. 

 

2.3.2 Efficient LBPs 

 

As Eqn. (10), a completed LBP was defined as 
1

0

2 (| | )
P

R P

P i c

i

LBP s g g c




                                    (11) 

Where, c  is a threshold (mean value of | |i cg g ). Another improvement is local binary counting methods (LBC, 

applied for 1 only) by [34] to encode the local distribution as shown in Figure 3. 
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Figure 3. Local binary count model 

 

 

2.3.3 Proposed LBP for optical sensor imaging dataset 

 

(1) Circular LBP operator 

 

The biggest drawback of the basic LBP operator is that it only covers a small area within a fixed radius, which obviously 

cannot meet the needs of different sizes and frequency textures. To adapt to texture features of different scales and meet 

the requirements of gray scale and rotation invariance, Ojala et al. [20] improved the LBP operator by extending the 3x3 

neighborhood to any neighborhood and replacing the square neighborhood with the circular neighborhood. The improved 

LBP operator allows any number of pixels in the circular neighborhood with radius R. The LBP operator with P sampling 

points in a circular region with radius R is obtained, which is called Extended LBP or Circular LBP. Using the radius of 

the circle to code adjacent pixels, the following neighbors can be obtained as depicted in Figure 4. 

 

 
Figure 4. Extended LBPs and their neighbor pixels encoding 

 

For a given center point ( , )c cx y , its neighborhood pixel position is ( , )p px y , p P , and its sampling point 

( , )p px y  is calculated by the following formula, 

( , ) ( cos(2 / ), sin(2 / ))p p c cx y x R p p y R p p                      (12) 

Where R is the sampling radius, p is the sampling point, and P is the sampling number. Since the calculated value may 

not be an integer, that is, the calculated point is not on the image, we use the interpolation point of the calculated point. 

There are many interpolation methods for purposes. we use bilinear interpolation. The formula of bilinear interpolation 

is as follows, 
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  
(0,0) (0,1) 1

( , ) 1 ,
(1,0) (1,1)

f f y
f x y x x

f f y

   
    

   
                           (12) 

(2) LBP with rotation invariant mode 

 

From the definition of LBP, we can see that the LBP operator is grayscale invariant, but it is not rotationally invariant. 

The rotation of the image will give different LBP values. Mäenpää et al. [35] extended the LBP operator and proposed a 

rotation invariant LBP operator (RI-LBP), i.e. a series of initial defined LBP values were obtained by continuously 

rotating the circular neighborhood, and the minimum value was taken as the LBP value of the neighborhood. Figure 5 

shows the process diagram of finding rotation-invariant LBP. The number below the operator in the figure represents the 

corresponding LBP value of the operator. The eight LBP modes shown in the figure are processed by rotation-invariant, 

and the final LBP value with rotation-invariant is 15. The rotation invariant LBP patterns corresponding to the 8 LBP 

patterns in Figure 5 are 00001111. 

 

 
Figure 5. rotation invariant mode 

 

 

(3) LBP equivalence model  

 

An LBP operator can generate different binary modes. For a circular region with radius R, an LBP operator with P 

sampling points will generate two modes. Obviously, with the increase of the number of sampling points in the 

neighborhood set, the number of binary patterns increases dramatically. For example, there are 20 sampling points in a 

5x5 neighborhood, and 220=1048756 binary patterns. So many binary patterns are disadvantageous to texture extraction, 

texture recognition, classification and information access. At the same time, too many pattern types are unfavorable to 

the expression of texture. For example, when LBP operator is used in texture classification or face recognition, the 

statistical histogram of LBP pattern is often used to express the information of image, and more types of patterns will 

make the amount of data too large and the histogram too sparse. Therefore, it is necessary to reduce the dimension of the 

original LBP mode to make the best representation of image information when the amount of data is reduced. To solve 

the problem of too many binary modes and improve the statistics, Ojala et al. [20] proposed a "Uniform Pattern" to reduce 

the dimension of LBP operators where they believed that in real images, most LBP modes contain at most two jumps 

from 1 to 0, or from 0 to 1. Therefore, Ojala et al. defined ab "equivalent schema" as an equivalent schema class when 

the cyclic binary number corresponding to an LBP jumps at most twice from 0 to 1 or from 1 to 0 For example, 00000000 

(0 jumps), 000000111 (including only one jump from 0 to 1), 10001111 (jumping from 1 to 0, then from 0 to 1, a total of 

two jumps) are equivalent schema classes. Schemas other than equivalent schema classes fall into another category, called 

hybrid schema classes, such as 10010111 (four jumps in total). With this improvement, the number of binary patterns is 

greatly reduced without losing any information. The number of patterns is reduced from the original 2^P to 

( 1) 2P P   , where P represents the number of sampling points in the neighborhood set. For 8 sampling points in a 3x3 

neighborhood, the binary mode is reduced from 256 to 58, which makes the dimension of eigenvectors less and reduces 

the impact of high frequency noise. 

 

The principle of LBP feature for detection: obviously, the extracted LBP operator can get an LBP "coding" at each pixel. 

After extracting the original LBP operator from an image (recording the gray value of each pixel), the original LBP feature 

is still a "picture" (recording). The LBP value of each pixel. In the application of LBP, such as texture classification and 

face analysis, LBP atlas are not usually used as feature vectors for classification and recognition, but statistical histogram 

of LBP feature spectrum is used as feature vectors for classification and recognition. Because, from the above analysis, 

we can see that this "feature" is closely related to the location information. If we extract these "features" from two pictures 

directly and make discriminant analysis, it will cause great errors because of "misalignment of position". Later, 

researchers found that a picture can be divided into several sub-regions. LBP features can be extracted for each pixel in 

each sub-region, and then a statistical histogram of LBP features can be built in each sub-region. In this way, each sub-

region can be described by a statistical histogram; the whole picture is composed of several statistical histograms; for 

example, a 100x100-pixel image is divided into 10x10=100 sub-regions (which can be divided in many ways), and each 

sub-region is 10x10-pixel in size. In each sub-region, each pixel extracts its LBP features, and then establishes a statistical 
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histogram. Thus, the picture has 10x10 sub-regions, and 10x10 statistical histograms. Using this 10x10 statistical 

histogram, the picture can be described. Then, we can use various similarity measure functions to judge the similarity 

between the two images; the steps of extracting LBP feature vectors: 

Step 1: first divide the detection window into 16 x 16 small area (cell). 

Step 2: For one pixel in each cell, the gray value of eight adjacent pixels is compared with it. If the surrounding 

pixel value is larger than the central pixel value, the position of the pixel is marked as 1, otherwise 0. In this way, 8-

bit binary digits can be generated by comparing 8 points in a 3x3 neighborhood, that is, the LBP value of the central 

pixel of the window can be obtained. 

Step 3: Then calculate the histogram of each cell, that is, the frequency of occurrence of each number (assumed to 

be the decimal number LBP value); then normalize the histogram by Euclidian distance. 

Step 4: Finally, the statistical histogram of each cell is connected to a feature vector, which is the LBP texture feature 

vector of the whole image.  

 

 Then it can be classified by using machine learning algorithms. 
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ALGORITHM 1: Rotation Invariant of LBP features 

REQUIRED 

 img: source plantar pressure images,  

r: radius of circle 

n: neighbors 

    imgSize  size(img) 

    IF numel(imgSize) > 2 

        imgG rgb2gray(img) // Convert color system from RGB to Gray  

    ELSE 

        imgG  img 

    ENDIF 

    [rows, cols]  size(imgG); rowsint16(rows); colsnt16(cols) 

    imglbp  uint8(zeros (rows-2*radius, cols-2*radius)) 

    FOR k IN [0, n-1] 

//   Calculate the offset of the sampling point to the center point coordinate, rx and ry         

        rx  r * cos (2.0 * pi * k / neighbors); ry  -r * sin (2.0 * pi * k / neighbors); 

//   The sampling points are shifted up and down respectively. 

        x1  floor(rx); x2  ceil(rx); y1  floor(ry); y2  ceil(ry); 

//   Mapping coordinates offset to [0-1]. 

        tx  rx - x1; ty  ry - y1 

//   The weight is calculated according to the weight formula of X and y between 0-1. The 

weight is independent of the specific position of coordinates and the difference between 

coordinates. 
        w1  (1-tx) * (1-ty); w2  tx * (1-ty); w3  (1-tx) * ty; w4  tx * ty; 

        FOR i IN [radius+1, rows-r] 

            FOR j IN [r+1, cols-r] 

                Center imgG(i, j) 

//    According to the bilinear interpolation formula, we calculate the gray value of the K 

sampling points.            
                n  imgG(i+x1, j+y1)*w1 + imgG(i+x1, j+y2)*w2 + imgG(i+x2, j+y1)*w3 + 

imgG(i+x2, j+y2)*w4; 

//    The LBP value of each neighbor of the LBP feature image is accumulated by operation, 

and the corresponding LBP value is obtained by shifting. 
                IF n > center THEN 

                    flag = 1 

                ELSE 

                    flag = 0 

                ENDIF 

                imglbp(i-r, j-r)  bitor(imglbp(i-r, j-r), bitshift(flag, n-k-1)) 

            ENDFOR 

        ENDFOR 

    ENDFOR 

    FOR i IN [1, rows-2*r] 

        FOR j IN [1, cols-2*r] 

            currentValue  imglbp(i, j) 

            minValue  currentValue 

            currentValue = dec2bin(currentValue) 

            FOR k IN [1, n] 

                temp  circshift(currentValue, k) 

                temp  bin2dec(temp); 

                IF temp < minValue THEN 

                    minValue = temp; 

                ENDIF 

            ENDFOR 

            imglbp(i, j)  minValue; 

        ENDFOR 

    ENDFOR 
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2.4 Proposed convolutional neural network model for optical sensor imaging dataset 

 

A full-convolution neural network (FCN) is proposed to generate dense classification (pixel-by-pixel classification), 

which is characterized by position-independent and output is the result of a series of convolution layers. Firstly, the full 

connection layer responsible for classification is transformed into a convolution layer, and the convolution kernel is 

selected to make its dimension the same as the previous layer, so that it is equivalent to the full connection layer. The 

difference is that when the size of the input image increases, the output size will increase, but the number of parameters 

will not change. This is convoluting the entire original network over a larger range of images to obtain output at different 

locations. To improve the resolution of the output graph, we added a so-called "deconvolution" layer. The purpose of this 

method is to sample the feature map of the previous layer and implement it through neighborhood point interpolation. 

The interpolation process is parameterized by a core representing the influence area and contribution of pixels to its 

neighborhood. To effectively interpolate, the core must be large enough to cover the output. The implementation of 

interpolation is as follows: multiplying the value of the kernel with each input and adding overlapping responses to the 

output. As shown below, a fixed 4x4 core is used for scaling. 

 

 
Figure 6. Scaling and overlapping 

 

In this algorithm, the interpolation kernel is also a parameter to be learned, not an a priori parameter (for example, set to 

linear interpolation). Note that the central part of the feature map after sampling is the superposition (interpolation) of 

two neighborhood kernels, and the outer boundary is the result (extrapolation) of a single core. Compared with the block-

based method, the advantages of this method are as follows: 1) it can eliminate the discontinuity of block boundary; 2) it 

can simplify the learning process and improve the accuracy with fewer parameters; 3) it has lower reasoning time and 

uses GPU to accelerate convolution processing. The FCN we propose is constructed as follows. Firstly, we assume that 

the output block size of the original neural network is 1x1, so we only need to pay attention to a single output centered 

on the receptive field. In the second step, we modify the full connection layer into a convolution layer containing a feature 

map, and the spatial dimension of the former layer is 9x9. In the third step, we add a deconvolution layer with a factor of 

4 (we need to learn 8x8 kernels) to restore the input resolution. Note that the classification and the up-sampling process 

are separate. 

 

 
Figure 7. Deconvolution and up-sampling process 

 

This new neural network can accept input images of different sizes, and the output size will change accordingly. In the 

above figure, the extrapolation part of the deconvolution result is expressed in white, and the interpolation part is 

expressed in grayscale. To modify the influence of mislabeled samples, we propose a two-stage algorithm: first, the 

original data set is used to train the neural network, and secondly, a small number of artificial labeled samples are used 

to optimize the neural network. Due to the loss of spatial information caused by the down sampling, the classification 

boundary is blurred. To preserve spatial details without increasing the number of training samples, we combine low-

resolution remote features with high-resolution local features. Fine-Tuning is a common technique of neural networks, 

which is used to update a trained model on a new training set. The principle of Fine-Tuning is that low-level information 
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/ features can be reused in different applications. Although the final classification objectives are different, it is also a 

feasible scheme to obtain approximate optimal parameters, rather than random initialization. After Fine-Tuning, low-

level features will tend to be retained while high-level parameters will be updated. In Fine-Tuning, the training set in the 

new domain is generally much smaller than that in training the original neural network. This is because we assume that 

the commonalities of the two domains are preserved in the network (e.g. edges in different directions). When the training 

set of new fields is very small, additional considerations need to be added to Fine-Tuning to avoid over-fitting, such as 

early stopping, fixing low-level weights, or reducing learning rate. Combining the idea of Fine-Tuning, to train on 

imperfect data, the first step is to train a complete CNN with many training samples to capture the generality of data sets, 

such as obtaining spectral characteristics of object classes. In the second step, we use a small number of artificially labelled 

samples to Fine-Tune neural network. If most of the general features have been obtained in the initial training stage, the 

optimization step should modify the network parameters locally to produce more accurate output. Resolution optimization 

directly using down-sampled CNN for classification will result in lower classification resolution, but we do not need full 

resolution filters, because we only need to get high resolution information of the convolution filter center (a pile of 

analysis). Combined with these two scales, the positioning accuracy can be improved under the condition that few 

parameters are maintained. Let S be the fractional order of the original resolution, such as {1,1/ 2}S   consisting of 

the original resolution and its half resolution. We let sX  indicate that X is down-sampled to S -level. We design a 

specific type of neuron, which will apply a set of filters to different scales of the previous feature map to increase response, 

and we have that, 

 ( )S S

s

a W X b


                                    (13) 

Note that each filter sW  learns from each scale s. Such a filter can easily be realized through the combination of basic 

convolution, down sampling and upper sampling level. The following figure shows the situation of the process in two 

scale models. In our implementation, we average down-sampled neighborhood elements in a window, then perform 

bilinear interpolation for up-sampled (other methods are also feasible). The convolution kernels for each scale are set to 

be the same (e.g. 3x3), but the context is different (because the scales are different). Addition is an element by element 

operation followed by nonlinear activation. 

 

 
Figure 8. Convolutional neural network classification for optical sensor imaging dataset 

 

 

3. Results and discussion 

 

3.1 Experimental design and data acquisition 

 

Table 1 shows the details of the parameters of the scanning device in the proposed system while acquiring the planar 

pressure distribution imaging dataset using the RS-Scan Footscan 7.0 software system (as shown in Fig.9). Twenty testee 

(5 Flat foot (F), 5 Talipes Equinovarus (TE) [36] and 10 normal (N)) were involved in the thirty minutes of four times 

test, and the data was acquired subsequently. 
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Table 1. The parameters of plantar pressure measurement system 

Items Measurement Items Measurement 

Area 40*50 (cm2) Total number of sensors 4096 

Numbers of sensor 4 /cm2 Sampling (Hz) 125-300Hz 

Size of each sensor 0.5*0.7(cm2) Analog channels 16 

Image resolution 12 bits Entry level 2m 

 

 

Furthermore, the system can also calculate the pressure information in different zone (shown in Figure. 9). The system 

can not only measure the gait assessment related parameters, such as stride length, stride length, cadence, speed, feet and 

angle, steering angle and other data, but also through the intelligent terminal feedback foot movements and plantar pressure 

distribution evolution diagram. Plantar pressure gait analysis assessment reports the runner distribution, human orientation, 

internal and external rotation, and running posture provides scientific basis for gait training and exercise guidance. The 

medical personnel can real-time monitoring of the patient's foot by providing comprehensive rehabilitation training 

suggestions. 

 

 
Figure 9. Foot scan system for measuring plantar pressure and imaging experiment 

 

 

3.2 Results and discussion 

 

Flat foot refers to the lack of normal arch, or arch collapse which defined in the research as Flatfoot(F); Talipes 

Equinovarus (TE) means the front part of the foot is adduction or varus, calcaneus varus, plantar flexion, and Achilles 

tendon contracture, etc. Texture features based efficient LBP, RI-LBP were calculated in Figures 11-12. 
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(a)  With noisy                               (b) Pre-processed  

Figure 11. With noisy (a) and preprocess (b) (original, efficient LBP and RI-LBP) 

 

 

    
(a) Pulse sensors image                    (b) Back remove preprocess 

Figure 12. with pulse sensors image (a) and back remove preprocess (b) (original, efficient LBP and RI-LBP) 

 

 

We also calculated the histogram of Figure 12-(b) as shown in Figure 13. 

 

 
Figure 13. The regular, sparse and tight RI-LB the plantar pressure images 

 

Normal (N) Flat foot (F), Talipes Equinovarus (TE); CNN image classification, by using CIFAR-10 (The CIFAR-10 data 

set contains 60,000, 32x32 color images of 10 classes, each with 6,000 images. There are 50,000 training images and 

10,000 test images in the CIFAR-10 data set) for training the CNN for prediction of plantar pressure images classification. 

and we have the parameters as shown in Table 2. 
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Table 2. The parameters and sizes of convolutional neural network for plantar pressure imaging dataset training 

Parameters Size Parameters Size 

Input 3*32*32 Convolutional layer 20*28*28 

Element wise layer 20*28*28 Pooling layer 20*14*14 

Convolutional layer 50*10*10 Element wise layer 50*10*10 

Pooling layer 50*5*5 Flatten layer 1250 

Dot plus layer 500 Element wise layer 500 

Dot plus layer 10 Softmax layer 10 

Output 10 - - 

 

 

Using the 10 hidden two layers feed -forward neural network with “sigmod” input and “softmax” output neurons, see 

Figure 14. 

 

 

 
Figure 14. the structure of ten hidden feed-forward neural network 

 

T1-T15 with 6 features of mean, contract, entropy, energy, correlation and inertia moment are applied as inputs (See 

Table 3-7). The input is a 21x20 matrix consisting of 20 testee; the target is 3 of 1-Normal (N), 2-Flat foot (F), 3-Talipes 

Equinovarus (TE). Classes are represented by a 1 in row 1, 2 or 3; 80% of the dataset is for training, 10% for validation 

and 10% for testing. The training parameters are of random division, scaled conjugate gradient, and cross entropy for 

performance. The performance, training state, confusion and receiver operating characteristic are shown in Fig. 15. By 

using other neural network mothods of back-propagation neural network (BPNN) [37], convolutional neural network 

(CNN)[38], back-propagation Hopfield neural network (BPHNN) [39] and fuzzy neural network (FNN) [40], the 

proposed CNN with RI-LBP using 21 texture features deployed better performance on CE, MSE and PAR. 

 

 

Table 3. Texture features’ value of three classifications (F, TE, N) 

Images Mean 

(M) 

Contract 

(Co) 

Entropy 

 (E) 

Energy 

 (En) 

Correlation 

(C) 

Inertia Moment 

(IM) 

F1 0.58 2.37E+3 4.76 0.03 0.78 1.21 

F2 0.54 2.12E+3 4.65 0.03 0.50 2.25 

F3 0.57 2.21 E+3 4.93 0.02 0.54 1.57 

F4 0.54 2.17 E+3 4.78 0.03 0.87 2.21 

F5 0.55 2.14 E+3 4.67 0.03 0.89 1.24 

TE1 0.55 2.65 E+3 4.90 0.02 0.88 1.23 

TE2 0.59 2.23 E+3 4.56 0.02 0.84 1.37 

TE3 0.66 2.52 E+3 5.20 0.03 0.91 1.67 

TE4 0.59 2.27 E+3 5.11 0.02 0.91 2.56 

TE5 0.50 2.03 E+3 5.12 0.03 0.92 2.44 

N1 0.57 2.21 E+3 5.33 0.02 0.92 2.43 

N2 0.51 1.98 E+3 5.20 0.03 0.91 2.21 

N3 0.55 1.99 E+3 4.45 0.03 0.89 2.42 

N4 0.55 1.23 E+3 4.77 0.02 0.87 1.56 

N5 0.56 1.98 E+3 5.23 0.03 0.79 2.44 

N6 0.57 2.05 E+3 5.22 0.02 0.83 1.88 

N7 0.57 2.28 E+3 5.34 0.03 0.88 1.87 

N8 0.55 2.43 E+3 5.32 0.03 0.90 1.45 

N9 0.55 2.02 E+3 4.88 0.03 0.95 2.44 

N10 0.53 2.21 E+3 4.87 0.03 0.91 2.88 
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Table 4. Texture features of Flatfoot (F) 

T\F F1 F2 F3 F4 F5 

T1 0.24 0.28 0.22 0.27  0.30  

T2 14.45 15.44 13.32 11.23 13.26  

T3 4.88E+4 4.31E+4 5.34E+4 4.51E+4 6.83E+4  

T4 2.11E+5 2.12+5 1.56+5 1.33+5 1.55E+5  

T5 0.01 0.01 0.01 0.01 0.01 

T6 115.33 122.21 99.41 105.70 107.13 

T7 13.67 14.89 12.76 11.44 13.21 

T8 55.65 54.97 45.75 53.32 69.34 

T9 12.89 13.54  12.91 12.32 16.33 

T10 -113.23 -114.129 -48.52 -53.23 -134.31 

T11 2.23  2.80 2.65 2.89 2.67 

T12 0.87 0.96 1.56 1.65 1.21 

T13 3.21 3.18 3.22 3.54  3.33 

T14 1.26E+4 1.32E+4 1.29E+4 1.30E+4 1.45E+4 

T15 0.02 0.01 0.01 0.01 0.01 

 

Tables 5. Texture features of Talipes Equinovarus (TE) 

T\TE TE1 TE2 TE3 TE4 TE5 

T1 0.31 0.30 0.30 0.30 0.31 

T2 13.25 12.23 12.33 13.52 13.56 

T3 4.65E+4 4.76 E+4 4.98 E+4 4.98 E+4 5.88 E+4 

T4 1.56E+5 1.57 E+5 1.52 E+5 1.51 E+5 1.59E+5 

T5 0.01 0.01 0.01 0.01 0.01 

T6 112.76 107.78 112.54 122.68 117.20 

T7 13.45 13.20 13.55 13.45 13.34 

T8 61.20 60.12 61.25 61.34 61.64 

T9 11.88 11.75 11.89 11.25 11.62 

T10 -55.22 -47.25 -42.22 -57.45 -89.36 

T11 2.23 2.12 2.65 2.54 2.44 

T12 1.12 1.07 1.05 1.05 1.09 

T13 3.22 3.18 3.54 3.55 3.34 

T14 1.24E+4 1.33 E+4 1.25 E+4 1.10 E+4 1.23 E+4 

T15 0.01 0.01 0.02 0.01 0.01 

 

Table 6. Texture features of Talipes equinovarus (N) 

T\N N1 N2 N3 N4 N5 

T1 0.31 0.31 0.30 0.30 0.31 

T2 17.87 17.22 18.32 18.22 18.39 

T3 9.23 E+3 9.21 E+3 9.29 E+3 8.98 E+3 8.70E+3 

T4 4.23E+5 E+5 3.23 E+5 4.33 E+5 4.66E+5 4.22 E+5 

T5 0.01 0.02 0.01 0.01 0.01 

T6 112.22 113.32 113.44  111.12 120.09 

T7 17.23 17.12 16.87 16.22 16.22 

T8 60.12 61.22 61.23 62.23 57.21 

T9 12.98 12.99 12.78 13.12 13.11 

T10 -134.39 -187.22 -199.02  -126.64 -187.65  

T11 2.23 2.23 2.27  2.34 2.09 

T12 0.83 0.82 0.81  0.79 0.77 

T13 3.12 3.22 2.98  3.09 3.02 

T14 1.37 E+4 1.36 E+4 1.54 E+4 1.05 E+4 1.43E+4 E+4 

T15 0.01 0.01 0.01 0.01  0.01 
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Table 7. Texture features of Talipes equinovarus (N) (continued) 

T N6 N7 N8 N9 N10 

T1 0.32 0.31 0.32 0.31 0.33 

T2 15.57 16.28 16.52 16.54 16.54 

T3 8.21E+3 9.23 E+3 9.12E+3 8.32 E+3 7.99 E+3 

T4 3.44E+5 3.32 E+5 4.10 E+5 4.09 E+5 4.01 E+5 

T5 0.01 0.01 0.01 0.01 0.01 

T6 89.23 89.41 89.88 92.20 101.22 

T7 16.60 16.67 16.32 16.17 16.43 

T8 52.22 52.23 56.87 54.76 53.67 

T9 13.21 12.12 12.55 12.57 12.22 

T10 -122.12 -111.22  -117.43 -119.76  -113.85  

T11 2.37 2.29 2.32 2.32 2.29 

T12 0.85 0.87 0.82 0.83 0.82 

T13 3.19 3.21 3.12 3.15 3.18 

T14 1.09E+4 1.08 E+4 1.08 E+4 1.12 E+4 1.28 E+4 

T15 0.01 0.01 0.01  0.02 0.01 

 

 

 
(1) performance                              (2) epochs 

 
(3) confusion                 (4) receiver operating characteristic 

Figure 15. Results on performance, training state, confusion and receiver operating characteristic 
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Table 8. Predictive accuracy rate with different neural networks 

Methods Cross Entropy 

(CE) 

Mean Square Error 

(MSE) 

Predictive Accuracy Rate 

(PAR) 

BPNN [33] 0.62 0.077 0.855 

CNN [34] 0.71 0.068 0.788 

BPHNN [35] 0.61 0.066 0.685 

FNN [36] 0.65 0.082 0.752 

CNN + RI-LBP -21(+) 0.67 0.066 0.820 

+: proposed in this research; PAR: predictive accuracy rate 

 

 

4. Conclusion 

 

In this research, plantar pressure experimental design was addressed to discover how the last can be made through the 

plantar pressure imaging dataset, optical sensor based imaging dataset was specified using image based process such 

texture feature extraction, as the emergence of the deep neural network modeling technologies, this research achieved 

better performance by using CNN and RI-LBP, the results showed the training set for acquiring higher classification with 

higher accuracy for prediction by comparing with other machine learning algorithms. The next work in future is extending 

the dataset to large scale and using more features. Texture feature is only a feature of the surface of an object, it cannot 

fully reflect the intrinsic properties of the object, so it is impossible to obtain high-level image content only by using 

texture features. The research based on plantar pressure data set can be further applied to the study of healthy gait by 

analyzing human body structure, function and whole-body posture control. In clinical application, it can be further 

developed from basic research related to rehabilitation using plantar pressure for dynamic image analysis. Medical studies 

have also shown that diabetes, obesity, Parkinson's disease and other diseases can lead to changes in plantar pressure. 

This will bring new research prospects and become a new driving force for the development of traditional shoemaking 

industry. 
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Appendix I. GGCM features definitions 
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