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One of the primary mechanisms by which oceans regulate Earth’s climate is1

through redistribution of heat. However, interpretation of ocean heat trans-2

port (OHT) has been obscured by internal heat loops that are confined within3

the ocean and are not directly relevant to Earth’s energy budget. Here we elim-4

inate these internal heat loops to reveal the net effects of OHT as part of the cli-5

mate system, the effective OHT. Our result challenges the previous paradigm,6

which emphasized global conveyor belt concepts, by highlighting that pole-7

ward OHT within the Pacific is four times as large as any inter-oceanic or8

inter-hemispheric OHT. This shift in interpretation implies that efforts aimed9

at monitoring and estimating OHT changes in the Pacific should be priori-10

tized. Furthermore, our analysis framework bridges a gap between direct es-11

timation of OHT from oceanic measurements and indirect estimation of OHT12

via atmospheric energy budgets. It provides means to calibrate otherwise in-13

consistent OHT estimates, which will allow for more meaningful model-data14

comparisons.15
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The Ocean plays an important role in redistributing heat within the evolving climate sys-16

tem (1). Perhaps most importantly, it transports heat from the equator, where oceans take up17

heat in excess, towards higher latitudes where heat gets released to the atmosphere. This is18

clearly seen in observational estimates of global meridional ocean heat transport (OHT) which19

is directed poleward in both Hemispheres (2, 3). However, interpretation of measurements can20

be more complicated when looking at individual ocean basins since seawater can loop around21

land masses. This difficulty has lead to highly uncertain depictions of regional OHT contribu-22

tions in the scientific literature (4), but the analysis presented here provides a framework to help23

reconcile previous estimates.24

The two following examples illustrate how regional OHT contributions may, or may not25

play a role in Earth’s energy budget. First, consider the case of OHT converging into an ocean26

basin to balance out heat release to the Atmosphere. Such OHT contributions play an important27

role in Earth’s energy budget (5, 6). Second, consider a situation where seawater parcels loop28

around a land mass with unchanged temperatures in the ocean interior – e.g., around Australia29

in the counterclockwise direction. The seawater parcels would transport their internal energy30

northward in the Pacific only to return it southward in the Indian. Owing to internal cancellation31

between northward and southward OHT contributions within the ocean, such mass fluxes have32

no direct impact on Earth’s energy budget.33

Mass fluxes can thus obscure the most relevant, convergent or divergent OHT contributions.34

Furthermore, any oceanic section is potentially affected by this issue in ways that are not easy to35

predict given the complex, present-day arrangement of land masses. Freshwater may also tem-36

porarily leave the Ocean via evaporation to re-enter it elsewhere via precipitation, and closing37

such ocean-atmosphere loops (7) can, in and of itself, introduce non-zero mass fluxes through38

any oceanic section. Consequently, OHT through any oceanic section is a priori sensitive to39

the choice of an energy reference level (ERL; i.e., conditions of temperature, pressure, etc.,40
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at which energy is defined as zero by convention) which often requires careful treatment, for41

example to ensure energy conservation in climate models (8).42

The need to adequately account for mass fluxes has long been recognized in the oceano-43

graphic literature, where various approaches have been proposed to treat non-zero mass fluxes44

across OHT sections (9, 10). One method is to adjust the net mass flux through each section to45

near zero (11, 12). Another approach is to pair sections with one another, aiming to cancel out46

non-zero mass flux contributions, and focus on OHT convergence between sections. This is of-47

ten done by pairing various sections with Bering strait or the Indonesian Through Flow (4, 13).48

Alternatively, in cases such as Drake Passage where simply adjusting to zero mass flux is not49

sensible and there isn’t an obvious pairing section, one may opt to introduce a distinctive tem-50

perature transport scale sometimes denoted as ‘PWT’ (4, 13). These heterogeneous treatments51

of OHT can render comparison amongst estimates difficult and contribute to large uncertainties52

and unexplained differences between estimates (4, 6).53

Methods And Data Progress in understanding OHT can be made, instead, through a system-54

atic decomposition of OHT over the global ocean into divergent and rotational components as55

done here using a gridded data product (supplementary material, SPM, sections 1-2). In prac-56

tice, this simply involves computing the vertical integral and lateral divergence of the gridded57

OHT estimate and then solving a Poisson equation. Similar Helmholtz decomposition technics58

have been used in the atmospheric and oceanic literature to decompose various fluxes (14–16).59

Here we present a novel application of this approach to a recent observational estimate of OHT60

over the 1992-2011 period. This gridded OHT estimate is part of a global ocean state estimate61

that agrees, within expected uncertainty ranges, with the bulk of available ocean observations62

collected between 1992 and 2011, including millions of Argo profiles and complementary satel-63

lite data, as well as with atmospheric re-analysis estimates (17–24).64
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The ocean state estimate includes global vector fields of OHT associated with dynamically65

consistent heat budgets, which is crucial for our purpose. This allows us, for instance, to readily66

verify that the divergence of OHT balances out regional air-sea heat fluxes to a good approxi-67

mation while the other terms, from heat storage and the divergence of mass fluxes, are compara-68

tively small on average over 20 years (SPM section 3). Hereafter, we denote the divergent OHT69

component, which approximately balances out air-sea heat fluxes, as effective OHT (effOHT).70

It will be compared with raw ocean heat transport (rawOHT) which also includes the rotational71

OHT component (rawOHT=effOHT+rotOHT). We come back to rotOHT and its interpretation72

later on in the paper. By convention, ERL is set to the energy of liquid water at 0◦C. Importantly,73

effOHT, unlike rotOHT or rawOHT, is insensitive to this choice (SPM section 4).74

Transport Maps Values of effOHT and rawOHT are coarsely charted in Fig. 1 and tabulated75

in SPM. By construction, effOHT and rawOHT yield the exact same divergence field, shown76

as contours in Fig. 1. For example, 1.46 PW diverges from the tropical Pacific while 0.11 PW77

converges into the Atlantic for both the red and the blue charts in Fig. 1. They are also identical78

when integrated all the way around the globe (e.g., black curve in Fig. 2). Nevertheless, effOHT79

and rawOHT provide fundamentally different perspectives on regional influences, due to the80

prominence of internal oceanic heat loops in rawOHT, as evidenced by Fig. 1. The rawOHT81

values generally fit well within the range of previously published “direct” estimates (4, 11–13,82

25), whereas effOHT rather corresponds to “indirect” estimates (3–6).83

Owing to the presence of the Atlantic Meridional Overturning Circulation (AMOC), which84

brings relatively warm water into the Northern Hemisphere and returns colder water back into85

the Southern Hemisphere, Atlantic OHT is northward across the Equator and in both Hemi-86

spheres (13, 26, 27) as seen in Figs. 1-2. In the Pacific, large amounts of heat enter the Ocean87

through the sea surface in the Tropics (black contours in Fig. 1). Based on rawOHT, most of88
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this heat uptake (1.20 PW out of 1.46 PW) appears to be transferred to the Indian ocean via89

the Indonesian Through Flow (ITF). The Southern Ocean also stands out for its large eastward90

rawOHT, with values ranging between about 1 and 2 PW seen around Antarctica. But, these91

values are highly sensitive to ERL choices, so much so that setting ERL to 3.5◦C, the approxi-92

mate global mean ocean temperature, instead of 0◦C suffices to reverse the direction of rawOHT93

over the Southern Ocean (SPM section 4). This is not the case for effOHT which is much less94

affected by non-zero mass fluxes (SPM sections 3-4).95

Eliminating internal oceanic heat loops reduces inter-ocean exchanges to second-order terms96

in effOHT (red chart in Fig. 1); hence, the Pacific merely provides 0.2 PW to each of the97

Atlantic, Arctic, and Indian. The direction of effOHT in the South Pacific is reversed as com-98

pared with rawOHT (poleward instead of equatorward) while poleward effOHT is much smaller99

than rawOHT would suggest in the Indian (0.23 versus 1.33 PW at 30◦S; a factor ≈ 6 re-100

duction). These differences are linked to an anticlockwise loop of ocean circulation around101

Australia (13, 28) which is here estimated to contribute ≈1.1 PW rawOHT with a 0◦C ERL.102

Omitting this heat loop reveals that the net effect of the tropical connection between Pacific and103

Indian, the ITF, is only a small contribution to Earth’s energy balance (0.10 PW effOHT).104

In the Southern Ocean, at all longitudes, effOHT is again much smaller than rawOHT, due105

to the omission of a ≈1.3 PW heat loop around Antarctica. This shift reveals that heat loss to106

the atmosphere in the southern Pacific sector is sustained by heat uptake in the tropical Pacific107

rather than by heat sources in the southern Indian sector as might have been inferred from108

rawOHT (29, 30). In fact, westward effOHT from the southern Pacific is found to sustain heat109

loss in the southern Indian – not the other way around. There is virtually no effOHT between the110

Indian and the Atlantic (0.01 PW). Finally, westward effOHT from the southern Pacific to the111

Atlantic via Drake Passage explains about half of the heat convergence into the South Atlantic;112

the other half is provided locally by heat uptake from the atmosphere.113
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Meridional Transports The respective roles played by the Atlantic, Pacific, and Indian in114

transporting heat poleward also need to be revisited (Fig. 2). Estimates of rawOHT indeed115

suggest that only the Indian Ocean transports heat poleward in the Southern Hemisphere (e.g.,116

see blue chart in Fig. 1). On the contrary, poleward effOHT in the South Pacific (0.69 PW at117

30◦S) overpowers that in the Indian (0.23 PW at 30◦S) as is clearly seen in Fig. 2. Furthermore,118

inter-hemispheric symmetry becomes evident in the Pacific based on effOHT, with poleward119

transport ≈ 0.7 PW at 30◦N and 30◦S, and near zero cross-equatorial transport (0.02 PW).120

Another noteworthy shift occurs in the Northern Hemisphere where poleward effOHT is121

larger in the Pacific than in the Atlantic (Fig. 2) whereas rawOHT would suggest the opposite122

according to our estimate (Fig. 1 and SPM). This shift reflects the omission of a ≈0.2 PW heat123

loop which is directed northward throughout the Atlantic, crosses the Arctic, and comes back124

southward in the Indo-Pacific. As a result, the Pacific is found to account for two-thirds of heat125

converging into the Arctic (0.20 PW out of 0.29 PW) where it can participate in melting Arctic126

sea ice (31).127

The most relevant gauge for AMOC-related OHT is provided by effOHT at the equator128

where wind-driven OHT is expected to be small. This yields an estimate of 0.39 PW for the129

AMOC-related OHT which approximately balances out (a) 0.27 PW atmospheric heat uptake130

in the southern Atlantic sector plus 0.19 PW provided by the Pacific and (b) 0.34 PW heat loss131

to the Atmosphere in the North Atlantic plus 0.09 PW diverging to the Arctic. Such small inter-132

hemispheric and inter-oceanic OHT magnitudes (< 0.4 PW) challenge the notion that AMOC-133

related OHT must play a crucial role in regulating the global climate system (1). Poleward heat134

transport within the Pacific is a much bigger term (> 1.6 PW in total).135

Subtracting 0.39 PW from effOHT throughout the Atlantic in turn yields an estimate of136

0.33 PW (resp. 0.30 PW) for the northern (resp. southern) subtropical wind-driven cells, which137

is consistent with previous findings that the inter-hemispheric AMOC only represents ≈ 50%138
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of the peak OHT in the Atlantic (13, 27). Interestingly, 0.30–0.33 PW is also ≈ 50% of the139

corresponding value for the Pacific subtropical wind-driven cells (0.7 PW). Such proportionality140

is hypothesized to reflect that the Pacific is about twice as wide as the Atlantic along the Equator141

where oceanic heat uptake is concentrated. Hence, the gyre systems of the Pacific and Atlantic142

appear to redistribute tropical heat uptake with approximately the same efficiency.143

Heat Loops The rotational OHT component estimate (rotOHT=rawOHT-effOHT) provides a144

global mapping of internal oceanic heat loops (grey contours in Fig. 3). By construction, it is145

divergence-free and yields zero global meridional transport. When ERL is set to 0◦C as in Fig. 3,146

the patterns of rotOHT highlight familiar features of the wind-driven ocean circulation that can147

connect and even shape up regions of air-sea heat uptake and loss (16, 28, 32). Subtropical148

gyres and the associated shallow overturning circulations notably set up the global hemispheric149

pattern of poleward OHT (27) and are clearly reflected in rotOHT (Fig. 3). This provides an150

interpretation for the westward orientation of effOHT at mid-latitudes (recall that the divergent151

component of a vector field is orthogonal to the scalar potential; effOHT thus goes from red152

to blue contours in Fig. 3) as a result of subtropical gyres releasing heat received in the tropics153

primarily via their western boundary currents and associated mode water formation sites (33).154

Perspectives Our analysis bridges the gap between two contrasting depictions of OHT which155

tend to emerge either from an atmospheric perspective (3) or from an oceanic perspective (2).156

By deriving both of them, effOHT and rawOHT, from the same gridded data product we show157

that apparent conflicts amongst earlier estimates may in part reflect comparison of apples with158

oranges (see Fig. 1 and Tables in SPM). The Helmholtz decomposition methodology provides159

a framework to resolve such differences. The underlying Poisson equation approach alleviates160

uncertainty associated with arbitrary boundary condition and ERL choices in previous studies161

(see SPM section 4). Applying it to full oceanic heat budgets notably shows that inferring162
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effOHT from air-sea fluxes implies an uncertainty of ±0.3PW associated with mass fluxes and163

heat storage variations (SPM section 3).164

A remaining challenge, however, is the lack of practical methods to accurately quantify OHT165

uncertainties that derive from limited ocean data coverage, uncertain air-sea fluxes, and imper-166

fect estimation methods. Progress on this issue could be made by leveraging the Helmholtz167

decomposition methodology employed here to analyze OHT differences amongst ocean data168

assimilation products (34). From a sea-going oceanography perspective, the availability of ro-169

tOHT estimates may also help circumvent the fact that, due to the fundamentally global nature170

of Earth’s energy budget, effective OHT cannot be observed locally by an individual section.171

Subtracting, for example, the rotOHT estimate shown in Fig. 3 from ship-based OHT estimates172

would indeed provide a systematic method to convert them into effOHT estimates – a promis-173

ing alternative to the heterogeneous and sometimes ad-hoc treatments of non-zero mass fluxes174

found in the oceanographic literature.175
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Figure 1: Ocean heat transport (OHT in 0.01 PW; 1 PW= 1015 W) as estimated through gates
that separate ocean basins and through meridians that delimit the tropics (thick black lines) for
the 1992-2011 time mean. Raw OHT (rotational+divergent components) and effective OHT

(divergent component only) values are charted in, respectively, blue and red. Thin lines with
arrow heads are a schematic of the main internal oceanic heat loops (purple) and effective
OHT patterns (orange). Black contours (resp. grey contours) represent the rate of ocean heat

divergence (resp. convergence) which reflects the rate of heat uptake from (resp. heat release
to) the atmosphere. These rates are contoured every 15 W/m2 intervals starting from ±5 W/m2.
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Figure 2: Meridional ocean heat transport (OHT; in PW) for the global ocean is depicted in
black. Also shown: meridional effective OHT for the Atlantic (blue), Pacific (red), and Indian
(green) sectors. Thick lines denote the 1992-2011 mean and shaded ranges reflect ± 1 standard

deviation amongst annual means.
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Figure 3: Scalar potential (colored contours; in 0.2 PW intervals) and vector potential (black
and grey contours; in 0.05 then 0.2 PW intervals) as derived from the global vector field of

rawOHT averaged over 1992-2011. The scalar and vector potentials determine, respectively,
effOHT and rotOHT (see SPM, section 2). Each contour of the vector potential can be thought

of as a heat loop confined within the ocean. In contrast, effOHT is oriented perpendicularly
across contours of the scalar potential and directed from red to blue contours.
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1 Ocean State Estimate1

Our analysis is based on the ECCO version 4 release 2 gridded data product (1,2). The ECCO v42

ocean state estimate agrees, within expected uncertainty ranges, with the bulk of available ocean3

observations as well as with atmospheric re-analysis data over 1992-2011. It includes a full set4

of optimized transport estimates across the sea surface and in the ocean interior along with5

recent estimate of geothermal heat fluxes (3) applied at the sea floor. The chosen, adjoint-6

based estimation methodology does not rely on assimilation increments (4) but rather optimizes7

surface forcing fields and internal model parameters (1,5,6). As a result, the ECCO v4 product8

offers closed heat budgets where the convergence of transports matches the ocean state evolution9

to machine precision.10

The underlying configuration of the MIT general circulation model (1, 7) uses the “real11

freshwater flux” formulation, accounting for mass fluxes across the sea surface associated with12

precipitation, evaporation, run off, and sea ice freezing and melting. However, as commonly13
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done in climate modelling, the model makes the Boussinesq approximation and neglects spe-14

cific heat capacity variations (1, 5). In practice, this means that for any given volume element15

V the corresponding heat content is simply given by H = ρcCp θV where ρc is the constant16

Boussinesq density, Cp the constant specific heat capacity, and θ the potential temperature av-17

eraged over V. Accordingly, if U denotes a volume flux across the sea surface or in the ocean18

interior then the corresponding mass flux is given by M = ρc U. In this paper, we follow19

common oceanographic usage by referring to ρcCp θU simply as heat transport rather than as20

approximation of total energy transport which would be more rigorous (8, 9).21

All variables needed for the presented analyses are permanently archived (10,11) and readily22

available for download via the ECCO website (http://ecco-group.org/).23

2 Computation of the divergent and rotational transports24

First, we sum up all monthly-averaged advective and diffusive transports of potential tempera-25

ture (10), multiply them by ρc Cp, integrate vertically, and form annual averages from 1992 to26

2011. The resulting vector fields are referred to as rawOHT in this article and as F in equations27

reported below. As is classically done in Helmholtz decomposition, we then separate F into a28

divergent component, Fdiv , and a rotational component, Frot:29

F = Fdiv + Frot (1)

satisfying:30

∇× Fdiv = 0 and ∇ · Frot = 0 (2)

These components are associated with a scalar potential, P, and a streamfunction, S, such that:31

Fdiv = ∇P (3)

Frot = ∇ × S. (4)
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In practice, the scalar potential, P, is computed by solving, over the global ocean, the Pois-32

son equation:33

∇
2
P = ∇ · F (5)

obtained by taking the divergence of Eq. (1) and using Eqs. (2-3). The divergent component,34

Fdiv , is then readily derived from P using Eq. (3); it is referred to as effOHT in this article.35

Finally, the rotational component is computed as the remainder, Frot = F−Fdiv , and integration36

of its transverse component along grid line paths readily gives S.37

The Poisson equation is formulated such that Fdiv obeys a zero normal flow boundary condi-38

tion at the coastline over the global Ocean. This choice makes the most immediate physical and39

practical sense as argued by (12). It is indeed consistent with the underlying zero normal flow40

boundary condition for F in the ocean model, so that the rotational component, Frot = F−Fdiv ,41

also satisfies a zero normal flow boundary condition. Hence, F, Fdiv , and Frot all are tangential42

to the coastline, and the decomposition of F as Fdiv + Frot yields a simple extension of the43

familiar notion of meridional transports bounded by coastlines (Fig. S1).44

The 20-year mean P and S are depicted in Fig. 3 as, respectively, colored and grey contours.45

The raw and effective transports reported in Figs. 1 - 2 and Tabs. S1 - S4 are computed by46

integrating the transverse component of either Fdiv or F following grid line paths that are shown47

in Fig. S2. Algorithmic detail is provided in appendix C of (1). When computing pole to pole48

meridional transports for the Atlantic, Pacific, and Indian oceans, the Arctic is split into two49

sectors along the 80◦W and 100◦E meridians, the Southern Ocean is split into three sectors50

along Drake Passage, 147◦E, and 20◦W, and marginal seas are attached to neighboring oceans51

as reflected by the color coding in Fig. S2.52
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3 Underlying physical Processes53

To evaluate uncertainties associated with our interpretation of effOHT, it is useful to consider the54

various terms of the temperature equation computed at constant volume (11). The underlying55

heat budget can be written for a time-variable volume element, V, as56

dH

dt
= ρc Cp (θ

dV

dt
+

dθ

dt
V) (6)

where ρc
dV
dt

is the rate of mass flux convergence and dθ
dt

is the rate of temperature change within57

the selected volume element. Detailed equations are provided in (1).58

The temperature equation computed at constant volume, which by construction is free of59

any mass-flux convergence, expresses the second term on the right hand side of Eq. (6) as60

ρcCpV
dθ

dt
= htend = hadv + hdif + hforc (7)

where hadv represents the advective heat flux convergence, hdif the diffusive heat flux conver-61

gence, hforc the external forcing due to air-sea and geothermal heat flux convergence, and htend62

the temperature tendency term. Any term in Eq. (7), once its global mean has been removed,63

can be substituted with ∇ · F on the right-hand-side of the Poisson equation (5) to translate it64

into a divergent vector field associated with a scalar potential like in Eq. (3).65

A close approximation to effOHT is obtained by applying this approach to hadv +hdif (e.g.,66

compare Fig. S3 with Fig. 2) since the impact of non-zero mass fluxes on effOHT is generally67

small (SPM section 4). The residual (i.e., the difference between Fig. S3 and Fig. 2) shows little68

interannual variability and time-mean values of the order of ±0.1 PW in terms of meridional69

transports (Fig. S4; left) with patterns that resemble those seen in net mass transports (2).70

Further unpacking the terms in Eq. (7) reveals that effOHT primarily reflects a balance71

between advection and air-sea fluxes (top panels in Fig. S5). Lateral diffusion contributes72

±0.2 PW in the time mean with negligible interannual variability (bottom left) while tempo-73

ral variations in ocean temperature translate into negligible effOHT for the 20-year average74
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along with ±0.2 PW interannual variability in the tropics (bottom right). As a result, indi-75

rect estimates of annual-mean meridional heat transports based on air-sea flux maps can only76

approximate effOHT at best within ±0.3 PW. Such uncertainty levels are unfortunately compa-77

rable to the magnitude of effective inter-ocean heat transports (Tab. S1).78

4 Sensitivity Tests79

The approach introduced in SPM sections 1-2-3 has noteworthy advantages as compared with80

previous methods. Unlike earlier estimations of the divergent OHT component in (13) and simi-81

lar studies, it [a] addresses also the non-divergent OHT component, [b] readily filters out global82

imbalances which may come from atmospheric data assimilation schemes or anthropogenic heat83

uptake (4,14), [c] ensures strict consistency between air-sea fluxes, ocean heat content changes,84

and OHT (1, 2), and [d] avoids ad-hoc integration method or boundary condition choices in85

deriving meridional transports. As compared with ship-based estimations, our approach fur-86

ther [e] alleviates uncertainty associated with energy reference level choices and non-zero mass87

fluxes (15, 16). Issues [d] and [e] remain to be illustrated, which is done below.88

4.1 Sensitivity to the integration method89

First, we replicate the method of (13) to infer meridional OHTs by cumulatively integrating∇·F90

from the North pole to the South pole over the Atlantic, Pacific, and Indian. Similar methods91

have been used to infer meridional OHTs from air-sea flux maps going back at least as far as92

the 1950’s (17). Closely following the methodology of (13) facilitates comparison with their93

Fig. 3. Their methodological choices imply that OHTs through the Indonesian Archipelago and94

through the Southern Hemisphere passages between the Atlantic, Pacific, and Indian are set to95

zero. Still following (13), the whole Arctic is attached to the Atlantic in this computation, which96

de facto also sets OHT through Bering Strait to zero. The result of this computation is hereafter97
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denoted by infOHT and is depicted in Fig. S6 (dashed curves).98

The ECCO estimate of infOHT (Fig. S6; dashed curves) is in good agreement with the99

result shown in Fig. 3 of (13), which is based on a combination of top-of-atmosphere radiation100

estimates with atmospheric and oceanic reanalyses products. However, comparison between101

our infOHT (Fig. S6; dashed curves) and our effOHT (Fig. S6; solid curves), both based on the102

exact same ECCO estimate of ∇ · F, reveals biases in infOHT.103

Starting from the North Pole, the closing of Bering Strait leads to a northward OHT bias in104

the Atlantic and a corresponding southward OHT bias in the Pacific. In turn, the ITF closing105

induces a northward OHT bias in the Indian while adding southward OHT bias south of ∼ 10◦S106

in the Pacific. Additional compounding of OHT bias occurs further South as a result of closing107

Drake Passage and the section between Australia and Antarctica.108

Once integration has reached the coast of Antarctica, the end result is an unbalanced OHT109

of 0.39, -0.62, and 0.22 PW for the Atlantic, Pacific, and Indian respectively. These large110

imbalances are consistent with those reported in (13), and result from introducing artificial111

boundaries of integration between oceanic basins. As already pointed out by (13), this clearly112

argues in favor of a more objective approach such as the one introduced in this paper.113

4.2 Sensitivity to the Energy Reference Level114

Now, we assess the sensitivity of OHT estimates to arbitrary ERL choices, which can be a major115

concern in the case of ship-based OHT estimates due to non-zero mass fluxes (15,16). To assess116

the impact of ERL choices, we subtract ρc Cp θ0U, where θ0 is a uniform temperature value and117

ρc U is the ECCO mass-transport estimate, from F and recompute Fdiv and Frot via Eqs. 3-4-5.118

It should be noted that ρc U itself includes both rotational and divergent components. Results119

shown previously in Figs. 1 to 3, Figs. S2 to S6, and Tabs S1 to S4 correspond to θ0 = 0◦C.120

Here we test two other reasonable choices for θ0: 3.5◦C and 18.5◦C which correspond to setting121
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the ERL approximately to, respectively, the global mean ocean temperature and the global mean122

sea surface temperature.123

Comparing results from the 3.5◦C and 18.5◦C cases reveals that rawOHT is often very sen-124

sitive to ERL choices whereas effOHT is much more robust (e.g., compare Tabs. S5 with S6).125

This contrast in sensitivity between rawOHT and effOHT reflects that rotational mass flux mag-126

nitudes associated with gyres, the Antarctic Circumpolar Current, etc. vastly exceed divergent127

mass flux magnitudes associated with evaporation and precipitation (1,2). As a result, the OHT128

streamfunction S associated, per Eq. (4), with the rotational flux Frot differs wildly between the129

two panels of Fig. S7 as well as between Fig. S7 and Fig. 3. In contrast, the OHT scalar potential130

P is remarkably insensitive to the choices of ERL: effOHT changes by less than 0.01-0.02 PW131

in these tests, an effect well below other sources of uncertainties (Tabs. S5 and S6).132

In conclusion, even the sign and order of magnitude of rawOHT should be interpreted with133

great caution as they are essentially predicated on an arbitrary ERL choice. As a consequence,134

heterogeneous treatment of non-zero mass fluxes can, in and of itself, greatly complicate OHT135

estimate inter-comparisons.136

7



Table S1: Effective and raw ocean heat transports (in PW; 1 PW= 1015 W) computed through

passages that separate the main oceanic basins (red sections in Fig. S2). The top four values
(resp. bottom five) are counted positive northward (resp. eastward). Reported values are for the
1992-2011 mean ± 1 standard deviation amongst annual means.

effective transport raw transport section name

effOHT rawOHT

-0.13 ± 0.06 +2.06 ± 0.03 Australia–Antarctica (147◦E)
+0.19 ± 0.07 +1.47 ± 0.02 Drake Passage

-0.01 ± 0.06 +1.08 ± 0.03 South Africa–Antarctica (19.5◦W)

-0.10 ± 0.11 -1.20 ± 0.10 Indonesian Through Flow

(negative values = westward transport)

+0.20 ± 0.02 +0.01 ± 0.00 Bering Strait
-0.01 ± 0.00 +0.01 ± 0.00 Davis Strait
+0.02 ± 0.00 +0.01 ± 0.00 Denmark Strait

+0.06 ± 0.01 +0.26 ± 0.02 Iceland–Scotland
+0.01 ± 0.00 -0.00 ± 0.00 Scotland–Norway
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Table S2: Effective and raw ocean heat transports (in PW) across meridians over the Indian
Ocean (green sections in Fig. S2). All values are counted positive northward. Reported values
are for the 1992-2011 mean ± 1 standard deviation amongst annual means.

effective transport raw transport Latitude

effOHT rawOHT

-0.00 ± 0.01 -0.00 ± 0.01 20 ◦N

-0.10 ± 0.05 -0.10 ± 0.05 10 ◦N
-0.29 ± 0.09 -0.33 ± 0.08 Equator

-0.58 ± 0.09 -1.04 ± 0.10 10 ◦S
-0.50 ± 0.09 -1.60 ± 0.13 20 ◦S
-0.23 ± 0.11 -1.33 ± 0.09 30 ◦S

+0.02 ± 0.10 +0.34 ± 0.08 40 ◦S
+0.03 ± 0.08 -1.79 ± 0.08 50 ◦S

-0.05 ± 0.04 -0.26 ± 0.01 60 ◦S

Table S3: Same as Table S2 but for the Pacific Ocean (blue sections in Fig. S2).

effective transport raw transport Latitude
effOHT rawOHT

+0.16 ± 0.02 -0.01 ± 0.00 80 ◦N
+0.20 ± 0.02 +0.00 ± 0.00 70 ◦N
+0.22 ± 0.02 +0.02 ± 0.00 60 ◦N

+0.29 ± 0.03 +0.10 ± 0.02 50 ◦N
+0.31 ± 0.04 +0.12 ± 0.03 40 ◦N

+0.68 ± 0.12 +0.48 ± 0.11 30 ◦N
+0.82 ± 0.11 +0.63 ± 0.10 20 ◦N
+0.73 ± 0.23 +0.54 ± 0.24 10 ◦N

-0.02 ± 0.27 -0.18 ± 0.29 Equator
-0.83 ± 0.20 -0.56 ± 0.17 10 ◦S
-0.79 ± 0.22 +0.11 ± 0.14 20 ◦S

-0.69 ± 0.18 +0.22 ± 0.08 30 ◦S
-0.59 ± 0.11 +0.30 ± 0.06 40 ◦S

-0.58 ± 0.08 +0.37 ± 0.10 50 ◦S
-0.33 ± 0.06 -0.17 ± 0.03 60 ◦S
-0.05 ± 0.00 -0.05 ± 0.00 70 ◦S
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Table S4: Same as Table S2 but for the Atlantic Ocean (yellow sections in Fig. S2).

effective transport raw transport Latitude
effOHT rawOHT

-0.14 ± 0.02 +0.02 ± 0.00 80 ◦N

-0.01 ± 0.02 +0.19 ± 0.02 70 ◦N
+0.18 ± 0.02 +0.38 ± 0.02 60 ◦N
+0.35 ± 0.04 +0.55 ± 0.03 50 ◦N

+0.40 ± 0.05 +0.60 ± 0.04 40 ◦N
+0.65 ± 0.06 +0.84 ± 0.06 30 ◦N
+0.72 ± 0.06 +0.91 ± 0.07 20 ◦N

+0.61 ± 0.08 +0.81 ± 0.09 10 ◦N
+0.39 ± 0.05 +0.58 ± 0.06 Equator

+0.16 ± 0.05 +0.36 ± 0.06 10 ◦S
+0.17 ± 0.05 +0.36 ± 0.06 20 ◦S
+0.09 ± 0.04 +0.29 ± 0.04 30 ◦S

+0.20 ± 0.04 -1.01 ± 0.06 40 ◦S
+0.16 ± 0.04 +1.03 ± 0.03 50 ◦S

-0.00 ± 0.02 +0.04 ± 0.01 60 ◦S
-0.02 ± 0.00 -0.02 ± 0.00 70 ◦S
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Table S5: Transports as in Tabs. S1 to S4 (in PW) but with the Energy Reference Level (ERL)
set to the global mean ocean temperature (3.5◦C). See SPM section 4 for detail.

effective transport raw transport section name

effOHT rawOHT

-0.13 ± 0.06 -0.34 ± 0.03 Australia–Antarctica (147◦E)
+0.19 ± 0.07 -0.70 ± 0.04 Drake Passage

-0.01 ± 0.06 -1.10 ± 0.05 South Africa–Antarctica (19.5◦W)

-0.10 ± 0.11 -0.98 ± 0.09 Indonesian Through Flow

+0.20 ± 0.02 -0.01 ± 0.00 Bering Strait

-0.29 ± 0.09 -0.33 ± 0.08 Equator (Indian)
-0.23 ± 0.11 -1.12 ± 0.09 -30 N (Indian)

+0.68 ± 0.12 +0.47 ± 0.11 +30 N (Pacific)
-0.01 ± 0.27 -0.19 ± 0.29 Equator (Pacific)

-0.69 ± 0.18 -0.02 ± 0.08 -30 N (Pacific)

+0.65 ± 0.06 +0.86 ± 0.06 +30 N (Atlantic)

+0.39 ± 0.05 +0.60 ± 0.06 Equator (Atlantic)
+0.09 ± 0.04 +0.30 ± 0.04 -30 N (Atlantic)

Table S6: Transports as in Tabs. S1 to S4 (in PW) but with the Energy Reference Level (ERL)
set to the global mean sea surface temperature (18.5◦C). See SPM section 4 for detail.

effective transport raw transport section name

effOHT rawOHT

-0.12 ± 0.06 -10.62 ± 0.20 Australia–Antarctica (147◦E)
+0.19 ± 0.07 -10.01 ± 0.19 Drake Passage

-0.00 ± 0.06 -10.47 ± 0.20 South Africa–Antarctica (19.5◦W)

-0.08 ± 0.11 -0.05 ± 0.07 Indonesian Through Flow

+0.20 ± 0.02 -0.07 ± 0.02 Bering Strait

-0.29 ± 0.09 -0.31 ± 0.08 Equator (Indian)
-0.24 ± 0.11 -0.21 ± 0.08 -30 N (Indian)

+0.70 ± 0.12 +0.43 ± 0.11 +30 N (Pacific)
+0.02 ± 0.26 -0.23 ± 0.28 Equator (Pacific)

-0.71 ± 0.18 -1.01 ± 0.12 -30 N (Pacific)

+0.66 ± 0.06 +0.94 ± 0.06 +30 N (Atlantic)

+0.40 ± 0.05 +0.67 ± 0.06 Equator (Atlantic)
+0.07 ± 0.04 +0.35 ± 0.04 -30 N (Atlantic)
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Figure S1: Meridional ocean heat transport (in PW; 1 PW= 1015 W) on average over 1992-2011
for the Atlantic (blue) and the Indo-Pacific (red) based on either Fdiv (solid) or F (dashed). Net

meridional transports integrated around the Globe are the same in both cases (black).
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Figure S2: Transects through which heat transport estimates are reported in Tab. S1 (red tran-

sects), Tab. S2 (green transects), Tab. S3 (blue transects), and Tab. S4 (yellow transects). Black
contours (resp. grey contours) represent the rate of ocean heat divergence (resp. convergence)

which reflects the rate of heat uptake from (resp. heat release to) the atmosphere.
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Figure S3: Implied meridional ocean transports (in PW) computed from the convergence of
advective and diffusive fluxes (hadv + hdif in Eq. (7)) for the global ocean or separately for the
Atlantic, Pacific, and Indian sectors. Unlike in Fig. 2, these results are based on the temperature

tendency equation computed at constant volume: hadv + hdif = htend − hforc where htend and
hforc respectively represent the tendency and external forcing terms. Implied transports are
computed from hadv + hdif by subtracting the global mean value and then solving a Poisson

equation as done before for effOHT (Fig. 2). Thick lines denote the 1992-2011 mean and
shaded ranges reflect ± 1 standard deviation amongst annual means.
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Figure S4: Left: difference between effOHT (Fig. 2) and meridional heat transports implied
by hadv + hdif in Eq. (7) (Fig. S3); this gives the residual contribution of convergent mass
fluxes associated with the interplay of evaporation, precipitation, and runoff to effOHT. Right:

difference between effOHT (Fig. 2) and meridional heat transports implied by −hforc in Eq. (7)
(top right panel of Fig. S5); this corresponds to errors that would result from using air-sea heat

fluxes as an estimate of ocean heat transport convergences. Thick lines denote the 1992-2011
mean and shaded ranges reflect ± 1 standard deviation amongst annual means.
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Figure S5: Implied meridional ocean heat transports (in PW) for each term of the temperature

equation computed at constant volume (Eq. (7)). In each case, implied transports are com-
puted by subtracting the global mean value and then solving a Poisson equation: (top left) the

advective flux convergence hadv , (bottom left) the diffusive flux convergence hdif , (top right )
the vertical divergence of heat fluxes through the sea surface and sea floor −hforc, and (bottom
right) the tendency term htend. Note that, by construction, the sum of the left panels (hadv+hdif )

is equal to the sum of the right panels (htend − hforc). Thick lines denote the 1992-2011 mean
and shaded ranges reflect ± 1 standard deviation amongst annual means.
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Figure S6: Meridional effOHT (solid curves; in PW) over the Globe (black), Atlantic (blue),
Pacific (red), and Indian (green) sectors. Corresponding dashed curves are estimated from the
same OHT convergence but based on the method of (13) (namely, infOHT). Net meridional

transports integrated around the Globe are the same in both cases (black curve). See SPM
section 4.1 for computational details.
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Figure S7: Same as Fig. 3 but after resetting the Energy Reference Level (ERL) to approxi-

mately the global mean ocean temperature (3.5◦C; top) and the global mean sea surface tem-
perature (18.5◦C; bottom). See SPM section 4.2 for detail.
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