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Chapter 4: The LOTUS regression model

One of the primary motivations of the LOTUS effort is 
to attempt to reconcile the discrepancies in ozone trend 
results from the wealth of literature on the subject. Do-
ing so requires investigating the various methodolo-
gies employed to derive long-term trends in ozone as 
well as to examine the large array of possible variables 
that feed into those methodologies and analyse their 
impacts on potential trend results. Given the limited 
amount of time, the LOTUS group focused on the most 
common methodology of multiple linear regression and 
performed a number of sensitivity tests with the goal of 
trying to establish best practices and come to a consen-
sus on a single regression model to use for this study. 
This chapter discusses the details and results of the sen-
sitivity tests before describing the components of the 
final single model that was chosen and the reasons for 
that choice.

4.1 Regression methodology 

MLR methods have been used for trend detection in 
ozone time series for decades. They evolved into the most 
commonly used approach in the community, with many 
smaller or more substantial variations of a baseline meth-
od having been developed. For the LOTUS project, we 
decided to base our sensitivity tests on a MLR with an 
iterative lag-1 autocorrelation correction (see Appendix B 
of Damadeo et al., 2014). 

In general, the regression problem can be written as,

(4.1),

where y is the length n vector of observations, β is the 
length m vector of proxy coefficients, X is the n × m ma-
trix of proxies, and ε are the fit residuals. The goal of the 
regression procedure is to find the values of β which mi-
nimise the quantity

(4.2),

where Ω is the covariance matrix of the observations. The 
problem admits a direct solution,

(4.3),

which can also be used to obtain an error estimate for the 
proxy coefficients assuming the covariance matrix is cor-
rectly specified.

The regression is performed in an iterative procedure 
(Cochrane and Orcutt, 1949) with Ω set to unity for 
the first iteration. The first iteration is equivalent to 
an unweighted least squares fit. After the first itera-
tion, the autocorrelation coefficient, ρ, is calculated 
through,

(4.4),

where ε is the mean value of the residuals. Typically, 
the autocorrelation coefficient is on the order of 0.2–
0.3. For the next iteration, the covariance matrix is 
updated taking into account the observed autocorrela-
tion (Prais and Winsten, 1954) with modifications by 
Savin and White (1978) if gaps are present in the data. 
The procedure is repeated until the autocorrelation 
coefficient has converged within a tolerance level of 
0.01. The final error estimate is calculated by scaling 
the covariance matrix to match the observed variance 
of the residuals.

This baseline MLR was used for sensitivity tests to de-
cide which proxies to use in the final "LOTUS regression" 
model, for evaluations of possible lags for proxies, and 
for the evaluation of weighted or unweighted regressor 
data. The final set-up of the "LOTUS regression" model is 
described in more detail in Section 4.5. 

4.2 Proxies 

Proxies are used in multiple regression analyses to rep-
resent the observed variability in the parameter be-
ing modeled, in this case ozone. There is a wealth of 
literature concerning the viability of various proxies to 
represent dynamical and chemical processes that affect 
ozone (e.g., WMO, 2011; WMO, 2014; and references 
therein). 

We brief ly describe the most common proxies for 
ozone trend analyses below and provide information 
on where these proxies may be found. Our focus is 
therefore not to provide detailed studies about the ef-
fects of these proxies on ozone distribution but rath-
er a short estimate about their inf luence mechanism 
(dynamical or chemical) and a description on how the 
proxy has been implemented in regression models be-
fore. The listed links for the proxies are not exhaustive 
and should only be seen as a subset of all available pos-
sible sources. 
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4.2.1 Non-trend proxies 

11-year solar cycle

The 11-year solar cycle has different effects on ozone in 
the different regions of the atmosphere. 

The solar ultraviolet spectral irradiance reaching the 
Earth’s atmosphere changes over the course of the cy-
cle. In the upper stratosphere this leads to changes in 
radiative heating and photochemistry (production rate 
of ozone) which then affects the ozone distribution. In 
the lower stratosphere the changes in ozone are thought 
to occur mainly through a dynamical response to solar 
ultraviolet variations. The exact mechanisms of this dy-
namical response are not yet fully understood (WMO, 
2014), but the 11-year solar cycle proxy is important for 
all latitudes. Effects of the solar cycle on ozone are de-
scribed, for example, in Lee and Smith (2003).

There are different possibilities to describe the 11-year so-
lar cycle as a proxy. The most common ones are: 10.7 cm 
solar radio flux, sunspot number, Mg II core-to-wing 
ratio, and as a more recent alternative the 30.0 cm solar 
radio flux (as suggested by Dudok de Wit et al., 2014). 
Note, all of these time series are highly intercorrelated, 
so only one is chosen for a solar cycle representation in a 
regression model. Additionally, while these proxies could 
theoretically be phase shifted to account for any potential 
lagged response (e.g., in dynamical forcings in the lower 
stratosphere), in practice adding this additional degree of 
freedom can cause aliasing due to correlations with vol-
canic effects (Chiodo et al., 2014; Damadeo et al., 2014) 
that can negatively impact trend analyses.

Time series of these proxies can be found here:

i. Solar flux (10.7 cm):  
ftp://ftp.geolab.nrcan.gc.ca/data/solar_flux 

ii. Solar flux (30.0 cm):  
ftp://ftpsedr.cls.fr/pub/previsol/solarflux/observation 

iii. MG II index:       
http://www.iup.uni-bremen.de/UVSAT/Datasets/mgii 

iv. Sunspot number:  
http://sidc.oma.be/silso/datafiles 

QBO

The quasi-biennial oscillation (QBO) is a modulation of the 
zonal wind and temperature in the tropical stratosphere 
over time and pressure region, measured by radiosondes. 
These changes in wind and temperature affect ozone in this 
region, as well as ozone outside the tropics. The QBO time 
series are given as wind measurements at several different 
stratospheric pressure levels. Effects of QBO on ozone are 
described, for example, in Baldwin et al. (2001).

Due to the oscillating nature of the QBO, and its re-
gion of inf luence beyond the tropics, it is important 
to account for phase shifts when it is used as a proxy. 
There are different ways to accomplish this: (1) at least 
two (or more) measured QBO time series from differ-
ent pressure levels that are mostly orthogonal are used 
simultaneously (as done, for example, in Steinbrecht et 
al., 2017), (2) one measured QBO time series is chosen 
and an orthogonal time series to this QBO time series 
is artificially created (as done, for example, in Harris 
et al., 2015), or (3) QBO time series at multiple pres-
sure levels are taken and a principle component (CP) 
analysis is performed with them to get to orthogonal 
QBO time series (as done, for example, in Damadeo et 
al., 2014).

Time series of QBO values at the different pressure levels 
can be found here:

http://www.geo.fu-berlin.de/met/ag/strat/produkte/
qbo/qbo.dat

ENSO

The El Niño–Southern Oscillation (ENSO) is an impor-
tant mode of interannual variability in wind and sea 
surface temperatures over the tropical Pacific Ocean. 
These variations cause variability in tropical upwelling 
and therefore changes in lower stratospheric tempera-
ture and water vapor. These then affect the ozone con-
centration in the tropics chemically and dynamically. 
Through atmospheric teleconnections, ENSO also af-
fects ozone distributions in regions beyond the tropics 
(WMO, 2014; Oman et al., 2013). ENSO time series can 
be given as sea level pressure difference between Dar-
win, Australia, and Tahiti (Southern Oscillation Index), 
as differences in sea surface temperatures, or as a com-
bination of several different indices.

ENSO as a proxy is often used only as a single time se-
ries. However, it has been shown that ENSO effects out-
side the tropics can be delayed by some time compared 
to the original signal. Therefore ENSO proxies are ei-
ther lagged (by a variable number of months) or an or-
thogonal ENSO time series is created, and the original 
and orthogonal ENSO proxy are used in combination to 
account for the time lags.

Time series of ENSO values can be found here:

https://www.esrl.noaa.gov/psd/enso/mei 
(Wolter and Timlin, 2011)

AO

The Arctic Oscillation (AO), also known as the Northern 
Annular Mode (NAM), is a description of North-South 

ftp://ftp.geolab.nrcan.gc.ca/data/solar_flux 
ftp://ftpsedr.cls.fr/pub/previsol/solarflux/observation
http://www.iup.uni-bremen.de/UVSAT/Datasets/mgii
http://sidc.oma.be/silso/datafiles
https://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/qbo.dat
https://www.geo.fu-berlin.de/met/ag/strat/produkte/qbo/qbo.dat
https://www.esrl.noaa.gov/psd/enso/mei/
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movement of the westerly winds that circle the Arc-
tic associated with pressure anomalies of one sign in 
the Arctic with the opposite anomalies centred about 
37°N–45°N. The effect of the AO on ozone is discussed, 
for example, by Thompson and Wallace (2000).

Time series of AO values can be found here:

https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/daily_ao_index/ao.shtml 

AAO

The Antarctic Oscillation (AAO), also known as the 
Southern Annular Mode (SAM), is a description of 
North-South movement of the westerly winds that 
circle Antarctica associated with pressure anomalies 
of one sign centred in the Antarctic and anomalies of 
the opposite sign centred about 40°S–50°S. It can have 
a clear inf luence on ozone in the Southern Hemisphere 
polar regions as has been shown by Thompson and  
Solomon (2002).

Time series of AAO values can be found here:

https://www.cpc.ncep.noaa.gov/products/precip/
CWlink/daily_ao_index/aao/aao.shtml 

NAO

The North Atlantic Oscillation (NAO) index is based on 
the pressure difference at sea level between the Icelan-
dic low (Subpolar Low) and the Azores high (Subtropical 
High). Its variations impact the strength and direction 
of westerly winds across the North Atlantic, which can 
then affect ozone distribution, mainly in the lower strato-
sphere. The effects of NAO on ozone is described, for ex-
ample, by Weiss et al. (2001).

NAO can be given as a time series of air pressure dif-
ferences between a location in Iceland and a location 
in the Azores or Portugal, or as empirical orthogonal 
functions (EOFs) of surface pressure defined regionally 
about these locations.

Time series of NAO values can be found here:

https://climatedataguide.ucar.edu/climate-data/hur-
rell-north-atlantic-oscillation-nao-index-station-based 

EHF

The Eddy Heat Flux (EHF) is a metric used to de-
scribe the stratospheric meridional circulation, based 
on wave energy moving from the troposphere upward 
into the stratosphere. It is calculated as a product of 

North-South (meridional) wind and temperature de-
partures from their respective zonal-mean values, and 
it is mainly important in the winter hemisphere in the 
polar regions. More information about the inf luence 
of EHF on ozone can be found, for example, in Gabriel 
and Schmitz (2003).

Eddy Heat Flux time series are calculated from reanalysis 
data, for example ERA-Interim.

Tropopause pressure

Long-term changes in tropopause pressure can be used 
as a proxy for tropospheric expansion and therefore 
as an indicator for the inf luence of climate change on 
the atmosphere. The connections between ozone and 
tropopause height has been discussed, for example, by 
Steinbrecht et al. (1998). The average tropopause pres-
sure for use as a proxy in the regression has to be calcu-
lated specifically, depending on the analysed data: For 
station data (e.g., a sonde station), normally the tropo-
pause pressure that is recorded directly in the data files 
is used; for satellite data analyses, tropopause pressures 
are normally retrieved from reanalysis data.

Aerosol

Stratospheric sulfate aerosol concentrations can have 
an impact on ozone concentrations, especially in the 
polar regions. With increasing sulfate concentrations 
the surface area of atmospheric particles increases and 
therefore offers more opportunity for heterogeneous 
chemical processes and the effects on stratospheric 
temperature and transport changes. A major source of 
sulfate aerosols comes from volcanic eruptions. Two 
major eruptions took place in the last 40 years (i.e., El 
Chichón in 1982 and Pinatubo in 1991) and have to 
be considered with ozone trend analyses. The peak of 
the atmospheric aerosol concentration varies region-
ally due to the transport times of the aerosols. Some 
satellite and ground-based instruments had substan-
tial problems measuring ozone during periods of very 
elevated stratospheric aerosol, which is normally ac-
counted for by removing several years of data after 
major volcanic eruptions from these data sets. More 
information about the effects of stratospheric sulfate 
aerosols on ozone can be found, for example, in Solo-
mon et al. (1998).

There are different ways to describe aerosol as a proxy: 
(1) a theoretical functional form that describes the in-
jection and loss of aerosol in the atmosphere, or (2) time 
series based on aerosol-related measurements. In both 
cases lags for the time series have to be considered to 
take into account the transport times.

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/ao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/daily_ao_index/aao/aao.shtml
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
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Time series of aerosol optical depth (AOD) values can 
be found here:

Mean AOD at 550 nm:  
https://data.giss.nasa.gov/modelforce/strataer/tau.
line_2012.12.txt 
(Note, this time series is only available until mid-
2012; if it was to be used as a proxy in a regression 
model, it would have to be extended. This is nor-
mally done by extending the average value of the 
last few years or the last value of the time series, 
assuming that during those years the mean AOD 
was representative of background values.)

4.2.2 Trend proxies

In addition to the periodic or punctuated influences of 
geophysical variability detailed above in Section 4.2.1, 
studies of long-term ozone levels also reveal an additional 
trend-like behavior. These long-term changes stem pri-
marily from long-term variability in chemically reactive 
halogens (e.g., Molina and Rowland, 1974; WMO, 2014 
and references therein) and the effects of steadily increas-
ing GHG on stratospheric temperatures and dynamical 
transport processes (e.g., Shepherd et al., 2008; Li et al., 
2009). Halide compounds will photodissociate, releasing 
halogens (e.g., chlorine or bromine) that chemically in-
terfere in the Chapman cycle resulting in catalytic ozone 
loss and a subsequent inverse relationship between halide 
loading and ozone levels that is most prominent in the up-
per stratosphere. The continued injection of GHGs (e.g., 
carbon dioxide or methane) into the atmosphere results 
in stratospheric cooling, which slows the reaction rates of 
chemical ozone loss, and tropospheric heating that have 
a combined effect on dynamical transport mechanisms 
such as increasing the Brewer-Dobson circulation. This 
increased tropical upwelling is predicted to result in the 
decrease of ozone in the tropical UTLS and increase in 
ozone at mid-latitudes in the lower stratosphere and these 
dynamical influences can potentially be more influential 
than chemical forcing in the lower stratosphere. How-
ever, while changes in greenhouse gases exhibit a linear 
behavior, halogen concentration peaked in the mid-1990s 
and then began to decline. This combination of long-term 

effects complicates the ability of regression models to ac-
curately derive long-term trends in ozone. Whereas ear-
ly (i.e., before the mid-1990s) works could make use of a 
simple linear trend to model long-term changes in ozone, 
studies thereafter have utilised more complicated trend 
proxies in regression analyses that are detailed below.

EESC

The equivalent effective stratospheric chlorine (EESC) 
proxy describes the total halogen loading (chlorine 
and bromine) of the stratosphere that contributes to 
ozone depletion (Newman et al., 2007). The shape and 
timing of the peak of the EESC time series depend on 
the strength of the Brewer-Dobson circulation and are 
therefore different for different locations in the atmo-
sphere. To account for this in ozone regression analyses, 
two different methods have been used: (1) creation of 
individual EESC time series depending on the age of air 
at each chosen location (see for example Bodeker et al., 
2013), (2) creation of two orthogonal functions that al-
lows the regression to determine the shape that best fits 
the data (see Figure 4.1 and Damadeo et al., 2014). Note 
that the combination of EESC-based orthogonal func-
tions allows for an EESC-like function but with maxi-
mum halogen loading occurring at any point in the time 
series, or not at all (i.e., monotonic trend), depending on 
the best fit to the data. That is, the fit is not constrained 
to the range of classically-defined EESC curves. Signifi-
cant differences between actual and EOF-based EESC 
proxy fits indicate the data are diverging from a linear 
fit to actual EESC or responding to other forcing not 
explicitly represented in the regression model.

Time series of EESC values can be found here:

https://acd-ext.gsfc.nasa.gov/Data_services/auto-
mailer/index.html 

PWLT 

A piecewise linear trend proxy (PWLT) is a combina-
tion of two linear trend terms. The first is a regular lin-
ear trend term, while the second is a linear trend term 
that is set to 0 until a specific time (inflection point) and 
is a simple linear trend afterwards. The two lines of the 
trend proxies are forced to meet at the inflection point. 
The trends in the two periods (before and after the inflec-
tion point) are therefore linked. The inflection point is 
chosen to coincide with the peak concentration of ODSs 
in the atmosphere. Since the timing of this peak changes 
depending on the location in the atmosphere, ideally 
the PWLT proxy takes this variability into account. Of-
ten, however, PWLT is applied with the same inflection 
point (end of 1997) at every location. Both trend terms 
of PWLT are fit simultaneously with the other proxies. A 
PWLT was used, for example by Harris et al. (2015).

Figure 4.1: The leading two EESC EOF terms derived from 
multiple mean age-of-air EESC time series proxies.

https://data.giss.nasa.gov/modelforce/strataer/tau.line_2012.12.txt
https://data.giss.nasa.gov/modelforce/strataer/tau.line_2012.12.txt
https://acd-ext.gsfc.nasa.gov/Data_services/automailer/index.html
https://acd-ext.gsfc.nasa.gov/Data_services/automailer/index.html
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LOTUS working group. This data set was recomputed 
over large latitude bins (i.e., 50°S–35°S, 20°S–20°N, and 
35°N–50°N) and nine different pressure levels between 
~40 hPa and ~0.6 hPa (modified from Frith et al., 2017) 
and was chosen for its ease of use for this particular 
sensitivity test. The data were given to each of 15 dif-
ferent groups to apply their regression methodology on 
and provide the LOTUS group with all of the relevant 
results (i.e., coefficient values and uncertainties and 
proxies used). Each separate regression analysis was ap-
plied as the group has done in the past (i.e., with regard 
to regression methodology and choice of proxies) with 
the exception of restricting the long-term trend term to 
a piecewise linear trend with a turnaround time at the 
end of 1997 (Jeannet et al., 2007; Zerefos et al., 2012; Col-
dewey-Egbers et al., 2014; Damadeo et al., 2014; Fragkos 
et al., 2016; Misios et al., 2016; Ball et al., 2017; Sofieva 
et al., 2017; Steinbrecht et al., 2017; Weber et al., 2018).

Figure 4.2 shows ozone trend results for each of the 
15 different regression models in two separate lati-
tude bands (50°S–35°S and 35°N–50°N) for the time 
periods before/after 1997 with dashed/solid lines. 
Since this sensitivity test was applied to only a sin-
gle data set, the emphasis here is not on the trend 
values themselves but rather how they compare. 

ILT

The independent linear trend (ILT) method is also based 
on two different trends (like PWLT) to describe the ozone 
decrease in the 1980s and 1990s and the slow ozone in-
crease since the early 2000s. Unlike the PWLT, ILT results 
are not linked but fit independently for the two chosen 
time periods. The analyses with ILT can be done in one 
or two steps. For the two step approach all available prox-
ies for the ozone regression are used in a first regression 
fit. Then the contributions of the proxies beside the trend 
proxies are removed from the original data, which leaves 
only the contribution of the trend proxies and the residu-
als. In the last step the trend proxies (two different prox-
ies for two different time periods) are fit to these already 
modified data to determine the trends. A regression us-
ing ILT was used, for example, by Steinbrecht et al. (2017). 
In a one step approach the two steps explained above are 
combined but with one additional regression term repre-
senting a constant for describing the period between the 
two trend terms.

4.3 Sensitivity tests 

Part of the difficulty in deriving long-term trends in 
stratospheric ozone is the large variety of choices to be 
made during the process. There are a large number of data 
sets from different instruments that have been combined 
in different ways and with different merging techniques 
(see Chapter 2). There are also a large number of potential 
proxies to choose from to use in regression analyses, each 
with some apparent merit for use in different temporal 
and/or spatial regimes. Indeed, the SI2N effort saw a great 
number of different analyses applied to various different 
combinations of data sets performed using different com-
binations of proxies and different regression methodolo-
gies by different groups (Harris et al., 2016). In order to 
attempt to disentangle the effects of these variables (i.e., 
data sets used, proxies used, and analysis technique), a 
number of sensitivity tests were performed. These sensi-
tivity tests were designed to determine what variables are 
influential versus non-influential and to try to establish 
best practices if possible.

4.3.1 Survey of existing regression models

Perhaps the main difference between recent ozone trend 
studies has been the varied use of regression-based mod-
els and data sets. As such, a logical first step in performing 
sensitivity tests would be to apply the same set of regres-
sion-based methodologies to a single data set. This serves 
two purposes: (1) to validate the consistency of execution 
against previous studies and (2) to probe the sensitivity of 
resulting trends to different combinations of proxies and 
methods. In considering this, groups involved in past 
ozone trends studies were asked to run their regression 
models on a single data set, SBUV MOD, provided by the 

50S−35S

0

Trend [%]

1

10

P
re

s
s
u
re

[h
P

a
]

5−5 10−10

35N−50N

5

Trend [%]

1

10

P
re

s
s
u
re

[h
P

a
]

−10 −5 0 10

Figure 4.2: Derived ozone trends in percent per decade 
from the 15 different regressions applied to the same SBUV 
MOD data set between 35°N–50°N (top) and 50°S–35°S (bot-
tom). In each plot, the dashed/solid lines represent trend val-
ues before/after 1997 at each of the 9 pressure levels.
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The different regression models are mostly in agreement 
(i.e., within their respective error estimates) at all latitudes, 
pressure levels, and time periods showing how the result-
ing trends are fairly robust with respect to the choice of 
regression methodology and non-trend proxies. However, 
there is still a spread in the trend values of about 1.5 % per 
decade in the lower to mid-stratosphere to 3 % per de-
cade in the upper stratosphere, particularly in the South-
ern Hemisphere. With current estimates of “recovery” 
trends in the upper stratosphere at mid-latitudes of about 
2–3 % per decade, this spread is a potentially large source 
of uncertainty. Results for the latitude bands 20°S–20°N 
and 50°S–50°N (not shown here) are very similar in their 
spread of results between the different regression models. 
As such, it was deemed prudent to perform more exten-
sive sensitivity tests to see how trend results would change 
given different regression methodologies and proxies.

4.3.2 Weighted versus unweighted regression

With a few exceptions, nearly every regression analysis 
of long-term trends in ozone have involved unweighted 
regressions. The downside to this, of course, is that the 
uncertainties in the observations (or the resulting mean 
values) are never taken into consideration for the calcula-
tion of regression coefficients or the resulting uncertain-
ties. As such, we applied both unweighted and weighted 
regression techniques to the data using the standard error 
of the mean as a weighting factor. The weighted regression 
and associated heteroscedasticity correction were applied 
as detailed in Appendix B of Damadeo et al. (2014).

Weighted regressions use the inverse of the variance in 
the data as the ideal weights for the regression, which is 
typically substituted with the inverse of the square of the 
uncertainties (i.e., standard errors). However, an often for-
gotten assumption of this technique is that the variances 
in the data are known precisely. Since, in practice, this 
assumption almost never holds, a heteroscedasticity cor-
rection is necessary to attempt to modify the uncertain-
ties using the nature of the residuals. The form of this cor-
rection, however, can be more complicated as it requires 
some a priori knowledge of the nature of the modification. 
Given that the standard errors change with both geophysi-
cal variability and the number of samples, the heterosce-
dasticity correction was assumed to have a seasonal form 
and allowed to vary for time periods containing different 
collections of data sets (see Appendix B of Damadeo et al., 
2014).

As an example we investigated the impacts of using weight-
ed regressions on the merged SAGE-OSIRIS-OMPS ozone 
data set. Figure 4.3 illustrates the importance of the het-
eroscedasticity correction. Because the standard error 
has a strong dependence on the sampling frequency, the 
weights increase significantly as the data set moves from 
lower samples (i.e., SAGE II) to higher samples (i.e., OSIRIS 
and OMPS). This creates mismatched weights over different 

time periods and results in trends that are dictated entirely 
by the latter data sets. Incorporating the heteroscedasticity 
correction helps to “even out” the weights to a more rea-
sonable representation. Analysis of the residuals (Figure 
4.4) reveals that the heteroscedasticity also reduces the 
variance in the residuals, resulting in a more robust fit. 
The standard deviation of the residuals is both generally 
reduced and more uniform over time after the heterosce-
dasticity correction. However, Figure 4.4 also reveals the 
limitations of this correction. As previously mentioned, 
the heteroscedasticity correction can be complicated as it 
requires some a priori knowledge of the nature of the un-
certainty modification. Since the standard error is strongly 
dependent on the sampling, it can change not only as new 
instruments are added but from month to month even 
within a single latitude bin, particularly during periods of 
overlap between instruments with very different sampling. 
As such, the true nature of the heteroscedasticity is much 
more complicated than can be simply modeled and it be-
comes extremely difficult to accurately correct for data sets 
that are already merged. Instead, this correction should be 
performed on each individual data set prior to merging. 
Since the analyses within the LOTUS investigation only 
use pre-merged data sets, an accurate heteroscedasticity 
correction cannot be computed and thus a weighted re-
gression technique is not included in the final results.

4.3.3 Non-trend proxy sensitivity

When performing MLR of a dependent variable (e.g., 
ozone) to a set of proxies (e.g., sources of geophysical vari-
ability), the primary motivation is to determine attribution 
(e.g., how much variability in ozone is caused by solar flux). 
Precisely determining attribution requires that each proxy 
is orthogonal to (i.e., has zero correlation with) every other 
proxy. Unfortunately this is almost never the case and the 
proxies used for the regression often have some degree of 
multicollinearity (i.e., an individual proxy or combination 
of proxies is somewhat correlated to another individual or 

Figure 4.3: Standard errors between 5°S–5°N at 30 km 
used for the weighted regression applied to the merged 
SAGE-OSIRIS-OMPS ozone data set both before and af-
ter the heteroscedasticity correction. Note how the errors/
weights before the correction drop/rise dramatically once 
OSIRIS (added in 2001) and OMPS (added in 2012) are added 
as a result of increased sampling of the instruments.
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combination of proxies). While multicollinearity can af-
fect the regression results, this information is captured in 
the covariance matrix and the final uncertainty estimates 
of the regression coefficients. However, our focus is on the 
impact of variability that, if not properly accounted for, 
may alias into the long-term trend estimate. As such, prox-
ies that do not impact the long-term trend estimate or un-
certainty only serve to complicate the statistical model and 
possibly alter the fits to other regression terms. To test the 
impact of various proxies on the trend, in the following sec-
tions we compare trend results from regressions run with 
and without the proxy included.

Many different MLR analyses of ozone have been performed 
over the years using many different combinations of proxies. 
To test the sensitivity of the regression to these various prox-
ies, a simple model consisting of the leading two QBO EOFs, 
ENSO with zero lag, solar f10.7, and a PWLT with inflection 
point in 1997 was applied to each of three different data sets 
(i.e., SAGE-OSIRIS-OMPS, GOZCARDS, and SBUV MOD) 
and then a single proxy was either added, subtracted, or sub-
stituted from this model. Since the aim of LOTUS is to in-
vestigate trends, the following figures compare the derived 
trend results (Figures 4.5 and top row of 4.6) and their un-
certainties (Figure 4.6, bottom row) before and after each 
proxy change. Trend differences are shown as differences 
after the proxy change minus before the proxy change with 
units of percent per decade. Uncertainty / significance dif-
ferences are calculated as differences after the change minus 
before the change with units of percent with the calculated 
value being the ratio of the trend to its uncertainty. Thus, for 

example, if initially a trend value was significant to the 2-sig-
ma level and then afterwards it was significant to the 1-sigma 
level, the significance difference would be -50 %.

First it is worth noting what proxies had a very small impact 
on the trends differences and their uncertainties. Including 
any of the AO, AAO, NAO, or EHF proxies had a negligible 
impact on both the pre-1997 and post-1997 trends value for 
all three satellite data sets. Also, while some small differ-
ences are apparent in the resulting significances, none of 
the changes were sufficient to make trends that were not 
significant become so. It is also worth noting that each test 
that removed the QBO, ENSO, or solar proxies had a sig-
nificant impact on the trends (1–2% per decade depending 
upon altitude and latitude) and a general decrease in overall 
significance levels, though there was some dependence on 
which data set was used.

The QBO proxy is often taken as the first two EOFs derived 
from the Singapore zonal winds. Even though higher order 
terms could be used, adding a third QBO EOF into the re-
gression had negligible impact on the trend and uncertain-
ty results. The ENSO proxy was applied without any lag to 
it, though often some lag between one to several months is 
used. Applying the regression with an ENSO proxy lagged 
anywhere between 1 and 5 months had negligible impacts 
on the determined trend values but significant impacts on 
the uncertainties. Including a lag (any lag) generally in-
creases the overall significance, but the results are sporadic 
in terms of the location in the atmosphere and the degree 
to which the significance increases. Additionally, the re-
sults are not uniform across different data sets and so this 
analysis does not reveal any optimal lag. As such, the final 
"LOTUS regression" retains zero lag (see Section 4.5).

The two most commonly used solar proxies are the 
f10.7 and the Mg II proxies, with the f10.7 proxy be-
ing the most common. These two proxies yield nearly 
identical trend results but different uncertainty results. 

Figure 4.4: Rolling (running average) standard deviation 
of the residuals of the weighted regression between 5°S–
5°N at 30 km both with and without the heteroscedastic-
ity correction. In addition to generally reducing the spread 
of the residuals of the fit, the heteroscedasticity correction 
also makes the rolling standard deviation more uniform 
throughout the data. Prior to the correction, the rolling 
standard deviation (not the standard error) increased when 
moving from SAGE II data to OSIRIS and later OMPS data.

Figure 4.5: Impact on potential recovery trends depending 
on the cutoff time of the regression for different solar prox-
ies when applied to the SAGE-OSIRIS-OMPS data set centred 
at 40°S at 40 km. The impact on resulting trends of ignoring 
the solar proxy is evident for all but the longest data records 
while it is also apparent that the f10.7 and Mg II proxies have 
negligibly different impacts relative to each other. 
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However, the changes in trend significance do not clearly 
indicate one proxy as better than the other and so the f10.7 
proxy is retained as the baseline. Even though the different 
proxies do not yield different results, where any solar proxy 
shows its real influence is in the low frequency nature of 
the proxy. The solar cycle has a period of ~11 years, with 
an amplitude of influence on ozone variability of about 
2 %. There is an expectation that proxies with longer peri-
ods can potentially have a greater influence on long-term 
trends in the regression process. This stems from the fact 
that resulting trends can be subject to endpoint anomalies 
if fitted over sufficiently short durations of data, particu-
larly in the presence of other sources of variability with pe-
riods similar to the fitted duration. As such, the length of 
data used for the regression and the corresponding phase 
of the solar cycle at the endpoints can impact the trend 
results greatly. Figure 4.5 shows the impact on potential 
recovery trends for different stopping dates. It is clear that 
not including the solar proxy is significantly different from 
including either the f10.7 or the Mg II proxies, though re-
sults start to converge with sufficiently long data records. 
It is also apparent that the length of the data record as it 
relates to the phase of the solar cycle is important, though 
the influence starts to level off to within 1 % per decade 
uncertainty after 2008 as the number of total solar cycles 
captured during the post-trend analysis increases.

The use of an aerosol proxy can be contentious. While it 
is well known that sulfate aerosols released from volca-
nic eruptions can influence stratospheric ozone through 
both chemical and dynamical effects, the exact relation-
ship between volcanic aerosol and stratospheric ozone 
levels is not well characterised. Most regression analyses 
acknowledge the need to account for the El Chichón and 
Mount Pinatubo eruptions but do not agree on how this 
should be done. Some analyses simply ignore data imme-
diately after the eruption (e.g., Wang et al., 1996; Randel 
and Wu, 2007; Harris et al., 2015), while others include 
a regression proxy of some form in an attempt to model 
the impact (e.g., Bodeker et al., 1998; Stolarski et al., 2006; 

Bodeker et al., 2013; Tummon et al., 2015). The net ozone 
response to aerosols depends on the ambient abundance 
of chlorine and dynamical conditions (e.g., Tie and Bras-
seur, 1995; Aquila et al., 2013). To account for this, some 
studies include separate regression terms for eruptions of 
El Chichón and Mt. Pinatubo (e.g., Stolarski et al., 2006; 
Frith et al., 2014, Weber et al., 2018). However, few aerosol 
proxies exist, though the most commonly used one is the 
NASA Goddard Institute for Space Studies (GISS) AOD 
proxy, which is what is tested here (Figure 4.6). The use 
of an aerosol proxy primarily influences the trend results 
in the lower stratosphere but only in the SAGE-OSIRIS-
OMPS data set, suggesting this data may be more heavily 
influenced by aerosol interference. Some smaller, coher-
ent patterns do appear in the middle to upper strato-
sphere, indicating a potential signal in these regions. The 
influence of adding an aerosol proxy on uncertainties is 
somewhat mixed (strong positive and negative deviations 
without a consistent pattern for all three analysed data 
sets), indicating that the use of this proxy needs further 
consideration to understand its impact. However, given 
the need to account for aerosol in some way and the de-
sire not to simply omit data (as the period to omit is a 
question in itself), the GISS AOD proxy is included in the 
baseline (see Section 4.2.1 for an explanation on how the 
GISS AOD proxy was extended beyond 2012, the last val-
ues reported for this proxy). We use a single AOD proxy 
as Mt. Pinatubo is the only significant eruption in the 
time period considered. 

In general, varying the proxies applied in a regression 
model can affect the derived trends, though the effect can 
be mitigated by using data with a sufficiently long record. 
Additionally, the sensitivity of the trend to other proxies 
may vary with the resolution of the analysed data set and 
extent of spatial averaging. A recent study (Zerefos et al., 
2018) used 35 years of ozone data from the SBUV MOD 
data set evaluated both as zonal means and at select li-
dar station overpasses. As part of that study, the authors 
applied a similar regression model as that in LOTUS to 

Figure 4.6: Influence on the “Post-2000” trends (top row) and significances (bottom row) when adding the GISS aerosol 
proxy for the SAGE-OSIRIS-OMPS (left column), GOZCARDS (middle), and SBUV COH (right) data sets.  
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derive ozone trends and tested the effect of including and 
excluding almost all of the non-trend proxies at once. 
They found that a model using just the aerosol proxy and 
PWLT terms and one that also included all of the other 
non-trend proxies (i.e., QBO, ENSO, AO/AAO, solar, and 
tropopause pressure) produced little difference in the re-
sulting trend values and uncertainties when applied to 
SBUV MOD data with a 35 year duration (Figure 4.7). 
This is similar to the results of the sensitivity tests shown 
here, though we note the sensitivity of the trend is likely 
less in SBUV MOD due to the reduced vertical resolution 
of the data.

4.3.4 Trend proxy sensitivity

As detailed in Section 4.2.2, there have been four differ-
ent proxies used to model the long-term trend in ozone 
for MLR analyses: A PWLT proxy, an ILT proxy, a single 
EESC proxy, and two EESC EOFs. The single EESC proxy 
represents the expected linear response of ozone to long-
term variability in chemically reactive halogens. The two 
EESC EOFs are also meant to simulate the chemical forc-
ing of ozone, but the extra degree of freedom allows for 
non-linearity in the ozone variations due to an imper-
fectly prescribed EESC shape (i.e., incorrect age of air). 
The PWLT and ILT are less constrained and structured 

to better conform to the mean changes in the data from 
all long-term effects. However, the observational data are 
not yet sufficient to distinguish changes due to halogen 
chemistry from those due to other long-term variations 
induced by increasing GHGs. This means that in regions 
where chemical forcing is dominant and ozone responds 
directly to halogen levels (e.g., the upper stratosphere), 
the EESC-based proxies are a better choice, but in regions 
where the effects of GHGs are dominant and the corre-
lation between EESC and ozone degrades (e.g., appar-
ent monotonically decreasing ozone trends in the lower 
stratosphere despite decreasing EESC), the PWLT and ILT 
proxies are a better choice. While the focus of this Report 
is on the net changes in ozone from all long-term forcings, 
analyses of differences among the various trend proxies, 
in conjunction with longer data records, should allow for 
better attribution in future studies. 

To determine the proxy that best represents observed 
ozone changes it is necessary to explore the strengths 
and weaknesses of each by focusing on their respec-
tive impacts on derived trends and uncertainties. 
Most notably, variability in the potential turnaround 
time can be problematic particularly when combined 
with nonlinear ozone changes. Stratospheric ozone 
levels decreased from the earliest satellite observa-
tions and this decrease appeared to abate over time. 

Figure 4.7: Adapted from Figure 7 of Zerefos et al. (2018) showing trends in the vertical distribution of ozone for the pre-
1998 and post-1998 period, using (a) two linear trend terms (PWLT method) and volcanic effects and (b) the PWLT method 
including all proxies. The results are based on SBUV zonal means and SBUV overpasses over five lidar stations (LDR=Lauder, 
MLO=Mauna Loa Observatory, TBL=Table Mountain, OHP=Haute Provence, HP=Hohenpeissenberg). 
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Figure 4.8: Effect of time period start and end points on ozone trends in the past two decades obtained by regressions 
with PWLT and ILT. 

MLR Proxy Term Allows for 
Curvature?

Allows for Variable 
Tornaround Time?

Allows for Mono-
tonic Trends?

PWLT No No Yes

ILT No Yes Yes

Single EECS Yes No No

Two EESC EOFs Yes Yes Yes

Table 4.1: Summary of the pros and cons of the different-long-term-ozone-trend proxies.
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Sensitivity tests have shown an optimal turnaround time 
of 1997 for the upper stratosphere (Kyrölä et al., 2013; 
Laine et al., 2014), but this likely changes with latitude and 
altitude and can be difficult to determine. However, the 
need for a predetermined turnaround time is the primary 
problem with using a PWLT proxy for linear regression 
models as choosing the wrong turnaround time will cause 
endpoint anomalies in the trend results, particularly in the 
presence of significant curvature in the actual long-term 
variability. Figure 4.8 shows trend profiles derived from 
GOZCARDS and SBUV MOD where the end points for 
the PWLT and ILT proxies have been varied. The changes 
in trends that can be seen with changing time periods are 
a result of the endpoint anomalies due to the curvature of 
the long-term ozone variability and unexplained variabil-
ity in the record. For example, the larger variations in ILT 
trends in SBUV MOD likely result from a known discon-
tinuity in the data in late 2000. The ILT fits are more sensi-
tive to this discontinuity than the PWLT fits because the 
endpoints of the PWLT fits are more constrained. Similar-
ly, a single EESC proxy has the same problem as the PWLT 
(i.e., the turnaround time varies with the mean age-of-air 
and must be predetermined), except it also cannot ac-
count for monotonic trends (i.e., no turnaround in ozone) 
resulting from radiative and dynamical forcings. Instead, 
using a single EESC proxy in the presence of monotonic 
trends (e.g., those seemingly present in the tropical lower 
stratosphere) will yield biased trend results (Kuttippurath 
et al., 2015). Thus, a single EESC should never be used to 
represent the net long-term variability in ozone but only 
as a tool for determining chemical attribution (provided 
the correct age of air is known). Avoiding this particular 
pitfall, the ILT and two EESC EOFs 
allow for a variable turnaround time 
albeit in different ways. The ILT ac-
complishes this by avoiding fitting 
any trend term during a particular 
time period (e.g., between 1997 and 
2000), instead assuming the data to 
be constant during this period but 
allowing for shifts in the regression. 
This allows for two separate trends 
to be fit while attempting to avoid 
endpoint anomalies near the turn-
around. The EESC EOFs can actual-
ly recreate the variable turnaround 
time (or lack thereof) and variations 
in curvature near the turnaround 
and can potentially allow for an in-
dependent assessment of what that 
turnaround time is. All told, the 
strengths and weaknesses of the dif-
ferent long-term variability proxies 
are summarised in Table 4.1.

Given the potential problems high-
lighted above, three different trend 
proxies were tested as part of a 
sensitivity study to examine their 

influence on derived trend results. For the sake of his-
torical comparison, the PWLT proxy with a global turn-
around at the beginning of 1997 was used for the baseline 
model. For the sake of comparison with the WMO Ozone 
Assessment (WMO, 2014), the ILT proxy with the declin-
ing period ending at the end of 1996 (hereafter called ‘pre-
1997’ period) and the potential recovery period starting 
at the beginning of 2000 (hereafter called ‘post-2000’ pe-
riod) were used. Lastly, the two EESC EOFs were also used 
and the resulting trends were determined as described in 
Damadeo et al. (2018) by extracting the combined EESC 
component of the fit and thereafter fitting a straight line 
to it over the given time periods to determine the mean 
trend during those times. Trends were evaluated pre-1997 
and post-2000 for each of the three tests and the results are 
shown for three different data sets in Figure 4.9, Figure 
4.10, and Figure 4.11. Not surprisingly, the general pat-
tern of trend results is not that different between the three 
proxies. The pre-1997 trends are all about -8 % per decade 
in the upper stratosphere extra-tropics and the post-2000 
trends are all about +2–3 % per decade in the same region. 
Trends in the middle stratosphere are generally about 
-2 % per decade in the pre-1997 period and about +0–1 % 
per decade in the post-2000 period. Additionally, all of 
the trends are noisy (i.e., statistically insignificant) in the 
UTLS due to lack of high precision data in that region. 
There are, however, some subtle differences between the 
proxies. In the pre-1997 trends, upper stratospheric values 
are smallest (i.e., least negative) in the ILT case and largest 
(i.e., most negative) in the EESC EOFs case. Trend values 
are opposite in the post-2000 time frame; they are largest 
in the ILT case and smallest in the EESC EOFs case.

Figure 4.9: Derived trends in ozone in percent per decade for the SAGE II-OSIRIS-
OMPS data set (using the sampling bias adjusted SAGE II data from Damadeo et 
al., 2018) for both the pre-1997 (start of 1985 to end of 1996, top row) and post-2000 
(start of 2000 to end of 2016, bottom row) time periods. Results are shown for each 
of the three trend proxies: The PWLT (left), ILT (middle), and EESC EOFs (right) prox-
ies. Stippling denotes results that are not statistically significant at the 2-sigma level. 
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In the later analyses, where trends are 
derived in broadband latitude ranges 
and merged, it made sense for the 
sake of brevity to pick a single MLR 
trend proxy term to use. The inabil-
ity of the single EESC proxy term to 
capture variability beyond halogen 
chemistry automatically disqualifies 
it for use. Similarly, the sensitivity 
of the PWLT proxy term to the turn-
around time suggests it is not ideal 
for use either. While both the ILT and 
EESC EOFs are acceptable, the desire 
to both investigate only the mean 
trends (i.e., ignore the potential lack 
of direct correlation between the ac-
tual long-term ozone variability and 
ODSs) and have a more direct analog 
to compare with results from the last 
ozone assessment led us to choose 
the ILT proxy term for the work per-
formed in Chapter 5.

4.4 Alternative approaches

Approaches other than MLR have 
been used in the community to quan-
tify ozone changes over time. One 
of them is DLM (Laine et al., 2014; 
Ball et al., 2017, 2018). The regressors 
used for DLM are similar, though not 
identical, to those used in the "LO-
TUS regression" model but were kept 
identical to the analysis of Ball et al. 
(2017, 2018). The regressors include: 
A solar proxy (30 cm radio flux), a 
volcanic proxy (latitude dependent 
surface area density (SAD), based 
on Thomason et al., 2018), two QBO 
proxies (30 hPa and 50 hPa wind fields 
as provided by the Freie University 
Berlin), and an ENSO proxy (Nino 
3.4 HadSST). Seasonal cycle compo-
nents, AR2 processes, and residuals 
are estimated together with these regressors, as well as 
the non-linear background trend. This non-linear back-
ground trend replaces the use of ILT, PWLT, or EESC and 
does not require an assumption about inflection dates, 
only a prior assumption about the smoothness of the 
non-linear background changes being estimated, which 
is determined from the data itself (see Laine et al. (2014); 
for further details, and Ball et al. (2017) for minor chang-
es to the DLM algorithm used here). Because the back-
ground changes are non-linear, quoting a percent per 
decade trend is not appropriate with DLM, so nominally 
the overall change between two chosen dates is quoted 
(see for example Figures S4.1, S4.2, and S4.3), although 
the inferred non-linear background trends provide richer 
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Figure 4.10: As Figure 4.9 but for the GOZCARDS data set. 
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Figure 4.11: As Figure 4.9 but for the SBUV MOD data set. 

information about the long-term changes than a linear 
trend or a net change between two dates.

Another alternative to MLR is the application of a wave-
let transform (WT). This method is widely used to anal-
yse time series that contain non-stationary power at dif-
ferent frequencies and has been used more and more in 
geophysical and climatological studies (Zitto et al., 2016). 
It allows an analysis which provides information not only 
on the frequencies present in the time series but also the 
times when the different frequency ranges are present in 
the sample. WT shows less sensitivity than PWLT to the 
choice of inflection point and therefore represents a prom-
ising alternative to MLR.
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The method of empirical mode decomposition (EMD) is 
also well suited to deal with evolving trends over time (Bai 
et al., 2017) and therefore as an alternative to the MLR ap-
proach. EMD decomposes any given signal into a finite 
number of intrinsic mode functions (IMFs), that repre-
sent simple oscillatory modes with varying frequency and 
amplitude along the time horizon, and a residual. This 
residual is then a monotonic or curved time series out of 
which the “trend” can be extracted. EMD is therefore not 
dependent on the length of data records for determining 
trends and is less vulnerable to outliers in the time series 
than MLR (Bai et al., 2017). 

4.5 The “LOTUS regression” model

4.5.1 General description

Based on the findings of the sensitivity tests presented in 
the earlier sections of this chapter, the LOTUS commu-
nity agreed on one common regression model (the "LO-
TUS regression" model) to be used for all analyses that 
are presented in Chapter 5. The final choice of proxies 
and possible lags of proxies was based on finding the op-
timal regression for global analysis of satellite data and 
broad latitude band analyses. Therefore, proxies describ-
ing rather local or small-scale phenomena might not have 
been included in the general "LOTUS regression" model. 
To facilitate the comparison between satellite-based and 
ground-based ozone trends, the same regression model 
was applied to the ground-based (station) data, although 
proxies describing local and small-scale ozone variability 
might have improved the overall regression performance. 
Effects of this limitation in proxies for station data still 
need to be investigated further.

The “LOTUS regression” is applied to the ozone values 
without weights and so a correction for heteroscedastic-
ity (i.e., the non-constant variance in the data; see Sec-
tion 4.3.2) is not applied. For data sets that are not al-
ready deseasonalised, Fourier components representing 
the seasonal cycle are also included (four sine and cosine 
pairs, representing the 12, 6, 4, and 3 month periodicity). 
No seasonal cross-terms are included in the "LOTUS re-
gression" model as to mitigate the introduction of mul-
ticollinearity and to avoid inconsistencies between the 
treatment of data sets that are and are not intrinsically 
deseasonalised. A lag-1 autocorrelation correction was in-
cluded in the regression model.

The “LOTUS regression” model uses the ILT proxy 
as a trend term (see Section 4.2.2). Additionally, it in-
cludes two orthogonal components of the QBO, the 
solar 10.7 cm flux, ENSO without any lag applied, 
and the GISS AOD. This aerosol data set was extend-
ed past 2012 by repeating the final available value 
from 2012 as the background AOD. To perform the 
ILT in a single step, the trend proxies included are:

 � A linear increase until January 1997 and zero after-
wards

 � Zero until January 2000 and a linear increase 
afterwards

 � Constant until January 1997 and zero afterwards

 � Zero until January 2000 and a constant after-
wards

 � Constant between January 1997 and January 2000 and 
zero elsewhere

Including these proxies allows the ILT to be performed in a 
single step rather than the two step procedure used in Stein-
brecht et al. (2017). The result of the regression is to obtain 
the coefficients A-J that correspond to the equation:

(4.5),

where C1 to C3 are the three constant terms described above. 

The "LOTUS regression" model has been implemented 
in the Python programming language. It is designed 
to be a flexible software package to both perform the 
sensitivity tests of Section 4.3 and to run the final 
chosen models on the wide variety of data sets pres-
ent within the LOTUS initiative. The software pack-
age and up to date documentation are available at  
https://arg.usask.ca/docs/LOTUS_regression.

4.5.2 Application to model simulations

In order to maintain comparability in the interpreta-
tion of results, we performed the analysis of trends in the 
vertical distribution of ozone from the CCMI-1 REF-C2 
simulations (see Chapter 2, Section 2.3) using the same 
ILT method as for the observations. Linear trends for the 
pre-1997 (Jan 1985 – Dec 1996) and post-2000 (Jan 2000 
– Dec 2016) periods were calculated at each grid point 
(i.e., latitude and pressure level) of the models (and the 
separate ensemble simulation members). Since the mod-
els’ simulated atmospheric conditions (and composition) 
differ from the observations, we calculated the appropri-
ate proxies (predictors) that are included in the statisti-
cal trend analysis using model parameters. Thus, for each 
model/ensemble member we first calculated the QBO in-
dex, performing an EOF analysis on the simulated zonal 
winds at the equatorial region. Then we used the first two 
EOF terms as QBO1 and QBO2 indices. The ENSO index 
was calculated from the simulations’ SSTs over the tropi-
cal Pacific, over the exact same area where the Nino3.4 
index is calculated. As before, the data were deseason-
alised over the period of 1998–2008.

https://arg.usask.ca/docs/LOTUS_regression/
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Finally, the regression analysis was performed at the given 
pressure levels, using the following proxies: (1) two trend 
terms (identical to the method described earlier as the 
ILT method, Section 4.2.2 and Section 4.3.4); (2) two QBO 
terms (calculated as described above), in the case of mod-
els not simulating the QBO this proxy was not used; (3) 
one term for the ENSO effect (as described above); (4) one 
term for the solar forcing (we used the forcing as it was 
provided to the modelling groups; it should be noted that 
in our case the last five years of the solar forcing data are 
slightly different from the observations, not in terms of 
phase but in magnitude); and (5) one term for the volcanic 
effect (AOD; the same basis function that was used for the 
analysis of the satellite- and ground-based measurements 
was also used for the models). Normally the CCMI-1 REF-
C2 model simulations do not include volcanic eruptions, 
but the effects can be present via different routes, for ex-
ample SSTs or winds. All model results that are shown 
in Chapter 5 (Sections 5.2 and 5.5) are shown as percent 
changes over the base period 1998–2008.

4.6 Summary

This chapter discusses several sources of uncertainties and 
sensitivities for trend analyses with MLR. First we tested 
existing regression models within the community by ap-
plying them to a common data record and comparing the 
resulting trend estimates. We found a general spread in 
derived trend values of 1–2 % per decade, with some dif-
ferences as high as 3 % per decade. Next, we completed a 
series of sensitivity tests in an effort to identify the proxies 
that have the largest effect on the derived trend, leading 

to the observed spread in trend results across different 
regression models. Several sensitivity tests for proxy se-
lection, proxy combination, and unweighted/weighted re-
gression approaches were performed to understand their 
effects on the derived trend values and trend uncertainties 
in multiple merged satellite ozone records. We found the 
proxies AO, AAO, NAO, and EHF have only negligible ef-
fects on trends and significances, but excluding the QBO, 
solar, or ENSO proxies from the regression model had 
significant effects on the trend (1–2 % per decade differ-
ence) and uncertainty (around 1 % per decade) estimates. 
The three different trend proxies (PWLT, ILT, and EESC-
based EOFs) produce generally very similar trend esti-
mates. However, in the sensitivity tests performed here, 
subtle differences for the results of the trend proxies were 
found; for the pre-1997 trend estimates ILT produces the 
smallest (least negative) trend and EESC the largest trend, 
whereas for the post-2000 trend estimates the trend prox-
ies behave exactly opposite. PWLT trends were shown 
to be affected most by end point problems caused by the 
chosen inflection point (and therefore the length of the 
analysed time series).

Based on these sensitivity tests, a "LOTUS regression" 
model was developed that includes two QBO proxies, a so-
lar proxy, an ENSO proxy without any time lag applied, a 
stratospheric aerosol proxy, and the ILT as the trend proxy. 
Four Fourier components representing the seasonal cycle 
are also included. The "LOTUS regression" model is un-
weighted, and it includes a lag-1 autocorrelation correc-
tion. A detailed description of this regression model and 
its source code is publicly available on the LOTUS website, 
https://arg.usask.ca/docs/LOTUS_regression.
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