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 50 

ABSTRACT 51 

Studies have recently reported statistically significant relationships between observed year-to-52 

year spring Antarctic ozone variability and the Southern Hemisphere Annular Mode and surface 53 

temperatures in spring-summer. This study investigates whether current chemistry-climate 54 

models (CCMs) can capture these relationships, in particular, the connection between 55 

November total column ozone (TCO) and Australian summer surface temperatures, where 56 

years with anomalously high TCO over the Antarctic polar cap tend to be followed by warmer 57 

summers. The interannual ozone-temperature teleconnection is examined over the historical 58 

period in the observations and simulations from the Whole Atmosphere Community Climate 59 

Model (WACCM) and nine other models participating in the Chemistry-Climate Model 60 

Initiative (CCMI). There is a systematic difference between the WACCM experiments forced 61 

with prescribed observed sea surface temperatures (SSTs) and those with an interactive ocean. 62 

Strong correlations between TCO and Australian temperatures are only obtained for the 63 

uncoupled experiment, suggesting that the SSTs could be important for driving both variations 64 

in Australian temperatures and the ozone hole, with no causal link between the two. Other 65 

CCMI models also tend to capture this relationship with more fidelity when driven by observed 66 

SSTs, though additional research and targeted modelling experiments are required to determine 67 

causality and further explore the role of model biases and observational uncertainty. The results 68 

indicate that CCMs can reproduce the relationship between spring ozone and summer 69 

Australian climate reported in observational studies, suggesting that incorporating ozone 70 

variability could improve seasonal predictions, however more work is required to understand 71 

the difference between the coupled and uncoupled simulations. 72 

 73 
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1. Introduction     74 

The Antarctic ozone hole has formed each austral spring since the early 1980s where 75 

up to half of the total column ozone (TCO) is depleted (Solomon 1999; World Meteorological 76 

Organization (WMO) 2014). Though it has little impact on global temperatures, this long-term 77 

ozone depletion has likely influenced the Southern Hemisphere (SH) atmospheric circulation 78 

and thus the surface climate. It cools the SH polar stratosphere and strengthens the polar vortex; 79 

and is associated with a summertime poleward shift and strengthening of the midlatitude jet 80 

(Lee and Feldstein 2013; Seviour et al. 2017), strongly associated with the positive phase of the 81 

Southern Annular Mode (SAM), the leading mode of climate variability in the SH extratropical 82 

circulation (Trenberth 1979; Rogers and van Loon 1982). While increasing greenhouse gases 83 

(GHGs) also force a positive summer SAM trend (e.g., Arblaster and Meehl 2006; McLandress 84 

et al. 2011; Grise and Polvani 2017), model experiments that have compared the influence of 85 

both factors individually have suggested that ozone depletion is likely the dominant factor (e.g., 86 

Arblaster and Meehl 2006; McLandress et al. 2011; Polvani et al. 2011; Stone et al. 2016).  87 

In addition to the long-term trend, the size of the ozone hole varies substantially between 88 

years due to dynamical processes (Salby et al. 2011, 2012). Years with anomalously small 89 

ozone holes are usually associated with stronger winter planetary wave forcing that transports 90 

more ozone to the polar region and warms the Antarctic stratosphere, thus weakening the polar 91 

vortex. The warmer temperatures inhibit the formation of polar stratospheric clouds that deplete 92 

ozone via chemical reactions and hence reduce ozone loss (Salby et al. 2011, 2012). This year-93 

to-year variability in the size of the ozone hole has been linked to variability in the SAM and 94 

surface temperatures in the SH. Son et al. (2013) reported a statistically significant negative 95 

correlation between September ozone concentration and the October SAM index. Bandoro et 96 

al. (2014) further reported a significant relationship between November TCO and seasonal 97 

mean summer surface temperatures in the SH midlatitudes, including Australia; with unusually 98 
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hot summers associated with anomalously small ozone holes (higher TCO) in the previous 99 

spring. The connection between spring ozone and summer temperature over Australia is thought 100 

to arise due to the link between ozone and the SAM. A negative SAM in summer (associated 101 

with high spring ozone) causes anomalous westerly surface winds that lead to decreased 102 

precipitation and warmer surface temperatures over subtropical eastern Australia in summer 103 

(Hendon et al. 2007; Son et al. 2013; Bandoro et al. 2014).  104 

Australian summer temperature extremes are influenced by large-scale modes of 105 

climate variability including the El Niño-Southern Oscillation (ENSO), Indian Ocean Dipole 106 

and SAM (Hendon et al. 2007; Risbey et al. 2009; Arblaster and Alexander 2012; Min et al. 107 

2013). ENSO has some predictability on seasonal time scales and has, therefore, traditionally 108 

been the main component considered in operational seasonal forecasts (McBride and Nicholls 109 

1983) before the implementation of a dynamical seasonal forecast system (Hudson et al. 2016). 110 

The observed connection between spring Antarctic ozone and Southern Hemisphere climate 111 

suggests that including real-time stratospheric ozone variability could potentially improve skill 112 

in seasonal outlook systems. This is particularly timely as extreme summers in Australia are 113 

likely to become more common under future emission scenarios (e.g., Perkins et al. 2015; 114 

Perkins-Kirkpatrick et al. 2016). Improved seasonal forecasting could, therefore, be an 115 

important adaptation tool for mitigating the impacts of extreme heat events. 116 

However, climate models must be able to reliably simulate ozone behaviour and 117 

stratospheric-tropospheric dynamics to produce accurate forecasts. Chemistry-Climate Models 118 

(CCMs) are perhaps the most useful model to address these interactions as chemistry is fully 119 

interactive and coupled to dynamics and radiation; and CCMs, therefore, tend to simulate the 120 

impacts of ozone on the circulation and climate better than models with prescribed ozone (e.g., 121 

Son et al. 2008; Li et al. 2016). Since chemical reactions cause the ozone hole, it is critical that 122 
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interactive chemistry is included in the model to capture and predict these interannual 123 

relationships.  124 

Many climate model studies have examined the long-term impact of Antarctic ozone 125 

depletion on stratospheric and tropospheric circulation and climate (e.g., Gillett and Thompson 126 

2003; McLandress et al. 2011; Polvani et al. 2011) but few have addressed the impact on 127 

interannual timescales. Fogt et al. (2009) and Li et al. (2010) reported that a CCM captures 128 

observed interannual ozone-SAM and SAM-Brewer-Dobson circulation relationships, 129 

respectively. However, a deficiency common to these models is related to a “cold pole” bias 130 

present in many CCMs (Eyring et al. 2006) which further delays the breakdown of the polar 131 

vortex and likely causes the model to overpredict the impacts of the ozone hole (Lin et al. 2017). 132 

Moreover, Seviour et al. (2014) reported that the October mean SAM could be forecast from 133 

midstratospheric anomalies at the beginning of August, and Dennison et al. (2015) showed that 134 

during the period of ozone depletion, the tropospheric circulation is influenced for up to two 135 

months following a stratospheric SAM extreme event. To date, there has yet to be a study that 136 

has examined whether climate models can simulate the interannual link between ozone and 137 

surface temperatures; and hence, the possibility of improving seasonal forecasts. 138 

The purpose of the present study is to investigate the potential for predicting summer 139 

surface temperature extremes using ozone variability. This involves examining historical 140 

simulations from the Whole Atmosphere Community Climate Model (WACCM) and other 141 

CCMs to assess whether these models can capture the influence of the interannual variability 142 

in the Antarctic spring ozone hole on summer temperatures, with a focus over the Australian 143 

continent. This is a necessary first step in examining the potential for its inclusion in a seasonal 144 

prediction system.  145 

 146 
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2. Data and analysis method  147 

a. Observational and reanalysis data  148 

Multiple observational datasets for TCO and surface temperature are used in this study 149 

to examine sensitivity to observation and reanalysis uncertainty. Monthly mean TCO fields 150 

have been obtained from the NIWA-BS (National Institute of Water and Atmospheric Research 151 

– Bodeker Scientific) database (Bodeker et al. 2005; 152 

http://www.bodekerscientific.com/data/total-column-ozone). The NIWA-BS data averaged 153 

over the polar cap (63-90°S), are mainly compared to TCO from the Halley Station (herein 154 

Halley) which measures ozone variability at a single grid point (75°S, 26°W; 155 

https://legacy.bas.ac.uk/met/jds/ozone/data/ZOZ5699.DAT). TCO from the South Pole (90°S, 156 

25°W) and Syowa (69°S, 39°E) stations (http://www.woudc.org) are also examined. Monthly 157 

mean surface temperatures are obtained from the Interim reanalysis of the European Centre for 158 

Medium-Range Weather Forecasts (ERA-Interim; Dee et al. 2011). ERA-Interim is compared 159 

to monthly surface temperature from the Australian Water Availability Project (AWAP; Jones 160 

et al. 2009) which is a gridded dataset based on station data. Monthly mean maximum and 161 

minimum temperatures for AWAP were averaged to produce monthly mean temperature. The 162 

Marshall (2003) SAM index (http://www.nerc-163 

bas.ac.uk/public/icd/gjma/newsam.1957.2007.txt) and ENSO are used to examine links 164 

between ozone and modes of climate variability. Gridded observed monthly SSTs from the 165 

Hadley Centre Ice and Sea Surface Temperature dataset (Rayner et al. 2003) were used to 166 

calculate the Niño 3.4 index (described in Section 2d).  167 

 168 

b. Model output 169 

This study uses the output from version 1 of WACCM, conducted as part of the 170 

Chemistry-Climate Model Initiative (CCMI; Eyring et al. 2013). WACCM is a fully interactive 171 



 

 8 

CCM where chemistry is coupled with dynamics and radiation, and this, therefore, permits 172 

chemistry-climate feedbacks. WACCM was chosen as the primary model analysed as it has 173 

been shown to have excellent agreement with observations in the evolution of the Antarctic 174 

ozone hole (Marsh et al. 2013) and is one of a limited number of CCMs that is coupled to an 175 

ocean (Morgenstern et al. 2017), which is an important characteristic for seasonal prediction. 176 

The model domain extends from the surface to 140 km with 66 hybrid sigma-pressure levels, 177 

and horizontal resolution of 1.9° latitude by 2.5° longitude (Marsh et al. 2013).  178 

Four WACCM experiments are analysed in this study to examine the role of ocean 179 

coupling for stratospheric-tropospheric relationships and the influence of ozone-depleting 180 

substances (ODSs) and GHGs individually. Each experiment has an ensemble of three or five 181 

transient simulations that have slightly different initial conditions (Eyring et al. 2013; 182 

Morgenstern et al. 2017) and cover 1960-2005:  183 

• REF-C1 (or uncoupled): uses an atmosphere-only model configuration forced 184 

with observed SSTs and sea ice and historical radiative forcings (GHGs, ODSs, 185 

tropospheric ozone and aerosols, quasi-biennial oscillation, very short-lived 186 

species, volcanic aerosols, and solar variability)  187 

• REF-C2 (or coupled): uses the identical atmospheric configuration and 188 

historical radiative forcings as REF-C1 but is fully coupled to an interactive 189 

ocean and sea ice component, and extends to 2100 following the A1 scenario 190 

for ODSs (WMO 2014) and Representative Concentration Pathway 6.0 scenario 191 

(Meinshausen et al. 2011) 192 

• SEN-C2-fODS1960 (herein ODS1960): the same as REF-C2 but with ODSs 193 

containing chlorine and bromine set at 1960 levels. Thus, interannual variations 194 

in the size of the Antarctic ozone hole will still occur due to dynamic variability, 195 

but no ozone depletion is simulated  196 
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• SEN-C2-fGHG (herein GHG1960): the same as REF-C2 but with anthropogenic 197 

GHGs fixed at 1960 levels.   198 

The WACCM uncoupled experiment has five simulations available; and unless stated 199 

otherwise, for consistency, only the first three were used to avoid a larger sample size biasing 200 

the results compared to the coupled model ensemble. The other two members were tested and 201 

produce quantitatively similar results to the three members used in this study.  202 

To examine the strength of the findings in WACCM and evaluate the impact of model 203 

biases, nine other CCMI models are included (ACCESS-CCM, CESM1 CAM4-Chem, CMAM, 204 

EMAC-L47MA, EMAC-L90MA, GEOSCCM, MRI-ESM, NIWA-UKCA, and SOCOL; 205 

model specifics are available in Morgenstern et al. (2017)). In total, this facilitates analysis of 206 

five models with a coupled ocean for REF-C2 and five with an uncoupled ocean that prescribe 207 

SSTs and sea ice concentrations using simulations from another climate model. For the CCMs 208 

without an ocean, different SSTs and sea ice concentrations were used for REF-C1 and REF-209 

C2. All ensemble members available on the British Atmospheric Data Center were included. 210 

For the additional models, the lowest model level was used for the temperature at the surface. 211 

We compared the difference between the surface temperature field and lowest model level in 212 

the correlation analysis for WACCM, and the difference was negligible.  213 

 214 

c. Analysis period   215 

This study examines the period 1979-2005, which represents the overlap period for the 216 

satellite data and the model historical period. These years are selected as studies have reported 217 

that the relationship between interannual variations in Antarctic ozone and SH surface climate 218 

is strengthened during the period of ozone depletion (Fogt et al. 2009; Bandoro et al. 2014) as 219 

the ozone hole delays the polar vortex breakdown and leads to increased coupling between the 220 

stratosphere and troposphere (Shaw et al. 2011). The Antarctic ozone layer has also shown 221 
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signs of recovery since 2000 (e.g., Solomon et al. 2016; Chipperfield et al. 2017), and the years 222 

before this were, therefore, when stratospheric ozone depletion was largest overall. November 223 

ozone and summer (December-January-February) surface temperatures are the focus of this 224 

study for comparison with Bandoro et al. (2014) and when temperature extremes arguably cause 225 

more impact. Ozone variability throughout the year in WACCM is in good agreement with 226 

observations and tends to peak in October-November, similar to observations (Table A1; Roff 227 

et al. 2011; Son et al. 2013; Bandoro et al. 2014). Apart from Section 3e, all model analysis is 228 

conducted for WACCM.  229 

 230 

d. Indices    231 

The ozone hole is defined as the weighted area average TCO over the polar cap (63-232 

90°S), after similar studies (e.g., Son et al. 2013). The ozone index is calculated for September 233 

to April only, as observations are unavailable in other months due to polar night. Figure 1a and 234 

b show the time series of the ozone index in November for the first member of the WACCM 235 

uncoupled and coupled experiments, respectively. The interannual variability of the ozone hole 236 

and all indices are obtained by first removing the long-term linear trend (Fig. 1c and d), 237 

following Bandoro et al. (2014). Detrending the data also removes the linear influence of GHG 238 

increases. 239 

For WACCM, the SAM index is defined as the difference in standardised zonal mean 240 

sea level pressure (SLP) between 40°S and 65°S, following Gong and Wang (1999). Strong 241 

SAM events are identified when the value is greater or less than one standard deviation (after 242 

detrending). The Niño 3.4 index (5°S-5°N and 170-120°W; Trenberth 1997), is used to analyse 243 

the ENSO influence on ozone and SAM.  244 

 245 
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e. Correlations and composites  246 

Pearson correlation coefficients were calculated between ozone and other variables, 247 

after first removing the annual cycle and detrending. These links are examined throughout the 248 

year using lag correlations, with the ozone index correlated to each 3-month overlapping 249 

surface temperature or SAM period for up to 6 months. To explore the relationships further 250 

over Australia, we focus on area-averaged surface temperature in Eastern Australia (10-44°S 251 

and 141-156°E; where at least 50% of each grid box had to be comprised of land surface to be 252 

included in the calculation) as Bandoro et al. (2014) found that the relationship between 253 

November ozone and summer surface temperatures was largest in this region. For analysis with 254 

WACCM, the three 26-year timeseries from each experiment were concatenated (unless stated 255 

otherwise) to provide a larger sample than is possible with the observations and improve the 256 

signal-to-noise ratio.  257 

To investigate the influence of large ozone (SAM) anomalies on stratospheric and 258 

tropospheric climate, years with high and low November ozone (summer SAM) were identified 259 

as years that exceed one standard deviation (after first removing the annual cycle, detrending 260 

and concatenating the three members) (Fig. 1c and d). Composites were then created for the 261 

difference between years with high and low November ozone (summer SAM). Statistical 262 

significance of correlations and composites were assessed using a two-sided Student t test with 263 

the degrees of freedom reduced based on the lag-1 autocorrelation, following Bretherton et al. 264 

(1999) and Santer et al. (2000). 265 

 266 

3. Results 267 

a. Ozone-SAM relationship  268 

The main interest of this paper is the interannual impact of the Antarctic ozone hole on 269 

surface temperatures. As the impacts of ozone depletion on surface climate resemble the SAM 270 
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(see, e.g., Thompson et al. 2011), the interannual link between ozone and SAM is first explored. 271 

Figure 2 shows lag correlations between ozone and SAM (the time reference is based on the 272 

ozone index) for Halley ozone (75°S, 25°W, Fig. 2a), NIWA-BS ozone (averaged 63-90°S, Fig. 273 

2b) and the four WACCM experiments (averaged 63-90°S, Fig. 2c-f) where the three ensemble 274 

members for each experiment were first concatenated.  275 

The observations and WACCM experiments all capture strong negative correlations 276 

between spring ozone and SAM in the following months, implying that smaller (larger) spring 277 

ozone holes are associated with decreases (increases) in the SAM. This association is consistent 278 

with long-term ozone depletion leading to a more positive SAM in summer (Thompson et al. 279 

2011). Though, it is unclear if interannual ozone variations drive variations in the SAM through 280 

the same mechanism by which stratospheric ozone depletion influences the SAM, as other 281 

factors, such as winter-spring wave driving, also influence SAM and ozone variations 282 

(Thompson et al. 2005; Son et al. 2013; Seviour et al. 2014) and it is difficult to separate cause 283 

and effect. Note that while we are focussed on the use of ozone for prediction, Fogt et al. (2009) 284 

previously found significant negative correlations between observed ozone and SAM also at 285 

negative lags, indicating that when the SAM is weak, more ozone is transported to the polar 286 

vortex.  287 

There are substantial differences between observational datasets and between model 288 

experiments. In the observations, correlations are largest for September-October ozone, 289 

whereas the WACCM experiments peak one month later in November-December. A possible 290 

cause for the delayed onset in the model experiments could be due to the cold pole bias. For 291 

example, Sheshadri and Plumb (2016) found in an idealised atmosphere model that the surface 292 

response to polar stratospheric cooling (indicative of ozone depletion) is sensitive to the timing 293 

of the cooling. The ozone-SAM link is weaker and less persistent for Halley (Fig. 2a) and could 294 

be a consequence of this station being located at the edge of the polar vortex in some parts of 295 
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the year. Both observational datasets and the WACCM coupled and uncoupled experiments 296 

capture a band of positive correlations in March-April; which have been linked to natural 297 

variability in the polar vortex (Fogt et al. 2009; Smith and Polvani 2017). Furthermore, the 298 

SAM response to ozone concentrations seems to be too persistent in the WACCM coupled 299 

experiment (Fig. 2d) compared to the atmosphere-only configuration (Fig. 2c), especially in 300 

summer. 301 

The differences between the sensitivity and all forcing experiments provide some 302 

indications of the forcings driving observed ozone-SAM links. The GHG1960 experiment (Fig. 303 

2e) looks like the all forcing (coupled) experiment, indicating that ozone depletion is the main 304 

driver of this interannual relationship. There are still significant correlations when ODSs are 305 

fixed at 1960 levels (Fig. 2f), although the correlations are less persistent, suggesting that long-306 

term ozone depletion has increased the strength of the ozone-SAM relationship, as also found 307 

by Fogt et al. (2009).  308 

 309 

b. Ozone-temperature relationship 310 

Figure 3 is similar to Fig. 2; however, it shows lag correlations between ozone and 311 

Eastern Australia surface temperature. Eastern Australia was chosen for the reference region as 312 

the observational study by Bandoro et al. (2014) showed that the correlation between November 313 

ozone and summer surface temperatures was largest in this region. The observations capture 314 

significant positive correlations between spring ozone months and seasonal Eastern Australia 315 

surface temperature; where years with smaller (larger) ozone holes are typically associated with 316 

warmer (cooler) temperatures in spring and summer (Fig. 3a-d). Though, as mentioned earlier, 317 

this result does not demonstrate causality. It is difficult to separate the roles of the polar vortex, 318 

wave-driving and ozone concentrations as they are closely related, however substituting 10 hPa 319 

geopotential heights averaged over the polar cap for ozone leads to weaker correlations with 320 
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Australian temperature in the model. In complementary results to ours, a recent study by Lim 321 

et al. (2018) showed an index of the SH polar vortex is correlated with October and November 322 

ozone and with Australian October-January surface temperature.    323 

There are differences between observational datasets, especially when using Halley 324 

ozone (Fig. 3a and b), and correlations are less significant overall for AWAP and Halley, 325 

compared to ERA-Interim and Halley. A distinct separate band of significant positive 326 

correlations is seen for the Halley and ERA-Interim correlations for February ozone (Fig. 3a), 327 

which is absent in the other observational correlations. These positive correlations are largest 328 

in autumn (p < 0.01) and could be related to a trend toward the positive SAM in April-May 329 

(Thompson and Solomon 2002; Ivy et al. 2017). As this second band of significant positive 330 

correlations is missing for the other datasets, this suggests that there is some uncertainty in the 331 

ozone-Australian surface temperature relationship.  332 

It is in the link between ozone and surface temperature that noticeable differences 333 

between the WACCM experiments begin to appear. The uncoupled experiment captures 334 

significant correlations between spring ozone and Eastern Australian surface temperature in the 335 

subsequent seasons (Fig. 3e), broadly like the observations, although it peaks slightly later and 336 

has significant positive correlations during more months of the year and for longer lags than 337 

observed. Studies have found that CCMs tend to overpredict interannual stratosphere-338 

troposphere relationships due to the polar vortex breaking down later than observed (Fogt et al. 339 

2009; Li et al. 2010). This bias may contribute to the overestimated response in the uncoupled 340 

experiment (see also Section 3a) and likely has implications for improved seasonal forecasting 341 

using ozone. Unlike the uncoupled experiment and observations, the coupled experiment does 342 

not capture a significant relationship between spring ozone and spring-summer temperatures 343 

(Fig. 3f).  344 



 

 15 

The WACCM sensitivity experiments again provide some insight as to the forcings 345 

contributing most to the ozone and Australian temperature teleconnection. In the GHG1960 346 

experiment (Fig. 3g), there are strong, positive correlations between the year-to-year size of the 347 

ozone hole and Eastern Australia surface temperature. These correlations are largest in 348 

November but occur for more months in the year than observed, like the uncoupled experiment 349 

(Fig. 3e). In the ODS1960 experiment (Fig. 3h), there are weak and insignificant correlations 350 

between ozone and surface temperature for most months in the year, similar to the coupled 351 

experiment. Thus, the impact of GHGs alone results in a weaker response, consistent with 352 

previous results (e.g., Fogt et al. 2009; Bandoro et al. 2014) that suggest that long-term ozone 353 

depletion has led to an increase in interannual ozone variability (Table A1) and is, therefore, 354 

more able to produce a signal that can influence the surface. The GHG1960 experiment uses 355 

the identical configuration to the coupled experiment but with GHGs fixed at 1960 levels. This 356 

experiment captures significant correlations between ozone and Eastern Australia surface 357 

temperature (Fig. 3g) unlike the all-forcing experiment (Fig. 3f) indicating that the WACCM 358 

coupled model can simulate this observed connection, but time-evolving GHGs appear to 359 

weaken the relationship. We speculate that this could be related to the interactive impact of 360 

increasing GHGs on sea ice and SSTs in this model. For example, similarly to most coupled 361 

climate models, Antarctic sea ice extent undergoes large declines over the historical period in 362 

the coupled experiment, in contrast to the observed increase over the satellite era (Marsh et al. 363 

2013). This decline would likely impact interannual variability in the SAM (e.g., Kidston et al. 364 

2011; Raphael et al. 2011) and hence Australian surface temperatures, although this hypothesis 365 

requires further investigation with additional models.    366 

To provide a global view, surface temperature from ERA-Interim is used for all 367 

observational analysis conducted herein. Figure 4 shows the spatial pattern of correlation 368 

coefficients of November ozone and summer surface temperatures. These months are examined 369 
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in detail to evaluate whether WACCM can capture the observed link between November ozone 370 

and summer temperatures over Australia found by Bandoro et al. (2014). The two observational 371 

ozone datasets (Halley and NIWA-BS) have very similar regional structures (Fig. 4a and b), 372 

despite differences in the ozone hole definition and data collection method, indicating that the 373 

large-scale patterns are mostly unaffected by these factors. In the Australian region, correlations 374 

are largest over southern and eastern Australia. The observed correlations for the period 1979-375 

2004 are not statistically significant over Australia like in the 1979-2012 period (not shown) 376 

used by Bandoro et al. (2014), but the pattern is similar.  377 

The WACCM experiments (Fig. 4c and d) capture similar relationships to the 378 

observations over the Antarctica polar cap, regarding sign and magnitude, however, away from 379 

this region, there are noticeable differences in the spatial pattern. The uncoupled experiment 380 

has more significant correlations in the tropical Pacific and Indian Oceans and tends to simulate 381 

stronger correlations overall than observed (Fig. 4c). Notably, both model experiments 382 

incorrectly simulate the sign of the correlations over the Indian Ocean and have weaker 383 

magnitude over the Southern Ocean. The uncoupled experiment captures strong positive and 384 

significant correlations over Australia, with the largest correlations in the south-southeast, 385 

consistent with the observations; whereas, the coupled experiment only has low correlations 386 

over Australia, as expected from Fig. 3f.  387 

Figure 5 displays the correlation coefficients between November ozone and summer 388 

surface temperature in Eastern Australia. For the observations, we compared correlations 389 

calculated using Halley and NIWA-BS ozone with TCO from Syowa and South Pole stations 390 

(Fig. 5). The relationship is weaker using South Pole ozone and strongest using Syowa ozone 391 

instead of Halley ozone, consistent with van Ommen and Morgan (2010) who found a 392 

significant relationship between Antarctic snowfall in the Indian Ocean sector and southwest 393 

Australian rainfall. The correlations between November ozone and Eastern Australia summer 394 
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surface temperature in the WACCM coupled experiment are weaker overall than the uncoupled 395 

experiment and observations (Fig. 5). Using the correlation coefficients for each ensemble 396 

member of the WACCM coupled and uncoupled experiments, we conducted an unpaired two-397 

sample t-test to assess the significance of the difference of the means. This analysis shows that 398 

the difference in the correlation coefficients between the WACCM uncoupled and coupled 399 

experiments is statistically significant at the 5% level.   400 

Figure 5 also shows correlations for the ensemble mean of the WACCM uncoupled and 401 

coupled experiments. The ensemble mean reduces the natural variability through averaging and 402 

thus helps to isolate the forced response. The ensemble mean correlation is larger than the 403 

original correlation in both WACCM experiments, indicating that the forcings (i.e., the 404 

historical forcings as well as the SSTs and sea ice in the uncoupled experiment) are enhancing 405 

the interannual signal. Given the time series are detrended, it indicates that either some portion 406 

of the GHG or ODS forced changes have not been removed through linear regression or that 407 

additional forcings are contributing to the interannual relationships found.  408 

Given the ensemble mean of the uncoupled experiment has larger correlations than the 409 

individual ensemble members (Fig. 5), this suggests that part of the ozone-temperature 410 

relationship is due to the boundary conditions (SSTs and sea ice) driving both interannual 411 

variations in ozone and variations in Australian temperature. To test this hypothesis, we 412 

subtracted the ensemble mean ozone and Australian temperature from each ensemble member 413 

and repeated the calculation with the concatenated ensemble members. This removes the 414 

response to the historical forcings and driving SSTs, and the resulting anomalies represent the 415 

response to internally generated ozone variations. The correlations were reduced to a similar 416 

magnitude as the coupled experiment (Table 1), therefore confirming our hypothesis.  417 

It is somewhat surprising that the ensemble mean correlation is also enhanced in the 418 

coupled model experiment (Fig. 5) since the influence of SSTs will be removed through 419 



 

 18 

averaging. Given the timeseries are detrended, this points to the role of a non-linear external 420 

forcing. Large volcanic eruptions have been shown to impact global mean temperature and 421 

significantly deplete stratospheric ozone over Antarctica (e.g., McCormick et al. 1995; 422 

Solomon et al. 2016; Stone et al. 2017). When the years corresponding to the El Chichón (1982) 423 

and Mount Pinatubo (1991) eruptions were removed from the temperature and ozone time series 424 

and the ensemble mean was recalculated, in the WACCM coupled experiment, the ensemble 425 

mean correlations are substantially reduced (Table 1). This suggests that the impact of these 426 

eruptions on the ozone hole and Australian temperatures is reinforced in the ensemble mean 427 

and the ozone hole and Australian temperatures are responding to the volcanic forcings. Most 428 

of the signal in the uncoupled experiment appears to be coming from the SSTs as the ensemble 429 

mean correlations only show minor decreases when the major volcanic eruptions are removed 430 

(Table 1).    431 

The WACCM uncoupled experiment appears to have a very strong ENSO response 432 

(Fig. 4c), and the summer Niño 3.4 index is significantly correlated with November ozone 433 

unlike in the observations or coupled experiment (Table 2). However, strong correlations are 434 

still obtained after the ENSO signal is removed from surface temperatures (Table 1), via linear 435 

regression against the summer Niño 3.4 index, consistent with the observational study of 436 

Bandoro et al. (2014). In the coupled experiment, the relationship between ozone and 437 

temperature is strengthened after ENSO is removed from surface temperatures (Table 1). 438 

 439 

c. Analysing differences between model experiments 440 

Section 3b demonstrated that a CCM (WACCM) could capture the ozone-temperature 441 

teleconnection over Australia, including the observed link between November ozone and 442 

summer surface temperature. However, this is not the case for the WACCM coupled 443 

experiment, as it only captures weak correlations that are not significant (Figs. 4d and 5). The 444 
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analysis conducted in Section 3c and d, therefore, focuses on understanding why the WACCM 445 

coupled experiment cannot capture the observed relationship.  446 

To assess the differences between the WACCM uncoupled and coupled experiments, 447 

composites are now used; taking the differences between years with high and low November 448 

ozone, defined as years greater than one standard deviation. Figure 6 shows the vertical profile 449 

of polar cap geopotential height as a function of month. Higher geopotential heights are 450 

observed over Antarctica in years with high ozone (Fig. 6), consistent with the negative phase 451 

of the SAM. The difference between the two experiments is largest in the troposphere rather 452 

than the stratosphere (tropopause located at approximately 200 hPa over Antarctica). In the 453 

uncoupled experiment, stratospheric anomalies appear to be followed by similar signed 454 

anomalies in the troposphere, shown by the significant differences between high-low years, and 455 

these anomalies reach the surface in late spring to early summer (Fig. 6a). These tropospheric 456 

composite differences in December-January are consistent with observations (Thompson and 457 

Solomon 2002) where surface anomalies lag stratospheric anomalies by one season, but appear 458 

to reach the surface too early in late spring. In the WACCM coupled experiment, there is also 459 

downward migration in summer (Fig. 6b); however, it is weaker and not significant. Less 460 

downward influence in the coupled experiment could also be related to the somewhat weaker 461 

interannual variability in the SAM (Table A2).  462 

Despite the differences shown in Fig. 6, the coupled experiment can simulate the link 463 

between ozone and the SAM (Fig. 2d and Table 3). Thus, the relationship between ozone and 464 

surface temperatures appears to break down in the link between the circulation and 465 

temperatures, rather than in the link between ozone and the circulation.  466 

Figure 7 shows the difference in the tropospheric and surface response in summer 467 

between years with high and low November ozone in the observations. The responses are 468 

similar between the Halley and NIWA-BS ozone datasets and ozone hole indices but are weaker 469 
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overall for NIWA-BS. Years with high ozone are associated with easterly wind anomalies over 470 

Australian latitudes (Fig. 7c and d), and warmer temperatures across southern-southeastern 471 

Australia (Fig. 7a and b), and the SLP field resembles the negative phase of the SAM (Fig. 7e 472 

and f).   473 

Figure 8 is like Fig. 7 but for the WACCM uncoupled and coupled experiments. In the 474 

uncoupled experiment, years with high November ozone are associated with significant warm 475 

anomalies of up to 2 degrees over Australia and a warming of the equatorial Pacific Ocean in 476 

summer (Fig. 8a). A strong signal can be seen over the Southern Ocean in the 500 hPa zonal 477 

wind in the uncoupled experiment (Fig. 8c), corresponding to an equatorward shift and change 478 

in the strength of the 500 hPa midlatitude jet during high ozone years or the negative SAM. In 479 

comparison, the coupled experiment does not produce a clear surface temperature difference 480 

between high and low ozone years and does not exhibit an ENSO signature (Fig. 8b).   481 

The contrast between the observations and WACCM and the difference between the 482 

WACCM uncoupled and coupled experiments is largest in the SLP field (Figs. 7e and f and 8e 483 

and f). In the uncoupled experiment, there is a Pacific South American (PSA) wave train 484 

(Karoly 1989). The SAM has been shown to strongly resemble the PSA pattern in the Pacific 485 

(Ding et al. 2012) and the PSA is related to ENSO on interannual timescales (Mo 2000), 486 

indicating that variability in SSTs in the equatorial central-eastern Pacific is linked to the SAM 487 

(i.e., ozone) and may strengthen the link between ozone and Australian temperatures. The 488 

uncoupled experiment still produces strong correlations between ozone and Australian 489 

temperatures when the ENSO signal is removed (Table 1), despite looking like a typical El 490 

Niño response (Fig. 8a and e; Zubiaurre and Calvo 2012), indicating that ozone variability can 491 

sufficiently induce changes in the SAM and impact surface temperatures. In contrast, the 492 

coupled experiment looks more like zonal wave number 3 (Fig. 8f; Raphael 2004) which alters 493 

the wind patterns and temperature response over Australia. Unlike observed (Fig. 7e and f), the 494 
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SAM signal is less distinct in WACCM (Fig. 8e and f). Though, the PSA/ENSO and zonal wave 495 

number 3 patterns are linked to the SAM: ENSO and SAM are strongly correlated in the late 496 

spring and early summer (e.g., L'Heureux and Thompson 2006; Lim et al. 2013) and the 497 

amplitude of wave number 3 is related to the phase of SAM (Turner et al. 2017). The different 498 

responses between the uncoupled and coupled experiments could also be related to the ENSO 499 

response to ozone being too strong in the uncoupled case (Table 2).  500 

 501 

d. Model biases 502 

A coupled ocean in WACCM appears to change the atmospheric and surface response 503 

to interannual ozone variability. The coupled experiment may not capture the observed ozone-504 

Australian temperatures teleconnection because the evolution of observed SSTs may be crucial 505 

to the relationship. Given the ensemble mean of the uncoupled experiment shows a higher 506 

correlation coefficient, we suggest that the SSTs could be driving both interannual variations 507 

in ozone and Australian temperatures, although, it is likely that the overall ability of a model to 508 

reproduce this relationship is also influenced by model biases.  509 

Figure 9 shows the observed and simulated correlations for Eastern Australia summer 510 

surface temperatures with SSTs and SLP, respectively. Australian summer surface temperatures 511 

are influenced by ENSO, SAM and the Indian Ocean (Fig. 9a and b). The WACCM uncoupled 512 

experiment broadly captures these correlations (Fig. 9c and d) in all basins. In the coupled 513 

experiment, however, Eastern Australia summer temperatures are dominated by strong 514 

anomalies in the tropical Pacific and Indian Oceans (Fig. 9e and f). These tropical model biases 515 

may be overwhelming the SAM response and inhibiting the interannual link between ozone and 516 

Eastern Australian surface temperatures via the SAM. This is supported by the fact that 517 

removing the ENSO signal from surface temperatures in the WACCM coupled experiment 518 

(Table 1) slightly increases the strength of the relationship between November ozone and 519 
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summer surface temperature in Eastern Australia. Model biases in the Indian Ocean (e.g., Lim 520 

and Hendon 2015) may also result in interference in the surface response in the coupled case.  521 

Table 4 shows the correlation coefficients between summer ENSO and SAM with 522 

Eastern Australia summer surface temperature. In the WACCM uncoupled experiment, ENSO 523 

explains up to 22% (p < 0.01) of the interannual variability in Australian temperatures, which 524 

is close to the observations where ENSO explains 20% (p < 0.1). However, the influence of 525 

ENSO in the coupled experiment is too strong and explains more than 50% (p < 0.01, Table 4). 526 

The difference between the uncoupled and coupled experiments is highlighted particularly in 527 

the impact of SAM on Australian temperatures. While both experiments capture a strong and 528 

significant relationship between ozone and SAM (Fig. 2c and d and Table 3), the coupled model 529 

poorly simulates the connections between ozone and SAM with Australian temperatures (Figs. 530 

3f, 4d and 5 and Table 4). Similar results for the low-top version of the WACCM model 531 

(CCSM4; Table 4) indicate that this bias is not related to the inclusion of interactive chemistry 532 

or a more resolved stratosphere in WACCM but a likely breakdown in tropical-extratropical 533 

interactions in this version of the atmosphere, potentially related to the overestimated 534 

magnitude of ENSO (Deser et al. 2012; Marsh et al. 2013). The most recent version of the low-535 

top model (CESM1-CAM5) has a much-improved relationship between SAM and Australian 536 

temperatures (Table 4).  537 

The different SAM responses between the WACCM uncoupled and coupled 538 

experiments are further highlighted in Fig. 10, the composite differences in summer between 539 

years in the high and low phases of the summer SAM. Over Australia, the positive phase of 540 

SAM is associated with cooler temperatures (Fig. 10a) related to the poleward shift of the 541 

midlatitude jet (Fig. 10d). The WACCM uncoupled experiment broadly resembles the 542 

observations, though with stronger temperature differences over Australia (Fig. 10b). In the 543 

coupled experiment, SAM does not appear to make a strong contribution to Australian 544 
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temperatures, shown by the weak temperature differences between high and low SAM (Fig. 545 

10c).  The composite temperature differences for the SAM for the coupled experiment also 546 

appear to have an ENSO signature (Fig. 10c). Although this warming in the equatorial Pacific 547 

Ocean is not significant, it is not seen in the observations or WACCM uncoupled experiment 548 

and indicates that ENSO has a strong influence on the SAM during summer in this model 549 

experiment. The coupled model SLP composites (Fig. 10i) also indicate positive anomalies in 550 

the tropical Indian Ocean and western Pacific Ocean that are not observed and likely interfere 551 

with the response to SAM over Australia.   552 

 553 
e. Additional models   554 

Figure 5 also shows the correlation coefficients between November ozone and summer 555 

surface temperature in Eastern Australia for the nine additional CCMI models. These models 556 

are organised in three groups: CCMI REF-C1, CCMI REF-C2-uncoupled (SSTs and sea ice 557 

prescribed from another climate model), and CCMI REF-C2-coupled. Overall, most models 558 

capture the correct sign for the correlation between November ozone and summer surface 559 

temperatures in Eastern Australia, but there is large intermodel variability in the strength of the 560 

correlation coefficients. Unlike in WACCM, there does not appear to be a systematic difference 561 

between REF-C1 (uncoupled) and REF-C2 (coupled) for the other models. This suggests that 562 

the SSTs might not be primarily driving the response, although they may contribute in part, but 563 

rather that model biases are likely impacting most models’ ability to reproduce the observed 564 

interannual relationship between ozone and Australian summer surface temperature.  565 

 566 

4. Discussion  567 

This paper is the first to investigate the possibility of predicting seasonal temperatures 568 

in Australia with ozone using a climate model. We have demonstrated that a climate model 569 

with interactive chemistry can capture observed connections between interannual variability in 570 
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Antarctic TCO and Australian temperatures. Although CCMs are computationally expensive, 571 

traditional models that prescribe an ozone climatology can severely underestimate the effects 572 

of the ozone hole on climate (Li et al. 2016) and will not be able to capture this interannual 573 

relationship.  574 

 575 

a. Interpretations of discrepancies between observations and models  576 

Section 3 demonstrated that the WACCM REF-C1 (observed SSTs and sea ice) and 577 

REF-C2 (coupled ocean) experiments are both able to capture the interannual relationship 578 

between ozone and SAM. However, the coupled experiment cannot simulate the interannual 579 

relationships between ozone and Australian temperatures and SAM and Australian 580 

temperatures, indicating that the relationship breaks down at the surface. Based on the analysis 581 

conducted as part of this study, there are currently three plausible interpretations:  582 

(1) That a strong relationship is only seen when the model is forced with observed 583 

SSTs suggests that much of the observed signal could be due to the SSTs rather 584 

than the Antarctic ozone hole, and the Australian temperatures and ozone hole 585 

are simultaneously responding to the SSTs 586 

(2) Model biases might hinder the ability of some climate models to simulate this 587 

interannual relationship reliably   588 

(3) Uncertainty in the observations could indicate that the connection between 589 

ozone and Australian surface temperatures is not robust and could also be 590 

influenced by natural decadal variability.  591 

The first possibility is based on the results from WACCM where the observed SSTs and 592 

sea ice appear to have an important role in the ozone and Australian temperatures relationship. 593 

The results from the WACCM uncoupled experiment are consistent across all ensemble 594 

members and increase for the ensemble mean, suggesting that SSTs could be driving variability 595 
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in both Australian temperatures and the ozone hole. This hypothesis is supported by the results 596 

from REF-C2, where the coupled ocean and freely evolving SSTs and sea ice result in no 597 

significant relationship between ozone and Australian temperatures. However, there does not 598 

seem to be as clear a difference between REF-C1 and REF-C2 pairs in the four other CCMI 599 

models that have an interactive ocean for REF-C2 (Fig. 5), and this hypothesis, therefore, 600 

requires further investigation.  601 

The second possibility is that the models are unable to represent the key processes 602 

necessary to simulate the ozone-temperature relationship correctly. In the WACCM coupled 603 

experiment, for example, significant correlations (p < 0.1) for November ozone and summer 604 

surface temperatures in South-Southeast Australia are only obtained after linearly removing the 605 

ENSO signal (not shown) and are still much weaker than observed (Table 1). As noted in 606 

Section 3d, the large ENSO amplitude (Deser et al. 2012; Marsh et al. 2013) in the WACCM 607 

coupled model may be interfering with the SAM response and impacting the relationship 608 

between ozone and surface climate. Furthermore, in the coupled experiment, sea ice is 609 

interactive (compared to the uncoupled experiment where it is prescribed from observations); 610 

therefore, it is also possible that the coupled model could be influenced by a sea ice feedback 611 

(Magnusdottir et al. 2004) that may interfere with the SAM. The preliminary analysis of the 612 

fixed GHG experiments (Section 3b) highlights that the coupled model shows an improved 613 

simulation of the ozone-surface temperature relationship when the long-term warming 614 

associated with increased GHGs is omitted. This suggests that the warming acts to interfere 615 

with the interannual variability in ozone and surface climate relationship in the coupled 616 

experiment. One hypothesis is that the unrealistic Antarctic sea ice declines and different SST 617 
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patterns could push the climate system into a different state to that observed and will be the 618 

subject of future work.  619 

The third possibility is that the observed connection between ozone and Australian 620 

temperatures is not particularly robust. While Bandoro et al. (2014) reported a statistically 621 

significant relationship between November Halley ozone and ERA-Interim summer surface 622 

temperatures in Eastern Australia, correlations are largest when these two datasets are used and 623 

are weaker or more variable for other combinations. The correlations in this study for the period 624 

1979-2004 are also weaker overall than for 1979-2012 (not shown). After 2000 the TCO trend 625 

is less negative and even starting to become positive due to initial signs of ozone recovery 626 

(WMO 2014; Solomon et al. 2016), although detection of recovery is hindered by limited data 627 

records and large atmospheric variability (Chipperfield et al. 2017). Studies have linked the 628 

summer positive SAM trend since 2000 to recent changes in SSTs and decadal variability 629 

(Pacific decadal oscillation, e.g., Schneider et al. 2015) in addition to ozone depletion and these 630 

changes could also be influencing the observed relationship. The possible time-varying nature 631 

in the strength of the ozone-temperature connection makes it difficult to compare the 632 

observations to model output directly. Further analysis is required to examine the strength and 633 

linearity of this relationship and its applicability to additional datasets, to assess whether model 634 

results fall within error estimates.   635 

 636 

b. Predicting Australian summer temperatures with ozone   637 

This study aimed to examine whether interannual Antarctic spring ozone variability 638 

could be used as an indicator of Australian summer surface temperature variability in climate 639 

models. To this end, this work has shown that some CCMs can capture the observed relationship 640 

between ozone and surface temperatures, and has, therefore, indicated a potential benefit of 641 

incorporating ozone variability in seasonal forecasting systems. Operational seasonal 642 
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forecasting systems such as the Australian Bureau of Meteorology’s seasonal climate forecast 643 

system, Predictive Ocean and Atmosphere Model for Australia (POAMA), are coupled but 644 

initialised with observed atmosphere and ocean conditions (Lim et al. 2016). Therefore, the 645 

ability of some uncoupled models in this study, including WACCM (Fig. 5), to capture a strong 646 

relationship between ozone and Australian summer surface temperatures is encouraging to 647 

eventually use real-time ozone variability to improve skill in season outlook systems. However, 648 

the reliability and accuracy of modelling this relationship is hindered by model biases. Further 649 

research to assess model biases will assist in understanding why some models cannot correctly 650 

simulate this observed connection with a view to eliminating model biases and eventually 651 

improving seasonal prediction.  652 

Current operational seasonal forecasting models typically have a poorly resolved 653 

stratosphere (Maycock et al. 2011). For example, POAMA only has five levels above 200 hPa, 654 

and the ozone concentration is set to climatological values (Lim et al. 2016). It may be unable 655 

to capture links between the stratosphere and troposphere, and thus, there is a large scope for 656 

improving prediction of tropospheric interannual variability. Roff et al. (2011) found that 657 

improvements in the stratosphere in a forecasting model, such as a higher stratospheric 658 

resolution and better representation of stratospheric dynamics and thermodynamics, led to 659 

significant improvements in tropospheric forecast skill. Hence, even if spring Antarctic ozone 660 

levels do not prove to be a reliable predictor of SH summer temperature extremes, there is still 661 

potential benefit in including time-varying ozone and improving stratospheric representation in 662 

operational forecasting systems.  663 

 664 

5. Conclusions  665 

This study examined the ability for WACCM as well as other CCMs to simulate 666 

observed links between the spring Antarctic ozone hole and summer surface temperatures over 667 
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Australia. A systematic difference is found between the uncoupled and coupled experiments in 668 

WACCM and three possible interpretations are provided to explain the discrepancy in 669 

simulating the ozone-temperature teleconnection: (1) SSTs play a dominant role and drive 670 

interannual variations in both the ozone hole and Australian temperatures, (2) the CCMI models 671 

are unable to represent key processes and/or (3) the observed relationship has some uncertainty 672 

and is time-varying. While the Australian temperatures and ozone hole may be responding 673 

primarily to the SSTs in WACCM, there is some indication that CCMI uncoupled experiments 674 

also capture the relationship with more fidelity than the coupled experiments. However, there 675 

is not as clear a difference between other coupled and uncoupled experiment pairs amongst the 676 

CCMI models, and this hypothesis requires further investigation. It is also possible that the 677 

models are unable to capture the observed relationship due to biases, such as in the ENSO 678 

amplitude. Furthermore, long-term GHG-induced warming also seems to interfere with the 679 

response in the WACCM coupled model. This paper has also highlighted that there is some 680 

observational uncertainty regarding the strength of the ozone-temperature teleconnection.   681 

 The results of this study are encouraging for incorporating ozone variability to improve 682 

seasonal predictions, though more work is needed to identify causality in the link between 683 

spring ozone and SH surface climate. An experiment that compares the predictive skill in a 684 

seasonal forecasting model that is initialised with and without observed ozone would be the 685 

next step to demonstrating useful seasonal skill from Antarctic ozone. In addition, targeted 686 

modelling experiments which separate the role of SSTs and interannual ozone variations would 687 

help to elucidate the mechanism by which ozone impacts the surface climate. 688 
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TABLE 1. Correlation coefficients for detrended November ozone and detrended 1008 

summer surface temperature over Eastern Australia from 1979-2004 in the WACCM 1009 

experiments. The ensemble mean and ENSO were removed from the 5 (3) concatenated 1010 

ensemble members from the uncoupled (coupled) experiment, and the two major volcanic 1011 

eruptions (El Chichón (1982) and Mount Pinatubo (1991)) were removed from the model 1012 

ensemble mean. Correlations for the concatenated members are also shown; refer to Fig. 5 for 1013 

the ensemble mean values.  1014 

An asterisk indicates correlations statistically significant at the 90% confidence level, 1015 

italics for the 95% level and bold for the 99% level. A two-tailed t test is used to test significance 1016 

with the degrees of freedom reduced based on the lag-1 autocorrelation.   1017 

Correlations between ozone and surface temperature 

Concatenated members Uncoupled 0.41 

 Coupled 0.11 

Ensemble mean removed from concatenated members Uncoupled 0.03 

Coupled  -0.05 

ENSO removed from concatenated members Uncoupled 0.34 

Coupled  0.16 

Volcanic eruptions removed from ensemble mean Uncoupled 0.67 

Coupled  0.08 

 1018 

 1019 
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 1021 
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TABLE 2. Correlation coefficients for detrended November ozone with the detrended 1028 

summer Niño 3.4 index, for the period 1979-2004. An asterisk indicates correlations 1029 

statistically significant at the 90% level, italics for the 95% level and bold for the 99% level.  1030 

Observations Halley 0.11 

 NIWA-BS 0.10 

WACCM Uncoupled 0.26 

 Coupled  -0.03 

 1031 

 1032 

 1033 

 1034 

 1035 

 1036 

 1037 

 1038 
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 1040 

 1041 
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 1048 

TABLE 3. Same as Table 2, but for the correlation between November ozone and the 1049 

summer SAM. 1050 

Observations Halley -0.33 

 NIWA-BS -0.40 

WACCM Uncoupled -0.30 

 Coupled  -0.39 

 1051 
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TABLE 4. Correlation coefficients for detrended summer ENSO and summer SAM 1068 

indices with detrended Eastern Australian summer surface temperature, for the period 1979-1069 

2004. An asterisk indicates correlations that are statistically significant at the 90% level, italics 1070 

for the 95% level and bold for the 99% level. 1071 

Surface temperature correlated with ENSO and SAM 

ENSO Observations 0.39 

 Uncoupled  0.47 

 Coupled  0.61 

SAM Observations -0.24 

 Uncoupled  -0.41 

 Coupled  -0.03 

 CCSM4 0.10 

 CESM1-CAM5 -0.36 

 1072 

 1073 

 1074 

 1075 
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 1077 
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 1081 

TABLE A1. Standard deviation of the ozone index over 26 years of data, for the 1082 

observed Halley and NIWA-BS datasets and the three uncoupled, coupled, GHG1960 and 1083 

ODS1960 WACCM ensemble members. 1979-2004 for September-December and 1980-2005 1084 

for January-April.  1085 

  Sep Oct Nov Dec Jan Feb Mar Apr 

Observations Halley  19.61 33.14 43.86 21.86 8.40 8.53 10.41 14.11 

 NIWA-BS  23.67 33.48 34.33 13.95 6.05 6.45 6.64 7.63 

WACCM Uncoupled r1i1p1 24.38 31.88 32.92 22.90 11.36 9.43 8.36 8.81 

 r2i1p1 27.13 32.47 29.12 22.07 12.71 10.19 9.35 8.79 

 r3i1p1 29.37 33.14 28.58 22.03 13.41 9.31 8.53 8.15 

 Coupled  r1i1p1 22.75 30.63 27.48 18.52 9.76 8.16 7.60 6.36 

 r2i1p1 21.99 28.71 28.08 18.06 9.71 8.30 7.35 6.76 

 r3i1p1 22.97 25.98 27.11 20.30 11.72 8.00 6.72 8.37 

 GHG1960 r1i1p1 23.74 29.79 27.64 19.00 10.79 8.75 7.92 7.93 

  r2i1p1 23.60 27.47 28.05 17.47 9.83 7.82 7.86 6.91 

  r3i1p1 25.83 28.47 26.81 22.17 12.68 9.66 10.04 9.98 

 ODS1960 r1i1p1 13.44 14.06 13.55 8.15 6.90 5.74 5.52 6.70 

  r2i1p1 15.52 16.32 15.74 9.83 7.64 6.74 7.96 8.70 

  r3i1p1 15.24 16.78 14.78 7.21 6.53 5.29 6.23 7.72 

 1086 
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 1088 
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 1090 
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 1096 

TABLE A2. Standard deviation of the SAM index over 26 years of data for each three-1097 

month overlapping period, for the Marshall (2003) SAM index and the three uncoupled and 1098 

coupled WACCM ensemble members. 1979-2004 for periods beginning in September-1099 

December and 1980-2005 for January-April.  1100 

  SON OND NDJ DJF JFM FMA MAM AMJ 

Observations   1.26 1.29 1.15 1.10 1.00 1.02 1.05 1.06 

WACCM Uncoupled r1i1p1 1.46 1.49 1.33 1.29 0.83 0.82 1.07 1.06 

 r2i1p1 1.08 1.12 1.06 1.15 1.14 1.17 1.09 1.02 

 r3i1p1 1.23 1.29 1.19 1.11 1.19 1.32 1.24 1.11 

 Coupled  r1i1p1 1.13 1.09 1.07 1.11 1.27 1.13 1.27 1.14 

 r2i1p1 1.06 1.05 1.05 1.16 0.93 0.79 0.72 1.16 

 r3i1p1 0.99 1.01 1.08 1.07 0.83 0.93 1.16 1.13 
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LIST OF FIGURES 1111 

Fig. 1.  Time series (1979-2004) of the November ozone index for the first ensemble member 1112 

of WACCM (a) uncoupled (REF-C1) and (b) coupled (REF-C2) experiments, and the 1113 

detrended November ozone index for (c) uncoupled and (d) coupled. Years with 1114 

high/low polar cap (63-90°S) averaged TCO are identified as those that exceed +/- one 1115 

standard deviation (red/blue horizontal lines). Note that +/- one standard deviation is 1116 

calculated across the three members. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 1117 

 1118 

Fig. 2. Lag correlation between the detrended ozone index and detrended SAM index for each 1119 

3-month overlapping period, for 1979-2004 (1980-2005 for the ozone index in January-1120 

April). (a) Halley ozone (75°S, 25°W) and (b) NIWA-BS ozone (63-90°S) with the 1121 

Marshall (2003) SAM index, and (c), (d), (e) and (f) TCO (63-90°S) and SAM from 1122 

WACCM uncoupled, coupled, GHG1960 and ODS1960 experiments, respectively. The 1123 

horizontal axis indicates the ozone index month. The vertical axis shows the 3-month 1124 

overlapping average SAM, e.g. September ozone correlated with SAM in +0 SON, +1 1125 

OND, +2 NDJ, +3 DJF and +4 JFM. The correlation coefficients that are statistically 1126 

significant at the 90%, 95% and 99% confidence levels are bound by yellow, green and 1127 

white contour lines, respectively. A two-tailed t test is used to test significance, with the 1128 

degrees of freedom reduced based on the lag-1 autocorrelation coefficient. . . . . . . . . 53	1129 

 1130 

Fig. 3. As in Fig. 2, but for the lagged correlation between the ozone index and Eastern 1131 

Australia surface temperature. Two surface temperature datasets are used for the 1132 

observations: ERA-Interim for (a) with Halley ozone and (c) NIWA-BS ozone, and 1133 

AWAP with (b) Halley and (d) NIWA-BS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 1134 

 1135 
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Fig. 4. Correlation coefficients between detrended November ozone and detrended summer 1136 

surface temperatures (1979-2004) for (a) Halley ozone and (b) NIWA-BS ozone with 1137 

ERA-Interim surface temperatures, and (c) and (d) ozone and surface temperatures from 1138 

WACCM uncoupled and coupled experiments, respectively. Hatching indicates 1139 

correlations that are statistically significant at the 95% level. . . . . . . . . . . . . . . . . . . . 57 1140 

 1141 

Fig. 5. Correlation coefficients for detrended November ozone and detrended Eastern Australia 1142 

summer surface temperature (1979-2004). Column 1 shows the observations: ERA-1143 

Interim surface temperature and Halley (red cross; 75°S, 26°W), Syowa (yellow; 69°S, 1144 

39°E), South Pole (blue; 90°S, 25°W), and NIWA-BS (green; 63-90°S) ozone. Columns 1145 

2 and 3 show the WACCM uncoupled and coupled experiments, respectively. 1146 

Individual ensemble members are shown with a cross and the ensemble mean with a 1147 

circle. Columns 4, 5 and 6 show all available members for the CCMI models in three 1148 

groups: CCMI-REF-C1, CCMI-REF-C2-uncoupled where SSTs and sea ice are 1149 

prescribed from another climate model, and CCMI-REF-C2-coupled (ACCESS-CCM 1150 

= red cross, CESM1 CAM4-Chem = blue, CMAM = magenta, EMAC-L47MA = grey, 1151 

EMAC-L90MA = dark green, GEOSCCM = purple, MRI-ESM = pale green, NIWA-1152 

UKCA = yellow, SOCOL = orange). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 1153 

 1154 

Fig. 6.  Time-height evolution of the composite differences (high – low ozone) between the 1155 

years with the highest and lowest (magnitude exceeds one standard deviation; number 1156 

of years indicated at the top left of each column) polar cap (63-90°S) averaged  1157 

November ozone values (1979-2004) for vertically resolved polar cap average 1158 

geopotential height [m]. Left: composite differences for WACCM uncoupled 1159 
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experiment; right: coupled experiment. Hatching indicates differences that are 1160 

statistically significant at the 95% level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 1161 

 1162 

Fig. 7.  Composite differences (high – low ozone) in summer between the years with the highest 1163 

and lowest (magnitude exceeds one standard deviation; number of years indicated at the 1164 

top left of each column) November ozone values (1979-2004). (a, b) Surface 1165 

temperature [K]. (c, d) Zonal wind at 500 hPa [m s-1]. (e, f) Sea level pressure (SLP) 1166 

[Pa]. Left: composite differences for Halley ozone; right: for NIWA-BS ozone. 1167 

Hatching indicates differences that are statistically significant at the 95% level. . . . . 61 1168 

 1169 

Fig. 8. As in Fig. 7, but for WACCM. Left: composite differences for the uncoupled 1170 

experiment; right: for coupled experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 1171 

 1172 

Fig. 9. Correlation coefficients between detrended Eastern Australia summer surface 1173 

temperatures and detrended summer SSTs and SLP (1979-2004) for (a, b) observations, 1174 

and (c, d) uncoupled and (e, f) coupled WACCM experiments. Hatching indicates 1175 

correlations that are statistically significant at the 95% level. . . . . . . . . . . . . . . . . . . . 63 1176 

 1177 

Fig. 10. As in Figs. 7 and 8, but for the composite differences (high – low SAM) in summer 1178 

between the positive and negative phases of the summer SAM (when the magnitude 1179 

exceeds one standard deviation; number of years indicated at the top left of each 1180 

column). (a, d, g) observations, and (b, e, h) uncoupled and (c, f, i) coupled WACCM 1181 

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 1182 
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 1184 
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 1186 

 1187 

 1188 

 1189 

 1190 

 1191 

FIG. 1. Time series (1979-2004) of the November ozone index for the first ensemble 1192 

member of WACCM (a) uncoupled (REF-C1) and (b) coupled (REF-C2) experiments, and the 1193 

detrended November ozone index for (c) uncoupled and (d) coupled. Years with high/low polar 1194 

cap (63-90°S) averaged TCO are identified as those that exceed +/- one standard deviation 1195 

(red/blue horizontal lines). Note that +/- one standard deviation is calculated across the three 1196 

members.  1197 
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 1198 

FIG. 2. Lag correlation between the detrended ozone index and detrended SAM index 1199 

for each 3-month overlapping period, for 1979-2004 (1980-2005 for the ozone index in 1200 

January-April). (a) Halley ozone (75°S, 25°W) and (b) NIWA-BS ozone (63-90°S) with the 1201 

Marshall (2003) SAM index, and (c), (d), (e) and (f) TCO (63-90°S) and SAM from WACCM 1202 

uncoupled, coupled, GHG1960 and ODS1960 experiments, respectively. The horizontal axis 1203 

indicates the ozone index month. The vertical axis shows the 3-month overlapping average 1204 

SAM, e.g. September ozone correlated with SAM in +0 SON, +1 OND, +2 NDJ, +3 DJF and 1205 

+4 JFM. The correlation coefficients that are statistically significant at the 90%, 95% and 99% 1206 
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confidence levels are bound by yellow, green and white contour lines, respectively. A two-1207 

tailed t test is used to test significance, with the degrees of freedom reduced based on the lag-1 1208 

autocorrelation coefficient.	1209 
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 1210 

FIG. 3. As in Fig. 2, but for the lagged correlation between the ozone index and Eastern 1211 

Australia surface temperature. Two surface temperature datasets are used for the observations: 1212 
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ERA-Interim for (a) with Halley ozone and (c) NIWA-BS ozone, and AWAP with (b) Halley 1213 

and (d) NIWA-BS. 1214 
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 1240 

 1241 

 1242 

 1243 

 1244 

FIG. 4. Correlation coefficients between detrended November ozone and detrended 1245 

summer surface temperatures (1979-2004) for (a) Halley ozone and (b) NIWA-BS ozone with 1246 

ERA-Interim surface temperatures, and (c) and (d) ozone and surface temperatures from 1247 

WACCM uncoupled and coupled experiments, respectively. Hatching indicates correlations 1248 

that are statistically significant at the 95% level.  1249 

 1250 

 1251 

 1252 

 1253 

 1254 

 1255 
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 1256 

FIG. 5. Correlation coefficients for detrended November ozone and detrended Eastern 1257 

Australia summer surface temperature (1979-2004). Column 1 shows the observations: ERA-1258 

Interim surface temperature and Halley (red cross; 75°S, 26°W), Syowa (yellow; 69°S, 39°E), 1259 

South Pole (blue; 90°S, 25°W), and NIWA-BS (green; 63-90°S) ozone. Columns 2 and 3 show 1260 

the WACCM uncoupled and coupled experiments, respectively. Individual ensemble members 1261 

are shown with a cross and the ensemble mean with a circle. Columns 4, 5 and 6 show all 1262 

available members for the CCMI models in three groups: CCMI-REF-C1, CCMI-REF-C2-1263 

uncoupled where SSTs and sea ice are prescribed from another climate model, and CCMI-REF-1264 

C2-coupled (ACCESS-CCM = red cross, CESM1 CAM4-Chem = blue, CMAM = magenta, 1265 
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EMAC-L47MA = grey, EMAC-L90MA = dark green, GEOSCCM = purple, MRI-ESM = pale 1266 

green, NIWA-UKCA = yellow, SOCOL = orange).   1267 
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 1292 

 1293 

 1294 

 1295 

FIG. 6. Time-height evolution of the composite differences (high – low ozone) between 1296 

the years with the highest and lowest (magnitude exceeds one standard deviation; number of 1297 

years indicated at the top left of each column) polar cap (63-90°S) averaged  November ozone 1298 

values (1979-2004) for vertically resolved polar cap average geopotential height [m]. Left: 1299 

composite differences for WACCM uncoupled experiment; right: coupled experiment. 1300 

Hatching indicates differences that are statistically significant at the 95% level. 	1301 
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 1304 

 1305 

FIG. 7. Composite differences (high – low ozone) in summer between the years with 1306 

the highest and lowest (magnitude exceeds one standard deviation; number of years indicated 1307 

at the top left of each column) November ozone values (1979-2004). (a, b) Surface temperature 1308 

[K]. (c, d) Zonal wind at 500 hPa [m s-1]. (e, f) Sea level pressure (SLP) [hPa]. Left: composite 1309 

differences for Halley ozone; right: for NIWA-BS ozone. Hatching indicates differences that 1310 

are statistically significant at the 95% level. 1311 
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 1313 

 1314 

 1315 

 1316 

FIG. 8. As in Fig. 7, but for WACCM. Left: composite differences for the uncoupled 1317 

experiment; right: for coupled experiment.  1318 
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 1327 

 1328 

 1329 

FIG. 9. Correlation coefficients between detrended Eastern Australia summer surface 1330 

temperatures and detrended summer SSTs and SLP (1979-2004) for (a, b) observations, and (c, 1331 

d) uncoupled and (e, f) coupled WACCM experiments. Hatching indicates correlations that are 1332 

statistically significant at the 95% level.   1333 
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 1340 

 1341 

 1342 

 1343 

 1344 

FIG. 10. As in Figs. 7 and 8, but for the composite differences (high – low SAM) in 1345 

summer between the positive and negative phases of the summer SAM (when the magnitude 1346 

exceeds one standard deviation; number of years indicated at the top left of each column). (a, 1347 

d, g) observations, and (b, e, h) WACCM uncoupled and (c, f, i) coupled experiments.  1348 

 1349 

 1350 


